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Abstract

This doctoral thesis studies the structure of active galactic nuclei (AGN) using very long
baseline interferometry (VLBI) at high radio frequencies (22 – 86 GHz). The VLBI
observations are complemented using information from total flux density (TFD) obser-
vations at the corresponding frequencies and the TFD variations are compared to the
structure changes seen in the VLBI images.
The basis of this work is the data from the three epoch VLBI monitoring project, which
produced 45 images and parameters of 15 extragalactic sources at 22 GHz.
The maximum intrinsic brightness temperature for synchrotron sources is assumed to be
limited by the inverse Compton catastrophe to ' 1012 K. We have presented two new
methods to estimate this limit using total flux density observations, synchrotron-Self-
Compton X-ray fluxes and shock parameters from VLBI observations. Using several
data sets, we find that both methods yield a value of ≤ 1011 K, which is consistent with
the equipartition limit of 1010 − 1011 K.
We have developed a new method for estimating the geometry of the Universe using
the linear sizes of shocks in AGN jets. The angular sizes of the shocks from VLBI
observations are normalized using intrinsic diameter estimates from TFD observations.
Using a very small set of test data, we verify that the accuracy of the derived values
compare favourably with traditional methods using much larger samples.
A clear connection between radio and gamma-ray flares and VLBI component ejections
was found. Furthermore, it was shown that the origin of the gamma-ray flares is in the
shocks and that they can not be produced close to the core of the AGN.
A helical structure was found in the jet of CTA 102, a High Polarised Quasar (HPQ). The
apparent proper motions in the jet varied from 4.2 to 13.8 times the speed of the light.
This work combined the work of several years of observation, covering wavelengths from
1.3 to 12 mm and angular resolutions from 50 to 500 microarcseconds.
The first 2mm VLBI experiment between Pico Veleta and Metsähovi was performed and
correlation fringes were detected on a baseline of 1.55 billion wavelengths. The success
of this experiment shows that VLBI observations are possible at very high frequencies
leading to very high resolution and enabling to produce images of the fine structure of
the cores of the AGN.
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CHAPTER 1

Introduction

The ideal object to be studied using very long baseline interferometry (VLBI) is bright,
far away and has a small angular size. Active galactic nuclei (AGN) fulfil all these criteria
and therefore form a perfect match with VLBI.
Active galaxies form an interesting subgroup that can be characterised by variability and
luminosity. They produce a luminosity of thousand ’normal’ galaxies in a volume of
space less than the distance to the nearest star. The luminosity is also variable, timescales
of days to years are most common. This work focuses mainly in studying the emission
in radio frequencies, dictated by the limitations of current state of the art VLBI.
Because observing time in VLBI is a very limited resource, it is not usually possible to
observe frequently enough compared with the structure changes in the source. There-
fore it is sometimes very difficult to identify the moving shocks between the observation
epochs. Therefore, single dish total flux density (TFD) monitoring data is a valuable re-
source not only for identifying the components but also providing a means to derive key
parameters that characterise the emitting region.
The radio emission from AGN is coming from a relativistic jet that is aimed closely to
the line of sight. The viewing angle and the velocity of the shocks in the jet are the main
parameters that define the magnitude of the relativistic effects that are observed in the
source. The Doppler factor combines conveniently these parameters and describes the
enhancement of emission due to the relativistic effects. If the relativistic effects can be
estimated, the intrinsic properties of the shock and jet can be calculated.
As an example, one fundamental parameter of synchrotron emission is the maximum
intrinsic brightness temperature. It is usually assumed to be ' 1012 K, due to an effect
called the inverse Compton catastrophe, but our results show that an alternative upper
value of ' 1011 is more plausible. This leads to a different limiting mechanism, the
equipartition of energy between the radiating particles and the magnetic field.
Formerly the total sizes of radio sources or the shock to core separations have been used
to probe the geometry of the Universe but unfortunately they suffer from biases and evo-
lutionary effects and therefore at least a very large number of observations are needed to
get useful results. In this work, the normalized sizes of the individual shocks are pro-
posed to be used instead for this purpose. The linear size of the shock is estimated from
TFD monitoring using the light travel time arguments and the angular size estimate is
obtained using VLBI. This normalized size, measured in milliarcseconds/lightday, traces
the geometry of the universe as it is observed at different distances.



CHAPTER 2

VLBI

2.1 Basic theory

This introduction of the main principles of interferometry follows closely the clear and
beautiful treatment by Clark (1998).

2.1.1 Observed electric field

Consider a source emitting a quasi-monochromatic (narrow bandwidth) electric field
Eν(R) at R. To avoid tensor quantities and to keep the equations easily understand-
able, let us forget the polarisation properties of the field and treat Eν(R) as a scalar field
Eν(R).
For simplicity, the distance R to the emitting source will be considered as very large,
|R| � B2/λ, where B is the baseline length. Therefore, we can only observe the
surface brightness on an imaginary sphere with a radius of R, all information on depth is
lost. Because no radiation is emitted inside the sphere, Huygens’ principle can be used
to express the field of the source using the propagated electric field on the surface of the
sphere,

Eν(r) =

∫

Eν(R)
e2πiν|R−r|/c

|R − r| dS, (2.1)

where dS is a surface area element on the sphere.

2.1.2 Spatial coherence function

A correlation between two points r1 and r2 of the field or the spatial coherence function
can be defined as the expectation of the complex conjugate product of the fields:

∨ν(r1, r2) = 〈Eν(r1)E
∗
ν(r2)〉. (2.2)

Using Eq. 2.1, we get

∨ν(r1, r2) =

〈

∫∫

Eν(R1)E∗
ν (R2)

e2πiν|R1−r1|/c

|R1 − r1|
e2πiν|R2−r2|/c

|R2 − r2|
dS1 dS2

〉

. (2.3)

Because the radiation from any (natural) astronomical object is not spatially coherent or
〈Eν(R1)E∗

ν (R2)〉 ≡ 0, when R1 6= R2, we can simplify further:
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R

r = (r1 − r2)

Eν(R)

Eν(R)

Figure 2.1: If the distance to the emitting source is very large when compared to the base-
line length, we can assume that all radiation is coming from a far-away imaginary sphere
with a radius R, and by further neglecting small terms the spatial coherence function
becomes dependent only on the baseline difference vector r = (r1 − r2).

∨ν(r1, r2) =

∫

〈|Eν(R)|2〉|R|2 e2πiν|R−r1|/c

|R − r1|
e2πiν|R−r2|/c

|R − r2|
dS. (2.4)

2.1.3 Intensity of the electric field

The observed intensity produced by the electric field on the surface of the imaginary
sphere Eν(R) is

Iν(s) = |R|2〈|Eν(s)|2〉, (2.5)

where s is the unit vector R/|R|.
When we assume (again) that the distance to the source and the imaginary sphere is large,
we can neglect small terms and replace the surface element dS by |R|2 dΩ, we get:
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∨ν(r1, r2) ≈
∫

Iν(s)e2πiν s·(r1−r2)/c dΩ. (2.6)

This function is the spatial autocorrelation function and it depends only on the separation
vector r1- r2 of the observing points. The function can be measured simply by varying
the baseline and holding one observation point fixed, observations from all possible pairs
are not required.

2.1.4 Observations in the UV-plane

Finally, we can decide that all observations will be performed in a plane that is perpen-
dicular to s. Furthermore we can choose a coordinate system where the separation vector
is measured in wavelengths r1 −r2 = λ(u, v, 0) and the components of the unit vector s

are (l,m,
√

1 − l2 − m2). In this coordinate system the spatial autocorrelation function
(Eq. 2.6) can be expressed as

∨ν(u, v, w ≡ 0) =

∫∫

Iν(l,m)
e−2πi(ul+vm)

√
1 − l2 − m2

dl dm. (2.7)

This equation is a Fourier transform relation between ∨ν(u, v, w ≡ 0) and the modified
intensity Iν(l,m)/

√
1 − l2 − m2, where the angles are expressed as direction cosines.

Before we can go ahead and try to invert this equation, i.e., start imaging, two deviations
from the ideal case must be discussed.

2.1.5 Discrete sampling of ∨ν(u, v) with finite sized antennas

We can measure the spatial autocorrelation function only in a finite amount of discrete
points that can be described by a sampling function S(u, v). This sampling function pro-
duces the synthesised or dirty beam, which is better known as the point spread function
(PSF) in the optical community:

B(l,m) =

∫∫

S(u, v) e2πi(ul+vm) dudv. (2.8)

In practice dirty beam will be further modified by time varying amplitude and phase or
complex gain of the observing antennas.
What is really observed is the dirty image ID

ν that is the convolution of the true intensity
and the dirty beam:

ID
ν (l,m) =

∫∫

∨ν(u, v)S(u, v)e2πi(ul+vm) dudv = Iν ∗ B. (2.9)

Performing the corresponding deconvolution is the most difficult problem in VLBI and it
will be discussed further in Section 2.2.2.
The dirty image will be multiplied with the primary beam Aν(l,m) of the finite sized
receiving antennas:
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Vν(u, v) =

∫∫

Aν(l,m) ID
ν (l,m) e−2πi(ul+vm) dl dm. (2.10)

Vν(u, v) is finally the observed complex visibility.

2.1.6 Atmosphere

The atmosphere affects both the amplitude and the phase of the received signal. The
resonance lines of oxygen (60 and 118 GHz) and water vapour (22 and 183 GHz) are
responsible for most of the absorption or the opacity, τ of the atmosphere.
The noise temperature that is detected by the receiver through the atmosphere, or the
system noise temperature (Tsys), is the sum of the attenuated signal from the source (Tsrc),
noise emitted by the atmosphere, spillover radiation from the ground (Tspill), and noise
generated in the receiving equipment (Trec):

Tsys = Tsrce
−τ + Tatm(1 − e−τ ) + Trec + Tspill, (2.11)

where Tatm is the average temperature along the line of sight, or the effective physical
temperature of the atmosphere. Tatm can be approximated, e.g., by the following exper-
imental relation, which is valid in the frequency range of 20 – 100 GHz (Leppänen 1993
and references therein):

Tatm = 0.652 · max{Tground} + 84.6K. (2.12)

Here max{Tground} is the maximum ground level temperature of the day.
The system noise temperature can be scaled to the top of the atmosphere:

Teff = eτ [Tatm(1 − e−τ ) + Trec + Tspill] + Tsrc, (2.13)

Teff is called as the effective system noise temperature.
Atmospheric opacity can be determined from sky dip observations where Tsys is mea-
sured at different elevation angles. Tsys depends on the zenith opacity (τ0) and the zenith
angle as follows:

Tsys = Tatm(1 − e−τ0 sec(z)) + Trec + Tspill(z). (2.14)

τ0 can now be obtained by fitting function 2.14 to the measurements.
If accurate receiver noise temperature (and the contribution of spillover radiation) is
known, the atmospheric attenuation L = eτ along the line of sight can be calculated
simply from the sky noise temperature Tsky

Tsky = Tatm(1 − e−τ ) = Tsys − Tsrc − Trec − Tspill(z), (2.15)

and Tatm by

L =
Tatm

Tatm − Tsky
. (2.16)
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In addition to variations in attenuation, the changes in the refractive index of atmosphere
cause variations also in the path length and therefore lead to phase noise. The refractive
index n determines the phase shift experienced of a wave travelling a distance D through
the medium (Carilli et al. 1998):

φ =
2π

λ
· n · D. (2.17)

For convenience the refraction index is typically given with respect to vacuum N =
(n − 1) × 106 and can be divided into dry and wet (water vapour) components:

Nd = 2.2 · 105 · ρtot (2.18)

Nwv = 1.7 · 109 · ρwv

Tatm
, (2.19)

where ρtot and ρwv are the total and the water vapour densities [g/cm−3]. For our pur-
poses the dry component can be considered as stable and the interest concentrates in the
precipitable water vapour column w = ρwv ·D. The electrical path length (Le) fluctuates
due to variations in w (in normal conditions, Tatm ' 270K):

Le = 1.7 × 103 w

Tatm
' 6.3 × w. (2.20)

The variations can be finally expressed in terms of phase:

φ ' 12.6π

λ
· w. (2.21)

This relation is verified experimentally for a range of atmospheric conditions by Hogg et
al. (1981).
Tropospheric phase noise can be reduced by self calibration (see section 2.2) where the
observed source is used as a phase calibrator. This method can be used if the source is
so strong that it can be detected in an integration time that is shorter than the timescale
of the phase variations. Phase referencing can be used if a reasonably compact strong
source can be found near the source to be observed. The array is switching between
these sources and selfcalibration methods are applied to the reference source in order to
correct the phase variations. After this, a longer integration time can be used for both of
the sources and the weaker program source can be processed normally.
Another method that can be used in tracking the tropospheric delay variations is to try to
estimate w from Tsky. The fluctuating component of Tsky can be approximated by

T rms
sky ' Tatm e−τ [Aνwrms +

(Aνwrms)
2

2
], (2.22)

where Aν is a scale factor that depends on frequency and current conditions (optical
depth per millimetre of precipitable water vapour as a function of frequency, see Carilli
et al. (1998) for details).
Eq. 2.22 can be inverted and so Tsky can be converted to phase change using Eq. 2.21. Aν

can be obtained from tropospheric parameters using an atmospheric model or empirically
by observing a calibration source and fitting Eq. 2.22 to Tsky and the observed phase
changes.
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2.1.7 Antennas

The efficiency of a radio telescope can be expressed by the ratio K/Jy

Tsrc

S
=

Aeff

2k
· 10−26

[

K

Jy

]

, (2.23)

which is often called the DPFU (degrees per flux unit) value of the antenna. In Eq. 2.23 k
is the Boltzmann constant and Aeff is the antenna effective aperture [m2] (Napier 1998):

Aeff = Aphys · ηsf ηbl ηsp ηil ηrest, (2.24)

where Aphys is the physical aperture of the antenna and ηsf , ηbl, ηsp, ηil are the efficiencies
due to the surface accuracy, blockage, spillover and illumination efficiency respectively.
The ηrest includes all other deficiencies, including the loss from pointing errors. This
source of error can be considerable in VLBI because for most of the small antennas the
sources are not detectable in total power mode and consequently can not be used for
pointing corrections during the observations.
As a result the antenna pointing must be corrected using a pointing function that depends
on current azimuth and elevation and possibly also the ambient temperature and humidity.
The function is determined before the observing session by measuring the position errors
using a number of strong sources, typically molecular masers and AGN’s.

2.1.8 Receivers

The main parameters defining the performance of high frequency VLBI receivers are
obviously receiver noise temperature Trec and local oscillator stability.
Below 115 GHz, state of the art receivers utilise cryogenic high electron mobility transis-
tor (HEMT) amplifiers with planar Schottky mixers at ambient temperature. Above 115
GHz active amplification is not (yet) practical and superconducting-insulator-superconductor
(SIS) mixers with very low mixing loss are generally used.
Instead of conversion loss, SIS-mixers have gain around 1 and consequently the noise
temperature requirement for the first intermediate frequency (IF) amplifier is relaxed.
The system noise temperature limit for phase conserving mixers and amplifiers can be
set using quantum mechanics and the Heisenberg uncertainty principle (Thompson et al.
1986):

TQ
sys ≥

hν

k
. (2.25)

For example at 22 GHz T Q
sys is 1 K and at 150 GHz 7 K.

Because the phase reference (almost always a hydrogen maser) is multiplied either us-
ing real multiplication and mixing or phase-locked loops to the final frequency, all phase
fluctuations are multiplied as well. This leads to high temperature and mechanical sta-
bility requirements for the local oscillator system. Also any risk of amplitude to phase
noise (AM-PM) conversion must be judiciously avoided.
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2.1.9 Recording equipment

The first observations appearing in this work were made using Mark II system which
utilised standard video cassettes. Mk II could record a 2 MHz bandwidth and the cassettes
had to be changed every two hours.
A considerable increase of performance especially in the recording bandwidth which
translates directly to sensitivity was achieved with the Mk III system that was designed
around a Honeywell 96 tape reel recorder. European Penny&Giles produced a number of
tape transports mainly for use in the JIVE correlator.
Another track of evolution was the Canadian S2 system that used multiple video recorders
to achieve higher bandwidth and the Japanese system which utilises a HDTV-cassette
recorder and is capable to record 1024 Mbit/s (Giga-bit Recorder GBR-1000). A de-
tailed review of VLBI recording technology is found in Rogers (1991) and Kellermann
& Moran (2001).
The future media for VLBI data will probably be the standard computer hard disks that
are specially packaged to tolerate transportation. For pre-session performance tests and
also for observations requiring smaller bandwidth fast Internet connections can and have
already been used.

2.2 Imaging

2.2.1 Deconvolution

Because the UV-plane is very sparsely sampled, direct evaluation of Eq. 2.9 produces a
number of artifacts, which can totally hide the true structure of the source and in any case
limit the dynamic range.
Fortunately there is additional information that can be used to patch the voids, e.g., posi-
tivity of the true brightness distribution, finite source size, smoothness of the sky and that
the sources can be represented by a small number of point sources. The deconvolution
algorithm should use this extra information to interpolate the visibilities and solve Eq. 2.9
for a most plausible brightness distribution.
Currently the most popular deconvolution algorithm for radio interferometry is CLEAN.
It was invented in early 70’s by Jan Högbom while he was working on the design of the
Westerbork array (Högbom 1974).
CLEAN starts by locating the largest value in the dirty image (Eq. 2.9). It then subtracts a
downscaled (usually a few percents of the peak) copy of the dirty beam (Eq. 2.8 centered
to the peak and adds a corresponding delta function to the cleaned image. This is repeated
until a selected criterion has been fulfilled (first negative delta-component, number of
iterations, adequate residual noise level). The cleaned image, which now contains a
collection of delta-functions is then convolved with a suitable restoring beam, which
is usually a Gaussian with the same half-power width as the dirty beam. The residual
emission is finally added to the cleaned image to give an indication of the real noise level
of the image.
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It can be tempting to use a considerably smaller or a circular restoring beam to achieve
super-resolution in one or both beam axes. This usually does not produce very good
results because the Fast Fourier Transform (FFT) algorithm that is generally used to cal-
culate the dirty beam and -image does not behave very well in the presence of noise and
corrupts the derivatives of the visibilities which are the basis of super-resolution. In other
words, a smaller restoring beam brings potentially erroneous extrapolated information
outside of the UV-plane to the image. Conversely, interpolation fidelity can be improved
by using a larger restoring beam (Briggs 1995).

A number of variants have been developed based on the the classical Högbom CLEAN
algorithm. Information on the finite source extent can be brought into the algorithm
by allowing the algorithm to subtract components only within limited regions (CLEAN
boxes).

Another popular deconvolution method used for VLBI images is the maximum entropy
method, MEM (Cornwell & Evans 1985). There are numerous interpretations of the
justification of this method but the consensus is that at least it minimises the variance of
the pixel values and keeps the image positive. In addition to minimising the χ2 of the
model and the data, the algorithm maximises H:

H = −
∑

k

Ik ln
Ik

Mke
, (2.26)

where Ik is the intensity of the pixel k in the image I . Mk is a default image which
can simply be a flat field with an approximate total flux of the source or a low resolution
image.

MEM is good with diffuse emission and somewhat faster than CLEAN on large fields,
but has difficulties in removing sidelobes when a point source is on top of a resolved
emission. For these reasons, CLEAN is often preferred over MEM in high frequency
compact source imaging.

Deconvolution can correct only the effects of discrete sampling because the dirty beam
or PSF is assumed to be accurate. Time dependent phase and amplitude errors change the
PSF continuously and without yet another extra trick VLBI imaging would be impossible.

2.2.2 Closure quantities

In the early 1950’s Roger Jennison, when trying to measure fine structure of radio sources,
discovered that when the phases of three baselines are summed up, all the antenna based
phase errors are cancelled (Jennison 1958). This can be easily seen by calling the visibil-
ity phases of antennas i, j and k as φij , φjk and φki and the antenna based phase errors
as θi, θj and θk. The closure phase Cijk is then
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Cijk = φij + θi − θj

+ φjk + θj − θk

+ φki + θk − θi

+ ε

= φij + φjk + φki + ε, (2.27)

where ε denotes the thermal noise component. The negative sign of the second antenna
based phase arises from the complex conjugate in the definition of visibility (e.g. Eq. 2.2).
Closure amplitude Γijk can be defined in a similar way for visibility amplitudes A and
(amplitude) gain errors g:

Γijk =
gigjAij · gkglAkl

gigkAik · gjglAjl

=
Aij · Akl

Aik · Ajl
, (2.28)

so a closed loop of four baselines is needed to calculate the closure amplitude.
All errors do not close, in fact all errors that are related to the baselines, e.g. bandpass
differences between stations and problems in station data acquisition electronics. Closure
errors rarely exceed thermal noise in high frequency AGN observations. If in doubt,
bandpasses can be calibrated and the station electronics are not likely to be a problem
because network performance is continuously monitored.
In any case non-closing errors are dangerous because they violate the assumptions that
make the modern VLBI imaging possible.

2.2.3 Hybrid mapping and self calibration

Unfortunately, the closure quantities cannot be used to produce images directly. There-
fore, they are usually incorporated in the deconvolution process.
Early methods, variants of the hybrid mapping algorithm, resemble the Gerchberg-Saxton
phase retrieval algorithm that is used in electron microscopy and subsequently in antenna
surface holography (Gerchberg & Saxton 1972). Hybrid mapping starts with a trial map
which is Fourier transformed to trial visibilities. Some of the visibilities can be computed
from the closure phases and are used instead of the trial visibilities (Readhead & Wilkin-
son 1978). After this the modified trial visibilities are inverse transformed to produce the
hybrid map. Another variant adjusts the unknown errors so that the difference between
hybrid and trial maps is minimised (Cotton 1979). The resulting hybrid map is usually
CLEANed with constraints and it forms the trial map for the next iteration. When cal-
culating the phases explicitly the error distribution of the phases is non-Gaussian. Errors
and difficulties arise in subsequent processing since e.g. least squares algorithms assume
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Gaussian distribution. Also incorporating antenna based a priori information, e.g. atmo-
spheric phase changes (Eq. 2.21), is difficult.
If a process alters only the complex gains of the antennas and visibilities are not corrected
directly, it automatically conserves the closure phases. Changing only antenna gains is
also more natural since most of the errors are antenna based and handling non-Gaussian
error distributions can be avoided.
The corrections gi and gj to the gains can be found by using self-calibration (Corn-
well 1998 and references therein), i.e. by minimising

S =
∑

k

∑

i,j
i6=j

wij(tk)
∣

∣

∣
V obs

ij (tk) − gi(tk)g
∗
j (tk)V

model
ij

∣

∣

∣

2
, (2.29)

where wij(tk) is a weight depending on the variance of the visibility, V obs
ij and V model

ij are
the observed and model visibilities. Usually only the gains are modified using Eq. 2.29,
the model is adjusted in an outer loop by a deconvolution algorithm, typically CLEAN,
MEM or model fitting (Section 2.2.4).
The timespan over which the gains, especially the amplitude part, are held constant de-
pends on SNR, atmospheric coherence time and also the source structure. If the gains
are allowed to change too freely, some features from the erroneous model can be get
’freezed’ to the gains and prevent convergence in the outer loop. It is also detrimental
to use too many free parameters in the model: if an erroneous model can explain the
observed visibilities exactly, the gain adjustments resulting from Eq. 2.29 are obviously
gi = gj ≡ 1 and convergence is halted.

2.2.4 Model fitting

It is often advantageous to operate in the UV-plane and examine the visibilities directly.
This is especially true when the quality of the visibility data is poor: SNR is low and/or
UV-coverage is sparse, i.e. typical situation in global high-frequency VLBI. Unless the
source is very simple (single or double Gaussian), fitting the visibilities to a model and
examining the residuals is easier.
If the source is simple enough, i.e. can be described using with a number of Gaussians
or other simple functions, model fitting is usually the best method to extract physical
parameters from the data. Additionally the imaging algorithms that utilise self-calibration
benefit from a better starting model if the source is considerably different from a point
source, e.g. the source has two or more approximately equal components or is otherwise
complex.
Generally speaking both CLEAN and MEM are also model fitting algorithms, CLEAN
fits delta functions and MEM image patches or pixels to the visibility data. Therefore in
comparison the model fitting algorithm has to cope with considerably fewer degrees of
freedom in typical high frequency AGN images, and information is concentrated describ-
ing the few model parameters. Occam’s Razor is in action if model fitting is used prop-
erly, i.e. starting with a point source model and adding parameters while self-calibrating
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until the fit is not improved when adding components.
Of course model fitting has its limitations, imaging very complex diffuse sources is han-
dled better with CLEAN and MEM. However, e.g. fitting out simple structures from im-
age and letting the more complicated algorithms take care of the rest improves dynamic
range and speeds up convergence. A model is good only if it describes not necessarily
the source, but the observed true visibilities within the limits set by thermal noise.
Sometimes two models of a source are physically equally likely, e.g. a single component
or two close components in the AGN core and furthermore both of the models fit to the
visibilities equally well. If observations from a triangle of long baselines are available,
the decision is easy to make: fit the data with both of the hypotheses and examine how
the closure phases fit to the models. If there is no difference in the phases between the
two models which is exceeding the noise level, a one-component model must be chosen
(according to Occam’s Razor). If there is a clear difference favouring a more complex
structure, a splitted core model is justified (Paper [P6]).
Unfortunately the option to use closure phases in model fitting is not available in the
current software packages. In many cases, like when producing a starting model for
subsequent self-calibration loop, closure phase fitting would be a very robust method be-
cause it is totally insensitive of any calibration errors. The reason why closure quantities
are not utilised is probably because the error distributions are non-Gaussian and so the
conventional least squares algorithms are not valid.
Unlike with the imaging algorithms, it is possible to estimate errors in extracted parame-
ters when model fitting is used. Traditionally this has been done by calculating the the χ2

covariance matrix. The diagonal of this matrix gives formal errors of the fit but does not
take into account that the antenna gains are not necessarily correct and can be adjusted
to support a slightly different model. Combined with ignored correlation between the
parameters results in overoptimistic error estimates.
One attempt to tackle this problem is to change the parameter in question in discrete
steps while allowing other parameters to adjust to the change while performing a self-
calibration in each step. The range of a ’good fit’ is determined visually from the fitting
residuals. This approach adopted by Difwrap (Lovell 2000 and references therein) gen-
erates usually somewhat pessimistic error estimates when compared, e.g., to the quality
of closure phases, and relies on the subjective judgement.
The lack of robust fitting and error estimation method is unfortunate since model fit-
ting could clearly provide much more accuracy in determining component positions and
brightness temperatures than the formal beamsize of the array.
Fig. 2.2 shows why phase information is crucial in interferometry. While amplitudes are
nearly identical, a look to the phases reveals immediately the true nature of the source.

2.3 High resolution VLBI

There is basically only one way of improving the resolution in VLBI: increasing the
baseline length in wavelengths. This can be done by increasing the physical length of
the baseline e.g. by using an orbiting telescope, (Fig. 2.3, HALCA satellite in the VSOP
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Figure 2.2: The visibility amplitudes and phases of two different source models: solid
lines represent an optically thin sphere with a radius of one milliarcsecond and dashed
lines a Gaussian double source with both radius and separation of 0.4 milliarcseconds.

project, Hirabayashi et al. (1998)) or by decreasing the observed wavelength (Paper
[P5]).
Both approaches have their merits: some phenomena, like molecular spectral lines can
be observed only at distinct frequencies. In some cases, like when observing the cores
of AGN, a sufficiently high frequency should be used to reach the optically thin part of
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Figure 2.3: For ground-based VLBI experiments, the longest projected baselines are
limited to 10,000 km. When using an orbiting telescope, this constraint can be avoided.
In the case of HALCA, the total array size is up to three times larger than the longest
earth-based baseline (Hirabayashi et al. 1998).

the spectrum to be able to really see deep to to the core. In most cases these approaches
should be combined to get comparable resolution in both regimes to get reliable informa-
tion both from the spectrum and the structure of the source.
Currently the state-of-the-art in ground-based VLBI are the ongoing 2 mm (147 GHz)
global experiments (Paper [P5] and Fig. 2.4). In the near future, ground-based 2 mm
VLBI will probably become a routine and experiments will move to 1.3 mm.
HALCA spacecraft has been observing routinely at 6 and 18 cm from 1997. VSOP-2, the
successor of HALCA which is currently in planning stage, will be pushing the limits in
resolution (25 µas), sensitivity (60 µJy/beam) and observing wavelength (6 cm – 7 mm).
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Figure 2.4: A MK4 correlator (Max Planck Institut für Radioastronomie) fringe plot of
the Apr 9 2001 experiment between Pico Veleta (Spain) and Metsähovi (Finland) tele-
scopes. The strong correlation peaks in the multi- and singleband delays and in delay
rate are the signs of a successful experiment.
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Active Galactic Nuclei

Active Galactic Nuclei (AGN) form a peculiar and much studied group of extragalactic
objects. They are the most luminous objects known, with variability timescales from
years to hours. This leads to serious problems if one tries to explain the energy produc-
tion using stellar processes. Even if the shortest timescales are currently believed to be
caused by interstellar scintillation, a much more efficient energy production method than
stellar processes is needed. In addition, AGN radiate over the whole spectrum from radio
frequencies to gamma-rays. The AGN can be divided in two groups according to their
emission in radio frequencies. The radio loud AGN produce highly collimated jets of
relativistic energetic particles. The jets radiate synchrotron emission and form extended
radio lobes at their ends that are especially well seen at low radio frequencies. The radio
quiet AGN do not have (detectable) jets but are yet not totally quiet at radio frequencies.

3.1 Basic Model

The current standard model to explain the observed properties consists of a supermassive
black hole and a surrounding accretion disk where the matter circulates before it falls to
the black hole (Fig. 3.1). The accretion disk consists of hot optically thick plasma and it
is glowing brightly in ultraviolet (UV) and possibly in soft X-rays. The innermost region
of the accretion disk contains hot optically thin plasma and generates medium and hard
X-ray emission.
In some AGN clumps of line emitting clouds move around the core region at high veloc-
ities. This region emits very broad spectral lines from UV to near infrared and is called
the broad line region (BLR). It surrounds the central engine up to about 1 parsec (pc).
The central region is surrounded by a warped disk or a torus of dust. The torus obstructs
the view to the central engine except when viewed along near the axis. This viewing
angle dependency leads to the unification models.
In the outermost shell a cooler region that emits narrow spectral lines (NLR) extends up
to some hundred pc.

3.2 Jets

The collimated jets are responsible for most of the radio emission from AGN. They carry
energy from the central engine to distances of several kiloparsecs. The jets themselves
are mostly invisible in high frequency VLBI images, and the prominent features are the
shocks that travel along the jet.



3.2. JETS 17

Broad −line Clouds
(optical emission)

(optical emission)
Narrow−line Clouds

Gamma−rays
Radio Emission

Shock

Shock

Radio Jet

Radio Jet

UV and Optical
Emission

Accretion
DiskSupermassive

Black Hole

Figure 3.1: A schematic representation of a generic nucleus of an active galaxy. An
accretion disk surrounds a supermassive black hole, radio emission and gamma-rays are
produced mainly in the jets which are perpendicular to the accretion disk (not to scale).

The energy that creates the shocks and the jet travels through an invisible funnel to the
VLBI core, which is located at the apex of the radio jet (Fig. 3.2) .

An intriguing question is what happens when an instability from the central engine is
arriving from the funnel to the VLBI core; is it just becoming visible in radio and starts
its travel along the jet, does it create a standing shock and make the core brighten (a core
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flare) or does the instability hit the core and generate only a very weak shock in the jet
but a considerable brightening of the core.
The jet can also bend, sometimes quite abruptly to 90◦. This has been explained either by
a cloud of interstellar medium to which the jet is colliding or by helicity of the jet (Paper
[P7]).

Energy
source

VLBI

Line of sight

core Shock

Funnel

θ

γ

φ

Γ ≡ γ = 1√
1−β2

β = v
c

?

Figure 3.2: Schematic of a shock-in-the-jet-model. Energy is transmitted to the jet
through an invisible funnel. A shock forms in the VLBI core and starts to move along
the jet and expands adiabatically. θ is the viewing angle, φ is the opening angle of the jet
and γ is the bulk Lorentz factor of the flow.
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Total flux density variations and VLBI

Perhaps somewhat surprisingly, the connection between radio flaring and the structure
changes seen in VLBI images is not very well understood. It is generally accepted that
the chain of events begins from some kind of a disturbance in the accretion disk, a quake
or crossing of another accretion disk as proposed in the case of OJ287 (Takalo 1994,
Sillanpää et al. 1996). This causes a change in the flow of the relativistic jet and a shock
starts to travel along the jet. This shock is then seen in the VLBI images as a moving
brightening which is also called a knot or a VLBI component.
The core can brighten without a detectable VLBI component ejection and it is clear that
not all features seen in the VLBI jet can be assigned to a previous radio flare. Some
components can be too weak or fade out before they can be resolved from the core, as
in the case of 1749+096 (Paper [P3]) which has undergone a violent flaring without a
noticeable ejection seen in the 22 GHz VLBI images. By inspecting carefully the closure
phases at 22 GHz a second component very close to the core can be detected. This
close component and also the jet direction was verified by 86 GHz VLBI observations
(Lobanov et. al 2000).

4.1 Decompositions of total flux density time series

Although the flaring process is not understood to the extent that it could be physically
modelled, it is possible to use a simple ad hoc model consisting of exponential rise, sharp
peak and exponential decay (Valtaoja et al. 1999):

∆Si(t) =

{

∆Smax,i e(t−tmax,i)/τi , t < tmax,i

∆Smax,i e(tmax,i−t)/1.3τi , t > tmax,i
, (4.1)

where ∆Smax,i is the maximum flux density of flare i, tmax,i is the epoch of the maximum
and τ is the timescale of the flare. The total flux of the source at a given time is

S(t) =
∑

i

∆Si(t) + SQ, (4.2)

where SQ is the quiescent flux of the source.
The starting point of a flare, t0,TFD (and therefore the ejection epoch of a new shock
if a connection is found), has traditionally been defined as the nearest previous local
minimum of the flare (tlm). This causes clearly bogus results if two flares occur nearly
simultaneously because the local minimum occurs in this case between the maxima and
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therefore very near the maximum epoch of the first flare. When utilising decomposition,
the contribution from the individual flares can be separated and a per-flare criterion for
the starting point can be defined.
The choice of t0,TFD = tmax − τ , which is identical to S(t0,TFD) = Smax/e, may look
arbitrary but if it is compared to tlm, the average difference is zero with standard deviation
of 0.4 years. So these two definitions are in practice identical except that t0,TFD avoids
the problem with local minima (which is the cause of high standard deviation).
This simple model allows us to identify the flares and extract parameters that characterise
the flare from the unevenly and sometimes sparsely sampled total flux density (TFD) data.

4.2 Relativistic effects

When the speed of an emitting source is relativistic, the finite speed of light must be taken
into account (e.g. Urry & Padovani 1995, and references therein). A convenient param-
eter describing the relationship between the source velocity β = v/c and the viewing
angle θ is the Doppler factor δ 1:

δ =
1

γ(1 − β cos θ)
, (4.3)

where

γ =
1

√

1 − β2
, (4.4)

is the Lorentz factor of the source.
When the source is approaching the observer, it is catching up the photons it is emitting.
This causes time dilation, i.e. the time intervals measured in the source rest frame are
longer than in the observer frame:

t′ = δt, (4.5)

where t and t′ are the times in the observer and source rest frames and primed quantities
refer to the source rest frame. Because the number of wavefronts per unit time is constant,
the emission is blue-shifted:

ν ′ = δ−1ν, (4.6)

where ν and ν ′ are the frequencies in the observer and source rest frames respectively.
The solid angle is transformed also:

dΩ′ = δ−2dΩ. (4.7)

Doppler boosting in intensity is defined by

Iν(ν) = δ3I ′ν′(ν ′), (4.8)

1There are two conventions in the literature: δ ≡ D and γ ≡ Γ.
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Figure 4.1: When a shock is travelling nearly towards the observer at angle θ at relativistic
speed v, the apparent speed βapp can exceed the speed of light.

i.e. the intensity is enhanced dramatically. One power of the boosting comes from Eq. 4.5
and two from Eq. 4.7.
If the emission is isotropic in the rest frame of the source, the flux is boosted by the same
amount. The spectral shape of the emission,

F ′
ν′(ν ′) ∝ (ν ′)−α, (4.9)

where α is the spectral index of the emission, has to be taken into account. Because the
ratio of the intrinsic fluxes in emitted and observed frequencies is δα the flux density is
boosted as

Fν(ν) = δ3+αF ′
ν′(ν). (4.10)

Relativistic motion towards the observer can also create an illusion of superluminal mo-
tion, i.e the observed velocity can appear to exceed the speed of light (Fig. 4.1). It can be
easily shown from the geometry and the finite speed of the light that the apparent velocity
is:

βapp =
β sin θ

1 − β cos θ
. (4.11)

This effect is used to find limits to γ, δ and θ in Paper [P7] (see also Section 4.4).
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4.3 Connections between radio flares and VLBI images

4.3.1 Emission from close to the core

In Paper [P6] the TFD variations and VLBI modelfits of a sample of 27 blazars2 from
Jorstad et al. (2001) were compared to find out how large fraction of moving VLBI com-
ponents can be associated with TFD flares. Eq. 4.2 was used to characterise and isolate
the contribution of individual flares, and the extracted parameters t0,TFD and ∆Smax

were compared with the results from VLBI.
Convincingly for 28 out of the 29 superluminal ejections we have studied, a TFD flare
occurs within 0.5 years. The exception to this rule is one component in 3C279, its VLBI
ejection time is not very well determined which probably causes the deviation. Also there
is a high correlation between the VLBI component and TFD decomposition fluxes.
We do not have enough VLBI data to investigate if the opposite is true, i.e. if a TFD
flare always produces a travelling shock. This kind of study requires dense high fre-
quency VLBI monitoring, which has only recently become feasible due to the upgrade of
8 VLBA antennas to fully support 3mm observations.

4.3.2 Core flares

In most cases when a new VLBI component can be resolved from the brightened core,
the total flux is already going down. This naturally leads to the assumption that the ejecta
are a result of changes in the radio core and so the core can also brighten by itself without
ejecting a new VLBI component. In Paper [P6] we found 24 cases of core flares from our
dataset, i.e. the VLBI core flux rose 30% and the difference was greater than the TFD
noise level. In six cases there were not enough VLBI data to study the jet behaviour after
the flare. In 11 of the remaining 18 cases a new component appeared in the jet. Also, the
flux behaviour of this new component matched with the TFD flare.
This new evidence suggests that at least in some cases the core brightening is caused
by a new component which is just blending with the core because of finite beamsize of
the instrument and the actual core brightness remains constant. To investigate this further
we searched suitable cases by calculating the assumed separations using expansion speed
estimates from Jorstad et al. (2001). We found four cases where the separation was larger
than one third of the formal beamsize of the array (0420-014, epochs June 21 and August
4 1995, 0528+134 Apr 22 1995, and 1156+295 May 4 1996). An associated epoch where
the estimated separation was smaller than our criterion was (fortunately) also taken to the
closer study (0420-014 April 22 1995). We also selected a control epoch so that there
should be no components near the core i.e. the VLBI observation was well before the
next flare and well after the previous one.
The published modelfits of these cases did not contain any close components. This is
expected because this extra component has a noticeable effect only to the visibilities
of the few long baselines. Consequently by adding this close component to the model

2A subclass of AGN consisting of radio loud, highly polarised quasars and BL Lacertae objects.
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improves the reduced χ2 of the fit only marginally because the change is downweighted
by the numerous shorter baselines where the effect is negligible.
This was clearly seen when we plotted χ2 vs. core separation of the new component:
there was clear but not very deep minimum around the estimated ’true’ position of the
component. The statistical significance of this minimum is very difficult to determine
because the complex gains of the antennas are not independent due to the use of selfcali-
bration and especially bad amplitude calibration can produce even a false local minimum.
In this case, when the sources are reasonably simple, it is possible to get information on
the fine structure of the core by looking at the closure phases (see Section 2.2.2) of the
triangles consisting of long baselines, in this case triangles including both Mauna Kea
and Saint Croix antennas. It is immediately seen that the closure phase is not zero, which
is a clear sign of compact structure.
However, the compactness can be anywhere in the source, two close components down-
stream of the jet could also produce non-zero closure phases.
Unfortunately, the current software packages that are used to reduce VLBI data are not
using closure phases directly in model fitting. Instead, they are relying solely on self-
calibration, which is considered to be superior to the direct use of closure quantities. In
general this is true but especially when analysing high frequency VLBI data of simple,
compact sources, direct inspection of closure phases can prove to be very useful.
We fitted two models to the data: the first is basically the published model which does
not contain compactness near the core but otherwise represents best fit to the data. The
second is produced from the first by splitting the core into two close components (with the
core flux divided between the two components). Usually a phase selfcalibration assisted
the model to converge and a good fit also to the closure phases was achieved. In some
cases an additional amplitude selfcalibration was necessary to improve closure phase
convergence.
The results that are shown in Figs. 4.2 and 4.3 are encouraging: in all cases the second,
’double core’ model, which is plotted in solid line, is better. The difference is striking
in triangles consisting of long baselines. Even the first epoch of 0420-014 (April 1995),
where the shock is very close to the core shows a slightly better fit.
It is possible that when moving through the core region, the disturbance both brightens
the core and causes a shock in the jet. There is some evidence to support this because in
some causes the shock is seen already when the flare is peaking, and therefore the flux
of the core is not constant. Unfortunately, when trying to resolve this by modelling the
closure phases it is readily noticed that the flux ratio and the separation of the core and
the ejected shock are somewhat interdependent. In other words, nearly the same closure
phases are observed either when the core is brighter and the shock is farther away from
the core, or when the fluxes are equal and the separation is smaller. A full correlation
analysis of the parameters would give some probabilities between the cases of constant
and changing core flux.
The main result is that a large fraction of the TFD flares that were studied in more detail
could be associated with a VLBI component in the jet. Therefore it is likely that most of
the flares, perhaps all, produce moving shocks which, in the case of core flares, just fade
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Figure 4.2: Closure phases from triangles consisting of long (left panels) and short (right
panels) baselines from a series of observations of 0420-014. Two models are superim-
posed: one, perhaps an extended component in the core region (dashed line) and two
components in the core region (solid line). The fourth epoch (August 4 1997) is for
comparison: no close component to the core is expected nor found.

too much to be detected before they can be (easily) resolved from the core.
To be able to study the actual shock formation, dense (weekly) 3mm VLBI observations
with one or two space baselines are needed. This requirement might be fulfilled within
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Figure 4.3: Closure phases from observations of 0528+134 and 1156+295. See previous
figure for further description.

five years if the plans of VSOP-2 and/or iARISE proceed as expected.

4.3.3 The gamma-ray connection

The result of the previous section implies that the shocks are the origin of the flux density
variations from radio to at least infrared. This has important implications to the models
trying to explain the gamma-ray production in AGN (Paper [P4]).
In Hartman et al. (2001) the state of the art model (Böttcher & Bloom 2000) is used to fit
eleven radio to gamma-ray spectra. The model calculates both the direct jet synchrotron
component and the inverse Compton components which consist of the synchrotron self-
Compton (SSC) part with synchrotron seed photons and of the external Compton (EC)
portion with accretion disk and/or BLR seed photons. The bulk Lorentz factor and elec-
tron energy distribution are varied to find a fit to the optical-to-gamma-ray spectra.
Although quite good fits are found, the basic assumption that the jet flow is the origin of
the flux variations is flawed. Additional evidence towards our interpretation can be found
by deriving the spectral shapes of the quiescent jet and shocks of 3C 279 and comparing
them to the jet model given in Hartman et al. (2001) (Paper [P4]). It is clear that shocks
must dominate the gamma-ray production.
The timescales of the gamma-ray outbursts are of the order of about a week. If the origin
of the outbursts is in the changes of the physical parameters of the jet itself, problems
arise because there is no known mechanism that is able to change the Lorentz factor of
the bulk flow at this rate.
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On the other hand, when the variability timescale of the shocks is extrapolated to 10 THz,
which is the frequency of the gamma-ray seed photons, a more fitting timescale of a week
is obtained.
EC models which propose that the seed photons come either from the accretion disk or
are reflected from the broad line region are also suspect because according to the results
of Papers [P6] and [P4] the gamma-rays are coming very far from these regions. The
average EGRET 3 flare occurs two months after the formation of the shock, and in this
time the shock has travelled a distance of 1.5 pc down the jet.

4.4 Curvature of the jet and stationary features

In some sources the ejected shocks do not follow a straight trajectory, but instead the path
starts to wiggle and can even turn abruptly 90 degrees from the mean jet axis. It is fairly
easy to explain these changes if the jet is following a helical path. As it is required for
these sources that the jet must be relativistic and that the viewing angle must be small,
projection effects have a significant effect in the apparent trajectory.
In Paper [P7] we present 22, 43, and 86 GHz VLBI observations of CTA 102, which
exhibit all signs of a helical jet. Combining our observations and earlier data found from
the literature (Wehrle & Cohen 1989, Rantakyrö et al. 1996), we can study changes in
the proper motion of the components.

4.4.1 Viewing angle along the jet

The equations in Section 4.2 can be utilised to estimate the undulating viewing angles
along a helical jet. Because we know only the apparent proper motion of the shocks βapp ,
and not the true bulk velocity of the flow, we must make the following assumptions:

1. The bulk Lorentz factor γ does not change in time or over the observed distance.

2. The largest inferred γmin from close to the core represents the γ of the components
in the jet.

3. The proper motion βapp of the components does not change significantly over the
range where the linear fit is done.

To estimate the viewing angles from βapp, we can first assume that the viewing angle is
optimum, i.e it gives the largest βapp and thus the smallest γ. The maximum value of
βapp occurs when the viewing angle θ is

θopt = arccos(β) = arctan(1/βapp). (4.12)

Furthermore, when θ = θopt,
δmin = γmin, (4.13)

3Energetic Gamma Ray Experiment Telescope on the NASA Compton Observatory (20 MeV – 30 GeV).
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Figure 4.4: Optimum viewing angle and the minimum values of Doppler and Lorentz
factors as a function of the apparent superluminal proper motion βapp .

and additionally, when v ∼ c

βapp = δminβ = γminβ =
√

γmin
2 − 1 ' γmin ' δmin. (4.14)

In Fig. 4.4, θopt is shown with the minimum Doppler and Lorentz factors δmin and γmin as
a function of the apparent proper motion.

4.4.2 Helical structure of the jet

The maximum value of the calculated lower limits is chosen to represent the constant
Lorentz factor of the bulk flow in the jet. This choice is not a strong assumption since
the variation of γmin is quite small near the core and does not have a strong effect on the
final conclusions.
Inverting Eq. 4.11 and using βapp of the shocks we can finally calculate the viewing angle
estimates for the shocks (Fig. 4.5) moving at different core separations. The signature of
a helical motion can be readily seen. Furthermore the standing features in the jet at 2
and 6 mas could be interpreted as Doppler enhancements of the underlying jet itself. It is
also possible that because the viewing angle is going through a minimum at these points,
the passing shocks are brightening and generating only an illusion of a standing shock
(Fig. 4.6).
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Figure 4.5: The inferred viewing angle as a function of separation from the core. The
dotted line is not a fit to the points but rather an aid for the eye, representing a possible
helical path of the jet.

Figure 4.6: 22 GHz VLBI images of CTA 102. The standing features and helicity of the
jet are clearly seen.
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4.5 VLBI and cosmology

In principle, the geometry of the Universe can be determined by measuring the apparent
size of a constant linear size object at different redshifts (z). In an Euclidean universe the
angular size of such an object decreases in direct proportion to the distance. However,
in four-dimensional cosmological models based on the Friedmann-Robertson-Walker ge-
ometry, the angular diameter (θ) may have a minimum near z = 1 and can increase at
higher redshifts. The exact behaviour of the θ − z relation depends on the cosmolog-
ical parameters, so it can therefore be used to determine the geometry of the universe
(Fig. 4.7).

log θ

log z

(

1
z

)

q0 = 1

q0 = 0.1

Figure 4.7: When an object of constant length is moved to cosmological distances, the
angular size does not follow the monotonic ’common sense’ 1/z relationship but instead
has a minimum around z = 1 and starts to grow.

Unfortunately, there are severe difficulties in finding a good ’standard rod’ which is not
biased by cosmological epoch. All proposed objects such as galaxy clusters or double
radio sources have similar diameters only on the average, and they evolve significantly
with the cosmological epoch. In addition the results are confused by severe selection
effects. In short, the problem with all proposed standard rods is that we cannot measure
the true linear size of an individual object at cosmological distances. Instead of using
the whole milliarcsecond structures as standard rods, we propose to use the sizes of the
individual shocks propagating along the jets (Fig. 4.8, Paper [P2]).
As standard rods the VLBI shocks have several advantages over the previously used
alternatives, although they do share many of the biases and selection effects. The shock
size can be, and usually is, a function of frequency and therefore a function of redshift.
The sizes can vary with cosmological epoch and physical environment of the AGN, and
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Lsep

Lshock

Figure 4.8: Instead of using the core separation distance Lsep as a standard rod, we
propose to use the less biased and normalized shock size Lshock.

are presumably dependent on the AGN luminosity. However, some other familiar sources
of error and bias are absent.
The sources in a flux-limited sample are biased to have high Doppler boosting factors
and thus small viewing angles. While this causes bias when using whole structures
(Dabrowski et al. 1995) it works against the orientation bias when observing shock
sizes. Because of relativistic aberration, the fast-moving shocks are always seen from
the side. The quantity measured from the VLBI maps is therefore the transverse width
of the shock. Furthermore, because the jet opening angles are small (Oppenheimer et al.
1994) the transverse size of an individual shock is nearly constant with time. The VLBI
shock size may therefore be a better standard rod than the previously used total jet length.
Large samples are still necessary for eliminating the various biases, selection effects and
cosmological evolution.
However, the key advantage in using the shock sizes is that we thus have an independent
method for estimating their true linear diameters. They are not just standard rods on the
average; instead, each individual shock can be used as a calibrated rod.
A new shock becomes detectable both as an emerging VLBI component and as a flare in
total flux density. Each flare has a characteristic variability timescale τobs which can be
estimated from flux monitoring data (Valtaoja et al. 1999). The transverse linear size L
of the shock component is proportional to the light travel time across the emitting region
filling the jet. We therefore have

L = K · c · τint, (4.15)

where K is an unknown scaling factor that depends on the details of shock geometry and
τint is the true intrinsic variability timescale, corrected for redshift and Doppler boosting.
One can further define the variability angular size as θvar = L/Da, where Da is the
angular distance of the source. Since the derived θvar depends on the geometry of the
Universe while the directly observable θVLBI does not, a comparison of the two values for
the same source can be used to reveal the geometry. This is the essence of our proposed
new method: to use the relation θVLBI/τint versus z.
In order to transfer the observed variability timescale τobs into the source frame of refer-
ence τint, we must estimate the Doppler boosting factor δ of the source because

τint = τobs

(

δ

1 + z

)

. (4.16)
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The traditional method for estimating the Doppler boosting factor is to use synchrotron-
self-Compton arguments (e.g. Guerra & Daly 1997); however, such values are highly
unreliable and much better ones can be derived simply by using total flux density varia-
tions (Lähteenmäki & Valtaoja 1999). Virtually all major total flux density outbursts in
AGN have associated brightness temperatures (that are estimated from variability) far in
excess of the equipartition limit Tb,lim (Readhead 1994; Paper [P1]), indicating signifi-
cant Doppler boosting. The variability Doppler boosting δvar is given by

δvar =

(

T source
b,var

Tb,lim

)1/3

. (4.17)

Unfortunately T source
b,var depends on Da and z:

T source
b,var ∝ θ−2

var(1 + z)3 ∝ (1 + z)3D2
a, (4.18)

so we have to correct the original θ − z relation because the Doppler boosting factor
derived from variability depends on the angular distance:

δvar ∝ D2/3
a (1 + z). (4.19)

The net result is that the ’normalized rod length’ θVLBI/τint has a weaker dependence on

the angular distance, D
−1/3
a instead of the usual θ ∝ D−1

a .
By measuring both the angular and the linear sizes of our standard rods, we avoid most of
the problems inherent in previous approaches. The main remaining source of uncertainty
is the geometrical scaling factor K (Eq. 4.15), which plausibly could be dependent on
source properties, for example if luminous AGN have different shock shapes than the
weaker ones. The price to be paid is that we must be able to determine the Doppler
boosting factors δ, and that the resulting θVLBI/τint vs. z -dependence is weaker than in
the usual case when variability Doppler boosting factors are used. This can be avoided if
one uses boosting factors derived by other methods; however, such values tend to be so
inaccurate that this method does not work any more (cf. Lähteenmäki & Valtaoja 1999).
With constantly growing amounts of millimetre VLBI data becoming available, AGN
shocks may prove to be the accurate and useful standard rods that were long sought after.
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Discussion of the papers

5.1 Three epoch survey of 15 AGN at 22 GHz

Paper [P3] VLBI monitoring of a sample of 15 AGN at 22 GHz. I. Data
Paper [P8] Comparison of Total Flux and VLBI Properties of a Sample of Fifteen AGN
at 22 GHz
We have observed a sample of 15 bright active galactic nuclei (AGN) three times during
1992 – 1996 using the global 22 GHz VLBI network. The sample consists of all sources
in the complete 2 Jy catalog of Valtaoja et al. (1992) that had not been observed at 22
GHz VLBI before our first epoch. Our aims were to obtain high-frequency and high
resolution VLBI data on a representative sample of AGN. This data that consists of 45
VLBI images form the basis of the subsequent analysis and comparisons with TFD data,
used in several other papers of this thesis. This project represents also the largest fraction
of time that is spent for this thesis. In these papers we describe the observations and
present images from the three epochs.

5.2 Comparison of VLBI and TFD data: new methods deter-
mining limiting brightness temperature Tb,lim and Doppler
factor.

Paper [P1] Total flux density variations in extragalactic radio sources. II. Determining
the limiting brightness temperature for synchrotron sources
Paper [P10] Comparison of Total Flux and VLBI Properties of a Sample of 15 AGN at
22 GHz
In these papers we present four new semi-independent methods determining Doppler
boosting factor using TFD and VLBI data. We also present two new methods of esti-
mating the limiting brightness temperature Tb,lim comparing Doppler boosting factors
derived from TFD variability , radio and synchrotron-self-Compton fluxes and VLBI
data. Both of these methods agree with the limit of Tb,lim ≤ 1011K.

5.3 VLBI and cosmology

Paper [P2] The geometry of the universe from high resolution VLBI data of AGN
shocks.
Paper [P9] AGN shocks as cosmological standard rods
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In principle, the geometry of the Universe can be determined by measuring the apparent
size of a constant linear size object at different redshifts. In an Euclidean universe the
angular size of such an object decreases in direct proportion to the distance. However,
in four-dimensional cosmological models based on the Friedmann-Robertson-Walker ge-
ometry, the angular diameter may have a minimum near z = 1 and can increase at higher
redshifts. The exact behaviour of the θ− z relation depends on the cosmological param-
eters, so it can therefore be used to determine the geometry of the universe.
In these papers we propose to use the linear diameters of the shocks in AGN jets as
standard rods for estimating the geometry of the Universe. The unique feature of shocks
is that we can directly estimate their linear diameters from total flux density monitoring
data and light travel time arguments. We demonstrate this method by using a small
sample of 14 22 GHz VLBI observations. The accuracy of the derived values (q0 '
0,Ωm ' 0) compares favourably with traditional methods using much larger samples.

5.4 Structure of the core region and the jet

Paper [P4] Millimeter continuum variations, VLBI structure, and gamma-rays: investi-
gating shocked jet physics
Paper [P6] Connections Between Millimeter Continuum Variations and VLBI Structure
in 27 AGN
Paper [P7] Multifrequency Interferometer and Radio Continuum Monitoring Observa-
tions of CTA 102
In these papers we compare the total flux density variations and the VLBI structural
variations in a sample of blazars. We find that all the radio variations are due to shocks;
the flux of the underlying jet remains constant. A large fraction of the shocks grow
and fade within the innermost 0.1 mas, appearing only as ‘core flares’. We show that
most, if not all of the core brightenings are caused by the ejected shock that is within
the synthesised beam of a mm-VLBI array. Comparisons with the EGRET data show
that gamma-ray flares must come from the shocks, not from the jet. At the time of an
EGRET flare, the shock is typically already over a parsec downstream from the radio
core, beyond the accretion disk and/or the broad line region (BLR) photon fields. Thus,
present models for gamma-ray production are inadequate, since they typically model the
gamma-ray inverse Compton flux as coming from the jet, with significant disk or BLR
external Compton components.
We show that the changes in proper motion of the shocks in the jet of CTA 102 are
attributed to a change in the viewing angle of the jet rather than changes in the relativistic
speed of the plasma.

5.5 2mm VLBI

Paper [P5] 147 GHz VLBI Observations: Detection of 3C 273 and 3C 279 on the 3 100
km Baseline Metsähovi – Pico Veleta
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Very Long Baseline Interferometry observations at millimetre wavelengths (3 mm - 1
mm) provide the highest angular resolution and in self-absorbed quasars the possibility
to explore their core regions and the origin of their jets.
While VLBI at 86 GHz (3.5 mm) on intercontinental baselines has become a routine
observing facility (CMVA, VLBA), VLBI observations at even higher frequency are still
in an experimental state.
In this paper we report on the first successful VLBI experiment at 147 GHz (2.1 mm) on
the 3100 km long baseline (= 1.9 Mλ) between the 14-m telescope at Metsähovi (Finland)
and the 30-m telescope at Pico Veleta (Spain). The sources 3C 273B and 3C 279 were
detected with a SNR of ∼ 10.
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