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Abstract

In nonequilibrium dynamical systems the rich macroscopic behavior arises
from simple microscopic processes. While the dominant transport mecha-
nism is often diffusion, there are important dynamics also beyond the diffu-
sive scale. This thesis concentrates on these issues and the effects of spatial
fluctuations in various nonequilibrium systems using computer simulations
and theoretical arguments.

First, the combination of one-dimensional diffusion theory and random walk
simulations is demonstrated to be a powerful tool for analyzing gas diffu-
sion through paper-like structures. An efficient simulation method includ-
ing the effects of fiber sorption is presented. When sorption is present, the
characterization of dynamic diffusion processes is not possible using only
the usually measured diffusion constant. The deviations between the the-
ory and simulations suggest that the former is invalid for low porosities or
thicknesses.

Next, the dynamical behavior in aggregation is considered within a one-
dimensional model. This model, as in aggregation systems generally, obeys
dynamic scaling described by a time-dependent, characteristic length. How-
ever, the first-passage quantities involve other scales. A novel mean-field
theory is developed to extract the asymptotic time-dependence of unaggre-
gated clusters, which is shown to relate to the small size tail of the cluster
size distribution, a quantity of primary importance in aggregation. Then
the effect of the presence of two scales on the dynamic scaling properties is
discussed by considering the sites staying unvisited by clusters. When an
external field like gravitation is applied, the aggregation dynamics is shown
to be dominated by the process leading to the fastest growing characteristic
length and the dynamic phase diagram is predicted.

Finally, coarsening of sand ripples is considered in one-dimensional mass
transfer models motivated by sand ripple evolution. When mass is trans-
ferred preferably from large ripples to small ones, the ripple size distribution
is calculated exactly and is given by a product measure. The approach to-
wards the final state is discussed, leading to a universal decay which depends
on the symmetry of the mass transfer. In the case of small clusters van-
ishing rapidly from the system, the noise in the dynamics is demonstrated
to be irrelevant, but the mean-field theory developed fails to account for
the numerically observed universality with respect to the initial ripple size
distribution.
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1 Introduction

Nonequilibrium dynamical systems offer a challenge for statistical physicists.
While the local dynamics is often formulated through a set of simple rules,
the collective behavior is complicated and there is no general theory as for
the equilibrium systems. Also, the range of applications is wide as the
common features for various models are generally only stochasticity and
transfer of particles. The fundamental transport mechanism is diffusion [1]
and the richness in behavior is due to the interaction with the environment.
This may be static as in the case of disordered media [2] or include dynamic
changes as in growth and reaction-diffusion systems [3, 4].

One of the most important characteristics of the environment is its spatial
dimensionality. For high enough dimensions mean-field theories, which are
conceptually and mathematically simpler than those including spatial fluc-
tuations, provide the correct description of the essential physics. However,
in low dimensions spatial fluctuations can not be neglected and the behav-
ior is different from that given by the mean-field analysis. The dimension
below which a mean-field theory breaks down depends on the system con-
sidered. The fluctuations are the stronger the lower the dimension is and
thus one-dimensional systems are optimal to study fluctuation effects [5].

In nonequilibrium systems the quantities of interest often obey dynamic
scaling and systems are characterized through the related critical exponents.
This is similar to the studies of critical phenomena, where universality plays
a major role [6]. For a universal observable, it suffices to consider the
simplest model obeying the right symmetries. The silent hope is that there
would be similar underlying universality in nonequilibrium systems. Hence,
a great deal of the studies on nonequilibrium dynamics, including those
presented in this thesis, concentrate on simple models, which are hoped to
capture the essential physics.

This thesis consists of studies on nonequilibrium dynamics and scaling in
disordered and fluctuation-dominated systems in three and one dimensions,
respectively. The background is introduced in this Section. Section 2 con-
centrates on diffusion through random fiber networks. In Sec. 3 three first-
passage problems in diffusion-limited cluster-cluster aggregation are studied
and Sec. 4 considers aggregation in the presence of an external field. Coars-
ening of sand ripples within simple mass transfer models is discussed in
Sec. 5.
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1.1 Diffusion and Random Walks

To start with, consider a diffusing particle in d-dimensional space. The
probability density of finding the particle in position ~r at time t is given by
the solution of the diffusion equation

∂P (~r; t)

∂t
= D∇2P (~r; t), (1)

where D is the diffusion coefficient. The diffusion process defined by Eq. (1)
considers both space and time as continuous variables. However, many
processes are conveniently described on a lattice and hence simulated using
discrete random walks. On the other hand, theories are often simpler to
formulate using the continuum description, i.e., diffusion. The random walk
converges to diffusion in the limit ∆x → 0 and ∆t → 0 with (∆x)2/∆t
fixed, where ∆x is the lattice spacing and ∆t is the time interval between
consequent hops [1]. In practice this means that the long time, large scale
properties obtained from random walk simulations should coincide with the
continuum analysis.

The one-particle diffusion described by Eq. (1) and the corresponding ran-
dom walk problem are readily solvable in a free space by various meth-
ods [1, 7]. The most important characteristics of diffusion are that the
probability density is a Gaussian and the mean square displacement grows
linearly, i.e. 〈|~r(t) − ~r(0)|2〉 ∼ Dt. The richness and complexity follows
from the interaction with the environment. In most of the problems con-
sidered in this thesis a particle or a cluster of particles performs a simple
random walk. When studying the diffusion of molecules through a paper-
like structure (Section 2), both the disordered nature of the media and the
molecule-fiber interaction make the issues nontrivial. In the part concen-
trating on cluster-cluster aggregation (Sections 3–4) the complications arise
from interactions between clusters, which aggregate at contact. Finally,
diffusion may be the most relevant transport mechanism only up to some
crossover length or time scale after which the ballistic motion will dominate
the dynamics (Section 4).

1.2 Diffusion in Paper

Paper is an excellent example of a disordered material, which can be pro-
duced in many different forms to fulfill the requirements of a vast variety
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Figure 1: A sample of a thin random fiber network of porosity 0.83.

of everyday applications but whose physical properties are not completely
understood [8, 9]. The problem with paper is that it usually consists of
several types of fibers, fines and fillers, which form a disordered network.
Even the characterization of such a structure has turned out be hard [8, 9].
Therefore, one needs simplified models which help to understand the basic
characteristics. One such a model is the KCL-PAKKA [10], which produces
random fiber networks that closely resemble real paper [11, 12]. Consid-
ering the transport properties, the permeability of KCL-PAKKA networks
has been shown to behave similarly to that of paper and nonwoven fabrics
over a large range of porosities [13].

Figure 1 shows an example of a random fiber network generated by the
KCL-PAKKA program. The network consists of flexible fibers of rectan-
gular cross-section. They are deposited one by one on an initially flat sub-
strate. Each fiber is let to settle as low as possible without deforming the
underlying sheet and obeying a flexibility constraint, which sets the maxi-
mum displacement of fibers per unit length. The porosity of networks can
be varied by changing the fiber flexibility. The thickness of the resulting
sheet is controlled by coverage, which measures the number of fibers per
unit area. For a given fiber density the coverage is directly related to gram-
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mage, which gives the mass per unit area. For more details of the sheet
generation see Publication I.

In spite of the vast research on diffusion in disordered media [2, 4], most
of the theories are not directly applicable to paper-like structures. A paper
sheet consist of fibers, which have a high length-to-width ratio (typically
about 50 − 100 [8]), and therefore the resulting porous structure is highly
anisotropic. Usually one is interested only in the transport through the
sheet plane. As the typical thickness of paper is about 100 µm, it is not
evident that the normal diffusion theory is applicable. Moreover, the fibers
themselves have a porous structure and may also otherwise interact with
the molecules diffusing in the web [14]. Article I focuses on these issues by
studying diffusion through sheets generated by the KCL-PAKKA program.

1.3 Reaction-Diffusion Systems

When a diffusing particle reacts with its environment, which may be static
or consist of other diffusing particles, and the reaction itself is fast enough,
one speaks about reaction-diffusion systems. To be precise, this means
processes, in which the timescale of reaction is much faster than the one
by which particles come together. The basic reaction processes are capture,
annihilation, coalescence, and aggregation, and the word diffusion stresses
the fact that the overall kinetics is controlled by it.

In a capture process a particle gets trapped whenever it gets a contact
with the environment. A classical example is the diffusion with static traps
randomly distributed in space in which case a particle gets permanently
captured when hitting a trap [2]. Also the problem of molecules diffusing
through a paper sheet with fiber sorption included (studied in Section 2)
falls into this category. The best known dynamic environment cases are
perhaps predator-prey models, in which both species diffuse and predators
kill preys [7]. The annihilating (A + A → ∅) and coalescing (A + A → A)
random walkers are examples of reactions, in which particles either disap-
pear at contact or merge on meeting [7]. Interestingly, in one dimension the
dynamics of domain walls in the q-state Potts model, at zero temperature,
can be represented as random walkers, which either annihilate or coalesce
at contact with a q-dependent probability (see [15] and references therein).
In the limit q → ∞ the Potts model reduces to A + A → A. The coales-
cence reaction itself is a simplification from the aggregation one, in which
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the mass in the system is conserved and reactions are of type Ai+Aj → Ak
with k = i+ j, where the subscripts denote the masses of particles.

A part of this thesis concentrates on the aggregation process Ai +Aj → Ak
where the diffusion constants depend on the masses of particles. The special
case of mass independent diffusion corresponds to A+ A→ A. When con-
sidering the probability of a cluster to remain unaggregated in Section 3.2, a
three particle generalized diffusion-reaction system with annihilation at con-
tact is used on a mean-field level. It should be noted that all the reactions
described above are irreversible and occur when particles meet for the first
time. Thus a useful perspective for understanding the kinetics of reaction-
diffusion processes is provided by their first-passage properties. However,
before discussing these let us introduce the diffusion-limited cluster-cluster
aggregation model and discuss its scaling properties.

1.4 Diffusion–Limited Cluster-Cluster Aggregation

To understand the formation of complex, fractal structures in colloidal sus-
pensions the diffusion-limited cluster-cluster aggregation (DLCA) model
was developed in the 80’s [16, 17]. It is defined by placing n particles to a
volume V so that none of the particles overlaps. Particles and particle clus-
ters move diffusively and the diffusion coefficient depends on the number of
particles s belonging to a cluster. For clusters moving in a quiescent fluid it
can be argued that the dependence is algebraic, D(s) ∼ sγ, and that the dif-
fusion exponent γ should be inversely proportional to the fractal dimension
of the clusters [18, 19, 20]. In the model the clusters are completely rigid
and no particle rearrangement is allowed even at collisions. Whenever clus-
ters (particles are clusters of size one) collide, they irreversibly aggregate
together. In general, aggregates could also break into pieces, which may
lead to a non-trivial steady state (see [21] and references therein). However,
fragmentation is not considered in this thesis, and we concentrate on the
one-dimensional DLCA for D(s) ∼ sγ with γ being a free parameter.

For the three-dimensional DLCA the scaling properties of clusters and the
dynamical scaling associated with the cluster size distribution are both well
understood and consistent with experiments [22, 23]. The most famous the-
oretical approach to understand the dynamical behavior in aggregation is
the Smoluchowski’s rate equation theory [24]. Although it does not cor-
rectly describe the one-dimensional DLCA [25], we briefly outline it basic
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features as it is generally applicable to various systems and also as the gen-
eral structure of the solution is the same as that of the one-dimensional
DLCA. When the concentration of particles is low enough such that only
binary collisions need to be considered and one neglects spatial correlations
between clusters, one arrives at

dns(t)

dt
=

1

2

∑
i+j=s

K(i, j)ninj −
∞∑
i=1

K(i, s)nins, (2)

where ns(t) is the number of clusters of size s at time t. All the interactions
between clusters are hidden in the reaction kernel K(i, j), which gives the
rate at which clusters of size i and j aggregate.

As mean-field as the above approach may be, equations (2) form a hierarchy
of differential equations, which can be analytically solved only for a few
specific aggregation kernels [26, 27, 28]. Fortunately, when one is interested
only in the large scale properties, there exists a powerful scaling theory for
homogeneous kernels K(ai, aj) = aλK(i, j) with K(i, j) ∼ iµjν (i � j;
λ = µ + ν) [29, 30, 31]. For example, for mass-conserving systems the
scaling form

ns(t) = S(t)−2f

(
s

S(t)

)
(3)

has been verified through simulations and experiments [22, 23, 32]. The
characteristic, time-dependent length scale is given by the average cluster
size S(t) ∼ tz, where the dynamic exponent z = 1/(1 − λ) [33]. When
λ > 1 the system gels, i.e., an infinite cluster is formed in a finite time.
This thesis concentrates only on non-gelling systems, which requires γ < 2
for the one-dimensional DLCA.

The form of the scaling function f(x) is sensitive to the value of µ and thus
kernels are classified by it [29]. For class I kernels µ > 0 and aggregation
is dominated by the collisions of large clusters with large ones. In class III
µ < 0 and the aggregation is dominated by reactions between large and
small clusters. Class II forms a marginal case, where the two processes
are equally important. The small size tail x → 0+ of the scaling function
behaves as f(x) ∼ x−τ in classes I and II and as f(x) ∼ exp(−x−|µ|) in class
III. The polydispersity exponent τ is easily determined to be τ = 1 + λ in
class I [29]. In contrast, calculating it for class II kernels would require the
knowledge of the whole scaling function and provides still a challenge [34].
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The DLCA kernels KD(i, j) ∼ (i1/df + j1/df )d−2(iγ + jγ) (d ≥ 2) and
KD(i, j) ∼ (iγ + jγ) (d = 1) belong to class II for γ ≥ 0 and to class III
γ < 0. Hence, in any dimension the mean-field theory predicts a transition
between classes II and III at γ = 0 but according to (incorrectly interpreted)
simulation results it has been argued to take place at a negative value of
γ [35]. It has also been shown analytically that for the DLCA the upper
critical dimension, above which the mean-field theory becomes exact, is in-
finite [31]. However, the deviations from it are, at reasonable time scales,
negligible already in d = 3 [36].

The main problem in aggregation is to determine the exponents (z, τ, . . .)
and the scaling function f(x). These play a similar role to the famous
exponents of critical phenomena [6]. The most important issue is that both
the exponents and the scaling function are universal. In other words, they
are independent on the fine details of the model as well as on the initial
conditions.

In addition to the exponents z and τ (or µ) the third exponent of interest
is the decay exponent w, which describes the decrease of clusters of a fixed
size, ns(t) ∼ t−w. It is not independent of the others, and from Eq. (3) one
easily obtains a scaling relation between the exponents [37, 29]

w = (2− τ)z, (4)

when the scaling function decays algebraically at small argument values.
However, the only readily calculable exponent for class II kernels is the
dynamic exponent z. In Section 3.2 a different kind of a mean-field theory
for the density of unaggregated clusters is developed, which for γ ≥ 0 allows
the determination of the exponent w for the one-dimensional DLCA.

1.5 First-Passage Problems and Persistence

In stochastic systems one is often interested in the distribution of events,
when a variable reaches a specific value or state for the first time. These
include chemical reactions, stock prices, diseases, and life time related issues
to mention a few. When the distribution is normalized to unity, one speaks
about the first-passage probability. Its integral provides the answer to the
question “What is the probability, that something has not happened in a
certain time interval?”.
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Due to the fundamental role of first-passage events they have been widely
studied in reaction-diffusion systems, too. In one dimension several exact
results exist. The most relevant for the present work are the following. For
mass-independent diffusion, i.e. for Ai + Aj → Ak, the cluster densities in
DLCA decay asymptotically as ns(t) ∼ t−3/2 [38]. The same result applies
for the particle concentration in A + A → A [39, 7], for which system also
the probability of a site to be unvisited by any particle has been calculated
to decay asymptotically as t−1 [40]. Considering random walks, the survival
probability of a single walker in the presence of an absorbing boundary
decays as t−1/2 [1, 7] and that of three annihilating random walkers as t−3/2

at late times [41].

In spite of the number of exact results obtained, the systems are often
far from trivial. Already the solution of the survival probability of three
annihilating random walkers with unequal diffusion constants is rather in-
volved [42] and the survival probability of a random walker in a determin-
istically expanding cage with absorbing boundaries has been solved only
approximately [43]. The difficulties are not only analytical but also the ap-
proach to the asymptotic decay may be extremely slow. The best example is
perhaps the survival of a diffusing particle among immobile or mobile traps.
There exists analytical results [44, 45, 46] but verifying them by simulations
has turned out to be hard [47, 48]. Lately it was argued that one would
need to simulate probabilities less than 10−100 to see the true asymptotic
behavior [49].

Many nonequilibrium systems obey dynamic scaling, i.e., a system will look
the same if all the lengths are scaled by the time-dependent characteris-
tic length. The advantage of the dynamic scaling is evident, for example,
from the scaling form Eq. (3). It shows that the two-parameter function
reduces to a one-parameter one with a dimensionless quantity as its argu-
ment. Hence, the time-dependence enters only through the characteristic
length, which grows as a power of time and defines the dynamic exponent z.
However, recently studies of first-passage properties under the name persis-
tence have revealed that there may be another relevant length scales, whose
behavior is not simply related to the one characterized by the dynamic
exponent.

Let us give a concise introduction to persistence (for a short review see [50]).
Consider a nonequilibrium field φ(x; t) fluctuating in space and time accord-
ing to some specified dynamics. Persistence explores the fluctuations around
the mean value and it is defined as the probability that at a fixed point in
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space the quantity φ(x, t) − 〈φ(x, t)〉 has not changed sign up to time t.
Often it measures the fraction of a system staying in its initial state, for
example, in spin systems it may be the fraction of spins which have not
flipped. When, as usually is the case [50], the persistence decays alge-
braically, P (t) ∼ t−θ, the quantity of interest is the persistence exponent θ.
As a great surprise, it turns out to be nontrivial even for a simple diffusion
process as a result of the non-Markovian character of the problem [51, 52].

Since the introduction of persistence [53, 54] it has been studied a lot during
the recent years, for example, in spin systems [15, 55, 56, 57, 58] and for
growing interfaces [59, 60, 61, 62]. The interest stems from the fact that the
persistence exponent is generally not related to the normal static or dynamic
critical exponents. Especially, persistence is a quantity, which can not be
tackled using correlation functions. For Markov processes persistence is
relatively well understood [63, 64]. However, when the underlying process
is non-Markovian, persistence gives information about the history of the
system but the analytic analysis is difficult [51, 52, 65].

1.6 Beyond Diffusive Growth

In spite of its general importance, diffusion is not the only transport mech-
anism in aggregation systems. Consider, for example, the aggregation of
particles in a suspension. In general, there are three forces acting on a par-
ticle (or a cluster consisting of particles): a gravitational force, an effective
force due to the Brownian motion, and an effective force due to the interac-
tions between particles [66]. If the clusters formed are small enough, roughly
their radii being smaller than one micrometer, the system is dominated by
diffusion and the results obtained from the DLCA model are consistent
with the experiments [22, 23]. However, for larger aggregates gravitation
becomes important and they undergo sedimentation. Although both the
aggregation in suspensions and the sedimentation of non-Brownian parti-
cles have been studied extensively, the aggregation of fractals affected by
the combined action of Brownian motion and gravity has been considered
only recently [67, 68, 69, 70, 71, 72]. Most of these studies are related to the
structure of aggregates. Section 4 and Article V concentrate on dynamic
aspects by considering the dynamic scaling in cluster-cluster aggregation,
in which clusters obey both diffusive and driven dynamics mimicking grav-
itation.
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Another aggregation related coarsening process is considered in Section 5
and in Article VI. The main emphasis is on the role of the mass transfer
in the evolution of sand ripples although the model considered has much
in common with zero-range processes [73, 74, 75], urn models [76], and
exclusion processes [74, 77, 78]. The basic difference, as compared to irre-
versible cluster-cluster aggregation, is that mass is migrated from a ripple
to the neighboring one and ripples may also shrink in size. These type
of nonequilibrium mass transfer models have various intriguing properties,
for example, they may have many non-trivial steady states separated by
phase transitions [79, 80]. On a mean-field level the general structure of
migration-driven growth was recently shown to besimilar to that of con-
ventional aggregation [81]. However, the system studied in this thesis is
one-dimensional and fluctuations play a crucial role.
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2 Diffusion through a Paper Sheet

In this Section diffusion through a disordered fiber network is studied. The
aim is to understand how gas penetrates through a paper sheet and, es-
pecially, how the sorption properties of fibers affect the transport. Under-
standing diffusive transport is important in many papermaking operations
and end uses of paper and board. Examples range from moisture and heat
conduction in drying, coating, calendaring and printing to the migration of
organic compounds in food packaging materials. The sorption by fibers is in
turn significant because, in the cases of practical interest, the diffusion field
often has not yet saturated to a steady state. This is the case, for example,
in processes in which water is applied or removed from a running web in
a printing press. On the other hand, measuring diffusion experimentally is
tedious [82, 14].

Here a combined method using both analytical and numerical analysis for
extracting the entire first-passage time distribution (in the following called
flux) of molecules through a paper sheet is introduced. The flux is calcu-
lated from an extended one-dimensional diffusion equation theory, which
includes the effect of fiber sorption. The calculated flux is then fitted to the
one obtained from simulations, in which random walkers wander through a
computer generated random fiber network. The fitting parameters are the
diffusion constant D and the ratio of sorption and desorption constants of
fibers. The method is both fast and cost-efficient in evaluating the effect
of constituents, i.e. furnish composition, and sheet structure on diffusion.
The results from computer simulations and diffusion theory are compared
to experimentally measured diffusion constants of paper sheets and board
with a good agreement.

2.1 An Efficient Simulation Algorithm

The networks are generated using the KCL-PAKKA program shortly de-
scribed in Section 1.2. A typical network is presented in Fig. 1. In simula-
tions the space enclosing the network is divided into a simple cubic lattice
with a lattice constant of 1 µm. Initially all the diffusing molecules are,
say, on the lower side of the sheet. The concentration of molecules is low
and they are considered as independent random walkers, which move only
in the empty sites containing no fibers. The main simplification is that the
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interaction between a molecule and a fiber only causes a time delay in its
motion, i.e., when a walker hits a fiber surface, it has to wait some time
before taking the next step. This mimics a situation, in which a molecule
gets adsorbed on the fiber surface and later desorbs from it. However, the
method probably fits also to cases when molecules diffuse along fiber walls
or inside the fiber lumen. This is since the fibers are aligned mainly horizon-
tally and desorption occurs on the average at the same height as sorption.

The simulation method introduced in Article I for the specific geometry in
question has two main ingredients, which increase its efficiency as compared
to simple random walk methods usually described in the literature [83, 84].
First, a random walker invading to the web has a high probability to come
out from the web to the same side from which it went in. After this it
may return to the web quickly or wander a long time below the network
before entering it again. These excursions affect the time distribution of
penetrating walkers but they are irrelevant when considering the effect of
the network on diffusion, which is what we are interested in. Therefore, each
random walker that tries to walk in the space below the web is returned to
its lower surface. This has to be done so that it does not affect the flux
at the top boundary of the sheet, which requires the calculation of both
the first-return time distribution and the conditional spatial distribution of
returns after a given time. The analytical calculations detailed in Article I
are elementary but lead to rather cumbersome results. Nevertheless, the
algorithm utilizing them is about 100 times faster than the one in which
particles are allowed to walk also below the web. Similar ideas have been
used in the studies of the conductivity, dielectric constant and diffusion
in digitized composite media [85] and in the generation of large diffusion-
limited aggregation clusters [86, 87].

The second technique increasing computational efficiency is similar to that
used when studying diffusion on percolation clusters [88]. Instead of using
a “blind” walker, which first selects a random direction and then decides if
it is possible to hop to that direction, one uses a “myopic” walker, which at
every step selects a direction from the allowed ones. The amount of time
the move requires depends on the number of allowed directions. Here the
method is generalized to take into account the sorption interaction between
the random walkers and fibers: a random walker entering a site takes the
next hop after an average time, which depends on the local configuration C
around that site. When the web consist of n fiber types with each having a
different set of sorption parameters, there are (n+ 1)6 different surrounding
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configurations for a molecule on a three-dimensional cubic lattice. When
the sorption to desorption ratio of fiber type i is denoted by ν̂i, the average
residence time is calculated to be

t̄(C) =
6 +

∑n
i=1 ν̂iki(C)

6−
∑n

i=1 ki(C)
, (5)

where ki(C) is the number of fibers of type i in the nearest neighbor sites of
the molecule in configuration C.

As an example, a sheet of porosity 0.57, grammage 60 g/m2, and cross-
sectional area of 0.09 cm2 corresponds to 1.3 × 109 diffusion cells of size
1 µm and requires only some 60 Mb of RAM memory. Using the algorithm
described above, it takes about 100 minutes of CPU-time on a personal
workstation with 500 MHz Alpha processor to make 10000 random walkers
to penetrate through this web.

2.2 One-Dimensional Diffusion Theory Including Fiber
Sorption

Consider a paper sheet of porosity φ as a one-dimensional effective medium
and denote the concentration of molecules in the pore and fiber spaces by Cp
and Cf , respectively. Then the diffusion-sorption process inside the network
can be represented by the coupled partial differential equations

∂Cp(z, t)

∂t
= D

∂2Cp(z, t)

∂z2
− ∂Cf (z, t)

∂t
(6)

∂Cf (z, t)

∂t
= λCp(z, t)− µCf (z, t), (7)

where z gives the distance from the bottom surface of the sheet, D is the
diffusion constant, and λ and µ denote the sorption and desorption rates,
respectively. Outside the network the concentration satisfies the standard
diffusion equation

∂C(z, t)

∂t
= Dg

∂2C(z, t)

∂z2
, (8)

where Dg is the molecular diffusion constant in the free space (e.g. air). The
system of equations is linear and can be solved using the Laplace transfor-
mation. When sorption is present, the solution will be a rather cumbersome
and not very illuminating expression, which, however, is easily handled with
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Mathematica, for example. In the absence of sorption (λ = µ = 0) the solu-
tion is relatively simple and the flux at the top sheet boundary z = a takes
the form

H(t) = −D ∂Cp
∂z

∣∣∣∣
z=a

=
2φC0D

a(1 + φ
√
D/Dg)

√
πt′

∞∑
n=0

(−1)nαne−
(2n+1)2

4t′ , (9)

where t′ = Dt/a is dimensionless time, C0 is the initial concentration below
the sheet, and α = (φ−

√
Dg/D)/(φ+

√
Dg/D).

The two essential parameters characterizing the sheet in the theory are
thickness and porosity. As real sheet surfaces are rough there is no unique
way of determining these parameters. We tried several definitions, and
the best match between the theory and simulations was obtained using the
apparent thickness a and porosity φ. The first one is defined so that 80 %
of local thickness values are below a. The corresponding apparent porosity
φ = 1−ρ/ρf , where ρf is fiber density and ρ equals grammage divided by a.
These quantities also have the pleasant aspect of being experimentally easy
to measure.

2.3 Comparison between Simulations, Theory, and Ex-
periments

In simulations the sheet consists of one fiber type with density 1400 kg/m3,
length 2 mm, thickness 4.3 µm, and width 40 µm. This corresponds roughly
to a paper made from relatively stiff Nordic softwood fibers. The parameter
controlling fiber flexibility, the ratio of pressure (representing all the com-
pressive effects of wet pressing) over fiber shear modulus, is in the range
0.075 − 0.830. This leads to sheet density variations of 400 − 1000 kg/m3

and porosities 0.3− 0.7.

In figure 2 the rescaled fluxH ′ = Ha/(C0D) is compared to the one obtained
from simulations when there is no sorption. The only fitting parameter is the
diffusion constant D, which is determined by the saturated flux. For thick
sheets with large porosities the flux calculated from the theory agrees well
with the one obtained from simulations for all times. On the other hand,
for thin sheets or small porosities the flux given by Eq. (9) rises more slowly
than it should. The threshold grammage above which the theory is valid
increases as porosity decreases. The actual dependence was not analysed
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Figure 2: Comparison of the simulated flux (rough lines) to Eq. (9) (solid
line) for two sheets of approximately of the same porosity. The flux H
is rescaled to H ′ = Ha/(C0D), which is presented as a function of the
dimensionless time t′ = Dt/a. In (a) the sheet is thick (a = 369 µm;
φ = 0.485) and in (b) thin (a = 47 µm; φ = 0.463). The fitted diffusion
constant is (a) D = 0.0545Dg and (b) D = 0.0659Dg. For comparison the
dashed curve shows the flux calculated from the one-dimensional theory
with the same diffusion constant as in (a).

in detail but the threshold grammage is certainly larger than the one at
which the network crosses over from a vacancy-controlled two-dimensional
structure to a pore-controlled three-dimensional one [11]. Above the latter
threshold the number of pores increases linearly with coverage.

There are several possible explanations for a discrepancy between the sim-
ulations and analytical results. First, the simulated network is built on a
flat surface and hence the asymptotic bulk behavior is not reached for low
coverages. Therefore, there are porosity gradients near the bottom surface
not taken into account in the theory. In other, more simple systems such
as composite media, the spatial variation in the transport properties of the
material is known to modify the first-passage behavior in a non-trivial and
complicated manner [7]. Second, for low grammages the probability to have
direct holes through the sheet is not negligible, which can cause the initial
flux to rise faster than predicted by the theory. Third, for low porosities
statistical fluctuations in sheet structure become important and alter the
transport behavior. As known from percolation theory, diffusion is anoma-
lous up to a porosity dependent crossover length scale for systems near the
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Figure 3: a) Comparison of the simulated flux (rough line) to the one-
dimensional theory (solid line) with relatively large fiber sorption. The
parameters are ν̂ = 50, a = 582 µm, φ = 0.691, D = 0.163Dg, and λ =
0.0002. b) Behavior of the effective diffusion constant as a function of
apparent sheet density. Solid circles are obtained by fitting the theoretical
flux to the simulated one and open rectangles represent the experimental
values [89].

percolation threshold [90]. Finally, near the bottom surface there may also
be shallow pores between almost parallel fibers which act like traps for the
molecules.

As a consequence of the above reasons, the effect of fiber sorption is ana-
lyzed using thick sheets of large porosity. Naturally sorption changes only
the early time part of the flux and leaves the large time tail characterized
by the diffusion constant unaffected. The two parameters characterizing
the sorption in the theory are λ and µ. The ratio of these is, within the
numerical accuracy, related to the corresponding parameter ν̂ used in the
simulations as

λ

µ
= ν̂S, (10)

where S is the free specific surface area of fibers (free surface area divided
by the pore volume). Fixing the value of λ a good match between the
theory and simulations is obtained varying only S for all porosities and sheet
thicknesses. Figure 3a shows an example of the fit for ν̂ = 50, φ = 0.691,
and a = 582 µm. Note that the sorption and desorption terms in Eq. (7)
are essential and getting a good match between simulations and theory by
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using the result given by Eq. (9), i.e. λ = µ = 0, is impossible.

Figure 3b compares the simulated effective diffusion constant De = φD
to experimentally measured water vapor diffusion of various uncoated pulp
and paper samples. The comparison is between the orders of magnitudes as
no attempt to reproduce the actual sheet structure is made in simulations.
Nevertheless, the agreement is good, especially for low density sheets. The
deviation at high densities may be due to the fillers in real sheets, which
increase the density in a different way than fibers.

Recent experiments have further shown that the diffusion flux is sensitive to
molecules that diffuse in the sheet [91, 82]. For example, the experimentally
measured diffusion constant for butanol is, within the measurement error,
the same than that given by the theory and simulations but ethanol diffuses
about four times faster than predicted. Note, however, that we have here
concentrated only on diffusion through the pore phase. It is known that at
high relative humidities the diffusion along fiber walls becomes the dominant
transport mechanism [14, 92]. A possible explanation for the difference
might thus be the diffusion of molecules along fiber surfaces, the rate of
which is molecule dependent.

In conclusion, the one-dimensional diffusion theory is not valid for thin
sheets at low porosities. The deviations from the theoretical predictions
are significant as the interesting cases often involve dynamic processes. Al-
though no detailed estimation of the threshold was done, it seems that
ordinary 60 g/m2 handsheets are always too thin for the theory to apply.
However, the results for thick and porous sheets indicate that gas diffusion
through paper and board sheets can be efficiently simulated using model
fiber networks, also in cases including fiber sorption.
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3 First-Passage Problems in Aggregation

As discussed in Section 1.4, aggregation models often lead to scale-invariance:
the average cluster size increases as a power-law S(t) ∼ tz, which defines the
dynamic exponent z. This kind of behavior is met in various contexts rang-
ing from chemical engineering to material sciences to atmosphere research
to even astrophysics [22, 32, 93]. The power of dynamic scaling is based on
the assumption that there is a single, characteristic length scale given by
S(t). However, studies of nonequilibrium dynamics in various systems have
shown that quantities related to first-passage events may not be directly
related to that [50]. It is thus natural to consider dynamics in aggregation
beyond the length and time scales governed through z.

In an aggregation system one can define many first-passage problems, which
allows one to probe the dynamics from different viewpoints. Here we concen-
trate on three first-passage probabilities in the one-dimensional diffusion–
limited cluster–clusters aggregation when the diffusion coefficient of a clus-
ter depends on its size as D(s) ∼ sγ. Figure 4 visualizes the dynamics and
shows some of the first-passage quantities studied.

Simulations are done on a lattice and two first-passages problems related to
lattice sites are discussed in Section 3.1. The probability of an occupied site
to remain ocuupied is demonstrated to be nonuniversal and is commented
upon only briefly. The empty site persistence, which gives the probability
that a site has never been visited by a cluster, is shown to be universal.
The corresponding persistence exponent turns out to be twice the dynamic
exponent. Thus the associated length scale becomes clearly visible in the
scaling of the interval size distribution, which is not always the case [40].

Section 3.2 generalizes persistence to clusters, i.e., the probability of a clus-
ter to remain unaggregated is studied. In the mean-field limit the problem is
reduced to the survival of three random walkers with time-dependent noise
correlations. In spite of the fluctuation dominated dynamics, the random
walk approach captures the essential features for γ ≥ 0 and gives qualitative
understanding of cluster persistence for γ < 0. The solution of the cluster
persistence relates to the behavior of the small size tail of the cluster size
distribution, which is of primary interest in aggregation systems and can
not be tackled using the traditional mean-field theory introduced in Sec. 1.4.
The results are reported in detail in Publications II, III, and IV.

18



Figure 4: A space-time plot of the dynamics in one-dimensional diffusion-
limited cluster-cluster aggregation when the diffusion coefficient of a cluster
is independent of its size. The figure illustrates two first-passage quantities,
the unaggregated clusters (denoted by black) and the regions never visited
by any of the clusters (brown areas). Aggregated clusters are denoted by
light gray.

3.1 Persistence at a Fixed Lattice Site

The most commonly used definition for persistence considers the fraction of
a system staying in its initial state. For the DLCA the natural quantities
thus are the empty and filled site persistences PE(t) and PF (t), which give
the probabilities that an originally empty site has never been occupied by
a cluster and that a site originally covered by a cluster has been covered by
it all the time, respectively.

Consider first the empty site persistence. Since clusters move independently
and can not aggregate, in one dimension, without making all the sites be-
tween their initial positions non-persistent, each persistent empty region is
shortened by two independent processes (clusters). For size-independent
aggregation the problem reduces to the exactly solvable reaction–diffusion
system A + A → A and PE(t) = 〈k2

0〉/(2πt), where 〈k2
0〉 is the averaged

squared length of the initial empty region distribution [40]. Hence, the ini-
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Figure 5: a) Comparison of the numerically obtained empty site persistence
exponent θE ( ) to the mean-field result θE = 2z = 2/(2 − γ) (solid line).
b) Scaling plot for the interval size distribution between two consecutive
persistent empty sites at t = 26, . . . , 211 for γ = 0. The poor scaling at
small k/tθE is due to the competition of the length scales tθE and tz.

tial distribution affects only the amplitude of the universal decay ∼ t−1.
When γ 6= 0 and clusters are considered to behave in an average way, i.e.,
each cluster is taken to diffuse with a time-dependent diffusion coefficient
D(t) = D0t

γz ∼ S(t), the result will remain the same except that the time
scale t gets modified to T = D0t

γz+1/(γz + 1). The resulting mean-field
result PE(t) ∼ t−θE with θE(γ) = 2z = 2/(2 − γ) agrees well with the
simulation results as shown in figure 5a. Simulations also confirm the inde-
pendence of the persistence exponent of the initial spatial distribution and
concentration.

Although the persistence exponent is universal, the size distribution of per-
sistent regions, pE(r; t), depends on the initial condition. However, the spa-
tial and time dependencies are decoupled, i.e., pE(r; t) = p1(r)p2(t), which
explains the universality of the persistence exponent. The decoupling also
implies that the average region size is constant at late times.

More interesting than the nonuniversal region size distribution is the interval
size distribution measuring the distances between persistent regions. It
scales universally as

nE(k; t) = KE(t)−2e−k/KE(t), (11)

where KE(t) ∼ tθE denotes the average interval size. The simple exponential
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decay is due to the uncorrelated nature of the processes making the intervals
shorter: the correlations grow as the diffusive length scale tz but at late
times the persistent regions will be well separated since the persistence scale
tθE � tz. However, at any finite time the presence of the two length scales
affects the scaling of Eq. (11). For example, in the diffusion–reaction model
A+A→ ∅ the empty site persistence was first found to be nonuniversal [94,
95, 96]. Afterwards the same authors argued for universality and claimed
the poor separation of the scales to be the origin of the confusion [97, 98].
Such an effect was also suggested to be the reason for the poor scaling
of the interval size distribution between the persistent regions in the one-
dimensional q-state Potts model [40]. However, in neither of these systems
is the length scale separation evident. In the DLCA the effect of the two
lengths is clearly visible as Fig. 5b demonstrates. The large length tail of
the interval size distributions scales nicely but the short interval part does
not collapse on one curve. The scaling works for k/tθE � t−z and hence the
diffusive scale becomes irrelevant at the long time limit.

In contrast to the empty site persistence the decay of the filled site persis-
tence depends on concentration. At high concentrations this is understand-
able as the average distance between clusters is smaller than the average
cluster size and a cluster generally aggregates with its neighbor before the
sites under it lose their persistence. Hence, a large cluster contains many
persistent regions inside it but only the regions near the edges of a clus-
ter are affected by its motion. On the other hand, at low concentrations
a persistent region usually gets destroyed before the cluster containing it
aggregates.

Within the approximation that the collisions between clusters do not matter
the persistence probability is given by

pF (t) =

∫ ∞
0

ds pF (t|s)ns(0), (12)

where pF (t|s) ≈ 8Dts−2 exp {−π2Dt/(2s2)} is the leading order term of
the probability of finding persistent sites inside a cluster of size s. Hence,
the persistence probability depends on the initial cluster size distribution
and decays generally stretched exponentially pF (t) ∼ tβ1 exp(−Atβ2) with
concentration dependent exponents βi. Simulations show that this is true
only up to a concentration dependent crossover time scale ∼ 1/(Dφ) after
which the collisions between clusters become significant. Asymptotically
the persistence probability decays as a power law PF (t) ∼ t−θF , where the
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exponent θF depends on concentration. Similar nonuniversal persistence has
been observed also in anisotropic coarsening of polycrystalline grains [99]
and in vortex dynamics of the two-dimensional XY-model [100].

3.2 Cluster Persistence

The empty and filled site persistences characterize first-passage probabilities
at a fixed lattice site. Cluster persistence differs from these as it considers
a first-passage problem related to clusters: it is defined as the probability
PC(t) that a cluster has not aggregated. As such, it is related to the essential
issue of the shape of the cluster size distribution.

3.2.1 Mean-Field Random Walk Approach

To understand the decay of cluster persistence we start by considering a
mean-field method resembling that used in the analysis of the empty site
persistence. Similarly to the persistent sites also the persistent clusters are
well separated at late times, i.e., there will be many nonpersistent clusters
between two persistent ones. Hence, each persistent cluster loses its persis-
tence independently of the others and one can concentrate on the behavior
of one persistent cluster surrounded by two nonpersistent ones. The finite
extent of clusters is irrelevant and they can be considered as point particles
with positions x1(t) ≤ x2(t) ≤ x3(t). Making the mean-field approximation
that the neighboring clusters grow as an average cluster does (S(t) ∼ tz)
leads to time-dependent diffusion coefficients for the neighboring particles:
D1(t) = D3(t) = D1t

γz. These particles will follow a simple diffusion with
a constant diffusion coefficient D1 in the time scale T (t) = tγz+1/(γz + 1).

The behavior of the three particle system is described by the Fokker-Planck
equation

∂ρ

∂t
= (D2 +D1t

γz)

(
∂2ρ

∂x2
12

+
∂2ρ

∂x2
23

)
− 2D2

∂2ρ

∂x12∂x23

. (13)

where ρ(x12, x23; t) is the probability density to have distances x12(t) =
x2 − x1 and x23(t) = x3 − x2 at time t and D2 is the diffusion constant of
the particle corresponding to the persistent cluster. As a cluster becomes
nonpersistent when it collides with either of its neighbors, Eq. (13) should be
solved with absorbing boundary conditions along the axis, i.e., ρ(x12, 0; t) =
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ρ(0, x23; t) = 0 for all times t. The initial distance distribution between
clusters gives the initial condition, which for the simplest case of equidistant
clusters reads as ρ(x12, x23; 0) = δ(x12−x12(0))δ(x23−x23(0)). The survival
probability

Psurv(t) =

∫ ∞
0

dx12

∫ ∞
0

dx23ρ(x12, x23; t) (14)

provides the mean-field approximation to the persistence probability PC(t).
When these decay algebraically, the associated exponents θRW and θC are
called survival and cluster persistent exponents, respectively. In other
words, on the mean-field level the problem of cluster persistence reduces
to the survival of three annihilating random walkers with time dependent
noise correlations.

3.2.2 Mean-Field is Adequate (γ ≥ 0)

For size independent diffusion (γ = 0) both the one-dimensional DLCA
and the corresponding three particle random walk problem are exactly
solvable [38, 41, 101]. The survival and persistence probabilities coincide
and Psurv(t) = PC(t) ∼ t−3/2, which can be obtained also from Eqs. (13)
and (14). Unfortunately, for γ 6= 0 the equation (13) with absorbing
boundary conditions is not tractable by standard techniques [102]. For
γ > 0, it can be solved in the limit t → ∞ and Psurv(t) ∼ t−θRW , where
θRW (γ) = 2z = 2/(2 − γ). Simulations confirm the result for the survival
and show that the persistence decays with the same exponent (see Fig. 6)
although the crossover effects make the analysis intractable near γ = 0. As
demonstrated in Publication IV, for γ 6= 0 the corrections to the leading
order asymptotic behavior go in powers of the ratio of the diffusion coeffi-
cients D2/(D1t

γz). As a consequence, the corrections become negligible for
times much larger than the crossover time tcr ∼ r(2−γ)/|γ|, where r ≈ 30 is
a constant. Hence, tcr diverges as γ → 0. This differs drastically from the
γ = 0 behavior, in which case tcr = 3l0/(16D), where l0 indicates the initial
distance between particles and D is the diffusion constant [101, 38].

The persistence exponent is discontinuous and non-monotonic as 3/2 =
θC(0) > θC(0+) = 1. Thus, we arrive at the non-intuitive result that mak-
ing some of the clusters to diffuse faster helps the others to stay longer
intact. The reason for the peculiar behavior is that the persistent clusters
become slower than the average ones and eventually adopt the optimal sur-
vival strategy [103] by becoming stationary. This interpretation is further

23



a)

10
0

10
2

10
4

10
6

t

10
-8

10
-6

10
-4

10
-2

10
0

P
C
(t

),
   

P
su

rv
(t

)

γ = 0.00
γ = 0.25
γ = 0.50
γ = 0.75
γ = 1.00
γ = 0.33
γ = 0.33
γ = 1.00
γ = 1.00

 b)

10
0

10
2

10
4

10
6

t

1.5

2

θ C
, θ

R
W

 

Figure 6: a) Comparison between the survival (filled symbols) and cluster
persistence (open symbols) probabilities. The lower (upper) curves corre-
spond to the initial distance between particles being 2 (10). b) The corre-
sponding local exponents. The horizontal lines show the analytic predictions
given by θC = 2/(2− γ).

supported by the fact that the cluster and empty site persistences decay
with the same exponent for γ > 0. Note that asymptotically the persis-
tence probability decays similarly to the joint survival probability of two
independent random walkers diffusing with diffusion coefficients D(t) ∼ tγz

with a fixed absorbing boundary in between. This implies that the fluctu-
ations in the motion of the slow, persistent clusters become irrelevant for
γ > 0 in the limit t → ∞ although the aggregation itself is dominated by
spatial fluctuations [25].

3.2.3 Fluctuation Dominated Persistence (γ < 0)

The simple asymptotic analysis of Eq. (13), which provides the correct re-
sult for γ > 0, does not adequately describe the persistence for γ < 0.
It leads to an exponential decay but simulations show that both the sur-
vival and persistence probabilities decay stretched exponentially, Psurv(t) ∼
exp(−CRWt

βRW) and PC(t) ∼ exp(−CCt
βC), respectively. The stretching

exponents are independent of initial conditions, and for the persistence nu-
merics suggest an expression βC = 2(1 − 2z)/3 whereas for the survival
βRW = (1− 2z)/2 with z = 1/(2− γ) (see Fig. 7a).

Next we present a Lifshitz tail argument [7], which heuristically explains
the functional dependence of the survival stretching exponent βRW on the
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Figure 7: a) The survival probabilities for γ < 0. A straight line corresponds
to a stretched exponential decay with the slope giving the stretching expo-
nent βRW. The inset shows bounds for the survival (filled symbols) and
persistence (open symbols) stretching exponents as a function of the dy-
namic exponent. The dashed and solid lines are given by 1

2
(1 − 2z) and

2
3
(1− 2z), respectively. b) The scaling plot for the cluster size distribution

for γ = 0.00, 0.40, 0.57, and 1.00 (from bottom to top) showing that τ = 0
for γ > 0. The dashed line has a slope 1 and the distributions (except the
γ = 0 one) have been shifted in the vertical direction for clarity.

dynamic exponent z and gives hints, why the mean-field theory fails for
γ < 0. The argument assumes that a relatively small number of extreme
configurations provides the main contribution to the asymptotic survival
probability. In the three particle random walk problem these configurations
are those, in which the particles surrounding the surviving one have diffused
far apart from each other. Hence, within the Lifshitz approach, the survival
probability can be written as

Psurv(t) ≈
∫ ∞

0

dl P (l; t)Q(t|l), (15)

where P (l; t) is the probability distribution of the interval lengths l = x3−x1

around a surviving particle at time t and Q(t|l) ∼ l−1 exp(−π2Dt/l2) is the
dominant large time term of the survival probability of a particle in an
interval of length l [7, 1].

To proceed, we need to know the large l behavior of P (l). According to the
simulations it scales as

P (l; t) = t−zG

(
l − 2btα

tz

)
(16)
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similarly to the reaction front in the initially separated reaction-diffusion
system A + B → C [104, 105]. Here b is a constant, α is a non-trivial
exponent describing the growth of the mean interval length, and the large y
tail of the scaling function G(y) is Gaussian. Consequently, Eq. (15) gives

Psurv(t) ∼ t(6z−1)/4e−Ct
(1−2z)/2

, (17)

in agreement with the numerical result βRW = (1− 2z)/2.

A few points on this result are worth noticing. First, the argument of the
exponential decay is simply the ratio of the two length scales in the problem:
the one related to the random walkers with time-dependent diffusion coef-
ficients, L1 ∼ tz, and the other to the surviving particle L2 ∼ t1/2. Second,
the same result for the stretching exponent can be obtained by considering
the survival of a random walker in a cage, which expands deterministically
and algebraically as tα leading to βRW = (1−2α) for α < 1/2 [43]. However,
within this approach the exponent α has to be obtained from simulations.
The fact that this methods gives the same result as the Lifshitz argument is
a coincidence which follows from the Gaussian nature of the large y tail of
the scaling function G(y). Third, the Lifshitz approach does not only give
the stretching exponent but also indicates the presence of the new length
scale tα with α = (2z + 1)/4, which gives the average distance between
particles surrounding the surviving one. Furthermore, it shows that the
fluctuations in the motion of these particles affect the stretching exponent.
As the reduction of the DLCA to a three particle problem does not correctly
take into account these fluctuations, the mean-field theory can not quan-
titatively describe the persistence in DLCA. Finally, the Lifshitz method
is by no means rigorous and it would be worthwhile to try to analytically
solve Eq. (13) with the appropriate boundary conditions. This would re-
quire ingenious analysis as the traditional image method [41, 1, 7] can not
be applied.

The difference between the mean-field theory and the DLCA is evident also
in the scaling of the interval size distribution between the particles (clusters)
that surround a surviving particle (persistent cluster). The distribution for
the random walk problem obeys a peculiar scaling [Eq. (16)] with a non-
trivial length scale tα but the corresponding distribution in the DLCA scales
similarly to that of the cluster size distribution

P (l; t) = L−1h

(
l

L

)
, (18)
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where L(t) ∼ tz is the average interval length between clusters. Although it
is possible to estimate h(x) from simulations, the Lifshitz argument can not
be simply used to obtain the stretching exponent βC . The outcome depends
on the motion of the clusters next to the persistent ones. Therefore, the
approach would require the knowledge of the distribution of their diffusion
constants and also how they correlate with the distance from the persistent
cluster.

3.2.4 Relation to Cluster Size Distribution

By definition, persistent clusters are those ones, which have not aggregated.
Asymptotically these clusters belong to the small cluster size tail s� S(t)
of the cluster size distribution, which is characterized by the exponent τ or
µ for γ ≥ 0 or γ < 0, respectively. (See Section 1.4 for the definitions of
these exponents). Therefore the exponents θC and βC should relate to these.
As all the exponents z, w, τ , µ, and θC are universal, it suffices to consider
the simplest initial distribution, ns(0) = δs1. For γ ≥ 0 the persistence
exponent is given by n1(t) ∼ t−θC but on the other hand ns(t) ∼ t−w for
any fixed s ≥ 1 [106]. Hence θC has to be equal to w and from Eq. (4) it
follows that

θC = (2− τ)z. (19)

A similar argument for γ < 0 leads to

βC = |µ|z. (20)

As µ follows directly from the scaling of the reaction kernel [29], the rela-
tion (20) makes cluster persistence for class III kernels a rather trivial quan-
tity on a mean-field level. The same is true for class I kernels. However, in
fluctuation dominated cases and for class II systems, as the one-dimensional
DLCA, Eq. (19) (or Eq. (20)) can be used in the opposite direction: solving
for the persistence one obtains the behavior of the small cluster size tail of
the cluster size distribution, which is of primary importance in aggregation
systems. As the reasoning leading to relations (19) and (20) is model inde-
pendent, the behavior of the cluster size distribution may well be tackled
through the concept of cluster persistence in other models, too. In fact,
relations similar to (19) have been found in the reaction-diffusion system
A+ A→ ∅ [97, 98] and in the Ising model [58].
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As θC = 2z for the one-dimensional DLCA when γ > 0, it follows from
Eq. (19) that τ(γ) = 0 for all 0 < γ < 2. This independence of γ is surprising
as the other exponents z and w depend on it. Here the explanation is again
provided by the random walk picture: independent of γ (but 0 < γ < 2) the
motion of the persistent clusters becomes asymptotically irrelevant. Note
that the polydispersity exponent is discontinuous at γ = 0 as τ(0) = 1 [38].
Similar discontinuity is observed also in the Smoluchowski’s rate equation
theory for the sum kernel K(i, j) = iλ + jλ in the limit λ→ 0 [107]. Here,
similarly as for the persistence exponent, the determination of τ near γ = 0
by simulations is plagued by long lasting crossover effects, which led us
to a wrong conclusion concerning the behavior of τ(γ) in Publication V.
Figure 7b illustrates the scaling of the cluster size distribution in the γ-
range, where the asymptotic regime can be reached.

We have concentrated here only on one-dimensional aggregation. As is ev-
ident from the above discussion, cluster persistence is an interesting quan-
tity for the DLCA and also other aggregation systems in higher dimensions.
There it should also be possible to find experimental realizations. On the
other hand, in higher dimensions a similar mean-field random walk analysis
is hardly possible (see, for example, [49]). We, however, believe that also
for other systems the behavior of the cluster size distribution is determined
by the solution of the cluster persistence problem.
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4 Aggregation in an External Field

So far we have considered aggregation, in which the dynamics is purely dif-
fusive. However, it is known that in colloidal suspensions the sedimentation
of clusters due to gravitation becomes more pronounced as the growth pro-
ceeds. This alters both the growth mechanism and cluster structure as was
recently observed in experiments [108] and simulations [71, 72].

In this Section we concentrate on the dynamic scaling in the presence of
diffusion and drift. Both transport mechanisms are studied separately and
simulation results are compared to the mean-field predictions in the case of
one-dimensional cluster–cluster aggregation. With mixed dynamics the ag-
gregation process leading to faster growth is shown to dominate the asymp-
totic dynamics, and a dynamic phase diagram characterizing the dominant
growth mechanism is presented. Various crossovers are briefly discussed.
This Section summarizes the results of Publication V.

4.1 Comparison of Simulations and Mean-Field The-
ory

The basis of the field–driven cluster–cluster aggregation model is the DLCA.
In addition to the diffusive motion [D(s) ∼ sγ] clusters are also driven
in one direction with a size dependent velocity v(s) ∼ sδ, where δ is the
field exponent. Figure 8a visualizes the dynamics when the drift domi-
nates the large time aggregation behavior (compare to Fig 4). The mean-
field Smoluchowski’s rate equations described in Section 1.4 are directly
applicable also to the field-driven case. Now the reaction kernel reads
Kv(i, j) ∼ (i1/df + j1/df )d−1|iδ− jδ|, and thus the driven system in d dimen-
sions has similar scaling properties as the diffusive one in d+ 1 dimensions.

In one dimension the theory predicts, for example, that zMF = 1/(1 − γ)
and zMF = 1/(1 − δ) in the diffusive and driven cases, respectively. As
shown in Publication V, simulations confirm the field-driven result whereas
for the purely diffusive motion z = 1/(2− γ) [109, 110]. The correct results
can be simply understood by considering the characteristic length scales:
the diffusive one lD ∼

√
Dt and the ballistic one lv ∼ vt. Assuming that

the growth is asymptotically governed only by a single scale, it follows
using D(s) ∼ sγ and v(s) ∼ sδ that z = 1/(2 − γ) and z = 1/(1 − δ)
in the diffusion and field-driven cases, respectively. If both diffusion and
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Figure 8: a) Space-time plot in the presence of mixed dynamics for γ = −1.0
and δ = 0.5. b) The dynamic phase diagram. Aggregation is dominated by
diffusion (light blue), drift (red) or a gelation transition (white). Roman
numbers indicate the classes according to the decay of the small s tail of
the cluster size distribution.

drift are present, the dynamics leading to faster growth dominates, i.e.
z = max{1/(2 − γ), 1/(1 − δ)}. Hence, there is a crossover between the
two behaviors at δ = γ − 1. This leads to the dynamic phase diagram
shown in Fig. 8b.

Consider next the scaling of the cluster size distribution, Eq. (3). The
mean-field theory predicts that for a diffusion (field) dominated dynam-
ics the scaling function should decay fast [f(x) ∼ exp(−x−|µ|); class III]
for γ < 0 (δ < 0) and as a power-law [f(x) ∼ x−τ ; class II] for γ ≥ 0
(δ ≥ 0) at small argument values. Simulations confirm the change of the
class for the diffusive case but not for the field-dominated one. The drift
dominated aggregation always belongs to class III, where the large-small
collisions dominate the aggregation. This is opposite to the predictions for
the dynamic exponent, in which case the mean-field theory works better
for the driven dynamics. Note, however, that if one replaces the mean-field
value for z by the correct one in the DLCA, all the simulation results studied
in Publication V are consistent with the mean-field predictions.

30



a)

10
−3

10
−2

10
−1

10
0

10
1

10
−6

10
−4

10
−2

10
0

10
2

10
4

x

f(
x)

b)

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

t

S
(t

)

Figure 9: a) The scaling functions for the DLCA for γ = −0.05, −0.25,
−0.50, and −0.75 (from top to bottom). Horizontal lines show the crossover
region exp(1/γ) ≤ x ≤ 1 where the scaling functions show typical class II
behavior. The data for various γ-values have been shifted in the vertical
direction to make the figure clearer. b) Average cluster size for γ = −0.5
and δ = 0.5 in the diffusive (©), driven (�), and driven diffusive (∇) cases.
Concentrations φ = 0.05 (· · · ), 0.1 (−·), and 0.5 (—).

4.2 Crossover Behaviors

There are three types of crossovers when the drift is included. Consider, as
an example, the purely diffusive case. The first one was already discussed
in the context of cluster persistence in Section 3.2 when γ > 0 but close
to zero. In that region aggregation is characterized by the γ = 0 behavior
for intermediate times and reaches the true asymptotic behavior only for
tγz � 1. For example, for γ as large as 0.25 tγz = 10 corresponds to t ≈ 107.
The simulations reported in Article V do not reach large enough times and
the analysis considering the dependence of the polydispersity exponent τ
on γ is incorrect (the correct analysis leading to τ(0) = −1 and τ(γ) = 0
for 0 < γ < 2 is presented in Articles III and IV and in Section 3.2).

The second crossover between class II and III behaviors takes place for γ < 0
but close to zero. Figure 9a shows the cluster size distributions using the
scaling form of Eq. (3). The scaling function f(x) shows typical class II type
of behavior in the crossover region exp(1/γ) � s/S(t) � 1. This agrees
with the mean-field analysis [29]. In dimensions d = 2 and 3 the transition
point between class III- and class II-behaviors has been argued to be at
a negative γ [35]. However, crossover effects are not considered and the
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analysis resorts to the fact that the cluster size distribution would change
smoothly from a non-monotonic function to a monotonic one, i.e. τ = 0
at the transition point. This is clearly incorrect for the one-dimensional
DLCA, where the spatial fluctuations are stronger than in higher dimen-
sions. Hence, it is likely that the transition is located at γ = 0 in all
dimensions.

Finally, there is a crossover related to the change from diffusion dominated
growth to the field dominated one. The average cluster size at the crossover
can be estimated by comparing the pairing time, i.e. the time during which
S → 2S, due to the diffusion to that due to the drift. This leads to

Scross ≈
(

2D1φ

Av1r0

)1/(δ−γ+1)

, (21)

where r0 is the elementary particle radius, D1 and v1 are its diffusion and
drift constants, respectively, and A is a constant of order one characterizing
the width of the scaling function f(x). The numerics agrees reasonably well
with Eq. (21) (Fig. 9b).
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5 Coarsening of Sand Ripples

Now we turn to a different type of growth, to the coarsening of sand ripples
considered in Publication VI. The dynamic evolution of ripples is a com-
plicated phenomenon as a granular medium is driven by a hydrodynamic
flow [111]. Here simplified models are used. The first, deterministic and
symmetric mass transfer model, was originally proposed as a description
of vortex ripples in coastal waters [112] and has thereafter been considered
both theoretically [113] and experimentally [114]. The second, stochastic
and asymmetric model, was introduced for wind driven ripples and solved
on a mean-field level [115]. Here these two models are generalized such that
they become comparable. The main focus is on the mass transfer in the
evolution of the pattern. The mass transfer function, which gives the rate
at which a ripple gains mass from its neighbors, is taken to be algebraic.

Section 5.1 introduces the ripple models. Although the physics of sand rip-
ple formation differs from that of cluster-cluster aggregation, the stochastic
ripple model can be mapped to aggregation, and for algebraically growing
mass transfer functions the two models obey similar universal scaling. In
Section 5.2 methods familiar from zero range processes [73, 74, 75] are used
to obtain the exact asymptotic mass distribution when the loss of a ripple
from the system involves a rare fluctuation. The asymptotic state is char-
acterized by a product measure and thus the mean-field assumption made
in [115] becomes justified. The approach to the asymptotic state is dis-
cussed by considering the nearest neighbor time-correlation function, which
decays universally but depends on the symmetry of the mass transfer. The
case of frequent ripple extinctions is demonstrated to be more tricky in Sec-
tion 5.3 although it can be described by a system of deterministic differential
equations.

5.1 Modeling Ripple Formation

On a general level ripple formation involves transfer of mass between ripples.
Here we concentrate on the role of the transfer in the evolution of a rip-
ple pattern within a simple, one-dimensional model [112] and its stochastic
counterpart. Consider the direction perpendicular to the ripples and imag-
ine the surface profile along a two-dimensional cut (see Fig. 10). In this
plane each ripple can be described by it size λi (i indexes the ripples) and
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Figure 10: Experimental image of vortex ripples in a one-dimensional annu-
lar geometry [114]. The amplitude of the fluid oscillations is denoted by a.
The line above the pattern shows a fit of triangles with a constant slope.
Courtesy of K.H. Andersen.

the system becomes one-dimensional. The ripple “size” is here used as a
general measure with no distinction between the linear size of a ripple and
the mass it contains (see [112] for a discussion of the difference between
these two alternatives).

During the dynamic evolution, the neighboring ripples exchange mass with
each other. The main assumption of the model is that the mass transfer
rate to a ripple i depends only on its size. In the context of the formation
of vortex ripples in coastal waters this is motivated by the observation that
the mass transfer to a ripple is affected mostly by a separation vortex which
appears in the wake of it. For vortex ripples the mass transfer rate Γ(λ) is
known to be a non-monotonic function with a maximum near λ = a, where a
is the amplitude of the fluid oscillations [112, 114]. In the case of wind driven
coarsening a leading ripple is eroded with a rate inversely proportional to
the size of the trailing one [115]. Here we consider algebraic mass transfer
rates Γ(λ) ∼ λγ, which for γ < 0 generalize the study [115] on wind ripple
coarsening and for γ > 0 provide a first step toward understanding unstable
coarsening taking place at initial stages in systems characterized by a non-
monotonic mass transfer function.

The noisy version of the model is defined on a lattice and a ripple at site i is
characterized by its mass mi, which corresponds to the variable λi defined
above but whose values are restricted to integers. Ripples exchange unit
masses with their nearest neighbors stochastically at a rate Γ(m) = mγ.
The dynamics is either symmetric, in which case mass is exchanged with
both neighbors, or asymmetric such that mass is obtained only from the
right neighbor. When the size of a ripple reaches zero, the corresponding
lattice site is eliminated from the system and its neighboring ripples become
neighbors of each other. The corresponding noiseless version of the model
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is described by the equations [112]

dλi
dt

=
1

2
[−Γ(λi−1) + 2Γ(λi)− Γ(λi+1)], (22)

and
dλi
dt

= −Γ(λi−1) + Γ(λi) (23)

for symmetric and asymmetric mass transfer, respectively.

The stochastic lattice model is similar to zero range processes [73, 74, 75],
urn models [76], exclusion processes [74, 77, 78], and cluster–cluster aggre-
gation. The details of the connections between these models can be found
in Article VI and we only comment upon the relation to aggregation. First,
the ripple model is mapped to an exclusion process of particles of unit size
along the lines of [80], and the distances between particles correspond to
the sizes of ripples. A hop of a particle can be considered as moving a clus-
ter of particles as a whole. In this way the ripple system further maps to
cluster–cluster aggregation, where clusters move with algebraic rates that
depend on the distances to the neighboring clusters. Although the ripples
correspond to empty spaces between clusters and the properties of clusters
themselves have no relevance for the ripple coarsening, the growth is rather
similar to that of DLCA for γ > 0. However, for γ < 0 there is a drastic
difference as compared to DLCA due to the repulsive interaction between
the clusters in the ripple model. Size independent rates (γ = 0) are not
considered here as for this special case the model can be mapped to the
exactly solvable problem of coalescing random walkers [39, 7] as discussed
in Publication VI.

5.2 Noise-Induced Coarsening (γ < 0)

For γ < 0 a homogeneous state of equally sized ripples, λi = λ̄, is station-
ary and linearly stable under the evolution equations (22) and (23) [112].
Independent of the initial condition the system eventually reaches a state,
which no more coarsens. However, in the stochastic model the coarsening
is driven by fluctuations, which lead to indefinite growth of the mean ripple
size 〈m〉(t). As the ripples near extinction are those with the highest in-
coming mass rates, the loss of a ripple is a rare fluctuation when the mean
ripple size is large. Hence, the timescale of ripple extinctions and the one
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Figure 11: a) The ripple size distributions obtained from simulations for
γ = −0.5 at t = 4 (×), 128 (♦), 4096 (∇), and 131072 (�) together with
the analytical result (solid lines) [Eq. (24)] and its 〈m〉 � 1 (dashed line)
approximation for t = 131072. b) The nearest neighbor correlation function
g(t) for γ = −1. The initial condition is random (〈m〉(0) = 2,�; 〈m〉(0) =
1.2, ), monodisperse (m(0) = 5,♦) or Poisson distributed (〈m〉(0) = 5,©;
〈m〉(0) = 10,∆). Open (filled) symbols correspond to asymmetric (sym-
metric) dynamics. The inset shows the decay at late times for the random
case. The solid and dashed lines are guides to the eye with slopes −1/2 and
−2/3, respectively.

at which the system would equilibrate itself in the absence of extinctions
become well separated at late times.

In the absence of extinctions the steady state distribution can be shown to
be given by a product measure. Utilizing methods familiar from zero range
processes [75, 116], the probability of finding a ripple of size m is calculated
exactly to be

p(m) = p0α
m[(m− 1)!]γ, (24)

where the constants p0 and α are determined by the normalization condition∑
m p(m) = 1 and the expectation value 〈m〉 =

∑
mmp(m). For example,

for γ = −1 Eq. (24) is a shifted Poisson distribution and, in general, for
〈m〉 � 1 it takes the form p(m) = C2(γ)eγ〈m〉〈m〉−γm−(1−γ)/2[(m − 1)!]γ.
The analytical results are in an excellent agreement with the ones obtained
from simulations (see Fig. 11a). Making the approximation that at long
times the probability for a given ripple to vanish is equal to the probability
p(0) obtained by extrapolating the steady state probability distribution to
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m = 0, results in a slow growth for the mean mass 〈m〉(t) ≈ − ln(t)/γ, to
leading order in t. This is validated by simulations.

Due to the extinctions the product measure becomes exact only in the limit
t→∞. To study the approach to the asymptotic distribution, the nearest
neighbor time correlation function g(t) = (〈mimi+1〉−〈m〉2)/〈m〉2 is consid-
ered. The analysis is done in the continuum limit using hydrodynamic fluc-
tuation theory for the coarse grained mass fluctuations in the quasi-steady
state of mean mass 〈m〉. Concentrating on the long wavelength behavior
the problem reduces to the behavior of the noisy Burgers equation [117],
which has been widely studied in the context of driven diffusive systems
[118, 119] and interface growth [120, 121, 122]. By inserting the parameters
of the model to existing results [121, 122] gives, in the long time limit, the
universal decays g(t) ∼ t−1/2 and g(t) ∼ t−2/3 for symmetric and asym-
metric dynamics, respectively. The slow growth of the mean cluster size
induces logarithmic corrections to the formulae given above. In both cases
g(t) < 0 at late times and there will be anticorrelations between masses at
neighboring sites. Simulations support the theoretical results although in
the asymmetric case the asymptotic regime is preceded by a long crossover
with a t−1/2-decay (Fig. 11b).

5.3 Unstable Coarsening (γ > 0)

For γ > 0 the homogeneous state is linearly unstable [112]. The insta-
bility overcomes the noise, and the noisy and deterministic systems show
asymptotically the same behavior. This is demonstrated in figure 12, which
shows the scaling of the complement of the cumulative ripple size distribu-
tion I(λ; t) =

∫∞
λ

dx p(x; t) for γ = 1, where p(x; t) is the number of ripples
of size x at time t. According to the simulations the ripple size distribu-
tions are universal and for the linear mass transfer function (γ = 1) simple
exponentials.

In Article VI a mean-field theory for the linear case γ = 1 is developed.
It predicts that any initial distribution evolving under Eqs. (22) or (23)
preserves its initial shape but gets scaled and shifted, in contrast to the
simulations (see Fig. 12). The theory further predicts exponential growth
for the mean cluster size with a rate, which depends on the initial ripple size
distribution. Simulations show that it grows exponentially in a universal
manner. Another mean-field theory based on rate equations similar to those
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Figure 12: The complements of the cumulative ripple size distribution for
γ = 1. a) The distributions for random (exponential) initial distribution
with noisy (deterministic) dynamics are denoted by solid (dashed) lines.
b) The distributions for monodisperse (flat) initial distribution with noisy
(deterministic) dynamics are denoted by solid (dashed) lines. The curves
are shown at times t = 1, . . . , 9 and the thick solid lines in both figures
represent the function e−m/〈m〉.

of Eq. (2) gives universal scaling [123, 81]. On the other hand, it fails in
giving the numerically observed growth 〈m〉(t) ∼ t1/(1−γ) for 0 < γ < 1,
which can be shown using simple scaling arguments. The failure of the
mean-field theories is presumably due to the neglect of spatial fluctuations.

As is clear from the above discussion, the coarsening for γ > 0 is less well
understood than for γ ≤ 0 although it may be described by the deterministic
system of equations (22) or (23). A better understanding of these would be
desirable, especially in the case of a nonmonotonic mass transfer function,
which has direct applications in the coarsening and the final ripple size
selection of vortex ripples [112, 113, 114]. Finally, note the similarity with
cluster-cluster aggregation for γ ≥ 0: the cluster size distribution obeys
dynamic scaling and the average cluster size grows algebraically.
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6 Conclusions

This thesis consists of studies on nonequilibrium dynamics in various sys-
tems. First, diffusion through a random fiber network modeling paper is
studied. A one-dimensional diffusion theory including fiber sorption is de-
veloped and demonstrated to be valid for diffusion of molecules through
paper-like sheets of high enough thickness and porosity. The parameters
of the theory are determined from fits to the numerically determined first-
passage time distributions, which are calculated from random walk simu-
lations in computer generated random fiber networks. An efficient simula-
tion algorithm utilizing the planar geometry of the network and allowing
for molecule-fiber interactions is presented. The estimated diffusion con-
stants agree well with experimental measurements showing that gas diffu-
sion through uncoated paper and board sheets can be efficiently simulated
using model fiber networks, including the effects of fiber sorption.

Next, first-passage problems are considered in one-dimensional cluster-cluster
aggregation when the diffusion constant of a cluster depends on its size as
D(s) ∼ sγ. The emphasis is on the universal scaling of three persistences:
the probabilities of a site to remain either empty or occupied and a cluster
to remain unaggregated are studied. The filled site persistence is nonuniver-
sal. The empty site persistence decays algebraically with an exponent twice
as large as the dynamic exponent, which allows for a concise demonstration
of the effect of two length scales on the scaling of the interval length distri-
bution between persistent regions. Also the cluster persistence is universal
and a mean-field theory based on three annihilating random walkers with
time-dependent noise correlations is developed. When large cluster diffuse
faster than small ones (γ > 0) the theory correctly describes the cluster
persistence and the persistence exponent is, again, twice the dynamic one.
The cluster persistence is connected to the behavior of the small size tail of
the cluster size distribution, which in the present case is flat for 0 < γ < 2.
When small clusters diffuse faster than large ones (γ < 0), cluster persis-
tence decays stretched exponentially but the mean-field theory gives only
qualitative understanding. A Lifshitz tail argument shows that fluctuations
remain relevant and indicates a new length scale in the random walk prob-
lem, which is related to distance between particles surrounding the surviving
one.

If an external field, which drives clusters with a size dependent velocity
v(s) ∼ sδ, is present, the asymptotic dynamics in aggregation is dominated
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by the process leading to the fastest growth. The dynamic phase diagram
in the presence of mixed dynamics is presented with a phase boundary at
δ = γ − 1, in one dimension. The results are compared to a mean-field
theory and various crossover effects are discussed. The one taking place
near γ = 0 is shown to be relevant also for the cluster persistence.

Finally, one-dimensional stochastic and deterministic models are studied
in the case of algebraic mass transfer rates Γ(m) ∼ mγ. The models are
motivated by coarsening of sand ripples but they are connected to various
nonequilibrium dynamical systems, which include zero-range processes, urn
models, exclusion processes, and cluster-cluster aggregation. When mass is
transferred preferably from large ripples to small ones (γ < 0), temporal cor-
relations decay universally as t−1/2 and t−2/3 for symmetric and asymmetric
mass transfer, respectively. Asymptotically the ripple size distribution is
given by a product measure, which is calculated exactly. Ripple extinctions
are rare events and the mean ripple size grows as 〈m〉(t) ∼ − ln(t)/γ. When
small clusters vanish rapidly from the system (γ > 0), the noise in the dy-
namics is irrelevant but the mean-field theory developed fails to account for
the numerically observed universality with respect to the initial ripple size
distribution.

There are many interesting questions to be answered in the future. The
most interesting is perhaps the effect of an external field on cluster struc-
ture, the study of which is in progress. Considering one-dimensional systems
both the cluster persistence and the random walk survival problems present
challenges for further analytical studies. From the practical point of view
a deeper understanding of dynamic diffusion through thin sheets and the
final ripple size selection in coarsening of vortex ripples are the most rele-
vant. However, solving for these problems probably requires new theoretical
methods to be developed.
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