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Abstract

The thesis considers both theory and algorithms for geometric computer vision.
The framework of the work is built around the application of autonomous trans-
mission electron microscope image registration.

The theoretical part of the thesis first develops a consistent robust estimator that
is evaluated in estimating two view geometry with both affine and projective
camera models. The uncertainty of the fundamental matrix is similarly esti-
mated robustly, and the previous observation whether the covariance matrix of
the fundamental matrix contains disparity information of the scene is explained
and its utilization in matching is discussed. For point tracking purposes, a reli-
able wavelet-based matching technique and two EM algorithms for the maximum
likelihood affine reconstruction under missing data are proposed. The thesis addi-
tionally discusses identification of degeneracy as well as affine bundle adjustment.

The application part of the thesis considers transmission electron microscope im-
age registration, first with fiducial gold markers and thereafter without markers.
Both methods utilize the techniques proposed in the theoretical part of the the-
sis and, in addition, a graph matching method is proposed for matching gold
markers. Conversely, alignment without markers is disposed by tracking interest
points of the intensity surface of the images. At the present level of development,
the former method is more accurate but the latter is appropriate for situations
where fiducial markers cannot be used.

Perhaps the most significant result of the thesis is the proposed robust estimator
because of consistence proof and its many application areas, which are not lim-
ited to the computer vision field. The other algorithms could be found useful in
multiple view applications in computer vision that have to deal with uncertainty,
matching, tracking, and reconstruction. From the viewpoint of image registra-
tion, the thesis further achieved its aims since two accurate image alignment
methods are suggested for obtaining the most exact reconstructions in electron
tomography.

Keywords: robust regression, robust estimation, statistical modeling, epipolar
geometry, fundamental matrix, uncertainty, image matching, affine reconstruc-
tion, affine triangulation, degeneracy, bundle adjustment, image registration, im-
age alignment, computer vision, electron tomography.
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Chapter 1

Introduction

We start this chapter by describing the background of the research area. The
research problem is introduced in Section 1.2 and the aims of the thesis are set
out in Section 1.3.

1.1 Background

Computer vision has emerged as an intensive discipline during the last four
decades. Making a computer see is a challenging problem that is connected to
the physics and mathematics of image formation, computer science, and, through
biological vision systems, to cognition and neurosciences. Its ultimate goal, how-
ever, is not directly to model biological vision since, at least to present knowledge,
how the biological vision system works is still unknown. Nevertheless, computer
vision research has already achieved both practical and theoretical success.

The oldest branch of mathematics, geometry, provides laws relating to how mul-
tiple images of a scene are related. Any vision system is fundamentally related
to geometry in this respect, and therefore it is natural that one field of computer
vision is based on a geometric viewpoint. Projective geometry in particular, de-
veloped by mathematicians in the 19*" century, accommodates elegantly the pro-
jections of conventional cameras in many respects. Perhaps the most important
impetus for the recent two decades of intensive research into geometric computer
vision was given by Longuet-Higgins in 1981, when he published his article of
essential matrix in Nature.

New applications of geometric computer vision appear continually as only our
imagination and ignorance of relevant practical problems slow down develop-
ment. In terms of specific applications, so far there has been research into creat-
ing image mosaics, image synthesis, camera self-calibration, and autonomous or
drive-assisted vehicles. In the future, augmented reality and wireless applications
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should provide new possibilities. Even cellular phones have built-in cameras, and
it remains to be seen what one will be able to do with them.

1.2 Research Problem

The research problem relating to this work is two-fold. From the direct scientific
point of view, the purpose is to contribute new scientific results to the field
of geometric computer vision. A convenient way achieving this objective is to
consider an application where one has to use present knowledge and develop
theory and algorithms when necessary. In the present study, the application is
the registration problem of electron microscope images. Studying this application
can also be seen as a fruitful scientific goal since, as far as a structural biologist is
concerned, better registration methods imply better reconstructions and abilities
to study and understand the structure of biological objects. Briefly described,
the application problem is the following.

The purpose of electron tomography is to study small scale biological objects from
their transmission electron microscope (TEM) images. In order to better study
the spatial relationships and the structure of the objects, a researcher prefers a
3D reconstruction to a 2D image series. Since the TEM images are transparent,
the reconstruction problem can be solved via standard methods of tomography
if the motion of the object between the images is known. Our research problem
culminates in solving the motion from the image series automatically since the
motion is initially unknown because of the nature of the imaging process.

From the computer vision point of view, the application problem has several
interesting sub problems. For instance, many geometric problems in computer
vision involve robust regression since the measurements usually contain outliers.
Important questions include whether present methods of robust estimation are
sound enough, and more importantly, how good they can theoretically be. Since
in practice we must deal with noisy measurements, the estimated models involve
a degree of uncertainty. Other questions relate to the information that the un-
certainty contains, and how it could be utilized.

1.3 Overview and Aims of the Thesis

The primary goals of this thesis are to obtain new scientific knowledge for the
discipline of computer vision and to solve the automatic registration problem of
TEM tilt series. The thesis is organized so that we consider the sub problems
related to the application individually, and finally collect the methods, complete
the missing parts, and evaluate the resulting TEM image registration methods in
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the application domain. The detailed partial goals of each chapter are described
below.

Since robust estimation is crucial in image geometry estimation, Chapter 2 con-
siders problems of previously proposed methods of robust regression, and its aim
is to propose a robust estimator that is a consistent estimator of true parameter
values regardless of problematical outliers in the observations. The chapter forms
the most theoretical part of the thesis, and the goal is not only to describe the
properties of such an estimator but also to discuss and give an algorithm for its
implementation.

Chapter 3 covers two view geometry estimation, where the objective is to evaluate
the proposed robust estimator in practice. The estimation of the two view tensor,
the fundamental matrix, has attracted much attention in the last two decades.
It has been claimed that its estimation problem has already been solved, though
the state-of-the-art methods rely on the previous methods of robust estimation
that continue to entail certain problems (see Chapter 2). A further objective of
the chapter is to characterize the uncertainty of the fundamental matrix in terms
of its covariance estimation, without permitting the outliers to violate the noise
distribution assumptions.

The aim of Chapter 4 is to test the earlier hypothesis regarding whether the co-
variance matrix of the fundamental matrix reveals something about the disparity
of the scene. An important question is how this information could be utilized
from the matching point of view. An additional goal is therefore to show that,
in addition to the point—line relation of the epipolar geometry, there is a slightly
stronger relation if the covariance information of the fundamental matrix is used.
The analysis will be chiefly theoretical but we will provide some illustrative ex-
amples with real images.

In Chapter 5, the objective is to obtain reliable point matches in two images
by using the multi-resolution information of the intensity surface, and utilizing
the epipolar geometry and its uncertainty. The matches should be practically
free from mismatches when natural images are used. The approach is validated
experimentally.

The main target of Chapter 6 is to derive a closed-form solution for the structure
and translation parameters for a motion sequence imaged by an affine camera. We
use the result as an initial estimate in bundle adjustment where structure and
constrained motion parameters are optimized simultaneously. Secondary aims
of the chapter include a consideration of other by-products of the result. We
consider the problem of maximum likelihood affine reconstruction with missing
data and its solution with iterative algorithms. Additionally studied is whether
the result can discover degenerate motion or structure configurations.

The aim of Chapter 7 is to summarize the proposed techniques and solve the
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TEM image alignment problem when fiducial gold markers can be used. The
secondary goal of the chapter is to determine how gold markers can be localized
and tracked from the tilt-series. A further objective is to evaluate the registration
method with real tilt-series and assess its applicability and possibilities for future
development.

In Chapter 8, we consider the more difficult case of TEM image alignment, i.e.,
when fiducial markers cannot be used. The techniques of that chapter are pro-
posed earlier in the thesis, and the main goal is therefore to evaluate experimen-
tally how the combination of these techniques performs in the alignment problem.
Future directions in application development are also outlined.

In Chapter 9, we discuss the principal results of the thesis.



Chapter 2

Maximum Likelihood Robust
Regression!

Everyone believes in the [normal] law of errors, experimenters because
they think it s a mathematical theorem, and mathematicians because
they think it is an experimental fact.

Henri Poincare

Robust model estimation is a central problem in many research areas, including
computer vision. The unsolved difficulty has been in dealing with outliers, rogue
observations that are not explicable by the underlying model. Even though a
vast amount of research effort has been dedicated to the problem it is not known
how to deal with contaminants in the regression data in an optimal way. By
an optimal robust estimate, we mean the same estimate that would be achieved
without contaminants in the data. In this chapter, we will propose an estimator
that is asymptotically optimal. Principally, we will show proofs and conditions
for optimality, consistency and unbiassness for the proposed estimator.

The proposed framework can be divided into two branches. The easier case
occurs if the source of the contaminants is known and it is possible to give a
parametric model for their residual distribution. Then, the optimal estimate
can be computed with a simple expectation maximization (EM) algorithm. The
case is more difficult when the form of the contaminant residual distribution
is unknown. In such a case, the total residual density of the model must be
estimated using an appropriate set of basis functions and the complexity of the
model must be controlled. In effect, optimal complexity control is provided by
the structural risk minimization principle (SRM) (Vapnik 2000) and minimum
description length (MDL) (Rissanen 1989), but other techniques exist.

!The content of this chapter has been published in shorter form in Brandt (2002b).
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This chapter forms the most mathematical part of this thesis. It introduces the
principle known as maximum likelihood robust regression which is applied and
further evaluated in the epipolar geometry estimation in Chapter 3. Section 2.1
provides the background to the robust regression problem, while the formal defi-
nitions theorems and proofs are given in Sections 2.2 and 2.3. Implementation of
the principle is then discussed by first reporting the necessary conditions for the
solution (Section 2.4), proposing a simple iterative algorithm to the case where
the form of the outlier distribution is known (Section 2.5), and the most general
case of unknown residual models is finally discussed in Section 2.6. Other imple-
mentation issues are considered in Section 2.7; a summary and discussion follow
in Section 2.8.

2.1 Background of the Regression Problem

The least squares method (LS) is a widely used technique in data analysis be-
cause of its simplicity and optimality under Gaussian noise in data. Whatever
the case may be, the problem can be defined in many ways. The simplest for-
mulation is known as ’ordinary least squares’, where independent and identically
distributed (i.i.d.) additive Gaussian noise on the dependent variable is assumed.
A more general formulation is known as ’orthogonal regression’ (OR), 'principal
component regression’, or 'total least squares regression’, where it is assumed
that all the variables are corrupted by the i.i.d. Gaussian noise. Another taxon-
omy considers whether the underlying model is linear or non-linear. Linear least
squares can be seen as hyper plane fitting whereas non-linear least squares seek
for parameters for a functional relationship between the variables where the form
of the functional relationship or model is known.

The least squares procedure is inadequate if the observations are contaminated
other than by i.i.d. Gaussian noise. However, if the noise distribution is normal
but with varying covariance matrix, there is a straightforward modification, the
weighted least squares (WLS), where the square distance cost is replaced by the
squared Mahalanobis distance. On the other hand, minimizing the Chebyshev
or maximum norm || - ||« is optimal for uniformly distributed residual, in the
maximum likelihood sense, and is therefore even more vulnerable to outliers than
the traditional least squares. Conversely, the Gerschgorin or the 1-norm || - ||;
is optimal for Laplace or double exponential distribution, and is therefore less
sensitive to outliers than least squares.

The problem of outliers has been problematic in the identification of functional
relationships in the extensive range of scientific research. From a statistician’s
perspective, outliers are understood as the data that are in gross disagreement
with the postulated model. The problem is well known as outlier rejection, ro-
bust estimation, or robust regression, and it has been widely researched. Indeed,
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numerous books have been written on the subject alone; a quick search in Ama-
zon.com bookstore reveals that at least 15 books have been published on the
subject since 1980.

The methods proposed for resolving the outlier problem can be divided into two
classes (Rousseeuw and Leroy 1987). The basic idea of regression diagnostics
involves first identifying and removing outliers according to some rule of outlier
rejection, and then reanalyzing the remaining data. This can also be an iterative
process, and is therefore occasionally known as the “build and criticize” approach.
The other class of methods is called robust statistics, where the goal is to devise
estimators that are tolerant of large residual values. After computing the robust
estimate, one is supposed to identify the outliers by examining the residual values.

The classical method in regression diagnostic involves first computing a least-
squares fit, then removing the points whose residuals exceed a pre-defined thresh-
old, and iterating until the outliers are removed. This may work well if the number
of outliers is small but even a single outlier far from data centroid can be fatal
since it may act as a leverage point (Rousseeuw and Leroy 1987) and have a small
residual value in the fit with respect to the others. A more effective method is
to use influence measures to pinpoint potential outliers. The difference is that,
while classical methods examine the current residual in rejecting outliers, these
methods search for the solution that gives the best results in the next iteration.
A good example is the Shapiro and Brady’s (1995) method in the OR framework.
However, if the number of contaminants is large, robust statistics has been found
to work better.

Robust statistics has the same goal as regression diagnostics, but the procedure
goes in reverse order since after the good robust fit, the outliers are to be identified
if necessary. One of the best known methods is "least median of squares’ (LMedS)
(Rousseeuw 1984), which geometrically involves searching for the narrowest strip
that contains half of the residuals, and it is normally followed by an M-estimator
(Rousseeuw and Leroy 1987). M-estimators (maximum likelihood type) (Huber
1981) are another group of methods, where the square function in LS is replaced
with another symmetric, positive definite function that obtains unique minimum
at zero. Furthermore, among the computer vision community, certain popular
methods are based on RANSAC (random sample consensus) (Fischler and Bolles
1981, Torr and Zisserman 2000), where minimal configurations are randomly sam-
pled and one selects the one that maximizes the number or some other quantity
of residuals, often denoted as inliers, that fall inside some predefined threshold.

The known procedures, however, suffer from the following problems:

1. In robust statistics the residual form is fixed in advance. Therefore, it is
not adaptive in any way to the contaminating residuals that however may
be in some sense independent from the relevant ones.
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2. Methods in robust statistics assume symmetric residual distribution. There
is no reason for this in general since the contaminants may be entirely
asymmetrically distributed, which causes the estimates to be biased.

3. Even if the original “good” residuals alone are normally distributed, the
residual after the outlier removal is not, since there will be false rejections
and false retentions.

4. The classification of residual values to good and false is an ill-posed problem
since the false observations can also have small residual values. This is
because the distribution of good and contaminating observations residuals
overlap in general.

To cope with the above problems, we must define an outlier in a slightly different
way to how they are usually considered. An exact outlier definition is a little
problematic. Rousseeuw and Leroy (1987) demonstrated this by leverage points
that might be considered outliers but, on the contrary, whose residuals are small
implying that they are not regression outliers. This could happen, for instance,
when a line is fitted to points and one observation is far away from the other
points but still, by chance, close to the true line. Consequently, it is not possible
to find such outliers simply by examining the residual values.

In this thesis, outliers are understood as the residuals of false observations. False
observations are the contaminating data that are generated by another unin-
tended stochastic process. Accordingly, this definition allows that the outliers
generally have a distribution that overlaps the residual of the good observations
and as an outlier does not imply a large residual value. In addition, there is no
reason to assume that the outlier distribution would be symmetric with respect
to the correct distribution, or that the outliers would have the same mean as the
contaminant free residual.

From this view point, we will introduce our robust estimator that solves the
problems described above. Above all, the estimator will be proven consistent,
i.e., the model parameter estimates approach the true values regardless of outliers
in the data as the number of measurements approaches infinity. We start by
formulating the regression problem with no outliers. We will define a model in
a general way so that the setting covers both linear and nonlinear regression
problems.

2.2 Outlier Free Regression Model

First, we need a mathematical description for a model. We obtain this by asso-
ciating the model with a functional (not necessarily linear) as follows.
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Definition 2.2.1 Let z € Z be an observation and w € €2 the set of model pa-
rameters where Z and () are metric spaces. The model is defined as the functional
g Z xQ —  for which holds: the model explains the observation z perfectly
with parameters w < g(z,w) = 0.

If Z = " and given the parameters w, a model can be understood as a hyper
surface in ™. The model residual is defined as follows.

Definition 2.2.2 Let the null space of the model g with respect to the first ar-
gument be Ker{g(w)} and d(z,y) a distance function in the observation space
Z. The residual corresponding to the observation z € Z is defined as the signed
distance between the observation z and the null space, 1i.e.,

s inf d(z,y), 2.1
yGKer{g(w)}< v) 2.1)

where s = sign g(z,w).

The distribution of the residual depends on the selection of distance function
d(z,y), sign of g(z,w), as well as the type of noise in z. A convenient selection
for the distance function (and the model defining mapping ¢ in terms of its sign)
would be such that the residual obeyed mean zero normal distribution but at least
its parametric form should be known. The following examples illustrate this.
Example 2.2.3 Consider a line in 2. Let the line parameter vector be 1 =
(11 I3 13)T and points on the line (in projective form) m = (x y 1), i.e. 1Tm = 0.
We choose g(m,1) = 1"m and Euclidean distance for the metric. The residual
for a point (x y)* € 2 is the signed orthogonal distance from the line 1. Further,
assume that the observations are corrupted by additive, independent and identi-
cally distributed (i.i.d.) Gaussian noise with covariance matriz C = o1 where 1
is an identity matriz in 2. Then, the residual is similarly normally distributed
and the problem of finding 1 by minimizing the sum of squared residuals is known
as the ‘orthogonal least squares problem’.

Example 2.2.4 Assume that the observations z; € " are corrupted by additive,

independent Gaussian noise with a general n X n covariance matrixz C; that is
known but different for each observation. With an appropriate selection of g, the
residual is independent, normally and identically distributed if we set the distance
function d(z;,y) to be the Mahalanobis distance ((z; —y) " C;*(z; — y))/2.

Now we are ready to define the regression problem.

Definition 2.2.5 (Outlier Free Regression Problem) Let g be a model and
x;,t = 1,...,n independent and identically distributed residuals defined as in
(2.1) for the data set D. Let w' = {w, 9} be the set of both model and residual



28 Maximum Likelihood Robust Regression

density parameters® as w € Q, 1» € W. The problem is to find the parameter set
W' that mazimizes the likelihood function

L(D|w") Hp z;|w") (2.2)
or equivalently minimizes the negative log-likelithood function
(D' = Z log p(z;|w’) (2.3)

where p(x|w') is the probability density function of x.

Hence, the outlier free regression problem searches for the maximum likelihood
estimate (MLE) for the model g.

2.3 Maximum Likelihood Robust Estimator

When the data are contaminated by outliers, we will not be able to determine
precisely which observations are good and false. However, as we will show, we are
able to construct an estimator that is consistent with the true parameter values.
We do this by constructing a consistent and unbiased estimator, given the residual
models and contaminated data, for the expectation value of (2.3) normalized by
the number of observations. In fact, the proposed estimator then also approaches
the MLE, given the good observations since the MLE minimizes (2.3). Therefore,
the estimator is named as the maximum likelihood robust estimator (MLRE).
Formally, the problem is defined as follows:

Definition 2.3.1 (Problem) LetD be a set of n observations that are generated
by a Bernoulli process with the constant parameter yg from relevant and false
observations. D then consists of the corresponding subsets R and F, where R is
the set of correct measurements that follow the model g up to a certain additive
measurement noise and F is the set of false measurements. Given parameter set
w € Q) for the model g, each datum in D produces a residual that is characterized
by the random variable X that follows the mizture distribution

p(xY,w) = yrp(z|R, Yr, w) + (1 — yr)p(z|F, ¥F,w), (2.4)

where p(z|R, Yr,w) and p(z|F,vr,w) are the residual distributions® for relevant
and false measurements, and 1 = {yr, Vg, ¥r} € V is the set of residual param-
eters. The problem is to determine the estimator w* for w given the data D and

2For instance, if the residual noise model is a single mean-zero Gaussian, the residual pa-
rameter v consists of the residual deviation o.

3A more correct notation for p(z|R,¥r,w) would be p(z|r € R,1r,w) but the former is
used for brevity. The same applies to the forthcoming posterior probabilities.
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density models p(x|R,v¥r,w) and p(x|F,Yr,w) so that w* is consistent, that is,
it approaches wy as n — o0, where wy is the “true” parameter set with which
the relevant data have been generated.

For simplicity, we assume from now on, unless otherwise stated, that the residual
noise obeys i.i.d. mean-zero Gaussian distribution, in which case g = {or}.
The problem is mainly solved by proving the following theorem.

Theorem 2.3.2 Consider the estimation of parameters w for the model g from
the data D, where D is a set of n observations that are generated by a Bernoulli
process with constant parameter vr from relevant and false observations. Let
the residuals of the elements in D follow the model (2.4), where the relevant
and false densities are continuous in ' = {¢,w} € Q' for almost all x, and let
Q' W xQ be closed and bounded. Define a cost function to the data D with the
i.9.d. residuals xy,...,x, by

1 n
(Dlw') = 2o > P(R|z;,w')a] + log V2o, (2.5)
=1

where 0% is the variance of the relevant residuals and P(R|x;,w') is the posterior
probability of a sample being relevant after examining its residual x; given by the
Bayes rule

P(R|z;,w') = (2.6)

Let the residual densities be such that P(R|x;,w’) is continuous in x almost every-
where. Let  (RlYr,w) nzg' (R|ir,w) be the negative log-likelihood function
per data point of the relevant data, and assume that it converges uniformly and
almost surely on g X ) to its expected value, assuming that the limit function
exists and is continuous in W' for almost all x, where the expectation is taken with
respect to the relevant distribution with density p(R|vor,wo). Then,

(D) = Bo{ (Rlvm, )}, uniform on € 2.7

that is, the cost converges uniformly and almost surely to the expected negative
log-likelthood per data point evaluated at the relevant data.

Proof. The sum in (2.5) may be partitioned to intervals d; = [z, z; + Az) of
equal length, where Ujczd; = and d;Nd; = 0, ¢ # j. By denoting z; =
z; 4+ x; —x; = xj + Az;, where 0 < Az; < Az, and P(R|z;,w') = P(R|z;,w") +
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P(R|z;,w') — P(R|zj,w') = P(Rlzj,w') + AP(R|z;,w'). We get

(D|w") = Z Z (R|zi,w")x? 4 log V2mor

207ﬂ n < et
20737 - zj: Ize:d (R|z;, (m + 2z;Az; + (Ax;)?) + log V2mor
1 9 )
= 5o Z(% Z P(Rlx;,w')+
20RYRIL ilzi€d;
+ 215 Z P(Rxs,w')Ax; + Z (Rlxi, ") (Ax;) )+log V2wog
’L'|:Ci€dj Z‘I;Gd
1 , , /
~ 202 mn Z <%(Z P(Rlzj, ') + Z AP(Rlz;,w'))+
J ilzi€d; ilx;€d;
+ ij Z P(R’l’“ Al’l + Z R|xz, )2> + lOg \% 271'0'73.
i|zi€dj il €d;

(2.8)

Let n;z and n;z be the number of relevant and false residuals on the interval
dj, respectively. On d;, the relative number of correct residuals n;z/(n;r +
n;r) approaches P(R|d;,w') = fdjp(x|72, Yr,w)dz/ fd (z|w")dz almost surely
according to the law of large numbers. The convergence is also uniform because
Y is closed and bounded, and P(R|d;,w") continuous in w’ for almost all . Thus,
by first letting n — oo and finally Az — 0 we get

lim lim (D)
Az—0n—oo0

u.a.s.

=R

~

_ng/n_ nj® +njr 2ijnea, P(RIzj,0")
= lim lim ij n;Rr +
AT —0 n—oo QO'R’VRTLR n;r , iR + n;r

““1/P(R\d w') =P(Rlz;w')
X’ AP(R|z;,w 2 x; (Rlxi, ") Aw;
e (5 5 AR ) 4250 5 A

+Z Z (R|z;, ) (Ax;) ) + log V2mog

Jilzi€d;
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_ 1 P(R|z;,w")
— 1 Bo{ a2 5 }

a0 20% PV P(R|dy, o) R+
————

u.a.s.
51

1

+
20'723’}/73

<E0{w§AP(R\x¢, w’)} + 2Eo{ij(R]xi, w’)éﬁ}—i—

S u.s.
u.a.b.o 0

+ EO{P(RMZ-,M’)(A%)Q}) + log V2mor u.a.s.,

u.s.
—/30

=Eo{ (R|Yr,w)} nas.,
since  (R|g,w) —=25 Eg{ (R|¢r,w)} by assumption.

nR—00

(2.9)

This theorem suggests that the maximum likelihood robust estimate could be
computed by minimizing the cost function (2.5). This is indeed true since the
estimate is consistent. To prove this formally, we yet need a slightly stronger
condition than the minimum being unique.

Definition 2.3.3 Let the function f(x) have a unique minimum at x = xy. The
mainimum is well separated if and only if for all € > 0

inf  f(z) > f(xo). (2.10)

|x—x0|>e
Theorem 2.3.4 Let &), be the estimate for ' that minimizes (2.5). Let (D|w’)
converge uniformly and almost surely to the expected negative log-likelihood per
data point of the relevant data whose minimum at W' = wj is unique and well

separated. Then,

A—— (2.11)
Observation 2.3.5 The theorem above states that by minimizing the proposed
cost function the maximum likelihood estimate can be asymptotically achieved

regardless of outliers in the data!

Proof. The proof is similar to the proof of the weak consistence of the maximum
likelihood estimator. Hence, let us denote the cost function with n observations by
»(w') and the expected negative log-likelihood per data point by  (w’). Then,

(@) < nlwp). (2.12)

Since  ,,(wp) L (wp), there is a sequence of non-negative random variables
{Z,} with Z, L, 0 and | n(wh) — (Wh)| < Z,. Thus, we have

(@n) = (wo) < (@) = wlwp) +Zn < sup | (W) = W)+ Zn, (2.13)

w'ey
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where the right hand side converges to zero in probability. Because the minimum
is unique and well separated, V ¢ > 0 3 ¢ > 0 such that d(&),,w() > € implies
(wy) < (@) —9,. Hence

P(d(&,wp) 26) S P (0 (wp) < (@) —9), (2.14)

n

where the right hand side converges to zero.

Define  (D|w') ~rn (DJw'). Clearly, the same w that minimizes (D|w'),
also minimizes  (D|w’). Let us now replace the realizations with random vari-
ables in the functions. The unbiased nature of the estimator is characterized by
the following theorem.

Theorem 2.3.6 The estimator w* is unbiased in the sense that the expectation
value of *(D|w') is minimized with the same value w that minimizes the expecta-
tion value of *(R|wr,w), regardless of the number of measurements. Moreover,

E{ *(DlY,w)} = E{ *(Rl¢r,w)} Vn.

Proof. Let Nz be the random variable of the number of relevant measurements
when the size of the data D is n. Then, the log-likelihood estimator computed
from the relevant data only is

1
"(Rlr,w) = 55 D X{+ NrlogV2rog, (2.15)

R ix;er

where the first term is a random sum over Ny elements since the X;:s are inde-
pendent and identically distributed by definition. Hence,

E{ "(Rl¢r,w)} = %E{XQWMPR,W}E{NR}+E{Nn}log\/§an. (2.16)

On the other hand, Bayes rule gives

_ VRP(X|R7¢;W)
PIRIX ) = R R ) + (- g X))
=
p(X o) = PR ), 2.18)

P(RIX,,w)
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By taking the expectation value of *(D|¢,w) and finally using (2.16), we get

E{ "(DlY,w)} = / (D, w)p(x|y), w) dz
1 o
=57 / Z P(R|zi, ), w)x?p(zi|ih, w) dz; + yrnlog V2ror
R /=00 =1
B ;’-—R% 121 /—oo x?p(xZ|R7 ¢7 w) dl‘z + RN 1Og \% 27T0'R
- T_?E{XQW, Yr,w} + yrnlog V2mor
IR

= E{ "(Rl¢r,w)}. 21
2.19

The claim follows.

Thus far, we have assumed that the posterior probabilities are known but in
practice, they must be estimated from the data. This does not, however, affect
the consistency of the estimator if the residual distributions can be estimated in
a consistent way.

Theorem 2.3.7 Consider the estimation of the parameters w for the model g,
as in Theorem 2.3.2 with the only difference being that the posterior probabili-
ties are not known but estimated from the data by fitting the continuous residual
model (2.4) using ML estimation. Let the ML estimate for the posterior prob-
ability be consistent so that the posterior probability function estimate converges
almost surely to the true posterior probability function. Then, the convergence
and consistence conditions

(Dlw') =25 Eof  (R|Yr,w)}, uniform on Q' (2.20)
and
A (2.21)
still hold.

Proof.  Replace the posterior probabilities in the proof of Theorem 2.3.2 by
the estimated counterparts. They converge to the true probabilities uniformly
and almost surely since the residual density model is continuous for almost all
and the parameter space 2’ closed and bounded by assumption. The statement
follows.

A common result is for the maximum likelihood estimator given Gaussian noise
model to be equivalent to the least squares solution. For the maximum likelihood
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robust estimator, we obtain a similar result by dropping the positive constants
n (2.5).

Corollary 2.3.8 The mazimum likelihood robust estimator '™ is equivalent with
the weighted least squares solution to

min »  P(R|X;, b, w) X7, (2.22)

where the weights are the a posterior probabilities for relevance given by the Bayes
rule.

The result is, moreover, intuitively pleasing. In the outlier free regression assum-
ing Gaussian noise model, the cost of each residual is the square of its value.
Here the cost remains the square, but multiplied by the probability of the cost! If
the noise model for the relevant component were a Laplace distribution, a simi-
lar derivation would yield the following result, since 1-norm is the inherent cost
function for the exponential distribution.

Corollary 2.3.9 Let the relevant residual obey Laplace or double exponential
distribution, whereby the mazimum likelihood robust estimator is equivalent with
solution of the weighted minimization

ngnZP<R|Xi,¢,w)|Xi|. (2.23)

2.4 Necessary Conditions

In this section, we will derive the necessary conditions the maximum likelihood
robust estimator. Henceforth, we will assume that ¥ € * and Q ¢ !, We will
also assume, without stating explicitly, that the conditions in Theorems 2.3.2,
2.3.4, and 2.3.7 hold. In practice, these conditions ensure that the solution is
unique, and both the outlier-free MLE for the model g and the MLE for the
residual density model are consistent. Now, the objective is to minimize the
cost function (2.5) when the posterior probabilities are unknown but the residual

models p(z|R,¥,w) and p(x|F,¥,w) are given.

Definition 2.4.1 (Problem) Compute the mazimum likelihood robust estimate
W for the model g given data D and residual models p(xz|R, 1, w) and p(x|F, ), w)
by minimizing

(Dlth,w) = ZP Rlai, v, )} +log V2ror, (2.24)

20727 n

where ; is the model residual for the i measurement with the parameters w € €.
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Here, the residual parameter vector ¥ = (yg,¥r,¥r) € ¥V must be estimated
from the observed residual to express the posterior probabilities. This can be
achieved using maximum likelihood estimation, minimizing the log-likelihood
with respect to the residual parameters

Vi = argmlgn (Dly,w). (2.25)

A necessary condition for the solution is that the gradient of the log-likelihood
with respect to 1 vanishes. The entire problem is therefore a constrained opti-
mization problem

I}blin (D, w) (2.26)
with subject to
0 (DY, w)
=0. 2.2
oY 0 (2:27)

By using Lagrange multipliers for equality constraints, we obtain the following
set of nonlinear equations

) o2
%+Z&mwj_0

O < WA
ov oy
0
— = 0, 2.28
o (225)
where ), is the j™ Lagrange multiplier. We thus have in total 2k + [ equations
and as many unknowns. However, rather than attempting to solve the above set
of equations directly, we will propose a more practical EM algorithm.

2.5 EM Solution

Since the solving of the maximum likelihood robust estimator directly from the
non-linear system of equations is difficult, we propose an alternative method
based on the expectation maximization (EM) algorithm (Dempster, Laird and
Rubin 1977). In general, the EM algorithm involves the complete data y = {y;},
which are not available, and incomplete data x = {x;}, which have been observed.
By computing the expected complete data likelihood, it is, however, possible to
find successive estimates such that at each iteration the observed data likelihood
L(x|w') has a larger value (see e.g. Srinath, Rajasekaran and Viswanathan 1996).
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The EM algorithm generally has two steps that are iterated until convergence.
The expectation step involves computing the expected complete data log-likelihood
given the observed incomplete data and an estimate for the parameters, forming

x(w', @) = Eyjx g {log L (y|w') | x, &7} (2.29)
In the mazimization step, new parameter estimates are obtained by
max x (', ). (2.30)

When the likelihood function is bounded and x(w},w}) is continuous, convergence
to a local maximum of the likelihood L(x|w') is guaranteed (Wu 1983).

In our problem, the incomplete data involves all the residual observations x =
{z;}. Let u; be a variable that indicates whether the residual z; is a realization
from the correct or false residuals. Thus, the corresponding random variable U;
is either 1 or 0 with probabilities yg or 1 — vz, respectively. We consider the
complete data to be y = {z;,u;} with

Lyle) = [T pldR.w) =] (w 1-w) (p(““'?’“'))- (2.31)

i|lz;€ER =1
~ 1
X, wl}

= E{Ui] x, &} log p(;|R, &) (2.32)

2
= — Z P(R|z;, @) (;TZQ + log v 27TO'R) :
i R

Hence, the E-step is

7

x(W' @) =E{log L(Y|w) | x,01} =E { > Uilog p(a;|R, ')

In the M-step, we thus obtain new estimates for the model parameters by maxi-
mizing y(w',w;) with respect to w, or equivalently

min »  P(R|x;, &), (2.33)

where the positive constants have been dropped (compare to (2.22)). Normally,
X(w',@)) should be maximized with respect to all parameters w’ but here the
complete data likelihood does not restrict the residual parameters of the outly-
ing observations. Therefore, to update posterior probability estimates, we must
fit the residual model to the data using the ML estimation*. In total, we get
the algorithm summarized in Algorithm 1. Its implementation is discussed in
Section 2.7.

4Since this step is added, the algorithm does not represent the EM algorithm in the standard
form. We, however, regard it as an EM algorithm because of the way it has been derived.
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Algorithm 1 EM Solution for the Maximum Likelihood Robust Estimator

1. Compute an initial estimate for the parameters w of the model.

2. Use the ML estimation to compute estimates for the residual den-
sity parameters ¢, given w;. Update the a posteriori probability
estimates P(R|xz;, ¢, @;) by using the Bayes rule.

3. Compute a new estimate for the parameters w by minimizing the
squared residuals weighted by the new a posteriori probabilities.
Iterate Steps 2 and 3 until the model parameter estimates converge.

2.6 Unknown Residual Models

In applications, the actual form of the outlier distribution is rarely known. In
robust regression, this fact is usually ignored by ad hoc propositions such as
M-estimators where it is simply assumed that the total residual distribution is
symmetric and has long tails, and the desired density model is fixed in advance.
A propos, certain adaptive, efficient procedures were developed in the 70’s (Hogg
1974, Beran 1974, Stone 1975, Sacks 1975), but their applicability is limited be-
cause of the assumption that the total residual is symmetric. As their performance
under asymmetry has been unclear and unexplored, they have been excluded from
the definition of robust procedures (Huber 1981). Recall that, from our point of
view, symmetry is a senseless assumption in general.

Since we assume that good residuals are normally distributed, we model an un-
known outlier residual using a mixture of Gaussians. The total residual distribu-
tion is

m—1

p(x|w') = Z%p(x|pivﬂiaaivw)v (234)

i=0
where R = Dy, F = DyU...UD,,_ 1, Yyg =Y =1 — Z::ll v;. The mixture
of Gaussians is a natural choice because, on this basis, we may obtain a clear
interpretation for the kernels. For instance, if the regression problem is about
motion estimation from several scenes that actually contain several independently
moving objects, the other kernels may describe the residuals of the other motion
clusters. It is therefore more a matter of problem dependent interpretation of
which kernel is the “right one”.

A crucial point in modeling the residual distribution using the mixture of Gaus-
sians is how to determine the number of kernels. Since the ML method favors
models of ever increasing complexity, we need a means of penalizing models that
are overly complex. The complexity control should therefore identify when there
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are no outliers in the data, i.e., when only a single Gaussian suffices. The com-
plexity control can be performed in several ways.

The classic Akaike’s Information Criterion (AIC) (Akaike 1977) is derived from
Taylor’s polynomials of the mean expected log-likelihood and log-likelihood (see
e.g. Sakamoto, Ishiguro and Kitagawa 1986). It is equivalent to minimizing

ac(Dlw') = (D) + F, (2.35)

where @ is the maximum likelihood estimate for the parameters and k& = dim V.
The residual parameters in w’ are assumed independent.

Another criterion is known as the 'Bayesian information criterion’ (BIC) (Schwarz
1978), which was derived using Bayesian formalism. The penalty term was found
to be % log n instead of k, where n is the number of observations, but the criterion
was derived only for the Koopman—Darmois family of distributions. However,
Rissanen arrived at the same asymptotic solution using the minimum description
length (MDL) principle (Rissanen 1978, Rissanen 1983), but the result can be
considered an extension to AIC and BIC for any sufficiently smooth family of
distributions, assuming that the MLE is consistent in the family. Here, we thus
denote

k

Vapnik’s theory of structural risk minimization (SRM) provides another perspec-
tive on complexity control (Vapnik 2000). It is based on the statistical analysis of
the rate of convergence of an empirical process where the complexity of a model
is determined by selecting the model that minimizes the bound on the risk func-
tional. The MDL principle is somewhat similar to the SRM principle but it is
philosophically very different. Rissanen himself argues (private communication)
that, in order to justify the risk minimization principle, one should show the
convergence of the risk functional. In fact, the MDL philosophy goes one step
further by stating that there is no such thing as a “true model” (Rissanen 1989).

As the residual form is unknown, we apply the MDL principle to complexity con-
trol or to find the number of kernels m in the Gaussian mixture model according
to (2.36), when k = 3m — 1. The final algorithm is summarized in Algorithm 2.
However, because ML is inconsistent for general Gaussian mixtures, we must
make it consistent by restricting the parameter space correctly. This and other
implementation issues are discussed in the following section.

2.7 Implementation Issues

Fitting a Gaussian mixture model to data is anything but a trivial problem,
although we here need to consider the 1D residual only. First, because of the
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Algorithm 2 Computation of the MLRE with Unknown Residual Models

1. Compute an initial estimate for the parameters w of the model.

2. Determine the ML estimates for the residual likelihood given w
for every m = 1,..., M using the stochastic EM algorithm (see
Section 2.7). Select the number of kernels /m that maximizes (2.36)
and store the corresponding residual parameter estimates 7,&

3. Compute the EM solution for the model parameters w by Algo-
rithm 1 using the m number of kernels and v as an initial estimate
for the residual parameters.

local minima, the EM solution is found to depend strongly on the initial estimate
for the parameters. A mere single run on EM algorithm with a random initial
point performs rather poorly (Biernacki, Celeux and Govaert 2000). Second, the
mixture model is inconsistent since the likelihood of the mixture tends to infinity
as the variance of a kernel centered at a data point approaches zero (see e.g.
Vapnik 2000).

In robust regression, we may assume that each residual value has the true clas-
sification of correct or false even though it is not possible to determine this by
examining the residual values. In determining the maximum of the mixture like-
lihood, we equivalently minimize

(D|w') = Zlogp zi|w'), (2.37)

it would therefore be natural to consider the latent variables

(2.38)

~_ J 1 it x; belongs to the kernel j
%=1 0 otherwise

rather than trying to solve it directly.

If we knew the values of the latent variables, the solving of the mixture parameters
would be simple since we could compute the sample means, variances, and prior
probabilities for each group individually, and thereafter evaluate the mixture
likelihood. In fact, there are m™ different classifications in total®; thus, at least
in principle, we would find the latent variable solution that minimizes (2.37) by
simply testing every possible classification. Before the time of quantum computers
we must, however, try something else.

5If different group labelings are excluded, the number of classifications is ’%
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Previously, Fraley and Raftery (1998) used agglomerative model-based hierar-
chical clustering to solve the initial values for the latent variables as the final
clustering was achieved by the EM algorithm. Classification EM (CEM) (Celeux
and Govaert 1992), of which the standard k-means is one form, is a variant of
the traditional EM algorithm, where the latent variables are determined by a
discrete classification in the E-step. In the stochastic EM (SEM) (Celeux and
Diebolt 1985), the latent variables are simulated by drawing the m values using
the posterior probabilities of each group in expectation step. Moreover, Biernacki
et al. (2000) showed that local minima may be effectively avoided by using CEM
or SEM as an appropriate starting point for the EM algorithm.

We use the SEM algorithm here since it should be more exact to our problem than
CEM. This is because we must deal with mixtures with overlapping kernels, and it
is hence impossible to classify the residuals to good and bad simply by examining
the residual values. The implementation of SEM concerns the following details.

First, we need initial estimates for the mixture parameters ¢ given the resid-

ual observations x1,...,x,. Let a = minz; and b = maxxz;. We initialize the
parameters as
=0 s =L (b—a) (2.39)
70_27 M0_70-0_20 a), .
1 (b—a)(j—3) b—a
= = - 2 = =1,... —1
’Yj Q(m_l)v l’[’] a+ m_l ) UJ m_17 j ) 7m 9

where m is the number of kernels in the mixture model. The initial mixture
density then resembles a long tailed M-estimator density.

In the second step of SEM, one simulates the class distributions by drawing the
class label of each observation randomly from the residual posterior distribution.
That is, the class label of the residual z; is set to D; with probability

P(Dj|as,w') = mj{p(%‘“ﬂ‘"’j) , (2.40)
Zj/:o ’Yj/p(xillujﬁ Uj’)

where p is a Gaussian density function.

After simulating the class labels, we may compute new estimates for the mixture
parameters using sample means and variances. For the class j, we get

n; 1 1
== Eonee= [0S w24

n
J ’L'|CCZ‘E'DJ' J ’L'|CCZ‘E'Dj

At the &' iteration, if the class j does not yield any observations we, however,
set

1 . .
== o =0 (2.42)
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Algorithm 3 SEM Algorithm for Fitting a 1D Gaussian Mixture

1. Set the initial estimates for the mixture parameters using (2.39).

2. Draw class labels for each observation from the posterior distribu-
tion (2.40).

3. Compute the sample estimates for the priors, means, and deviations
by (2.41), but require also that o; > 4, Vj.

4. Consider the case of a class obtaining only zero or one observations.

5. Repeat from Step 2 one hundred times. Store the parameters that
give the greatest mixture likelihood for the residual observations.

6. Repeat from Step 1 ten times. The best estimate is the one that
gives the greatest likelihood of all 10 estimates.

7. Refine the best estimate using the classic EM algorithm with the
additional constraint o; > 0, V7.

and finally normalize each v; by > i i Similarly, if there is only one observation

in the class 7, we set aé-“ = af”_l. To avoid the inconsistency of the estimator, we
yet require that o; > 0, Vj by setting the deviation always at least to . The
constant ¢ can also be seen as the “precision” parameter, introduced in Rissanen

(1989), which makes the mixture distribution bounded.

As the above procedure is repeated iteratively, it forms a Markov Chain, where
the state variables are the mixture parameters. After the “burn-in” period, the
parameters should concentrate around a stationary point of the likelihood (Bier-
nacki et al. 2000). To obtain reliable estimates, we take the estimate that maxi-
mizes the likelihood of the mixture model after iterating 100 times. To make the
procedure yet more reliable, we repeat the estimation 10 times by starting the
estimation from the initial situation and taking the estimate that gives the great-
est likelihood of all the ten estimates. The entire SEM algorithm is summarized
in Algorithm 3.

2.8 Summary and Discussion

In this chapter, we have proven that, given a Gaussian noise model for “good”
residuals and an independent residual model for outliers, the estimator that min-
imizes the sum of all squared residuals weighted by the consistent ML estimates
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of the posterior probabilities to be correct is a consistent estimator for a model’s
true parameter values. This means optimality since the ML estimate of the model
is asymptotically achieved regardless of the outliers in the data. The proposed
estimator was therefore named as the maximum likelihood robust estimator. The
assumptions made are similar to those needed for the consistency of the ordinary
ML estimator. The result cannot be generally proven to other robust estimators
such as the least-median-of-squares or M-estimators because of, among other
things, their assumption of a priori fixed residual distributions.

Where the outlier residual model is known, the maximum likelihood robust esti-
mator can be solved using a simple EM-algorithm; however, the general case of
unknown outlier residual models was additionally considered in the chapter. In
the latter case, the outlier distribution was proposed to be modeled by a Gaus-
sian mixture model, where the number of kernels is determined using the MDL
principle. The function set of Gaussian mixtures is a natural choice since it is a
universal approximator. In motion estimation, for example, the outliers may also
represent structured noise as in the presence of many motion clusters. Individual
kernels in the residual model may therefore involve a certain problem dependent
interpretation.

Finally, we may ask to which category the maximum likelihood robust estima-
tor belongs if we follow Rousseeuw and Leroy’s (1987) taxonomy of regression
diagnostics and robust statistics (see Section 2.1). The method contains features
from both classes, and it falls therefore between these categories. As is typical
with robust statistics, our method searches for a robust fit without trying to first
identify the outliers. On the other hand, the proposed EM algorithm iteratively
downgrades certain residual samples in a similar way to the pinpointing and re-
jecting process of regression diagnostics. In contrast to approaches that attempt
to identify outliers, irrespective of into which category they fall, our method gives
only a probability for each observation of being correct instead; it is, in fact, the
most that one can obtain by simply examining the residual values.



Chapter 3

Two View Geometry Estimation?

Matching two images of a single scene is one of the fundamental problems in
computer vision. Stereo, motion, and 3D object recognition are all multiple view
problems sharing the same geometrical constraint, the epipolar constraint, and
numerous techniques have been proposed for its estimation. The methods can
be divided into ordinary and outlier-robust methods where some of the ordinary
methods are optimal in the sense that they minimize the squared residuals corre-
sponding to a random variable which may be justified to be normally distributed.
They fail, however, if there are false point matches in the data. The robust
methods attempt to take the false matches into consideration but they violate
the Gaussian distribution assumption of the good point residuals, and may even
show poor performance under Gaussian noise on the points.

In this chapter, we evaluate the maximum likelihood robust estimator, proposed
in the previous chapter, in epipolar geometry estimation. It turns out that, when
the affine camera model can be assumed, we are able to build a reasonable form
for the outlier distribution. The first part of the chapter thus focuses on the
affine epipolar geometry estimation where no automatic model selection for the
outlier residuals is needed. The affine camera model is also ideal for an electron
microscope (see Chapters 7 and 8). We experiment the general projective case
with the assumption of an unknown outlier residual model. In addition, we show
how to determine the uncertainty of the epipolar geometry in both affine and
projective cases by using all the observed data rather than the (erroneously)
relevant classified matching points.

!This chapter relies on the most recent results of affine (Brandt and Heikkonen 2001b)
and projective (Brandt 2002b) epipolar geometry and its uncertainty estimation, but the first
considerations were published in Brandt and Heikkonen (20000) and Brandt and Heikkonen
(2000d).
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Epipolar lines

Figure 3.1: Epipolar geometry involving two images. A three dimensional point x and
its projections on two image planes form an epipolar plane. The plane intersects the
image planes on lines called epipolar lines. Equivalently, when a point in one image is
fixed, the real 3D point lies on the back projection ray that lies on the epipolar plane;
therefore, the corresponding point in the other image must lie on the corresponding
epipolar line.

3.1 Introduction

Epipolar geometry refers to the intrinsic projective geometry of two views, and it
depends only on the relative pose of the two image planes and internal parameters
of the cameras (see Fig. 3.1). Epipolar geometry can be represented by a 3 x 3
matrix known as the fundamental matrix, which is a generalization of the essen-
tial matrix (Longuet-Higgins 1981) for uncalibrated cameras. The fundamental
matrix F is defined by the relation

m'"Fm = 0 (3.1)

for any matching points pairs m < m’ in two images, represented in homogeneous
coordinates. The importance of the fundamental matrix has been stressed, and
its role in future applications has been predicted to be crucial. This is supported
by its applicability to several difficult problems in computer vision (Luong and
Faugeras 1996).

With the full perspective projection camera model, an analytical solution for
the fundamental matrix can be achieved with seven point matches because it
has only seven degrees of freedom (see e.g. Xu and Zhang 1996). A unique
solution is obtained if eight or more point matches in a general position are
used; yet the problem becomes over determined when the least squares solution
is usually sought. In order to make the eight-point algorithm more accurate
and stable, Hartley (1997) has proposed a better way to normalize the matching
point coordinates. Other kinds of linear approaches to be mentioned include the
Boufama and Mohr’s (1995) method, which is based on the concept of virtual
parallax, and Ponce and Genc’s (1996) linear subspace method.
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The linear criterion does not have a clear geometric interpretation when it would
be reasonable to assume a normally distributed residual. An optimal method,
assuming Gaussian noise in point coordinates, is to minimize the geometrical or
reprojection error (Hartley 1993, Hartley 1994, Kanatani 1996). Computation-
ally lighter approximations of this error include the gradient-weighted epipolar
errors (Weng, Huang and Ahuja 1989) (for an efficient algorithm, see Chojnacki,
Brooks, van den Hengel and Gawley 2000, Chojnacki, Brooks, van den Hengel
and Gawley 2002) and the sum of square distance of points and their correspond-
ing epipolar lines (Weng et al. 1989, Luong, Deriche, Faugeras and Papadopoulo
1993). Interpretation and evaluation of the reprojection error vs. its approxima-
tions are presented by Zhang (1998b).

The methods presented so far are sensitive to outliers, because, on balance, the
square sum over the residuals is minimized. In other words, these approaches
correspond to the assumption that the residual is normally distributed, which is
clearly not the case if there are outliers in the data. Therefore, certain robust
estimators have been used, of which the best known are perhaps the M-estimators
and the Least Median of Squares (LMedS) method (see Xu and Zhang 1996). In
addition, F-matrix is frequently estimated robustly by the RANSAC (Random
Sample Consensus) (Fischler and Bolles 1981) principle (see e.g. Torr and Murray
1993, Torr and Murray 1997).

As reviewed in the previous chapter, M-estimators are based on replacing the
squared residual by another function of residuals to make the estimation less
sensitive to outliers. Xu and Zhang (1996) reported that, in F-matrix estimation,
M-estimators are robust to bad match localizations but not to false matches.
Nevertheless, Torr and Murray (1997) obtained good results with a hybrid method
that is based on refining the initial estimate at several stages.

The LMedS method is based on nonlinear minimization, where the median of
squared residuals is minimized. Accordingly, 7 X m point correspondences are
sampled randomly to achieve m sets of seven point pairs for which the m funda-
mental matrices are estimated separately. The quantity to be minimized is the
median residual? over all point pairs, i.e.,

mjin me(ihan e:(F;)°. (3.2)
Although good results have been obtained with this method, the efficiency of
LMedS has been characterized as poor in the presence of Gaussian noise (Xu
and Zhang 1996). To reduce this deficiency, minimization is followed by an M-
estimator.

In the RANSAC method, an F-matrix is estimated from several random minimal
matching point sets as well. Such an F-matrix is preferred which maximizes the

2Even though we used z as the most convenient symbol for residuals in the previous chapter,
henceforth we use € because we want to reserve the symbol x for image coordinates.
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number of inliers, i.e., the number of data points having smaller residual than
a heuristic threshold. The final estimate is computed using only the inliers and
minimizing the reprojection error or its approximation. It therefore assumes that
the inliers are normally distributed, which is not true yet.

Previously, Torr and Zisserman (2000) proposed a RANSAC like estimator known
as MLESAC (Maximum Likelihood Sample Consensus). The objective was to
maximize, using random sampling, the likelihood of the mixture of two densities
corresponding to relevant and false matches. One problem with this method,
as well as with MSAC (M-Estimator Sample Consensus) in the same paper, is
its assumption of known standard deviation of the noise; we should search for
the minimum variance estimate that becomes meaningless if the noise variance is

fixed.

3.2 Affine F-Matrix Estimation

With an affine camera model (orthographic, weak perspective, or paraperspec-
tive, for details, see Xu and Zhang 1996), the problem of fundamental matrix
estimation is slightly simpler because the epipolar equation m’TFm = 0 is linear
in image coordinates. It may thus be expanded as

uin + f33 =0, (3.3)

where f = (f13 fo3 f31 f32)T and w; = (2 ¥} z; y;)T. A minimum of four matched
point pairs are sufficient to determine the affine fundamental matrix uniquely.
If more matches are used and the reprojection error is minimized, it can be
shown (Xu and Zhang 1996) that the solution for f is obtained from the following
eigenequation as the eigenvector corresponding to the smallest eigenvalue:

Wf — Af =0, (3.4)

where W = Zfil(ui —ug)(u; —ug)t, ug = % Zf\il u;. The parameter f33 is
obtained from
f33 = —uOTf (35)

Because it is assumed here that the error is normally distributed, the result is
similarly sensitive to outliers. To accommodate this, Zhang proposes an affine
version® of the LMedS-method. In addition, other robust estimators, including
RANSAC, are straightforward to implement in the affine case.

It was mentioned earlier that the proposed maximum likelihood robust estimator
is based on the fact that the residuals corresponding to the outliers, which are

3 Available from http://www-sop.inria.fr/robotvis/personnel /zzhang/zzhang-eng.html.
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here regarded as false matches, come from a different distribution than the rele-
vant point matches. For the distribution of the relevant residuals, it is reasonable
to assume Gaussian distribution if the geometric error is minimized. The distri-
bution of false matches is generally unknown but, with the affine camera model,
it is reasonable to assume it is similarly normal, but with different parameters.
The rationale lies in the central limit theorem, which states that the distribution
of the sum of i.i.d. random variables approaches a normal distribution as the
number of variables grows, as explained in the following.

Assuming an affine camera model, the residual of a false match is defined as

T
€ = %, u, € F (3.6)
2

where F is the set of false matches. Because ¢; can be considered a sum of four
random variables (u; € %), the normal distribution assumption is reasonable
(central limit theorem). One could still claim that there are far too few variables
to make such a distribution assumption. However, the density function of the
sum of random variables is obtained by convolving the densities of the individual
random variables. If we assume that the false matches are uniformly distributed
to the image planes, which is perhaps the best a priori assumption we can make?,
the density of the sum would be the B-spline of the degree of four which is, indeed,
a very Gaussian like bell function.

We therefore assume that the residuals of mismatches are normally distributed,
and consider Algorithm 1 to solve MLRE. According to the following proposition,
the minimization of the weighted reprojection error can be computed in closed-
form.

Proposition 3.2.1 Let the posterior probabilities P(R|e;,w’) be fixed. Then,
with the affine camera model, the posterior probability weighted minimization of
the squared reprojection error, yields the solution of the form (3.4) and (3.5)
where

W = Z P(R|e;,w')(w; — ug)(u; —ug) " (3.7)

and
i > P(Rlei, w')u,
Y P(Rlew')

(3.8)

Proof. 'This analytical derivation is a generalized version of the derivation pre-
sented in Xu and Zhang (1996). The objective here is to minimize the weighted

4This assumption is slightly pessimistic because, in practice, the false matches seem to
distribute bell-like on the image planes, i.e., the Gaussian approximation should work even
better.
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sum of squared residuals with respect to F' (whose parameterization is represented
by w), i.e

N
C =3 PRle,o) & _ZP Tf+f33) , (3.9)
=1

where the short hand notation P, = P(R\ei,w’ ) is used. Differentiating C' with
respect to f33 and setting the result to zero, we have

5}; —2ZP “ f+ff33 — 0. (3.10)

Therefore, the solution for f33 is

SYP qu
> B

where ug = ) . P, u;/) . P;. Substituting now (3.11) into (3.9), it follows

fag = — —u,f, (3.11)

C = Z P _ “0 of)® (3.12)

Let W =" P, (w; — up)(u; — ug)7, then it follows

N
fT(lli — 110)(112‘ — llo)Tf fTWf
¢ Z 1 frf fTf (3.13)

Differentiating with respect to f we get
oC  2Wf 2fTWTf Wf — Cf

-~ — =2 3.14
of fTf (fTf)2 fTf (3:.14)

Setting the equation to zero, we obtain the eigenequation
Wf - Cf =0. (3.15)

Now, because W is symmetric and positive semi-definite, it has 4 real non-
negative eigenvalues and associated eigenvectors. Since we seek to minimize C,
we choose the minimal eigenvalue and the associated eigenvector.

The EM implementation (see Section 2.5) of the maximum likelihood robust
estimator for affine fundamental matrix is now summarized in Algorithm 4. In-
dependent of our work, a somewhat similar EM algorithm has been used in the
projective F-matrix estimation by Torr and Murray (1997) (see also Zhuang,
Wang and Zhang 1992), and good results were reported. However, in their work
the matches are strictly classified to inliers and outliers, after which iterative M-
estimators are used for the inliers. Because of the classification, their solution
does not converge to the ML estimate or, to be precise, is not consistent although
the distribution assumptions were correct.
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Algorithm 4 Implementation of the MLRE for the Affine F-Matrix Estimation

1. Compute an initial estimate for the affine fundamental matrix e.g.
with the affine LMedS.

2. Use the ML estimation to compute the parameters for the density
functions and a priori probabilities of the reprojection error of the
relevant and false matches. Update the a posteriori probability
estimates P(R|e;,w’) by using the Bayes rule.

3. Compute a new estimate for f by solving the eigenvector corre-
sponding to the smallest eigenvalue of W (3.7). Compute the el-
ement f33 from (3.5) and (3.8). Iterate Steps 2 and 3 until the
fundamental matrix estimate converges.

3.3 Uncertainty of the Affine F-matrix

The present approaches for the F-matrix uncertainty estimation rely on the as-
sumption that all the point matches used in computing the covariance matrix
are relevant. In order to accomplish this, the matches must first be classified as
relevant and false. However, as reported in the previous chapter, classification
without error is impossible because the residual densities overlap. Indeed, mea-
suring uncertainty in this way is questionable since the ad hoc inlier threshold
determines the largest possible error. The classification additionally violates the
assumption that the relevant residuals are normally distributed.

In this section, we demonstrate that by following the proposed probabilistic prin-
ciple, the covariance estimation of the affine F-matrix can be generalized from
the original work of Shapiro, Zisserman and Brady (1994) and Shapiro and Brady
(1995). In contrast to their work, we allow the presence of outliers. In general,
the analytical first-order covariance approximation has been reported to be quite
good when the noise level in data points is moderate, or the standard deviation is
under two pixels (Xu and Zhang 1996, Csurka, Zeller, Zhang and Faugeras 1997).

Proposition 3.3.1 Consider the affine fundamental matrix estimation from out-
lier contaminated point matches. Let P(R|e;,w') be the posterior probability
for the match i obtained by the maximum likelihood robust estimator. Then,
the first-order estimate for the covariance matrix Ce for the parameterization

£ = (f13 fos fa1 fa2)" is given by

Cr ~ 0?Q (Z P(Rle, )2 (w; — ug)(wi — uO)T>QT, (3.16)



50 Two View Geometry Estimation

where
4

-y = %l (3.17)

k=2

whereas )\, and q are the k™ largest eigenvalue and the associated eigenvector
of W from (3.7), respectively.

Proof. Without loss of generality, we may assume that both relevant and false
matches are perturbed by additive Gaussian noise. Let @1; be the true, noise free
4D-coordinates of the match ¢ and the corresponding noise vector du;. Now,

u; = ﬁi + 5111. (318)

It is further assumed that the noise is uncorrelated and has zero mean and equal
variance in all the four components. Briefly, we require E{du;} = 0 and

C. = E{dwou}} = 0’1, (3.19)
From the independence, it follows
E{éu;0u; } = 6;;Cy, (3.20)

where 0;; is the Kronecker delta product.

To clarify future calculations, let us define v; = /P; (u; — up), where P; is a
shorthand notation for P(R|e;,w’) and ug = >, P, u;/>, P; as in (3.12). Now,
v; is divided into its noise free and noise components. By substituting (3.18) and
arranging terms, we get

RGICE ng“%f( zf;fu>

N N (3.21)
éﬁo é5u0
= /P, (Ti; — 0y) + \/P; (du; — dup)

where ¥; /P, (i; — Up) and 6v; /P, (du; — dug). Now, it follows

E{évﬁv}r} = E{\/PP; (6u; — duy) (du; — 5UO)T}
= /PP (B{0w;du; } — E{du;duy } — E{0usdu; } + E{uedug })
B T Z P 511 Z P 5112 T
= /PP (E{(Suzéu } — E{0u P =t - B{=E S P ouy } +
Srten)

P P, S p?
= VPP;|0;,Cqs — =—=Cu I C,+-="C,
J( J Z P, ZJPJ 2 )

+ E{

(22 )
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_ P+P >, P
= JBP (5”-— =7 +(ZiPi)2> Cu. (3.22)

Let us next define V = (V1 Vo +- VN) and 0V = ((5v1 Ovy « - 5VN). Now,
using the definition of W from (3.13) it follows that W = VVT | thus

W= (V+6V) (V+oV) =V VoVT +6VVT 1 VavT.  (3.23)
W sW

By dividing W to its noise free and noise dependent components W and dW,
and ignoring the second order term, we may write

SW =~ ViVt 4 6VVT (3.24)

Let the eigenvector of W be q; as k = 1, ..., 4 which are ordered in the ascending
order according to the corresponding eigenvalues. Using the fact that dW is
symmetric and in the noise free case the smallest eigenvalue \; = 0, the first-
order perturbation 0q; of the first eigenvector q; may be derived from the Taylor
expansion (Golub and Loan 1989), which yields

GLOWadr -
S~ -y w — QOW4q, (3.25)
k
k=2
where

4 = =T

Q=-Y % (3.26)
k=2 Ak

Substituting (3.24) to (3.25), we get

N
0~ Q(VoVT +0VvVT) @ = Q) (wiovia + ovivia ), (3.27)

where the second term is zero because V. q; approaches zero for all i when the
noise variance tends to zero. This is due to the fact that when noise approaches
zero, the estimated a posteriori probabilities approach unity for the relevant
matches and zero for false matches. In other words, as noise goes to zero, the
relevant distribution becomes the Dirac delta function, and the a posteriori prob-
ability approaches the Kronecker delta function, being one for relevant matches.
For the relevant matches, the term is also zero because v} q; = 0 is equivalent
that (3.3) holds, i.e., the residual vanishes.
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Thus, we may approximate the covariance of q; as follows:
_ N N T
Ca, = B{oaoa)} = QE{( D viovia ) (Y viovia) 1Q"
i=1 j=1

N N
= QE{ZZVJV .4, 0v;v T}QT (3.28)

i=1 j=1
N

N
=Q (Z Z‘_’ ;fq;fE{aviavf}ql)QT.

i=1 j=1

Substituting (3.22) and noting that j E{0v;0v }q; = E{dv;0v] }, which follows
from (3.19) and giq; = 1, gives

_ L P, + P, P2\ _ -
Car = UZQ(ZZM@_ S *(%Pi)g)viv? ¥)

i=1 j=1

2N al T\AQT 2N al P3/2 al T\AT
= Q Pi_i_i Q —0°Q : Vi Pj_j Q +
o (; VV) o <;Ezplv; V)
=0
N N p3/2 ~
—o—2Q(iZI¢EvijZIZJiPﬁT)QT+
=0
S P2 N N N

Yo 2(2 o (Z ; jVJ.T)QT_ (3.29)

~ T

The above equation consists of the noise free components, which are not generally
known. Correspondingly, as in Shapiro and Brady (1995) and Weng et al. (1989),
the noise free components can, however, be approximated by the corresponding
noisy values. This is justified by the fact that, if one substitutes V.= V—4§V in the
relevant equations, the terms in 0V disappear in the first-order approximations,
which allows V simply to be interchanged with V. We hence obtain the covariance
matrix approximation for f from

Cr ~ 0°Q (Z P(Rles, ') (w; — ug) (ws — uo)T>QT, (3.30)

where
4

Z e (3.31)
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3.4 Affine Experiments

The maximum likelihood robust estimator for the affine fundamental matrix has
been experimented with both synthetic and real data. In order to evaluate the
F-matrix estimates, they are compared to the true or ground truth F-matrices.
Because the elements of the F-matrix do not all have equal variances, the Frobe-
nius norm of the matrix difference would not yield a true picture of the similarity.
Therefore, we use Zhang’s method® (Zhang 1998a) in measuring the difference
between the ground truth and estimated F-matrix. The difference is here denoted
by AF. The comparison is based on sampling points from images and the cor-
responding epipolar lines randomly, and measuring the distance between points
and the epipolar lines computed crosswise between the two F-matrices (see Zhang
1998a). We thus have a measure of generalization for the F-matrix estimation
techniques.

3.4.1 Synthetic Data

The synthetic data was generated so that 200 points were randomly generated
within a cube. The two image planes were simulated by projecting the points
using an orthographic projection onto two planes in space that would approxi-
mately correspond to a typical stereo view of an object, i.e., the image planes
were positioned so that their normal directions deviated from each other by a
couple of degrees. To the 2D coordinates of the projections i.i.d. Gaussian noise
was added and false matches were randomly generated so that their distribution
on the image planes was uniform.

The fundamental matrix estimates were computed in four different ways: di-
rectly from (3.4) and (3.5), with the affine RANSAC, affine LMedS (followed by
an M-estimator, see Xu and Zhang 1996), and the maximum likelihood robust
estimator, where the estimate from the LMedS method was used as the initial
guess. RANSAC was implemented as recommended in Hartley and Zisserman
(2000), where the number of sampling rounds is determined adaptively and the
inlier threshold is set to 1.25 pixels.

We made two test sets. In the first set, we generated the data with 20 different
noise variance values 30 times each and set the number of false matches to 50,
100, 150, and 200. The resulting graphs are shown in Fig. 3.2. The second set
was similarly generated but now the number of outliers was varied, and the test
was repeated at four different noise levels. The results are shown in Fig. 3.3. In
both cases, we used the median of the 30 times repeated experiment as the result
whereas the error bounds are the first and third quartile of the observations,
respectively.

5 Available from http://www-sop.inria.fr/robotvis/personnel /zzhang /zzhang-eng.html.
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Figure 3.2: Results for the synthetic data where the robustness of the F-matrix is
evaluated with varying amounts of noise; deviation of one unit on the z-axis roughly
corresponds to one pixel in a 500 x 500 image. Consequently, the median of 30 times
computed error is used whereas the error bounds are the corresponding first and third
quartile. The four sub graphs show the results for four different quantities of false
matches whereas the number of correct matches is fixed to 200.
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Figure 3.3: Affine F-matrix estimation with synthetic data. The error is computed
for varying quantities of false matches whereas the number of relevant matches is fixed
to 200. The median of 30 times computed error is used as a result, and the error bars
respectively correspond to the first and third quartile of the observations. In the four
sub graphs, the Gaussian noise on the point coordinates are varied from o = 0.5 to 2.0.
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It can be seen that the direct method is completely confused by the false matches
in the data. Both LMedS and MLRE perform robustly under increasing noise
level while the latter is able to produce slightly better results on average. Further-
more, the variance of LMedS is greater than that of MLRE, particularly as the
number of false matches grows; the deviation of RANSAC is largest. The affine
LMedS works quite robustly under increasing Gaussian noise in contrast to the
LMedS with the full camera model (Xu and Zhang 1996, Brandt and Heikkonen
20000) as long as the number of false matches is kept under 50%. On the other
hand, the estimation error grows fast if the number of false matches exceeds 200,
as shown in Fig. 3.3. In addition, RANSAC began to experience serious compu-
tational problems when the noise deviation exceeded two pixels because of the
adaptive sample size determination. At worst, the minimal sets had to be drawn
approximately 50000 times to compute a single F-matrix estimate.

The drawback of the EM implementation of MLRE is that convergence to the
global minimum is not guaranteed; however, it is known that the EM solution does
not lessen the likelihood of a solution during the iteration. However, local minima
represent a problem in all the iterative nonlinear methods that minimize the
reprojection error or its approximations in the full projective case. MLRE usually
works relatively well, even with poor initial estimates, but to avoid possible local
minima and to get the best possible results, the initial estimate should be as good
as possible. Therefore, LMedS was originally chosen as the initial estimate with
the synthetic data.

The effect of the initial estimate on MLRE can be seen in Fig. 3.3. If the noise
level is small, it does not matter which initial estimate is used (Fig. 3.3a) since the
results are unchangeable while the initial estimate (LMedS) starts to deteriorate
when the number of false matches exceeds 200. If the noise level is large (Fig.
3.3c and 3.3d), the local minima are more probable. This can be seen as there is
a notable change in variance of MLRE as the initial estimate deteriorates. The
median value is, however, almost unchanged.

On the whole, the results indicate that the maximum likelihood robust estimator
is better able to adapt to the data than the affine LMedS or RANSAC. MLRE
is assumed to perform even better in practice, because of the slightly pessimistic
outlier distribution, as explained above.

3.4.2 Real Data

From the INRIA Syntim Database (1999), we chose four image pairs for which the
affine F-matrices were estimated with the direct, RANSAC, LMedS, and MLRE
methods as with synthetic data. The initial guesses for MLRE were computed
by the direct method. They have calibrated stereo rigs so we could use the F-
matrices computed from the calibrated data as the ground truth. Moreover, by
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Table 3.1: Average error between the estimated and calibrated F-matrix.

Method AF Method AF  Method AF Method AF
Direct 35.0 Direct 20.6  Direct 191.1  Direct 71.1
RANSAC 23.0 RANSAC 10.2 RANSAC 10.1 RANSAC 46.8
LMedS 18.1 LMedS 10.3  LMedS 11.8 LMedS 27.9
MLRE 3.9 MLRE 10.6 MLRE 2.5 MLRE 7.1
(a) House (b) Room (c) Statue (d) Array

using the proposed covariance matrix estimate from Section 3.3, we are better
able to visualize the reliability of MLRE by plotting the error bounds for epipolar
lines (see Csurka et al. 1997) and observing how the ground truth epipolar lines
are related.

From the calibrated outdoor image pair (Fig. 3.4a), 263 point matches were found
with the correlation and relaxation techniques (Zhang, Deriche, Faugeras and
Luong 1994). The difference between the estimated F-matrices and ground truths
are displayed in Table 3.1a. The quantitative ordering of the methods with this
stereo pair is the same as it is with the synthetic data. In the relaxation process,
some false matches have been neglected so that even the direct method gives a
better estimate. Of the four techniques, MLRE still yields the best results with
respect to the calibrated fundamental matrix. As expected, the Gaussian residual
model for mismatches seem to work better with real images.

In order to visualize the results, epipolar lines were plotted in Fig. 3.4. In
Fig. 3.4a, reference points have been marked, and the corresponding epipolar
lines are plotted to the other images corresponding to the three estimated F-
matrices. It can be seen that the epipolar lines of the direct, RANSAC, and
LMedS methods are further from the ground truth than the lines of MLRE. It
may be seen that even the 95% error bounds are somewhat narrow and the cal-
ibrated lines are inside the epipolar envelopes. The calibrated epipolar lines are
also almost parallel, which indicates that the true F-matrix is close to the affine
form.

The second test set is shown in Fig. 3.5. Here, 316 point matches were found by
correlation and relaxation techniques. If the selected points in the image corners
are examined more closely, one can see that the calibrated lines do not intersect
the selected points in the other image but go much further away than the epipolar
lines computed with the RANSAC, LMedS, and MLRE. This indicates that the
calibrated result is not accurate at the image corners and/or the pinhole camera
model is not adequate there. In fact, it is likely that the calibration object is put
in the center of the view, which makes the results at the image corners uncertain.
One should not, therefore, be alarmed by the fact that the calibrated epipolar
lines do not always lie inside the epipolar bands, or by the results of Table 3.1b
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(b) Direct (c) RANSAC

(d) LMedS (¢) MLRE

Figure 3.4: (a) Five points are selected and marked with “+” on one image of a stereo
image pair. The corresponding epipolar lines (solid line) in the other image obtained
with (b) the direct affine method; (c) affine RANSAC; and (d) affine LMedS. (e) The
epipolar lines and the corresponding 95% confidence intervals (dash-dot line) computed
with MLRE. The ground truth epipolar lines computed from the calibrated F-matrix
are represented by the dashed lines. Image copyrights belong to INRIA-Syntim.
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(b) Direct (c) RANSAC

(d) LMedS (e) MLRE

Figure 3.5: (a) Five points are marked with “4”. The corresponding epipolar lines
(solid line) computed with (b) the direct affine method; (c¢) affine RANSAC; and (d)
affine LMedS. (e) Epipolar lines and their 95% confidence intervals (dash-dot line)
computed with MLRE. In the image center, the affine approximation seems to work
well but the calibrated epipolar lines (dashed) do not intersect the selected points in the
image corners, which indicates inaccuracy of the calibration there. Image copyrights
belong to INRIA-Syntim.
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) Direct ) RANSAC
) LMedS ) MLRE

Figure 3.6: (a) Three points marked with “+”. The other image where the epipo-
lar lines (solid line) have been computed by (b) the direct affine method; (c) affine
RANSAC; and (d) affine LMedS. (e) Epipolar lines and their 70% confidence intervals
(dash-dot line) computed by MLRE. The confidence intervals are comparatively large
because there are only small variations in the depth. The calibrated epipolar lines are
represented by the dashed lines. Image copyrights belong to INRIA-Syntim.
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(b) Direct (c) RANSAC

(d) LMedS (¢) MLRE

Figure 3.7: (a) Four points are marked with “+”. The corresponding epipolar lines
(solid line) computed by (b) the direct affine method; (c) affine RANSAC; and (d) affine
LMedsS. (e) Epipolar lines and their 70% confidence intervals (dash-dot line) computed
by MLRE. The calibrated epipolar lines are dashed. Image copyrights belong to INRTA-
Syntim.
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because in the middle region, the epipolar lines of the robust methods match well
with the calibrated lines.

The third stereo image pair is taken of a statue (Fig. 3.6). Now, we obtained
195 matching point pairs with the correlation and relaxation techniques. The
results in Table 3.1c indicate that the direct method failed to give a reasonable
estimate totally. Even though the results obtained by RANSAC and LMedS are
tolerable, MLRE showed even better performance. The same can be observed
in Fig. 3.6. The affine approximation is good here because the epipolar lines
are almost parallel and the epipolar lines computed by the proposed method get
closest to the ground truth. However, the error bounds are somewhat large here
although we used only 70% confidence intervals. This is likely to be due to the
small variation in the depth.

The last image pair representing an array is displayed in Fig. 3.7. With this image
pair, the correlation and relaxation techniques gave the fewest point pairs of the
four stereo sets, namely 132. The results (Table 3.1d) again indicate that the
proposed method is closest to the calibrated F-matrix. The same can be found
in Fig. 3.7, where the epipolar lines are plotted. The confidence intervals are
moderate in this case and the calibrated result is well inside the epipolar band
like before.

3.5 Projective Experiments

In this section, we consider fundamental matrix estimation using the projective
camera model. Since the normal distribution is not theoretically (Brandt and
Heikkonen 20006) as good an approximation of the outlier distribution as it is
in the affine case, we model the outlier distribution with a general Gaussian
mixture as proposed in the previous chapter. The F-matrices were therefore
estimated using the Algorithm 2 from corner matches, obtained by correlation
and relaxation (Zhang et al. 1994) as in the affine case.

To keep the procedure computationally simple, we consider here the first order
(Sampson) approximation of the reprojection error. The residual is then
m'TFm

€= , (3.32)
B+ 13+ 12+ 152)' 2

where (I; Iy 13)T = Fm and (I} I, I5)T = FTm'.

Since no ground truth was available, the matches were randomly divided into
independent train (90%) and test sets (10%) where the train sets were only used
in the estimation. The test sets were manually cleaned from mismatches and used
only in the evaluation. To achieve a feasible estimate for the F-matrix, we used
the minimal parameterization (Zhang and Loop 2001) in the optimization. The
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Table 3.2: Results for the fundamental matrix estimation with real data. Error is the
standard deviation of the correct residuals in the independent test set.

Method Error Method Error
LMedS 0.61 LMedS 0.61
MLRE 0.54 MLRE 0.61
(a) Footpath (b) Cathedral tower

Table 3.3: Test set error of the maximum likelihood robust estimator and evidence
(in the train set) with residual models of varying complexity. The MDL selections are
bolded.

Kernels Error Evidence Kernels Error Evidence

1 6.5 335.4 1 6.6 338.7

2 0.54 210.6 2 0.61 1994

3 0.54 208.7 3 0.61 196.7

4 0.54 208.7 4 0.61 196.9

5 0.54 209.3 5 0.61 1975
(a) Footpath (b) Cathedral tower

initial estimate of model parameters was computed with the LMedS estimator
and the number of kernels selected in the residual mixture model was from one to
five. In the experiment, we used two pairs of real images shown in Fig. 3.8 and 3.9.
The proposed estimator was compared to the LMedS followed by an M-estimator
(see Xu and Zhang 1996). Consequently, we used the standard deviation of the
residuals in the test set. The results are in Table 3.2.

It can be seen that MLRE yielded good results in both cases; not surprisingly,
LMedS similarly works well. In Table 3.3, we have the scores for different quan-
tities of kernels in the residual models. In these cases, the number of kernels in
the mixture model is not a very strict parameter since the error is almost the
same with all selections from two to five. The evidence, penalized negative log
likelihood, is therefore also somewhat flat.

As with affine cameras, the covariance estimate for the fundamental matrix can
be computed with MLRE without having to erroneously classify points as good
and false. This can done in a similar way to in (Csurka et al. 1997) simply by
replacing the cost function >, C? (on page 23) with the posterior weighted func-
tion Y, P(Rle;,w')C?. Confidence intervals for the epipolar lines can thereafter
be computed (Csurka et al. 1997), as illustrated in Fig. 3.8b and 3.9b.
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Figure 3.8: (a) Left image of the footpath pair with the points in the cleaned test
set plotted. Randomly selected points, whose epipolar lines are plotted in the second
image, are circled. (b) Five estimated epipolar lines and their 95% confidence intervals.
The point near the epipole has a larger uncertainty than expected.

(a) (b)

Figure 3.9: (a) Left image of the cathedral tower pair and the test set points plotted.
(b) Epipolar lines with the 95% confidence intervals.
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3.6 Summary and Discussion

In this chapter, we have evaluated the maximum likelihood robust estimator in
estimating the geometry of two views, represented by the fundamental matrix.
Both affine and projective camera models were considered; they conveniently
represent the cases of known and unknown residual models, respectively, as dis-
cussed in the previous chapter. As expected, after the proof of optimality, the
affine experiments with both synthetic and real data reveal that MLRE gave bet-
ter results than LMedS and RANSAC, which are perhaps the most considered
robust estimators for image geometry estimation so far.

In the projective experiments, the outlier distributions were somewhat flat, and
even a two kernel mixture would have been a good selection for the residual
model. The MDL principle selected a slightly more complex residual model for
both cases but the result was practically the same, perhaps because, as far as
these results are concerned, it is not very important if some distant hills in the
outlier distribution are modeled more accurately by using more kernels or not. In
spite of our preliminary pessimistic discussion in Brandt and Heikkonen (20000),
where we rushed by claiming that two kernel model is too simple for the residual
of the projective F-matrix in theory, after all, it seems to be a suitable model in
practice. Experiments by Torr and Murray (1997) supports this too.

Let us summarize the advantages, based on the optimality, of the maximum
likelihood robust estimator in the F-matrix estimation: (1) it has an adaptive
mechanism to model the residual of false matches, where (2) no assumption of
symmetry for the total residual distribution is made. (3) It does not loosen the
normality assumption for the relevant matches because individual matches are not
classified as relevant or false. Moreover, (4) the covariance matrix of the F-matrix
(used e.g. in self-calibration, projective reconstruction, and computing confidence
intervals for epipolar lines, see Csurka et al. 1997) can be approximated by
generalizing the uncertainty computations of Shapiro et al. (1994) and Shapiro
and Brady (1995) (affine camera), and Csurka et al. (1997) (projective camera),
as was proposed in the chapter. The covariance matrix estimation is not directly
possible in those methods which use random sampling or M-estimators (Xu and
Zhang 1996, Torr and Murray 1997). In these cases, the matches must be first
classified as relevant or false, and thereafter the normal distribution assumption is
used for the relevant classified matches in estimating the covariance, nevertheless
the assumption does not strictly hold.

In general, to draw conclusions as to how well the proposed estimator really
works in practice with respect to, for example, the LMedS estimator, much more
research would be needed. The results of this chapter are promising since LMedS
is known to be very good and robust because of the median and the following M-
estimator. The maximum likelihood robust estimator is most efficient when the
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form of outlier residual model is known and a good initial estimate is available.
The more general implementation of the maximum likelihood robust estimator
must consider both the density estimation problem as well as model selection.
One way of solving these problems, possibly not the best, was also proposed
in the previous chapter. Anyhow, because the proposed maximum likelihood
robust regression was proven optimal under certain conditions, it forms a universal
principle for regression from fatally contaminated data.



Chapter 4

Uncertainty of the F-Matrix and
Disparity of the Scene!

After proposing in the previous chapter how the covariance matrix of the fun-
damental matrix should be automatically computed from outlier and noise con-
taminated data, in this chapter we will focus on the utilization of the uncertainty
information. We first show in Section 4.2 that the eigenvectors of the epipo-
lar line covariance matrix have certain interpretations in the other image that
reflects the uncertainty, and thereby the disparity, of the points that have been
used in the epipolar geometry estimation. We show that the location of the image
origin plays an unwanted special role, and propose how this can be released in
Section 4.3. We finally suggest (Section 4.4) how the uncertainty of the epipolar
geometry could be used in matching, and conclude the chapter by deriving the
probability density from the epipolar line covariance that explicitly represents a
weak point—point constraint between two views.

4.1 Introduction

Epipolar geometry helps in matching points between two views since the corre-
spondence for a point in the first view must lie on the corresponding epipolar
line in the second view. However, when the epipolar geometry is estimated from
noisy data, not even the noise free matching points will lie on the corresponding
epipolar line precisely, since the fundamental matrix will be known only up to a
finite level of accuracy. The covariance matrix of the F-matrix characterizes this
uncertainty and it is possible to compute error bounds for the epipolar lines from
the covariance (Csurka et al. 1997, Hartley and Zisserman 2000).

IThis chapter is the most recent of this thesis and the results are previously unpublished.
However, the first ideas are outlined in Brandt and Heikkonen (2001a).
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The bounds for the epipolar lines or the epipolar envelope usually represents a
hyperbola, and it has been noticed by Xu and Zhang (1996), Zhang (1998a),
and Faugeras and Luong (2001) that the epipolar envelope seem to be narrowest
at the most probable location of the match. They suggest that the covariance
matrix of the fundamental matrix might therefore capture information on the
disparity of the scene, although the epipolar geometry itself reveals nothing about
the disparity. However, an accurate explanation for the narrowest point of the
envelope has not yet been given (Hartley and Zisserman 2000). As we will see in
the following sections, the conjecture is indeed correct, and we will show how the
most probable location can be computed.

In effect, our intuition can explain the previous observation. As we compute the
epipolar lines in the one view, corresponding to a point in the other view, it reflects
a common line fitting situation: the error bounds are small and narrow where
we have had observations, i.e., the interpolation error would be small but the
extrapolation error large. As another example, we will observe in Chapter 6 that,
with the affine camera model, the ML estimates for the inhomogeneous projection
matrices can be understood as a product of the sample cross-covariance matrix
between the measured image coordinates and 3D coordinates, and the sample
covariance matrix of the 3D reconstructions. Because the projection matrices
of two views determine the fundamental matrix uniquely, there must also be an
analytical relationship between the covariance of the fundamental matrix and
covariance of the reconstructions of the points used in the estimation.

The theoretical analysis of the epipolar line covariance, derived from the fun-
damental matrix covariance, will be provided in the following section. It turns
out that, in effect, each eigenvector of the epipolar line covariance matrix has two
interpretations in the image, a point and a line interpretation. One of these inter-
pretations is the narrowest point of the epipolar envelope. However, the location
of the image origin affects these interpretations as well as the epipolar envelopes,
which represents an undesirable effect; hence, the correct fixation of the origin
will be discussed in Section 4.3. After showing that the fundamental matrix co-
variance does in fact contain disparity information, in Section 4.4, we suggest how
it could be utilized in matching. By using a convenient Gaussian approximation
in the dual space, we derive a probability distribution for the correspondence
point location in the other view.

Recently, Triggs (2001) proposed a method that models the joint probability dis-
tributions of correspondences. As he states, they aim to summarize the observed
behavior of the given training correspondences, but not to rigidly constrain them
to an ideal predefined geometry; this also applies exactly to our approach. In both
approaches, a loose analogy can be seen to Bayesian inference (see e.g. Bishop
1998) in the form of model averaging (Torr and Zisserman 1998) and marginal-
ization. The difference between our and Triggs’s (2001) approach is significant
since he models the feature distributions by Gaussians on the image planes, and
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considers the algebraic linear system for their estimation. We, however, derive
the corresponding distributions from the estimated covariance matrix in the dual
space. The advantage of our approach is that we may use the statistically correct
criterion for the fundamental matrix and its covariance, and are able to estimate
them robustly, as proposed in the previous chapter.

4.2 Special Points and Lines

To create a convenient parameterization for lines, we follow Hartley and Zisser-
man (2000) by first defining the point-line relation of the epipolar geometry using
the mapping1: 2 — 3 such that 1 = 1(m) ||Fm| 'Fm. Epipolar lines may
hence be uniquely represented by points on the unit sphere, and the lines through
the image origin do not need special parameterization, as in Csurka et al. (1997)
and our preliminary considerations (Brandt and Heikkonen 2001a).

The first-order covariance approximation for the epipolar line 1 in the second
image, given the point m in the first, is given by

1 1T 1 17T
o~ L, Oy O

9F FoF T om ™om (4.1)

where it is assumed that m is contaminated by Gaussian noise with covariance
matrix C,,. In the equation, 01/0F stands for the Jacobian of the point-line
mapping above with respect to the F, which is here regarded as a vector of 9
elements.

Proposition 4.2.1 Let m be a point in the first view, corrupted by Gaussian
noise with covariance matriz Cm. Let F be the estimated fundamental matriz with
estimated covariance matriz Cg, where the sought correspondence m < m’ has a
priori the same (disparity) distribution as the point matches with which F and Cr
have been estimated. Then, up to the first-order and Gaussian approrimation, the
eigenvectors, sorted in descending order, of the epipolar line covariance matrix
Ci, corresponding to m and having the rank of 2 with no multiple eigenvalues,
have the following interpretation in the second image:

uy :  the least probable point match for m on the estimated epipolar line;
the least probable epipolar line that intersects the point us

uy :  the most probable point match for m in the second image;
the least probable epipolar line that intersects the point u;

uz : the least probable pencil of epipolar lines;

the estimated (mean) epipolar line corresponding to m.
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Figure 4.1: Epipolar line parameterization with the unit sphere in the dual space
(left) and the transformed dual space. The tangent plane at the estimated epipolar
line 1y = wug is used in the first order approximation of the epipolar line covariance
where the axes u; and uy indicate the directions of the largest and smaller variance,
respectively. We get into the transformed dual space (right) by UT.

Proof. Since the first-order approximation for C, is equivalent to its tangential
approximation at the estimated (mean) epipolar line 1y = |[|[Fm|/~'Fm, the co-
variance matrix approximation is degenerate and positive semi definite. Since it
is also real and symmetrical, we may perform the similarity transform and define

o 0 0
ci=u'cu=|(0 o2 0], (4.2)
0 0 0

where U contains the eigenvectors of C; normalized to the unit norm and ordered
such that o; > 05. We notice that the mean epipolar line 1y belongs to the left
null space of the Jacobians 01/0F and 0l/0m; so it must also belong to the null
space of Cy (see Fig. 4.1), hence, ug = lp. Let the tangent plane of the unit
sphere at uz be 7 and the tangent plane at e3 = (0 0 1)* be 7', If we regard 3
as a projective space 2, UT can be also seen as the collineation UT : 2 — 2
from the projective plane 7 to 7', i.e., the lines (and points) transform according
to I’ = UT1. The mean epipolar line is the origin in the transformed dual space
7’ since e3 = UTus. Correspondingly, the direction of the largest variance u,;
is transformed to e; = (1 0 0)T and the direction of the smaller variance uy to

€y — (O 1 O)T

It is assumed that the covariance is non-isotropic in the sense that o; > o.
Therefore, in the transformed dual space the most probable line is the z-axis
(0 1 0)T = ey, since the marginal probability or integral of the two-dimensional
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Figure 4.2: Illustration of the transformed dual space or the projective plane «’

with the contours of the Gaussian corresponding to Cj. The estimated epipolar line
lp corresponds to the origin es, and the most probable point in the image space is
uy = Ue;y since the marginal probability over the line ey is largest. Correspondingly,
the least probable point on the estimated epipolar line is u; = Ue; since e; has the
smallest total probability of the lines that contain the origin.

(degenerate three-dimensional) Gaussian distribution with the covariance matrix
Cj centered at ej is the largest over this line (see Fig. 4.2). The most probable
point in the image hence is uy = Ues in the sense that the total probability of
the pencil of epipolar lines intersecting uy is the largest. Since the (dual) line e,
intersects the origin, it contains the (dual) point of the mean epipolar line, and
the point u, is therefore also on the estimated epipolar line. The least probable
point on the estimated epipolar line is correspondingly the y-axis or the line e;
in the transformed dual space since the marginal probability is the smallest of
all (dual) lines that intersect the origin e;. Hence, the least probable pencil of
epipolar lines that contain the line us must be u; = Ue;. The least probable line
in the transformed dual space is the line at infinity es, its marginal probability
being zero; hence the point interpretation of us is the least probable pencil of
epipolar lines in the second image. In the transformed dual space, e; is the least
probable point on the z-axis because, as an ideal point it has zero probability
density value. Its line interpretation u; in the second image is hence the least
probable line that intersects the most probable point uy. Correspondingly, es is
the least probable point on the y-axis in the dual space, and therefore u, is the
least probable epipolar line for m that intersects the point uj;.
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Table 4.1: Summary of the relations between the eigenvectors of the epipolar line co-
variance matrix Cj corresponding to the point m in the first image. Each interpretation
can be obtained by taking cross products between the other two dual interpretations.
For example, the least probable pencil of epipolar lines u; that contains the estimated
epipolar line (point interpretation) is obtained by intersecting the estimated epipolar
line uz and the least probable epipolar line uy or equivalently joining the origin es and
ideal point eg on the y-axis in the transformed dual space.

Interpretation in the image Interpretation in the transformed
dual space

u; = ug X ug|The least probable match for m|The y-axis;

on the estimated epipolar line;
The least probable epipolar line|The ideal point of the x-axis
that intersects the point us
u = ug X uy|The most probable match for m|The z-axis;
in the second image;
The least probable epipolar line|The ideal point of the y-axis
that intersects the point u;

u3z = uy Xxug|The least probable pencil of|The line at infinity;
epipolar lines;
The estimated (mean) epipolar|The origin
line corresponding to m.

The relations between the point m and the eigenvectors of the corresponding
epipolar line covariance matrix C; are conveniently coupled such that each point
interpretation of the eigenvectors can be obtained by intersecting the other two
line interpretations, and wice versa. The relations are summarized in Table 4.1.

A crucial assumption in the proof is that the non-zero eigenvalues of the epipolar
line covariance matrix are not equal. If they were equal, no line intersecting the
origin in the transformed dual space would be in a more probable position. In
other words, every pencil of lines centered at any point on the mean epipolar
line would share equal total probability; in this sense the fundamental matrix
covariance matrix would reveal nothing about the disparity of the scene. Never-
theless, the fundamental matrix is normally estimated from point matches with
concentrated disparity distribution, which suggests that o1 > o9, which can be
easily verified experimentally.

In Fig. 4.3, we have an example of how the point and line interpretations of the
eigenvectors of the epipolar line covariance are related. Since the distance between
the origin and the estimated epipolar line is large, the point interpretation of us
is very close to the origin. This example shows that, while the origin may be
fixed to an arbitrary point in the image, its location exerts a special influence,
and affects the eigenvectors of C; and hence the location of the special points
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V%)

Uz

Figure 4.3: Point and line interpretations of the eigenvectors of the epipolar line
covariance matrix Cj that is computed for the point in the cornice of the roof shown in
Fig. 3.4a. As expected, the most probable point ug is close to the true correspondence
point. Since the estimated epipolar line 1y = ug is far away from the origin, the point
interpretation of the point ug is correspondingly very close to the origin. This makes the
origin a special point of the second image that affects the point and line interpretations
of the eigenvectors.

and lines in the image, except 1y, and even the epipolar envelopes, which is not
desirable at all. How we can overcome this problem is discussed in the following
section.

The special role of the origin can be seen from Fig. 4.4, where we have plotted
contours of the disparity between points and the corresponding most probable
points. We have used the affine approximation in these images (see Section 3.4),
hence the linear covariance approximation of the fundamental matrix has at most
four linearly independent vectors. The corresponding contours of the projective
model should be more flexible to the scene disparity because the projective co-
variance approximation correspondingly has seven linearly independent vectors.

Let us now return to the previously made hypothesis that the match location is
with higher probability at the narrowest point of the epipolar envelope since we
are now able explain this observation. The confidence intervals or equi-likelihood
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Figure 4.4: Disparity contours between these images and the most probable point
uy in the second image. The disparity has been determined by computing the most
probable point for each pixel in the first image and calculating their distance in the
rectified coordinate frame. The contours summarize the overall disparity information
captured by the covariance matrix of the fundamental matrix, even though here only

the maximum (uz) of the point—point distribution has been used (see Section 4.4). The
special role of the image origin is also distinguishable.
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Center of the
hyperbola

Mean epipolar line

Asymptotics

Figure 4.5: The pole—polar relationship suggests by definition that any point m out-
side the conic C induces a polar line 1 = Cm that intersects the conic at two points,
and the tangents at these points intersect at m. Since here uy is an eigenvector of the
epipolar envelope C and is outside the conic, its line interpretation is polar to its point
interpretation. Moreover, if C is a hyperbola and the point ug is far away from the
epipolar line (if necessary, this is achieved by translating the origin sufficiently far away
from the epipolar line, see Section 4.3), the tangent lines of C at the intersection points
of the line uy and C are close to the asymptotics of C. The center of the hyperbola,
the intersection of those tangent lines whose points of tangency are on 1., is then close
to the point us.

contours of the epipolar lines in the first order approximation are represented by
the conic (Hartley and Zisserman 2000)

C = 1,17 — k*C,, (4.3)

where k? follows the cumulative x? distribution with two degrees of freedom. We
observe that the line interpretation of uy is polar of the point us with respect
to the conic C (see Fig. 4.5) because C has identical eigenvectors to Cj; hence,
uy,=Cuy (equality up to scale). Let us additionally assume that the epipolar
envelope is a hyperbola of two sheets, as is normally the case. Since the least
probable epipolar line is normally far away from the most probable point, the
tangency lines from the most probable point are close to asymptotics of the
hyperbola. The center of the hyperbola is the intersection of its asymptotics, i.e.,
the line at infinity is polar to the center. The center of the hyperbola is therefore
close to the most probable point, but not exactly, unless the line uy is the line at
infinity.

Corollary 4.2.2 If uy, represents the tmage origin, or equivalently the line at
infinity, the epipolar envelope is always a hyperbola whose center is at the origin.
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If the epipolar envelope is a hyperbola, its center coincides with the point us if
and only if uy represents the origin.

4.3 How to Fix the Origin of the Image

A direct consequence of using only the first-order approximation of the epipolar
line covariance is the special role of the origin in the second image. This is highly
undesired since the origin may be set as an arbitrary point in the image. It hence
suggests that one should fix the origin to coincide with one of the special points
derived in the previous section. Of the three points, at least uy should be a
finite point. However, since its accurate location is affected by the location of the
origin, it is not quite clear where the origin should be set. Therefore, we choose
different tactics.

As we learned in the previous section, the point uz is near the origin if the
distance of the mean epipolar line is large. Since the point interpretation of us is
the least probable point in the second image, it should be furthest away from the
estimated epipolar line. A convenient way of achieving this is simply to translate
the origin away from the image in the normal direction of the mean epipolar
line. Such translation implies better validity of the tangential approximation of
the epipolar line covariance since the epipolar line variation agglomerates to a
smaller neighborhood on the surface of the unit sphere.

We thus define a homogeneous translation matrix

nn

10
T,= (0 1 : (4.4)
00 1

where n=(ly; lp)" is the unit normal vector of the mean epipolar line 1y and
n is a scalar. Points and lines transform as m’ = T, m and I’ = T, 1, respec-
tively. The following proposition characterizes what happens to the point and
line interpretations of the eigenvectors of the epipolar line covariance matrix in
the original coordinate frame as the image is translated by T,, and n — oc.

Proposition 4.3.1 Let 1y # 1 be the estimated epipolar line corresponding to
the point m in the first view. Translate the second view by the translation matriz
T, and let the epipolar lines be parameterized by V'(m) || T, Fm| 'T."Fm in

the translated coordinate system. Let the corresponding epipolar line covariance
matriz be Cy ,, and assume that it has the rank of 2 with no multiple eigenvalues.
Denote the ordered unit eigenvectors by .., their point interpretations in the

original coordinate frame by uﬁn, and line interpretations by u. , i = 1,2,3.

©,M7

Assume, however, that the point sequence {ugm} converges to a finite limit point
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u) as n — oco. Then, the corresponding other point and line sequences converge
to the following limits in the original coordinate frame.

ul= (dT 0)* (the least probable point match on the mean epipolar line)
ub=T, e; (the most probable match in the second image)

u,= (nT 0)T (the least probable pencil of epipolar lines)

u =Tk (d" 0)T (the least probable epipolar line that intersects u})

ub= 1 (the least probable epipolar line that intersects u})

u,=TL (nT 0)T=ly  (the mean epipolar line corresponding to m),

where d=(—ly lo1)T is the unit direction vector of the mean epipolar line and
Ty is the translation matriz that brings ub to the origin, i.e., e3=Tyub.

2

Proof.  For convenience, let us define the normalizing transform q : —
as
X
q(x) = 7— (4.5)
1]
Let us additionally define T, as an arbitrary finite translation
Lo
T,=10 1 , (4.6)
00 1

where v € 2. Since translation transforms q (Tyu) (for points), and q (T, u)
(for lines) are continuous and invertible on the unit sphere, the convergence of a
point or line sequence in the translated domain is equivalent to the convergence
in the original domain.

Let us translate the image by first T, and then by T,. The mean epipolar line
transforms as

Ih=q(T,"T, ). (4.7)

As we compute the epipolar line covariance matrix Cy,, I = u3,, according to
Proposition 4.2.1. Hence,

n—oo

uf = lim q (T;'T; u},) = lim q ((TETETRTV)_l 10> - (g) . (48)

as a straightforward calculation shows. Similarly, by assuming {ugm} converges
to a finite point and using the continuity of the mapping,

u} = lim q (T;nglu’Ln)

n—oo

= lim q (T,'T," (T, Tyud,) x (T, "T;")))

n—oo

I
VRS
o
S~
~
L
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For the line interpretation ul, we get with similar assumptions

u, = lim q (Tszu’Zn)

n—oo

n—~oo

0
= lim q (Ty T, ((T,"T;"l) x ((T,Tyub,) x (T, "T;™)))) = 0) :
1
(4.10)

By assumption {u},} converges to a finite limit, hence 3 N €  such that
n > N = uj, is finite. Since Ty is an arbitrary finite translation, for n > N
we may set v = —(uly,,) " (u),,, uby,)" and denote the corresponding translation
matrix by T, and its limit by T,. Now Tyub=e; < ub=T_'e; and

ul = lim q (TEnTgu'Ln)

n—oo

= (Jim T, lim q (T5 (T Tuu,) < (TOT0)) )

o(m(8) 7(2)

Since ITu} = 0, we may also write 1y=T1(n 0)T.

The proposition thus suggests that translating the origin far away from the image
corresponds in the original coordinate frame to the assumption that the least
probable epipolar line approaches the line at infinity, and the least probable
epipolar line that intersects the most probable point u, is perpendicular to the
mean epipolar line, as summarized in Table 4.2. In addition, the least probable
point of the mean epipolar line is its ideal point. If we set the origin to u} in
the original coordinate frame, we would have T, = I and u} = u}, i = 1,2,3.
Moreover, we would then obtain the same results without translating the origin
since the mean epipolar line would be uz = 1y = (nT 0)T and u; = e3 x (nT 0)T =
(d™ 0)T. This is intuitively acceptable as well; thus, for practical purposes we
recommend the following.

Recommendation 4.3.2 When computing the most probable point location or
epipolar envelopes, the origin should be translated sufficiently far away from the
estimated epipolar line. In this case, the epipolar envelope represents a hyperbola
whose asymptotics practically intersect at the most probable matching point.

By way of example, let us return to a consideration of the case in Fig. 4.3. Let
us translate the origin in the normal direction of the estimated epipolar line
and observe what happens to the point interpretations in the original coordinate
frame. The results are shown in Table 4.3. As one might expect, the most
probable point seems to converge to the same limit as the center of the hyperbola
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or the epipolar envelope. As the limit seems to be finite, u} and u} converge to
the ideal points according to Proposition 4.3.1. In practice, it seems to suffice
that the distance between the origin and the estimated epipolar line is kept at

least as a couple of hundred pixels.

Table 4.2: Summary of the meaning of the eigenvectors of the epipolar line covariance
matrix in the original coordinate frame when the origin is translated far away from the

estimated epipolar line 1y, corresponding to the point m in the first view.

Interpretation in the image

Illustration

The least probable match for m
on the estimated epipolar line 1
< The least probable pencil of
epipolar lines that contains lg

The least probable epipolar line
that intersects the point us

ub=T,'e; |The most probable match for m
in the second image < The most
probable pencil of epipolar lines
in the second image

ul2 =1y The least probable epipolar line

The least probable match for m
in the second image < The least
probable pencil of epipolar lines

The estimated epipolar line
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Table 4.3: The behavior of the point interpretations of the eigenvectors of the epipolar
line covariance matrix C; and the center of the epipolar envelope ¢ with the 95%
confidence level in the original coordinate frame as the origin is translated away in
the normal direction of the estimated epipolar line ly. Here d indicates the amount of
translation with respect to the height of the image, which is 512 pixels here.
u? u) u} c

d x Y x Y x Y x Y

0 -77.65 178.95 400.93 173.96  0.00 0.00 399.68 173.99

1/4 -233.14180.57 400.61 173.96 -1.33 -128.00 399.66 173.98

1/2  -471.05183.05400.35 173.97 -2.67 -255.99 399.65 173.98

1 -1194.17 190.58 400.03 173.97 -5.33 -511.97 399.65 173.98

2 -3629.22 215.95 399.80 173.97 -10.67 -1023.95 399.65 173.98

4 -12453.23 307.90 399.69 173.97 -21.34 -2047.89 399.65 173.98

8  -45915.74 656.57 399.66 173.97 -42.68 -4095.78 399.65 173.98

4.4 Epipolar Uncertainty and Matching

Knowing the exact location of the most probable point for correspondence in the
second view does not directly reveal the mutual relevance of multiple candidate
correspondences in matching. For example, if there is a point near the most
probable point but the point is not exactly on the epipolar line, and another
point very far away from the most probable point but closer to the mean epipolar
line than the first point, it is not clear which one we should select. In this section,
we discuss how the covariance matrix C; of the epipolar line can be used to solve
this problem.

Let us assume that m is a point in the first of two views whose epipolar geometry
has been estimated and let the epipolar line covariance matrix C; corresponding
to m be defined as in (4.1). Let the corresponding degenerate Gaussian density
be p(1|l, C;) whose two eigenvectors, corresponding to non-zero eigenvalues, span
the tangent plane 7 at the mean epipolar line ly, ||lp|| = 1, on the unit sphere.
Then, we may use at least the following principles to characterize the suitability
of a match candidate point m’ in the second view.

e Maximum value of the probability density along the dual line of the candi-
date point on the dual plane 7, i.e.,

p(m’'|Cy)  sup p(l|ly, Cy). (4.12)

m/T1=0

e Tail probability of the Gaussian density outside the contour which has the
same probability as the maximum value, i.e.,

p2(m'|Cy) /S p(llly, C1)dS, (4.13)
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where S = {l € 7 | p(1]lp, C1) < p1(m’|C))}.

e Marginal density over the dual line of the candidate point, i.e.,

pa(n|Cy) / p(llly, C)dL, (4.14)

L

where L means the line m’ on the dual plane 7.

The implementation of these principles should be performed in the transformed
dual plane 7" for simplicity.

The first principle only means that we take the most probable line from the pencil
of lines, defined by m’, and use the probability density value of that line as the
probabilistic merit of indexing. The second principle is directly related to the
error bounds derived by Csurka et al. (1997), because the tail probability gives
the confidence level on which the candidate point would intersect the epipolar
envelope. The disparity information has not been taken into account because the
candidate points may lie on the epipolar lines with an arbitrary distance from the
point u,. It is, however, sensible to use either of these two principles, for example
when the camera configuration is unchanged but the imaged object is different to
those used in epipolar geometry estimation, and thus reveals different disparity
distribution.

Following the third principle, we compute the total or marginal probability of
all the epipolar lines in the pencil centered at m’. In other words, it measures
how well the entire pencil of lines supports the estimated epipolar geometry,
which is the same criterion that we used in defining the most probable match
uy, and therefore the maximum is obtained when m’ = u,. We thus have a
probabilistic measure that automatically finds the balance between disparity and
orthogonal distance from the epipolar line. This principle is therefore a convenient
way to put weights on the candidate matches, particularly when the F-matrix is
estimated using the images considered because then, the covariance characterizes
the disparities in the particular scene.

Since we can compute the three suitability scores above for any point in the
second view, they can be seen as distribution like functions (see Fig. 4.6). In
matching, they can be utilized directly by selecting the candidate match on the
basis of the best score, or to weight other matching scores before selection, as we
will do in the following chapter. However, none of the three principles forms an
actual probability density since their integral over the image plane is not unity.
Certainly, the integrals of the first two functions diverge, but the third principle
may be modified to operate as a proper probability density.

Proposition 4.4.1 Let m be a point in the first view and assume that the epipo-
lar geometry has been estimated. Let the epipolar line covariance matriz corre-
sponding to m be Cy, defined as in (4.1) and (4.2), and assume that the sought
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(c) (d)

Figure 4.6: Contours of the matching probability scores by the three different princi-
ples. (a) A point given in the left image. (b) Contours as each pixel in the right image
is associated with the probability of the most probable epipolar line which intersect the
pixel (4.12). (c) The tail probability in the dual space (4.13), i.e., the contours corre-
spond to (1—k) x 100% confidence intervals in Csurka et al. (1997). (d) Contours of the
marginal density over all the lines intersecting a pixel (4.13), i.e., when the disparity
information captured by the fundamental matrix covariance is taken into account. The
plotted contour values in each image correspond to k times the corresponding value of
the most probable point, where £ = 0.1,0.3,0.5,0.7,0.9. The estimated epipolar line is
shown by the dashed lines. INRIA Syntim owns the copyright of the stereo image pair.
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correspondence m <« m' has a priori the same (disparity) distribution as the
point matches with which the epipolar geometry has been estimated. Then, up to
a Gaussian approximation, C, determines a weak point—point constraint between
the views represented by the probability density

0109 e—%T’Q(J% cos? 0+03 sin? 0) =2

V21312 (02 cos? § + o2 sin? §)3/2

where the point m’ is parameterized with the signed-distance—direction pair (r, )
on the transformed image plane 7.

p(r,0]Cy) = (4.15)

Proof. 1In this proof, we use several times the property than when we have an
almost everywhere continuous and invertible mapping s: S — R in any set
S C ", we may evaluate the integral of the kernel p(s) by substitution s = s(r)
in the domain R and it holds

/Sp(s) ds = /Rp(s(r)) | det J s(r)|dr, (4.16)

where J is the Jacobian operator.

Let us transform the original coordinate system by the orthogonal transform
UT, where U contains the unit eigenvectors of C; in descending order; hence
m” UTm’, e3 = U]y, and C] = UTC U as in (4.2). Let us now consider the
dual space of this transformed space. Let us write those lines of the transformed
dual space that are parallel to m” in parametric form

1S(t)’:(td“1Lsn>, s,ite (4.17)

where d is the unit direction vector of the line m” and n is its unit normal such

that the polar angle of d is on [~7, 7) and det(d n) =

By assumption, the epipolar lines, corresponding to the point m in the first view,
are normally distributed in the transformed dual space with the mean at e3 and
covariance matrix Cj, and the corresponding density function is p(1s(¢ ) les, C)).
The marginal probability of p(15(t)'|es, C;) over the lines parallel to m” depends
only on the direction angle —6° € [—7, ) of the line m” where §° = Zsign 6 —0 is
the complement angle of the direction 6 of the point m”, as we define sign 0 = 1.
The marginal probability is here denoted by

p(s16, C;) / (L ()es, )t = / p(llly, Cy)dL. (4.18)

o0

Let us evaluate the kernel p(1(t)’|es, Cj) or the 2D Gaussian p(1,(t)'|05, C}), where
1,(t) = (td + sn), 0, = (0 0)7, and C| = diag(0?,03). Let us make the substitu-

tion
(2) = RTC)2R/ (Z) s 1.(t) = C 2R/ <z) : (4.19)
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where R = (d n) and R™ = (d’ n’)" is the rotation that brings the image of
the line m” horizontal in the uv-plane, and the rotation angle is on the interval
[—Z,%). Now,

202

~ / NI\ A ~/l / ~/l / Uu
plL(0)102 C | aer(RECHR)| (SR (1)

:ie_%(u2+v2)’
2

where = denotes the equivalence between the two kernels. Hence,

05, é;)
(4.20)

o 1 g w202 1 1,2
/_Oop(ls(t)’|e3,Ci)dt:% /_Ooe = et )
~/l ~l*l ~
Since 0 = nTd = nTC}2C}| 2d = nCp Gt T C| 2 preserves the

TR 6 R
orientation, and d’ lies in the same quadrant as d, we return to the original
coordinate frame by the substitution

~ 1
n’Cjz

T T
In™Ciz|

S

v=n'TC| 21 (¢t C 2, (t) = ———.
1 ( ) 1 ( ) HnTCi%”

(4.22)

By denoting that n = (— sin —6° cos —6°)T = sign § (cos  sin #)T and |n"C}z || =
02 cos? § + o2sin? 0, we get

d 1 —152(0? cos? 0+03 sin? 9)—1/2
p(sl0,Cy) = ‘—U et = (4.23)
ds|v2r V27 (0? cos? 0 + o2 sin?0)

that is a 1D Gaussian.

The lines parallel to m” intersect at (d 0)T in the transformed dual space that
is equivalently the line that joins the origin ez and m” in the transformed image
space. In addition, we have parameterized the parallel lines in the transformed
dual space by s which represents the signed distance between the line m” and e
in the transformed dual space. As we define r as the signed distance from es in
the transformed space, it also parameterizes the points of line (d 0)T uniquely.
Since the lines m” and points on the line (d 0)T have one-to-one correspondence,
we have s = s(r). In fact,

sign (:—%) ‘m”Te3| sign (2—%)
s=— 2 =— 2 (4.24)

CEEIN e,
my my
m" m! 2 m! 2
r = sign (—,1,) \/(—,1,) + (—,2,) , (4.25)
ms ms ms

and
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hence,

1/r, 0¢€[-5%,0)
s(r) = { S, 0efon) (4.26)

Therefore the conditional probability density

efér_z(af cos? 9+U§ sin? 9)_1/2

12\/21 (02 cos? 0 + 02 sin® )

(716, 1) = 5 p ()16, C) = (4.27)

Let us then consider the probability density p(f8|C;) of the direction angle © =
—(—0°)°¢ = —arccot Ly/L; = —arctan Ly/Ly, where the random vector L =
(Ly Ly L3)T ~ N(e3, C). Let us make the substitution

L\ (o1 cost
I (lg) o (027” sinf |’ (4.28)

where 7" €, ¢ € [-F, 7). The determinant of the Jacobian of this mapping is

o1091": hence, as above we get
p(r',0|C)) = or00) | p (1(F, 0)|e3, C)) = e 2", (4.29)

The marginal probability over 7’ is

o 1 [~ / 1
p(0'|C)) = / p(r’, 6'|Cdr’ = —/ re e dr = = (4.30)
—o0 ™ Jo s
We may now transform ¢’ back by the substitution 0’ = — arctan(Z! cot ), when
the density function for 6 is obtained as
de’ 0109

p(]C1) = p(¢'|Cy) = (4.31)

d0| mw(o?cos?f+ o2sin®f)

The joint probability density p(r, #|C;) is now obtained by combining the results
above, thus,
p(r,0|C1) = p(r|0, C1)p(0]Cy), (4.32)

and the claim follows.

Corollary 4.4.2 The probability density in (4.15), represented by m’ = (2’ 3/ 1)*
in coordinate basis of the second image, is

p(l’/, y/|Cl) = | det J I'(l'/, y/)| p (I'(;L’/, yl)l Cl) ) (433)

. ulm’ ulm’ 2
v (7“): sien (5 )/ ()

0 ugm’
arctan —4#—
ul m

where

ul'm’ 2
2
* <u§m/> : (4.34)
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Figure 4.7: Equi-probability contours of the probability density (4.33) in the second
image, given the point shown in Fig. 4.6a, at the levels of 107°,1074,1073,1072, and
10! times the maximum value at us. The probability is strongly peaked around us
(cf. Fig. 4.8).

For comparison with Fig. 4.6, we plotted contours of the derived probability
density in Fig. 4.7, and the density is displayed in Fig. 4.8. As the contours
are propeller-shaped where the narrowest location is around the point us, it
is improbable that a match would reside near us; but deviated in the normal
direction of the mean epipolar line. On the other hand, the contours additionally
determine the plausible deviation in the direction of the epipolar lines. Here, the
density is peaked around uy strongly since the depth variation is relatively small
in the scene.

We have thus derived a weak point—point constraint between two views or, in
other words, a closed-form conditional distribution for a match in the other view
given the training samples used in the epipolar geometry and its uncertainty
estimation. We assumed that the epipolar lines are normally distributed in the
dual space, but similar derivation could be performed with certain other density
assumptions. The derived density can be directly utilized in matching and it is a
most convenient tool for computing, for instance, the dense disparity map of the
scene with Bayes methods.

4.5 Summary and Discussion

In this chapter, we have investigated the properties of the epipolar line covariance
matrix and discussed its practical utilization. We first showed that the eigenvec-
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Figure 4.8: Probability density (4.33) in the second image, given the point shown in
Fig. 4.6a. The probability is strongly peaked around us because the depth variation is
relatively small in the scene. Note the scaling of the axes.

tors of the covariance matrix have coupled point and line interpretations in the
other image. In fact, given a point in one image, the most probable matching
location in the other image is represented by the second eigenvector, in the sense
that represents the pencil of epipolar lines with the largest total probability. Cor-
respondingly, the least probable point on the estimated epipolar line is the first
eigenvector, and the third eigenvector represents the least probable point of all
points.

The eigenvectors similarly have line interpretations and, in essence, the third
eigenvector is the estimated epipolar line, which implies that the location of the
image origin affects their realizations as well as the shape of epipolar envelopes.
This is clearly an undesired property, so we proposed that the origin should be
translated far away from the estimated epipolar line. In this way, we obtain
intuitively acceptable interpretations: the least probable point on the estimated
epipolar line is its ideal point, the least probable point of all points is also an ideal
point but in the normal direction of the estimated epipolar line, and the least
probable epipolar line is the line at infinity. While we did not prove the assumed
convergence of the point interpretation sequence of the second eigenvector in the
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original frame, the convergence seems to take place in practice.

The derivation of the weak point—point probability density from the epipolar line
covariance matrix, which we consider an important result, completes this chapter.
Although the result does not represent a strong geometric constraint between the
views, it is a closed-from representation of the conditional probability density
for the correspondence, given a point in the first view and the training data
that has been used in the epipolar geometry estimation. Since the probability
density has been derived from the Gaussian approximation in the dual space, it
has the advantages of the corresponding Triggs’ (2001) joint feature distributions.
However, we do not have to constrain ourselves to linear estimation but may use
the appropriate statistical criteria and robust methods in estimating the epipolar
geometry.



Chapter 5

Multi-Resolution Image
Matching!’

The most important applications of epipolar geometry are image matching and
feature point tracking since the known epipolar geometry reduces the matching di-
mensionality from two to one. In the application part of this thesis (Chapter 8),
we need a reliable method for tracking points in electron microscope images;
hence, we propose a wavelet-based technique for matching points in uncalibrated
images, where the matching principle is simple and efficient. The major con-
tribution of this chapter is showing that an appropriate use of multi-resolution
information provides fundamental cues for discovering false matches. In addition,
if multiple match candidates occur, we select the most probable using the covari-
ance information of the fundamental matrix, as proposed in the previous chapter.
As far as image matching is concerned, the experimental results show that the
false match probability practically vanishes when natural images are used.

5.1 Introduction

Stereo matching and feature point tracking are important topics in computer vi-
sion and are accordingly widely researched. A common problem in establishing
correspondence between two images is that the estimated point-to-point matches
consist of many false matches. This is because the interest points are normally
matched by direct correlation of their neighborhoods (Zhang et al. 1994, Hartley
and Zisserman 2000), but the correlation window often matches well to many
incorrect locations in the other image. To alleviate the matching problem, nu-
merous multi-resolution approaches have been proposed in recent decades, (see
e.g. Marr and Poggio 1979, Hannah 1989, Hoff and Ahuja 1989, Weng, Huang

LA short version of this chapter has been published in Brandt and Heikkonen (2001a).



90 Multi-Resolution Image Matching

and Ahuja 1992, Wei, Brauer and Hirzinger 1998, Liu and Bhattacharya 2000, Al-
varez, Deriche, Sanchez and Weickert 2000).

In this chapter, we construct a more reliable multi-resolution based interest point
matching instead of using only a one-sized correlation window. In contrast to
typical previous multi-resolution matching work, our goal (as well as in Lew and
Huang 1999) is not to compute a dense disparity map for images but rather to
match reliably and efficiently two sets of discrete interest points, here detected by
the improved Harris corner detector (Schmid, Mohr and Bauckhage 2000, Har-
ris and Stephens 1988). The weak point—point probability distribution, derived
in the previous chapter, can also be easily utilized; hence, the balance between
the disparity and the deviation from the epipolar line can be automatically de-
termined. As our experiments show, we finally have an efficient and reliable
matching algorithm that is practically free from mismatches.

5.2 Wavelet-Based Matching

Suppose now that the fundamental matrix F and its covariance matrix Cg have
been estimated. The problem remains to find the matching feature points, here
corners, using the epipolar geometry. The matching method we propose is moti-
vated by the way humans seem to perform the task. In short, one would first look
for similarity at a lower resolution level, then zoom to the details at a higher res-
olution, and go on to the highest resolution level if the similarity is good enough.
If the match is not good at higher resolution, humans would go back to the lower
resolution and search for a new candidate. This idea is implemented as follows.

Firstly, the images are rectified (Faugeras 1993, Hartley and Zisserman 2000), i.e.,
the images are transformed so that the epipolar lines are horizontal and vertically
aligned with respect to each other. After the rectification, wavelet decomposition
(for a great introduction, see Burrus, Gopinath and Guo 1998) is computed for
both images with the Haar basis. The wavelet representation can be thought of
as an image pyramid, in which the original image has multiple resolution levels,
with the highest resolution image on the bottom and the coarsest on the top. We
decomposed the images to four resolution levels (original + three lower resolution
levels). If the images consisted of several repeating patterns, the decomposition
could naturally be performed even more times, but in our case this was enough.

For every corner point in the left rectified image we do the following. As a search
window in the right image, we select a rectangular area on the lowest resolution
image, centered at the most probable point (see Section 4.2) on the epipolar line.
The correspondence is to be sought on this area. In practice, we thus truncate
the searching area and assume bounded disparity. For the size of the search
window, we set 48 x 24, which corresponds to a window of 384 x 192 pixels in the
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Figure 5.1: Multi-resolution template matching with Haar wavelets. Left column:
neighborhood templates at four scales where the lower resolution templates represent
larger neighborhood. Middle column: the search regions in the second image. Right
column: correlation images.

original image. Around the considered corner point in the left image, we extract
a template window of 16 x 16 at each resolution level (see Fig. 5.1).

Starting from the lowest resolution Level, we compute the standard correlation
coefficient p (Gonzalez and Woods 1993) between the search window and the
template at each possible location. The result is the correlation image of size
33x9. Then, we search the local maxima on the 8-neighborhood in the correlation
image and save all those locations to a tree data structure with the correlation
score where the correlation is statistically significant (p > 0.8).

Next, we consider one level higher resolution and cut 24 x 24 window from each
found maximum correlation location. Inside this window, we again compute the
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correlation coefficient and search for the local maxima. The found locations and
correlation scores are correspondingly saved in the tree under the node considered.
This procedure is recursively performed for all the significant correlation maxima.
Finally, if we reach the highest resolution level, we perform the computation with
a 9 x 9 window in the left image and a 14 x 14 window in the right image in order
to refine corner point location.

When the above is done, we remove from the tree all the candidates which do not
lie inside the 95% confidence intervals of the corresponding epipolar lines (Csurka
et al. 1997). We further remove all the candidates whose Euclidean distance from
the nearest corner point (in the right image) is over /2. Performing in this way,
in most cases we obtain at most one candidate whose coordinates are identified
with the nearest corner point. Moreover, since we use the information on multiple
scales, the probability of obtaining false matches is practically negligible with
most natural images. If, however, multiple candidates occur, we propose selecting
the one which maximizes the average correlation score py, over all the resolution
levels, weighted by the criterion? (4.33), i.e.,

pw = p(m'|Cy)p. (5.1)

5.3 Experiments

To illustrate how the proposed method works in practice, we matched four stereo
image pairs whose left images are shown in Fig. 5.2. In these experiments, we
used the affine approximation for the fundamental matrix, which was estimated
with the covariance matrix, as proposed in Chapter 3. From the aerial stereo pair,
we found 1640 corners from the left image and 1986 from the right, of which 215
were found to correspond. As Figure 5.3a indicates, no mismatches were found.

From the left image of the house pair, 583 corner points were found 903 from the
right. The matching algorithm succeeded to associate 178 corner pairs. From
these pairs only one mismatch was identified, and it is shown in Fig. 5.3b. The
mismatch results from matching some suspicious corner points on the edge of the
pillar. However, as can be seen from Fig. 5.3b, even difficult small details such
as the branches in the bushes have been matched correctly.

From the stereo image pair of trees, 621 corners were found in the left image and
434 from the right. The matching resulted 287 correspondences and their flow is
illustrated in Fig. 5.3c. As can be seen, there are no mismatches. As the fourth
image pair, we had noisy images representing a mitochondrion section. Because
of the large size of the images, the Harris corner detector resulted 7417 corner

2Because the criterion (4.33) is the most recent result of this thesis, we used the criterion
(4.14) in the experiments. Nevertheless, this is hardly significant since multiple candidates were
very rare in practice and the two criteria are somewhat similar.
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(c) (d)

Figure 5.2: Left images of the stereo pairs used in experiments. (a) Aerial view of a
town; (b) house; (c) trees; (d) slice of a mitochondrion. The aerial view and the tree
image pairs are from the CMU VASC Image Database; copyrights of the house pair
belong to INRIA-Syntim.
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(c) (d)

Figure 5.3: Flow of the found correspondences plotted in the right image of the stereo
pair. (a) Aerial view (no mismatches); (b) house (one mismatch, pointed by the arrow);
(c) trees (no mismatches); (d) slice of the mitochondrion (no mismatches).
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points in the left image and 10169 corners in the right image. The matching
procedure thereafter found correspondence between 801 corner pairs. Also, in
this case, no clear mismatches were found (see Fig. 5.3d).

5.4 Summary

In this chapter, we have proposed a multi-resolution method for matching points
in two images. By combining the use of epipolar geometry, its uncertainty and
multi-resolution intensity information, a robust and efficient method can is ob-
tained. The experiments indicate that the method is reliable as the probability
for obtaining false matches practically vanishes, especially when natural images
are used. The method should therefore be well suitable for point tracking appli-
cations.
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Chapter 6

Affine Reconstruction and
Missing Data!

As we have established point matches over several views, the next problem is to
reconstruct the points in the 3-space and solve the camera projection matrices
simultaneously up to an overall affinity. Assuming an affine camera model, the
problem can be solved by the factorization algorithm that gives the maximum like-
lihood solution for affine reconstruction. It requires, however, that all the feature
points be visible in all views. Therefore, we derive here a closed-form-expression
for the 3D coordinates of the feature points and translation vectors given the
inhomogeneous affine projection matrices, but no single feature point needs to be
visible in all views. The expression represents closed-form maximum likelihood
affine triangulation under missing data and unknown translations, and it implies
two iterative algorithms for the maximum likelihood affine reconstruction, where
all the measured data may be used. The solution additionally has applications in
affine bundle adjustment, used in Chapters 7 and 8, and identifying degenerate
configurations.

6.1 Introduction

A central problem in computer vision is the structure-from-motion problem,
whereby both the structure of the scene and the motion of the camera are to
be solved from image measurements. Despite the considerable attention that has
been given to the problem, it has not yet been completely solved. The problem
can be approached from different types of correspondences and assumptions for
the camera model. As the correspondence between the images must be estab-
lished, a typical way is to use point correspondences as considered here. Other

!The content of this chapter has been partly published in Brandt (2002a).
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possibilities are line (Weng et al. 1992, Quan and Kanade 1996) or conic (Ma
1993, Kahl and Heyden 1998) correspondences.

If the full perspective projection camera model were selected, the reconstruction
problem with missing data would be particularly difficult. In fact, all the known
methods that minimize the geometrical error in the projective reconstruction
are iterative (Hartley and Zisserman 2000) even though missing data were not
considered. The full projective reconstruction problem corresponds to the bundle
adjustment problem that is widely researched (for a review, see Triggs, McLauch-
lan, Hartley and Fitzgibbon 2000). Because of its difficulty and nonlinearity, the
image set is frequently split into parts that are thereafter solved separately, and
the results are combined in a more or less heuristic way.

In contrast to the full perspective projection model, the non-iterative solution
for the affine reconstruction may be obtained using singular value decomposition.
In fact, the well-known factorization algorithm proposed by Tomasi and Kanade
(1992) and Poelman and Kanade (1997) achieves the maximum likelihood affine
reconstruction under the assumption of isotropic, mean-zero Gaussian noise, as
noted by Reid and Murray (1996). It is thus, in this sense, an optimal method
if all the feature points are visible in each view. Even some assumptions of noise
covariance can be taken into account, as proposed by Irani and Anandan (2000);
an iterative algorithm incorporating uncertainty models is given by Morris and
Kanade (1998). Robust factorization, based on LMedS, has also been proposed
(Huynh and Heyden 2001). However, problems arise if there are missing mea-
surements, as is almost always the case in realistic feature point tracking with
several images.

So far, many heuristics have been attempted when dealing with missing data.
Tomasi and Kanade (1992) first proposed that the missing data could be sequen-
tially replaced using complete subsets of the data. In addition however, as pointed
out by Jacobs (2001), the problem of finding the largest submatrix with missing
elements is NP-hard, it is not clear how the inaccuracies will propagate in the
computation of additional missing elements. Jacobs also demonstrated cases that
cannot be solved by Tomasi and Kanade’s imputation algorithm. Jacobs (2001)
in turn proposes a non-iterative method, whereby the measurement matrix is
constrained to satisfy certain rank constraints under absent measurement values.
The result of the Jacobs” method is suboptimal but reported to be useful as an
initial estimate for iterative methods. A corresponding approach is proposed by
Kahl and Heyden (1999). Shum, Ikeuchi and Reddy (1995) propose a weighted
least squares method that is a correct formulation for iteratively searching the
ML solution but works only without translations or if the translations are known.
The solution is bilinear, following the formulation of Wiberg (1976). A similar
approach is Morris and Kanade’s (1998) if one sets infinite variance for missing
points and unity for others; in this case, however, their proposed method for
computing the translations breaks down, as we will observe in Section 6.3.
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If we assume the affine camera model and allow that each feature point is not
shown in every image, the optimal values for the translation parameters may be
easily derived as will be seen in Section 6.3; the main result of this chapter is, how-
ever, obtained by carrying out a corresponding analysis on the three-dimensional
feature point coordinates to be reconstructed. As presented in Section 6.4, we
have derived the closed-form maximum likelihood solution for all the feature
point coordinates in the world coordinate frame, including translations, given
the inhomogeneous affine projection matrices. In other words, this result implies
maximum likelihood closed-form affine triangulation under missing data. The
result is additionally globally optimal since all views and feature points are used
simultaneously.

The solutions were originally derived to help us to solve the registration problem
of electron microscope images (see Section 6.5.4), or more generally, to get reason-
able initial estimates for the 3D coordinates of the tracked features in the trans-
formation parameter optimization (see Chapters 7 and 8) or bundle adjustment.
In addition, the solution can be used to identify degenerate image configurations,
as proposed in Section 6.5.3. Another application of the solution is the affine
reconstruction with missing data which leads to iterative algorithms for finding
the maximum likelihood solution (Section 6.5.2) while all the measurements may
be used.

6.2 Problem Definition

When rigid motion of a single object or scene is observed in N images, we may
use the following model for the feature point j in the image i.

m} = M'x; + t, (6.1)

where mz. is an inhomogeneous 2 x 1 vector describing the feature point j coor-
dinates in the image ¢, M" is a 2 X 3 inhomogeneous projection matrix, i.e., a
transformation matrix including the projection, scaling, and rotation, x; is the
reconstructed 3D coordinate vector of the observed feature point j, and t* is the
translation vector for the image 1.

The goal is to find the least-squares solution for the parameters by minimizing
the cost function

C(m) = Z Z(rﬁ§ — mj)" (1 — mj)dy;, (6.2)

where mé is the measured location for the feature point j in the image i, rhé

is its estimated, noise-free counterpart, and d;; is the Kronecker delta product
indicating whether the j* feature point is found in image i. In other words,

normally distributed noise is assumed at the observed feature point coordinates.
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6.3 Closed-Form Solution for the Translation Pa-
rameters

The least squares solution for the translation parameter can be easily derived
with the following result.

Proposition 6.3.1 The least squares estimate for the translation parameter,
given the other parameters, t* for the i'" view is obtained from

t'=m' — M'x’, (6.3)

where .
m' = 24 5% and X' = 25%50y %%
> 0ij > 0ij

Proof. By differentiating (6.2) and setting the result zero it follows:

oC(m) _
o 0
o
J

& 2) (Mx;+t' —mi)75; =0

J
54 Zt’&] = Z méém — Z Mixj(;ij
J J J

>, mioy; Y > %04

o = 2 g 2 %00 (6.4)
>_; 03 >_; 0ij
— —

Note that M* ;05 refers to the number of found feature points in image 7.
Therefore, m'’ is the center of mass of the found feature points in image i, and X
is the centroid of the corresponding 3D coordinates.

A common result is that the center of gravity of the 3D points projects to the
centroid of the points under affine projection. Therefore, if we do not have missing
data, by setting the 3D origin to the center of mass of all the observed points
(2_;%; = 0), the translation parameter for each camera is directly determined.
This can similarly be seen from (6.4) by setting d;; = 1 that implies t = 57 > ; m;
since the latter term in (6.4) vanishes.

If we have missing data, we may still freely set the origin such that > ;x5 =0
but the second term in (6.4) is no longer zero in general. In addition, this term
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can be seen as a correction term to the centroid of the visible points in image ¢
to correspond to the projection of the center of mass of all the 3D points. The
fundamental issue is that the correction term also depends on the 3D coordinates
of the points visible in some image ¢, not only their image coordinates, no matter
how we fix the 3D origin. Therefore, the actual optimal translation parameter
values cannot be determined prior to the reconstruction, in contrast to the case
when we do not have missing data.

This is the very reason why the previous methods are suboptimal when dealing
with missing data. One might think that, for example, factorization with uncer-
tainty models (Morris and Kanade 1998) could solve the missing data problem
simply by regarding missing data as any points with infinite variance. In fac-
torization, however, one must deal with object centered coordinates and, with
points of infinite variance, their proposed method for computing the centroids
fails. Another common approach is simply to subtract the mean of the coordi-
nates in each frame individually, i.e., neglecting the correction term in (6.4). As
we learned above, however, this is similarly not optimal.

6.4 Closed-Form Solution for the 3D Coordi-
nates

In the previous section, we obtained the closed-form solution for the translation
parameter t’. Without loss of generality and to guarantee the optimal solution for
the translations, this expression may now be substituted in the original Equations
(6.1) and (6.2). Consequently, we get

Clm) =327 (M =) = (m) — )" (Mg = x) = (am] — 1) 3y

(6.5)
Let us define y? = x; — X*. Now,
9C (m iy i~ inT nri
j

and

8 i »/X'léi-/ .. ..
y]:i<xj_zy J J>:1_ Oij :1_5U (6.7)
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thus using the chain rule we get

0C(m) _ 3 8C(m) Oy’

Setting the derivative to zero, it follows

0C(m)
8Xj

& zi:(l—]\}
& ;(1—

=0

N—
&
I
o

) (MM (x; — %) — M (m] — m)

] i ot 1 7 i ~1

(6.9)

1
M

Let us mark the right hand side of the previous equation by b; that is a 3 x 1
vector. From the left hand side we get

ey,
1 L) v (6.10)
IRNE ’
2q.
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where H; and G, are 3 x 3 matrices. We may now write (6.9) and (6.10) in
matrix form, i.e.,

H, - G1,1 —G1,2 —G1,3 T X1 b,
—G2,1 H, — G2,2 —G2,3 T X2 . b,

_G371 —G372 H; — G373 . x| = b3l (6.11)

We can not yet compute x;:s directly as the coefficient matrix is singular. This
is because we may choose the origin of the 3D coordinates arbitrarily; thus, there
would be an infinite number of feasible solutions. Let us fix the 3D origin to the
center of the all the 3D coordinates, i.e.,

dxj=0ex=-) x (6.12)
j j#1

Because Ax; = —A ) ., x; = — >, Ax; for any 3 x 3 matrix A, the above
constraint may be encoded in the matrix equation (6.11) by removing and sum-
ming the negative first (matrix) column to the other columns. We get

—Gio+Gi—-H -Gi3+G—H; - X b,
Hy — Goo+ Goy —Gas+ G e b,

—G3a + G3 H; — G333+ Gz -+ X‘3 “|bs|- (6.13)

Now, the coefficient matrix has one more row than columns. The equations are,
however, redundant because using the chain rule and (6.12), we may write

m) 0x;
0X1 Z 8xj ﬁxi ]Z ax] N Z 8xj : (6.14)

J#1

In the minimum, the right hand side vanishes; hence the first (or any other)
equation is unnecessary, and we can write

Hy; — Goo + Ga; —Gas+ Ga e X9 b,
—Gs2+Gsn Hs3—Gss+Gsy | [x3] = | bs |, (6.15)

Let us denote the coefficient matrix, the coordinate vector, and the right hand
side of (6.15) with A, X, and B, respectively, thus

AX =B. (6.16)

We have thus obtained the following result.
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Proposition 6.4.1 Let A, X, and B be defined as in (6.16). Let us assume
general motion so that the points do not lie on a critical surface and there are
enough visible points, i.e., A is not singular. Then, we obtain the least squares

estimate for X from )
X =A"B, (6.17)

whereas X1 and t', ..., tN can be thereafter computed from (6.12) and (6.3), re-
spectively.

6.5 Application Examples

In this section, possible applications for the derived solution are considered. As
we note in Section 6.5.1, the solution gives the closed-form maximum likelihood
affine triangulation under missing data. In addition, we propose two iterative
algorithms for the maximum likelihood affine reconstruction (Section 6.5.2) and
a method for motion degeneracy identification (Section 6.5.3). Finally, in Sec-
tion 6.5.4, we show how the result can be used for image registration in electron
tomography, which is an example of the bundle adjustment under constrained
motion.

6.5.1 Affine Triangulation

In general, triangulation involves computing the scene structure, given cameras
and the corresponding image points. It is assumed that the measurement errors
are only in points rather than in the projection matrices. However, naive trian-
gulation by back-projecting the measured points fails because the back projected
rays are skew in general. The optimal way is rather to estimate both the points
in 3-space and their noise free projections by minimizing the square sum of the
distances between the measured and estimated image points.

Hartley and Strum (1997) showed that, when using the full projective camera
model, the maximum likelihood triangulation of two views can be non-iteratively
computed by solving a sixth-order polynomial. Our result, on the other hand,
derived in the previous section, gives a non-iterative, closed-form solution for
ML affine triangulation of N-images with missing data. After computing the
structure, from (6.17) and (6.12), and the translation vectors (6.3), the noise free
point estimates can be directly computed using the model given in (6.1).

The reader may finally ask the following question: “Why should a triangulation
for one point be dependent on the triangulation for all other points when the cam-
eras are known? With given cameras, triangulation should be done separately for
every point.” The answer is that we assume that we know only the inhomogeneous
projection matrices; i.e., the translation part of the full homogeneous projection
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matrix is assumed unknown. Under missing data, the translation part depends
on all the points through the reconstructed 3D coordinates of the points accord-
ing to (6.4). Therefore, we actually have more than a closed-form triangulation
since our assumptions are weaker than known camera projection matrices.

6.5.2 Affine Reconstruction

The factorization algorithm for affine reconstruction (Tomasi and Kanade 1992)
requires a measurement of each point in all views. This is clearly a major limi-
tation since the matched points may be absent in certain views. In this section,
using the result derived above, we propose two iterative algorithms for affine re-
construction where this limitation is eliminated. We search for the maximum
likelihood estimate by fixed point algorithms, where missing data are iteratively
updated by the most likely values given the current estimates for the parameters.

The proposed methods can be used in computing the affine multiple view tensors,
i.e. affine fundamental matrix, affine trifocal tensor, and affine quadrifocal tensor,
in an optimal way, assuming Gaussian noise model and global convergence of the
algorithms. As stated before, no single feature point is required to be found
in each image even though all the N images may be used simultaneously. The
tensors can be computed directly from the camera projection matrices (see e.g.
Hartley and Zisserman 2000).

Iterative Factorization

In the first step of the first proposed approach, one needs initial estimates for the
projection matrices M*. To get these estimates, one may use some a priori infor-
mation of the image positions or solve the parameters using smaller image sets
with the factorization algorithm. Another possibility is Jacobs’s (2001) method,
which additionally estimates the translations in contrast to the earlier version
(Jacobs 1997).

In the second step, the closed-form ML estimates for x; given Mi, 1=1,...,N,
are solved from (6.17) and (6.12). For the feature points j missing in image i
(0;j = 0) we set

m’ = M'%; + t', (6.18)

where the estimates for t* are computed from (6.3). Now we may form the
measurement matrix

m!l—§ ... ml
W = : : . (6.19)
ml —tV m}, — tV
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In the third step, we seek the maximum likelihood solution for the projection
matrices M?, given the measurement matrix W. This is achieved by using the
factorization method (Tomasi and Kanade 1992). Hence, we search for the matrix
W, which minimizes the equation

W — W], (6.20)
where || - || is the Frobenius norm, and can be decomposed as
Ml
R M?
W = ] (Xl Xy ... XM) . (6.21)
MY

Since the rank of W should be three, the solution which minimizes the Frobenius
norm may be obtained by computing the singular value decomposition (SVD) for
W = USV?, and truncating the singular values by setting all the singular values
to zero except the three largest. Equivalently, we get

W =UsV" (6.22)

where U’ the matrix of the first three columns of U, S’ is the 3 x 3 diagonal
matrix of the three largest singular values, and V’ consists of the first three
columns of V. The maximum likelihood solution for M is obtained, up to an
affine transformation, by setting M = U'S’.

The above procedure may now be iterated until convergence, or in other words,
until the Frobenius norm of the change in W becomes smaller than a predefined
tolerance value. There is no guarantee of global convergence in general, but the
essence of this algorithm is that only the missing data are iteratively replaced by
the expected values in the second step, and everything else is computed in closed
form. Therefore, the optimal solution is guaranteed when we do not have missing
data and, consequently, the algorithm is robust to increasing amounts of missing
data with any choice of initial estimate for the projection matrix. This can also
be seen from the experimental results reported in Section 6.6. The algorithm is
summarized in Algorithm 5.

Bilinear Algorithm

An alternative algorithm for affine reconstruction is obtained if we do not regard
the missing feature points in the image set as the missing data in the algorithm
point of view, but instead all the 3D coordinates of the feature points. Then,
we obtain a bilinear algorithm similar to Morris and Kanade’s (1998) with the
difference that our algorithm is able to handle missing feature points in an optimal
way (see Section 6.3 for explanation).
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Algorithm 5 Iterative Factorization (IF) for Affine Reconstruction with Missing
Data

1. Set initial values for projection matrices M, e.g., by Jacobs’s (2001)
method.

2. Compute the closed-form solution for the feature point 3D coordi-
nates x;, given M?, 4 =1,..., N from (6.17), and (6.12). Compute
new estimates for t* from (6.3). Use the model m} = M'x; + t’
to replace the absent feature point coordinates in the measurement
matrix W.

3. Use the factorization algorithm to obtain the ML estimates for M,
i.e., compute the singular value decomposition for the measurement
matrix W = USVT. M is obtained, up to an affine transforma-
tion, by multiplying the first three columns of U by the first three
singular values in S, respectively. Repeat Steps 2 and 3 until con-
vergence.

The bilinear algorithm is in fact quite similar to the iterative factorization al-
gorithm. We similarly need initial estimates for the projection matrices M-,
The second step computes ML estimates for the reconstructions, given M?, us-
ing (6.17) and (6.12), and now these values are used as the “missing data” in the
third step.

In the third step, new estimates for M*, given x;, j = 1,..., M, are computed.
By differentiating (6.5) with respect to M’ and setting the result zero, it follows

MDY (x; — %) (x; — %) 6 = Y (m) —m')(x; — )75, (6.23)
J J
Assuming that the vectors x; — X’, visible in image i, span the 3-space, we get
the ML estimate for M’, given x;, j =1,..., M from

M’ = (Z(m§ —m')(x; — Xi)T@j) (Z(Xj —x')(x; — Xi)T&'j)
(6.24)

J J
A A\ 1
= C, C;
- m,x X )

where Ci, is the sample cross covariance matrix between m’ and x;, visible in
image 7, and C; is the sample covariance matrix of x;, visible in image 7. The
translations are handled invisibly and are finally obtained from (6.3). The second
algorithm is summarized in Algorithm 6.
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Algorithm 6 Bilinear Algorithm (BA) for Affine Reconstruction with Missing
Data

1. Set initial values for inhomogeneous projection matrices M?, e.g.,
by Jacobs’s (2001) method.

2. Compute the closed-form solution for the feature point 3D coordi-
nates x; given M’, ¢ =1,..., N from (6.17), and (6.12).

3. Use (6.24) to get the ML estimates for M’ given x; and j =
1,..., M. Repeat Steps 2 and 3 until convergence. Estimates for t*
may be finally computed from (6.3).

6.5.3 Degeneracy Identification

In the previous section, we obtained the ML solution for affine reconstruction
assuming general motion, and convergence to the global minimum. It is, however,
possible that the motion is degenerate. For example, when the cameras are moved
along a single line and directed in the same direction, it is not possible to solve
the depth from the affine projections. An even simpler degenerate case is that
when the cameras are not moved at all, or when the displacement is very small.
Then, the depth calculation also confronts an ill-posed problem.

In the degenerate cases, the information obtained from the measured coordinate
values may not provide a unique solution, or the solution may be poorly condi-
tioned and highly sensitive to noise. Most degenerate conditions can be observed
by examining the matrix A in (6.16). In fact, if there were ambiguity in the 3D
coordinates, in addition to the already fixed origin, the determinant of A would
approach zero, and the inverse would not exist.

The determinant value itself is not a good measure of ill-conditioning even though
the vanishing determinant is equivalent to singularity (Golub and Loan 1996). A
far better measure for degeneracy is the condition number

K(A) = [|AJlIIAT. (6.25)

where, for example, the 2-norm may be used. The condition number approaches
infinity for singular A. Geometrically the 2-norm condition measures the elonga-
tion of the hyper ellipsoid {Ax| ||x|| = 1} (Golub and Loan 1996).

Is short, we therefore propose that ill-posed or highly uncertain cameras could be
identified by examining the condition number of the coefficient matrix A in (6.16).
For instance, in either of the proposed algorithms for affine reconstruction, the
condition number can be evaluated on each iteration step to indicate how reliably
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Figure 6.1: Illustration of the condition number x of the coefficient matrix A near a
degenerate configuration. Here, 200 points were randomly generated in a cube and the
points were projected via orthographic cameras onto ten image planes, where Gaussian
noise with o = 1 was added to the projections. In addition, 10% of the projections we
randomly set absent. The cameras were placed along a line in space with a constant
displacement between consecutive cameras. The cameras were rotated over the axis
perpendicular to the line and the optical axis of the first camera such that the angular
separation between consecutive cameras was kept constant. The z-axis of the graph
indicates the angular separation where zero means a degenerate configuration. The
condition number has been computed as the median over 100 trials and the first and
third quartile have been used as the error bounds, respectively.

the 3D coordinates are determined. Figure 6.1 shows an example. Clearly, not
only structure or motion degeneracies imply large condition number, but also
inadequate visibility of the points. We regard this as an advantage since we now
have an overall measure for the stability of the reconstructed points. Similarly, if
the second, bilinear algorithm is selected, the sample cross correlation matrix C;
in (6.24) is singular if and only if there are less than three linearly independent
points, with respect to X?, in the 3-space that are visible in image 7. Condition
number of these matrices may hence also be used to discover these kinds of
degeneracies.
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6.5.4 Image Registration in Electron Tomography

In axial electron tomography (see Chapters 7 and 8), the motion to be solved
is constrained to rotation around one axis and its characterized by the model
(Lawrence 1992) (compare to (6.1))

m) = R, PR}x; + t, (6.26)

where s’ is a scaling factor, Rf, is a 2 x 2 rotation matrix, Rj; is 3 x 3 rotation
matrix describing the tilting operation around the y-axis, t? is a translation vector
for image ¢, and P is an orthographic projection matrix:

p-(100) 62)

The objective is to find optimal values for the parameters s, o', 3, t', and x;,
given the realizations for the fiducial marker coordinates m; This is a nonlin-
ear optimization problem otherwise known as bundle adjustment, which can be
solved using, for example, the conjugate gradient method (Press, Teukolsky, Vet-
terling and Flannery 1993). However, optimization requires initial guesses for
parameters. For all other parameters, proper values may be addressed, but x;
are problematic, as we assume that each marker is not found in every image. To
solve the problem, we may now use (6.17) and (6.12), given all the other initial
guesses.

On the other hand, it is further possible to formulate the optimization problem
such that we search for the closed-form optimal values for x; (and t‘) on each
iteration step in the optimization. Then, the number of parameters to be opti-
mized does not depend on the number of markers used, but only on the number
of images! This allows using a huge number of markers because they do not affect
the direct memory use of the optimization routine. As a disadvantage, however,
the inversion needed for computing the closed-form solution tends to take more
computation time than is saved by reducing the dimensionality of the parameter
space.

6.6 Experiments

In this section, we present experiments with the proposed two iterative algorithms
for affine reconstruction. We have compared these methods to Jacobs’s (2001)
and Shum et al.’s (1995) methods. Because Shum’s method assumes known
translations, the translations given by the Jacobs’ method are used there. In
addition, the result of Jacobs’ method is also used as the initial guess for Shum’s
and the proposed methods. With synthetic data, we also compare the methods
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Figure 6.2: Affine reconstruction with synthetic data and missing measurements. The
x-axis gives the probability for any projection to be absent in an image, but to allow
comparison with the standard factorization, at least 4 points were set visible in all
views. The y-axis gives the standard deviation of the Euclidean distance between the
true projections and the estimated noise free ones in an independent test set. The
experiment was repeated 50 times, and the median and the first and third quartiles of
the scores were used as the result and the error bounds, respectively. The results are
slightly shifted with respect to one another to facilitate inspection.

to factorization (Tomasi and Kanade 1992), which that is computed using only
the points that are visible in all views.

The synthetic experiments were performed as follows. 200 points were randomly
generated within a cube. The points were projected via orthographic projection
onto ten image planes. To the projections Gaussian noise was added with o = 1.
Each projection was randomly set absent with a constant probability during each
set of trials. In addition, at least 4 points were set to be visible in all views to
allow comparison with the standard factorization method. We made 50 trials
for each probability value and generated independent point sets for evaluation.
An individual error score was computed as the standard deviation of the distance
between the true noise free projections and the estimated noise free ones, obtained
using standard triangulation (translations are now given). The median of the
scores was used as the result and the error bounds were correspondingly set to
the first and third quartile. The results are shown in Figure 6.2.

Jacobs’s method can be considered relatively stable to the increasing amount of
missing data, and its expected bias can be clearly observed. There is presumably
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Table 6.1: Results for the affine reconstruction with the four methods and three real
image sets. The score is the standard deviation of the distance between the measured
coordinates and estimated noise free counter parts, i.e., the reprojection error.

Image Set Jacobs  Shum IF BA

Mitochondrion 5.7 0.94 0.78 0.78
Microvillus 3.1 1.4 0.82 0.82
Section 0.94 0.54 0.46 0.46

an additional bias in its translation estimates, which consequently deteriorates
the results of Shum’s method. As expected, when the probability of losing a
point in an image increases, the factorization algorithm has fewer data and the
result gets worse. The proposed iterative algorithms give practically uniform
results, as they should. Their error grows slower than factorization because the
ML estimates are computed using all the observed data.

As real data, we used three sets of electron microscope images of a mitochondrion,
a microvillus, and a section of another mitochondrion (Fig. 6.3). In the case of
mitochondrion, the tracked features were gold beads that can be automatically
found in the images, as proposed in Chapter 7, while the tracks are relatively
long. There were 40 images in the set, and only tracks longer than 14 were used.
The measurement matrix consisted of 166 tracks in total and approximately 35%
missing data. Of all the tracks, 10 covered the entire set.

There were 10 images in the other set (microvillus). In that set, corner features,
obtained by the improved Harris detector (Schmid et al. 2000), were tracked; see
Chapter 8. Only the tracks longer than 4 were used. The measurement matrix
consisted of 49 tracks and approximately 43% missing data. One track covered
the entire sequence but the median length of tracks was no longer than 5.

In the third set (mitochondrion section), corner features were also tracked. Only
the tracks longer than 4 were used when the measurement matrix consisted of 46%
missing data. There were 69 tracks, none of which covered the entire sequence.
The median length of the tracks was again 5 here. Table 6.1 shows the results
for all the test sets.

The results for real data are very much what can be expected. Since these im-
age sets have been obtained tilting over an axis, as presented in Section 6.5.4,
we have additionally computed the error with bundle adjustment using the con-
strained motion model (6.26). The bundle adjustment resulted in deviations of
0.89, 0.87, and 0.47 for the mitochondrion, microvillus, and section respectively.
Furthermore, these results were in good agreement with the results in Table 6.1.
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()

Figure 6.3: Example images from the real image sets: (a) mitochondrion; (b) mi-
crovillus; and (c) section of a mitochondrion.
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Figure 6.4: Iteration steps needed for convergence in the two distinct iterative algo-
rithms, corresponding to the experiment in Fig. 6.2. The mean over 50 trials were used
as the result, and the sample standard deviations as error bounds, respectively. The
amount of iteration steps needed in the iterative factorization (IF) increases with in-
creasing amounts of missing data compared to the bilinear algorithm (BA). The square
sum of the change in W with the tolerance value 107 was used as the convergence
measure.

6.7 Note on Algorithmic Complexity

The closed-form solution for the reconstruction of M points in (6.17) involves the
inversion of a (3M — 3) x (3M — 3) matrix, which is relatively costly. Neverthe-
less, the complexity of a matrix inversion is not larger than matrix multiplication
because the inversion and multiplication algorithms are equivalent. For exam-
ple, Strassen’s algorithm for n x n matrix runs in O(n*%') Time, and the best
known algorithm, though less practical, has the upper bound of O(n*3) (Cor-
men, Leiserson and Rivest 1996). In practice, it has been reported that Strassen’s
algorithm starts to be advantageous compared to the basic O(n?) algorithm when
n > 100 (Cohen and Roth 1976). Hence in our case, Strassen’s algorithm for ma-
trix inversion should be favored if M > 30, approximately.

In the first proposed algorithm for affine reconstruction, the maximum likeli-
hood estimates for inhomogeneous projection matrices are computed using sin-
gular value decomposition in the third step. The complexity of factorization for
2N x M measurement matrix is O(NM?). On the other hand, the third step in
the bilinear algorithm algorithm is less complex since it runs in O(NM) time.
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When the complexity of the two distinct algorithms is compared, however, the
number of iteration rounds needed for convergence is crucial. The experiments
with synthetic data suggests, see Fig. 6.4, that with small amount of missing
data, in addition to being very reliable, the iterative factorization converges fast.
Nevertheless, the bilinear algorithm seems to converge faster if there are large
amounts of missing data.

6.8 Summary

Observing motion in /N images under affine projection, we have derived the closed-
form solution for the translation vectors and 3D coordinates of the tracked feature
points, given the inhomogeneous projection matrices in each image, but no fea-
ture point is required to be found in every image. The derived solution implies
closed-form solution for the optimal affine triangulation, and two iterative al-
gorithms for affine reconstruction. The approaches are iterative generalizations
of the well known affine factorization algorithm for missing data, and give the
maximum likelihood solution for the structure and affine projection matrices,
and thereby also for the affine multiple view tensors, given all the tracked fea-
ture points. Other applications of the closed-form solution were shown to be in
degenerate motion identification as well as in bundle adjustment of constrained
motion such as electron microscope image registration for electron tomography.
The performed experiments accord with the theoretical considerations.
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Chapter 7

TEM Image Alignment with
Fiducial Markers!

The last two chapters of this thesis consider how the methods of the previous
chapters can be used in aligning transmission electron microscope (TEM) images
for electron tomography; registration is essential to performing the 3D reconstruc-
tion of a TEM tilt-series. So far, the problem is solved by either manually showing
the corresponding fiducial markers from the set of images, or automatically us-
ing simple correlation between the images on several rotations and scales. The
present solutions, however, share the problem of being inefficient and/or inaccu-
rate. In this chapter, we propose a method in which the registration is automated
using conventional colloidal gold particles as reference markers between images.
The alignment problem is divided into several subproblems: (1) finding initial
matches from successive images, (2) estimating the epipolar geometry between
consecutive images, (3) finding and localizing the gold particles with subpixel
accuracy in each image, (4) predicting the probable matching gold particles using
the epipolar constraint and its uncertainty, (5) matching and tracking the gold
beads through the tilt series, and (6) optimizing the transformation parameters
for the whole image set. The results show not only the reliability of the suggested
method but also a high level of accuracy in alignment, since practically all the
visible gold markers can be used.

!The published conference papers regarding this chapter are Brandt and Heikkonen (2000a)
and Brandt, Heikkonen and Engelhardt (2001a); the journal version is Brandt, Heikkonen and
Engelhardt (2001¢).
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7.1 Introduction

In structural biology, electron tomography (ET) is used to reconstruct three-
dimensional objects such as macromolecules, viruses, and cellular organelles to
learn their three-dimensional structures and properties. The reconstruction is
made from a set of transmission electron microscope (TEM) images, which may
be obtained by tilting the specimen stage by small angular increments (single axis
tilting) or a fixed angle and rotating by constant increments in the specimen plane
(conical tilting) (Frank 1992). In this work, we use a set of two-dimensional elec-
tron microscope images of a three-dimensional object that are obtained by tilting
the specimen holder around a single axis, as described in detail in Engelhardt

(2000).

Traditionally, the alignment is solved by either manually showing the correspond-
ing markers from the set of images or automatically using simple correlation be-
tween the images on several rotations and scales. The manual approach has the
disadvantage of being time-consuming for the user because, at minimum, three
(four in unconstrained motion; Ullman 1979) identical markers must be shown
in all images, but in practice to obtain accurate results, one should show many
more. The previous correlation-based (Guckenberger 1982, Frank and McEwen
1992) automatic methods are, however, much more inaccurate because the trans-
formations are computed between the consecutive images of the tilt series and
therefore the errors accumulate along the image series.

The major advantage of using gold beads as fiducial markers is the fact that
they can be localized accurately, even with subpixel precision. Independent of
our work, there have been some attempts to automate the gold marker collecting
and matching process (Fung, Liu, Ruijter, Chen, Abbey, Sedat and Agard 1996,
Ress, Harlow, Schwarz, Marshall and McMahan 1999), but these approaches
require almost ideal imaging conditions to work without user intervention and,
in addition, they unnecessarily carry the burden of the previous, naive, cross-
correlation-based registration methods. The purpose of this work is therefore to
use some recent advances from the computer vision field to find a solution to the
alignment problem.

The image series used in this work consists of 41 images that are taken onto a
film by tilting the specimen stage by 3° increments from —60° to 60° (Engelhardt
2000). The images are thereafter digitized from the film by a scanner, which
causes some random rotation and shift to the images. As a result, if the images
were shown as a movie, the motion would not be smooth and predictable. This
makes our approach even more general than, e.g., the approach of Fung et al.
(1996), because the prior information of the motion smoothness may not be used.

We have solved the alignment problem by dividing it into subproblems as Fig. 7.1
illustrates. In the first stage, the initial correspondence between successive im-
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Figure 7.1: Flow chart of the proposed method. Input and output values for each
phase are displayed in italics.

ages, based on detected corner points using correlation and relaxation techniques,
and affine epipolar geometry are estimated, as described in Chapter 3. The epipo-
lar constraint is needed in tracking the gold markers in the tilt series since it
reduces the number of possible matches significantly. Before the final marker
matching and tracking (Section 7.3), the gold beads must be localized as de-
scribed in the following section. The transformation parameter optimization is
presented in Section 7.4, and the viability of the proposed method is demonstrated
in Section 7.5.

7.2 Fiducial Marker Localization

After the epipolar geometry has been estimated and before we can use it in
matching and tracking the gold beads, the gold markers must be localized in
the images. The major advantage of using fiducial gold markers as the tracked
image features in the registration problem is that they can be reliably localized
even with subpixel precision. To automatically search for the markers, we use
the a priori information that the markers are spherical and that their size does
not differ much from one to another. This allows us to represent a marker image
by a filled circle. To model the effect of the point-spread function caused by the
imaging process, the synthetic prototype is filtered by a Gaussian kernel.

We continue by computing the normalized correlation between the synthetic tem-
plate and the original image (Fig. 7.2a and b). The correlation has the largest
values on the most probable marker locations which can thus be obtained by
thresholding on a certain value. However, spurious responses are also possible
from areas that do not correspond to any marker. These false positions can be
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discarded by using the shape information of the fiducial gold markers, as described
below.

It can be observed that the markers also have circle-shaped responses in the
thresholded correlation image (Fig. 7.2c). Therefore we could directly compute
the circularity of these areas in order to determine whether a thresholded area
corresponds to a marker. Here circularity is defined as (Han, Lee and Hwang

1994, Brandt 1999) )
A

(= R (7.1)
where [ is the length of the perimeter of the region and A is the corresponding
area. A circle then obtains roundness of unity and other shapes less than 1.
There are fewer spurious responses if the threshold value is high—then, however,
the high-correlation areas would be relatively small and the circularity would not
give a good measure of the shape. To cope with this we suggest using similar
thresholding with hysteresis as used in the Canny (1986) edge detector. That
is, first the correlation image is thresholded with a high threshold value but also
those regions that are above a lower threshold and connected to the areas of high

correlation are considered.

The resulting binary image is processed by computing circularity for each separate
region (in the four-neighborhood sense), which allows the classification according
to the circularity score. The discrete area A in (7.1) is computed by weighting
region elements in the way proposed in Pratt (1991) in order to compensate
for the effect of discretation. The boundary length L is here regarded as the
eight-connected outer boundary and its length is calculated as its area similarly
weighted as above. The circularity threshold was set to a value of 0.8. The centers
of mass of the circular classified areas are thereafter computed, after which the
correlation maximum location is refined. This can be done with subpixel precision
using the standard template matching technique.

The proposed procedure reliably detects markers on image regions where even
a direct thresholding of the intensity would not give satisfactory results. As a
matter of fact, the markers are found even from areas where the task would be
difficult for humans due to low contrast and noise. In addition, because the
shape information is used, such markers that overlap in the image may also be
discarded. The eventual overlaps are not taken into account in Ress et al. (1999)
which may consequently induce a failure in the marker tracking.

7.3 Marker Matching and Tracking

When the gold beads are found, we solve the correspondence between the markers
in consecutive images. In order to match markers in two images, some neighbor-
hood information must be used because the beads look similar to one another.
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Figure 7.2: (a) Fiducial gold markers in the image. (b) Correlation image computed
with the template prototype; the darkest areas indicate the strongest correlation. (c)

Correlation image after the thresholding with hysteresis.
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Figure 7.3: (a) A graph corresponding to a marker and its five nearest neighbors. (b)
Search region for the marker in the second image.

We propose that the neighborhood information could be taken into account by re-
garding the task as a graph matching problem where the correspondence between
graphs, composed of markers and their neighbors, is compared (see Fig. 7.3a).
The matching process is simplified by using the epipolar geometry estimated in
Chapter 3, which, as we will see, will serve as an efficient constraint in selecting
matching candidates.

7.3.1 Finding Candidates

In general, if the epipolar geometry was not used in the matching process we
should consider every marker pair a possible match. We may, however, use the
epipolar geometry to reduce the number of possible matches substantially. If
the F-matrix was known perfectly, we might consider markers lying only on the
epipolar lines. But because there is always some error in the F-matrix estimation,
we examine the area inside the epipolar envelope (Csurka et al. 1997) or the error
bounds of the epipolar lines (see Fig. 7.3b) which are determined by the F-matrix
covariance matrix estimate (3.16).

The epipolar envelope is usually a hyperbola of two sheets on both sides of the es-
timated epipolar line. Sometimes the error bounds may also be far too pessimistic,
so here we search only the intersection of the epipolar band and the rectangular
area centered at the most probable point (see Section 4.2) with width and height
of 250 and 50 pixels, respectively, as Fig. 7.3b indicates. The markers that are
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found in this region in the second image are specified as candidate matches for
the marker in the first image. Usually there are no more than a couple of possible
candidates thus the use of the epipolar geometry reduces the possibility of a false
match notably.

7.3.2 Graph Matching

The correspondence between markers in two images is identified by forming and
comparing the neighborhood graphs. The graphs are here associated with the co-
ordinates of the reference marker and its k-nearest neighbors. The graph match-
ing procedure should be neither scale nor rotation invariant because we have the
a priori knowledge that successive images do not differ much from one another.
However, we should have robustness for both rotation and scale. In addition, the
images may, however, have a shift in rotation due to the manual scanning of the
film into a digital form (Engelhardt 2000).

To remove the effect of the ambiguity in rotation we first transform the graphs
such that the epipolar lines are horizontal. As the affine camera model is used
this is achieved by an affine transform of the graph where the angle can directly
be determined from the fundamental matrix (Xu and Zhang 1996); the epipolar
lines become horizontal by simple rotations of the graphs? by —a« in the left image
where « is given by

o = tan™* %, (7.2)
and by —a/ in the right image as
o =tan"’ % (7.3)

The scale difference between images can be compensated for by scaling the graphs
in the second image by the factor s, where

Bt
VR (74)

After the coordinate transform, for each graph a discrete 2D neighborhood un-
certainty or impulse map is formed: In the reference marker centered coordinate
system we set the values as 1 for the locations of the neighboring markers and 0
anywhere else. Between the images, the location uncertainties are modeled by a
symmetric Gaussian distribution with deviation o thus the maps are convolved
with a two-dimensional Gaussian kernel (Fig. 7.4). A convenient choice for o is
the radius used for the synthetic template in Section 7.2 .

2The image origin is assumed to be in the left-hand corner of the image, y-axis downward.
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Figure 7.4: Location uncertainty maps of the five nearest neighbors of the reference
markers shown in Fig. 7.3. The reference marker locations are marked with a plus sign
whereas the maps are obtained by transforming the reference marker centered coordi-
nate frames so that the epipolar lines are horizontal and convolving the impulse map
of the five nearest marker coordinates with a Gaussian kernel. The neighborhood of
the reference marker in the first image (a) is compared for the neighborhoods of the
candidate markers in the second image (b), (¢), and (d). Clearly, there is correspon-
dence between (a) and (b), which is observed by computing the normalized correlation
between the uncertainty maps.
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The purpose of the above maps is to encode the location information of the
markers in a robust way while the neighboring information is preserved. The
comparison of the graphs is performed by computing the normalized correlation
between the uncertainty maps of the matching candidates where the maximum
correlation scores exceeding 50% are taken as correspondences. In addition, we
use 5 and 10 neighbors and combine the results since more matches can be found
in this way compared to a single graph.

The above computations are finally made for all consecutive image pairs in a row
and the results are saved in an appropriate data structure. The marker tracking
is thereafter rather straightforward to implement since all that must be further
found are the individual marker coordinates in each image and the image numbers
where the chain starts and ends.

7.4 Parameter Optimization

The final stage in solving the alignment is the motion parameter optimization
which is needed in transforming images to a common coordinate plane. As the
imaging operation model we use the model defined by Lawrence (1992) with slight
modifications. The j* marker coordinates m’ = (z! y/)" in the i image are
related to the corresponding 3D coordinates x as

m) = s R, PR)x; + t, (7.5)

where s’ is a scaling factor, R/, is a 2 x 2 rotation matrix associated with the
angle a, Rg is 3 x 3 rotation matrix describing the tilting operation around the
y-axis, t¢ is a translation vector for image i, and P is an orthographic projection

matrix:
1 00
P (100, -

It is reasonable to assume that the measurement error, obtained by localizing the
center of the gold markers from images, is normally distributed. ML estimates
for the unknown transformation parameters are therefore obtained by minimizing
the cost function (6.2). This form is thus a generalized version of that proposed
by Lawrence (1992) because not all markers used are required to be found in all
the images of the tilt series.

In order to obtain unique parameters in the minimization, a reference coordinate
system must be set. Here, the rotation matrix ng is set to the identity matrix
for the reference image i, and the scale factor s” is set to unity. In addition, we
may arbitrarily choose the location of the origin; a convenient choice is the center
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of the gold markers?, i.e.,

» x;=0. (7.7)

When the origin is chosen in this way the least-squares estimate for t? is obtained
from (6.3), hence,

i — Zj mééij i Zj X;0ij
Zj 03 ’ Zj 03 7

which can now be substituted into (7.5) and (6.2).

— SR PR (7.8)

We still need some initial guess for the parameters to be optimized. The scale
parameters s' can be initialized to unity and the rotation parameters o’ to zero. If
the tilt angles 3 are not known accurately enough, they can also be optimized as
is done here. The initial values are directly obtained from the assumed orientation
of the goniometer. However, we have noticed that if the number of markers is
small, the 3 angles should not be optimized, but their assumed values should be
used. The explanation for this is clear: if there are lots of parameters but few
observations, the model is too complex or flexible. Then the result is that the
model overfits to the data, or more accurately, to the noise (see e.g. Cherkassky
and Mulier 1998). Overfitting can be avoided by restricting the complexity of
the model or here by fixing #". The initial estimates for x; were computed as
proposed in Section 6.5.4.

The minimization of (6.2) with respect to the unknown parameters o’ and 5 and
x; can be made with standard optimization tools. Of the tested three algorithms
the classical Gauss—Newton algorithm was the most efficient while the Levenberg—
Marquardt (Levenberg 1944, Marquardt 1963) and trust region subspace method
(Byrd, Schnabel and Schultz 1988) performed relatively slowly. In practice, one
must ignore too short chains to keep the memory use and computation time
tolerable. In our experiments we did not consider chains shorter than 15.

7.5 Experiments

The first tested tilt series represented a mitochondrion where the size of the im-
ages was about 2500 x 2000 pixels. The reference image is shown in Fig. 7.5. From
the image series, 152 marker chains longer than 14 were found while 10 chains
covered the whole image series. The standard deviation of the residual was 0.93
pixels, which is proof of the success of the algorithm. Note that deviation is not
only caused by the uncertainty in marker coordinates but also deformation of the

3Some marker coordinates may be taken multiple times because if the chain is broken in
some image, the marker subchains are considered different. This does not, however, affect the
validity of the approach because, as said, the coordinate origin may be chosen arbitrarily.
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50 nm

Figure 7.5: One image of the tilt series representing a whole-mounted critical-point-
dried (cpd) mitochondrion, prepared as in Engelhardt (2000). The images have been
taken at 50 000* magnification with 120 kV voltage. The average diameter of a gold
bead is 5-10 nm which corresponds to 10-20 pixels in the image.
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Figure 7.6: Found gold marker trajectories after the transformation of the images
to a common coordinate plane before (a) and after (b) the optimization. One chain
corresponds to one marker location in several images. Ideally, the trajectories should
be horizontal lines which is well satisfied here. Only the chains longer than 15 are
plotted here for the sake of clarity.
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Figure 7.7: Stereo image pair of the reconstructed mitochondrion.

specimen support during the imaging and inaccuracy of the goniometer?. To vi-
sualize the results, we have plotted some trajectories of the longest marker chains
after their coordinates are transformed to a common coordinate plan (Fig. 7.6b).
For comparison, the initial trajectories are shown in Fig. 7.6a. Ideally the mark-
ers should move along the epipolar planes, i.e., the trajectories would ideally
be horizontal. The stereo image pair of the reconstructed 3D object is shown
in Fig. 7.7. The reconstruction is made via the well-known maximum entropy
method (MEM) (Lawrence, Jaffer and Sewell 1978).

The second test image series represented a chromosome shown in Fig. 7.8. Here, 9
marker chains covered the whole image series and the minimum chain length was
exceeded by 97 chains. The registration resulted in a standard deviation of 1.3
pixels in the residual, which again is an indication of success. The gold marker
trajectories are plotted in Fig. 7.9, and the stereo image pair of the reconstructed
object is shown in Fig. 7.10.

7.6 Further Development

The purpose of this section is to give some ideas about how the proposed au-
tomatic alignment method can developed even further. We discuss completing
the marker chains by the rejected markers and combining separated subchains,
handling the possible deformation of the sample, and dual-axis tilting.

4In practice, the tilting axis is not fixed but fluctuates randomly. This contradicts the
assumption of the motion model.
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Figure 7.8: Reference image of the second test image series representing a whole-
mounted cpd chromosome, prepared as described in Engelhardt (2000). The images
are acquired with 48 000* magnification and 100 kV voltage. The average gold markers
diameter is 10 nm which corresponds to 20 pixels in the image.
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Figure 7.9: Gold marker trajectories for the second chromosome image series before
(a) and after (b) the optimization. Also here the the trajectories are close to horizontal
which indicates good results. For clarity no longer trajectories than 15 are plotted.
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Figure 7.10: Stereo image pair of the reconstructed chromosome. A corresponding
manually aligned reconstruction can be found in Engelhardt (2000).

The graph matching stage rejects some markers in images due to the threshold in
the neighborhood correlation value (Section 7.3.2), and they are thus not utilized
in the marker chains. If there are relatively few marker chains found and a higher
level of accuracy in alignment is needed, practically all the missing markers of the
marker chains can be identified by introducing a second stage to the algorithm.
In the first pass, we obtain, in addition to the motion parameters, the three-
dimensional coordinates of the markers. Using the model (7.5), the optimized
three-dimensional marker coordinates can be projected onto each image where
the marker for the chain has not been identified. A new connection is found if
the coordinates of the reprojection and some marker coincide on the image plane.
Broken chains and subchains may consequently be completed and connected.

If there are lots of markers in the images and the specimen is not significantly de-
formed during the imaging, there is no need for the second stage described above.
However, the second pass can give the medicine to cure some problems caused
by the deformation of the imaged specimen. After all the possible marker chains
are found and subchains have been connected, there is no theoretical obstacle for
user interaction to specify the portion of the images that are to be considered.
Then, only those markers that lie inside the selected volume should be used in
optimizing the final transformation parameters. In optimization, the parameters
obtained in the first phase are naturally a good initial guess. If the observed
deformation is intended to be handled automatically, one could use some robust
regression techniques (see Chapter 2) in the second phase optimization.
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The proposed method can be extended to the dual-axis tomography® (Penczek,
Marko, Buttle and Frank 1995, Mastronarde 1997, McEwen and Marko 1999)
in a straightforward way. One needs only to treat the two axes separately in
finding and tracking the gold markers in them. Thereafter the two images that
are closest to each other in the two series (usually the reference images) should
be selected. Between these images, one needs to compute the epipolar geometry
and find, using the tracking approach, which marker chains are equivalent in the
two tilt series. As far as the optimization stage is concerned, there is no difficulty
in solving all the parameters at once.

7.7 Summary and Discussion

We have proposed a novel way to register electron tomography images. Compared
to the previous automated approaches, the suggested method is able to achieve
a high level of accuracy because gold beads are used as feature points and they
can be localized precisely; on the other hand, no manual picking of the markers is
required any longer. In contrast to the previous automatic methods, the proposed
method is an approach from the computer vision viewpoint, incorporating some
recent advances in vision research.

Some more detailed advantages of the proposed method are, e.g., the fact that
gold beads are found with high confidence, allowing the use of a huge number of
markers, say hundreds in an image, in solving the alignment. The methods that
are based on intensity thresholding are not able to find as many markers in an
image at all. The use of epipolar geometry with the proposed graph matching
procedure makes the tracking procedure reliable as the probability of obtaining
a false correspondence becomes negligible.

There are also no obstacles in using the proposed method in dual-axis tomogra-
phy via a straightforward modification. We have also discussed the evident ways
of incorporating the information of practically all the markers shown in the im-
ages. Even though it is not usually necessary to implement the proposed second
phase, in cases of partial deformation of the specimen it can provide a significant
advantage.

Being a sophisticated and accurate method for tomographic image registration,
the price is paid in the computational cost of the technique. The registration
of one tilt series on a common computer workstation may take hours. However,
computational cost is far cheaper than the time of a researcher who should do
the manual picking of the gold beads from the images.

A disadvantage of the use of gold markers is that it is not always possible to
include them in the preparation. In addition, the gold beads interfere with the

5In dual-axis tomography, the specimen is tilted over two different axes instead of one.
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three-dimensional reconstruction of the object. In the next chapter, we therefore
study the automatic registration problem when there are no fiducial markers in

the images.



Chapter 8

TEM Image Acquisition Without
Markers!

In the previous chapter, we obtained accurate results in automatic transmission
electron microscope image alignment by using colloidal gold beads as fiducial
markers. In general, if the use of markers has not been possible for some reason,
the only option has been automatic cross-correlation-based registration methods.
However, these methods are inaccurate and, as we will show, inappropriate for
the problem as a whole. Conversely, in this chapter we propose a novel method
that uses the 3D motion model but works without fiducial markers in the images.
The method is based on matching and tracking the corner points of the inten-
sity surface by first solving the underlying geometrical constraint of consecutive
images in the tilt series. The results show that our method approaches the level
of accuracy of the gold marker alignment and hence opens the way for new op-
portunities in the analysis of electron tomography reconstructions, particularly
when markers cannot be used.

8.1 Introduction

As stated in the previous chapter, accurate alignment has been previously achieved
by using conventional colloidal gold beads as fiducial markers since being spherical-
shaped they can be well localized. Sometimes, however, it is not possible to
include gold markers in the images. Moreover, gold markers interfere with com-
puting the three-dimensional reconstruction. Therefore, it would occasionally
be necessary to solve image alignment without markers. The electron tomogra-

IThe preliminary steps to the markerless alignment were taken in Brandt and Heikkonen
(2000¢) but the actual conference and journal versions of this chapter are Brandt, Heikkonen
and Engelhardt (2002) and Brandt, Heikkonen and Engelhardt (2001b), respectively.
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Figure 8.1: Chart describing the proposed alignment method. Input and output
values of each stage are displayed in italics.

phy literature reports automatic alignment using cross-correlation (Guckenberger
1982, Frank and McEwen 1992), where no fiducial markers are needed. However,
that approach is based on 2D cross-correlation that is capable of modeling 2D
plane motion only—mnot the 3D motion of the object. Since the implicit motion
model of this approach is insufficient for the alignment problem as a whole, the
result is not optimal at all and alignment errors accumulate along the image
series.

In this chapter, we introduce a framework for registering TEM images which for
the first time provides automatic alignment using the 3D motion model with-
out any fiducial markers. The proposed approach is based on the techniques
proposed earlier in this thesis, i.e., first estimating the epipolar geometries of
the consecutive image pairs (Chapter 3), after which found feature points are
matched and tracked using the wavelet-based multi-resolution approach (Chap-
ter 5). The maximum likelihood estimates for the transformation parameters are
finally obtained by solving the non-linear optimization problem described in the
previous chapter. This chapter thus completes the thesis by showing how the
proposed algorithms can efficiently solve the alignment problem where, above all,
neither user-interaction nor fiducial markers are needed.

8.2 Methods

The principal intention of our method for automatic TEM image alignment is to
track certain interest points in the image series and use these feature point tracks
in estimating the 3D motion parameters of the object. However, the tracking is
not a trivial problem: first, because the interest points should be those that can
be accurately localized, second, the corresponding points should also be found in
the other images, and third, the determined correspondences should not contain
false matches. Our approach to the problem is summarized in Fig. 8.1.

Widely used feature points in tracking are corners that can be defined as the
high-curvature points of the image intensity surface where the direction of the
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gradient changes rapidly. Numerous corner detectors exist in the literature (e.g.
Moravec 1979, Kitchen and Rosenfeld 1982, Zuniga and Haralick 1983, Heitger,
Rosenthaler, von der Heydt and Peterhans 1992) but the most frequently con-
sidered is perhaps the Harris detector (Harris and Stephens 1988) because of its
good repeatability and localization accuracy (Schmid et al. 2000). We therefore
used the improved Harris detector (Schmid et al. 2000) here and match and track
the points as proposed in Chapter 5.

At this point, the reader might speculate as to whether such features as corners
are appropriate feature points for electron microscope images, or whether they
exist at all in images of small-scale biological objects. Although the use of the
term “corner” is relatively stable in the computer vision community, it is a little
misleading. A better term would be “interest point” since the corner points we
obtain, for instance, with the Harris detector do not have to be such physical
corners as we would normally consider. The term “interest points” fits better
because the information content of the intensity neighborhood of Harris corner
points is considerable larger than the neighborhood of a random point in the
image (Schmid et al. 2000). Figure 8.2 shows an example of the corner features
found in electron microscope images.

The wavelet-based multi-resolution matching technique (Chapter 5) forms the
key point of our method. As our experiments showed, the probability of ob-
taining mismatches is practically very small. If more reliability is required, we
could additionally consider three view correspondences, estimate the affine trifo-
cal tensor, and reject the mismatches on the basis of the point transfer error (Torr
1995, Hartley and Zisserman 2000). Nevertheless, in this work we did not deem
this necessary. After the correspondences between the interest point sets have
been identified, it is straightforward to track the feature points through the im-
age series. The found chains are thereafter used in the transformation parameter
optimization. The optimization problem is solved as proposed in Chapter 7.

8.3 Experiments

In this section, we demonstrate how the proposed method performs in practice.
We will analyze four different tilt series. The first series is the same whole-
mounted cpd chromosome that was used in the previous chapter. The gold marker
aligned images provide us a reference to which we may compare our new method
though we do not use the markers. The second series is an example from a
situation where the markers are sprinkled on the preparation but in practice it is
not even possible to perform a manual alignment. To demonstrate the viability
of the proposed method we have reconstructed these sets and in addition two
other tilt series that are absolutely free of markers. Specimen preparations are
performed as described in Engelhardt (2000). As the reconstruction method we
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(a) Chromosome scaffold (b) Microvillus

(¢) Mitochondrion (d) Section of the mitochondrion

Figure 8.2: Examples of Harris corners found in the four reference images used in the
experiments, see Fig. 8.3. The “x” indicates a found corner and “+” a corner for which
a matching point has been found in next image. The size of these detail windows is
125 x 125 pixels. As can be seen, in the image of the mitochondrion section the noise
level is very large. In any of the images, there are not really such sharp corners as one
might expect; therefore the term interest point rather than corner might apply better.
On the whole, these examples show that reliable corner point matching is far from a
trivial problem.
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use the maximum entropy method. (Lawrence et al. 1978), as in the previous
chapter.

To evaluate the alignment we approximate the RMS (root mean square) esti-
mation error that gives the average distance between the estimated coordinates
and true (noise free) values, i.e., the mean error per data point. Assuming i.i.d.
Gaussian noise with deviation ¢ in the image coordinates and using a linear
approximation of the model, with N; independent parameters, around the true
observation vector in the observation space ™, where N, is the total number of
independent measurements, the RMS estimation error is obtained from

€Cost = O %, (8.1)
where we also approximate o by its sample estimate. In our case, N; = 5N +3M —
5, where N is the number of images, M is the number of corner or marker tracks
found, and N; = 221‘, ;0i5. Since the RMS error approximates the average true
error while it takes the dimensionality of the parameter space and the number of
measurements into account, smaller RMS error should also imply more accurate
alignment, independent of the alignment method or image content. It is therefore
used here for evaluation between different alignment settings and tilt series.

Let us first analyze the alignment of the whole-mounted c¢pd chromosome scaffold
tilt series (Fig. 8.3a). Technical details concerning the tilt series are collected in
Table 8.1. By using gold markers, we obtained 1.3 pixels for the reprojection
error, i.e., for the deviation between the estimated noise-free coordinates and the
measured noisy counterparts. For the RMS estimation error we obtained 0.39
pixels. The alignment without the use of the gold markers resulted in ¢ = 2.5
pixels for reprojection error; hence, it indicates that the noise in the coordinates
was about twice as much. The RMS estimation error gave 1.4 pixels, which is a
reasonable result too. It is not quite as good as was obtained by gold markers
since the markers can be much more accurately localized and many of them cover
the whole sequence; hence the number of parameters to be solved was much less
in the marker case. The reconstruction of the whole chromosome scaffold is shown
in Fig. 8.5a to allow comparison with not only the corresponding automatically
aligned version (Fig. 7.10) but also the manually aligned reconstruction (Engel-
hardt 2000, Fig. 9). The corner trajectories are plotted in Figs. 8.4a and 8.4b (cf.
Fig. 7.9).

The second test set is a typical example where the proposed alignment method
could be applied. The object in Fig. 8.3b represent a freely dangling microvillus
of a whole-mounted cpd cell that is intended to be aligned with gold markers.
However, the number of separated markers is too small and nearly all markers
have been clustered, due to immunolabeling, such that even a manual picking
tended to be practically impossible. The proposed method was therefore applied
to the set and as a result the corner point deviation was found to be 0.78 pixels
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Figure 8.3: Reference images of the four image series used in the experiments. (a)
Chromosome scaffold (aligned using markers in Chapter 7); (b) freely dangling microvil-
lus with immunologically gold labeled mucin (3 nm) and ezrin (6 nm) (cf. Engelhardt
2000); (c) whole-mounted mitochondrion spanning a hole of the supporting film of the
grid; and (d) section of an epoxy resin-embedded condensed mitochondrion.
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Figure 8.4: Corner trajectories for the second chromosome image series before (left
column) and after (right column) the optimization. (a and b) Chromosome scaffold. (c
and d) Microvillus. (e and f) Mitochondrion. (g and h) Section of the Mitochondrion.
Trajectories are close to horizontal, indicating good results. As can be seen the tracks
are relatively short. Median length was 4 or 5 in all cases though the shortest chains
with length 2 and 3 were not used.
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after the optimization. The corresponding RMS error was 0.45 pixels, which is a
very good result considering the difficulty of the image; the region containing the
information for the alignment in the images is very narrow. The corner trajecto-
ries and the corresponding reconstruction of the top part are shown in Figs. 8.4c
and 8.4d and in Fig. 8.5b, respectively.

In Fig. 8.3c we have a whole-mounted cpd mitochondrion without markers. The
alignment resulted in and estimate of 0. = 3.4 pixels for the noise deviation while
the RMS error was 2.0 pixels. The larger deviation is due mostly to some serious
dynamic deformation of the object? that can also be clearly seen from the tilt
series. The trajectories also show that some tracks (Fig. 8.4f) are not perfectly
straight after the optimization. However, the stereo image pair of the recon-
structed mitochondrion in Fig. 8.5¢ shows that the proposed alignment method

2An object is here defined as a specimen with the specimen support.
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Figure 8.5: Reconstructions. (a) Chromosome scaffold (cf. Fig. 7.10); (b) recon-
structed top part of the microvillus; (¢) whole-mounted mitochondrion; and (d) recon-
structed details of the outer region in the section of the mitochondrion.
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Table 8.1: Technical details and results for the tilt series used in the experiments.

Chr. (M) Chr. (C) Microvillus  Mitoch. Section

Voltage (kV) 100 100 120 120 80
Magnification 48000 48000 50000 50000 40000
Image size 2500 x 2200 2500 x 2200 1200 x 2300 3200 x 2300 1100 x 1100
Pixel width (A) 4.4 44 5.1 5.1 6.4
No. images (V) 41 41 41 40 36
No. chains (M) 109 627 796 248 324
No. measurements (N;) 5602 6882 7716 2774 3554
No. parameters 527 2081 2588 939 1147
No. corners per image - 1100 4300 7700 9300
median chain lenght 26 5 4 5 5
min chain length 15 4 4 ) 5
max chain length 41 20 14 12 9
Reprojection err. (&) 1.3 2.5 0.78 3.4 1.3
RMS error (€est) 0.39 1.4 0.45 2.0 0.71

M = aligned with markers
C = aligned with corners

has worked out successfully. For better accuracy, the dynamic behavior of the
object might be taken care of by robust regression techniques, as discussed in the
following section.

The last tilt series is of a slice of another mitochondrion shown in Fig. 8.3d.
Some images in the series were, however, so out of focus that only 36 images were
finally used. Now, the alignment resulted in 1.3 pixels for the noise deviation
estimate. The RMS error was 0.71 pixels. The result is surprisingly accurate
even though the noise level in the images is considerably large, as can be seen
from the reference image (see Fig. 8.2d). The trajectories in Figs. 8.4g and 8.4h
and the stereo image pair of the reconstructed part in Fig. 8.5d verify that the
alignment has been successful. The results are summarized in Table 8.1.

8.4 Summary and Discussion

We have proposed a novel way of aligning transmission electron microscope images
automatically where no fiducial markers are needed. The solution lies in first
solving the underlying epipolar constraint between consecutive images after which
corner features are matched and tracked by the wavelet-based multi-resolution
approach. The method utilizes the apparent motion model in the tilting operation
in contrast to the previous cross-correlation-based methods with the implicit 2D
plane motion model that are invalid for describing the three-dimensional motion.

Under Section 8.3 (Experiments), four tilt series were aligned using the proposed
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approach where the series of chromosome scaffolds had also been automatically
aligned with gold markers in the previous chapter. As the figure of merit we
used the RMS estimation error that approximates the average error between
the true and the estimated parameters and therefore allows direct comparison
among the five individual alignment cases. The results suggest that under good
imaging conditions the expected average error by the proposed technique is of the
degree of a fraction of a pixel. In the case where there was also the gold marker
alignment reference, better results were, however, obtained by using markers. For
evaluation, the corner point trajectories were also plotted. They were reasonably
close to horizontal after the optimization, which validates the applicability of the
approach.

On the basis of the experiments we might draw the conclusion that it is rec-
ommended to use gold markers whenever possible. This is natural because gold
beads are sphere-shaped and they can hence be localized very accurately. More-
over, the marker tracks are typically very long, implying that the relative number
of parameters to be solved is smaller. Corner points can be localized quite accu-
rately, but the tracks are typically much shorter than obtained with gold beads.
Each track involves three additional parameters to be estimated and therefore
even if we had the same number of measurements with same noise level, the
marker alignment would be better in the expected level of accuracy.

The method proposed in this chapter is worth using especially in cases where it is
not possible to use gold markers for alignment for some reason. In any case, the
level of accuracy does not differ much when the proposed method is compared
to the previous automatic method with markers. Hence, the level of accuracy
achieved here is promising and future developments might even obviate the use of
markers fully. In addition, small alignment errors are less important in practice if
the final resolution of the reconstruction is to be decimated down by some factors,
as oversampling is a commonly used technique in electron tomography.

The results obtained here for the corner deviation are additionally a bit pes-
simistic for some unnecessary technical reasons. As pointed out by McEwen and
Marko (1999), it is recommended to start the tilting from one extreme tilt end
and to move by constant increments into the other. Our data were not collected
in this way, but started from the central position 0° and tilted to +60°. Since the
goniometer is not an ideal apparatus, the motion model of a fixed tilt axis fails
especially around the zero angle and a clear “bump” can be seen in the image
series. The corner tracking is more vulnerable to this inaccuracy because of the
shorter chain lengths, whereas the long marker chains have an obvious regulariz-
ing effect on the motion estimates such that the whole sequence is better aligned
in total.

There are still many ways of improving the alignment results in the future. By
increasing the number of measurements the expected deviation from true motion
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parameters decreases. By estimating the affine trifocal tensor for image triplets
one could establish more point matches without any retardation of confidence
by using the point transfer (Hartley and Zisserman 2000). The affine trifocal
tensor could be also used in pinpointing mismatches as well as connecting corner
chains that have been broken. More point matches can also be obtained by not
only matching consecutive image pairs but also every second image, etc. Line or
curve segment matches provide also constraint over several views (Schmid and

Zisserman 2000, Kahl and Heyden 1999).

For a better level of accuracy, robust motion estimation is an important issue
that should be deliberated in solving the motion. Partial deformation of the
imaged object during the imaging violates the assumption of i.i.d. Gaussian noise.
The noise model is also inadequate if the established correspondences consist of
mismatches. These problems could be overcome by replacing the square cost in
(6.2) by a proper robust cost function that also tolerates large residual values.
By introducing an unconstrained motion model instead of (7.5) problems caused
by unstable tilt-axis could be solved.

To obtain even better reconstructions one might yet consider the following tech-
niques. The proposed method could be expanded to double-tilt tomography
(Penczek et al. 1995, Mastronarde 1997, McEwen and Marko 1999) similarly
as proposed in Chapter 7. Conical tilting instead of axial tilting would also be
attractive since the image sequence could be circularly matched and the accu-
mulated error caused by short corner chains should also be smaller. It is also
straightforward to combine the use of markers and corner points if, for example,
there are some markers in the images but not enough. In the optimization one
should then just minimize the Mahalanobis distance to take the unequal noise
deviation between corners and markers into account.

To summarize, we have proposed a framework of aligning electron microscope
images that for the first time uses the true 3D motion model but does not need
any fiducial markers. Above all, it is the inevitable way for aligning the images
in the most accurate way if there are no markers available in the images. Since
the present implementation is just at the prototype level, there are many obvious
ways to develop the method for better reliability, accuracy, and possible real-
time computational efficiency. Since the level of accuracy obtained so far is close
to what has been achieved by using fiducial markers, the use of markers should
become unnecessary from the alignment point of view when the discussed ways
of development are followed. This issue is left for future research.
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Chapter 9

Conclusions

From the scientific point of view, perhaps the most important result of this thesis
is the proposed maximum likelihood robust estimator. It is notable that an
estimator can be consistent to the true parameter values even when there are
outliers in the data and only a parametric model for their residual distribution
is needed. As the key observation is that there is no need for the ill-posed hard
decision for a residual to be correct or false from the parameter estimation point of
view, the proposed estimator reflects the common sense principle (Cherkassky and
Mulier 1998): Do not attempt to solve a specified problem by indirectly solving
a harder general problem as an intermediate step. When the parametric form
of the outlier residual distribution is unknown, the robust regression problem
is a problem of statistical modeling rather than statistical estimation since the
complexity of the residual model must be determined to deal with a finite number
of observations.

In the projective F-matrix estimation, the model selection verified the known fact
that even simple models, with two kernel mixtures, may produce good results in
small-sample estimation even though the “true” distribution was far more com-
plex. Consequently, the number of observations may be too small to determine
the fine-structure of the outlier distribution. As most accurate robust estimation
is an important goal in itself, another notable by-product of the F-matrix esti-
mation is that the covariance matrix of the F-matrix can be computed without
having to classify the residual observations. Even though it seems that the finite
uncertainty of F-matrix estimates has not significantly been taken into consid-
eration so far, perhaps partly because of this earlier difficulty in its estimation,
we see that, in general, well based uncertainty considerations are inevitable for
computer vision itself if it is to establish its status as a science.

Since the whole problem relating to whether the covariance matrix of the funda-
mental matrix contains disparity information of the scene has been controversial,
the understanding of the linear approximation of the epipolar line covariance can
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be seen as an important result. As far as the matching of two images is concerned,
the derived most probable point is the point where one should have its match-
ing window centered. Moreover, we believe that the derived probability density
for point—point correspondence from the fundamental matrix covariance is one
of the most important results of the thesis. Since the probability density takes
both epipolar geometry and its uncertainty into account, it is a useful tool for
matching, and it could be used, for instance, as a prior distribution in computing
the dense disparity field of the scene along with the photometric constraints in
the future.

Our methods for affine reconstruction with missing data may be useful for multi-
frame tracking applications since the Tomasi-Kanade factorization algorithm
works only without missing data. Though our iterative algorithms give the ML
solution with missing data when the starting point is sufficiently close to the max-
imum, a challenging problem for the future remains its solving in closed-form or,
alternatively, showing why the closed-form solution does not exist. Nevertheless,
our intermediate solution for structure and translations, given the inhomogeneous
projection matrices, is useful in bundle adjustment at least in computing the ini-
tial guess for the iterative search. In addition, the proposed method of degeneracy
identification may find applications.

From the electron tomography application point of view, this work has been
fruitful. With the proposed methods, TEM image alignment with markers can
be performed with a high level of accuracy since practically all the fiducial markers
can be utilized. The second algorithm for those cases where no markers can be
used is built around the proposed multi-resolution matching technique, and it
should give better results than the previous primitive approaches in the ET field.
It is also encouraging that, as outlined, there are still many possibilities for future
development of the methods for improved efficiency and a better level of accuracy.
As more accurate alignment implies better reconstructions, the entire electron
tomography field could benefit from the results of this thesis, if the methods are
distributed for practical use.

To summarize, the aims set for this work have been achieved and new scientific
knowledge has been revealed without stepping too far outside the original frame-
work, even though the research problem may be considered quite classical in the
motion estimation sense. This is very encouraging since it implies that there are
many more unsolved problems to occupy future research in the geometric branch
of computer vision.
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