Ma 115

ACTA
POLYTECHNICA
SCANDINAVICA

MATHEMATICS AND COMPUTING SERIES No. 115
Data Exploration Process Based on the Self-Organizing Map

JUHA VESANTO

Helsinki University of Technology

Department of Computer Science and Engineering
FIN-02015 HUT

FINLAND

Dissertation for the degree of Doctor of Technology to be presented with due permission of
Computer Science and Engineering for public examination and debate at Helsinki University
of Technology, Espoo, Finland on the 16th of May, 2002, at 12 o’clock noon.

ESPOO 2002

Vesanto, J., Data Exploration Process Based on the Self-Organizing Map, Acta
Polytechnica Scandinavica, Mathematics and Computing Series No. 115, Espoo 2002,
96 pp. Published by the Finnish Academies of Technology. ISBN 951-666-596-9,
ISSN 1456-9418.

Keywords: self-organizing map, exploratory data analysis, data mining,
visualization, clustering, vector quantization.

ABSTRACT

With the advances in computer technology, the amount of data that is obtained from
various sources and stored in electronic media is growing at exponential rates. Data
mining is a research area which answers to the challange of analysing this data in
order to find useful information contained therein. The Self-Organizing Map (SOM)
is one of the methods used in data mining. It quantizes the training data into a
representative set of prototype vectors and maps them on a low—dimensional grid.
The SOM is a prominent tool in the initial exploratory phase in data mining.

The thesis consists of an introduction and ten publications. In the publications, the
validity of SOM-based data exploration methods has been investigated and various
enhancements to them have been proposed. In the introduction, these methods are
presented as parts of the data mining process, and they are compared with other data
exploration methods with similar aims.

The work makes two primary contributions. Firstly, it has been shown that the SOM
provides a versatile platform on top of which various data exploration methods can be
efficiently constructed. New methods and measures for visualization of data,
clustering, cluster characterization, and quantization have been proposed. The SOM
algorithm and the proposed methods and measures have been implemented as a set of
Matlab routines in the SOM Toolbox software library.

Secondly, a framework for SOM-based data exploration of table—format data — both
single tables and hierarchically organized tables — has been constructed. The
framework divides exploratory data analysis into several sub—tasks, most notably the
analysis of samples and the analysis of variables. The analysis methods are applied
autonomously and their results are provided in a report describing the most important
properties of the data manifold. In such a framework, the attention of the data miner
can be directed more towards the actual data exploration task, rather than on the
application of the analysis methods. Because of the highly iterative nature of the data
exploration, the automation of routine analysis tasks can reduce the time needed by
the data exploration process considerably.

© All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior permission of the author.

Preface

This doctoral thesis has been made in the Laboratory of Computer and Information
Science in the Helsinki University of Technology, in 1997-2002.

I most sincerely thank Professor Olli Simula for his supervision and encourage-
ment, as well as him and Academy Professor Erkki Oja for their support during this
work. The Laboratory of Computer and Information Science together with the Neural
Networks Research Centre has provided an excellent environment for research, both
in terms of facilities and inspiration. | also feel much obliged to Academician Teuvo
Kohonen on whose work this thesis, as well as the existence of the Neural Networks
Research Centre, is ultimately based on.

I am deeply indebted to those who read various versions of this thesis and provided
invaluable comments: Professor Samuel Kaski, Professor Jaakko Hollmén, Lic. Tech.
Esa Alhoniemi and Dr. Ignazio Diaz, and the reviewers Dr. Jari Kangas and Professor
Jouko Lampinen. Also invaluable has been the support and the spirit of comradeship of
the Intelligent Data Engineering research group: Jussi Ahola, Johan Himberg, Sampsa
Laine, Jukka Parviainen, and other past and present members. All in all, the whole
laboratory has been a place of enjoyment and inspiration. Big thanks to the whole
personnel for making it so.

During the course of this work, | have participated in several projects, including the
’Adaptive and Intelligent Systems Applications’ technology program of Technology
Development Center of Finland, especially the ENTIRE and ENTIRETY corporate
projects with Jaakko P&yry Consulting, the EU financed Brite/Euram project *Applica-
tion of Neural Network Based Models for Optimization of the Rolling Process’ (NEU-
ROLL) and the *Kayttijaystavallinen data-analyysi’ (KAD). | would like to express
my appreciation to the financiers of and my coworkers in those projects, especially Dr.
Petri Vasara and Mr. Markus Siponen from Jaakko Péyry Consulting.

The financial support of the Finnish Foundation for the Promotion of Technol-
ogy, the Finnish Foundation for Commercial and Technical Sciences, Kauhajoen kult-
tuurisaatid, and the Finnish Cultural Foundation is gratefully acknowledged.

Most of all, I would like to dedicate this thesis to my dear wife Riikka. Special
thanks to you for your support and forbearance.

List of publications

This thesis consists of an introduction and the following publications:

Publication 1. Juha Vesanto (1997). Using the SOM and Local Models in Time-
Series Prediction. In Proceedings of Workshop on Self-Organizing Maps (WSOM’97),
Espoo, Finland, pp. 209-214.

Publication2. Esa Alhoniemi, Jaakko Hollmén, Olli Simula and Juha Vesanto (1999).
Process Monitoring and Modeling Using the Self-Organizing Map. In Integrated Com-
puter Aided Engineering Volume 6, Number 1, 10S Press, pp. 3-14.

Publication 3. Juha Vesanto (1999). SOM-Based Data Visualization Methods. In In-
telligent Data Analysis, Volume 3, Number 2, Elsevier Science, pp. 111-126.

Unfortunately some references were missing from the original publication (from
Tables 1 and 2). An Errata page can be found after the publication.

Publication 4. Esa Alhoniemi, Johan Himberg and Juha Vesanto (1999). Probabilis-
tic Measures for Responses of Self-Organizing Map Units. In Proceeding of the In-
ternational ICSC Congress on Computational Intelligence Methods and Applications
(CIMA’99), ICSC Academic Press, pp. 286—290.

Publication 5. Juha Vesanto and Jussi Ahola (1999). Hunting for Correlations in
Data Using the Self-Organizing Map. In Proceeding of the International ICSC Congress
on Computational Intelligence Methods and Applications (CIMA’99), ICSC Academic
Press, pp. 279-285.

Publication 6. Juha Vesanto, Johan Himberg, Esa Alhoniemi and Juha Parhankangas
(1999). Self-Organizing Map in Matlab: the SOM Toolbox. In Proceedings of the Mat-
lab DSP Conference 1999, Espoo, Finland, pp. 35-40.

Publication7. Juha Vesanto and Esa Alhoniemi (2000). Clustering of the Self-Organizing
Map. In IEEE Transactions on Neural Networks, Volume 11, Number 3, pp. 586-600.

Publication 8. Juha Vesanto (2001). Importance of Individual Variables in the k-
Means Algorithm. In Proceedings of the Pacific-Asia Conference Advances in Knowl-
edge Discovery and Data Mining (PAKDD2001), Springer-Verlag, pp. 513-518.

Publication 9. Markus Siponen, Juha Vesanto, Olli Simula and Petri Vasara (2001).
An Approach to Automated Interpretation of SOM. In Proceedings of Workshop on
Self-Organizing Map 2001 (WSOM2001), Springer, pp. 89-94.

Publication 10. Juha Vesanto and Jaakko Hollmén (2002). An Automated Report
Generation Tool for the Data Understanding Phase. In Hybrid Information Systems,
edited by A. Abraham and M. Koéppen, Physica Verlag, Heidelberg, pp. 611-626.

This numbering is used in the main text when referring to the publications.

Abbreviations

BMU
CCA
CRISP-DM
CT™M
EDA
EM
GMM
GTM
HSV
ICA
KDD
LVQ
MDS
PCA

pdf

RBF
SOM
STVQ
TS-SOM
VQ-P

Best Matching Unit

Curvilinear Component Analysis
CRoss Industry Standard Process model for Data Mining
Constrained Topological Mapping
Exploratory Data Analysis
Expectation Maximization

Gaussian Mixture Model

Generative Topographic Mapping
Hue-Saturation-Value color model
Independent Component Analysis
Knowledge Discovery in Databases
Learning Vector Quantization
Multi-Dimensional Scaling

Principal Component Analysis
probability density function

Radial Basis Function network
Self-Organizing Map

Soft Topographic Vector Quantization
Tree-Structured Self-Organizing Map
Vector Quantization and Projection

Notations

a(t)
[ati, Bi]

p(x)
PC
Pd
Qj

RC

learning rate at time t

range of values allowed for variable i in a rule

a noise or variance parameter

index of the best-matching unit for a data vector Xx;
the number of clusters

cluster i, or the collection of data vectors belonging
to cluster i: {x|x € C;}

neighborhood radius at time t

set of distances ||mj —mj]| of unit i

to neighboring map units j € Aj

input space dimension

distance between vectors x; and Xj in the input space
distance between the projections of

vectors xj and Xj in the output space

distance between clusters Cj and C;

some error or cost function

neighborhood kernel centered on unit i

and evaluated at unit j

the sum of neighborhood function values for

uniti: Hj = zj hij

number of quantization points in a k-means algorithm
number of effective quantization points for variable j
the number of map units / prototypes

prototype vector of unit i

kth component of the prototype vector of unit j
mean of variable j

the number of data samples

number of data samples in Voronoi region V;

or in cluster C;

the set of neighboring map units of unit i

centroid of Voronoi set or cluster i

probability density function of random variable x
confidence in characterizing rule

confidence in differentiating rule

quantization quality of variable j

arule

characterizing rule

differentiating rule

ri location of neuron i in the output space (on the map grid)

r(x,mj) response of map unit j to data vector i

Oj standard deviation of variable j

S(Cy) within-cluster distance measure in cluster C;
Sij significance of variable i in cluster j

\ the Voronoi region around unit i

X a vector in the input space

Xi a sample vector i from the input data set

Xik kth component of sample vector i

Xii Z-score of kth component of sample vector i

Contents

Introduction

1.1 Background

1.2 Contributions
1.2.1 Dataexplorationframework
122 Publications.

1.3 Organization.

Data mining
2.1 Datamining proCess . . . v v v v v i e
2.2 Dataunderstanding and exploration

Self-Organizing Map

3.1 ThebasicSOM
3.1.1 Trainingalgorithm
3.1.2 Qualitymeasures
3.1.3 \ectorquantization,
3.1.4 \ectorprojection
3.1.5 Computational complexity
316 Examples
3.2 \Variantsand related algorithms oL
3.2.1 Generalize<dmedianSOM
3.2.2 Soft topographic vector quantization
3.2.3 Relatedalgorithms
3.3 DISCUSSION

Data exploration methods

4.1 Visualization of multivariate numericaldata
411 Projection
4.1.2 Parameterizedmarkers
4.1.3 Multiple small visualizations
4.2 VisualizationbasedonSOM,
4.2.1 Map grid as a visualization platform
4.2.2 Visualizationofclusters
4.2.3 Visualizationof variables.
4.2.4 Visualizingdataonthemap
43 Clustering
43.1 Clusterdistances e
4.3.2 Clusteringalgorithms.

vii

LW NN P -

4.3.3 Clustering based on SOM

5 SOM-based data exploration
5.1 Analysis of table-format data

6 Conclusion
A Data sets used in examples

B SOM-algorithmin C

51.1 Sampleanalysis.
5.1.2 \Variableanalysis
5.1.3 Automatically generated report
5.2 Analysis of hierarchical data sets
53 DISCUSSION

viii

4.3.4 Clusterhierarchy
4.3.5 Cluster characterization
4.4 Local modelingusingSOM
45 DISCUSSION o e e e

Chapter 1

| ntroduction

1.1 Background

Data mining refers to the application of a wide array of methods — ranging from
relational learning to statistics and neural networks — to process and analyze data [5,
32, 45]. The purpose is to find knowledge from databases where the dimensionality,
complexity, or amount of data is prohibitively large for manual analysis. This is an
interactive process which requires that the intuition and background knowledge of ap-
plication experts are coupled with the computational efficiency of modern computer
technology.

Data mining has its roots in various scientific disciplines, but the most notable root
is the field of exploratory data analysis (EDA) [51, 130] in statistics in the 70’s. Back
then, the term “data mining” had a negative nuance. It referred to the danger of finding
patterns from data even if none existed: if one keeps looking long enough, something
is bound to come up.

In the late 80°s and especially in the 90’s the term was given a different meaning.
Advances in computing and digital storage technology made it feasible to create huge
databases, and the term was an appropriate slogan for the task of finding the “golden
nuggets” from them. As an independent research area data mining arose in the 90’s,
and as a recognized industry it is only now beginning to be established [109]. Strictly
speaking, data mining is just a part of Knowledge Discovery in Databases (KDD) [31],
but often (and in this thesis as well) the two terms are used synonymously.

The Self-Organizing Map (SOM) [80] is a neural network algorithm that is based
on unsupervised learning. It was first proposed by Academician Teuvo Kohonen in
1981 as a visualization tool [77], and has since become one of the most popular neural
network methods.

The data domain of the basic SOM is numerical table-format data. Such data can
be presented as a matrix which has N rows each of which is one d-dimensional data
sample xi = [Xi1, ..., Xid]. Each sample corresponds to one object, for example a time-
point, person or a paper machine, and the vector components are (numerical) values
of a fixed set of features of that object®. This kind of data is frequently encountered in
process analysis, social sciences, and economics, to name a few application areas.

1A recently introduced extension of the SOM based on generalized median is applicable to a much larger
data domain: it is sufficient if there exists a distance measure between objects [85].

The SOM quantizes the training data into a representative set of prototype vectors
and maps them on a low-dimensional grid. The point density of the prototypes follows
roughly the probability density of the data. The training algorithm is simple, robust to
missing values, and — perhaps most importantly — it is easy to visualize the map.
These properties make SOM a prominent tool in data mining, especially in its initial
exploratory phase.

The use of the SOM in exploratory data analysis has been previously studied in [64],
where an overview of the properties of the SOM from the data exploration point of view
is given, and it is compared to various related algorithms, especially projection algo-
rithms. This thesis concentrates more on clustering using the SOM, and gives a more
detailed description of how it can be used to characterize properties of the data.

The motivation for this work has come from a number of practical data mining
projects, where SOM has been a central data analysis tool. For the author, the orig-
inal inspiration came from a project where world’s forest industry was investigated.
The investigated database contained technical information of over 4000 pulp and paper
mills of the world, and over 8000 pulp lines and paper machines in them. A SOM-based
data analysis tool was implemented, and a clustering of pulp and paper mills, and forest
industry companies was made [137, 143].

In that project, it became apparent that while the SOM could be used to quickly
create a qualitative overview of the data, turning this qualitative information to quanti-
tative characterizations required a great deal of expertise and manual work. A conclu-
sion was that a set of post-processing methods to simplify and summarize the resulting
SOM would be needed [124], see Figure 1.1.

A driving goal of this work has been to construct a framework where an overview
and initial analysis of the data can be executed automatically, without user interven-
tion. Although such analysis cannot take into account any special features of a specific
data mining project, it can considerably reduce the workload of the data miner by au-
tomating many often-repeated procedures. In such context, the framework itself is of
more importance than its individual parts. More important than optimality in a certain
situation is that the applied analysis methods are robust, and that the produced results
are “good enough” in a wide array of tasks and data sets.

1.2 Contributions

1.2.1 Dataexploration framework

The main task for SOM in data mining is to act as an exploration tool for acquiring an
understanding, and for generating hypothesis about, the properties of the data. Com-
pared to the many alternative algorithms, the strength of SOM is its versatility. It can
be easily used to provide information about the basic characteristics of the data:

o Statistical properties of individual variables.
e Dependencies and relationships between variables.
e Clusters or natural groups in the data, and the properties of those clusters.

In order to make this information explicit, however, the SOM needs to be visualized or
post-processed in some other way. The primary aim of this work has been to investi-

Visualization

‘ Data collection H Preprocessing }—»‘ Normalization H SOM training Clustering

Local modeling

data —— data I //

Figure 1.1: Applying the SOM in data mining. After data collection, the data is prepro-
cessed, normalized, and a SOM is trained. This thesis concentrates on the processing
that happens after training the SOM: visualization, clustering and constructing local
models.

gate these post-processing methods, propose enhancements to them, and thus provide
a better understanding of how the SOM can and should be used for data exploration.

A major contribution of this thesis is to construct a SOM-based data exploration
framework. The core application areas of the SOM in data exploration are identified
and presented as components of this common framework. It is shown how the frame-
work relates to the overall data mining process, and the core components are compared
to other, closely related methods to gain a better understanding of the possibilities,
strengths, and weaknesses of the SOM in data exploration.

In the publications, the validity of SOM-based data exploration methods are inves-
tigated, and various enhancements are proposed. Instead of a deep analysis of a single
application area, an attempt has been made to cover all core areas of the SOM-based
exploration process. A software library for SOM training, visualization and analysis
has been implemented. In addition to the results in the publications, a dis-composition
of the SOM distortion measure into component parts is presented in this introduction.
Below, the contents and contributions of the publications are discussed in more detail.

1.2.2 Publications

In Publication 1 (Vesanto 1997), local modeling of a chaotic time-series is investigated.
The data is first quantized using SOM, and then simple linear models are constructed
locally for each map unit using the data in the map unit and in its neighbors. The
novelty with respect to earlier combinations of SOM and local linear models is how
the local data sets are constructed. Another difference is that in this work, the models
are constructed afterward, rather than simultaneously with training the SOM. This ap-
proach reduces the computational complexity of training the SOM as well as frees one
from having to choose the predicted variable beforehand.

In Publication 2 (Alhoniemi, Hollmén, Simula and Vesanto 1999), the basic method-
ology of applying SOM for data analysis is presented. Possible applications in process
monitoring and modeling are given, and three illustrative case studies are described.
The author was responsible for the pulp and paper mills case study and describing
validation, interpretation and visualization methods for the SOM.

In Publication 3 (Mesanto 1999), an overview and categorization of SOM-based

data visualization methods is presented. The categorization indicates the range of vi-
sualization tasks that the SOM is suitable for, and links the SOM to other visualiza-
tion methods. In addition, some novel enhancements to existing methods are proposed:
component plane reorganization (further investigated in Publication 5) and several
ways to visualize the position of a data sample on the SOM.

Publication 4 (Alhoniemi, Himberg and Vesanto 1999) deals with forming a kernel
density estimate enabling one to quantify the response of the SOM units to presented
data samples in a probabilistic manner. A Gaussian kernel is inserted at each map unit,
and its covariance matrix is estimated using the local data. The main novelty with re-
spect to earlier methods is in how the local data sets are augmented from the neighbors
of the map unit. Three different ways to do this are tested, and the density estimates are
compared with those produced by Gaussian Mixture Models (GMM) and by S-Map
algorithm. The author was responsible for the original idea, took part in designing and
executing the tests and writing the publication.

In Publication 5 (Vesanto and Ahola 1999), detection of correlations between vari-
ables using SOM is investigated. A simple method — component plane reorganization
— is presented to enhance this task in the case of a large number of variables. Essen-
tially, a representation for the variables is selected, for example the correlation coeffi-
cients between variables, and these are projected on a plane. Different variations of the
method are evaluated on a complex test data, and an application to the analysis of data
from a hot strip steel mill is presented. The author was responsible for the idea, design
of the experiments, and writing the paper.

In Publication 6 (Vesanto, Himberg, Alhoniemi and Parhankangas 1999) a software
package is introduced which implements SOM training, visualization and analysis al-
gorithms in Matlab computing environment?. Its performance in terms of computa-
tional load and memory consumption is evaluated and compared to a corresponding
C-program. The author was responsible for coordination of the software development,
implementation of elementary training and analysis routines, the performance evalua-
tion and was mainly responsible for writing the paper.

In Publication 7 (Vesanto and Alhoniemi 2000), an overview of SOM-based clus-
tering methods is presented. The role of clustering in data exploration is discussed, and
a novel method for pruning hierarchical clustering trees is proposed. Using SOM for
clustering is essentially a two-phase approach: at the first phase, the SOM pre-clusters
the data, and in the second phase the SOM units are clustered. Two different approaches
for clustering the SOM are presented and compared with clustering the data directly.
The most important benefit of the two-phase approach is a considerable decrease in
computational load, making clustering of large data sets feasible. The paper was joint
work, but the author had main responsibility of agglomerative clustering of the SOM
and the comparison between direct and two-level clustering approaches, whereas the
second author was responsible for partitional clustering.

In Publication 8 (Vesanto 2001), the problem of scaling variables in vector quanti-
zation is investigated. The error of k-means algorithm is investigated in terms of vari-
ables, and is shown to depend on three factors: variance, distribution characteristics,
and dependencies with other variables. Two novel measures of representation quality
of individual variables are proposed. Both measures are invariant with respect to vari-
ance.

In Publication 9 (Siponen, Vesanto, Simula and Vasara 2001), methods for interpre-
tation of SOM clusters and a framework for (semi)automated analysis of hierarchical

2By MathWorks, Inc. ht t p: / / waw. mat hwor ks. com

data is presented. In this framework, the clusters are derived automatically, and then
characterized by ranking the variables, and by constructing characterizing rules for the
variables. For forming the characterizing rules, a novel measure of significance is pro-
posed. In case of hierarchical data, the clusters form new variables for the upper level
data, and the characterizations allow one to give them meaningful names. The author
was responsible for the rule generation algorithm and for writing most of the paper.

In Publication 10 (Vesanto and Hollmén 2002), the outline of a system for automat-
ically generating data survey reports of table-format numerical data is described. The
focus of the paper is on constructing a cluster hierarchy and on describing the clusters.
Novel algorithms for doing these tasks are proposed. In the system, different methods
and representations are combined to produce a unified and comprehensive report of the
properties of the data manifold. A case study illustrating the usefulness of the report
using real-world data is also presented. The author had main responsibility of design
and implementation of the reporting system as well as writing the paper.

1.3 Organization

In this chapter, the background, goals and publications associated with this work have
been presented. The rest of the thesis is organized as follows. In Chapter 2, the data
mining process in general is shortly presented, and the role of data exploration in it is
discussed. In Chapter 3, the SOM algorithm and its relationships to other algorithms are
discussed. In Chapter 4, some data exploration methods for visualization and cluster-
ing of data are presented. The use of SOM for these tasks is discussed and compared to
other methods. In addition, a short introduction to SOM-based local modeling is given.
In Chapter 5, process models for automating data exploration of table-format data are
presented, and an autonomous report generation system is described. The work is con-
cluded in Chapter 6.

Throughout the thesis, two table-format data sets called “system” and “mills” are
used to illustrate the presented methods. The system data is a relatively simple 9-
dimensional data set measuring the disk, CPU and network performance of a work-
station in a network environment. The mills data is the pulp and paper mill data set that
was the original inspiration for this work. The data sets are described in more detail in
Appendix A.

Chapter 2

Data mining

Data mining is essentially a problem-driven process: there is a question that needs an
answer, or a problem that needs a solution. The answer is sought by analyzing available
data. Data analysis forms the core of data mining, but the whole data mining process
covers also related issues such as defining the actual business problem and deploying
the solution to solve it.

This thesis concentrates on the initial exploratory phase of data mining. The aim
is to provide a description of the most important properties of a given data set. The
SOM-based methods offer one possible path from the data to its characterization.

The other aim is to provide the description automatically, such that the workload
of the data miner is reduced. To do this, the usually ad hoc type of data exploration
needs to be formalized. This chapter provides the background and basic framework for
a formal data exploration process. Chapter 5 describes the process in more detail and
integrates the methods discussed in Chapters 3 and 4 with it.

2.1 Datamining process

To facilitate the data mining process, there have been attempts to formalize it by break-
ing it into a number of sequential phases [12, 16, 31, 111]. Although the names and
contents of these phases differ slightly, the same overall ideas are present in all process
models: first the data miner familiarizes him/herself with the problem and the data, then
the data is prepared and models are built and evaluated. Finally, the new knowledge is
consolidated and deployed to solve the problem.

One of the most advanced data mining process models is the CRoss Industry Stan-
dard Process model for Data Mining (CRISP-DM) [16], illustrated in Figure 2.1. It
has been developed and endorsed by a consortium of some of the major companies in
data mining industry® and it covers the whole life-cycle of a data mining project. In
CRISP-DM, the data mining process is divided to six phases: business understanding,
data understanding, data preparation, modeling, evaluation and deployment:

e Business understanding: At first, the data miner familiarizes him/herself with the
problem domain. Domain knowledge, or business understanding, is important in
all phases of data mining. It is impossible to make decisions about what to ignore
and what to pursue further without appropriate knowledge of what is interesting,

1Most notably SPSS, Inc. htt p: / / waw. Spss. com

1
Business Data understanding | ---X--------- -)
understanding ! Data collection
\ |
Data preparation

Modeling

Data description

Data exploration

Deployment

| Quality verification
I

Figure 2.1: CRISP-DM: process model for data mining [16]. The data understanding
phase is further divided to four sub-tasks. The boxes outlined with thicker lines indicate
the focus of this thesis.

surprising, or relevant with respect to the problem that is being solved. Without
the necessary knowledge, the miner is just trashing around in the dark.

¢ Data understanding: Data understanding includes both understanding the origin,
nature and reliability of the data, as well as becoming familiar with the contents
of the data through data exploration. Proper data preparation, selection of model-
ing tools and evaluation processes is only possible if the miner has a good overall
idea, a mental model, of the data.

The CRISP-DM divides the data understanding phase to four sub-tasks:

— Collection of data starts with finding out what kind of data is available and
how it can be accessed. As opposed to experimental set-ups, in data mining
the data usually exists even before the data mining process starts. However,
it has probably been gathered for purposes other than data analysis, and
it may have been stored in multiple locations in widely different formats.
Gathering and combining the data is often very time-consuming.

— Construction of a data description provides the data miner with a docu-
mentation of both meta-knowledge — such as origin, physical source, and
access methods and protocols for the data — and rough “surface” proper-
ties of the data, for example simple descriptive statistics.

— Data exploration continues from where data description left off. Its purpose
is to evaluate possibilities present in the data as well as to acquire an overall
idea, a mind model or a map, of the data manifold: what are the typical
values, what values can be considered unusual and how different values (or
variables) are related to each other?

— Quality verification assesses whether the data is reliable and complete enough
with respect to the problem. The aim is to identify possible problems in the

data: missing values, noise, inconsistencies, and sampling bias.

e Data preparation: The fundamental aim of data preparation is to make it eas-
ier to build precise and reliable models by correcting errors and extracting new
features. Data preparation is a diverse and difficult issue. It is so application de-
pendent that only some general guidelines for it can be given [111].

e Modeling: Modeling is the phase where the solution to the problem is sought.
The previous phases are basically preparation for modeling and the later phases
deal with its deployment in practice, but the actual solution is specified at this
phase. The solution may be a predictive model, or more descriptive in nature:
a segmentation or clustering of the data into a set of distinct groups, analysis
of certain properties like dependencies between variables, or an estimate of the
probability density function of the data. Modeling is perhaps the most thoroughly
discussed issue in the literature, see for example [8, 18, 20, 114].

e Evaluation: Before deploying the solution, it needs to be evaluated from the
point of view of the original business problem: to determine whether the found
solution is good enough to be deployed. Note that besides the solution, the data
mining process generates insights, ideas, and secondary models. These are also
important with respect to the business problem.

e Deployment: Finally, the solution is employed to solve the original problem.

In practice, the data mining process is highly iterative. Any phase may raise ques-
tions or ideas that need to be investigated or implemented in an earlier phase. Consider,
for example, the loops between business and data understanding, and data preparation
and modeling in Figure 2.1. Both loops may require considerable iteration to determine
what kinds of patterns are interesting or relevant with respect to the business problem,
and how they can be extracted from the data.

2.2 Data understanding and exploration

This thesis is mainly concerned with the data understanding phase of CRISP-DM. This
phase can be found in most other data mining process models, too, albeit under a dif-
ferent name. In [111], Pyle introduces the concept of data survey for getting a feel of
the data manifold. In Brachman’s process model [12], a phase called “data discovery”
serves the same purpose. The knowledge discovery process in [31] does not explicitly
list a data understanding phase. However, the corresponding task is closely integrated
into the loop of data preparation and analysis.

The goal of data understanding is to get a feel for what the data looks like, what
situations it covers (and what not), and how reliable it is. The methods do not aim at
making a precise model of the data but rather making sense of it. After gaining holistic
understanding of the data as a whole, it is possible to return and inspect the details more
carefully.

The core of data understanding, and the focus of this thesis, is exploratory data
analysis. A high-level view of the data exploration process is presented in Figure 2.2.
The process consists of preprocessing, analysis and review phases.

¢ In the preprocessing phase, the original raw data is cleaned and transformed so
that it presents interesting data properties more clearly, has no or at least fewer
erroneous values, and is in a form suitable for the subsequent analysis methods.

Data exploration

‘, 3 Sample analysis :
@—— Preprocessing 3 .
3 Variable anaysis :

Figure 2.2: Data exploration process for table-format data (inside the box drawn with
a dotted line). The preprocessing—analysis—review loop is close to the preparation—
modeling loop in CRISP-DM. In fact, the difference between data exploration and the
actual data analysis is often vague. Rather, they can be considered two ends of the same
line.

Data samples Variables

Figure 2.3: Table-format data can be investigated both in terms of samples and in terms
of variables. Typically, the number of samples is much higher than the number of vari-
ables.

e After preprocessing, analysis methods are applied. Numerical table-format data
can be explored from two viewpoints, see Figure 2.3. On one hand, the table can
be considered horizontally, as a collection of data samples, where the similarities
between individual data objects are considered interesting. On the other hand, the
table can be investigated vertically, as a set of variables the statistical properties
and dependencies of which are the point of interest.

o Finally, the analysis results are reviewed, and the data miner decides whether to
return to some earlier phase, or to exit from the exploration loop.

A basic tenet of exploratory data analysis is to simply take a look at the data to
judge its nature and complexity. This is done by interactive browsing, for example
using visualizations, and through informative descriptive measures of the properties of
the data. To produce the visualizations and summaries, measures and algorithms from
statistics, artificial neural networks, rule induction, and various other disciplines are
used. In the case of table-format data, especially important are projection and clustering
methods for the analysis of data samples, and multivariate statistics for the analysis of
dependencies between variables. Other data domains, for example categorical data,
text analysis and time-series analysis have their own exploratory algorithms. However,
these algorithms are out of the scope of this thesis.

Due to the iterative nature of the data mining process, several different data sets and
preprocessing strategies need to be considered and explored. One goal of this thesis is
to make the process less time-consuming by automating parts of it. In Publication 10,
a system is described which generates data survey reports autonomously allowing the
user to move directly from the data preprocessing to the review step. Because of the
highly iterative nature of the data exploration process — and the whole data mining
process in general — such a system can reduce the active working time needed from
the data miner considerably.

10

Chapter 3
Self-Organizing Map

The Self-Organizing Map (SOM) is one of the most widely used neural network meth-
ods [80]. It is mainly used for visualization and clustering of data. The applications
range from process monitoring [122] to organization of document collections [82].
In [22] a number of data analysis cases related to economics are presented in which
the SOM has been an important tool. More examples of fruitful usage of the SOM
in various engineering tasks can be found for example in [84, 123]. A comprehensive
bibliography of SOM research until 1997 has been compiled by Kaski et al. [66].

The basic SOM algorithm described in this chapter is fairly well established. The
main contributions of this thesis deal with post-processing a trained SOM (Chapter 4),
and with formulating the SOM-based data exploration process (Chapter 5). In addition,
this chapter presents two original contributions. In Section 3.1.2, the SOM distortion
measure is divided into three component parts which offer some insight into the nature
of the SOM algorithm. This result has not been published elsewhere. In Section 3.1.3,
an important but often ignored viewpoint into the quantization problem is discussed:
how properties of individual variables effect the quantization result. This has been in-
vestigated in Publication 8.

3.1 Thebasc SOM

The basic SOM consists of M units located on a regular low-dimensional grid, usually
1- or 2-dimensional, see Figure 3.1. Higher dimensional grids are possible, but they are
not generally used since their visualization is problematic'. Each unit j has an associ-
ated d-dimensional prototype vector mj = [mjz,...,mjq]. The unit positions rj on the
grid are fixed from the beginning. The map adjusts to the data by adapting the proto-
type vectors. Together the grid and the set of prototype vectors form a low-dimensional
map of the data manifold: a 2-dimensional representation where topologically closely
related objects (map units) are close to each other.

IThere are, of course, exceptions. For example, Kiviluoto has visualized 3-dimensional map grids suc-
cessfully [72]. If visualization is not needed, even higher than 3-dimensional grids may be beneficial [126].

11

(a) Hexagonal grid (b) Rectangular grid

Figure 3.1: Two SOMs of size 5 x 5 units: (a) hexagonal lattice, (b) rectangular lattice.
The lines indicate neighborhood sets A¢ = { | ||ri — rj|| < o} at different neighborhood
radius values (o = 0, 1, and 2). In this thesis, unless otherwise specified, o = 1 is used
to define the neighborhood of each unit.

3.1.1 Training algorithm
Sequential training algorithm

The SOM algorithm is iterative. At each training step t, a sample data vector x; is
randomly chosen from the training set. Distances between x; and all the prototype
vectors are computed. The best-matching unit (BMU), denoted here by b;, is the map
unit with prototype closest to x;:

bi = argmin{]lx; —m; ()1} (3.1)

If the sample vector x; has some missing values, those variables are ignored in the
distance calculation and in the subsequent update step.

Next, the prototype vectors are updated by moving them toward X;, as shown in
Figure 3.2. The update rule for the prototype vector j is:

mj(t+1) = m;(t) + a(t)hyj(t)[xi — m;(t)], 3.2)

where t is the training step index, a(t) is learning rate and hy,j(t) is a neighborhood
kernel centered on the winner unit. The kernel gets its biggest value for the winner unit,
and decreases monotonically with increasing distance on the map grid ||ry, — rj||. The
kernel can be for example Gaussian:

g2
hbij(t) =e 20, (3.3)

where ry, and rj are positions of units bj and j on the SOM grid and of(t) is neigh-
borhood radius. Both the learning rate a(t) and the neighborhood radius o(t) decrease
monotonically during training, learning rate to zero, and neighborhood radius to some
suitable nonzero value, typically one. In the rest of the thesis, the step index t will be
left out for sake of brevity.

During training, the SOM behaves like a flexible net that folds onto the “cloud”
formed by the training data. Because of the neighborhood relations, neighboring pro-
totypes are pulled to the same direction, and thus neighboring units acquire similar
prototype vectors.

12

Figure 3.2: Updating the best matching unit (BMU) and its neighbors toward the input
sample marked with x. The black and gray circles correspond to situation before and
after updating. The solid and dashed lines show neighborhood relations, respectively.

The prototype vectors define a tessellation of the input space into a set of Voronoi
regions or Voronoi sets Vj = {x; | ||xi —mj|| < ||xi —m|| Yk # j}, each corresponding
to one map unit. In effect each data vector belongs to the Voronoi set of the map unit
to which it is closest.

Batch map

Batch map [80] is a version of the SOM based on fixed point iteration. In each training
step, the BMUSs b; of all data vectors are found at first as in Eq. 3.1. After this, the new
prototypes are calculated as:
_ I hy i
ZE\‘=1 P j
The new prototypes are weighted averages of the data samples, such that the weight of
each data sample is the neighborhood kernel value hy,j at its BMU b;. The basic SOM
is a stochastic approximation of the Batch map algorithm.
Alternatively, the update can be calculated as a weighted average of the Voronoi set
centroids nj = Nij 3 xiev; Xi:

mj (3.4)

_ Sy Nihijn;

PN
where Nj is the number of samples in Voronoi set Vj. This allows a much more efficient
matrix-based implementation than using Eq. 3.4 directly [138, 141].

(3.5)

3.1.2 Quality measures
Distortion measure

In order to understand the SOM algorithm, it is important to know what kind of SOMs
are “good”. For many algorithms, a cost or energy function exists which explicitly

13

defines the optimal situation. However, for the basic SOM algorithm it has been shown
that it is not the gradient of any cost function in the general case [29]. In case of a
discrete data set and fixed neighborhood kernel, the map distortion measure

N M
Eq= hi j[IXi — mj |2 (3.6)
2,2,

can be shown to be a local cost function of the SOM [78]. When the BMU index b;
of any of the data samples x; changes, the cost function changes slightly, and thus
the SOM only gives an approximate solution to Eq. 3.6. If one is only interested in
minimizing Eq. 3.6, the solution can be obtained by changing the definition of winner
(Eq.3.1) to

b Zargmjin{ghjkuxi_mkHZ}; (3.7)

but this is computationally much heavier than the basic SOM [48].

In [93], Lampinen and Kostiainen propose a generative probability density model
which is consistent with the distortion measure. The probability density is a mixture of
cut Gaussians each existing within one Voronoi cell. The density is discontinuous on
the borders of the Voronoi cells. Inside a Voronoi region, the density function has the

form:
e
p(x|x €Vj) = Ze i (3.8)
where Z is a normalization constant, and 3 is a variance parameter which is set after
training the SOM such that the likelihood of the data is maximized. The other parame-
ters are defined as:

o~ 2khikmk _ Fhim (3.9)
. Yk hijk H;j '
1
2 _ =
S5 28H; (3.10)
W = Zhjk”mk—m_j”z (3.11)

where Hj = S hjk (see Figure 3.3). Notice that m; is the weighted mean of the proto-
type vectors, where the neighborhood function values hjy are used as weighting factors:
mj = En{m|j}. Equally, W;j can be interpreted as a weighted total variance of the pro-
totype vectors: Wj = HjVarp{m| j}. Using these terms, Eq. 3.8 can be written as:

p(x|x €Vj) = 7o~ BH; (Varn{m|j}-+|x—m;[|?) (3.12)

Elements of the distortion measure

The distortion measure Eq4 can be divided to two component parts [95, 64]:

N M M
Ea =" Hyllxi—ng;l 2+ S Ni $ hijlIni = mjl|?, (3.13)
2, 2N 2,

where bj is the index of the BMU of data vector xj, N; is the number of data items
in the Voronoi set V; of unit i, and nj is their centroid ¥ ey, X/N;. If the neighborhood
function values for each map unit are normalized to unity such that H; = 1, Vi, the first

14

1 7.26
HI
h(150,i)
. 0.5 . 5.15

0 3.05
Figure 3.3: Neighborhood function values for the unit in the center (on the left), and
the sum of neighborhood function values H; for each map unit (on the right).

term corresponds to classical vector quantization error (see Section 3.1.3). It can also
be expressed as a sum over the variances in each Voronoi set:

N M M
Ho 1% —np 12 = S Hj § lIxi—njll> =S HjNjVar{x|j}.

The second term can be further divided to two parts such that the distortion measure
can be expressed as a sum of three component parts Eq = Eqx + Enp + Env:

M
Eg =y NjH;(Var{x|j} + [In; = mj[[2 + Vary {m] j})
=1

M M M
=Y NjHjVar{x|j}+ ¥ NjHjlInj —mj||>+ $ NjH;Vary{m|j}.
Bty 3 i -3

/

qu Enp Eny
(3.14)

The term Eqx measures the quantization quality of the map. Notice that it is the
only term that involves the data vectors x; directly. The last term Ep, corresponds to
the ordering quality of the map by measuring the weighted variance of the prototype
vectors in the neighborhood. It gets lowest values when the prototype vectors are as
close to each other as possible. In terms of E;, the ideal placement for the prototype
vectors is one where they form a regular, as tightly packed grid as possible. The middle
term E,p, measures the neighborhood-induced bias in quantization. It can be interpreted
as the stress between quantization and ordering properties.

Other quality measures

In addition to Eg, several other quality measures have been proposed and used for the
SOM. The quantization property is usually measured using quantization error:

N
Eq=Y [Ixi—mpy > (3.15)
1= 2 I

15

Other measures, which also take the neighborhoods into account have been proposed
in [21, 42, 63, 73, 136, 144, 145].

3.1.3 Vector quantization
Classical vector quantization

Vector quantization algorithms [39] try to find a set of prototype vectors m;,i=1,...,M
which reproduce the original data set as well as possible. The best known algorithm to
find these prototypes is the k-means algorithm [107]. It finds a set of M = k prototype
vectors which minimize the quantization error:

=z

Eq:

Z| -

d
Z |Xij —mbij|r, (3.16)
=1

where bj is the index of the best matching prototype (according to Eq. 3.1), and r is the
distance norm (r = 2 for Euclidean metric). The point density of the prototypes follows
the density of the training data. Asymptotically it holds that:

p(m) 0 p(x)a+ (317)

where d is the dimension and p(x) and p(m) are the probability density functions of
the input data and the prototype vectors, respectively [37, 79, 149].

Quantization reduces the original data set to a small representative set of prototypes
to work with. The representative set of prototypes can be utilized in computationally
intensive tasks, like clustering or projection, to get approximative results with reduced
computational cost, as done in Publication 7. This reduction is important especially in
data exploration. In addition, since the prototypes are formed as averages of the data
samples, the effect of zero-mean noise as well as outliers are reduced.

SOM as a quantization algorithm

The SOM is closely related to the k-means algorithm. If the neighborhood kernel value
is one for the BMU and zero elsewhere (hy,j = 8(bj, j) in Eq. 3.2), the SOM reduces
to the adaptive k-means algorithm. Equally, the Batch Map algorithm reduces to batch
k-means.

The difference between classical vector quantization and SOM is that the SOM
performs local smoothing in the neighborhood of each map unit. This smoothing cre-
ates the ordering of the prototypes, but when the neighborhood radius o is decreased
during the training, it also implements a simulated annealing type of learning scheme
that makes the quantization process more robust. There are also two side-effects (see
Figure 3.4):

e Border effect. The neighborhood definition is not symmetric on the borders of
the map. Therefore, the density estimation is different for the border units than
for the center units of the map [80, 93]. In practice, the map is contracted on the
borders. This has the effect that the tails of the marginal distributions of variables
are less well presented than their centers. In some cases, this may help to reduce
the effect of outliers, but in general, this is a weakness of the SOM.

e Interpolating units. When the data cloud is discontinuous, interpolating units are
positioned between data clusters providing convenient interpolating estimates of

16

S

g

%
9
JeL

A

e

VALY

(a) Border effect (b) Interpolating units

Figure 3.4: Two side effects caused by the neighborhood function: (a) border effect and
(b) interpolating units. The + are the training data, and the connected grid of circles is
the map.

the data distribution. However, in case of some analysis tools, for example single
linkage clustering, these may give false cues of the shape of the data manifold
and may need to be deemphasized or completely left out of analysis, as done in
Publication 7.

For SOM, a power law similar to Eq. 3.17 has been derived in one-dimensional
case [116]:

2_ 1
p(m) O p(x)° 373012, (3.18)

where o is the neighborhood radius on both sides of each map unit. Even though the
power law holds only when the number of prototypes approaches infinity and neigh-
borhood width is very large, numerical experiments have shown that the results are
relatively accurate even for a small number of prototypes [79]. Thus, while the connec-
tion between the density of prototypes of SOM and the input data has not been derived
in the general case, it can be assumed that the SOM follows at least roughly the density
of the training data.

Importance of variables in quantization

One way to look at the quantization problem is in terms of variables. Some variables
are more important with respect to quantization than others. By adding, removing, or
rescaling variables, a different quantization result is acquired because the quantization
error function Eq changes correspondingly. How well each variable is represented in
the quantization depends on how strongly the variable effects the total quantization
error. The importances of variables defines the “viewpoint” of the quantization. When
quantization has a central role in data analysis, it is important to know what is this
viewpoint, because any analysis based on the quantization will reflect how well the
variables are represented.
The quantization error Eq can be expressed in terms of variable-wise errors Ej:

d 1 N) 1 d
Eq: — |xij—mbij| = = Ej. (3.19)
P VA

In order to measure the granularity of the quantization with respect to each variable,
the errors Ej can be compared to quantizations performed on each variable separately

17

with increasing number of quantization points Ej(k), k = 1,2,.... Depending on the
distribution characteristics of the variable, the quantization error decreases at different
rates. For example, for a uniformly distributed variable, the quantization error reduces
according to formula E (k) = oﬁk—z, where gj is the standard deviation of the variable.
Based on this, two importance measures for variables are proposed in Publication 8:

e The effective number of quantization points k; for variable j is the minimum
number of quantization points needed to achieve the variable-wise quantization
error Ej when variable j is quantized independently of other variables:

ki = argi {E;(K) = E;} (3.20)

The higher the kj, the more emphasis the variable gets in the quantization. In
principle, k;j can get only integer values, but in Publication 8 linear interpolation
is used to get continuous values.

e The quantization quality gj measures how close Ej is to minimum possible error.
In a quantization with M points, the minimum quantization error for a variable
is Ej(M) and the maximum error is Ej(1). Therefore

Ej—Ej(M)
U E D —EM) (32
Notice that when a variable is easy to quantize, for example when it is binary, the value
of kj may be quite low even if q; indicates a very high quantization quality. On the other
hand, k; gives a better expression of the granularity of the quantization with respect to
each variable. Thus, in practice, both measures are useful.
Publication 8 also investigates which factors effect the importances of variables.
The Ej can be expressed in terms of Z-scores. The Z-score xi; of a variable is calcu-

lated by subtracting its mean pj and dividing by its standard deV|at|on 0j: X ” = X'j(,_j“j .
However, only the coefficient effects the quantization error. Therefore

J N Z'Xll mb|J| N lexu _mb]|2 = OJ (3-22)

where EJZ is the quantization error of Z-scored variable j. Thus, the importance is highly
dependent on the variance or scale of the variable. However, it is not the only factor.
Further insight can be gained by measuring how the quantization error Eq changes
when the importance (measured by kj) of some variable increases:

AE d AEj AEj Ak AE? Ak
TR AT R R e b
Ak; AkJ AkJ/ AkJ RT3

(3.23)

Unfortunately, these effects are hard to calculate in practice, since E (k) can only be
evaluated for integer values of k. Thus Eq. 3.23 should be regarded only as an intuitive
expression which indicates that the importance of each variable in quantization depends
on three factors:

1. the scale of the variable 012-,,

o . . AE.
2. the distribution characteristics of the variable m‘:, and
J

18

. . Ve
3. the dependencies between variables: A—k‘j'.

Notice that when the data is preprocessed before quantization such that all variables
have the same variance, the quantization is only affected by the two latter properties.
Notice also that the two proposed importance measures k;j and ¢ are both invariant to
the scales of the variables.

3.1.4 Vector projection
Projection methods

Projection methods try to find low-dimensional coordinates that preserve the distances
(or the order of distances) between the originally high-dimensional objects. A classical
projection method is multi-dimensional scaling (MDS) [89] which tries to preserve
pairwise distances between all objects while reducing the dimension. The error function

to be minimized is: NN
E= (dij —di;)?, (3.24)
I;; 1] ij

where dj; is the distance between data samples i and j in the input space ||x; — X;|,
and d} j is the corresponding distance between the projection coordinates in the output
space. There is also a non-metric version of MDS which tries to preserve the rank order
of the distances [89].

In Eq. 3.24, the bigger distances have larger effect on the error function and thus
are considered much more important than details in the small scale. In other projection
techniques, for example Sammon’s mapping [119] and Curvilinear Component Anal-
ysis (CCA) [23] the nearby samples are weighted more, and thus small distances are
preserved better.

N N
Sammon’s mapping: E = _ZZ(dij_d{j)z/dij (3.25)

sz dij — dfj)%e ™ (3.26)

Note that Sammon’s mapping emphasizes small distances in the input space, whereas
CCA emphasizes output space. Examples of projections with these algorithms can be
found from Figure 3.5. Visualizations based on projection methods are further dis-
cussed in Section 4.1.1.

cca: E

SOM as a projection algorithm

The SOM has also vector projection properties. Consider the SOM distortion measure:

Zthb,J||x. mj||? = leh (dij)da. (3.27)

where h(-) is the neighborhood kernel function. Since it is usually monotonously de-
creasing function of d/;, small distances in the output space are emphasized, like in
CCA. On the other hand, since there are more map units where there is a lot of data,

19

(2) System: Sammon (b) System: CCA

(c) Mills: Sammon (d) Mills: CCA

Figure 3.5: Sammon’s mapping (a and ¢) and CCA projection (b and d) of the data sets.
For system data, the results are qualitatively very much alike: there are two groups of
tightly packed data points, both of which are further divided into several subgroups,
and a cloud of more sparsely distributed data. For mills data, the correspondences be-
tween the two projections are less obvious. Note that Sammon’s mapping for mills
data (c) only shows the central part of the projection: only 98% of the data points are
shown. The 1/d;j nonlinearity in Eq. 3.25 makes Sammon’s mapping sensitive to pairs
of close-lying data points: such points are often projected very far from the rest of the
points. Other projections of the data sets are shown in Figures 4.3 and 4.7.

20

the output space distances di’j are also dependent on the data density. Thus, the defi-
nition of locality in SOM tunes to data density as opposed to Sammon’s mapping and
CCA, where the definition of “small distance” is global.

Rather than try to preserve the original distances, the SOM orders prototype vec-
tors on a predefined map grid such that local neighborhood sets in the projection are
preserved. In a recent study it was noticed that the SOM is especially good at main-
taining the trustworthiness of the projection: if two data samples are close to each other
in the visualization, they are more likely to be close in the original high-dimensional
space as well [136]. For the other aspect of neighborhood preservation — preserving
the original neighborhood in the projection — the SOM was comparable to the other
investigated methods, which included PCA, Sammon’s mapping, hon-metric MDS and
GTM.

3.1.5 Computational complexity

An implementation of one epoch (going through the data once) of the SOM algorithm
in C programming language is presented in Appendix B. The BMU search has 3NMd
and the update step ANM(d + 1) floating point operations [138], where N is the number
of data samples, M the number of map units and d is the input space dimension, so the
computational complexity is O(NMd). The number of training epochs multiplies this
by some small number. In practice, if N > 10M, only one or two epochs of training is
sufficient. Even when M is closer to N, reasonable results can be achieved in less than
10 epochs.

The memory consumption of the algorithm is (N + M)d floating points for data
and map prototype vector matrices (assuming that the data is in the main memory,
which need not be the case). In addition, there is the matrix of inter-unit distances
which is calculated beforehand. It has M? elements, although this can be reduced to
(M —=1)(M —2)/2 floating points since the matrix is symmetric and all elements on the
diagonal are zero.

In practice, the complexity of the algorithm is mainly governed by the number
of map units. If the number of map units is chosen to be proportional to +/N as in
Publication 7, the complexity of the training is proportional to O(N*-°d). Of course,
this choice is quite arbitrary. Depending on the application, the required number of
map units may be independent of the number of data samples, or it may need to be
directly proportional to N. In [82], the trained SOM had 10000 units, but usually maps
with a few hundred map units are sufficient.

Training very large maps is time-consuming and requires a lot of memory, but
the process can be speeded up with special techniques. These are basically based on
speeding up the winner search by investigating only a small number of prototypes [65,
82, 86]. Such techniques can decrease the winner search from O(Md) to O(log(M)d).
Furthermore, the training algorithm can be easily implemented in a parallel manner [81,
96]. Thus, the SOM is applicable to very large data sets.

3.1.6 Examples

Training of the SOMs of the system and mills data sets was done using the SOM Tool-
box implementation of the SOM introduced in Publication 6. The Batch map algorithm
was used because its implementation in Matlab is considerably more efficient than that
of the basic SOM. The SOMs were initialized linearly along a plane spanned by the
two biggest eigenvectors of the data. The training parameters, selected automatically,

21

Table 3.1: Training parameters. In the SOM Toolbox, the total number of map units
is selected using a heuristic formula M = 51/N. The size of the map grid is then set
according to the ratio between the two biggest eigenvalues of the covariance matrix of
the data. The training itself is done in two phases: rough training (fromt =0tot =t;)
and fine-tuning (fromt =ty tot =t; +tp).

system mills
size | [22 x 10] =220 [20 x 16] =320
t 5 epochs 5 epochs
to 5 epochs 5 epochs
a(0) 3 3
o(ty) 1 1
oty +1t) 1 1
time 3.33s 21.2s

are listed in Table 3.1. In addition to the SOM, a quantization of the data using batch
k-means algorithm was done. The k-means algorithm was initialized with the trained
SOM prototype vectors, and trained for additional 10 epochs.

Table 3.2 lists relative errors at different phases of training for the SOMs, and for
the k-means algorithm. Figure 3.6 shows the corresponding PCA-projections of the
data and the prototype vectors. It can be seen that after linear initialization, the quanti-
zation error Eqy and neighborhood bias Eny, are rather high, but neighborhood variance
Env is very low. During the training process, the quantization error decreases and the
neighborhood variance increases such that for the system map, Eqy is lower than Ep,
at the end. For the mills map, on the other hand, the quantization error remain higher
than the neighborhood variance. The quantization error Eqx can be compared with the
quantization error Eq of the k-means. For the system map, almost optimal quantization
has been achieved.

3.2 Variantsand related algorithms

A number of variants for the SOM have been proposed (for a review, see for exam-
ple [80]). The common factor to most of these variants is that they are essentially a
collection of prototype vectors (or other local models) and a set of neighborhood rela-
tions defined between them. These are iteratively adjusted to correspond to the training
data in such a manner that neighboring prototypes become similar to each other.

In the basic SOM, the neighborhoods are defined by giving the prototypes fixed
positions r; on a low-dimensional output plane. In some situations, it is a definite ad-
vantage to be able to specify the shape of the projection beforehand, but usually this
is a handicap. The predefined map shape does not directly convey any useful infor-
mation, and there are situations where the neighborhoods are simply wrong. In many
variants — for example MST-SOM [61], neural gas [101], and GCS [34, 35] — the
neighborhood relations are considerably more flexible in order to approximate the data
better. However, this happens at the cost of making visualization more difficult. Also
several such variants of the SOM have been proposed which exist between these two
extremes: the nodes have low-dimensional positions, but this location is somewhat flex-
ible [2, 10, 36, 58, 113, 117].

22

Table 3.2: Error measures for both maps at different phases of training. The error mea-
sures have been scaled by HE;, where H = % 5™, Hj, and E; is the total variance in
the data set E; = ¥;||xi — X||?, where X is the centroid of the data. Thus, the values are
(in most cases) between [0,1]. The value of H is 6.4 for the system map and 6.6 for
the mills map, both with o = 1. The total variance is 16742 for the system map, and
248040 for the mills map. The errors for k-means have been scaled by E;.

system mills
t 0 1 t1 4+t k-means 0 1 t1+t, k-means
Eq/HE; | 0.346 0.137 0.144 0.753 0.547 0.535
Eqx/HE1 | 0.109 0.043 0.035 0.030 | 0.516 0.206 0.188 0.145
Enw/HE1 | 0.219 0.046 0.053 0.235 0.254 0.245
Ew/HE: | 0.018 0.047 0.057 0.002 0.088 0.101

n

PR

(a) System:t =0 byt=t; ©t=t+t2 (d) k-means

(e) Mills: t =0 Ht=t @t=t1+t (h) k-means

Figure 3.6: PCA-projections of the data (the gray dots) and the prototypes (the mesh)
at different phases of training (a-c) and (e-g). Figures (d) and (h) show the results of
k-means algorithm.

23

An important group of variants is based on replacing the prototype vectors with
some more complicated models. To do this, the winner search and update definitions
in the basic SOM must be replaced. An example of this based on generalized me-
dian is presented in Section 3.2.1. Other variants along this theme include maps of
auto-regressive models [94], linear models [59], subspaces [83], and probabilistic mod-
els [52].

3.2.1 Generalized median SOM

Recently, a new version of the Batch map was introduced which expands the applica-
bility of the SOM to data domains where the objects are not fixed-length vectors, for
example strings, aminoacid or phoneme sequences [85]. In this algorithm, new proto-
type vectors are calculated using generalized median or generalized mean, which can
be determined for any set of objects for which a pairwise distance function exists. The
generalized median x of a set of objects X; is:

X =argmin d(xj, x) (3.28)
X ! Xj; j

J

where d(-) is some distance measure defined for all pairs of objects (xj, X). Likewise,
the generalized mean is:
Y=argmin ¥ d(xj, Xj (3.29)
X Xj;(j
Note that in either case x need not be part of the original set of objects X.
The modified Batch map algorithm using generalized mean (or median) is:

1. Search for the BMUs. For each map unit j, collect the set V; of objects x; that are
nearest to the prototype x of that map unit.

2. Update prototypes. For each map unit j, construct the union of object sets of the
map unit j and its neighboring map units A(j (see Figure 3.1):

Vag = U Vi
ke

Let the new prototype to be the generalized median (or mean) of the set VM'

3. Repeat from step 1 until the algorithm has converged, or a predefined number of
iterations is reached.

3.2.2 Soft topographic vector quantization

Some illustrative ideas of the SOM are present in a family of algorithms called soft
topographic vector quantizers (STVQ) [98, 38]. In these algorithms, the vector quan-
tization problem of reconstructing the original data set is complicated by unreliable
transmission of the best-matching unit index, see Figure 3.7. The topographic organi-
zation of the quantization prototypes is used to minize the error due to errors in the
transmission. The transmission error probabilities are used as neighborhood function
values hj; = P(i — j) between different prototype indexes.

24

data prototypes transmission error reconstruction

L

Der
[] @b []

o o @.b*.

Figure 3.7: The error model in soft topographic vector quantization.

The optimization is done using Expectation-Maximization (EM) (see for exam-
ple [8]). In expectation step the probabilities of data points to be assigned in each unit
j are calculated:

o= 5 Tihjilxi—my |

P(jIxi) =
I zle—gikhm\lxi—mkHz’

where [3 is a parameter corresponding to inverse of noise. In the maximization step,
new prototypes are calculated:

m. = 2i%i 2k hikP(k]xi)
' siskhiP Kk xi)

In case of crisp winner assignment (3 — o), the expectation step becomes a winner-
take-all approach P(j|x;) = 8(]j,bi), where &(-,-) is the Dirac delta function, and b; =
argmin;j 3y hjkl|xi — m[|? (Eq. 3.7). If the winner definition is further replaced with
bi = argminj ||xi — mj||? (Eq. 3.1), the Batch map algorithm results. Thus, the Batch
map learning rule can be regarded as a computationally efficient approximation of
STVQ.

3.2.3 Related algorithms

k-means. Possibly the closest well-known relative of the SOM is the k-means vector
quantization algorithm [107] (see Section 3.1.3). A closely related method is the fuzzy
c-means algorithm [6], which differs from k-means in that each data sample can belong
to a number of clusters, even to all of them, in varying degrees. The minimized error
function is:

N N
Efem = i;JZI(UJ(Xi))bHXi_mJ’”za (3.30)

where b is a parameter controlling the fuzziness of the model, and p;j(x;) is the fuzzy
membership of data sample X; is cluster j. It is usually constrained by zj(pj(xi))b =
1,Vi and calculated based on input space distances ||x; —mj]|. In contrast, in the SOM
the corresponding coefficients are the neighborhood function values which are defined
in the output space.

A more principled manner to assign non-crisp memberships is to approximate the
data with Gaussian Mixture Models (GMM) (see for example [8]). The underlying as-
sumption is that the data comes from a mixture of Gaussian distributions. A number of
such distributions are spread into the data and their parameters (centers and covariance
matrices) are optimized using EM.

25

Principal curves and surfaces represent a concept close to the SOM. In principal
curves, the idea is to find the central curve (or surface) going through the data mani-
fold [46]. Each point on the principal curve is the average of all points that project to
it. The SOM prototype vectors are conditional averages of the data, and thus it can be
regarded as a discrete counterpart of the principal curve [18, 115].

VQ-P. The SOM is a combined vector quantization and vector projection algorithm.
There are also other algorithms which combine properties from vector quantization and
vector projection, for example Vector Quantization and Projection neural network [24],
and combinations of any vector quantization and vector projection algorithms, like k-
means and Sammon’s mapping [33] or k-means and MDS [120].

Generative Topographic Mapping (GTM) was proposed by Bishop et al. [9] as an
alternative to the SOM. It maps a low-dimensional latent (or output) space into the data
(or input) space using some mapping function f(r; W) where r is some point in the
latent space, and W is a matrix of parameters for the mapping function. The mapping
is optimized through maximizing the log-likelihood of the training data:

N 1 M
L(W,B) = In{= iri;W, 3.31
(W) = 3 In(g 3 p0xiIrW,B) (3:31)
POaIrWLB) = () eI (3:32)

where {3 is the inverse of the variance of noise. The rj are a set of M lattice points in
the latent space which determine the points mj = f(rj; W) in the data space where the
probability density is estimated?. They correspond to the map units in the SOM.

The GTM is, in essence, a constrained mixture of Gaussians in which the model
parameters W and [are estimated using EM algorithm. In [9], the mapping function f
is a generalized linear regression

f(r;W) =Wao(r) = Z(pi(r)wi, (3.33)

where @i(r) are a set of Gaussian kernels situated in the latent space, and w; are their
corresponding locations in the data space. In the E-step, the responsibility of each lat-
tice point r; for each data point x; is calculated as:

s p(xi| G W,B)’

In the M-step, new estimates for the model parameters W and 3 are found (see [9] for
details).

(3.34)

S-Map was proposed by Kiviluoto and Oja [74] as an alternative to GTM. It is a
crossbreed between SOM and GTM. Like in SOM, each map unit j has a fixed place
rj on the map grid and an associated prototype vector mj. Each map unit generates a
Gaussian distribution in the data space with center at the map unit prototype, and with
variance 1/p. Like in GTM, the softmax responsibilities:

= Blimj—xi|2

ri=——H—Mm—ee—m-——
N
sM e Blmxil?

2The notation has been changed to match the convention used in this thesis.

26

are used in the update step. The learning rule of SOM (Eq. 3.2) is changed to:

M
mj=mj+d (Z hbijrki) [xi—mj].
k=1

The simulations in [74] suggest that S-Map is better at self-organization than GTM. As
opposed to SOM, the S-Map has an inherently probabilistic nature in that it generates
a probability density function in the data space. In Publication 4, this was compared
with SOM-based density estimation.

3.3 Discussion

The SOM simultaneously quantizes the data with a representative set of prototype vec-
tors, and orders — or projects — the prototype vectors on a regular map grid. The
relative importance of the quantization and projection tasks is governed by the size of
local neighborhood — in effect, the neighborhood radius. With small neighborhood ra-
dius, the SOM approaches the unordered set of prototype vectors produced by k-means
algorithm. With large radius, the neighborhoods order the map prototypes on a tightly
packed grid. The desired result is usually somewhere between these extremes.

When utilizing the SOM for data analysis, it is important to know which variables
and properties are well represented by the map. Because current methods do not of-
fer an obvious way to fix these beforehand, the data miner may need to iterate a bit
between training SOMs with different parameterizations, and validating them with dif-
ferent kinds of quality measures.

e The elements of the distortion measure discussed in Section 3.1.2 can be used
to compare the quantization and projection properties of the SOM to each other.
In addition, the quantization error Eqx can be compared directly to the error of
the k-means algorithm to obtain an idea of the quantization quality of the SOM.
Unfortunately, the same cannot be done to the neighborhood related errors. Some
other measure must be used to quantify the topological quality of the SOM, for
example neighborhood preservation or trustworthiness [136].

¢ Publication 8 proposes two novel measures for quantifying the “viewpoint” of a
given quantization: how well each variable is quantized, and how much resources
(in effect, quantization points) does it take to quantize each variable. Such mea-
sures are important in the investigated data exploration process because the quan-
tization forms a basis for many other algorithms. However, besides knowing how
well each variable is represented in the quantization, the user generally wants to
have control over their importances. Unfortunately, the proposed methods only
provide feedback for this: they cannot be used to directly determine good scaling
factors for the variables.

The SOM has a number of variants and related algorithms. Sometimes they are
much better suited for a specific data mining task than the basic SOM. Although this
thesis concentrates specifically on the SOM, it is important to realize that the investi-
gated data exploration process framework is not dependent on the SOM. If the needs or
personal preferences of the user so require, the SOM can be easily replaced with other
methods as long as they possess a few key characteristics:

e The data are represented by prototypes.

27

e The prototypes are connected by neighborhood relations.

e For visualization purposes, the prototypes must have positions on a low-dimensional
space which reflect their distances or ordering in the high-dimensional space.

28

Chapter 4

Data exploration methods

In this chapter, three important data exploration tasks are discussed: visualization, clus-
ter analysis and modeling. For the two first tasks, overviews of the corresponding prob-
lem domains are given, and the investigated SOM-based methods are introduced and
compared to other methods with similar aims or properties. For the last task, local
modeling based on SOM is shortly introduced.

Visualization of multivariate data is discussed in Section 4.1. The goal of visualiza-
tion in general is to convey large amounts of detailed information about the data to the
data miner. To be efficient, the visualizations must be easily understandable and take
the strengths of the human visual system into account. An overview of the state of the
art in information visualization is given by Ware [147]. Somewhat older, but still an
excellent account of conventional visualization techniques is given by Tufte [129].

Cluster analysis, discussed in Section 4.3, is a widely researched topic in data anal-
ysis [28, 71]. Its goal is to partition the data into natural groups. In data exploration,
however, the groups themselves are not sufficient. In order to provide insight to the
data, it is also important to describe these groups: what properties are typical for the
objects in the groups, and what makes them different from objects in the other groups.

Visualization and clustering are the main applications of SOM in data analysis. A
particular strength of SOM is that it answers the needs of both tasks within a common
framework. For all three tasks, the SOM provides an initial organization of the data.
The actual visualizations, clusterings or models are usually acquired after some post-
processing. How this post-processing should be done is not quite obvious. One of the
main contributions of this thesis is to investigate these post-processing methods, to
enhance them and to develop new methods to answer the needs of the tasks better.
Section 4.2 presents an overview of SOM-based visualization methods. Section 4.3.3
discusses SOM-based clustering techniques and Section 4.3.5 how the clusters can be
characterized. In Section 4.4 construction of local models based on SOM is introduced.
In Chapter 5, these methods are integrated into the data exploration process.

4.1 Visualization of multivariate numerical data

Visualization is a fundamental methodology in exploratory data analysis for several
reasons. Looking at the data allows the data miner to speculate about its properties
based on his/her own intuition and domain knowledge. Visualization also makes it pos-
sible to compare raw data to constructed models, and find unexpected details and errors

29

Data gathering

l Data manipulation
|
Hypothesis
of reality
) Preprocessing and Graphics | Data exploration Visual-spatial
Modeling transformation engine model
Control and navigation cognitive~
logical
model

Model manipulation ‘

Figure 4.1: An interactive visual data exploration environment. Based on visualizations
produced of the preprocessed data, the viewer forms a hypothesis, or mental model, of
the properties of the data. The hypothesis is tested and refined interactively by ma-
nipulating the visualization and the data, and by comparing the data to the associated
computational models. This diagram is based on Chapter 10 in [147].

in the data or in the models [129]. This is important since outliers or unexpected shapes
of the data manifold can easily corrupt the results of analysis methods. Figure 4.1
presents an interactive visualization environment, where visualization parameters are
adjustable online, and the user can easily zoom in on interesting details.

Multivariate numerical data is usually visualized using scatterplots. Scatterplots
consist of a large number of markers distributed in a low-dimensional space. They are
used to detect

1. groups (clusters) of similar objects, and
2. relationships between variables.

Using only physical coordinates, at most 3-dimensional data can be shown!. To in-
crease the number of visualized variables, three basic techniques are outlined below:
(1) reducing dimensionality of the data set by projection techniques, (2) using param-
eterized visual markers to encode different variables, and (3) using multiple visualiza-
tions simultaneously by linking them together.

4.1.1 Projection

Vector projection was discussed in Section 3.1.4. Projection methods try to find low-
dimensional coordinates that preserve the distances (or the order of distances) between
the originally high-dimensional objects. Of course, it is usually impossible to make
an exact reproduction. Reliable projections can be achieved if the variables are highly
correlated, and thus contain a lot of redundant information, or if the data contains a lot
of noise which can be discarded.

The projection is a lossy similarity encoding between data objects. From the pro-
jection plot, one can see the clusters in the data, as well as the general “shape” of the

Ipresentation media — a paper or a computer screen — typically limits the visualizations to 2D. In
interactive visualization environments also 3D-visualizations can be used efficiently because the viewer can
rotate and manipulate the visualizations.

30

data cloud?. However, relations between individual variables are lost since the new co-
ordinates are complex linear or non-linear combinations of the original variables. Thus,
projection visualizations are only applicable for detection of similar groups of objects.
Other techniques must be used to detect relationships between variables.

Projection techniques

The classical projection method is multi-dimensional scaling (MDS) [89] which tries
to preserve pairwise distances between all objects while reducing the dimensionality
as defined in Eq. 3.24 on page 19. The best possible linear solution for this projection
problem is given by principal component analysis (PCA), see for example Chapter 3
in [5]. In PCA, the directions are found which account for most of the variance in the
data. This is done by calculating the eigenvectors e, ...,e4 and corresponding eigen-
values A1, ...,Aq of the covariance matrix of the data, and ordering them by decreasing
eigenvalues A1 > A2 > ... > Aq. The first direction e; accounts for most — specifically
%100% — of the variance in the data, the second for the second largest amount, and
S0 on. By projecting data to the space spanned by the first few eigenvectors as much of
the variance is preserved as possible. The sum of the corresponding eigenvalues gives
the amount of variance preserved in the projection, and thus indicates the error made
in the low-dimensional projection. For example, a projection to a 2-dimensional plane
is defined as:

eT

v=[et]x 41)

)
Examples of PCA-projections are shown in Figure 4.2.

The PCA-projection is a special case of projection pursuit techniques, which max-
imize some kind of performance or interestingness index over the possible projections,
see for example [18]. For PCA this index is variance, while for many projection pur-
suit techniques it is some measure of non-gaussianity. For example, in independent
component analysis (ICA) [53], the objective is to find projection directions where the
marginal distributions of projected points are independent of each other. Notice that
the performance index may not have anything to do with distance preservation. When
interpreting visualizations based on projection pursuit techniques, the objective of the
performance index needs to be taken into account.

Like MDS, the PCA and ICA techniques discussed above are globally tuned tech-
niques for which large distances are more important than small details, as discussed
in Section 3.1.4. The techniques are also linear, and therefore may fail when other,
more flexible projection techniques might succeed. In addition to Sammon’s mapping

2 Any clusters found from these visualizations are subject to the interpretation of the observer. Research
in cognitive psychology has produced a set of so-called Gestalt laws ([75, 147]) which describe the way the
human visual system detects patterns in images. Iltems which have some of the following six properties tend
to be grouped together:

1. Items close to each other.
. Items which are similar to each other, for example of the same size, shape or color.

. Items in a region with similar density of items.

2
3
4. Symmetrically positioned items.
5. Items which are within a closure.
6

. Items which are connected, or when combined would produce a smooth continuity.

31

0.8273

(a) System: PCA projection (b) System: scree-plot

10

(c) Mills: PCA projection (d) Mills: scree-plot

0.763

o

0

20 30 40 50

Figure 4.2: PCA-projections of the system (a) and mills (c) data sets. The correspond-
ing scree plots (b and d) show the cumulative sum of eigenvalues. They give some
indication of the intrinsic dimensionality of the data set. For the system data set 83%
of the total variance is preserved in the 2-dimensional projection. For the mills data set
only 15% is preserved.

32

and CCA introduced earlier, there are a number of such techniques, see for exam-
ple [26, 87, 97, 100, 118, 121, 127]. The SOM as a projection algorithm [64] preserves
local neighborhood sets. In certain situations this kind of projection is very useful, see
Section 4.2.3.

Projection into color space

Besides spatial position, also other scatter plot marker properties can be used to indi-
cated similarity, for example color: data objects close to each other are assigned similar
colors. While the resulting similarity encoding is not as accurate as the one produced by
spatial projection, it is useful for linking multiple visualizations together [49, 68, 142],
or when the position information is needed for other purposes.

A color coding can be constructed by defining a smooth coloring in a low-dimensional
manifold, and projecting the data onto this manifold, for example as follows:

1. A 1-dimensional SOM is trained using the data. The topology of the map can be
either circular or a simple chain. The trained SOM forms a principal curve going
through the data manifold.

2. A color from the color hue circle (from the HSV color model, see for exam-
ple [147], with hue = ¢, saturation = 1 and value = 1) is assigned to each map
unit i of the 1-dimensional SOM. The colors can be assigned equidistant from
each other ¢ = 21 /M or the distances between neighboring prototypes can be
taken into account: @ = 21ty _y [|Mixs — mil/ 315 Imisq — mil].

3. Each data point picks the same color as its BMU.

A similar, although a bit more complicated approach, was proposed in [68]. In order
to create reliable color codings, the smoothness of the coloring on the projection man-
ifold is very important. In [69] a color projection algorithm is proposed which takes
perceptual differences between colors into account to build as faithful representations
as possible.

In Figure 4.3 two color projections are shown for the example data sets. The ones
on the right have been made using the algorithm above. The ones on the left have been
done using the algorithm proposed by Himberg [50]. Although the coloring on the left
has preserved the original distance information better, the coloring on the right has
more granularity and is therefore used in the rest of this thesis.

4.1.2 Parameterized markers

Instead of using the same kind of visual marker for each data object in the scatterplot,
one can modify the properties — for example size, color or shape — of each marker.
The spatial coordinates are still used to encode the most important variables, but in
addition a few more can be shown using the parameterized properties.

Glyphs

Complicated shapes, or glyphs, are one way to incorporate additional information into
visualizations. Examples of glyphs include stick figures, fan and star plots (see for
example [147]). A single fan plot marker consists of several rays extending from a
common starting point, see Figure 4.6a on page 39. While the number of rays can
be made quite large to encode very high-dimensional objects, it soon becomes rather

33

(©) Mills (d) Mills

Figure 4.3: Color codings of the data sets shown together with their PCA-projections.
The colorings in (a) and (c) have been done using the algorithm proposed by Him-
berg [50]. The colorings in (b) and (d) have been done by a projection of data on the
color circle, as described in Section 4.1.1. Just cluster centroids were used in the pro-
jection and thus all points in a cluster have been assigned the same color.

18r O usr=59
161 = usr=0.0
L4 color = cluster
14f - .
°
12 o
2
< .'
2100 °%.; o O,
K
= ; v e of
° o o %
MY e
. ° .
°
4r e [] o .
- 0% .. Y .
&
L e . e °
2r L. Y e ° L4 .
Rng. 00® . °
0 5 15 20

Figure 4.4: A scatterplot of five variables of the system data (see Appendix A). Both
spatial coordinates are sums of two variables (wbl ck/ s + bl ck/ s and i pkt s + opkt s),
the size of each marker indicates the value of usr, and color indicates the cluster the
sample belongs to.

34

difficult to identify which variable a certain ray corresponds to. The technique works
best when the variables have a natural ordering, for example frequencies in a spectrum.

A famous example of glyphs are the Chernoff’s faces [19]. The marker for each data
object is a face. The variables control different features of the face: lengths, positions,
curvatures and angles of nose, eyes, mouth, ears and chin, see Figure 4.6b. While this
is an intriguing idea, it is not very useful in practice because of several reasons:

o Except for certain pairs the features are not easily comparable with each other.
This makes it hard to compare the relative closeness of two pairs of faces which
are different in different ways.

e There is a hierarchy in the importance of features which is hard to quantify. The
human observer pays much more attention to eyes than, say, ears.

e The faces require a considerable amount of actual space in the visualization, so
plotting a large number of them is not feasible.

Obviously, many complex glyphs suffer from similar weaknesses. However, although
glyphs are poor at indicating the magnitude of difference between data samples, they
can embed a lot of information and allow the user to compare individual data samples
efficiently.

Pre-attentive features

For efficient visual interpretation, the properties used for encoding should correspond
to the strengths of the human visual system. Studies in cognitive psychology have
shown that there are certain visual features that the human visual system analyzes
very fast, pre-attentively [47, 147]. These pre-attentive features are processed from the
whole field of view in parallel, and thus interpretation happens at a glance. The most
important pre-attentive features are:

e spatial position: both 2D-position and depth

e shapes: size, curvature, spatial grouping, added marks, numerosity

e line or texture shapes: line orientation, length, width, and collinearity
e color: hue and intensity

e motion

Using combinations of such features, one can encode several variables simultaneously.
Unfortunately, several of the features interfere with each other. There are only a few
combinations of these features which retain the pre-attentive processing property with
respect to all features. Spatial position is a particularly strong feature, and it can be
efficiently combined with, for example, shapes or colors. Figure 4.4 shows an example
of encoding with different visual features.

4.1.3 Multiple small visualizations

The third elementary solution is to break the visualization into a number of smaller
ones. In [129], these are called small multiples. The small multiples are linked together
so that one can immediately identify the same object (or at least the same group of
objects) from the different visualizations [15]. Scanning through the small multiples is

35

very efficient because they are interpreted in a similar way. Since each small multiple
can be investigated independently of the others, a lot of detailed information can be
incorporated while still retaining the ability to compare the small multiples with each
other.

The linking between multiples can be done in several ways, some of which are used
in Figure 4.5.

¢ Linking can be done by position. In this case, the position of each object remains
fixed in each small multiple. Other marker properties, such as color or size, are
used to indicate the values of the visualized variables. Linking by position is
extensively utilized in visualization of SOM (see Section 4.2).

Examples of linking by position are shown in Figure 4.5. In Figure 4.5a, the
position derived from PCA-projection is used in each small multiple. Using pro-
jection for linking has the advantage that the position acts not only as a link
between small multiples but also as a similarity encoding. Another simple exam-
ple of linking by position is a multiaxis time-series plot, as shown in Figure 4.5b.
In that case, only position on the x-axis remains fixed for each object.

e Linking by color is less accurate than linking by position®. However, linking
by color is very useful when it is sufficient to clearly distinguish just groups of
objects from each other, instead of individual objects. Good color codings can
be constructed, for example, using the color projection techniques mentioned
earlier.

Color coding can be used, for example, to enhance the scatterplot matrix visual-
ization technique. A scatterplot matrix consists of pairwise scatterplots between
each pair of the variables. It is used to quickly find relationships between vari-
ables. An obvious deficiency of the technique is that the number of scatterplots
grows quadratively with the number of variables. Another deficiency is that it
is very hard to identify the same item from all scatterplots. However, this can
be rectified somewhat by using color to link the scatterplots together, as in Fig-
ure 4.5c.

e A very strong linking technique is to connect objects explicitly using lines, as
done in the parallel coordinates visualization technique. Parallel coordinates con-
sist of a number of parallel axes, each of which shows the value of one vari-
able [55]. Linking is done by drawing lines from each successive axis to the
next, according to the value of the object for that variable. An example of paral-
lel coordinates visualization is shown in Figure 4.5d.

A problem with this technique is that the lines get mixed very easily, and thus it
is hard to see which line segment corresponds to which object. In Figure 4.5d,
linking with color is used to indicate groups of similar objects. In interactive en-
vironments, brushing techniques [4] can be used: by brushing with the mouse the
user selects a set of objects and these objects are emphasized in all visualizations.

¢ In [26], motion is used to link different projections of a data set together. Rather
than use several small multiples side-by-side, the projections are shown one after

3While the human visual system can easily distinguish between millions of different colors, it requires
considerable effort to find two points with exactly the same color when there are a large number of different
colors. According to Healey [47], the maximum number of colors that can be separated from each other
pre-attentively is about seven.

36

the other. The transition from one projection to the next is done in small steps so
that the points appear to move smoothly from one place to another.

4.2 Visualization based on SOM

The SOM-based visualization is investigated in Publication 3. Its contribution is to
provide an overview, categorize the SOM-based techniques, and relate them to other
visualization techniques. In addition, a few enhancements are proposed which are fur-
ther studied in Publications 4 and 5.

In the visualizations, the SOM acts in two roles. In cluster and variable visualization
techniques the prototypes of the SOM are regarded as a representative sample of the
data: the original data is replaced with a smaller set where the effect of noise and
outliers is decreased. It is assumed that the properties seen from visualizations of the
prototypes will also hold for the original data. For this reason, some caution is in order
before making any far-reaching conclusions based on the SOM visualizations.

Other techniques regard the SOM as a model of the data, and they compare the data
to this model, or different data samples or sets to each other in the context provided by
the model. For example, the map grid can be used to compare data samples to each
other by comparing their locations on the map grid.

4.2.1 Map grid asavisualization platform

The SOM forms a low-dimensional map of the data. The map grid is an ordered repre-
sentation of the data: neighboring regions on the map are similar to each other, while
regions far from each other are different from each other (unless the map has folded
badly). The map grid has the following properties:

e The shape of the map grid is predefined so that each map unit has a unique place
and equal size. Therefore graphs and other kinds of complicated glyphs can be
easily inserted into each map unit without fear of overlaps. Figure 4.6 shows
several examples of glyphs visualizing the prototype vectors in the SOM of the
system data.

e Since the density of map prototypes follows roughly the density of the data, the
map grid provides a kind of automatic focus following the data density. Compare,
for example, coloring visualizations in Figure 4.7. The color coding is hardly
visible at all in dense areas of the PCA-projection, whereas the SOM shows all
areas equally well.

e The map preserves topological neighborhoods, but relative distances in the orig-
inal space are not well represented.

e The map grid forms a highly non-linear 2-dimensional manifold in the original
space. Thus the coordinate axes of the output space do not have any clear inter-
pretation in terms of the original variables.

Each map unit has a set of associated property values, for example the values of
variables in the prototype vectors. Usual SOM visualizations show these values in all
map units thus allowing the comparison of different map units and, since neighboring

37

blks/s wblks/s usr sys intr

o= TewTvSTee
L | aen : D
ﬂ: 'dj Q{ ‘ % ST oy o N

[

i

[

M
2SN T W
. =
V.

3

FA

wio idle ipkts opkts color coding

MMJJ el A .LMM D

{VV* P ——

VT .
mmg:mw__u_n T .
Dol

- -
7 8 9 lO 11 12131415161718192021

4
Vo
3%
A
£

opkts ipkts idle wio intr sys usr wblks/sblks/s

RO RO NA ONBRONAO 01O U0 BT O 0

L bed b et e g g

(a) Component planes (b) Time-series

Sl a7l

=3
5

s/s wblks/s usr sys intr wio idle ipkts opkts

(c) Scatterplot matrix (d) Parallel axis

Figure 4.5: Small multiples of the system data set. In the component planes figure (a),
linking is done by position. Each subplot corresponds to one variable, and each dot in
each subplot to one data sample. The coordinates are from the PCA-projection of the
data. The name “component planes” comes from a similar technique used in visual-
ization of SOM, see Figure 4.8. The last component plane shows the color coding of
the map, and thus links the component planes with (b-d). In the time-series plot (b)
the system data for Tuesday 6:00 to 22:00 is depicted. The samples have been colored
using the color coding. The scatterplot matrix (c) shows the pairwise scatterplots of all
variable pairs. The objects in the scatter plots have been linked together using color. On
the diagonal, the histograms of individual variables are shown. In the parallel coordi-
nates visualization (d) each vertical axis corresponds to one variable. Each horizontal
line corresponds to one object such that linking is done explicitly using lines. The line
color encodes similarity between objects. Figures (a), (c) and (d) all show all of the
data, and can be used to detect correlations between variables.

38

®
<)
@
@
@
<)
@)
@
@
@
@

&
28
S
075
S04
30

G
SRS
\igeg

<
R

R

e,
P
G
G

(2) Fan plots

©
SQ
4@3
Q@
e@
s
ol
I
@@
e@
e@
Qg

@
63
]
&
<)
<

VIVIGIVIUIY,
ViGIVAVIGIY)

ela%a2a%aY
@ : :
“QQQ GHEHE
ggggggggg
@¥a¥qaY¥a<a

OO0

@
@

@@
DIDZD
(OGP OPAT)
:OQQQQO

@
@
@

DD

(b) Chernoff’s faces

(c) Bar charts

Figure 4.6: Visualizations of the prototype vectors in the SOM of the system data. The
9-dimensional prototype vector in each map unit has been plotted as a glyph on the map
grid: (a) fan plots, (b) Chernoff’s faces, and (c) bar plots. In (a) and (c), the hexagonal
map units borders are also shown.

map units will typically have similar values, of map regions with respect to the shown

properties.

Often, several map grids each indicating the values of a different property are shown
side by side. Usually, the map grid coordinates are used to link the visualizations to-
gether, as in Figure 4.6. However, sometimes physical coordinates cannot be used for
linking purposes, for example when plotting variables against each other, as in a scat-
terplot matrix. In such a case color codings can be used [49, 68], as in Figure 4.7. To
emphasize neighborhood relations, also lines can be drawn between neighboring map

unit markers.

4.2.2 Visualization of clusters

Techniques to visualize the shape and cluster structure of a data cloud are usually based
on vector projections. Since the shape of the SOM grid is predefined, it is not useful for
this as such. Instead, the map prototype vectors must be projected on a low dimensional
space using some other projection technique. Besides physical coordinates, also color

coding techniques have been used for this purpose [50, 68, 69].

However, the most commonly used technique to visualize the clusters on the SOM
are distance matrices. In these techniques, the distances between each unit i and the
units in its neighborhood A are calculated:

Dy = {llmi—mjll|j € NG, j #i}-

39

4.2)

The distances, or for example the median of these distances [88], for each map unit
are typically visualized using color, although also other techniques are possible [41,
54, 103]. The unified distance matrix (U-matrix) [134] visualizes all distances between
each map unit and its neighbors. This is possible due to the regular structure of the
map grid: it is easy to position a single visual marker between a map unit and each of
its neighbors. Since the map prototypes follow the probability density function of the
data, the neighbor-distances 2; are inversely proportional to the density of the data.
Thus, cluster borders can be identified as “mountains” of high distances separating
“valleys” of low distances. This interpretation can also be used in clustering, see Sec-
tion 4.3.3. Figure 4.7 presents examples of both spatial and color projections as well as
the U-matrix visualizations of the system and mills maps. Several clusters can be seen,
especially from the U-matrices.

4.2.3 Visualization of variables
Component planes

To visualize variables using the SOM, a technique called component planes is used.
For each visualized variable, or vector component, one SOM grid is visualized such
that the colors (or for example sizes) of the map unit markers change according to the
visualized values, see Figures 4.8 and 4.9. Relationships between variables can be seen
as similar patterns in identical places on the component planes: whenever the values of
one variable change, the other variable changes, too [139].

Although any kind of projection could be used to link the component planes to-
gether, the SOM grid works particularly well in this task. Because of the dynamic
focus of the map, the behavior of the data can be seen irrespective of the local scale.
Compare, for example, the component planes visualizations in Figures 4.5a and 4.8.
Although the PCA projection in Figure 4.5a reflects the shape of the data cloud bet-
ter, it is much harder to see the patterns in it because there are gaps and many of the
markers obscure each other.

However, as pointed out in [92], in some cases the visual impression of dependency
may be wrong. Therefore, it is important to validate the found dependencies with other
methods, for example scatterplots. On the other hand, the SOM also reduces the effect
of noise and outliers, and thus may actually make any dependencies more clear than
they are in the original data, as can be seen from Figure 4.10.

Clustering variables

When a scatterplot matrix (Figure 4.5c) is used for visualization of relationships be-
tween pairs of variables, one has to scan through (d — 1)(d — 2)/2 plots. In case of
component planes, there are only d plots, but one has to scan through pairs of plots,
so the complexity of scanning is not really any smaller. However, it can be aided by
organizing the component planes such that those corresponding to correlated variables
are positioned near each other. Figure 4.9 shows an example of organizing component
planes in this manner.

The organization of the component planes is based on measuring dependencies
between variables, collecting these measurements into vectors vj, and then grouping
similarly dependent variables. In Publication 5, four different ways to measure the
dependencies are compared. The way that gave best results is based on correlation

40

» -
>
2 3
»
> 2 >
2 2
2
4 ? 2 3 2
>
s 2
® s
a
s 2 X
o B
09
»
o VAV,
R
9 »
3 5
o
9
o °
0
o

(a) System: PCA (b) Coloring (c) U-matrix
N) . 6.42
g "3., 20)
° 8% o
Fo on o ™ s
J 1 o A 4.46
1% 4 o [&® > P
po | .," 2 s
> 5 e e 2.51
= o x > 2
ao° ," L]
a2,
0.551

(d) Mills: PCA (e) Coloring (f) U-matrix

Figure 4.7: Cluster visualizations of the SOMs of the system (a, b, ¢) and mills (d, e,)
data sets. PCA-projection (a, d), color coding (a, b, d, €), and the U-matrix (c, f). In (a)
and (d), the map unit coordinates come from a PCA-projection. In (b, ¢) and (g, f), the
map grid coordinates are used. The PCA-projection (a, d) shows the shape of the data
set better than the SOM grid, but it is hard to see local details in the dense areas. In
interactive visualization environments, this is not a big problem because the user can
zoom in on interesting details. However, in static visualizations such as above this is
not possible. As opposed to PCA-projection, the map grid has equal amount of space
for each map unit, and thus map units even in the dense areas can be seen clearly.

coefficients between variables:

vi = [l lcial,--.,[Cial] (4.3)
1 M

Cij = Gi0; (Mii — i) (Mij — 1) (4.4)
k=1

where y; is the mean value of variable i. Notice that the correlation coefficients c;j are
calculated between values from the prototype vectors instead of original data values to
benefit from the noise reduction made by the quantization process.

The weakness of correlation coefficient is that it only works for monotonous depen-
dencies. Ultimately, it would be better to use some dependency measure which allows
for non-monotonous relationships. In Publication 5, relative changes in different vari-
ables in the local neighborhoods are measured:

Tken; My —mg|l”

The correlation coefficients between these are found to work well to indicate non-
monotonous relationships. Also some other measure could be used, for example mutual
information, accuracy of a predictive model, or possibly some measure based on quan-
tization. In [90] vector quantization is utilized to measure the dependencies in order to
find groups of independent variables.

After the dependency vectors for the variables have been calculated, conventional
clustering and projection algorithms can be used to project, order, or cluster the vari-
ables. In Publication 5, SOM, CCA and Sammon’s mapping are applied and compared.
In Publication 10, the variables are ordered both on a line and on a circle, as well as
clustered using agglomerative clustering.

4.2.4 Visualizing data on the map

An important visualization task is to compare individual data samples or data sets with
the map. Traditionally this is based on finding the BMU of each data sample from the
map. The BMUs of familiar data samples can be used to identify regions from the map.
In case of time-series data, the adjacent BMUs can be combined to form a trajectory
on the map which can be used in process monitoring to visualize the development
of process state over time [70, 128]. For data sets, data histograms are obtained by
counting the number of “hits” in each map unit. The distribution of the hits can be used
to compare different data sets to each other, as done in the pulp and paper mills case
study in Publication 2. Figure 4.11a and b presents the histograms of the distribution
of data samples from two different geographical regions on the mills map.

However, the BMU is not the whole truth, since simply indicating it from the map
completely ignores the accuracy of the match. Visualizing just the BMU gives wrong
impression when:

e The data sample is close to two (or more) different areas of the map, and thus a
truer representation would show the response as multimodal.

e The data sample is very far from the whole map, and thus the distances to all
map units are almost equal.

42

blks/s wblks/s usr
5.26

3.34
1.43
0 -

intr

n n
471 405 583
2.95 251 3.75
. 0.973 1.68
0 Y ¢ 0
n n
n n

idle |pkts

0.736
-0.654
-2.04
-3.43

Figure 4.8: Component planes visualizations for system data.

R
X)
4
@
k ®
STHET TN CHEHET TaE CEE
=
N

TOT INDTOT PULP -big NEWS UNC_WC TOT W@'Bleached%hMECH

TOT PAPER CTD WC

spL 'ap-Semibl Cnleqalcapa%a er:0ld ToT_ cMET- CHEM ", RMP

BEPEL . BN
&

SBL_SI Paper: G5aper Sn&allpaperz CTMP_TOT Pulp:Unbleachedmech

&
Pulp:BleachedWood1 Paper:NewSma?ZT Paper:Smalll LINEREqu.Marketcap
",

»

&

»

COATERS WRAPP

CTD_WF CARTONB
4 u

&
BL_%aper:nguwlgﬁngﬁieachedChem TISS perS eed\ﬁ%g:Waste DEWA

4

UNC WEOT IBu‘rp IﬁeaehedWo&ibp étherflbreUaneached Paper:Speed Pulp:SemichemicalWood
{

igs DiWastébs%i“ eﬂ'caé%‘ﬁhi%%m

Figure 4.9: Component planes visualizations for mill data. The component planes have
been organized such that correlated components are near each other.

4
FLUTING

TOT_! WF éulp Otherﬂbre —

»

43

Data Data + noise Prototypes

X+y+Z o

1/(x+0.01)

4y2

tanh(10x-5) {

|
cos(10x) \J

zsin(3z) |7

Xy
z/(x+0.1) 1‘%‘

-
(g —

[yl

[x; x-1]),/'/'/{
[x; 1-x] W

Figure 4.10: Noise reduction performed by the SOM. Scatterplots of the data used in
Publication 5: x on horizontal axis, the other 16 variables on the vertical axis. On the
left, the data with no noise. In the middle, data and Gaussian noise with signal-to-noise
ratio 1. On the right, corresponding scatterplots from a map trained with the noisy data.

Both cases can occur either when the map does not represent the data very well, or
when the data sample is very rare or from a different distribution than the training
data. The former case corresponds to verifying the quality of the map, and the latter to
novelty or fault detection [27, 70].

In Publication 3 it is proposed that the response should be calculated and shown
such that also the accuracy of the match would be apparent, and two basic ways to do
this are proposed. The response of all map units to the data sample(s) can be calculated
and visualized. A heuristic response measure that works well is:

1

I’(Xi,mj) = 1+ (”Xi — mj||/a)2

(4.5)

where a is the average quantization error for the training data. An example is shown in
Figure 4.11c. In Publication 4, a more principled approach is investigated. A genera-
tive mixture model of Gaussian distributions is estimated on top of the SOM, and the
response is defined as r(mj, xj) = P(mj]|x;) (see also Section 4.4). This function is also
used in Publication 9 to calculate responses of high-level items on on low-level maps
(see Section 5.2).

The other way is to position the samples in the visualization so that the accuracy
is apparent from either the size or the position of the sample marker. This has the
advantage that multiple data samples can be plotted simultaneously, as in Figure 4.11d.

44

(2) Mills in China (b) Mills in Scandinavia

0.0341

0.0251

(c) One mill (d) Mills in Scandinavia

Figure 4.11: Visualizations of responses of data on the mills map. In (a and b) data
histograms for Chinese and Scandinavian pulp and paper mills: the more there are hits
in a map unit, the bigger the black marker. It can be seen that the distributions are
remarkably different. In (c) the response of a single mill on the map is shown. The
responses of all map units (according to Equation 4.5) are shown as the coloring of the
plane. The colorbar on the right shows the minimum, mean and maximum response
values (0.025, 0.034 and 0.1, respectively) for the data sample. The vertical line is
positioned on the BMU of the data sample and its height equals the ratio between the
mean and maximum values of the response (0.034/0.1 = 0.34): values close to zero
indicate a good response. In (d) corresponding response indicator bars are shown for
all Scandinavian mills.

45

4.3 Clustering

Clustering algorithms divide, or partition, data into natural groups of objects. The def-
inition of “natural” is a bit vague?, but usually it means that the objects in a cluster
should be internally similar to each other, but differ significantly from the objects in
the other clusters.

Most clustering algorithms produce crisp partitionings, where each data sample
belongs to exactly one cluster. To reflect the inherently vague nature of clusterings,
there are also some algorithms where each data object may belong to several clusters
to a varying degree. These are called fuzzy clustering algorithms [7]. Also mixture
models [102] can be used to provide such partitionings.

Another way to deal with the complexity of real data sets is to construct a cluster
hierarchy. Clustering may depend on the level of detail being observed, and thus a
cluster hierarchy may, at least in principle, be better at revealing the inherent structure
of the data than a direct partitioning, see Figure 4.12. A hierarchical set of clusters also
allows the data to be investigated at several levels of granularity.

In the context of this thesis, cluster analysis is used for two purposes:

o to divide the data into sensible (and crisp) subsets, and

¢ to gain insight of the structure and contents of the data set through the hierarchy
and descriptions of the subsets.

.
’ N
’ \
’ \
‘ \
P | |
PR N \)
7 SO . !
S N So N .
i, ; . - D
A DN
[N Ve Ny
[N S [
.)
. , Bg , |
!
.)
N \ S, B

A

Figure 4.12: Interesting clusters may exist at several levels. In addition to A, B and C,
also the cluster D, which is a combination of A and B, is interesting.

43.1 Cluster distances
Distance definitions

Clustering algorithms are based on the notion of cluster distance. Two kinds of dis-
tances are used: within-cluster distances, and between-clusters distances, see Table 4.1.
Within-cluster distances S(-) measure the degree of internal dispersion present in the
cluster. Between-clusters distances d(-,-) measure the separation between clusters.

41f a human observer partitions a set of objects into groups visually, the results are subject to the Gestalt
laws, see page 31. These Gestalt laws are hard to quantify mathematically, and some of them only work well
in a 2-dimensional plane (for example closure). Typically, only the proximity property is taken into account
in definitions of cluster distances. For this reason partitionings produced by clustering algorithms sometimes
appear counter-intuitive.

46

Table 4.1: Some definitions of within-cluster distances S(Cy) and between-clusters dis-
tances d(Cy,Ci); Xi, Xy € Cx, i #1', Xj € Ci, k # |. N is the number of samples in cluster
Cy and ¢ = Nik ¥ xiec, Xi Is the center of cluster Cy.

Within-cluster distance S(Cy)

_ Zigr Ixi=xel
average Sa= w
nearest neighbor ~ Spn = %LX'_X"”}
centroid S = 2ilxi=ad

k
variance Sv=Sillxi—ckl?
Between-clusters distance d(Cy,C)

single linkage ds = min; j{||xi — xj[| }
complete linkage dco = max; j{||xi — xj|}
average linkage da = W
centroid ce = |lck — ¢l

— NNlge=ail
Ward dw = W

The measures can also be divided to two groups according to whether they are local
or not. Most measures in Table 4.1 are non-local. The local measures ds and Spp, take
into account only the local neighborhood of each point. For example, Sy, estimates the
density of the cluster by the mean distance between each point and its nearest neighbor.
Distances to the neighbors provide information of the local density of the data which
can then be utilized in finding cluster borders [30].

The neighborhoods for local distances can be defined as a proximity graph: each
node corresponds to one data sample, and is connected to the nodes that form its neigh-
borhood. If the proximity graph is constructed using single linkage, the graph is the
minimum spanning tree of the data. Such graph is very sensitive to noise, though. In-
stead, more fully connected graphs can be used. For example, in the Chameleon clus-
tering algorithm [62] k nearest neighbors are used to construct the proximity graph. An
overview of methods for constructing proximity graphs is given in [30].

Proximity graphs can be utilized in measuring the cluster distances. For example,
an extended version of ds measures the average distance between nodes in the clusters:

_ 21310 € A)lIxi —xll
dC|(Ck7C|)_ 2|211(J€M) Y

where 1(j € A§) = 1 if there is a connection between data samples i and j in the prox-
imity graph, and O otherwise. Alternatively, clusters can be constructed directly from
proximity graphs by cutting edges that are determined to be on the borders between
clusters. Then, each separate sub-graph forms one cluster.

(4.6)

Normalization

Most distance measures between clusters are based on distances between individual
data vectors, or their representatives (in effect, cluster centers), and thus they are sen-
sitive to the scales of the variables. It is easy to come up with examples where the

47

clustering result can be considerably changed by a simple linear rescaling of the vari-
ables (see for example [71] page 5). Therefore, apart from the case when the original
scales of the variables are directly comparable with each other, some kind of rescaling
or standardization procedures are normally recommended prior to the clustering.

The most common standardization procedure is to treat all variables independently
and transform each to Z-scores by subtracting the mean and dividing by the standard
deviation of each variable (see Section 3.1.3). Some studies have found that scaling by
range:

Xij — min; (xij)
maxj (xij) — minj (xij)

works better than Z-scoring in clustering [106]. Scaling by range is, however, much
more sensitive to outliers than Z-scoring. In view of the results in Publication 8, Z-
scoring also provides a more equal starting point for each variable. Z-scoring removes
the effect of scale, and thus only variable characteristics and dependencies between
variables effect the quantization result.

Cluster validity

Since clustering results are usually open to at least some interpretation, it is important
to accompany clusters with validity information. Validity measures are also important
because most clustering algorithms do not produce a single partitioning of the data,
but offer several with different numbers of clusters. Hierarchical clustering algorithms
work inherently in this manner by finding the clusters iteratively, adding or removing
one cluster at a time. Most non-hierarchical algorithms require the number of clusters
as a predefined parameter. If this is not known beforehand, several values need to be
experimented with. When faced with different options, one has to apply validity mea-
sures to find out which of them is the best®. In [105] 30 validity indexes are presented
and evaluated using artificial data sets.

A widely adopted definition of a good cluster(ing) is one that has small within-
cluster distances S(C;) and large between-clusters distances d(C;,Cj). One way to use
this definition is to minimize (or maximize the inverse of):

S(Gi) +5(Cj)

dCi.Cy) ,Vi#i 4.7

However, this leaves much room for variation. Figure 4.13 illustrates two ways to de-
fine the within- and between-clusters distances in such a measure. The one on the left
represents the widely used Davies-Bouldin index according to which the best clustering

minimizes:
i) +S¢(Cj)}
CZJ#'{ dceCh) ’

where C is the number of clusters. The index gets low values for clusters which are
compact and far from the other clusters. However, since the within-cluster distances
are measured using S¢, the Davies-Bouldin index makes the implicit assumption that
the clusters are hyper-spheres.

The cluster validity measure illustrated on the right in Figure 4.13 is used in Pub-
lication 7. It is based on local distance measures Sy, and ds and compares the smallest
gap between each pair of clusters to their internal densities. When the gap between

(4.8)

50f course, cluster validity measures can also be used as part of an actual clustering algorithm as in [62].

48

© o

00
g TR
- o

Figure 4.13: Different criteria for cluster validity. The left one measures separation
between cluster centers dce With respect to their internal size S¢, while the one on the
right measures the gap between the clusters ds with respect to their internal density Syy.
For definitions of the distance measures, see Table 4.1.

clusters is bigger than the average gap between samples in each cluster, the cluster is
considered valid. The distance measures Sp, and ds are very sensitive to noise, though.
In Publication 7 they are modified slightly to produce more robust estimates.

4.3.2 Clustering algorithms
Hierarchical vs. partitional

There are two fundamentally different approaches to clustering: hierarchical and parti-
tional [57]. Hierarchical clustering algorithms find clusters one by one. The hierarchical
methods can be further divided to agglomerative and divisive algorithms, correspond-
ing to bottom-up and top-down strategies. Agglomerative clustering algorithms merge
clusters together one at a time to form a clustering tree which finally consists of a single
cluster, the whole data set. The algorithms consist of the following steps:

1. initialize: assign each vector to its own cluster, or use some initial partitioning
provided by some other clustering algorithm

2. compute distances d(C;,Cj) between all clusters
3. merge the two clusters that are closest to each other
4. return to step 2 until there is only one cluster left

Divisive algorithms are similar but work in the opposite direction starting from a single
cluster and dividing each cluster to sub-clusters until all vectors are in a cluster of their
own.

Partitional clustering algorithms, on the other hand, divide a data set directly into
a (given) number of clusters, typically by trying to minimize some criterion or energy
function. The number of clusters is usually predefined, but it can also be part of an
energy function [14]. Partitional methods are less sensitive to imperfections — noise
and outliers — in the data than hierarchical methods [99]. On the other hand, many
partitional methods — especially those based on some kind of global energy function
— make implicit assumptions of the form of the clusters.

Computational efficiency

Most clustering algorithms are computationally very intensive: the computational com-
plexity is often at least O(N?d). Many of recent advances in clustering attempt to re-
duce the computational cost to make clustering of very large data sets — with millions
of samples — possible.

49

In the BIRCH clustering algorithm [150], the computational complexity is reduced
by constructing a hierarchical organization of the clusters. This hierarchy is utilized to
assign new samples to the clusters so that the data sample only needs to be compared to
a small fraction of the clusters instead of all of them. This resembles the winner search
procedures used in TS-SOM [86] variant of the SOM. In addition, for each cluster a

“clustering feature” vector
lNi, Z X, Z X2
Xe(j XeCj

is maintained which reduces the computational load of distance calculations.

In CURE algorithm [40], the computational complexity is reduced by making the
clustering in two phases. First, the data set is divided to p subsets, and each subset
is pre-clustered to ¢ clusters. In the second phase, the cp clusters in the subsets are
clustered. Computational load is less because the cost of clustering N samples is higher
than the cost of clustering p data sets of size N/p plus clustering the cp intermediate
clusters.

In addition, CURE algorithm reaches significant reducements in computation time
with random sampling. In the experiments based on artificial 2-dimensional data sets,
a sample size of 2.5% was sufficient to consistently produce correct clustering results.
Random sampling is of course applicable in conjunction with any clustering algorithm.
In [13] it was pointed out that random sampling could also be used to construct good
initializations for the clustering algorithms, making them converge faster and to better
solutions.

4.3.3 Clustering based on SOM

Clustering is one of the main applications for SOM in data mining. In Publication 7, dif-
ferent ways to cluster data using SOM are discussed. The validity of using SOM in clus-
tering is investigated by comparing SOM-based clustering results to those produced by
clustering the data directly. The SOM-based clustering approach is considerably faster
than clustering the data directly, and the correspondence between the clustering results
is good.

Clustering using the SOM
Like CURE, clustering using SOM is a 2-phase strategy:

1. A SOM is trained. The Voronoi regions of the map units provide an intermediate
partitioning of the data.

2. The map units of the SOM are clustered. Each data sample belongs to the same
cluster as its BMU.

In order to find the natural clusters of the data, the number of map units in the trained
SOM should be much bigger than the expected number of clusters M > C [132]. This
is because the neighborhood function draws neighboring map units together, and thus
neighboring map units reflect the properties of the same rather than different clusters®.

Most algorithms proposed for clustering the SOM simply regard the SOM as a
set of vectors, and apply standard clustering algorithms, for example k-means or some

Unless the neighborhood radius is decreased to zero o — 0 during training. However, in this case the
SOM equals k-means algorithm.

50

agglomerative clustering algorithm to cluster the prototype vectors [140]. However,
there are also algorithms which take SOM neighborhoods into account. Murtagh has
proposed the usage of a neighborhood constraint to make sure that the clusters form
continuous areas on the map [108]. An agglomerative clustering algorithm is used to
cluster the map units, but only those candidates are considered for merging for which
the conjunction of neighborhood sets is not empty:

(Ua)NU) #0 (4.9)
ieCy JeC

This constraint may be a problem if the map is folded such that some areas of the
data space are separate on the map although they are connected in the original space.
Alternatively, a cluster distance function can be used which takes the neighborhoods
into account, for example:

Siecy Y jec; hijllmi —mjl|?
Yieck 2 jec Nij

Like d¢ in Eq. 4.6, dne is a local measure of cluster distance since hjj only gets large
values for neighboring map units.

dne(Ck,C1) = (4.10)

Distance matrix -based clustering

Distance matrices are often used to visualize the cluster structure of the SOM. Because
distance matrices show the local density of the data, this is basically a mode-seeking
approach. High values of the distance matrix indicate cluster borders, whereas low
“valleys” indicate clusters [134]. These are utilized to select areas from the map by
hand. Recently, Vellido et al. proposed a simple algorithm to do distance matrix based
clustering automatically [135]. The local minima of the distance matrix can used to
identify cluster centers from the SOM. In Vellido’s approach, the rest of the map units
were then assigned to the cluster whose center was closest. This algorithm is simple
and fast, but it also makes the implicit assumption that the border between two clusters
lies on the middle-point between their cluster centers. In Publication 10, an enhanced
version based on region-growing is proposed:

1. Local minima of the distance matrix are found. This is done by finding the set of
map units {i} for which:
f(D) < 1(Dj) Vi € NG,
where f(23) is some function of the set of distance values associated with map
unit i, for example mean or median.

The set of local minima may have units which are neighbors of each other. Only
one from each such group should be retained.

2. Initialization. Let each local minimum be one cluster: Ci = {m;}. All other map
units mj are left unassigned.

3. Calculate distance d(Cj,{mj}) from each cluster C; to (the cluster formed by)
each unassigned map unit mj.

4. Find the unassigned map unit with smallest distance and assign it to the corre-
sponding cluster.

Two optional constraints can be used to limit the growth of the clusters:

51

e The neighborhood constraint: only those unassigned map units are con-
sidered for merging which are neighbors of the units in the clusters. This
ensures that the clusters form continuous areas on the map.

e Cluster border constraint: map units on borders between clusters may have
been identified beforehand using, for example, presence of empty map
units, as proposed in [151]. Connections to such border units can be re-
moved, thus creating barriers for the region-growing procedure.

5. Repeat from step 3 until no more connections can be made.

6. If there are any cluster border units, assign them to the same cluster as the closest
(neighboring) map unit prototype.

This procedure provides a partitioning of the map into a set of base clusters, the
number of which is equal to the number of local minima on the distance matrix. A
problem is that there may be some minima which are the result of random variations
in the data rather than real local maxima of the probability density function. In such a
case, however, the local minima will be quite shallow, and they can be pruned out. The
best way to actually do this is an ongoing research issue.

4.3.4 Cluster hierarchy

Irrespective of how the base partitioning of the data is done, agglomerative cluster-
ing algorithms can be used to construct the cluster hierarchy starting from those base
clusters.

However, most agglomerative algorithms produce binary trees which may not be
representative of the true structure. If in reality, a super-cluster consists of three (or
more) sub-clusters, the binary tree will have one (or more) extra intermediate clusters
which should be pruned out. This can be done by hand using some kind of interactive
tool [11], or in an automated fashion for example as in Publication 10:

1. Start from root cluster.

2. For the cluster under investigation, generate different kinds of sub-cluster sets by
replacing each cluster in the sub-cluster set by its own sub-clusters.

3. Each sub-cluster set defines a partitioning of the data in the investigated cluster.
Investigate each partitioning using Davies-Bouldin index Ipg (Eq. 4.8).

4. Select the sub-cluster set with minimum value for Ipg, and prune the correspond-
ing intermediate clusters.

5. Select an uninvestigated and unpruned cluster, and continue from step 2.

Figure 4.14 shows the final clusters and the cluster hierarchy for the example data sets.

4.35 Cluster characterization

In data exploration it is not sufficient to know the number and hierarchy of clusters. The
question that immediately follows is, what are the clusters like? This is investigated in
Publications 9 and 10.

52

1188 8 812121213

18 8 8 81212121313
6L
5L
4k
3k
oL

1 8 10 12 13 14 2 3 4 9 11 15 16 5 7 6 17

(@) System: base (b) System: hierarchy
clusters

121212 nia 70
121212 [saksniis

N
T

.
T

99

C
16 913141217 5 8 222324181020212516 7 2 3 15 4 111926

(c) Mills: base clusters (d) Mills: hierarchy

Figure 4.14: Clustering results for the system (a, b) and mills (c, d) maps. Figures (a)
and (c) show the base clusters found by the distance matrix based algorithm, and figures
(b) and (d) the pruned cluster hierarchy built on top of the base clusters. The clusters
are colored with the corresponding cluster colors. The colors of the super-clusters are
calculated as averages of their sub-clusters.

53

Significant variables

Cluster descriptions must both tie the cluster in with the rest of the data, and tell about
the internal properties of the cluster. Descriptive statistics can be used to list the values
typical for each cluster, and associated indexes — for example ratio between mean
values in the cluster and in the whole data — to relate them to the rest of the data.
However, considering that the number of clusters and the number of variables may be
quite large, this may result in an impractically lengthy listing: accurate, but not very
useful from data exploration point of view. Therefore, a good approach is to derive
some measure of significance and use it to rank the variables [67, 91, 112, 133].

An indication of significance is deviation from the excepted. The variables can be
ordered by measuring the difference between distributions of the values in the cluster
versus the whole data. However, since the number of data samples in the cluster may
be quite low, such estimates are rather noisy. Instead, some heuristic criterion can be
used, for example standard deviation:

Oik
st = — 4.11
ik Ok ’ ()
where ojx is the standard deviation of variable k in cluster i, and oy is the standard
deviation of variable k in the whole data. This measures the relative importance of the
variables within each cluster, or how well the variable k characterizes the values in the
cluster i.
Even if a variable is characteristic for a cluster it may not differentiate it well from
the other clusters. A second measure is:
C—-1)s§
sf = 7&;) , (4.12)
2 j=1,i#iSjk
where C is the number of clusters. This measures the discriminating property of the
variable: it gives high values when a variable is characteristic for only one or a few
clusters.

Characterizing and differentiating rules

Another frequently employed method is to form characterizing rules [1, 44, 131, 133] to
describe the values in each cluster. The rules are usually based on intervals of variable
values:

Ri: X € Ci & Xk € [0, Bk] (4.13)

where Xy is the value of variable k in sample vector X, C; is the investigated cluster, and
[0k, Bk] is the range of values allowed for the variable according to the rule. These rules
may concern single variables like R; above, or be conjunctions of several such rules in
which case the rule forms a hyper-cube in the input space’.

The main advantage of conjunctive rules is that they are compact, simple and there-
fore easy to understand. The problem is of course that clusters often do not coincide
well with the rules since the edges between clusters are not necessarily in parallel with
the edges of the hyper-cube®. In addition, the cluster may include some uncharacteristic

"In the NDM tools reported in [132], the rules can also be combined with “or” or a majority-vote.

8In conceptual clustering [104], the distances between clusters are defined as distances between their
descriptions. Thus, they could be used to construct clusters which are more in line with such hyper-cubes.
However, conceptual clustering techniques are usually computationally rather heavy. In addition, it is not
clear whether such distance measures produce natural clusters.

54

points or outliers. Therefore the rules should be accompanied by validity information.
The rules R; can be divided to two different cases, characterizing and differentiating
rules:

R : x € Cj = Xk € [0k, Bk]
R?Z Xk € [0k, Bk] = X € Ci.

The validity with respect to each case can be measured using confidence: Pf = P(xi €
[a, Bk] |Ci) and P9 = P(Ci| x« € [a, Bk]), respectively.

To form the characterizing rules — in effect to select the low and high limits of
the range — one can use statistics of the values in the clusters as in [133]. Another
approach is to optimize the rules with respect to their significance. The optimization
can be interpreted as a two-class classification problem between the cluster and the
rest of the data (see Figure 4.15). The boundaries in the characterizing rule can be
set by maximizing a function which gets its highest value when there are no miss-
classifications, for example:

a+d

= - 4.14
51 atb+c+d’ (4.14)
a a
S = —— 4.15
2 a+ba+c’ (4.15)
a
= — 4.16
53 a+b+c’ (4.16)

where a, b, c and d are from the truth table in Figure 4.15. The first function sy is simply
the classification accuracy. It has the disadvantage that if the number of samples in the
cluster is much lower than in the whole data set (which is very often the case), s1 is
dominated by the need to classify most of the samples as false. Thus, the allowed range
of values in the rule may vanish entirely. As pointed out in [3], traditional rule-based
classification techniques are not well suited for the characterization task.

When characterizing the (positive) relationship between rule R and cluster C, the
samples belonging to d are not really interesting. The two latter measures consider only
cases a, b and ¢. The second measure s; is the product of the confidences s, = PEPY.
The third measure s3 is the classification accuracy when the case d is ignored. Notice
that s3 =~ s, whena>>b+c.

Apart from characterizing the internal properties of the clusters, it is important to
understand how they differ from the other, especially neighboring clusters. For the
neighboring clusters, the constructed rules may be quite similar, but it is still important
to know what makes the clusters different. To do this, rules can be generated using the
same procedure as above, but taking only data samples in the two clusters into account.
In this case, however, both clusters are interesting, and therefore s; should be used.

In Figure 4.16 and Table 4.2 an example of the rules for one cluster in the system
data is shown. In this case, the conjunctive rule formed of four variables is very good:
the rule holds for the cluster only (P4 = 100%) and it also characterizes the cluster very
well (P = 96%).

4.4 L ocal modeling using SOM

In this section, local modeling using SOM is shortly discussed. The presentation is
very short, and only attempts to bring forth the most important issues to consider when
using SOM as a basis for modeling.

55

Figure 4.15: The four-way truth table of cluster C and rule R. The cluster is the hori-
zontally shaded area, and the rule (or classification model) is the vertically shaded area.
On the right is the corresponding confusion matrix: a is the number of samples which
are in the cluster, and for which the rule is true. In contrast, d is number of samples
which are out of the cluster, and for which the rule is false. Ideally, the off-diagonal
elements in the matrix should be zero.

The SOM — or more generally: any clustering or vector quantization method —
partitions the data space into small segments (map units or clusters) which can be
easily utilized in building local models, as done in Publications 1 and 4. A scheme for
constructing and using the local models used in Publication 1 is depicted in Figure 4.17.
It is based on four phases:

1. Partitioning the input space.

2. Building local data sets.

3. Calculating local models.

4. Predicting new values by selecting and applying the local model(s).

In Publication 4, three ways to build to the local data sets (phase 2) are compared in a
probability density estimation problem. Below the four phases are discussed in more
detail.

Input space partitioning

First the data space is partitioned using, for example, vector quantization. Normally
quantization is based on unsupervised learning, and thus the segments are concentrated
where there is a lot of data and not, for example, on the areas where more detailing
power would be needed for the modeling task. Thus, although the modeling results
can be quite good, they are in general suboptimal. There are some related methods and
techniques which use (partial) supervision to position the prototypes better:

e Insupervised SOM [61], the output classes are used together with the input vari-
ables to form a quantization which conforms better to the output class distribu-
tion.

e In constrained topological mapping (CTM) [17], the scales of individual vari-
ables are dynamically adjusted to reach good learning results.

56

u - ‘llll
T 15 2 25

05

[.
R e

'
2 25 ° 1 2 3 4 5 6 7

(c) Rule foridle (d) Rule for usr (e) Rule for bl ck/ s

Figure 4.16: Cluster 24 of the system data (combination of base clusters 15 and 16).
In (a) the PCA-projection of the data is shown, with cluster 24 indicated by the grey
markers and the rest of the data with black markers. In (b-e) are the histograms cor-
responding to the most significant rule (see Table 4.2). The grey vertical bars are the
histogram for cluster 24, and the black the histogram for the rest of the data. The hor-
izontal bar indicates the range allowed by the rule (thick part) and the real range of
values in the cluster (thin part).

Table 4.2: Rule summary for cluster 24 in the system data. Variables are listed in order
of decreasing significance as measured by s,. The columns in the middle indicate the
properties for the variable-wise rules, and the columns on the right for a conjunctive
rule formed of the indicated variables starting from the top. The “diff” columns are
confidences in the differentiating property of the rule P9 and “char” column in the
characterizing property PC.
Variable Rule diff char S diff char Sp
single cumulative
intr [0.783.1] | 75% 99% 0.745 | 75% 99% 0.745
ide [3.343] | 65% 98% 0.639 | 87% 98% 0.856
usr [1.2,23] | 61% 98% 0.605 | 90% 98% 0.885
Sys [0.71,1.4] | 69% 62% 0.425
bl ks/s <0.82 22% 98% 0.217 | 100% 96% 0.96
W o <11 21% 100% 0.214
i pkts <0.97 20% 100% 0.201
opkts <0.97 20% 100% 0.2
whbl ks/ s <14 20% 100% 0.198

57

training data new data

{ Preprocessing }

1. Vector quantization

prototype vectors
2.Buildlocal datasets | | [/ 4. Select local model(s)
and predict value
local models

N~
3. Calculate local models

Figure 4.17: A scheme for constructing and using local models. As opposed to most
other SOM-based modeling approaches, in this approach the training of local models
is decoupled from the map training. This is an advantage in data exploration, since new
models can be trained without retraining the SOM.

e Recently, Sinkkonen and Kaski have proposed a method which utilizes the prob-
ability density of the output variable to guide the quantization process in order
to make the map quantization and organization better reflect the changes in the
output variable [125].

e The Learning Vector Quantization (LVQ) [80] is a supervised classification al-
gorithm which, like SOM, is based on prototype vectors. Unlike SOM, however,
LVQ uses class information to refine the positions of the prototypes on the bor-
ders between classes.

Local data sets

Local data sets Lj are constructed for each prototype vector. Primarily, the data in
the Voronoi set of the particular prototype vector is used Lj = V;j but often this set is
too small — even empty. In order to make reliable local models, the local data set is
augmented with data from nearby prototypes:

Li= U Vi (4.17)
keA

where 4(j is some neighborhood set of map unit j. Notice that the normal neighborhood
definition of SOM, which is defined in the output space, may not be ideal for defining
neighborhoods for local modeling. In the comparison study in Publication 4, it is clearly
inferior to using the set of six map units with closest prototypes — in effect, defining the
neighborhood in the input space. Also in Publication 1 the local data sets are augmented
from the Voronoi sets of closest prototypes instead of neighbors on the grid.
Alternatively, the whole data set can be used but with a set of weighting factors
w; determined locally for each data sample, as done in Publications 4 and 9. The local
data set is then:
Lj = {(xi,wi)} Vi. (4.18)

58

In Publication 4, the neighborhood function values between the prototype vector j
and the BMU bj of the data sample i are used as weights w; = hy, j. In Publication 9, a
probability density is estimated on top of the SOM, and the probabilities w; = p(x;|m;)
are used to weight the class probabilities in the frequency components.

Local models

Local models y = f;(x) are calculated using the local data sets L ;. Basically, models
can be divided to three different types: regression, classification and probability density
estimation [18].

e In regression, the simplest local model is simply a reference value calculated as

a (weighted) average of the output values associated with each input vector x;.
Notice that when wj = hy,j, this corresponds to the update rule of the Batch Map
algorithm (Eg. 3.4).
Another frequently used option is to use linear models. Such models have been
constructed, for example, in [25, 110, 115, 146] as well as in Publication 1.
More complex models are not generally used due to the danger of overfitting to
the relatively small amount of data in each local data set.

¢ Inclassification problems, an output class can be assigned to each map unit based
on a voting among the data samples in the local data set. Alternatively, the rela-
tive probabilities of each class can be calculated.

e A SOM-based probability density model proposed by Lampinen and Kostiainen
was described in Section 3.1.3 [93]. The probability density estimation in Publi-
cation 4 follows an earlier model investigated by H&maldinen [43]. The density
of the data is estimated as a mixture of Gaussians with centers at the map pro-
totypes and with diagonal covariance matrices. In Publication 4, the a priori
probabilities are estimated using the sizes of the Voronoi sets N; of each map
unit weighted by the neighborhood function. The variances of each variable are
calculated using a weighted average of the squared difference between the value
in the prototype and each sample.

Predicting new values

In order to predict the output value y associated with given input data vector x, the
local model must first be selected. This is usually done by selecting the local model
associated with the best-matching prototype vector b;:

y = fp (X). (4.19)

Alternatively, a weighted average of the outputs of multiple or even all local models can
be used. First, a response r(mj,x;) of each prototype to the data sample is calculated,
and these responses are used to weight the outputs y; of each prototype:

_ zl}ﬂzlyjr(mbxi)
2,}/'=1r(mjax)
This kind of model can be interpreted as a mixture of experts.

Local modeling using SOM is in certain aspects very close to radial basis function
(RBF) networks (see for example [8]). In these, also, the data space is first quantized

(4.20)

59

into a set of smaller regions. Typically, this is done in unsupervised manner using some
vector quantization algorithm, for example k-means. After this, basis functions K(|| - |])
— for example Gaussian kernels — are associated with each of the prototypes mj.
Selecting the basis functions and their parameters, for example the variance o of a
Gaussian kernel, corresponds to phase 2 discussed above. The output of an RBF is a
linear combination of the basis function values:

M
y= ZfJK(||mJ—X||)+f0- (4.21)
J:

Therefore, once basis functions have been selected, the coefficients f; can be found
easily using linear algebra. Models build on top of a SOM can naturally also be con-
structed in the same way.

4.5 Discussion

The SOM is primarily a tool for unsupervised analysis of data. It combines two proper-
ties — quantization and projection — which support different data analysis tasks. The
projection property is essential for visualization, while quantization forms the basis
for SOM-based clustering and modeling. Below, the strengths and weaknesses of the
SOM-based methods proposed and investigated in the publications are discussed.

Visualization

As a visualization method, the SOM provides a projection upon which different kinds
of properties of the data can be shown. In Publication 3, an overview and categorization
of SOM-based visualization methods is given, and a few enhancements are proposed.

e The component plane reorganization (see Section 4.2.3) is used to find pairs and
groups of related variables. The technique is very useful when dealing with a
large number of variables. Furthermore, the underlying principle — to calculate
a set of features which indicate the dependencies between variables, and then
apply projection or clustering techniques to these variable-features — can be
easily extended as done in Publication 10.

Publication 5 investigates different options to do the reorganization and com-
pares the SOM to PCA and Sammon’s mapping in the reorganization task. The
projection methods do not have big differences in their performance. Much more
important is selection of the dependency measure between variables. The publi-
cation investigates two different measures: one works well for monotonous de-
pendencies but very poorly for non-monotonous dependencies. The other works
relatively well in both cases, but only for variables which depend only on a single
primary variable. To be really useful, a measure working in all cases would be
needed.

A shortcoming with Publication 5 is that the SOM-based approach is not com-
pared to other visualization techniques used for correlation hunting, for exam-
ple correlation matrix, scatter plot matrices, or parallel axis plots. It is not clear
whether the SOM is better or worse than other approaches. However, the reorga-
nization of variables — in one way or another — is useful in conjunction with
most such visualization techniques.

60

e Publication 3 proposes several new ways to visualize responses of data samples
on the SOM such that the localization quality is also shown. This is important
because in some cases the responses may be multimodal, or otherwise poorly
localized. Except for the pdf-estimation based technique investigated in Publi-
cation 4, the techniques are heuristic. A weakness of the publications is that the
performance of the methods in real data mining cases is not demonstrated.

A problem with visualization methods in general is their validation. Their usability
is highly dependent on issues which have nothing to do with the method itself, such as
prior knowledge and expertise of the user, and sophistication of the visualization soft-
ware. Without extensive usability tests, the methods can only be motivated by heuristic
arguments and their evaluation occurs through practical experience. Therefore, it is
important to offer easily usable tools for using the techniques. The SOM Toolbox in-
troduced in Publication 6 offers such tools for the Matlab computing environment.

Clustering

Clustering is one of the main applications of the SOM. Apart from visualization based
clustering methods, in clustering the projection property of the SOM is a weakness be-
cause it interferes with the prototype formation. Therefore, if clustering is the primary
aim, it might be prudent to use some variant of SOM where the rigid output grid has
been discarded.

Clustering using the SOM is investigated in Publications 7 and 10. Besides cluster-
ing algorithms, these publications deal with cluster hierarchy, and cluster characteriza-
tion.

¢ Asaclustering method, the SOM resembles many recently developed algorithms
in that it is a two-phase approach: the data is first preclustered, and then the
preclusters are clustered. The results of the two-phase clustering procedure may
be slightly different from clustering the data directly because the preclustering
procedure is different from the actual clustering algorithm. Publication 7 com-
pares SOM-based methods with clustering the data directly. The comparison
indicates that the knowing the SOM-based clustering gives much information
of what the direct clustering result would have been. However, the results are
not conclusive. The primary motivation for using the SOM in clustering is the
reducement in computational load. However, recently several other algorithms
have been proposed which are also computationally feasible with very large
amount of data. In future work, it would be important to compare the SOM-
based clustering approaches to these methods.

The clustering algorithms used in Publication 7 are based on traditional ap-
proaches: agglomerative and k-means clustering. Publication 10, on the other
hand, presents a novel family of SOM-based clustering algorithms. The family
is an extension of the work by Vellido [135]. Because of the scope of the pub-
lication, a comparison to other algorithms is not presented, so it is not shown
whether the presented algorithms give any advantages over earlier approaches.

e In both publications 7 and 10, forming of cluster trees is emphasized because
of complexity of real world data and the usefulness of multiple investigation
levels in data exploration. A weakness of the publications is that a definition for
"optimal” cluster tree is not given. Instead, the publications simply present some

61

heuristical methods and measures for finding interesting clusters from cluster
trees.

Crucially important from data exploration point of view is characterization of the
found clusters. In Publication 9, some measures for finding significant variables
for each cluster are presented. These are closely related to the keyword selection
measures proposed by Lagus and Kaski [91], the difference being that they are
slightly more general.

In order to generate more detailed information, rules can be constructed. In [132],
an algorithm called sig* is used to find significant variables for each cluster, and
then to construct characterizing and differentiating rules for the clusters. A sim-
ilar approach is used in Publications 9 and 10. To be able to characterize small
clusters as well as large clusters, the publications present some novel rule signifi-
cance measures. A weakness of the proposed approach is that the algorithm used
to find the rules is heuristic, and it does not even try to find a globally optimal
rule for each cluster. The reason for this is that in the implemented report gen-
eration system, the computational load needs to kept low and therefore finding a
"good" rule is sufficient.

Modeling

Publications 1 and 4 deal with local modeling using the SOM. Both projection and
quantization performed by the basic SOM are performed in an unsupervised manner,
and thus SOM ultimately forms a suboptimal basis for modeling. While the modeling
results in the publications are relatively good, they are inferior to best results achieved
by the methods used for comparison.

e In Publication 1 the SOM combined with local linear models is used for time-

series prediction. The model architecture resembles closely that of local linear
mappings (LLM) [115], the difference being that the models are constructed
afterward, rather than simultaneously with the SOM, and in how the local data
sets for the models are generated.

The prediction accuracy of the SOM is equal or better to the compared ap-
proaches. However, the reported cases are not all directly comparable. For exam-
ple, direct cascade architecture combined with local linear mappings (DCA+LLM)
is basically very similar to the investigated approach. Its error is slightly higher
than the SOM, with only half as much training samples. It can be assumed that
with equal number of training samples the DCA+LLM method would be equal
or better than the SOM. In addition to training set sizes, also the varying number
of model parameters complicates the comparison a bit.

From modeling point of view, a weakness of the method used in Publication 1 is
that the output variable is included in the quantization. Since information of the
output variable cannot be used in the prediction phase, this inclusion increases
the complexity of the model. However, this does not matter much, since the scal-
ing factor is so small as to effectively remove its effect in quantization.

The probability density estimation in Publication 4 is based on the reduced kernel
density estimators (RKDE) proposed by Haméldinen [43], with slight differences
in how the local kernel parameters are estimated, and how the local data sets

62

are augmented from the neighbors of the map unit. The results of this SOM-
based approach are slightly worse than a gaussian mixture model trained with
expectation maximation.

In [43], it is noted that correct network topology is often important for RKDE-
models. This is confirmed by the results in Publication 4: much better results can
be achieved by redefining the neighborhoods in the input space, rather than using
the original neighborhoods on the map grid.

63

Chapter 5

SOM -based data exploration

In this chapter, the SOM-based data exploration process is described in more detail to
indicate what the methods introduced in the previous chapter are used for. Exploration
of table-format data is divided into a number of sub-tasks, each with its own set of
analysis methods. The need and requirements for automated application of these data
exploration methods is discussed, and a system implementing this kind of automated
exploration is shortly described. In addition to analysis of a single table of data, also
analysis of a set of hierarchically organized data tables is considered, and it is shown
how the same analysis methodology can be applied in both cases.

51 Analysisof table-format data

A high-level view of the data exploration process was presented in Figure 2.2 (on
page 9). The process is highly interactive and iterative, and thus requires consider-
able amount of manual work. However, many of the data exploration tasks remain the
same from one iteration to the next. Figure 5.1 shows a more detailed view which
breaks down the analysis phase into several sub-tasks. These are divided along two
main tracks: variable and sample analysis.

5.1.1 Sampleanalysis

The goal of sample analysis is to find natural (or at least sensible) subsets from the data
and by characterizing their properties to give to the data miner an idea of the structure
and contents of the data manifold.

Sample analysis starts with normalization and quantization of the data.

¢ Normalization usually means linear scaling of variables as discussed in Sec-
tion 3.1.3. More generally, it corresponds to selecting a distance metric in the
input space. The distance metric sets the viewpoint from which the whole sam-
ple analysis looks into the data by defining how important different variables are
in the subsequent analysis methods.

e Quantization transforms the continuous input space into a discrete set of regions.
Using representatives of these regions instead of the original data reduces the
computational complexity of subsequent analysis algorithms (projection, clus-
tering, and local modeling), as well as averages out noise and outliers, both of

64

Variable
characterization
Variable
dependencies
e s el

j Clustering
Normalization / Quantization }

distance metric

Variables

Preprocessing

Samples

Projection/
similarity
encoding

Figure 5.1: Data analysis framework for data exploration of table-format data. The
framework consists of a number of blocks corresponding to the core analysis tasks in
data exploration. While this thesis concentrates on the use of SOM for data exploration,
the blocks could be easily replaced with other similar methods.

which are important aspects in data exploration. Of course, if there is only a
small amount of data, the quantization can be discarded.

This is followed by the application of clustering and projection methods to find
groups of similar data samples.

o Cluster analysis is at the core of sample analysis by providing quantitative infor-
mation of the structure and contents of the data set. Even if the data set does not
contain natural clusters, it is still useful to partition it to sensible subsets because
this allows the data to be investigated at different granularities. Of course, in such
a case it would be misleading to imply that there are natural clusters in the data.
Therefore, measuring cluster validity is an important part of cluster analysis.

e Projection methods are needed for visualization. Their primary purpose is to pro-
vide similarity encodings so that similar samples (in terms of the distance metric)
are easy to identify from the visualizations. In practice, at least two projections
are needed: a spatial projection and a color coding. The former is more accurate,
but cannot be used in visualizations where position information is needed for
displaying other information. In such situations, the latter can be used.

5.1.2 Variableanalysis

Variable analysis has two main sub-tasks: variable characterization, and variable de-
pendency analysis.

e Characterization of the properties of individual variables is a very fundamental
task because knowing the statistics of the data set is essential to be able to de-
tect interesting deviations in its subsets. For characterization, simple descriptive
statistics — for example minimum, median, maximum values, standard deviation
and a histogram — can be used?.

1n meta-learning, a recently emerged field of research, the aim is to predict the success of different algo-
rithms in a specific classification task based on data set characteristics [60]. This field may, in the future, add

65

e The goal of dependency analysis is to detect pairs and groups of variables which
are strongly related, or have interesting interactions. Dependencies between vari-
ables are studied using statistical methods, such as correlation analysis, entropy
analysis, factor analysis, Bayesian networks, and rules, see for example [5].

The methods investigated in this thesis deal with variable dependency analy-
sis mainly through visualizations. In addition, if a suitable presentation for the
variables is selected as discussed in Section 4.2.3, clustering and projection tech-
niques can be applied to find groups of related variables.

Often there are one or more output variables in the data set, and their prediction is
one of the main goals of the whole data mining process. Therefore, also modeling is a
part of exploratory data analysis. However, exploratory modeling is different from the
actual modeling phase of the data mining process (see Figure 2.1). Exploratory models
are very simple, and rather than being real attempts to solve the modeling problem, they
are used to provide an indication of how well different model families might succeed
in the modeling task. In general, it is advantageous to try models from different kinds
of model families, and validate the performance and reliability of each in order to find
out what kinds of models are worth a more detailed investigationZ. Modeling is tightly
linked with dependency analysis, and the results of either task can be utilized to help
the other.

5.1.3 Automatically generated report
General requirements

In Publication 10, a report generation system is described which applies the explorative
analysis methods discussed above and produces a report of the results autonomously,
without user intervention. Of course, exploratory data analysis is an inherently interac-
tive process, and thus cannot be fully automated. Rather, the automated analysis pro-
vides an advantageous starting point for the interactive analysis, as shown in Figure 5.2.
The automated analysis has also a number of other desirable properties:

e The analysis is easy to repeat.

e The required level of technical know-how of the data miner is reduced when
compared to fully interactive data exploration.

e The resulting report acts as documentation which can be later referred to.

The applied analysis methods must cover the tasks discussed in Section 5.1. How-
ever, just any set of algorithms is not suitable.

e Because the algorithms are applied autonomously, they must be robust to errors
and to missing values. The algorithms need not be perfect in this sense, though.
One of the purposes of data exploration is to catch errors from the data. Many
fundamental errors in the data are easy to notice from the report, after which the
errors can be removed by preprocessing, and the report can be regenerated.

some important items to this list and, in general, shed some valuable new light on the data set characterization
problem.

20ne very good alternative are nearest neighbor based methods, like the local models discussed in Sec-
tion 4.4. These are known to be robust and to produce relatively good models [56].

66

— | preparation 4 is L ; . _,| interactive |
data prep | analysis reporting |- processing

| variableandysis visudizations models

© cluster analysis descriptions
summary tables !
lists ‘

Figure 5.2: Partially automated data exploration process. After preparing the data, the
analysis methods are applied autonomously, and a survey report on the findings is pro-
duced. Based on the findings in the report and possibly further insights based on in-
teractive investigation, the data miner may either proceed with the next data mining
phase, or prepare the data set better and, with a push of a button, make a new report.

e Preferably the methods should not require predefined parameters at all. When
parameters cannot be avoided, the methods should be robust to the choice of
their values such that some sensible default values can be used in all/most cases.

e The methods must be relatively fast. Not as fast as in a truly interactive analy-
sis environment, where the user excepts to see the results immediately, but fast
enough that the analysis can be frequently redone. Actual time limits or perfor-
mance requirements depend on the amount of data and the data mining environ-
ment.

After applying the analysis methods, a report is written which combines their re-
sults into a coherent whole. The elements of the report are visualizations and numer-
ical or linguistic descriptions organized into summary tables and lists. Visualizations
allow the display of large amounts of detailed information at once, and thus provide an
overview of the data which the data miner can investigate at different levels of detail.
Summaries, on the other hand, turn the essentially qualitative information in the visu-
alizations into a set of quantitative statistical or verbal statements. They represent the
data in a compact form and make it easier to understand and memorize the properties
of the data.

A SOM-based analysis

The sample analysis in Publication 10 is based on SOM. The variables are normal-
ized to have unit variance. The quantization is done using SOM. Besides the prototype
vectors, the SOM provides a projection of the prototypes vectors onto the map grid.
In addition, another spatial projection is calculated using PCA-projection (Figure 4.2),
and a color coding of the prototype vectors (Figure 4.7). The clustering is done us-
ing distance matrices (see Section 4.3.3). A cluster hierarchy is constructed on top of
these base clusters (see Section 4.3.4), and descriptions for them are generated (see
Section 4.3.5).

The variables are characterized using histograms and other basic statistics. Variable
dependency analysis is based on correlation coefficients, and the correlation coefficient
vectors are used to cluster the variables (see Section 4.2.3). Also component planes are

67

used to visualize the variables (see Figure 4.9). The analysis system does not have a
modeling component.

The actual report consists of a short overview for a quick look at the major proper-
ties of the data, followed by a more detailed description of each variable and cluster.

A limitation of the report is that it is static: it cannot be manipulated, all analysis
results must be calculated beforehand, and all analysis results must be inserted into the
report. A major enhancement would be to embed the analysis system in an interactive
environment, for example like the one in Figure 4.1. This would give the user more
control over the visualizations and models, as well as allow the user to request more
information on interesting details.

5.2 Analysisof hierarchical data sets

In Publication 9, hierarchical data sets are investigated. Hierarchical data sets consist
of (at least) two levels of data. For each higher level item, a varying number of corre-
sponding lower level items exists. This kind of data is fairly common, for example in
marker basket analysis. Also the mills data set was originally hierarchical, consisting
of one higher-level data table and two lower level tables (see Appendix A).

To provide an analysis which takes both data levels into account, the lower level
information must be transferred to the higher level. This can be done by first training
SOM s for the lower level data sets. For each higher level item iy, the corresponding set
of lower level items {i|in} is collected, and their responses (see Section 4.2.4) in each
unit of the corresponding lower level map are measured:

[r(Xi,M1), ..., r(Xi,mm)]. (5.1)

The sum of responses in each map unit is used to represent the lower level data on
the higher level: each map unit corresponds to a certain kind of lower level item, and
the responses measure how frequently that kind of items are associated with the corre-
sponding higher level item.

The problem with such a procedure is that since each unit of the lower level map is
represented by a new variable, the number of new variables on the higher level becomes
easily quite large. Using only a small number of map units on the lower level map is not
a very good solution because this severely limits the analysis of the lower level data.
Instead, the number of new variables can be reduced using some dimension reduction
technique, or clustering. The latter approach is used in Publication 9. The lower level
map is first clustered, and the responses of data samples in these clusters are used as
the new variables:

[F(%i,C1), -, (3, Cc)]- (5.2)

The main advantage of this approach is that since the clusters in the lower level map can
be easily analysed, the new variables have meaningful interpretations. See for example
Appendix A, where the lower level clusters of the mills data set are shortly described.

In Figure 5.3, the process of exploring hierarchical data sets is shown. Compared
with analysis of unconnected data sets, an additional step of determining the responses
of the higher level items on the lower level clusters is needed. However, in the actual
data exploration, the same methods and processes as in exploration of a single table of
data can be used.

68

Exploration
e report
R = h ek
data

Aggregation /A
andjoining | '-------oooc oo " responses from other
Responses i lower level data sets

in clusters

Exploration

=

low level
data

Figure 5.3; Data analysis flow for hierarchical data sets.

5.3 Discussion

A difficulty with the proposed data exploration frameworKk is its validation. This thesis
has concentrated on identifying how SOM-based methods can be used in the frame-
work, but it has not been investigated whether they are the best methods for it.

The validity of the presented data exploration process is ultimately determined by
the data miner: does it help him / her to achieve better understanding of the data, faster
than with alternate exploration processes? This is a complex test situation which de-
pends highly on the prior knowledge of the data miner, quality of the software tools
used for exploration, and the nature of the sought knowledge. The data exploration
framework should be validated in a usability testing environment, for example as fol-
lows.

The test objective would be to compare two data exploration processes to each
other. For both processes a set of data mining tools — or for example a set of data
reports — would be available. The users would be people who have to deal with data
in their work, but have only a limited background knowledge of data mining methods.
They would be divided to two sets, one for each data mining tool. Each user would be
given some essential training in the use of the tools, and then asked a set of typical data
mining questions regarding the given data sets: what kind of groups there are in the
data, what kind of dependencies there are, how do two given groups differ from each
other, etc. The answers would be evaluated both in terms of truthfulness, and the time
required for answering.

69

Chapter 6

Conclusion

In data mining and knowledge discovery it is essential to understand the data that is
being processed. The central task for gaining the necessary understanding is data ex-
ploration. This is a highly interactive process in which the data miner iteratively does
some data preparation (preprocessing phase), applies suitable analysis methods (analy-
sis phase) and based on the results forms hypothesis (or discards old hypothesis) about
the properties of the data (review phase), thus increasing his or her understanding of
the data manifold.

In this thesis, a data exploration process based on the Self-Organizing Map (SOM)
has been investigated. The basic SOM algorithm has been widely implemented in var-
ious software tools and libraries. However, for a common practitioner a difficulty with
applying the SOM in data mining has been that there is no wide consensus or under-
standing of the methods needed for post-processing the SOM. Thus, this work has had
two primary goals:

e Firstly, to enhance and investigate the validity of the use of SOM in data ex-
ploration. Methods for the two most important application areas of the SOM —
visualization and cluster analysis — have been investigated and developed. In
addition, local modeling based on SOM has been studied.

e Secondly, to construct a data exploration framework where much of the work can
be done without user intervention (see Figure 6.1) and integrate the SOM-based
data mining methods to this framework.

In the constructed process framework, the data analysis is divided into several dis-
tinct sub-tasks, most notably the analysis of samples and the analysis of variables. The
methods investigated in this thesis concentrate mostly on the former. Based on the
analysis results, a data survey report describing the most important properties of data
manifold is written automatically, without user intervention. The review phase of the
data exploration process is then either entirely based on the produced report, or the
report provides a starting point for interactive analysis. In such a framework, the atten-
tion of the data miner can be directed more toward the actual understanding task, rather
than on the application of the analysis methods. The whole data exploration process, in
its turn, provides a starting point for the actual model building phase of data mining.

The SOM provides a versatile basis on which to build such an analysis process. It
is in key position in providing an initial organization of the data which is useful both
in visualization and as a way to keep the projection and clustering methods used in the

70

Data SOM and other methods Description report

Figure 6.1: Data exploration at the push of a button: a set of algorithms is applied to
the given data set and a data survey report is produced without user intervention. The
report acts as an overview and a “map” to the data space for the data miner.

analysis computationally feasible. Hopefully, this work provides a convenient reference
or starting point for researchers and fellow data engineers to make use of the potential
of the SOM as a versatile data mining tool?.

The key contributions of the exploration process framework — identification of
key questions in exploration of table-format data, autonomous application of analysis
methods, and integration of different analysis results into a coherent whole — are also
key issues in making data mining methods easier to use by the common practitioner.
Therefore, | would like to advocate other researchers to consider these issues, extend
them, and pave the way for more user-friendly data analysis.

1The SOM training algorithm, as well as many of the methods mentioned in this the-
sis have been implemented in the SOM Toolbox [141] for Matlab computing environment:
http://ww. cis. hut.fi/projects/sontool box/

71

Bibliography

[1] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Ragha-
van. Automatic subspace clustering of high dimensional data for data mining
applications. In Proceedings of 1998 ACM-SIGMOD International Conference
on Management of Data, pages 94-105, Seattle, Washington, 1998.

[2] D. Alahakoonand S. K. Halgamuge. Knowledge Discovery with Supervised and
Unsupervised Self Evolving Neural Networks. In Yamakawa and Matsumoto
[148], pages 907-910.

[3] Stephen D. Bay and Michael J. Pazzani. Detecting group differences: Mining
contrast sets. Data Mining and Knowledge Discovery, 5(3):213-246, July 2001.

[4] R.A. Becker and W.S. Cleveland. Brushing scatterplots. Technometrics,
29(2):127-142,1987.

[5] Michael Berthold and David J. Hand, editors. Intelligent Data Analysis: an
Introduction. Springer, 1999.

[6] James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algo-
rithms. Plenum Press, New York, 1981.

[7] James C. Bezdek and Sankar K. Pal, editors. Fuzzy Models for Pattern Recog-
nition: Methods That Search for Structures in Data. IEEE Press, 1992.

[8] Christopher M. Bishop. Neural Networks for Pattern Recogition. Oxford Uni-
versity Press, 1995.

[9] Christopher M. Bishop, Markus Svensén, and Christopher K. I. Williams. GTM:
The generative topographic mapping. Neural Computation, 10:215-234, 1998.

[10] Justine Blackmore and Risto Miikkulainen. Visualizing High-Dimensional
Structure with the Incremental Grid Growing Neural Network. In A. Prieditis
and S. Russell, editors, Machine Learning: Proceedings of the 12th International
Conference, pages 55-63. Kaufmann, 1995.

[11] Eric Boudaillier and Georges Hebrail. Interactive Interpretation of Hierarchical
Clustering. Intelligent Data Analysis, 2(3), August 1998.

[12] Ronald J. Brachman and Tej Anand. Advances in knowledge discovery and data
mining. In Fayyad et al. [32], chapter 2: The Process of Knowledge Discovery
in Databases.

72

[13] P.S. Bradley and Usama M. Fayyad. Refining initial points for k-means clus-
tering. In Proceedings of 15th International Conference on Machine Learning,
pages 91-99. Morgan Kaufmann, San Francisco, CA, 1998.

[14] Joachim Buhmann. Complexity Optimized Data Clustering by Competitive
Neural Networks. Neural Computation, 5(3):75-88, May 1993.

[15] Andreas Buja, John Alan McDonald, John Michalak, and Werner Stuetzle. In-
teractive data visualization using focusing and linking. In Proceedings of IEEE
Conference on Visualization, pages 156-163, 1991.

[16] Pete Chapman, Julian Clinton, Thomas Khabaza, Thomas Reinartz, and Ridi-
ger Wirth. CRISP-DM 1.0 step-by-step data mining guide. Technical report,
CRISM-DM consortium, 2000. htt p: // wwmv. cri sp-dm org.

[17] V. Cherkassky and H. Lari-Najafi. Constrained topological mapping for non-
parametric regression analysis. Neural Networks, 4:27-40, 1991.

[18] Vladimir Cherkassky and Filip Mulier. Learning From Data: concepts, theory,
and methods. John Wiley & Sons, Inc., 1998.

[19] Herman Chernoff. The use of faces to represent points in k-dimensional space
graphically. Journal of the American Statistical Association, 63:361-368, 1973.

[20] Krzysztof Cios, Witold Pedrycz, and Roman Swiniarski. Data Mining Methods
for Knowledge Discovery. Kluwer Academic Publishers, 1998.

[21] M. Cottrell, E. de Bodt, and M. Verleysen. A statistical tool to assess the relia-
bility of self-organizing maps. In Nigel Allinson, Hujun Yin, Lesley Allinson,
and Jon Slack, editors, Advances in Self-Organizing Maps, Proceedings of the
Workshop on Self-Organizing Maps 2001, pages 7-14. Springer, June 2001.

[22] Guido Deboeck and Teuvo Kohonen, editors. Visual explorations in Finance
using Self-Organizing Maps. Springer-Verlag, London, 1998.

[23] P. Demartines and J. Hérault. Curvilinear Component Analysis: A Self-
Organizing Neural Network for Nonlinear Mapping of Data Sets. IEEE Trans-
actions on Neural Networks, 8(1):148-154, January 1997.

[24] Pierre Demartines and Jeanny Hérault. Vector quantization and projection neu-
ral network. In A. Pieto, J. Mira, and J. Cabestany, editors, International Work-
shop on Artificial Neural Networks (IWANN’93), volume 686, pages 328-333.
Springer-Verlag, 1993.

[25] R. Derand M. Herrmann. Nonliear chaos control by neural nets. In Proceedings
of the Internatianl Conference on Artificial Neural Networks (ICANN) 94, 1994.

[26] Inderjit S. Dhillon, Dharmendra S. Modha, and W. Scott Spangler. Visualiz-
ing class structure of multidimensional data. In Proceedings of the 30th Sym-
posium on the Interface: Computing Science and Statistics, Minneapolis, MN,
May 1998.

[27] Ignacio Diaz, Alberto B. Diez, and Abel A. Cuadrado Vega. Complex pro-
cess visualization through continuous feature maps using radial basis functions.
In Proceedings of the International Conference on Artificial Neural Networks,
2001.

73

[28] Richard O. Duda and Peter E. Hart. Pattern classification and scene analysis.
John Wiley & Sons, 1973.

[29] E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: Ordering,
convergence properties and energy functions. Biol. Cyb., 67(1):47-55, 1992.

[30] Vladimir Estivill-Castro, Ickjai Lee, and Alan T. Murray. Criteria on proximity
graphs for boundary extraction and spatial clustering. In Qing Li David Che-
ung, Graham J. Williams, editor, Proceedings of the Pacific-Asia Conference
Advances in Knowledge Discovery and Data Mining (PAKDD2001), pages 348—
357. Springer, April 2001.

[31] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. Knowledge
discovery and data mining: Towards a unifying framework. In Proceeding of The
Second International Conference on Knowledge Discovery and Data Mining
(KDD’96), pages 82—-88, 1996.

[32] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy
Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining.
AAAI Press / The MIT Press, California, 1996.

[33] Arthut Flexer. Limitations of self-organizing maps for vector quantization and
multidimensional scaling. In Advances in Neural Information Processing Sys-
tems (NIPS) 9, pages 445-451. MIT Press, 1997.

[34] Bernd Fritzke. Let it grow — self-organizing feature maps with problem depen-
dent cell structure. In Kohonen et al. [76], pages 403-408.

[35] Bernd Fritzke. Growing Cell Structures — A Self-Organizing Neural Network
for Unsupervised and Supervised Learning. Neural Networks, 7(9):1441-1460,
1994.

[36] Bernd Fritzke. Growing Grid — a self-organizing network with constant neigh-
borhood range and adaptation strength. Neural Processing Letters, 2(5):9-13,
1995.

[37] Allen Gersho. Asymptotically Optimal Block Quantization. IEEE Transactions
on Information Theory, 1T-25(4):373-380, July 1979.

[38] Thore Graepel, Matthias Burger, and Klaus Obermayer. Phase transitions in
stochastic self-organizing maps. Physical Review E, 56:3876-3890, 1997.

[39] Robert M. Gray. Vector quantization. IEEE ASSP Magazine, pages 4-29, April
1984.

[40] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an efficient clus-
tering algorithm for large databases. In Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data, pages 73-84, New York, 1998.
ACM.

[41] Erkki Hakkinen and Pasi Koikkalainen. The neural data analysis environment.
In Proceedings of the Workshop on Self-Organizing Map, pages 69-74, 1997.

74

[42] A.Hamalédinen. A measure of disorder for the self-organizing map. In Proceed-
ings of International Conference on Neural Networks (ICNN) 94, pages 659-
664, 1994,

[43] Ari Hamalainen. Self-Organizing Map and Reduced Kernel Density Estimation.
PhD thesis, University of Helsinki, 1995.

[44] Jiawei Han, Yandong Cai, and Nick Cercone. Knowledge discovery in
databases: An attribute-oriented approach. In Li-Yan Yuan, editor, Proceedings
of the 18th International Conference on Very Large Databases, pages 547-559,
San Francisco, U.S.A., 1992. Morgan Kaufmann Publishers.

[45] David Hand, Heikki Mannila, and Padraic Smyth. Principles of Data Mining.
The MIT Press, 2001.

[46] T. Hastie and W. Stuetzle. Principal curves. Journal of the American Statistical
Association, 84:502-516, 1989.

[47] Christopher G. Healey. Effective Visualization of Large Multidimensional
Datasets. PhD thesis, The University of British Columbia, September 1996.

[48] Tom M. Heskes and Bert Kappen. Error potential for self-organization. In
Proc. ICNN’93, Int. Conf. on Neural Networks, volume 11, pages 1219-1223,
Piscataway, NJ, 1993. IEEE Service Center.

[49] Johan Himberg. Enhancing SOM-based data visualization by linking different
data projections. In L. Xu, L. W. Chan, and I. King, editors, Intelligent Data
Engineering and Learning (IDEAL’98), pages 427-434. Springer, 1998.

[50] Johan Himberg. A SOM based cluster visualization and its application for false
coloring. In Proceedings of International Joint Conference in Neural Networks
(IJCNN) 2000, Como, Italy, 2000.

[51] David C. Hoaglin, Frederick Mosteller, and John W. Tukey, editors. Understand-
ing Robust and Exploratory Data Analysis. John Wiley & Sons, Inc., 2000.

[52] Jaakko Hollmén, Volker Tresp, and Olli Simula. A self-organizing map for clus-
tering probabilistic models. In Proceedings of the Ninth International Confer-
ence on Artificial Neural Networks (ICANN’99), volume 2, pages 946-951. IEE,
1999.

[53] Aapo Hyvarinen, Juha Karhunen, and Erkki Oja. Independent Component Anal-
ysis. John Wiley & Sons, 2001.

[54] Jukka livarinen, Teuvo Kohonen, Jari Kangas, and Sami Kaski. Visualizing
the Clusters on the Self-Organizing Map. In Christer Carlsson, Timo Jarvi, and
Tapio Reponen, editors, Proceedings of Conference on Artificial Intelligence Re-
search in Finland, number 12 in Proceedings of Conference of Finnish Artificial
Intelligence Society, pages 122-126, Helsinki, Finland, 1994. Finnish Artificial
Intelligence Society.

[55] A. Inselberg and B. Dimsday. Parallel coordinates: A tool for visualizing mul-
tidimensional geometry. In Proceedings of IEEE Conference on Visualization,
pages 361-378, Los Angeles, 1990.

75

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

JohnF. Elder IV and Daryl Pregibon. Advances in knowledge discovery and data
mining. In Fayyad et al. [32], chapter 4: A Statistical Perspective on Knowledge
Discovery in Databases, pages 83-113.

Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-
Hall, 1988.

Stefan Jockusch. A neural network which adapts its stucture to a given set of pat-
terns. In R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel Processing
in Neural Systems and Computers, pages 169-172. Elsevier Science Publishers,
1990.

Jyrki Joutsensalo. Nonlinear data compression and representation by combining
self-organizing map and subspace rule. In Proceedings of the International Con-
ference on Neural Networks (ICNN’94), pages 637—640, Piscataway, NJ, 1994.

Alexandros Kalousis and Melanie Hilario. Feature selection for meta-learning.
In Qing Li David Cheung, Graham J. Williams, editor, Proceedings of the
Pacific-Asia Conference Advances in Knowledge Discovery and Data Mining
(PAKDD2001), pages 222-233. Springer, April 2001.

Jari A. Kangas, Teuvo K. Kohonen, and Jorma T. Laaksonen. Variants of Self-
Organizing Maps. IEEE Transactions on Neural Networks, 1(1):93-99, March
1990.

George Karypis, Eui-Hong (Sam) Han, and Vipin Kumar. Chameleon: Hier-
archical Clustering Using Dynamic Modeling. IEEE Computer, 32(8):68-74,
August 1999.

S. Kaski and K. Lagus. Comparing self-organizing maps. In Proceedings of
International Conference on Artificial Neural Networks (ICANN) 96, pages 809
— 814, 1996.

Samuel Kaski. Data Exploration Using Self-Organizing Maps. PhD thesis,
Helsinki University of Technology, 1997. Acta Polytechnica Scandinavica:
Mathematics, Computing and Management in Engineering, 82.

Samuel Kaski. Fast winner search for SOM-based monitoring and retrieval of
high-dimensional data. In Proceedings of ICANN99, Ninth International Con-
ference on Artificial Neural Networks, volume 2, pages 940-945. IEE, London,
1999.

Samuel Kaski, Jari Kangas, and Teuvo Kohonen. Bibliography of self-
organizing map (SOM) papers: 1981-1997. Neural Computing Surveys, 1:102—
350, 1998.

Samuel Kaski, Janne Nikkild, and Teuvo Kohonen. Methaods for interpreting a
self-organized map in data analysis. In Michel Verleysen, editor, Proceedings
of ESANN’98, 6th European Symposium on Artificial Neural Networks, Bruges,
April 22-24, pages 185-190. D-Facto, Brussels, Belgium, 1998.

Samuel Kaski, Jarkko Venna, and Teuvo Kohonen. 14: Tips for Processing and
Color-Coding of Self-Organizing Maps. In Deboeck and Kohonen [22], pages
195-202.

76

[69] Samuel Kaski, Jarkko Venna, and Teuvo Kohonen. Coloring that reveals
high-dimensional structures in data. In T. Gedeon, P. Wong, S. Halgamuge,
N. Kasabov, D. Nauck, and K. Fukushima, editors, Proceedings of ICONIP’99,
6th International Conference on Neural Information Processing, volume II,
pages 729-734. IEEE Service Center, Piscataway, NJ, 1999.

[70] M. Kasslin, J. Kangas, and O. Simula. Process state monitoring using self-
organizing maps. In I. Aleksander and J. Taylor, editors, Artificial Neural Net-
works, 2, volume |1, pages 1531-1534, Amsterdam, Netherlands, 1992. North-
Holland.

[71] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: and Intro-
duction to Cluster Analysis. John Wiley & Sons, Inc., 1990.

[72] K. Kiviluoto. Comparing 2D and 3D self-organizing maps in financial data
visualization. In Yamakawa and Matsumoto [148], pages 68-71.

[73] Kimmo Kiviluoto. Topology preservation in self-organizing maps. In Proceed-
ings of the International Conference on Neural Networks (ICNN’96), volume 1,
pages 294-299, Piscataway, New Jersey, USA, June 1996. IEEE Neural Net-
works Council.

[74] Kimmo Kiviluoto and Erkki Oja. S-map: A network with a simple self-
organization algorithm for generative topographic mappings. In In Advances
in Neural Information Processing Systems, volume 10. The MIT Press, 1998.

[75] K. Koffka. Principles of Gestalt Psychology. Harcourt-Brace, New York, 1935.

[76] T. Kohonen, K. Mékisara, O. Simula, and J. Kangas, editors. Artificial Neural
Networks. Elsevier Science Publishers, 1991.

[77] Teuvo Kohonen. Automatic formation of topological maps of patterns in a self-
organizing system. In Erkki Oja and Olli Simula, editors, Proc. 2SCIA, Scand.
Conf. on Image Analysis, pages 214-220, Helsinki, Finland, 1981. Suomen Hah-
montunnistustutkimuksen Seurar. y.

[78] Teuvo Kohonen. Self-Organizing Maps: Optimization Approaches. In Kohonen
et al. [76], pages 981-990.

[79] Teuvo Kohonen. Comparison of SOM Point Densities Based on Different Cri-
teria. Neural Computation, 11(8):2081-2095, 1999.

[80] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Infor-
mation Sciences. Springer, Berlin, Heidelberg, 3rd edition, 2001.

[81] Teuvo Kohonen, Samuel Kaski, Krista Lagus, Jarkko Salojarvi, Jukka Honkela,
Vesa Paatero, and Antti Saarela. Self organization of a massive text document
collection. In Erkki Oja and Samuel Kaski, editors, Kohonen Maps, pages 171-
182. Elsevier, Amsterdam, 1999.

[82] Teuvo Kohonen, Samuel Kaski, Krista Lagus, Jarkko Salojarvi, Jukka Honkela,
Vesa Paatero, and Antti Saarela. Self organization of a massive document col-
lection. IEEE Transactions on Neural Networks, (11):574-585, 2000.

77

[83] Teuvo Kohonen, Samuel Kaski, and Harri Lappalainen. Self-organized forma-
tion of various invariant-feature filters in the adaptive-subspace SOM. Neural
Computation, 9:1321-1344, 1997.

[84] Teuvo Kohonen, Erkki Oja, Olli Simula, Ari Visa, and Jari Kangas. Engi-
neering Applications of the Self-Organizing Map. Proceedings of the IEEE,
84(10):1358-1384, October 1996.

[85] Teuvo Kohonen and Panu Somervuo. Self-organizing maps of symbol strings.
Neurocomputing, 21:19-30, 1998.

[86] Pasi Koikkalainen. Fast deterministic self-organizing maps. In Proceedings of
International Conference on Artificial Neural Networks (ICANN’95), pages 63—
68, 1995.

[87] Andreas Kdnig. A survey of methods for multivariate data projection, visualiza-
tion and interactive analysis. In Yamakawa and Matsumoto [148], pages 55-59.

[88] M. A. Kraaijveld, J. Mao, and A. K. Jain. A nonlinear projection method based
on kohonen’s topology preserving maps. IEEE Transactions on Neural Net-
works, 6(3):548-559, May 1995.

[89] J. B. Kruskal. Multidimensional Scaling by Optimizing Goodness of Fit to a
Nonmetric Hypothesis. Psychometrika, 29(1):1-27, March 1964.

[90] Krista Lagus, Esa Alhoniemi, and Harri Valpola. Independent variable group
analysis. In Georg Dorffner, Horst Bischof, and Kurt Hornik, editors, Pro-
ceedings of the International Conference on Artificial Neural Networks, Lecture
Notes in Computer Science, pages 203-210. Springer, 2001.

[91] Krista Lagus and Samuel Kaski. Keyword selection method for characterizing
text document maps. In Proceedings of ICANN99, Ninth International Confer-
ence on Artificial Neural Networks, volume 1, pages 371-376. IEE, London,
1999.

[92] Jouko Lampinen and Timo Kostiainen. Self-organizing map in data-analysis
— notes on overfitting and overinterpretation. In Proceedings of ESANN’2000,
pages 239-244, Bruges, Belgium, April 2000.

[93] Jouko Lampinen and Timo Kostiainen. Generative probability density model in
the Self-Organizing Map. In U. Seiffert and L. Jain, editors, Self-organizing neu-
ral networks: Recent advances and applications, pages 75-94. Physica Verlag,
2002.

[94] Jouko Lampinen and Erkki Oja. Self-organizing maps for spatial and temporal
AR models. In Proceedings of the Scandinavian Conference on Image Analysis
(SCIA’89), pages 120-127, 1989.

[95] Jouko Lampinen and Erkki Oja. Clustering Properties of Hierarchical Self-
Organizing Maps. Journal of Mathematical Imaging and Vision, 2(2-3):261-
272, November 1992.

[96] R. D. Lawrence, G. S. Almasi, and H. E. Rushmeier. A Scalable Parallel Al-
gorithm for Self-Organizing Maps with Applications to Sparse Data Problems.
Data mining and knowledge discovery, 3(2):171-195, June 199.

78

[97] R. C. T. Lee, J. R. Slagle, and H. Blum. A Triangulation Method for the Se-
quential Mapping of Points from N-Space to Two-Space. IEEE Transactions on
Computers, C-26(3):288-292, March 1977.

[98] S. P. Luttrell. Self-organisation: A derivation from first principles of a class of
learning algorithms. In Proc. IJCNN’89. Int Joint Conf. on Neural Networks,
volume I, pages 495-498, Piscataway, NJ, 1989. IEEE Technical Activities
Board, Neural Network Committee, USA; Int Neural Network Soc, IEEE Ser-
vice Center.

[99] Paul Mangiameli, Shaw K. Chen, and David West. A comparison of SOM Neu-
ral Network and hierarchical clustering methods. European Journal of Opera-
tional Research, 93(2), September 1996.

[100] J. Mao and A.K. Jain. Artificial neural networks for feature extraction and mul-
tivariate data projection. IEEE Transaction on Neural Networks, 6(2):296-317,
March 1995.

[101] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. “Neural-gas” network for
vector quantization and its application to time-series prediction. IEEE Transac-
tions on Neural Networks, 4(4):558-569, 1993.

[102] Geoffrey J. McLahlan and Kaye E. Basford. Mixture Models: Inference and
Applications to Clustering, volume 84 of Statistics: Textbooks and Monographs.
Marcel Dekker, 1987.

[103] D. Merkl and A. Rauber. Alternative ways for cluster visualization in self-
organizing maps. In Proceedings of the Workshop on Self-Organizing Map,
pages 106-111, 1997.

[104] R. S. Michalski and R. Stepp. Automated construction of classifications: Con-
ceptual clustering versus numerical taxonomy. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 5:396-410, 1983.

[105] Glenn W. Milligan and Martha C. Cooper. An Examination of Procedures for
Determining the Number of Clusters in a Data Set. Psychometrika, 50(2):159-
179, June 1985.

[106] Glenn W. Milligan and Martha C. Cooper. A study of standardation of variables
in cluster analysis. Journal of Classification, 5:181-204, 1988.

[107] John Moody and Christian J. Darken. Fast Learning in Networks of Locally-
Tuned Processing Units. Neural Computation, 1(2):281-294, 1989.

[108] F. Murtagh. Interpreting the Kohonen self-organizing map using contiguity-
constrained clustering. Pattern Recognition Letters, 16:399-408, 1995.

[109] Gregory Piateetsky-Shapiro. The data mining industry coming of age. IEEE
Intelligent Systems, pages 32—-34, 1999.

[110] J. C. Principe and L. Wang. Non-linear time series modeling with self-
organization feature maps. In Proceedings of the 1995 IEEE Workshop on Neu-
ral Networks for Signal Processing V, 1995.

79

[111] Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishers,
1999.

[112] Andreas Rauber and Dieter Merkl. Automatic labeling of self-organizing maps:
Making a treasure-map reveal its secrets. In Proceedings of the 3rd Pasific-Area
Conference on Knowledge Discovery and Data Mining (PAKDD’99), 1999.

[113] Marina Resta. Self organizing evolutionary models in financial markets fore-
casting. pages 187-190. Helsinki University of Technology, Neural Networks
Research Centre, Espoo, Finland, 1997.

[114] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, 1996.

[115] H. Ritter, T. Martinetz, and K. Schulten. Neural Computation and Self-
Organizing Maps: an Introduction. Addison-Wesley, Reading, MA, 1988.

[116] Helge Ritter. Asymptotic Level Density for a Class of Vector Quantization Pro-
cesses. IEEE Transactions on Neural Networks, 2(1):173-175, January 1991.

[117] Joaquim S. Rodrigues and Luis B. Almeida. Improving the learning speed in
topological maps of pattern. In Proceeding of International Neural Network
Conference, volume 2, pages 813-816, 1990.

[118] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290:2323-2326, December 2000.

[119] John W. Sammon, Jr. A Nonlinear Mapping for Data Structure Analysis. IEEE
Transactions on Computers, C-18(5):401-409, May 1969.

[120] Friedhelm Schwenker, Hans Kestler, and Gunther Palm. Adaptive clustering and
multidimensional scaling of large and highdimensional data sets. In Proceed-
ings of International Conference on Articifical Neural Networks (ICANN’98),
volume 2, pages 911-916, 1998.

[121] Wojciech Siedlecki, Kinga Siedlecka, and Jack Sklansky. An overview of
mapping techniques for exploratory pattern analysis. Pattern Recognition,
21(5):411-429, 1988.

[122] Olli Simula, Esa Alhoniemi, Jaakko Hollmén, and Juha Vesanto. Monitoring and
modeling of complex processes using hierarchical self-organizing maps. In Pro-
ceedings of the 1996 IEEE International Symposium on Circuits and Systems,
volume Supplement, pages 73-76. IEEE, May 1996.

[123] Olli Simula and Jari Kangas. Neural Networks for Chemical Engineers, vol-
ume 6 of Computer-Aided Chemical Engineering, chapter 14, Process monitor-
ing and visualization using self-organizing maps. Elsevier, Amsterdam, 1995.

[124] Olli Simula, Juha Vesanto, Petri Vasara, and Riina-Riitta Helminen. Industrial
Applications of Neural Networks (L.C. Jain and V.R. Vemuri, eds.), chapter 4:
The Self-Organizing Map in Industry Analysis, pages 87-112. CRC Press, 1999.

[125] Janne Sinkkonen and Samuel Kaski. Clustering based on conditional distribu-
tions in an auxiliary space. Neural Computation, 14:217-239, 2002.

80

[126] H. Speckmann, G. Raddatz, and W. Rosenstiel. Considerations of geometrical
and fractal dimension of SOM to get better learning results. In Proceedings of
the International Conference on Artificial Neural Networks (ICANN’94), pages
342-345, 1994,

[127] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290:2319-2323,
December 2000.

[128] V. Tryba and K. Goser. Self-Organizing Feature Maps for process control
in chemistry. In T. Kohonen, K. Mékisara, O. Simula, and J. Kangas, ed-
itors, Proceedings of International Conference on Artificial Neural Networks
(ICANN’91), pages 847-852, Amsterdam, Netherlands, 1991.

[129] Edward Tufte. The Visual Display of Quantitative Information. Graphics Press,
1983.

[130] J.W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, MA, 1977.

[131] A. Ultsch. Self-organized feature maps for monitoring and knowledge acquisi-
tion of a chemical process. In Proceedings of International Conference on Arti-
ficial Neural Networks (ICANN) 1993, pages 864-867, Amsterdam, September
1993.

[132] A. Ultsch. Data mining and knowledge discovery with emergent self-organizing
feature maps for multivariate time series. In E. Oja and S. Kaski, editors, Koho-
nen Maps, pages 33-45. Elsevier, 1999.

[133] A. Ultsch, G. Guimaraes, D. Korus, and H. Li. Knowledge extraction from artifi-
cial neural networks and applications. In Proceedings of Transputer-Anwender-
Treffen / World-Transputer-Congress (TAT/WTC) 1993, pages 194-203, Aachen,
Tagungsband, September 1993. Springer Verlag.

[134] A. Ultsch and H. P. Siemon. Kohonen’s Self Organizing Feature Maps for Ex-
ploratory Data Analysis. In Proceedings of International Neural Network Con-
ference (INNC’90), pages 305-308, Dordrecht, Netherlands, 1990. Kluwer.

[135] A. \ellido, P.J.G Lisboa, and K. Meehan. Segmentation of the on-line shopping
market using neural networks. Expert Systems with Applications, 17:303-314,
1999.

[136] Jarkko Venna and Samuel Kaski. Neighborhood preservation in nonlinear pro-
jection methods: an experimental study. In Proceedings of International Con-
ference on Artificial Neural Networks (ICANN) 2001, 2001.

[137] Juha Vesanto. Data mining techniques based on the self-organizing map. Mas-
ter’s thesis, Helsinki University of Technology, 1997.

[138] Juha Vesanto. Neural network tool for data mining: SOM Toolbox. In Proceed-
ings of Symposium on Tool Environments and Development Methods for Intel-
ligent Systems (TOOLMET2000), pages 184-196, Oulu, Finland, 2000. Oulun
yliopistopaino.

[139] Juha Vesanto and Jussi Ahola. Hunting for Correlations in Data Using the Self-
Organizing Map. pages 279-285. ICSC Academic Press, 1999.

81

[140] Juha Vesanto and Esa Alhoniemi. Clustering of the Self-Organizing Map. IEEE
Transactions on Neural Networks, 11(2):586-600, March 2000.

[141] Juha Vesanto, Johan Himberg, Esa Alhoniemi, and Juha Parhankangas. Self-
organizing map in matlab: the SOM toolbox. In Proceedings of the Matlab DSP
Conference 1999, pages 35-40, Espoo, Finland, November 1999.

[142] Juha Vesanto, Johan Himberg, Markus Siponen, and Olli Simula. Enhancing
SOM Based Data Visualization. In Yamakawa and Matsumoto [148], pages 64—
67.

[143] Juha Vesanto, Petri Vasara, Riina-Riitta Helminen, and Olli Simula. Integrating
environmental, technological and financial data in forest industry analysis. In
Bert Kappen and Stan Gielen, editors, Proceedings of 1997 Stichting Neurale
Netwerke Conference, pages 153-156, Ansterdam, the Netherlands, May 1997.
Stichting Neurale Netwerke, University of Nihmegen, World Scientific.

[144] T. Villmann, R. Der, M. Herrmann, and T.M. Martinetz. Topology preserva-
tion in self-organizing feature maps: Exact definition and measurement. IEEE
Transactions on Neural Networks, 8(2):256-266, 1997.

[145] Th. Villmann, R. Der, and Th. Martinetz. A new quatitative measure of topology
preservation in kohonen’s feature maps. In Proc of International Conference on
Neural Networks (ICNN) 94, pages 645-648, 1994,

[146] J. Walter, H. Ritter, and K. Schulten. Non-linear prediction with self-organizing
maps. In Proceedings of the International Joint Conference on Neural Networks
(IJCNN) 90, 1990.

[147] Colin Ware. Information Visualization: Perception for Design. Morgan Kauf-
mann Publishers, 2000.

[148] T. Yamakawa and G. Matsumoto, editors. Proceedings of the 5th Inter-
national Conference on Soft Computing and Information/Intelligent Systems
(I1ZUKA’98). World Scientific, 1998.

[149] Paul L. Zador. Asymptotic Quantization Error of Continuous Signals and
the Quantization Dimension. IEEE Transactions on Information Theory, IT-
28(2):139-149, March 1982.

[150] Tian Zhang, Raghu Ramakrishnan, , and Miron Livny. Birch: An efficient data
clustering method for very large databases. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, pages 103-114,
Montreal, Canada, 1996.

[151] Xuegong Zhang and Yanda Li. Self-Organizing Map as a New Method for Clus-
tering and Data Analysis. In Proceedings of International Joint Conference on
Neural Networks (IJCNN’93), pages 2448-2451, 1993.

82

Appendix A

Data sets used in examples

System data

The system data is a relatively simple 9-dimensional data set measuring the disk, CPU
and network performance of a workstation in a network environment. Four of the vari-
ables reflect the volumes of network traffic and five of them the CPU usage in relative
measures. The data forms a 9-dimensional time-series, but in this case it is considered
as independent samples from a system. One of the central tasks would be, based on the
measurements, to monitor the state of the system in real-time.

The operation of a single computer workstation in a networking environment was
recorded in terms of the central processing unit (CPU) activity and the volumes of
network traffic. The recordings were made during 5 working days with intervals of 2
minutes and 5 minutes, during day operations and night time, respectively. The number
of samples is 1908. The data was collected by Dr. Jaakko Hollmén in 1996 in Labora-
tory of Computer and Information Science, Helsinki University of Technology.

Variable | Explanation

bl ks/'s | read blocks per second

wbl ks/'s | written blocks per second
i pkts | the number of input packets
opkts | the number of output packets

usr time spent in user processes

Sys time spent in system processes
intr time spent handling interrupts

Wi 0 CPU was idle while waiting for 1/0

idle CPU was idle and not waiting for anything

Millsdata
Original tables

The mills data is the pulp and paper mill data set that was the original inspiration for
this work. It was provided by Jaakko P8yry Consulting. The data contained information
of the technology of the pulp and paper mills around the world. It was divided into three
separate sets; information of the mill itself, its paper machines and its pulp lines. Each
mill may have zero, one or several paper and pulp lines. There were altogether 4205

83

pulp and paper mills, with 8765 paper machines and 2979 pulp lines in them. The
variables in each table are listed below.

Mill-level data

Variable | Explanation
TOT_PAPER | total paper production capacity (1000 t/a)
NO_PMS number of paper machines
COATERS | number of coaters
NEWS newsprint production capacity (% of total paper production capacity)
TOT_PR WR | print/write paper production capacity (%)
TOT_WF woodfree (WF) paper production capacity (%)
UNC WF uncoated WF paper production capacity (%)
CTD W coated WF paper production capacity (%)
TOT_WC wood containing (WC) paper production capacity (%)
UNC_WC uncoated WC paper production capacity (%)
CID W coated WC paper production capacity (%)
TOT_IND | industial papers production capacity (%)
V\RAPP wrapping paper production capacity (%)
CARTONB | cartonboard production capacity (%)
LI NERB linerboard production capacity (%)
FLUTING | fluting production capacity (%)
TI SSUE tissue production capacity (%)
OTHER other papers production capacity (%)
TOT_PULP | total pulp production (1000 t/a)
TOT_CHEM | chemical pulp production capacity (%)
UBL_SA unbleached sulphate (Sa) production capacity (%)
SBL_SA semibleached Sa production capacity (%)
BL_SA bleached Sa production capacity (%)
UBL_SI unbleached sulphite (Si) production capacity (%)
SBL_SI semibleached Si production capacity (%)
BL_SI bleached Si production capacity (%)
TOT_CMECH | chemimechanical pulp production capacity (%)
CTMP_TOT | chemi-thermomechanical pulp (CTmp) production capacity (%)
TOT_MECH | mechanical pulp production capacity (%)
el ground wood production capacity (%)
RWP refiner mechanical pulp (Rmp) production capacity (%)
T™P thermomechanical pulp (Tmp) production capacity (%)
DEVWA deinked waste paper (Dewa) production capacity (%)
DI VWA disperged waste paper (Diwa) production capacity (%)
SEM _CHEM | semichemical pulp production capacity (%)
Pulp line data
Variable | Explanation
BLEACH NG | bleaching type
FI BRE fibre type
MAI NGRADE | main pulp grade type
MARKETCAP | market pulp capacity (%)
TOTALCAP | total capacity (1000 t/a)

84

Paper machine data

Variable | Explanation
W RE wire width (mm)
WRIM | wire trim width (mm)
SPEEDDES | speed (m/min)
GRAVW N | grammage, min (g/m?)
GRAMVAX | grammage, max (g/m?)
CAPACI TY | capacity (1000t/a)
BUI LT (re)built (year)

Handling lower-level tables

The information in the two lower-level data tables (paper machines and pulp lines) had
to be transferred to the upper level. This was done using clustering approach introduced
in Section 5.2. The responses were defined simply as

ri = [6(17C(b|))7 ---76(C7C(bi))];

where c(b;) is the cluster index of map unit b; and &(-,-) is the Dirac delta function.
The clustering was done automatically using the approach detailed in Section 4.3.3.
The number of clusters on the paper machine map and pulp line maps were 9 and
15, respectively. Combined with the original capacity information, the total number of
variables variables on the mills data is 59. The new components corresponding to the
clusters on the lower-level maps are listed below.

Variable

Explanation

Paper: Smal | 1
Paper : Smal | paper 2
Paper : NewSnal | 1
Paper : NewSnal | 2
Paper : SpeedW de
Paper : Speed

Small paper machines with low speed.
Like Paper: Smal | 1.

Small capacity, lightweight paper, but new.
Small machines, but new.

Wide trim, and high speed.

High speed, but narrow trim.

Paper: Gramm Heavy papers.

Paper: A d Old machines.
Paper: Bi ¢ High capacity, wide trim.
Variable Explanation

Pul p: Bl eachedWod1
Pul p: Bl eachedWod2
Pul p: Tot al capacity
Pul p: Bl eachedMech
Pul p: Seni bl eached
Pul p: Unbl eachedmech
Pul p: st e
Pul p: Rags
Pul p: Seni chemi cal Wod
Pul p: Unbl eachedChem
Pul p: G herfibre
Pul p: Mar ket cap
Pul p: G herfi breUnbl eached
Pul p: Seni chemi cal Ot herfi bre
Pul p: Wast eUnbl eached

Chemically produced bleached pulp from wood.
Like Pul p: Bl eachedWod1.

High capacity pulping lines (chemically from wood).
Mechanically produced bleached pulp.
Semibleached pulp.

Mechanically produced unbleached pulp.

Pulp from waste paper.

Pulp from rags.

Pulp semichemically from wood.

Unbleached pulp produced chemically.

Pulp from other fibres.

Market capacity high (pulp produced for selling).
Unbleached pulp from other fibres.
Semichemically produced pulp from other fibres.
Unbleached pulp from waste paper.

85

Appendix B

SOM-algorithm in C

In C programming language, one epoch of the basic sequential training algorithm for
SOM can be written as:

for (i=0; i<N i++) { /* go through the data: QN */
bmu=-1; m n=1000000;
for (j=0; j<M j++) { /* find the BMJ Q(3MI) */
di st =0;

for (k=0; k<d; k++) { dx = X[i][k] - Mj]l[k]; dist += dx*dx; }
if (dist<min) { min=dist; bmu=j; }

}

for (j=0; j<M j++) { /* update: O(3Mr3Ml) */
h = al pha*exp(del ta(bmu,j)/rad); /* Gaussian nei ghborhood */
for (k=0; k<d; k++) Mj,k) -=h*(Mj][k] - X[i][k]);

}

}
/* TOTAL: Q(6NMH + 3NV */

Above, X[i][K] is the kth component of the ith data sample, M j][k] is the kth
component of map unit j, del t a is a table of squared map grid distances ||ry, — rj||
between map units calculated beforehand and r ad the neighborhood radius at time t
multiplied by —2 (see Eq. 3.3). The complexities in the comments (for example Q(N))
refer to the number of floating point operations (additions, multiplications and expo-
nents).

86

