
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 71

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 71

Espoo 2002 HUT-TCS-A71

COMBINING SYMBOLIC AND PARTIAL ORDER METHODS FOR

MODEL CHECKING 1-SAFE PETRI NETS

Keijo Heljanko

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80701172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 71

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 71

Espoo 2002 HUT-TCS-A71

COMBINING SYMBOLIC AND PARTIAL ORDER METHODS FOR

MODEL CHECKING 1-SAFE PETRI NETS

Keijo Heljanko

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of

the Department of Computer Science and Engineering, for public examination and debate in Auditorium

T2 at Helsinki University of Technology (HUT CS building, Espoo, Finland) on the 22nd of March,

2002, at 12 noon.

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Keijo Heljanko

Original publications©c IOS Press, Springer-Verlag

ISBN 951-22-5886-2

ISSN 1457-7615

Picaset Oy

Helsinki 2002

ABSTRACT: In this work, methods are presented for model checking finite
state asynchronous systems, more specifically 1-safe Petri nets, with the aim
of alleviating the state explosion problem. Symbolic model checking tech-
niques are used, combined with two partial order semantics known as net
unfoldings and processes.

We start with net unfoldings and study deadlock and reachability check-
ing problems, using complete finite prefixes of net unfoldings introduced by
McMillan. It is shown how these problems can be translated compactly into
the problem of finding a stable model of a logic program. This combined
with an efficient procedure for finding stable models of a logic program, the
Smodels system, provides the basis of a prefix based model checking pro-
cedure for deadlock and reachability properties, which is competitive with
previously published procedures using prefixes.

This work shows that, if the only thing one can assume from a prefix is that
it is complete, nested reachability properties are relatively hard. Namely, for
several widely used temporal logics which can express a violation of a certain
fixed safety property, model checking is PSPACE-complete in the size of the
complete finite prefix.

A model checking approach is devised for the linear temporal logic LTL-X
using complete finite prefixes. The approach makes the complete finite pre-
fix generation formula specific, and the prefix completeness notion applica-
tion specific. Using these ideas, an LTL-X model checker has been imple-
mented as a variant of a prefix generation algorithm.

The use of bounded model checking for asynchronous systems is studied.
A method to express the process semantics of a 1-safe Petri net in symbolic
form as a set of satisfying truth assignments of a constrained Boolean circuit
is presented. In the experiments the BCSat system is used as a circuit satis-
fiability checker. Another contribution employs logic programs with stable
model semantics to develop a new linear size bounded LTL-X model check-
ing translation that can be used with step semantics of 1-safe Petri nets.

KEYWORDS: Verification, Model Checking, Petri nets, Complete Finite
Prefixes, Partial Order Methods, Symbolic Methods, Bounded Model Check-
ing

CONTENTS

Preface 1

List of Publications 2

1 Introduction 4
1.1 Contributions . 8

2 Petri Nets 10

3 Net Unfoldings 12
3.1 Complete Finite Prefixes . 15

4 Rule-Based Constraint Programming 22
4.1 The Smodels System . 24
4.2 Motivation for Using Stable Models 25

5 Verification with Prefixes 28
5.1 Computational Complexity Issues 29

6 Bounded Model Checking 32

7 Conclusions 36
7.1 Topics for Further Research 37

A Corrections and Additions to Publications 38

References 49

Original Publications 56

PREFACE

This dissertation is the result of studies and research at the Laboratory for
Theoretical Computer Science of Helsinki University of Technology from
1997 to 2002. I’m grateful to my supervisor Prof. Ilkka Niemelä, for frequent
advice and great support. I’m also grateful to Prof. Emeritus Leo Ojala who
deserves a large credit for supervising me until his retirement in the year
2000, and for creating a good research oriented laboratory.

People at the laboratory deserve credit for a good research atmosphere.
A list of people to thank would be too long, however, I would like to especially
thank Tommi Junttila for his comments on numerous research ideas and
issues.

During 1999 and 2000 I visited Prof. Javier Esparza’s research group at
Technische Universität München for a total of 8 months. I would like to
thank for the visit opportunity, as these visits were vital for creating a major
part of this dissertation.

My co-authors J. Esparza and I. Niemelä significantly contributed to the
joint publications and deserve credit for their excellent work. They also gave
me a much needed insight into their fields of expertise.

The following people directly contributed software or examples used in
the experiments of this dissertation: Patrik Simons (Smodels), Tommi Junt-
tila (BCSat), Gerard Holzmann (SPIN tool LTL to Büchi automata trans-
lator [44]), Frank Wallner (qq tool for synchronizing Petri nets and Büchi
automata), Stefan Schwoon (qq tool support), Burkhard Graves and Bernd
Grahlmann (C code to read PEP prefix files), Stefan Römer (ERVunfold bi-
naries and example nets), Stephan Melzer (example nets), Claus Schröter
(example nets and formulas). I would also like to thank Victor Khomenko
for interesting discussions on the net unfolding method.

The work was funded by Helsinki Graduate School on Computer Science
and Engineering (HeCSE) and by the Academy of Finland (projects 43963
and 47754). The financial support of the following institutions is gratefully
acknowledged: Support Foundation of Helsinki University of Technology,
Emil Aaltonen Foundation, Nokia Oyj Foundation, Helsinki University of
Technology grant fund, and Foundation of Technology (Tekniikan Edistämis-
säätiö). The grants of these institutions were of great importance as they made
full-time studies and international visits possible.

I would like to thank my parents for their support and encouragement.
Last but not least I would like to thank my love Virpi for her love and support.

Otaniemi, February 28th, 2002

Keijo Heljanko

1

LIST OF PUBLICATIONS

The dissertation consists of 6 publications listed below, and a dissertation
summary. Publications [P1]-[P4] are on model checking using complete
finite prefixes, and [P5]-[P6] are on bounded model checking.

[P1] K. Heljanko, Using logic programs with stable model semantics to
solve deadlock and reachability problems for 1-safe Petri nets, Fun-
damenta Informaticae, 37(3):247–268, 1999, IOS Press.

[P2] K. Heljanko, Model checking with finite complete prefixes is PSPACE-
complete, in Proceedings of the 11th International Conference on
Concurrency Theory (CONCUR’2000), State College, Pennsylvania,
USA, August 2000, volume 1877 of Lecture Notes in Computer Sci-
ence, pages 108–122, Springer-Verlag.

[P3] J. Esparza and K. Heljanko, A new unfolding approach to LTL model
checking, in Proceedings of 27th International Colloquium on Au-
tomata, Languages and Programming (ICALP’2000), Geneva, Switzer-
land, July 2000, volume 1853 of Lecture Notes in Computer Science,
pages 475–486, Springer-Verlag.

[P4] J. Esparza and K. Heljanko, Implementing LTL model checking with
net unfoldings, in Proceedings of the 8th International SPIN Workshop
on Model Checking of Software (SPIN’2001), Toronto, Canada, May
2001, volume 2057 of Lecture Notes in Computer Science, pages 37–
56, Springer-Verlag.

[P5] K. Heljanko, Bounded reachability checking with process semantics,
in Proceedings of the 12th International Conference on Concurrency
Theory (CONCUR’2001), Aalborg, Denmark, August 2001, volume
2154 of Lecture Notes in Computer Science, pages 218–232, Springer-
Verlag.

[P6] K. Heljanko and I. Niemelä, Bounded LTL model checking with sta-
ble models, in Proceedings of the 6th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’2001),
Vienna, Austria, September 2001. volume 2173 of Lecture Notes in
Artificial Intelligence, pages 200–212, Springer-Verlag.

The current author is the only author of publications [P1], [P2], and [P5].
The publication [P3] (as well as the extended version [20]) is co-authored

by J. Esparza. The key ideas of the publication [P3] were jointly devel-
oped while the current author was visiting Technische Universität München.
Some key proof ideas on the tableaux side of [20] are due to J. Esparza,
whereas the proofs of the used synchronization construction are by current
author.

The publication [P4] (as well as the extended version [22]) is co-authored
by J. Esparza. The paper was jointly written, with the current author design-
ing the presented algorithms, implementing the unfsmodels prototype tool,
and performing the experiments. J. Esparza contributed to simplifying the

2

theory behind the used approach, as well as coming up with simpler proofs
in [22].

The publication [P6] is co-authored by I. Niemelä. The basic translation
was jointly developed. The current author’s contribution is a new succinct
LTL translation, implementation of the translations, and the experimental
work.

3

1 INTRODUCTION

It is a widely recognized fact that the complexity of systems containing soft-
ware or hardware components is increasing at a high rate. Furthermore,
we as a society are increasingly more dependent on e.g., the correct func-
tioning of communication infrastructure. Therefore, computer scientists are
faced with the problem of designing safety or business critical systems of large
complexity.

The traditional way of ensuring the correctness of of such systems has re-
lied on two main techniques of testing and simulation. However, when the
systems contain concurrent and/or reactive components, these techniques
frequently do not scale at the rate of the system complexity growth. The use
of computer aided verification has been suggested as an aid to supplement
these methods. These methods are based on the observation that we should
use the increasing computational capacity we have at our disposal to ease the
design of complex systems.

One of the most promising methods for computer aided verification is
model checking. The basic principles of model checking were developed
in the early 1980’s independently by two different groups with the earliest
publications being [12, 64]. The basic idea is to model the system of interest
so as to allow the generation of a graph that contains the reachable states of
the system as nodes and the state transitions between them as edges. When
a labeling of the nodes with atomic propositions which hold at each state is
added, this graph is known as a Kripke structure of the system (see e.g., [11]).
The specification of the property we are interested in is given by a temporal
logic formula. After this, one can check with a model checking algorithm
whether the system meets its specification, i.e., by checking if the Kripke
structure of the system is a model of the specification.

The system under model checking can be described in several different
ways. In case of synchronous digital hardware the description language is
frequently a hardware description language. In the case of asynchronous sys-
tems, there is a variety of different formalisms. In this work, a model called
(1-safe) Petri nets [15] will be used as a system description formalism. Other
choices of asynchronous system models could include process algebras [43,
57], extended finite state machines as supported by the SPIN tool [44], high-
level Petri nets as supported by tools like Maria and PROD [53, 73], pro-
tocol specification languages such as SDL [45], and various programming
languages such as Java [2]. We selected 1-safe Petri nets mainly because of
their simplicity and the fact that there is an extensive body of research on
their analysis methods. We believe that most of the methods developed in
this work can also be applied to other asynchronous system description for-
malisms.

The use of temporal logics to specify properties of concurrent programs
was first suggested by Pnueli in the late 1970’s [63]. Several temporal log-
ics can be used as specification languages. Two of the most prominent are
the computation tree logic (CTL), and linear temporal logic (LTL); for the
semantics of the logics and a discussion of their features see e.g., [11]. This
work will concentrate mainly on LTL, particularly on its subset LTL-X, in
which the so called next-time operator has been removed. The LTL-X logic

4 1 INTRODUCTION

is probably the most widely used linear time temporal logic used to specify
properties of asynchronous systems.

After the system model is described, and the specifications are developed,
model checking is (ideally at least) a fully automated procedure. A model
checker will either output that the system corresponds to the specification
or that the specified property does not hold. The executions of a system are
the finite and infinite paths in the Kripke structure that start from some initial
state of the system. If the specified property does not hold, the model checker
outputs a counterexample execution which violates the property. This fre-
quently facilitates in the location of errors. These features have made model
checking an appealing alternative for industrial use.

The main obstacle in applying model checking is the state explosion prob-
lem. For example, if the system is described as a composition of n finite state
machines, then the Kripke structure of the system can be of exponential size
in the number of components. Some sources of state explosion are concur-
rency of components mentioned above, and combinatorial explosion due to
combinations of different data values in data variables.

In this work, methods for alleviating the state explosion problem in model
checking of 1-safe Petri nets are developed. The two main techniques em-
ployed in this work are the use of symbolic and partial order methods. There
is a large body of work dedicated to making model checking more efficient
in different domains; for an overview see e.g., [11, 70].

In symbolic model checking the main idea is to represent the behavior
of the system in a symbolic form rather than explicitly constructing a Kripke
structure as a graph. There are several variations to symbolic methods. Their
common feature is the use of representations of sets of states of the system
in implicit form rather than having each global state of a system explicitly
represented, e.g., as a node of the Kripke structure.

There are a large number of symbolic methods available. The most well-
known is the use of data structure called ordered binary decision diagrams
(OBDDs), which are a canonical form of Boolean functions [9]. The method
was developed by McMillan for the verification of synchronous digital cir-
cuits [10, 55]. The main idea is to represent the transition relation and sets of
reachable states as Boolean functions represented by OBDDs. The OBDDs
have efficient algorithms for basic Boolean operations, and are frequently
very compact exploiting regularities in the digital circuits to represent large
sets of states of synchronous hardware designs very compactly.

Recently, several suggestions have been made to replace OBDDs with
methods based on propositional satisfiability (SAT) procedures [1, 6] to fur-
ther improve the scalability of symbolic model checking. The bounded
model checking method was introduced in [6]. The main idea in bounded
model checking is to look for counterexamples that are shorter than some
fixed length n for a given property. If a counterexample can be found which
is at most of length n, the property does not hold for the system. Other-
wise the result is inconclusive, and the bound must be increased or proved
sufficient to cover all possible counterexamples by other means. The imple-
mentation ideas are very similar to procedures used in SAT-based artificial
intelligence (AI) planning [47, 59].

It seems that the bounded model checking procedures can currently chal-

1 INTRODUCTION 5

lenge OBDD based methods on digital hardware designs both in terms of
memory and time required to find counterexamples [7, 8, 13]. The weakness
of bounded model checking is that if no counterexample can be found using
a bound, the result is in general inconclusive. In certain favorable cases, it
can be proved that e.g., all reachable states of a system are reachable within
some bound n. In this case the bounded model checking is able to show the
non-existence of counterexamples for reachability properties; for more dis-
cussion see [6]. Another way of ensuring completeness is to use a SAT proce-
dure inside a “classical” symbolic model checker, as presented in [1, 76], to
replace an OBDD based procedure. It has also been observed that the per-
formance of a SAT based procedure is frequently more predictable than the
performance of an OBDD based procedure, which depends on the so called
variable ordering that can dramatically affect the OBDD sizes during model
checking, see e.g., [13]. This variable ordering is frequently hard to gener-
ate automatically using heuristics, and generally more human interaction is
needed when using OBDDs instead of SAT procedures [13].

Partial order methods are a collection of methods to alleviate the state ex-
plosion problem during the verification of asynchronous systems. Most of the
communication protocol and software verification work has used some kind
of asynchronous system model, in which there are a set of different “mod-
ules” in the system that can each operate independently of each other with-
out a global synchronization clock. The modules can communicate with
each other through such communication mechanisms as shared variables,
message queues, or synchronization primitives. In partial order methods the
goal is to use the independence between the modules of the system to al-
leviate the state explosion problem. This independence arises from the fact
that frequently two modules of the system do not interact with each other
and e.g., changes made to local variables in two different modules of the sys-
tem can frequently be executed in any order (or event concurrently) without
affecting the outcome (the reached global state of the system). The partial
order methods can be divided into two subclasses: partial order reduction
and partial order semantics methods.

The first class of partial order methods includes the so called partial or-
der reduction methods, which use the independence between transitions of
the system to generate a subset of the Kripke structure of the system, which
still preserves the model checking outcome of the specification we are inter-
ested in. The methods thus use the independence information to prune the
Kripke structure, but still operate on interleaving executions of the system.
As noted in Section 10 of [11] this set of methods could be better described
as model checking using representatives, since the verification is performed
using representative executions from suitably defined (using a notion of inde-
pendence) equivalence classes of behaviors.1 Methods of this class include
stubborn sets, persistent sets, and ample sets. Also closely related to these
methods is the sleep set method. For more information on this class of meth-
ods, see e.g., [11, 30, 70, 72].

This work will concentrate on the second subclass of partial order methods

1Rather than being based on a partial order model of program execution, the methods
use commutativity of (some) transitions to generate only part of the Kripke structure. This
commutativity might not even arise from concurrency.

6 1 INTRODUCTION

which will be referred to as partial order semantics methods. Namely, these
methods take a partial order view of the behavior of asynchronous systems.
In this view, two concurrent (and thus also independent) events are executed
concurrently, and not in any fixed order. There is an order between events
that are dependent on each other; however, as noted before, this order need
not be a total order, but only a partial one. For Petri nets, there are two main
partial order semantics, known as net unfoldings and processes. Roughly
speaking, a net unfolding can be seen as a partial order branching time model
of computation, while processes are a linear time view of the partial order
behavior of the system.

Net unfoldings were introduced in [58] as a partial order semantics for
Petri nets. Intuitively, they can be seen as a partial order version of an infinite
computation tree. They were later more extensively researched under the
name of branching processes by Engelfriet [16]. McMillan was the first to
show how to use net unfoldings as a basis for a verification method [55] for
finite state systems. He provided an algorithm to compute a complete finite
prefix of the unfolding, which contained full information about the behavior
of the Petri net system in symbolic form. The finite prefix can sometimes be
exponentially more succinct than the Kripke structure of the system, which
makes them interesting symbolic representations for model checking work.
The net unfoldings have been a base of several model checking approaches
in the past, some of which are mentioned in this work. Section 3 contains
more information on the net unfolding method. In addition, publications
[P1]-[P4] are on net unfolding based methods.

Processes were introduced to give partial order semantics to Petri nets [4,
5, 29, 31]. Intuitively, a process can be seen as the partial order version
of an execution. However, it is actually the case that even a single process
can correspond to exponentially many interleaving executions, and thus can
sometimes also be exponentially more succinct than the Kripke structure.
The partial order behavior of the system can now be described as a set of pro-
cesses it induces. A net unfolding can be intuitively seen as the union of all
the processes of the Petri net system, with maximal prefix sharing. The term
“branching processes” refers to this fact. The only process based verification
method we know of is presented in publication [P5], which contains a pro-
cess based bounded model checking procedure. It can be seen as a symbolic
representation of all the processes of the 1-safe Petri net in question, which
have a depth equal to a user specified value n. An extensive treatment of Petri
net processes can be found in [4, 5].

For computational complexity of Petri net related verification problems,
see e.g., [18]. More information on the state explosion problem and meth-
ods to alleviate it can be found in [70]. For a longer introduction to model
checking, including other related techniques, see e.g., [11].

Our research goal has been the development of efficient model checking
methods for 1-safe Petri nets. The main problem facing us is the state ex-
plosion problem. We have chosen to concentrate on using a combination
of symbolic methods and partial order semantics to alleviate this problem.
A major part of the work focuses on developing a better understanding of
complete finite prefix based verification methods.

1 INTRODUCTION 7

1.1 Contributions

The main contributions of each of the publications are the following:

• [P1]: Linear size translations are devised from the deadlock and reach-
ability problems of 1-safe Petri nets using complete finite prefixes into
finding a stable model of a logic program. For deadlock checking,
the translation can be seen as an adaptation of the mixed integer pro-
gramming translation of [56] to the used logic programming frame-
work, while the reachability checking version is new. Experimental
results from the deadlock detection problem show the method to be
competitive with alternative net unfolding based deadlock checking
approaches. This publication is an extended version of [37].

• [P2]: Model checking several temporal logics is shown to be PSPACE-
complete in the size of a complete finite prefix of a 1-safe Petri net
system for fixed size formulas. The proof employs a class of net systems
for which it is easy to generate a complete finite prefix in polynomial
time. This class is also shown to contain net systems for which classical
prefix generation algorithms [24, 25, 55] generate exponentially larger
prefixes than required to satisfy the prefix completeness criterion.

• [P3]: A new net unfolding based model checking procedure for an
action based linear temporal logic is presented. This procedure solves
the model checking problem by direct inspection of a prefix instead
of requiring the running of an elaborate algorithm on the prefix, as is
the case in previous approaches [75]. The report version [20] is an
extended version that contains proofs and examples not contained in
the conference version [P3] due to length constraints.

• [P4]: An implementation of a net unfolding based linear temporal
logic model checker is presented. The tableau procedure of [P3] is
applied to a state based temporal logic LTL-X, and developed further
to be more easily implementable as a modification of a conventional
prefix generation procedure. Experimental results from a prototype
implementation are presented. Again, the report version [22] contains
proofs omitted from the conference version [P4] due to length con-
straints.

• [P5]: Bounded model checking is applied to checking reachability
properties of asynchronous systems, specifically 1-safe Petri nets. We
consider three different semantics: interleaving, step, and process se-
mantics. The reachability checking problems are translated into con-
strained Boolean circuit satisfiability, and experimental results on a set
of deadlock checking problems are obtained. The main contribution
is the translation for the process semantics, which frequently performs
best of the three semantics considered.

• [P6]: We present how to use logic programs with stable model seman-
tics to solve bounded model checking problems of 1-safe Petri nets.

8 1 INTRODUCTION

In this work, two semantics are considered: interleaving and step se-
mantics. As properties, reachability and also linear time temporal logic
LTL-X are used, both with parametric initial markings. The main con-
tribution of the paper is a new, more succinct bounded LTL-X model
checking translation that allows for concurrency of invisible transitions
in generated counterexamples. This frequently allows counterexam-
ples to be found with smaller bounds. This publication is an extended
version of [41].

Structure of the Dissertation. The dissertations consists of 6 publications
and a dissertation summary.

The structure of the dissertation summary is as follows. First we introduce
basic notation used for Petri nets. In Section 3 we define net unfoldings.
The discussion of different notions of prefix completeness in Section 3.1 is
a subject that is presented only in the dissertation summary. We will con-
tinue with the definition of logic programs with stable model semantics, and
the motivation for using them in Section 4. Verification with prefixes is the
topic of Section 5, parts of which are new to this work. In Section 6, we
introduce bounded model checking. The conclusions are in Section 7. The
Appendix A contains corrections and additions to the publications.

1 INTRODUCTION 9

2 PETRI NETS

This section summarizes the basic Petri net notation used throughout the
work. All of the material is also presented in the publications.

Petri nets are a widely used model of concurrent and reactive systems.
In this work we discuss verification methods for Petri nets used to model
asynchronous finite state systems. More specifically, we limit ourselves to the
so-called 1-safe Petri nets, which can be seen as an interesting generalization
of communicating automata, see e.g., [15].

A net is a triple N = 〈P, T, F 〉, where P and T are disjoint sets of places
and transitions, respectively, and F is a function (P×T)∪(T ×P)→ {0, 1}.
Places and transitions are generically called nodes. If F (x, y) = 1 then we
say that there is an arc from x to y. The places are represented in graphical
notation by circles, transitions by squares, and the flow relation F with arcs.

The preset of a node x ∈ P ∪ T , denoted by •x, is the set {y ∈ P ∪ T |
F (y, x) = 1}. The postset of a node x ∈ P ∪ T , denoted by x•, is the set
{y ∈ P∪T | F (x, y) = 1}. Their generalizations on sets of nodes X ⊆ P∪T
are defined as •X =

⋃
x∈X

•x, and X• =
⋃

x∈X x•, respectively. In this work
we consider only nets in which every transition has a nonempty preset and a
nonempty postset.

A marking of a net 〈P, T, F 〉 is a mapping P → IN (where IN denotes
the set of natural numbers including 0). We identify a marking M with
the multiset containing M(p) copies of p for every p ∈ P . For instance,
if P = {p1, p2} and M(p1) = 1, M(p2) = 2, we write M = {p1, p2, p2}.
A marking is graphically denoted by a distribution of tokens on the places of
the net.

A marking M enables a transition t if it marks each place p ∈ •t with a
token, i.e., if M(p) > 0 for each p ∈ •t. If t is enabled at M , then it can
fire or occur, and its occurrence leads to a new marking M ′, obtained by
removing a token from each place in the preset of t, and adding a token to
each place in its postset; formally, M ′(p) = M(p) − F (p, t) + F (t, p) for

every place p. For each transition t the relation
t
−−−→ is defined as follows:

M
t
−−−→M ′ if t is enabled at M and its occurrence leads to M ′.
A 4-tuple Σ = 〈P, T, F, M0〉 is a net system if 〈P, T, F 〉 is a net and M0

is a marking of 〈P, T, F 〉 (called the initial marking of Σ). We will use as a
running example the net system in Figure 1.

A sequence of transitions σ = t1t2 . . . tn is an occurrence sequence if there
exist markings M1, M2, . . . , Mn such that

M0
t1−−−→M1

t2−−−→ . . .Mn−1
tn−−−−→Mn.

Mn is the marking reached by the occurrence of σ, which is also denoted

by M0
σ
−−−→Mn. A marking M is a reachable marking if there exists an

occurrence sequence σ such that M0
σ
−−−→M . The reachability graph of

a net system Σ is the labelled graph having the reachable markings of Σ as

nodes, and the
t
−−−→ relations (more precisely, their restriction to the set of

reachable markings) as edges. In this work we only consider net systems with
finite reachability graphs.

10 2 PETRI NETS

t1 t2 t3 t4 t5

p1 p2

p3 p4 p5

Figure 1: A running example, net system Σ.

A marking M of a net is n-safe if M(p) ≤ n for every place p. A net system
Σ is n-safe if all its reachable markings are n-safe. In this work we mainly
consider net systems which are 1-safe. The only exception to this rule is the
publication [P3], where we also consider n-safe net systems for a fixed integer
n ≥ 1.

Labelled Nets. Let L be a finite alphabet. A labelled net is a pair 〈N, l〉
(also represented as 4-tuple 〈P, T, F, l〉), where N is a net and l : P ∪ T → L
is a labelling function. Notice that different nodes of the net can carry the
same label. We extend l to multisets of P ∪ T in the obvious way.

For each label a ∈ L we define the relation
a
−−−→ between markings as

follows: M
a
−−−→M ′ if M

t
−−−→M ′ for some transition t such that l(t) = a.

The reachability graph of a labelled net system 〈N, l, M0〉 is obtained by
applying l to the reachability graph of 〈N, M0〉. In other words, its nodes are
the set

{l(M) |M is a reachable marking}

and its edges are the set

{l(M1)
l(t)
−−−−→ l(M2) |M1 is reachable and M1

t
−−−→M2} .

It should be noted that in this dissertation summary only labelled net sys-
tems of a very restricted form are used. Namely, for any two reachable mark-
ing M1, M2 of the underlying net system 〈N, M0〉 such that l(M1) = l(M2)

it holds that if M1
t
−−−→M ′

1 then there exist t′, M ′
2 such that M2

t′

−−−→M ′
2,

l(t′) = l(t), and l(M ′
2) = l(M ′

1).

2 PETRI NETS 11

3 NET UNFOLDINGS

This section introduces net unfoldings and complete finite prefixes more
throughly than the presentation in the publications [P1]-[P4]. The discus-
sion of different notions of prefix completeness in Sect. 3.1 is a subject which
is new to the dissertation summary. The presentation of this section is heavily
influenced by the presentation of [23, 24, 25].

Net unfoldings were introduced in [58] as a partial order semantics for
Petri nets. They were later more extensively researched under the name
of branching processes by Engelfriet [16]. McMillan was the first to show
how to use net unfoldings as a basis for a verification method [55]. This
method has since its publication been the basis of several model checking
approaches, some of which we will discuss in this dissertation.

In this section we introduce the definitions needed to describe the unfold-
ing approach. More details can be found in [23, 24, 25, 65, 74].

Occurrence Nets. We use <F (≤F) to denote the (reflexive) transitive clo-
sure of a flow relation F . We say that two distinct nodes x, y are causally
related, if x <F y or y <F x holds. The nodes x and y are in conflict,
denoted by x # y, if there exist t1, t2 ∈ T such that t1 6= t2, •t1 ∩

•t2 6= ∅,
t1 ≤F x, and t2 ≤F y. The nodes x and y are concurrent, denoted by x co y,
if neither x <F y nor y <F x nor x # y.

Occurrence nets are nets which have the following special properties. An
occurrence net is a net N = 〈B, E, G〉 such that

• ∀b ∈ B : |•b| ≤ 1,

• G is acyclic, or equivalently, <G is a strict partial order (a transitive and
irreflexive relation),

• N is finitely preceded, i.e., for any node x of the net, the set of nodes y
such that y <G x is finite, and

• ∀x ∈ B ∪ E : ¬(x # x).

The elements of B and E are called conditions and events, respectively. We
also use G instead of F to denote the flow relation of an occurrence net in
order to not to cause confusion when the occurrence nets are used later in
this section. Let Min(N) denote the set of minimal elements of the strict
partial order <G restricted to the set of conditions. In this work the minimal
elements will all be conditions, and thus the set Min(N) can be intuitively
seen as an initial marking, called the default initial marking. A set of con-
ditions of an occurrence net is a co-set iff all the conditions of the set are
pairwise is the co relation.

Branching Processes. We associate to a net system Σ a set of labelled oc-
currence nets, called the branching processes of Σ. For technical reasons
we require that the initial marking M0 of Σ is 1-safe. The conditions and
events of branching processes are labelled with places and transitions of Σ,

12 3 NET UNFOLDINGS

respectively. The conditions and events of the branching processes are sub-
sets from two sets B and E , inductively defined as the smallest sets satisfying
the following conditions

• ⊥ ∈ E , where ⊥ is an special symbol,

• if e ∈ E , then (p, e) ∈ B for every p ∈ P , and

• if ∅ ⊂ X ⊆ B, then (t, X) ∈ E for every t ∈ T .

In our definitions of branching process (see below) we make consistent
use of these names: The label of a condition (p, e) is p, and its unique input
event is e. Conditions (p,⊥) have no input event, i.e., the special symbol ⊥
is used for the minimal conditions of the occurrence net. Similarly, the label
of an event (t, X) is t, and its set of input conditions is X . The advantage
of this scheme is that a branching process is completely determined by its
sets of conditions and events. This labelling scheme was first introduced by
Engelfriet [16].

We will define branching processes inductively in what follows as pairs
(B, E) where B ⊆ B and E ⊆ E . A pair (B, E) can now be alternatively
seen as a labelled net system N = 〈N, l,Min(N)〉 with N = 〈B, E, G〉 as
follows. The labelling l is the one described above, conditions B and events
E are as given, and the flow relation G being

• if e = (t, X) ∈ E and b ∈ (X ∩ B), then (b, e) ∈ G, and

• if b = (p, e) ∈ B such that e ∈ E, then (e, b) ∈ G.

Note that the definition above does not assume anything about the “consis-
tency” of the labelling, i.e., an edge can only exist if both its endpoints exists.
This complicates the definition somewhat but makes it applicable to any pair
(B, E) instead of only branching processes. For branching processes the net
system as defined above are occurrence net systems, as expected.

We will now inductively define the set of finite branching process of a net
system Σ as a pairs (B, E).

Definition 1 The set of finite branching processes of a net system Σ with the
(1-safe) initial marking M0 = {p1, . . . , pn} is inductively defined as follows:

• ({(p1,⊥), . . . , (pn,⊥)}, ∅) is a branching process of Σ.

• If (B, E) is a branching process of Σ, t ∈ T , and X ⊆ B is a co-
set labelled by •t, then (B ∪ {(p, e) | p ∈ t•} , E ∪ {e}) is also a
branching process of Σ, where e = (t, X). If e /∈ E, then e is called a
possible extension of (B, E).

The set of branching processes of Σ is obtained by declaring that the union
of any finite or infinite set of branching processes is also a branching process,
where union of branching processes is defined componentwise on conditions
and events. Since branching processes are closed under union, there is a
unique maximal branching process, called the unfolding of Σ. This result is
due to Engelfriet [16]. We will often use the term prefix as a synonym for

3 NET UNFOLDINGS 13

e2(t3)

e9(t2)

b12(p3) b13(p4) b9(p4) b8(p5)

e7(t3) e8(t5)

b14(p3) b15(p4) b16(p4) b17(p5)

b1(p1) b2(p2)

e1(t2) e3(t5)

b3(p3) b4(p4) b5(p4)

e4(t1) e5(t4) e6(t4)

b10(p2)b7(p2)b11(p1)

e10(t2)

e12(t5)e11(t3)

b6(p5)

Figure 2: An initial part of the unfolding of Σ.

a branching process of a net system, as any finite branching process can be
seen as a prefix of the unfolding of the same net system.

As an example of the unfolding, look at our running example, the 1-safe
net system Σ in Figure 1. An initial part of the (infinite) unfolding of Σ is
presented in Figure 2. The labelling l is given by the labels in the parenthe-
ses.

We take as partial order semantics of Σ its unfolding. This is justified,
because it can be easily shown the reachability graphs of Σ and of its unfold-
ing coincide. (Notice that the unfolding of Σ is a labelled net system, and
so its reachability graph is defined as the image under the labelling function
of the reachability graph of the unlabelled system.) It is possible to show an
even stronger correspondence between the behavior of the original net sys-
tem and the unfolding. Namely, also the partial order behavior of the net
system is preserved by unfolding [24, 25].

We often use β to refer to a branching process. Because it is easy to obtain
either presentation β = (B, E) or β = 〈N, l,Min(N)〉 with N = 〈B, E, G〉
of the branching process from each other, we use them interchangeably all
through this work.

Configurations. A configuration of an occurrence net is a set of events C
satisfying the two following properties: C is causally closed, i.e., if e ∈ C
and e′ <G e then e′ ∈ C, and C is conflict-free, i.e., no two events of C
are in conflict. Note that configurations can corresponds to several occur-
rence sequences of the underlying net system. In our running example in
Figure 2 the configuration C = {e1, e4, e5} corresponds to the occurrence

14 3 NET UNFOLDINGS

sequences t2, t1, t4 and t2, t4, t1 of the net system Σ in Figure 1. We call these
occurrence sequences linearisations of the configuration.

A configuration C of a branching process is associated with a reachable
marking of Σ denoted by Mark(C) = l((M in(N) ∪ C•) \ •C). The corre-
sponding set of conditions associated with a configuration is called a cut, and
is defined as Cut(C) = ((M in(N) ∪ C•) \ •C). Given an event e, we call
[e] = {e′ ∈ E | e′ ≤G e} the local configuration of e.

Another way of specifying the unfolding is that it is the output of an unfold-
ing algorithm, Algorithm 1, which was first presented in this form in [24]. We
denote by PE (Unf) the set of possible extension e = (t, X) of a branching
process Unf = (B, E). For the algorithm to work, we require the following
notion of fairness: Whenever an event is added to the set pe of possible exten-
sions, it is also eventually selected to be removed from the set. One possibility
to guarantee this is to require that the unfolding algorithm proceeds, e.g., in
breadth-first order in generating the unfolding.

Algorithm 1 The unfolding algorithm

input: A net system Σ = 〈P, T, F, M0〉, where M0 = {p1, . . . , pn}.
output: The unfolding Unf = (B, E) of Σ.
begin
Unf := ({(p1,⊥), . . . , (pn,⊥)}, ∅);
pe := PE (Unf);
while pe 6= ∅ do

append to Unf an event e = (t, X) of pe and a condition (p, e)
for every place p ∈ t•;

pe := PE (Unf);
endwhile
end

Note that the unfolding algorithm might not terminate because the un-
folding can be an infinite object.

3.1 Complete Finite Prefixes

When we are interested in Petri nets which have only a finite number of
reachable states, then the net unfolding will contain a finite initial part,
which contains full information about the net unfolding. This observation
was first made by McMillan [55], who developed an algorithm to obtain
such complete finite prefix of the unfolding.

Later Esparza et al. [24, 25] improved McMillan’s construction to guar-
antee that for 1-safe net systems one can obtain a prefix which represents
all reachable markings and whose size is bound by the number of reachable
states of the original net system. A prefix can in some cases be exponen-
tially smaller than the reachability graph of the system, which makes them
interesting for verification purposes.

Marking Completeness. We begin by giving a notion of prefix complete-
ness sufficient to check reachability properties using net unfoldings.

3 NET UNFOLDINGS 15

Definition 2 A branching process β of a net system Σ is marking complete if
for each reachable marking M of Σ there exists a configuration C of β such
that Mark(C) = M .

Esparza et al. have shown that for 1-safe Petri nets it is always possible to
create a marking complete prefix which has at most as many events as the
net system has reachable markings [24, 25]. (Use for example the prefix
generation algorithm of [24, 25] and throw away the so called “cut-off events”
as soon as they are encountered.)

Net Structure Completeness. We have defined marking completeness in
a way which does not require that each enabled transition of the net system is
presented as an event in the prefix. To require this, we define the following
(incomparable) notion of completeness.

Definition 3 A branching process β of a net system Σ is net structure com-
plete if for each transition t enabled by some reachable marking M of Σ there
exists an event e of β such that l(e) = t.

Usually net structure completeness on its own is not a very interesting prop-
erty, as it only allows one to recreate all the transitions (which are enabled by
some reachable marking) of the net system Σ from the prefix β. However,
if one creates a prefix which is marking complete, and then adds one event
for each enabled transition not existing in the prefix so far, it is possible to
obtain a marking and net structure complete prefix whose number of events
is bound by the sum of reachable markings and the number of transitions of
the net system Σ.

Completeness. Esparza et.al were the first to define a semantic prefix com-
pleteness criterion. We will thus simply refer to it as completeness [24, 25].

Definition 4 A branching process β of a net system Σ is complete if for each
reachable marking M of Σ there exists a configuration C of β such that:

• Mark(C) = M , and

• for every transition t enabled in M there exists a configuration C ∪{e}
such that e 6∈ C and l(e) = t.

Clearly the unfolding of a net system is always complete. If a finite prefix
of the unfolding is complete we call it a complete finite prefix. Intuitively if
a prefix is complete then the unfolding can be “easily” reconstructed from
it. (Of course the unfolding could be also obtained from a net structure
complete prefix by e.g., recreating the original net system and then unfolding
it. However, we do not consider such and indirect way of constructing an
unfolding from a prefix “easy”.) A complete finite prefix also contains all
the information about the reachability graph of the net system, and thus can
be seen as a symbolic representation of the reachability graph. A slightly
weaker definition of completeness is presented in [50]. It does also allow the
unfolding to be “easily” generated from the prefix if needed.

16 3 NET UNFOLDINGS

Strong Completeness. The traditional prefix generation algorithms and
some of the model checking algorithms use the notion of a set of cut-off
events Ecut. Recently Vogler et al. [74] have added cut-off events into a
notion of prefix completeness in an algorithm independent fashion. Their
notion of prefix completeness can be parameterized in several different ways.
For simplicity we will fix a set of parameters, and obtain an instance of their
notion which can be defined as follows.

Definition 5 A branching process β of a net system Σ is strongly complete if
there is a set Ecut ⊆ E such that:

• for each reachable marking M of Σ there is a configuration C ⊆ (E \
Ecut) of β such that Mark(C) = M , and

• for each configuration C ′ ⊆ (E \ Ecut) of β and for each transition t
enabled by Mark(C ′) in Σ, there is an event e of β such that e 6∈ C ′,
l(e) = t, and such that C ′ ∪ {e} is a configuration of β (e may be in
Ecut).

We call an event e redundant if there exists an event e′ ∈ Ecut such that
e′ <G e. It is easy to see that all redundant events can be removed and
the branching process still stays strongly complete. We will in the follow-
ing assume that a strongly complete branching process does not contain any
redundant events.

Note that this definition requires each configuration C ′ without cut-off
events to be fully extended by all the transitions enabled by the correspond-
ing marking, not just one representative configuration to be fully extended
(compare to Def. 4).

The intuition is that Ecut contains a set of events, which do not need to
be fired to reach any of the reachable markings of Σ, and thus the prefix
can be truncated at any event in the set of cut-off events without losing any
reachable markings. However, in a strongly complete prefix this truncation
should always manifest itself as a cut-off event left in the prefix. This notion
of completeness is strongest of all the notion of completeness discussed in
this work. Thus if a prefix is strongly complete it is also complete, marking
complete, and net structure complete. Clearly, if we remove all the cut-
off events from a strongly complete prefix, we will end up with a marking
complete prefix which might no longer be net structure complete.

Because strong completeness criterion implies completeness, it might re-
quire more events to be present in the prefix than just ordinary completeness.
The drawback of these notions of prefix completeness which require more
events to be added to the prefix than just plain marking completeness is that
the prefix may need to have also a large number of (usually cut-off) events
included to satisfy the additional parts of the used completeness requirement.
We do not know of an upper bound on the number of such additional events
which would be linearly bounded by the number of markings in the reacha-
bility graph.

The McMillan’s deadlock checking algorithm [55], Esparza’s branching
time model checker [17, 32], as well as the deadlock checkers of [48, 56] and
[P1] rely on having a complete set of cut-off events available and thus require

3 NET UNFOLDINGS 17

strong completeness. However, the reachability translation of [P1] works for
any marking complete prefix.

The work of Khomenko and Koutny in [49] presents two different dead-
lock checking procedures. The first one requires strong completeness, while
the the second one works for any marking complete prefix. The intuition be-
hind this translation is to express the deadlock as a reachability of a marking
satisfying the formula dead = ¬

∨
t∈T

∧
p∈•t p. The latest implementation of

the reachability checking procedure described in [P1] supports a large vari-
ety of formulas to be given as input, including the formula dead. The details
of the improved implementation have been described in [34]. The main
feature of the used translation is that it is linear in the input formula size for
all supported formulas. We would like to use marking completeness for all
reachability properties in the future, as that enables one to generates smaller
prefixes than e.g., strong completeness. We need to experiment with this al-
ternative deadlock checking approach to see whether it is a viable solution
when e.g., using the approach of [P1].

The complexity results of publication [P2] were done for the notion of
completeness (Def. 4), however, the prefixes used in the proofs are also
strongly complete (Def. 5) and thus the results also hold for this stronger
notion of prefix completeness.

We believe that also other, more application specific, notions of prefix
completeness will be useful in the design of efficient model checking algo-
rithms with prefixes. Instances of this can be found in the publications [P3]
and [P4].

Prefix generation. We will now describe one algorithm which constructs
a complete finite prefix of the unfolding of a bounded Petri net. Actually
the generated prefix will also be complete with respect to the strong com-
pleteness criterion of Def. 5, see [74]. In this form the algorithm was first
presented in [24]. First we will introduce some additional notation.

Given a configuration C, we denote by ↑C the set of events of the un-
folding given by {e | e 6∈ C ∧ ∀e′ ∈ C : ¬(e#e′)}. Intuitively, ↑C cor-
responds to the behavior of Σ from the marking reached after executing the
events in C. We call ↑C the continuation after C of the unfolding of Σ. If
C1 and C2 are two finite configurations leading to the same marking, i.e.,
Mark(C1) = M = Mark(C2), then ↑C1 and ↑C2 are isomorphic, i.e., there
is a bijection between them which preserves the labelling of events and the
causal, conflict, and concurrency relations (see [24, 25]). The basic idea
of the unfolding algorithm is to avoid the construction of such redundant
isomorphic copies of the same behavior by truncating the unfolding when
possible.

Adequate orders. To implement a complete finite prefix generation algo-
rithm we use the notion of adequate order on configurations [24, 25]. Given
a configuration C of the unfolding of Σ, we denote by C ⊕ E the set C ∪ E,
under the condition that C ∪ E is a configuration satisfying C ∩ E = ∅. We
say that C ⊕ E is an extension of C. Now, let C1 and C2 be two finite con-
figurations leading to the same marking. Then ↑C1 and ↑C2 are isomorphic,
as was noted above. This isomorphism, say f , induces a mapping from the

18 3 NET UNFOLDINGS

extensions of C1 onto the extensions of C2; the image of C1 ⊕ E under this
mapping is C2 ⊕ f(E).

Definition 6 A strict partial order≺ on finite configurations of the unfolding
of a net system is an adequate order if:

• ≺ is well-founded,

• C1 ⊂ C2 implies C1 ≺ C2, and

• ≺ is preserved by finite extensions; if C1 ≺ C2 and Mark(C1) =
Mark(C2), then the isomorphism f from above satisfies C1 ⊕ E ≺
C2 ⊕ f(E) for all finite extensions C1 ⊕ E of C1.

Note the requirement that ≺ is a strict partial order (a transitive and irreflex-
ive relation), as this part is sometimes overlooked in the definition.

Total adequate orders have been presented for 1-safe Petri nets in [24, 25]
and for synchronous products of transition systems in [23]. The approach has
also been adapted for process algebras in [52], where the authors also define
an adequate order. The exact definitions adequate orders for 1-safe Petri nets
are somewhat involved and left out of this work, the details can be found in
[24, 25, 65].

Unlike the semantic definition of strong completeness, Def. 5, the pre-
sented algorithm uses an algorithmic way of computing a set of cut-off events.
They are identified as follows.

Definition 7 An event e of a prefix of the unfolding is a cut-off event if
the already constructed part of the prefix contains an event e′, such that
Mark([e′]) = Mark([e]) and [e′] ≺ [e].

We call the configuration [e′] the corresponding configuration. The intuition
behind cut-off events is the following. Because Mark([e′]) = Mark([e]) we
know that their continuations ↑[e′] and ↑[e] are isomorphic. Because [e′] was
already added to the prefix, we don’t have to duplicate the same (isomorphic)
behavior after [e] but can safely truncate that branch of the prefix without
loosing any information. For the correctness proof of the algorithm, see [24,
25].

It is also possible to use non-local corresponding configurations when find-
ing cut-off events of a prefix. This more refined cut-off criterion was first
proposed in [35]. Non-local cut-off criteria have not been implemented in
currently available prefix generation tools due to high costs of computing
them in an implementation.

A Complete Prefix Generation Algorithm. We can now preset the com-
plete prefix generation algorithm of Esparza et al., Algorithm 2. It is an im-
proved version of the first complete prefix generation algorithm developed
by McMillan [55].

The algorithm works as follows. First possible extensions are calculated.
Then the algorithm adds events to the prefix in increasing adequate order of
their local configurations. It adds to the prefix all events which do not have a
cut-off in their local configuration, updating the sets of of possible extensions

3 NET UNFOLDINGS 19

Algorithm 2 A (strongly) complete finite prefix algorithm

input: A n-safe net system Σ = 〈P, T, F, M0〉, where M0 = {p1, . . . , pn}.
output: A complete finite prefix Fin = (B, E) of Unf .
begin
Fin := ({(p1,⊥), . . . , (pn,⊥)}, ∅);
pe := PE (Fin);
cut_off := ∅;
while pe 6= ∅ do

choose an event e = (t, X) in pe such that [e] is minimal
with respect to ≺;
if [e] ∩ cut_off = ∅ then

append to Fin the event e and a condition (p, e)
for every place p ∈ t•;

pe := PE (Fin);
if e is a cut-off event for Fin then cut_off := cut_off ∪ {e};

else
pe := pe \ {e};

endif
endwhile
end

and cut-off events accordingly. For 1-safe nets the number of non-cut-off
event generated by the algorithm is bounded by the number of reachable
markings when using the adequate order of [24].

The (strongly) complete prefix generated by the algorithm for our run-
ning example is presented in Figure 3. In the figures the cut-off events are
marked with crosses. We can obtain a smaller marking complete prefix by
just removing all the cut-off events from the prefix of Figure 3.

We refer the reader interested in prefix generation algorithms to [23, 24,
25, 50, 65]. The latest development in them is the use of parallel algo-
rithms [40, 74] for prefix generation.

20 3 NET UNFOLDINGS

b1(p1) b2(p2)

e2(t3) e3(t5)

b3(p3) b4(p4) b5(p4) b6(p5)

e6(t4)e5(t4)e4(t1)

b11(p1) b10(p2)b7(p2)

e7(t3) e8(t5)

e1(t2)

b9(p4) b8(p5)

Figure 3: A strongly complete finite prefix of Σ.

3 NET UNFOLDINGS 21

4 RULE-BASED CONSTRAINT PROGRAMMING

This section introduces logic programs with stable model semantics in more
detail than the publications [P1] and [P6]. The presentation of this section
is based on [67], [P1] and slightly extended here. The motivation for using
stable models in Section 4.2 is new to this dissertation summary.

We will use normal logic programs with stable model semantics [28] as the
underlying formalism into which several verification problems in this work
are translated. To be more explicit, the tools developed in publications [P1],
[P4], and [P6] employ logic programs with stable model semantics. For a
longer introduction to the stable model semantics, and its relation to propo-
sitional satisfiability, we refer the interested reader to [59].

The stable model semantics is one of the main declarative semantics for
normal logic programs. However, here we use logic programming in a way
that is different from the typical PROLOG style paradigm, which is based
on the idea of evaluating a given query. Instead, we employ logic programs
as a constraint programming framework [59], where stable models are the
solutions of the program rules seen as constraints.

We consider normal logic programs that consist a set of of rules of the
form

h← a1, . . . , an, not (b1), . . . , not (bm) (1)

where a1, . . . , an, b1, . . . , bm and h are propositional atoms. Such a rule can
be seen as a constraint saying that if atoms a1, . . . , an are in a model and
atoms b1, . . . , bm are not in a model, then the atom h is in a model. The
atom h is called the head of the rule, while the atoms a1, . . . , an and the
not-atoms b1, . . . , bm are jointly called the body of the rule.

The stable model semantics also enforces minimality and groundedness
of models. This makes many combinatorial problems easily and succinctly
describable using logic programming with stable model semantics.

The stable model semantics for a normal logic program P is defined as
follows [28]. (See also an alternative definition after examples below.)

Definition 8 The reduct P A of P with respect to a set of atoms A is obtained
by

(i) deleting each rule in P that has a not-atom not (x) in its body such
that x ∈ A, and

(ii) by deleting all not-atoms in the remaining rules.

The deductive closure of P A is the smallest set of atoms that is closed under
P A when the rules in P A are seen as inference rules. A set of atoms A is a
stable model of P iff A is the deductive closure of P A when the rules in P A

are seen as inference rules.

The problem of deciding whether a program has a stable model is NP-
complete [54]. The definition above gives a way non-deterministic way of
constructing stable models.

22 4 RULE-BASED CONSTRAINT PROGRAMMING

We will demonstrate the basic behavior of the semantics using programs
P1-P4 below:

P1: a← not (b) P2: a← a P3: a← not (a) P4: a← c, not (b)

b← not (a) b← not (a)

d← b

Program P1 has two stable models: {a} and {b}. For example if we guess
A = {a} we obtain the reduct program P {a} = {a ←}, whose deductive
closure is {a} and thus A is a stable model. The {b} case is symmetric. If we
guess A = {a, b} we obtain the reduct program P {a,b} = ∅, whose deductive
closure is ∅ and thus A is not a stable model. If we guess A = ∅ we obtain
the reduct program P ∅ = {a ←, b ←}, whose deductive closure is {a, b}
and thus A is not a stable model.

Program P2 has the empty set as its unique stable model. This exposes the
fact that the deductive closure of P ∅ = {a ← a} is the empty set. Also the
deductive closure of P {a} = {a ← a} is the empty set, and thus A = {a} is
not a stable model.

Program P3 is an example of a program which has no stable models. If
we guess A = ∅, then we will deduce {a}, which will contradict with our
assumption A = ∅, and symmetrically for A = {a}.

Program P4 has one stable model {b, d}. If we guess A = {b, d} we will
get the reduct program P {b,d} = {b ←, d ← b} whose deductive closure is
{b, d}. If we guess A = {a, c} we will get the reduct P {a,c} = {a ← c, d ←
b} whose deductive closure is ∅ which does not agree with our guess. Other
cases are similar.

Next we proceed to give an alternative definition of the stable model se-
mantics using slightly different notation.

Definition 9 Let A be a set of atoms, we define not (A) = {not (a) | a ∈ A}.

For a set of atoms and not-atoms B we denote the atoms in B by B+ and
the set of not-atoms by B−. Atoms and not-atoms are also called literals.
We denote with Atoms(P) the set of all propositional atoms which appear
in the logic program P as literals. We use the notation ∆ to denote the set
Atoms(P) \∆.

Definition 10 The deductive closure of a set of rules P and a set of literals
B is denoted by Dcl (P, B), where Dcl (P, B) is the smallest set of atoms that
contains B+ and is closed under R (P, B) when

R (P, B) = {h← a1, . . . , an |

h← a1, . . . , an, not (b1), . . . , not (bm) ∈ P and

not (bi) ∈ B−, for i = 1, . . . , m}

is seen as a set of inference rules.2

The deductive closure gives us a fixpoint characterization of the stable mod-
els.

2This could alternatively be defined as computing the least fixpoint of a suitably defined
monotone predicate transformer over the atoms of the program, see e.g., page 6 of [68].

4 RULE-BASED CONSTRAINT PROGRAMMING 23

Proposition 1 The set of atoms ∆ is a stable model of a set of rules P iff
∆ = Dcl (P, not (∆)).

The proof is immediate by noting that the reduct P ∆ = R (P, not (∆)).
We explain the notation of the definition above with a non-deterministic

algorithm for computing stable models which uses this notation. First one
guesses a set of atoms ∆, then computes all atoms of the program not in ∆,
i.e., ∆. Then all these atoms not in ∆ are used as “negative assumptions”3

B = not (∆) to compute the reduct program P ∆ = R (P, B). This reduct
program does not contain any not-atoms, and it is thus easy to compute the
deductive closure ∆′ in polynomial time. If the result is the same as our
guess, i.e., ∆ = ∆′ we have found a stable model.

There is another way of looking at reducts and deductive closures. Note
that the reduct program only contains rules without not-atoms. Therefore the
program can be seen as a conjunction of propositional Horn clauses [59]. For
example in P4 above one of the reduct programs was P {b,d} = {b←, d← b}
which can be seen as the propositional formula ((b) ∧ (d ∨ ¬b)). Now the
deductive closure of the program is the (unique) subset minimal model of
this propositional formula, in this case {b, d}. As there are linear time algo-
rithms to obtain subset minimal models for Horn clauses, their implementa-
tion techniques can be applied to computing deductive closures.

Logic programs with stable model semantics has been used to encode sev-
eral NP-complete problems including combinatorial graph problems such
as Hamiltonian circuits and 3-coloring, propositional satisfiability (both con-
junctive normal form CNF and non-CNF expressions), product configura-
tion, AI planning, and computer aided verification problems as presented in
this work, for references see e.g., [59, 61, 68].

4.1 The Smodels System

There is a tool, the Smodels system [60, 68], which provides an implementa-
tion of logic programs as a rule-based constraint programming framework. It
finds stable models of a logic program, and can also tell when the program
has no stable models.

The implementation is based on backtracking search technique similar to
the Davis Putnam method (see e.g., [27]), and it uses a generalization of the
well-founded semantics [71] to approximate the stable models and to prune
the search space. The Smodels implementation needs space linear in the
size of the input program [68]. The Smodels seems to be the most efficient
implementation of the stable model semantics currently available and it has
been applied successfully in a number of areas, for references see e.g., [68].

The stable model semantics is defined using rules of the form (1) above.
We employ some extensions, called extended rules, which can be seen as
compact shorthands for a set of basic rules. The Smodels version 2 handles
these extended rules directly [61, 68]. We will now discuss these extensions
and their semantics. For an alternative discussion, see Section 3 of [P6].

First of the extended rules are conflict rules, which are rules of the form:
h ← 2{a1, . . . , an}. The semantics of this rule is that if two or more atoms

3Note that in our use here B+
= ∅.

24 4 RULE-BASED CONSTRAINT PROGRAMMING

from the set a1, . . . , an belong to the model, then also the atom h will be in

the model. It is easy to see that this rule can be encoded by using N2−N
2

basic
rules of the form: h← ai, aj.

There is also a linear translation for conflict rules based on adding O(N)
(short, constant size) new rules and O(N) new atoms to the program. The
intuition behind this translation is that it is possible to implement a ripple-
carry adder style Boolean circuit which outputs true iff less than two of the
inputs are true, and the added rules simulate the behavior of this circuit. For
a more general way of handling these constraints see Sect. 2.2 of [68].

The conflict rules are very useful for encoding conflict relations between
transitions of a Petri net. Having them directly supported by Smodels im-
proved the performance in many cases. This was observed during prelimi-
nary experimental work for the publication [P1]. When conflict rules were

replaced by the N2−N
2

basic rules as described above, Smodels running times
were significantly increased.

We also use the so called integrity rules in the programs. They are rules
with no head, i.e., of the form: ← a1, . . . , an, not (b1), . . . , not (bm). The
semantics is given by the following4: First we add two new atoms to the
program, call them contradiction and bad. Next we add new rule to the
program: contradiction ← bad, not (contradiction). It is easy to see
that any model containing bad is not a stable model when this rule has been
added. Now we can replace each integrity rule with a rule having bad as the
head, i.e., the rule becomes: bad ← a1, . . . , an, not (b1), . . . , not (bm). It
is easy to see that any set of atoms, such that a1, . . . , an are in a model and
atoms b1, . . . , bm are not in a model, is not a stable model. It is also easy to
see that adding one integrity rule to a program does not create any new stable
models, and neither does adding any set of integrity rules.

The last extended rule we use is called a choice rule and is of the following
form: {h}← a1, . . . , an, not (b1), . . . , not (bm). The semantics is the follow-
ing: A new atom h

′ is introduced to the program, and the rule is replaced by
two rules: h← a1, . . . , an, not (b1), . . . , not (bm), not (h′), and h

′← not (h).
The atom h

′ is removed from any stable models it appears in, and the rest of
the model gives the semantics for the extended rule.

4.2 Motivation for Using Stable Models

In this work logic programs with stable models are used as a formalism into
which several NP-complete problems have been mapped into. Here we
briefly discuss our motivation for using stable models over other formalisms
for solving NP-complete problems like e.g., propositional satisfiability (SAT)
or mixed integer programming (MIP).

Our motivations for using logic programs with stable model semantics
could be summed up as follows (in no particular order). Some of them are
scientific, while others are more of a social nature.

• We needed to efficiently encode conflicts using logic program rules of
the form ← 2{a1, . . . , an} and a similar construct was not supported
by academic SAT systems without a substantial blow-up in formula size

4For a 3-SAT translation using this technique, see page 6 of [68].

4 RULE-BASED CONSTRAINT PROGRAMMING 25

at the time this work began [33]. Also at that time to our knowledge
there were no academic satisfiability checkers which would handle
non-CNF formulas.5 The Smodels could handle both these features
nicely. To our knowledge the first academic SAT checker supporting
both these features is BCSat [46] which was not yet available when
the first publications were created. We also did not have access to the
commercial Prover satisfiability checker [66], which has these features.

• While the MIP approach could handle the constraints of the form
← 2{a1, . . . , an} we could not find an academic MIP solver with
performance approaching that of Smodels. The special purpose MIP
solver of [48, 49] does do much better than general purpose solvers but
was not available when our work began. Moreover, their algorithms
are specific to complete finite prefixes which limits their applicability
to other domains.

• The Smodels system has linear memory requirements in the input pro-
gram size, and combined with our linear size translations of different
problems in [P1], [P4], and [P6], we got methods to solve these prob-
lems in linear space.

• In the publication [P6] the LTL-X translation uses logic programs with
stable model semantics in a way which is difficult to translate auto-
matically in a succinct way to SAT.6 For example, the translation for
until formulas contains cyclic dependencies. The fact that the deduc-
tive closure of a reduct program is the least fixpoint of a (suitably de-
fined) monotone predicate transformer perfectly matches the fact that
the truth value of an until formula can also be defined as a least fixpoint
of a monotone predicate transformer. (See also Appendix A, additions
to publication [P6].) With propositional logic it is easy to express any
fixpoint of a monotone predicate transformer, but ensuring that the
fixpoint is the least fixpoint is more involved.

• The author was familiar with the stable model semantics and Smodels

system already before work on [33] (finally leading to publication [P1])
began. Also substantial local knowledge and help was available when
using this formalism and the Smodels system.

• The Smodels system was freely available as a C++ library under GPL
license, which made it easy to integrate to other tools.

The experience gained from working with Smodels system have resulted
in a constrained Boolean circuit satisfiability system BCSat first presented
in [46].

With the notable exception of the LTL-X translation part of publication
[P6] all the logic program translations we have presented can be converted

5While not absolutely necessary, we find it easier to use non-CNF satisfiability procedure
instead of a CNF one. Of course it is straightforward to translate a constrained Boolean
circuits to CNF, but it increases the implementation effort.

6Best automatic translations are at least quadratic from logic programs with stable model
semantics to SAT in the general case [3].

26 4 RULE-BASED CONSTRAINT PROGRAMMING

into constrained Boolean circuits of the same size by simple syntactic trans-
lation (and thus also to CNF formulas if need be), for more discussion see
Section 3.3 of publication [P6]. We believe that such a propositional transla-
tion will have slightly better performance due to lower overhead in the solvers
used. Starting from scratch we would probably take this route and use, e.g.,
constrained Boolean circuits with a SAT solver supporting the gate selection
used by publication [P5].

4 RULE-BASED CONSTRAINT PROGRAMMING 27

5 VERIFICATION WITH PREFIXES

This section is a collection of observations about model checking algorithms
using complete finite prefixes, and their relation to the research done in the
publications [P1]-[P4]. Most of the presentation in this section is new to the
dissertation summary.

Complete finite prefixes can be seen as a symbolic representation of the
reachability graph which can sometimes be exponentially more succinct that
the reachability graph. This makes it interesting to develop model checking
procedures based on complete finite prefixes.

Complete finite prefixes have been used in several different verification
tools. McMillan was the first to introduce a deadlock checking procedure
using prefixes [55] in a form of a branch-and-bound algorithm. Esparza in-
troduced an branching time logic model checker [17]. An erratum was found
in this procedure, which was fixed by Graves [32].

Melzer and Römer in [56] introduced mixed-integer-programming (MIP)
as a solution method for deadlock detection using prefixes. We adapt their
deadlock checking procedure in publication [P1] to logic programs with
stable model semantics, and also show how to do reachability checking us-
ing the same logic programming methodology. Experimental results can be
found in publication [P1], and they are quite competitive to both the MIP ap-
proach of [56] as well as an implementation of McMillan’s deadlock checker
described in [56]. Later in experiments of [34] we found out that by enabling
the “no-lookahead” option of the underlying logic programming system we
could often obtain further (sometimes quite substantial) improvements in
deadlock and reachability checking running times. This new improved set
of options were also used in the comparisons published in [26, 49]. All the
experiments in these publications were obtained by invoking the mcsmodels

tool using the option “-n” which enables the “no-lookahead” option in un-
derlying Smodels solver.

In [48] another mixed integer programming approach was given for dead-
lock checking. It obtains better performance than the authors of [56] by
using an application specific search procedure to solve the generated MIP
instances. This procedure has been extended to handle also some reachabil-
ity properties, and in [49] the authors compare against the latest implemen-
tation of our deadlock procedure described in [P1], [34]. They conclude
that even though the two procedures are based on different principles, the
performance of the tools are comparable on deadlock checking examples.

In [26] a reachability checker based on explicitly using the co-relation is
introduced, as well as a method for checking (some) reachability properties
on-the-fly during prefix generation. (The co-relation has been obtained from
a prefix generator described in [23].) This work also contains comparisons
to the latest implementation of the reachability checking method described
in [P1], [34]. The authors conclude that when the marking to be checked
is reachable the on-the-fly procedure is competitive in several cases, but to
show non-reachability our procedure is to be preferred.

The first person to consider model checking linear time temporal logics
was Wallner [75]. The logics he used are the action and state based versions
of the logic LTL-X, the linear temporal logic without the next time operator.

28 5 VERIFICATION WITH PREFIXES

Unfortunately the version of the procedure published [75] contained an error
which was corrected, but the corrected version of the procedure has not so
far been published.

In publication [P3] we consider model checking an action based version
of LTL-X. The procedure is presented in a from of a tableau system which can
be alternatively seen as a set of prefixes. In the publication [P4] we use a state
based LTL-X logic and make the tableau generation procedure more similar
to the basic prefix generation algorithm, thus solving several implementation
related problems.

5.1 Computational Complexity Issues

In this section we assume the reader to be familiar with basic notions of com-
plexity theory including the complexity classes NP-complete and PSPACE-
complete. We use the same terminology and definitions as Papadimitriou
in [62], unless explicitly otherwise stated.

It is well known that most verification problems for 1-safe Petri nets such
as: reachability of a marking, existence of a reachable deadlock, LTL model
checking, and CTL model checking are PSPACE-complete in the size of the
net system, for an introduction see e.g., [18].

Reachability with Prefixes. McMillan showed that deadlock checking us-
ing a finite complete prefix as input is NP-complete in the size of the pre-
fix [55]. However, the prefix can sometimes be exponentially larger than
the 1-safe Petri net from which it was created, thus explaining the differ-
ence between the complexity of these two problems. (Using the plausible
assumption that NP-complete problems are easier than PSPACE-complete
problems.)

Using variations of McMillan’s proof one can also show that the reacha-
bility problem using complete prefixes as input is also NP-complete in the
prefix size [26, 34].

Model Checking with Prefixes. Somewhat surprisingly to us, we were able
to show also a negative result for using complete prefixes in model check-
ing. In publication [P2] we prove that when the only thing which can be
assumed from a prefix is that it fulfills the (strong) completeness criterion,
model checking fixed size formulas of several temporal logics is PSPACE-
complete in the size of the complete finite prefix. In all of these tempo-
ral logics one can express a simple form of nested reachability, a violation
of a certain safety property [P2]. The proof employs a class of 1-safe Petri
nets where a (strongly) complete prefix is only polynomially larger than the
original net system, and also easily computable in polynomial time. Thus,
intuitively, the complete prefix is sometimes as compact as the original net
system. This intuitively makes it “too compact” symbolic representation of
the reachability graph for model checking properties involving nested reach-
ability, as we could in principle just use the original net system instead.

To make the checking of nested reachability less complex in the prefix size
one can do at least two things which make the prefix larger, but allows one
to use less sophisticated algorithms on the obtained (larger) prefix. (i) For

5 VERIFICATION WITH PREFIXES 29

linear time properties it is often possible to use techniques from automata
theoretic LTL model checking, see e.g., Sect. 9 of [11]. The main idea is to
generate a prefix of a suitably defined “product net system” which contains
places from both the original net system and e.g., an automaton modeling
violations of the property to be checked. In the case of e.g., LTL-X safety
properties7 this product net system will have a reachable marking where, say,
a certain place is marked iff the original net system violates the property.
Just using this idea basically transforms LTL-X safety model checking into
prefix generation of a larger “property specific” product net system. (ii) It is
also possible to change the definition of prefix completeness and/or the used
prefix generation algorithm to something else than strong completeness. In
this case the prefix can have some additional properties which which can
make e.g., loop detection easier for them.

Wallner’s LTL-X model checking procedure [75] does implement the
product approach (i) mentioned above but is still left with a problem of find-
ing certain loops in the behavior induced by the generated product prefix.
This turned out to be quite a subtle problem, and the procedure published
in [75] contained an error which was later fixed by Wallner but so far left
unpublished. The main drawback of the fixed procedure is that it can in
some cases use an exponential amount of memory compared to the size of
the prefix from which it needed to detect the loops from. The prefixes he
uses are generated by Algorithm 2 from a product net system [75]. We do not
know if they have some special properties, which would make loop detection
easier than for those prefixes just fulfilling the (strong) prefix completeness
criterion.

Partly motivated by Wallner’s work and the complexity results of [P2] we
worked on an alternative LTL-X model checking procedure. We used the
product approach of Wallner (including also an implementation synchroniz-
ing a net system and a Büchi automaton together implemented by Wallner,
see [P4]). However, we decided to overcome the loop detection problem
by modifying the prefix generation algorithm (and thus indirectly also the
prefix completeness criterion) to be application specific in the LTL-X model
checking publications [P3], [P4]. This resulted in an application specific
definition of a “complete” prefix (also called a tableaux in [P3], [P4]), but
with the advantage that we do not need complex and subtle to implement
algorithms to be run after prefix generation. Thus our LTL-X model check-
ing procedure does use both the approaches (i) and (ii) above in order to
avoid using difficult and subtle to implement algorithms taking the prefix as
input. The drawback is that sometimes the prefixes we generate are larger.
However, we were able to prove a bound on their size. The main challenge
is to allow as much concurrency as possible in the product net system, in
order to sometimes obtain exponential space savings when comparing to a
reachability graph based approach, as well as to the approach of Wallner.

7Any property whose violation can be expressed by a finite state automaton on finite
strings can be handled by this approach. However, to obtain any benefits from net unfold-
ings one should limit to stuttering invariant properties (for definition, see e.g., Section 10.2
of [11]), as for those a simple synchronization construction which preserves concurrency of
“transitions invisible to the automaton” is possible. For a similar discussion and a product
construction in the full LTL-X case see [P4].

30 5 VERIFICATION WITH PREFIXES

Complete Finite Prefix Generation. In the following we will try to give a
glimpse of computational complexity issues in complete finite prefix gener-
ation. Clearly it would be advantageous if the problem was well analyzed, as
more and more work is based on using complete finite prefix generation as an
intermediate phase. Unfortunately, the computational complexity of prefix
generation is not yet well understood, and mostly remains an open problem.

Esparza et al. [24, 25] give an upper bound on their algorithm running
time in terms of algorithm output size (a strongly complete finite prefix).
However, optimally we would like to, e.g., give tight bounds for the amount
of memory and/or time needed by an algorithm to output a marking com-
plete finite prefix in terms of the 1-safe net system given as input to a prefix
generation algorithm. We do not know of any recent work along these lines.

The most expensive subroutine of the prefix generation algorithm of [24,
25] and its derivatives is the subroutine which calculates the set of possible
extensions. It can be show that a decision version of this problem is NP-
complete [26, 34], but if the maximum preset size of transitions is fixed this
decision version admits a polynomial time algorithm [26, 34]. The possible
extensions problem is closely related to a certain clique problem, which has
a similar characteristic [26].

5 VERIFICATION WITH PREFIXES 31

6 BOUNDED MODEL CHECKING

This section introduces bounded model checking of asynchronous systems,
which is the topic of publications [P5] and [P6]. The first half of the sec-
tion is an extended version of bounded model checking introduction from
the publications [P5], [P6]. The second half of is new to the dissertation
summary. It discusses the relation of the processes to net unfoldings, and the
LTL-X model checking translation of [P6].

Bounded model checking [6] has been proposed as a verification method
for reactive systems. The main idea is to look for bounded counterexam-
ples, i.e., executions of the system which do not satisfy the specified property,
which are shorter than some fixed user supplied length n. Bounded model
checking procedures often translate this problem into a propositional satisfi-
ability task. Given the transition relation of the reactive system to be model
checked, the property, and the bound n, the transition relation and property
are “unrolled” n times to obtain a propositional formula which is satisfiable
iff there is a counterexample of length n, see e.g., [6]. The implementation
ideas are quite similar to those used in SAT-based AI planning [47, 59].

An important feature of bounded model checking procedures is that they
often use significantly less memory than conventional model checkers. It
seems that the bounded model checking procedures can currently challenge
OBDD based symbolic model checking methods on digital hardware designs
both in terms of memory and time consumption needed to find counterex-
amples [7, 8, 13]. The weakness of bounded model checking is that if no
counterexample can be found using some bound n, usually the result is in-
conclusive. This makes bounded model checking more attractive for “bug
hunting” and less attractive for proving systems correct.

In some cases it can be proved that e.g., all reachable markings of a system
are reachable within some bound n. In this case, bounded model checking
can be used to show that there is e.g., no deadlock in the system by prov-
ing that there is no deadlock within bound n. For discussion about how to
show completeness for reachability and some other model checking prob-
lems, see [6].

Most of the bounded model checking work has so far been dealing with
synchronous hardware designs. In this work we deal with asynchronous sys-
tems, and more specifically 1-safe Petri nets. When given a description of a
1-safe Petri net system, a 1-safe marking M , and a bound n (encoded in bi-
nary) as input, checking whether the marking M is reachable within bound n
is obviously PSPACE-complete. This is the case, because the number of
reachable markings is at most 2|P |, all reachable markings are within bound
2|P |−1, and this bound can be encoded as compactly as the net system itself.
If we encode the used bound n in unary encoding, the problem becomes
NP-complete. In practice often the above mentioned worst case bounds do
not occur, and this makes bounded model checking feasible.

Asynchronous systems have properties which can be exploited to make
bounded model checking for them more efficient. One of the main goals of
the publications [P5] and [P6] is to use the concurrency of the underlying
1-safe Petri net in order to reach states using as small bounds as possible.

The publication [P5] considers reachability checking with three different

32 6 BOUNDED MODEL CHECKING

semantics: interleaving, step, and process semantics. The formalism into
which bounded reachability checking problems are translated is that of con-
strained Boolean circuits. In the experiments we employ the BCSat Boolean
circuit satisfiability checker [46].

In the interleaving semantics only one transition can fire at one “time
step”, while step and process semantics both allow a set of transitions to be
fired concurrently. The set of reachable states is the same in all three seman-
tics. However, by using concurrency some states can be reached with smaller
bounds in step and process semantics.

The idea in step semantics is to allow transitions which are concurrent to
be fired simultaneously. For example, if we have a set of n transitions which
are concurrent, in step semantics we can reach a state in which all of them
have been fired with bound 1, instead of needing a bound of n as in the in-
terleaving semantics. This is also the best case, so only polynomial saving in
bound size can be achieved. However, even this can be quite significant, as
our experimental results indicate. Note that we do not force concurrent tran-
sitions to be fired simultaneously (i.e., our steps are not necessarily maximal
steps), and any non-empty subset of transitions in a step is also a step. This
implies that all the enabled transitions in the interleaving semantics are steps
(containing a single transition) in the step semantics.

There is a partial order semantics for Petri nets called processes [4, 5,
29, 31]. One way of defining processes is through the configurations of the
unfolding of a net system. Namely, given a configuration C of the unfolding,
a process is the labelled subnet of the unfolding, which contains the minimal
conditions of the unfolding and all events in C together with their postset
conditions.8 The process is thus an occurrence net in which no two events
are in conflict. It intuitively represents one “concurrent execution” of the net
system to the final marking of the process, which is equivalent to the marking
Mark(C) (for definition see Section 3) of the corresponding configuration C.

As configurations, also processes can correspond to a super exponential
number of interleaving semantics linearisations. In the case of n indepen-
dent transitions example discussed above, there are n! different linearisations.
Because all interleaving executions are also steps, the “linearisation blowup”
is even worse in the step semantics case. If we are only interested in the
final marking reached by the process, we would optimally want to generate
one step execution for each process instead of all the possible step executions
which are linearisations of the same process. As we have shown in publica-
tion [P5], this is indeed possible by employing a suitable normal form of step
executions.

As discussed above, there is a close connection between net unfoldings
and processes. Intuitively net unfoldings can be seen as a branching time
view of the partial order behavior of a system, while processes correspond to
a linear time view of the partial order behavior of the system. This connection
might be useful in designing new verification techniques. For example, the
depth of a marking complete finite prefix (the maximum level of any event,
for the definition of level see [P2]) gives a bound within which all reachable
markings are in process (and thus also step) semantics. It is easy to modify

8This mapping is in fact a bijection between processes of a net system and configurations
of the unfolding of the same net system.

6 BOUNDED MODEL CHECKING 33

p1

t5 p6

p7

t1 t2 p2

p3

t3 t4

t6

p4

p5

Figure 4: A net system with a large marking complete prefix.

our process semantics translation in such a way that the satisfying models are
all processes of depth 0 ≤ i ≤ n instead of processes of exactly depth n as
in publication [P5]. In this case the process semantics translation of a net
system can be seen as a symbolic representation of the all the configurations
of the n first levels of the unfolding.

There are sequences of net systems of increasing size n for which the pro-
cess semantics bounded model checking translation is exponentially more
succinct than a marking complete finite prefix of the same net system. For
example, Figure 4 contains one instance from such a sequence of net systems
for n = 3. In this net system all reachable markings are within bound 3 in
process semantics. Therefore the process semantics translation grows polyno-
mially in the net system size for net systems in this sequence. However, the
marking complete prefix size grows exponentially as the “depth” n of the net
systems in this sequence is increased.

The main contribution of the publication [P6] is a new more compact
LTL-X model checking translation. This translation allows for the concur-
rency of “transitions invisible to the formula”, thus allowing counterexamples
to be sometimes obtained with smaller bounds than with pure interleaving
semantics. The SAT based bounded LTL model checking translation pre-
sented in [6] is at least quadratic in the formula size, while ours employing
logic programs with stable model semantics is linear. The presented LTL-X
translation utilizes features of the stable model semantics quite fully as there
are, e.g., circular dependencies between atoms in the translation of both un-
til and release operators. There is no known automatic linear size transla-
tion from logic programs with stable model semantics containing such circu-

34 6 BOUNDED MODEL CHECKING

lar dependencies to propositional satisfiability. All known general automatic
translations, like the one presented in [3], are at least quadratic. However,
the LTL-X translation programs might have some special properties which
make a linear size constrained Boolean circuit translation possible. Research
along these lines is left for further work.

In the future we would like to combine the good features of the process
semantics translation of publication [P5] with the LTL-X model checking
procedure of [P6].

6 BOUNDED MODEL CHECKING 35

7 CONCLUSIONS

Our research goal has been the development of efficient model checking
methods for 1-safe Petri nets. The main problem facing us is the state ex-
plosion problem. We have chosen to concentrate on using a combination
of symbolic methods and partial order semantics to alleviate this problem.
A major part of the work focuses on developing a better understanding of
complete finite prefix based verification methods.

In publication [P1] a method for solving deadlock and reachability prob-
lems of 1-safe Petri nets using a complete finite prefix as input is presented.
These problems are translated into the problem of finding a stable model of
a logic program, and use the Smodels system [68] as a computational engine.
The procedure has been implemented in a tool called mcsmodels.

In the publication [P2] several model checking problems using complete
finite prefixes as input are shown PSPACE-complete when logics which can
express a simple nested reachability property are used.

Publications [P3] and [P4] contain net unfolding based procedures to
model check LTL-X formulas of action and state based versions of the logic,
respectively. A prototype of the state based LTL-X model checker has been
implemented in a tool called unfsmodels as a variant of a conventional com-
plete finite prefix generation procedure.

Publication [P5] gives a bounded model checking translation from 1-safe
Petri nets into constrained Boolean circuits. It supports the checking of
reachability based properties using process, step, and interleaving semantics.
The process semantics version is the main contribution of the publication.
The translation has been implemented in a tool called punroll. In the ex-
periments we use the BCSat system [46] to solve the generated constrained
Boolean circuit satisfiability problems.

Publication [P6] gives a similar bounded model checking translations for
step and interleaving semantics but now using logic programs with stable
model semantics. The main contribution of the paper is a new, more suc-
cinct, LTL-X model checking translation which allows for the concurrency of
invisible transitions. The translations have been implemented in a tool called
boundsmodels. In the deadlock checking experiments we use the Smodels

system [68]. Experimenting with the LTL-X translation is left for further
work.

This work contains a selection of model checking approaches for 1-safe
Petri nets. The bounded model checking approaches of publications [P5],
[P6] are most interesting in early stages of system development, when one ex-
pects a number of counterexamples to be present. They also have the smallest
memory requirements of the methods presented in this work. Their weak-
ness is that it is hard to prove systems correct using bounded model checking
techniques. After no more errors can be found with bounded model check-
ing techniques, the other presented approaches should be considered. For
properties which can be expressed either as a reachability and as an LTL-X
properties, the specialized reachability checker of [P1] is to be preferred over
the full LTL-X model checking approach approach of [P4], as the generated
prefixes and thus also memory requirements are potentially smaller in this
approach.

36 7 CONCLUSIONS

The strengths of the methods presented in this work are in cases where
there is a large amount of concurrency in the system. This concurrency
can often be exploited by the presented model checking techniques. The
bounded model checking approaches work at their best when the reachable
states of a system are within a small bound from the initial state of the system.
The performance of the LTL-X model checking using net unfoldings is at its
best when the model checked properties are local to some component of the
system.

The weaknesses of the proposed methods are in cases when there is little
or no concurrency in the system. In the case of complete finite prefix based
methods a high degree of nondeterminism resulting in conflicts in the un-
folding can result in large prefixes. For an example of net system having both
these properties, see Fig. 4 of Section 6. The methods we have presented in
this work are for 1-safe Petri nets, which are quite a low level modeling for-
malism. More work is needed in handling higher level modeling languages
which could reduce the modeling effort needed.

Our experimental work has tried to demonstrate the feasibility of the used
approaches. More benchmarking is needed, especially against other methods
for alleviating the state explosion problem, like partial order reductions and
OBDD based methods.

7.1 Topics for Further Research

There are interesting topics for further research.
With the exception of the LTL-X translation part of [P6], all our transla-

tions can be converted into constrained Boolean circuits of the same size as
the logic program version. By doing this one could experiment with a larger
class of solvers, and possibly obtain some speed-ups.

On the complete finite prefix side, the computational complexity of al-
gorithms doing prefix generation is not yet well understood. For the safety
subset of LTL-X a simple special purpose model checking algorithm using
complete finite prefixes could be developed. This can in some cases be more
efficient than handling the safety LTL-X properties using a model checker
for the full LTL-X logic.

On the bounded model checking side we would like to have a simple suc-
cinct LTL-X translation also using constrained Boolean circuits. Combining
process semantics with LTL-X model checking is also left for further work.
Methods for proving that, e.g., a bound n is sufficient for reaching all reach-
able markings need to be researched further. A candidate method for doing
this is to look at the translation of this problem into a quantified boolean
formula (QBF) [6] (for definition, see e.g., QSAT problem in [62]), and at
solvers for QBF formulas which arise from this translation.

7 CONCLUSIONS 37

A CORRECTIONS AND ADDITIONS TO PUBLICATIONS

Publication [P1]:

• On page 249, Section 2.2 Occurrence Nets: “F is a partial order”
should be “F is a strict partial order”.

• On page 250, Section 2.4 Finite Complete Prefixes: For deadlock
checking using the translation presented in the paper we should re-
quire strong completeness (Def. 5 of dissertation summary Section 3.1)
instead of completeness (Def. 4 of dissertation summary Section 3.1)
as is done in the publication. All the prefix generation algorithms men-
tioned in the publication [P1], including the one used for experiments,
do create strongly complete prefixes. See dissertation summary Sec-
tion 3.1 for further discussion about different notions of prefix com-
pleteness.

• On page 252, Section 3, Definition 3.2, typographical error in defini-
tion of R (P, B):

R (P, B) = {h← a1, . . . , an, not (b1), . . . , not (bm) ∈ P and

not (bi) ∈ B−, for i = 1, . . . , m}

should be

R (P, B) = {h← a1, . . . , an |

h← a1, . . . , an, not (b1), . . . , not (bm) ∈ P and

not (bi) ∈ B−, for i = 1, . . . , m}

• On page 256, Section 5 Deadlock Property Checking Implementation:
The reachability translation described in the paper was implemented
in a later version of the tool, which is called mcsmodels [34]. This
version also supports a larger set of reachability properties than just
assertions, for implementation details and updated (more competitive)
experimental results obtained by using the “no-lookahead” option of
the underlying Smodels solver, see [34].

• On page 257, Section 5 Deadlock Property Checking Implementation:
Note that some of the described optimizations are deadlock checking
specific. For a list of reachability checking optimizations implemented
in the mcsmodels tool, see [34].

• On page 260, Section 6 Conclusions, line 9: “one-to-one” should be
“bijective”. The same error also appears on the last sentence of page
266, and on line 7 of page 267.

• On page 267, line 1, proof of Theorem 4.2:
“The fact that β is a finite complete prefix of a 1-safe net system Σ guar-
antees the following. For each reachable marking M of Σ there exists a
configuration C of β with no cut-off events, such that Mark(C) = M ,
and for every transition t enabled in M there exists a configuration

38 A CORRECTIONS AND ADDITIONS TO PUBLICATIONS

C ∪ {e} such that e 6∈ C and h(e) = t.”
should be
“The fact that β is a finite strongly complete prefix of a 1-safe net sys-
tem Σ guarantees the following. For each reachable marking M of Σ
there exists a configuration C of β with no cut-off events, such that
Mark(C) = M , and for each such configuration C and for every tran-
sition t enabled in M there exists a configuration C ∪ {e} such that
e 6∈ C and h(e) = t. ”

Publication [P2]:

• Note that all prefixes used in the proofs of this publication are also
strongly complete (Def. 5 of dissertation summary Section 3.1), and
thus the complexity results also hold for this notion of prefix complete-
ness.

• On page 115: Note that we use the size of the adjacency matrix repre-
sentation of the flow relation as the size of the net system.

• On page 120: To prove Lemma 3 it is sufficient to note that the prefix
βC(A) consists of the two first levels of the unfolding of C(A) and that
all reachable markings are reachable by configurations containing only
events from the first level of the unfolding. (Use the same proof as in
the example of Section 3, page 113, text below Fig. 3.)

• On page 120, discussion of Theorem 4: To prove that CTL∗ model
checking is in PSPACE for 1-safe Petri nets we simulate the behavior
of the Petri net by a concurrent program as defined on page 47 of [51].
(They are basically a synchronization of a set of labelled transition sys-
tems.) We can then use the result that model checking a fixed size
CTL∗ formula is PSPACE-complete (and thus in PSPACE) in the size
of the description of a concurrent program [51]. Here we give a proof
sketch. We first do the following: Add complement places for all places
in the net system Σ obtaining only a polynomially larger net system Σ′.
We can now decompose this net system in a concurrent program by de-
composing the net system Σ′ into “state machine components” in the
standard way. Each pair of complementary places is turned into a (two-
state) state machine. For each place p and each transition t of Σ such
that p ∈ (•t∪ t•) we add a local transition into the concurrent program
which simulates the effect of the transition t on p and its complement
place p, and label this local transition by t. We use the initial state
of the Petri net system Σ′ as the initial state of created the concurrent
program. Now the synchronization of all the local transitions labelled
by t is possible iff the transition t is enabled in Σ. Also the combined
effect of these local transitions simulates the firing of t. Thus this con-
current program will simulate the behavior of the net system Σ, and
we can answer CTL∗ model checking questions from the reachability
graph of this concurrent program. The concurrent program is polyno-
mial in the size of Σ and obtainable by a polynomial time algorithm,
thus completing the proof.

A CORRECTIONS AND ADDITIONS TO PUBLICATIONS 39

• On page 120, discussion of Theorem 4: To prove that the linear time
µ-calculus model checking is in PSPACE for 1-safe Petri nets and for
a fixed formula, we note that [14] gives a characterization of the logic
using Büchi automata. We can then use a Büchi emptiness checking
algorithm for 1-safe Petri net systems [18] with this (fixed size) Büchi
automaton to obtain a PSPACE algorithm.

Publications [P3] & [20]:

• On page 476 of [P3], Section 1 Introduction, and also on page 485 of
[P3], Section 7 Conclusions: Note that theO(K2) upper bound on the
number of non-cut-off events of the tableaux holds because the formula
is considered to be fixed, and thus contributing only as a constant factor
to the tableaux size.
(Also present in [20].)

• On page 477 of [P3], Section 2 Automata theoretic approach to model
checking LTL: The set of invisible transitions is T \ V used before
defined. Add the sentence to the end of line 6: “The set of transitions
T is divided into visible transitions V and invisible transitions T \ V .”

• On page 477 of [P3], Section 2 Automata theoretic approach to model
checking LTL: Note that we interpret the linear time temporal logic
only over infinite sequences. We would like to assume that the net
systems given as input to the model checking procedure are deadlock
free. If the net system is not deadlock free, our model checker still
works correctly in the following sense. We still report counterexamples
which are infinite executions. However, we do not extend finite execu-
tions into infinite ones by adding an infinite loop of dummy transitions
at each deadlocked marking as some other linear time temporal logic
model checkers do!

• On page 480 of [P3], Section 3 Basic definitions on unfoldings:
Definition of a continuation is incorrect, replace

“Given a configuration C, we denote by ↑C the set of events e such
that (1) e′ < e for some event e′ ∈ C, and (2) e is not in conflict with
any event of C.”

with

“Given a configuration C, we denote by ↑C the set of events of the
unfolding {e | e 6∈ C ∧ ∀e′ ∈ C : ¬(e#e′)}.”

(Also present in [20].)

• On page 480 of [P3], Definition 2:
“A partial order ≺”
should be
“A strict partial order ≺”
(Also present in [20].)

40 A CORRECTIONS AND ADDITIONS TO PUBLICATIONS

• On page 482 of [P3], Section 4 A tableau system for the illegal ω-trace
problem, line 12:
“doesn’t contains”
should be
“does not contain”
(Also present in [20].)

• On page 482 of [P3], Section 5 A tableau system for the illegal livelock
problem, line 1 of the section:
To correct the proof of Theorem 9 on pages 29-30 of [20] (see below)
we change the definition of checkpoints to a sequence from a set:

“The tableau system for the illegal livelock problem is a bit more in-
volved that that of the illegal ω-trace problem. In a first step we com-
pute a set CP = {M1, . . . , Mn} of reachable markings of Σ, called the
set of checkpoints. This set has the following property . . . ”

should be

“The tableau system for the illegal livelock problem is a bit more in-
volved that that of the illegal ω-trace problem. In a first step we com-
pute a sequence CP = M1, . . . , Mn of reachable markings of Σ, called
the checkpoints. This sequence of markings has the following property
. . . ”

(Also present in [20].)

• On page 483 of [P3]:
Note that Definition 4 fits the idea of computing checkpoints described
in the beginning of the Section 5, as L-transitions are never concurrent
with V -transitions.

• On page 483 of [P3], Definition 4:
The proof of Theorem 9 on page 29 of [20] incorrectly assumes that
the events e1, e2, . . . , em are arranged in e1 � e2 � · · · � em order in
the sentence: “Without loss of generality, we choose (C, e) so that the
index i is minimal.”. In order not to change the proof substantially, we
change the Definition 4:

“A marking M belongs to the set CP of checkpoints of Σ if M =
Mark([e]) for some non-terminal event e of the complete prefix of Σ
labelled by a transition of L.”

to an new version which matches the assumption made by the proof

“Let e1 � e2 � · · · � em be the set of non-terminal events of the com-
plete prefix of Σ labelled by a transition of L ordered in non-decreasing
� order. We define the set of checkpoints to be a sequence of markings
CP = M0, . . . , Mn, such that:

– CP0 = ε, and

A CORRECTIONS AND ADDITIONS TO PUBLICATIONS 41

– for all 1 ≤ i ≤ m: if Mark([ei]) ∈ CP i−1 then CP i = CP i−1,
else CP i = CP i−1 ·Mark([ei]).

Finally we define CP to be CPm. “

(Also present in [20].)

• On page 483 of [P3], last line of Section 5.1 Computing the set of
checkpoints:
“So CP = { {p2, p4}, {p4, p7} }.”
should be
“So CP = {p2, p4}, {p4, p7}.”
(Also present in [20].)

• On page 483 of [P3], first line of Section 5.2 The tableau system:
“Let {M1, . . . , Mn} be the set of checkpoints . . . ”
should be
“Let M1, . . . , Mn be the sequence of checkpoints . . . ”
(Also present in [20].)

• On page 483 of [P3], Section 5.2 The tableau system, 3rd line from
the bottom of the page. Remove the sentence:
“The definition of repeat depends on the order of the checkpoints, but
the tableau system defined above is sound and complete for any fixed
order.”
(Also present in [20].)

• On page 28 of [20], Definition 17:
Replace
“An L-pair is a pair (C, e) where C is a configuration . . . ”
with
“An L-pair is a pair (C, e) where C is a finite configuration . . . ”

• On page 28 of [20], Lemma 18 (1):
The Lemma 18 (1) is partly incorrect, replace

“(1) Σ has an illegal livelock M0
σ
−−−→M

σ1−−−−→ if and only if its un-
folding contains an L-pair (C, e) such that Mark([e]) = M .”

with a weaker but still sufficient claim

“(1) Σ has an illegal livelock M0
σ
−−−→M

σ1−−−−→ if and only if its un-
folding contains an L-pair (C, e).

Additionally, if the unfolding of Σ contains an L-pair (C, e) then Σ has
an illegal livelock such that M = Mark([e]).”

• On page 28 of [20], Proof of Lemma 18(1)(⇒):
The argument

“Let C be an (infinite) configuration of the unfolding of Σ such that
σσ1 is one of its linearisations. C contains an event e corresponding to
the last transition of σ. Since C is infinite, C \ [e] contains infinitely

42 A CORRECTIONS AND ADDITIONS TO PUBLICATIONS

many events. Let [e]⊕E be an extension of [e] such that E contains at
least (K ·B) + 1 events. ”

should for consistency be

“Let C be a finite configuration of the unfolding of Σ such that σσ ′ is
one of its linearisations, where σ1 = σ′σ′′ and σ′ contains (K ·B) + 1
events. C contains an event e corresponding to the last transition of σ.
Let [e]⊕ E be an extension of [e] such that C = [e]⊕ E.”

• On page 30 of [20], argument on lines 1-14 is incorrect, replace the
argument:

“If Ce contains a successful terminal of Ti, then we are done. Other-
wise, by Lemma 19, it contains an unsuccessful terminal d. Let d′ be
the companion of d.

We first prove that d′ is also an event of Ti. Assume the contrary. Then,
by the definition of a terminal, d′ is an event of Tj and j < i. Since d
is an event of Ti, we can split σ1 into two sequences, σ1 = σ2σ3, such
that σ2 is a linearisation of [d], and so

M0
σ
−−−→Mi

σ2−−−−→Mark([d])
σ3−−−−→

Since Mark([d′]) = Mark([d]), we find a linearisation σ′
2 of [d′] in Tj

such that

Mj

σ′

2−−−−→Mark([d′]) = Mark([d]). So we have

M0
σ′

−−−→Mj

σ′

2−−−−→Mark([d′]) = Mark([d])
σ3−−−−→

which is an illegal livelock of Σ. Since Mj is a checkpoint and j < i,
we reach a contradiction to our assumption that the index i is mini-
mal.”

with a more detailed argument:

“If Ce contains a successful terminal of Ti, then we are done. Other-
wise, by Lemma 19, it contains an unsuccessful terminal d. Let d′ be
the companion of d.

We first prove that d′ is also an event of Ti. Assume the contrary. Then,
by the definition of a terminal, d′ is an event of Tj and j < i.

Next we create an illegal livelock execution from events of Ce using
exactly the same idea as proof of Lemma 18(1)(⇐). As Ce contains
at least (K · B) + 1 events, by Lemma 14, Ce contains a chain f1 <
. . . < fK+1. By the pigeonhole principle, there are events fi < fj

such that Mark(fi) = Mark(fj). Let Mi
σ2−−−−→M1

σ3−−−−→M2 be a

linearisation of [fj] such that Mi
σ2−−−−→M1 is a linearisation of [fi].

We have M1 = M2, and so Mi
σ2−−−−→M1

σ3−−−−→M2 = M1
σ3

ω

−−−−→ is
an infinite firing sequence containing only invisible transitions.

Because Ce does not contain a successful terminal of Ti, in particular
it does not contain fj, but contains an unsuccessful terminal d′′ < fj .

A CORRECTIONS AND ADDITIONS TO PUBLICATIONS 43

Now, without loss of generality, we can choose to consider only the
case d = d′′, and thus d < fj .

Now clearly d ∈ [fj]. Let Mi
σ4−−−−→M ′

1
σ5−−−−→M2 be a linearisation

of [fj], such that Mi
σ4−−−−→M ′

1 is a linearisation of [d]. Thus we get an
infinite execution

Mi
σ4−−−−→M ′

1
σ5−−−−→M2

σ3
ω

−−−−→

Let C ′′
e now be a configuration of BP i which consist of the events of the

firing sequence Mi

σ4σ5(σ3
(K·B)+1)

−−−−−−−−−−−−→. Now clearly C ′′
e \ [d] contains at

least (K ·B) + 1 events.

Define C ′
e = [d′]⊕ f(C ′′

e \ [d]), where f is an isomorphism from ↑ [d]
to ↑ [d′].

Define C ′ = [ej] ⊕ f−1
j (C ′

e), where fj is the isomorphism from ↑ [ej]
to the unfolding of Σj .

Now (C ′, [ej]) is a minimal L-pair as there are at least (K · B) + 1
invisible events in C ′ \ [ej]. Because j < i, we reach a contradiction to
our assumption that the index i is minimal.”

• On page 30 of [20], line 23:
Replace
“C ′

e is a configuration of Ti.”
with
“C ′

e is a configuration of BP i.”

• On page 30 of [20], line 26:
Replace
“Because Ti is a branching process . . . ”
with
“Because BP i is a branching process . . . ”

Publications [P4] & [22]:

• On page 37 of [P4], Section 1 Introduction, line 8 in the section:
“A new algorithm with better complexity bounds was introduced in
[19], in the shape of a tableau system.”
should be
“A new algorithm with smaller memory requirements in several inter-
esting model checking instances was introduced in [19], in the shape
of a tableau system.”
(Also present in [22].)

• On page 41 of [P4], Theorem 1, footnote:
Here we shortly describe the problem behind the technical restriction.
The technical requirement of incomparable markings comes from the
fact that in the algorithm and proofs the L-events should not be con-
current with any other events. In the algorithm on page 50 exactly
one L-event (which is not concurrent with any other events) is gener-
ated for each local configuration, while there might be several other

44 A CORRECTIONS AND ADDITIONS TO PUBLICATIONS

L-transitions enabled in Σ¬ϕ for (proper subsets of) the corresponding
marking of this local configuration. However, it suffices to generate
only the L-event with the maximal marking, as any illegal livelocks
found after other L-events will also be found after this generated L-
event. We could update the proofs to take this into consideration, but
it complicates the theory and proofs somewhat.
(Also present in [22].)

• On page 46 of [P4], Definition 2:
“A partial order ≺”
should be
“A strict partial order ≺”
(Also present in [22].)

• On page 22 of [22], case (d) of proof of Lemma 1:
Hyphens missing repeatedly due to a technical problem:

“Since the preset of t is also a reachable marking (q, sf , O, H), we have
q = q, s = sf , O ⊆ O, and H ⊆ H . Since all reachable markings of Σ
are pairwise incomparable and (O, H), (O, H) are reachable markings
of Σ, we have O = O and H = H .”

should be

“Since the preset of t is also a reachable marking (q ′, sf , O
′, H ′), we

have q′ = q, s = sf , O′ ⊆ O, and H ′ ⊆ H . Since all reachable mark-
ings of Σ are pairwise incomparable and (O, H), (O′, H ′) are reachable
markings of Σ, we have O′ = O and H ′ = H .”

• On page 26 of [22], line 5:
“Notice that σ2 is a non-empty sequence.”
should be
“Notice that σ3 is a non-empty sequence.”

• On page 23 of [22], Proof of Theorem 2:
Notice that the case (1) also covers the case that e is an L-event, as all
L-event are always in BL(C).

• On page 24 of [22], Proof of Lemma 2(2):
Add an argument to the end of the proof: “Because from Lemma 1(e)
we get that [e] does not contain any L-events, and thus does not contain
any type II terminals.”

• On page 26 of [22], line 9:
“σ2 contains only invisible actions”
should be
“σ2 and σ3 contain only invisible actions”
(The same correction should also be made on the 4th line from the
bottom of page 26.)

• On page 27 of [22], Proof of Lemma 6, line 2.
Typographical error, replace

A CORRECTIONS AND ADDITIONS TO PUBLICATIONS 45

“Mark(e′) = Mark(e)”
with
“Mark([e′]) = Mark([e])”.

• On page 27 of [22], Proof of Theorem 7, part (2), lines 3-12.
The argument here is incorrect, replace the argument:

“By Lemma 3(3), Σ¬ϕ has an illegal livelock M0
σ
−−−→M

σ1−−−−→ such
that σ is a linearisation of BL(C).

We split σ1 into two sequences, σ1 = σ2σ3, such that σσ2 is a linearisa-
tion of [d], and so

M0
σ
−−−→M

σ2−−−−→Mark([d])
σ3−−−−→

Now find a linearisation σ′σ′
2 of [d′] such that

M0
σ′

−−−→M ′ σ′

2−−−−→Mark([d′]).
So we have

M0
σ′

−−−→M ′ σ′

2−−−−→Mark([d′]) = Mark([d])
σ3−−−−→

which is an illegal livelock of Σ¬ϕ.
By Lemma 5, there is a L-configuration C ′ such that σ′ is a linearisa-
tion of BL(C ′).”

with a new argument:

“We first use the same procedure as the proof of Lemma 5(⇐):

Let M0
σ
−−−→M1 be a linearisation of BL(C). By Lemma 3(1), the

last transition of σ is labelled by a transition of L. Since e is a suc-
cessful terminal of type II(b) and C is an L-configuration, there ex-
ists an event e′ ∈ AL(C) such that Mark([e′]) = Mark([e]). Let
M0

σ
−−−→M1

σ2−−−−→M2
σ3−−−−→M3 be a linearisation of [e] such that

M0
σ
−−−→M1

σ2−−−−→M2 is a linearisation of [e] ∩ [e′]. By Lemma 4 we
have M2 = M3, and therefore we have an illegal livelock

M0
σ
−−−→M1

σ2(σ3
ω)

−−−−−−−→.

Because d < e we also have an illegal livelock

M0
σ
−−−→M1

σ4−−−−→M ′
2

σ5−−−−→M3
σ3

ω

−−−−→

where M0
σ
−−−→M1

σ4−−−−→M ′
2 is a linearisation of [d] and the execu-

tion M0
σ
−−−→M1

σ4−−−−→M ′
2

σ5−−−−→M3 is a linearisation of [e].

Now find a linearisation of [d′]

M0
σ′

−−−→M ′
1

σ′

2−−−−→M ′′
2

such that M0
σ′

−−−→M ′
1 is a linearisation of BL([d′]).

So we have

M0
σ′

−−−→M ′
1

σ′

2−−−−→Mark([d′]) = Mark([d])
σ5−−−−→M3

σ3
ω

−−−−→

46 A CORRECTIONS AND ADDITIONS TO PUBLICATIONS

which is an infinite execution of Σ¬ϕ. Clearly the last transition of σ′

belongs to L by Lemma 3(1), and the fact that d′ is a part-II event. Thus
this execution is also an illegal livelock.

By Lemma 5, there is a L-configuration C ′ such that σ′ is a linearisa-
tion of BL(C ′).”

• On page 28 of [22], line 13:
“Finally, C ′ ≺LTL C is proved exactly as in case (2).”
should be
“Finally, C ′ ≺LTL C is proved directly from the definition of ≺LTL.”

• On page 28 of [22], 2nd line after Theorem 8:
“can be divided into to disjoint sets”
should be
“can be divided into two disjoint sets”

Publication [P5]:

• Note that the process semantics translation can be seen as a system
with a history dependent transition relation (a transition is only enabled
if some transition at the previous time step generated a token to its
preset). Another way of looking at this is that the places of the net
can be in three different states: (i) having no token, (ii) having a token
generated in the previous step, or (iii) having a token generated in some
earlier step. Now the process semantics translation can be seen as a
(suitably defined) transition relation of a system with at most 3|P | states
(instead of 2|P | states as in the case of step semantics). Notice, however,
that for any given bound n the executions of the process semantics
translation are a (often proper) subset of the step executions. Thus for
bounded model checking the system with a larger possible reachability
graph actually has less behavior than the system with a smaller possible
reachability graph for a given bound n.

• On page 221, Definition 1, 3rd line from the bottom of the page:
Typographical error, replace “li+i(b

′(p))” with “li+1(b
′(p))”.

Publication [P6]:

• Our LTL-X translation behaves quite differently for counterexamples
without a loop, and counterexamples with a loop. In the case of coun-
terexamples without a loop, our translation becomes equivalent to the
without loop case of [6].

• In the case of counterexamples with a loop our translation differs sig-
nificantly from the one presented in [6]. We use the fact that for Kripke
structures in which each state has exactly one successor, the semantics
of CTL and LTL coincide, see e.g., Theorem 1 of [69]. In the seman-
tics of CTL an existential until can be defined as a least fixpoint of a
monotone predicate transformer, see e.g., Section 7.5 of [11]. Now the
translation for until formulas uses the fact that the deductive closure of
a reduct program is the least fixpoint of a suitably defined monotone

A CORRECTIONS AND ADDITIONS TO PUBLICATIONS 47

predicate transformer, actually in this case the predicate transformer
defining until. The translation for release formulas uses the until trans-
lation together with a specialized translation for f = 2f1 formulas,
which uses the fact that the duality 2f1 ≡ ¬3¬f1 holds if a loop exists.
(Note that this duality does not hold if a loop does not exists, see [6].)

• Note that a naive SAT version of the LTL-X translation will be in-
correct because of cyclic dependencies used by the translation. The
translation depends on the least fixpoint interpretation of these cyclic
dependencies in the stable model semantics.

48 A CORRECTIONS AND ADDITIONS TO PUBLICATIONS

References

[1] P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analy-
sis based on SAT-solvers. In Proceeding of 6th International Confer-
ence on Tools and Algorithms for Construction and Analysis of Systems,
(TACAS’2000), pages 411–425. Springer-Verlag, 2000. LNCS 1785.

[2] K. Arnold and J. Gosling. The Java Programming Language. The Java
Series. Addison-Wesley, 1996.

[3] R. Ben-Eliyahu and R. Dechter. Default reasoning using classical logic.
Artificial Intelligence, 84:113–150, 1996.

[4] E. Best and R. Devillers. Sequential and concurrent behaviour in Petri
net theory. Theoretical Computer Science, 55(1):87–136, 1987.

[5] E. Best and C. Fernández. Nonsequential Processes: A Petri Net View,
volume 13 of EATCS monographs on Theoretical Computer Science.
Springer-Verlag, 1988.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model check-
ing without BDDs. In Proceedings of 5th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), pages 193–207. Springer-Verlag, 1999. LNCS 1579.

[7] A. Biere, E. M. Clarke, R. Raimi, and Y. Zhu. Verifiying safety prop-
erties of a Power PC microprocessor using symbolic model checking
without BDDs. In Proceeding of 11th International Conference on
Computer Aided Verification (CAV’99), pages 60–71. Springer-Verlag,
1999. LNCS 1663.

[8] P. Bjesse, T. Leonard, and A. Mokkedem. Finding bugs in an Alpha
microprocessor using satisfiability solvers. In Proceedings of 13th In-
ternational Conference on Computer Aided Verification, (CAV’2001),
pages 454–464. Springer-Verlag, 2001. LNCS 2102.

[9] R. E. Bryant. Symbolic Boolean manipulation with ordered binary de-
cision diagrams. ACM Computing surveys, 24(3):293–318, 1992.

[10] J. Burch, E. Clarke, K. McMillan, D. Dill, and L.Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computa-
tion, 98(2):142–170, 1992.

[11] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT
Press, 1999.

[12] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In Logic of Pro-
grams: Workshop, Yorktown Heights, NY. Springer-Verlag, May 1981.
LNCS 131.

REFERENCES 49

[13] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella,
and M. Y. Vardi. Benefits of bounded model checking at an industrial
setting. In Proceedings of 13th International Conference on Computer
Aided Verification, (CAV’2001), pages 436–453. Springer-Verlag, 2001.
LNCS 2102.

[14] M. Dam. Fixpoints of Büchi automata. In Proceedings of the 12th Inter-
national Conference of Foundations of Software Technology and Theo-
retical Computer Science, pages 39–50. Springer-Verlag, 1992. LNCS
652.

[15] J. Desel and W. Reisig. Place/Transition Petri nets. In Lectures on Petri
Nets I: Basic Models, pages 122–173. Springer-Verlag, 1998. LNCS
1491.

[16] J. Engelfriet. Branching processes of Petri nets. Acta Informatica,
28:575–591, 1991.

[17] J. Esparza. Model checking using net unfoldings. Science of Computer
Programming, 23:151–195, 1994.

[18] J. Esparza. Decidability and complexity of Petri net problems – An
introduction. In Lectures on Petri Nets I: Basic Models, pages 374–
428. Springer-Verlag, 1998. LNCS 1491.

[19] J. Esparza and K. Heljanko. A new unfolding approach to LTL model
checking. In Proceedings of 27th International Colloquium on Au-
tomata, Languages and Programming (ICALP’2000), pages 475–486.
Springer-Verlag, July 2000. LNCS 1853.

[20] J. Esparza and K. Heljanko. A new unfolding approach to LTL model
checking. Research Report A60, Helsinki University of Technology,
Laboratory for Theoretical Computer Science, Espoo, Finland, April
2000.

[21] J. Esparza and K. Heljanko. Implementing LTL model checking with
net unfoldings. In Proceedings of the 8th International SPIN Workshop
on Model Checking of Software (SPIN’2001), pages 37–56. Springer-
Verlag, May 2001. LNCS 2057.

[22] J. Esparza and K. Heljanko. Implementing LTL model checking with
net unfoldings. Research Report A68, Helsinki University of Technol-
ogy, Laboratory for Theoretical Computer Science, Espoo, Finland,
March 2001.

[23] J. Esparza and S. Römer. An unfolding algorithm for synchronous prod-
ucts of transition systems. In Proceedings of the 10th International Con-
ference on Concurrency Theory (CONCUR’99), pages 2–20. Springer-
Verlag, 1999. LNCS 1664.

[24] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s
unfolding algorithm. In Proceedings of 2nd International Workshop
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’96), pages 87–106. Springer-Verlag, 1996. LNCS 1055.

50 REFERENCES

[25] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s
unfolding algorithm, 2001. Accepted for publication in Formal Meth-
ods for System Design.

[26] J. Esparza and C. Schröter. Reachability analysis using net unfold-
ings. In Proceeding of the Workshop Concurrency, Specification &
Programming 2000, volume II of Informatik-Bericht 140, pages 255–
270. Humboldt-Universität zu Berlin, 2000.

[27] M. Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, New York, 1990.

[28] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In Proceedings of the 5th International Conference on
Logic Programming, pages 1070–1080. The MIT Press, 1988.

[29] H. J. Genrich, K. Lautenbach, and P. S. Thiagarajan. Elements of gen-
eral net theory. In Net Theory and Applications, Proceedings of the
Advanced Course on General Net Theory of Processes and Systems,
pages 21–163. Springer-Verlag, 1980. LNCS 84.

[30] P. Godefroid. Partial-Order Methods for the Verification of Concur-
rent Systems – An Approach to the State-Explosion Problem. Springer-
Verlag, January 1996. LNCS 1032.

[31] U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets.
Information and Control, 57(2/3):125–147, 1983.

[32] B. Graves. Computing reachability properties hidden in finite net un-
foldings. In Proceedings of 17th Foundations of Software Technol-
ogy and Theoretical Computer Science Conference, pages 327–341.
Springer-Verlag, 1997. LNCS 1346.

[33] K. Heljanko. Deadlock checking for complete finite prefixes using
logic programs with stable model semantics (Extended abstract). In
Proceedings of the Workshop Concurrency, Specification & Program-
ming 1998, Informatik-Bericht Nr. 110, pages 106–115. Humboldt-
University, Berlin, September 1998.

[34] K. Heljanko. Deadlock and reachability checking with finite complete
prefixes. Research Report A56, Helsinki University of Technology, Lab-
oratory for Theoretical Computer Science, Espoo, Finland, December
1999. Licentiate’s Thesis.

[35] K. Heljanko. Minimizing finite complete prefixes. In Proceedings of
the Workshop Concurrency, Specification & Programming 1999, pages
83–95. Warsaw University, Warsaw, Poland, September 1999.

[36] K. Heljanko. Using logic programs with stable model semantics to solve
deadlock and reachability problems for 1-safe Petri nets. Fundamenta
Informaticae, 37(3):247–268, 1999.

REFERENCES 51

[37] K. Heljanko. Using logic programs with stable model semantics to
solve deadlock and reachability problems for 1-safe Petri nets. In Pro-
ceedings of 5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’99), pages 240–254.
Springer-Verlag, 1999. LNCS 1579.

[38] K. Heljanko. Model checking with finite complete prefixes is PSPACE-
complete. In Proceedings of the 11th International Conference
on Concurrency Theory (CONCUR’2000), pages 108–122. Springer-
Verlag, August 2000. LNCS 1877.

[39] K. Heljanko. Bounded reachability checking with process seman-
tics. In Proceedings of the 12th International Conference on Con-
currency Theory (CONCUR’2001), pages 218–232. Springer-Verlag,
August 2001. LNCS 2154.

[40] K. Heljanko, V. Khomenko, and M. Koutny. Parallelisation of the Petri
net unfolding algorithm. Technical Report CS-TR-733, Department of
Computer Science, University of Newcastle upon Tyne, June 2001.

[41] K. Heljanko and I. Niemelä. Answer set programming and bounded
model checking. In Proceedings of the AAAI Spring 2001 Symposium
on Answer Set Programming: Towards Efficient and Scalable Knowl-
edge Representation and Reasoning, pages 90–96. AAAI Press, Techni-
cal Report SS-01-01, March 2001.

[42] K. Heljanko and I. Niemelä. Bounded LTL model checking with sta-
ble models. In Proceedings of the 6th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’2001),
pages 200–212. Springer-Verlag, September 2001. LNAI 2173.

[43] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[44] G. Holzmann. The model checker SPIN. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, 1997.

[45] ITU-T. CCITT Specification and Description Language (SDL), Tech-
nical report Z.100 (1993), ITU-T, 1994.

[46] T. A. Junttila and I. Niemelä. Towards an efficient tableau method for
Boolean circuit satisfiability checking. In Computational Logic – CL
2000; First International Conference, pages 553–567. Springer-Verlag,
2000. LNAI 1861.

[47] H. Kautz and B. Selman. Pushing the envelope: Planning, propo-
sitional logic and stochastic search. In Proceedings of the 13th Na-
tional Conference on Artificial Intelligence and the 8th Innovative Ap-
plications of Artificial Intelligence Conference, pages 1194–1201. AAAI
Press / MIT Press, 1996.

52 REFERENCES

[48] V. Khomenko and M. Koutny. LP deadlock checking using partial order
dependencies. In Proceedings of the 11th International Conference
on Concurrency Theory (CONCUR’2000), pages 410–425. Springer-
Verlag, August 2000. LNCS 1877.

[49] V. Khomenko and M. Koutny. Verification of bounded Petri nets using
integer programming. Technical Report CS-TR-711, Department of
Computer Science, University of Newcastle upon Type, 2000.

[50] V. Khomenko and M. Koutny. Towards an efficient algorithm for un-
folding Petri nets. In Proceedings of the 12th International Conference
on Concurrency Theory (CONCUR’2001), pages 366–380. Springer-
Verlag, August 2001. LNCS 2154.

[51] O. Kupferman. Model Checking for Branching-Time Temporal Logics.
PhD thesis, Technion, Israel Institute of Technology, Haifa, Israel, June
1995. Also available as Technical Report, Technion, Computer Science
Department, PhD Thesis PHD-1995-02.

[52] R. Langerak and E. Brinksma. A complete finite prefix for process al-
gebra. In Proceeding of 11th International Conference on Computer
Aided Verification (CAV’99), pages 184–195. Springer-Verlag, 1999.
LNCS 1663.

[53] M. Mäkelä. A reachability analyser for algebraic system nets. Research
Report A69, Helsinki University of Technology, Laboratory for Theoret-
ical Computer Science, Espoo, Finland, June 2001.

[54] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the
ACM, 38:588–619, 1991.

[55] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, 1993.

[56] S. Melzer and S. Römer. Deadlock checking using net unfoldings.
In Proceedings of 9th International Conference on Computer Aided
Verification (CAV’97), pages 352–363. Springer-Verlag, 1997. LNCS
1254.

[57] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[58] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures
and domains. Theoretical Computer Science, 13(1):85–108, 1980.

[59] I. Niemelä. Logic programming with stable model semantics as a con-
straint programming paradigm. Annals of Mathematics and Artificial
Intelligence, 25(3,4):241–273, 1999.

[60] I. Niemelä and P. Simons. Smodels – an implementation of the stable
model and well-founded semantics for normal logic programs. In Pro-
ceedings of the 4th International Conference on Logic Programming
and Non-Monotonic Reasoning, pages 420–429. Springer-Verlag, July
1997.

REFERENCES 53

[61] I. Niemelä and P. Simons. Extending the Smodels system with cardinal-
ity and weight constraints. In Jack Minker, editor, Logic-Based Artificial
Intelligence, chapter 21, pages 491–521. Kluwer Academic Publishers,
2000.

[62] C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[63] A. Pnueli. The temporal logic of programs. In Proceedings of 18th
IEEE Symposium on Foundations of Computer Science, pages 46–57.
IEEE Computer Society Press, 1977.

[64] J. P. Quielle and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proceedings of the 5th International Symposium
on Programming, pages 337–350, 1981.

[65] S. Römer. Theorie und Praxis der Netzentfaltungen als Basis für die
Verifikation nebenläufiger Systeme. PhD thesis, Technische Universität
München, Fakultät für Informatik, München, Germany, 2000.

[66] M. Sheeran and G. Stålmarck. A tutorial on Stålmarck’s proof pro-
cedure for propositional logic. Formal Methods in System Design,
16(1):23–58, 2000.

[67] P. Simons. Towards constraint satisfaction through logic programs and
the stable model semantics. Research Report A47, Helsinki Univer-
sity of Technology, Digital Systems Laboratory, Espoo, Finland, August
1997. Licentiate’s thesis.

[68] P. Simons. Extending and Implementing the Stable Model Semantics.
PhD thesis, Helsinki University of Technology, Laboratory for Theoret-
ical Computer Science, April 2000.

[69] H. Tauriainen and K. Heljanko. Testing SPIN’s LTL formula con-
version into Büchi automata with randomly generated input. In Pro-
ceedings of the 7th International SPIN Workshop on Model Checking
of Software (SPIN’2000), pages 54–72. Springer-Verlag, 2000. LNCS
1885.

[70] A. Valmari. The state explosion problem. In Lectures on Petri Nets I:
Basic Models, pages 429–528. Springer-Verlag, 1998. LNCS 1491.

[71] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620–650, July
1991.

[72] K. Varpaaniemi. On the Stubborn Set Method in Reduced State Space
Generation. PhD thesis, Helsinki University of Technology, Digital
Systems Laboratory, May 1998.

[73] K. Varpaaniemi, K. Heljanko, and J. Lilius. PROD 3.2 - An advanced
tool for efficient reachability analysis. In Proceedings of the 9th Inter-
national Conference on Computer Aided Verification (CAV’97), pages
472–475. Springer-Verlag, June 1997. LNCS 1254.

54 REFERENCES

[74] W. Vogler, V. Khomenko, and M. Koutny. Canonical prefixes of Petri
net unfoldings. Technical Report CS-TR-741, Department of Com-
puter Science, University of Newcastle upon Type, 2001.

[75] F. Wallner. Model checking LTL using net unfoldings. In Proceed-
ing of 10th International Conference on Computer Aided Verification
(CAV’98), pages 207–218. Springer-Verlag, 1998. LNCS 1427.

[76] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining deci-
sion diagrams and SAT procedures for efficient symbolic model check-
ing. In Proceedings of 12th International Conference on Computer
Aided Verification, (CAV’2000), pages 124–138. Springer-Verlag, 2000.
LNCS 1855.

REFERENCES 55

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A58 Patrik Simons

Extending and Implementing the Stable Model Semantics. April 2000.

HUT-TCS-A59 Tommi Junttila

Computational Complexity of the Place/Transition-Net Symmetry Reduction Method.

April 2000.

HUT-TCS-A60 Javier Esparza, Keijo Heljanko

A New Unfolding Approach to LTL Model Checking. April 2000.

HUT-TCS-A61 Tuomas Aura, Carl Ellison

Privacy and accountability in certificate systems. April 2000.

HUT-TCS-A62 Kari J. Nurmela, Patric R. J. Östergård

Covering a Square with up to 30 Equal Circles. June 2000.

HUT-TCS-A63 Nisse Husberg, Tomi Janhunen, Ilkka Niemelä (Eds.)

Leksa Notes in Computer Science. October 2000.

HUT-TCS-A64 Tuomas Aura

Authorization and availability - aspects of open network security. November 2000.

HUT-TCS-A65 Harri Haanpää

Computational Methods for Ramsey Numbers. November 2000.

HUT-TCS-A66 Heikki Tauriainen

Automated Testing of Büchi Automata Translators for Linear Temporal Logic.

December 2000.

HUT-TCS-A67 Timo Latvala

Model Checking Linear Temporal Logic Properties of Petri Nets with Fairness Constraints.

January 2001.

HUT-TCS-A68 Javier Esparza, Keijo Heljanko

Implementing LTL Model Checking with Net Unfoldings. March 2001.

HUT-TCS-A69 Marko Mäkelä

A Reachability Analyser for Algebraic System Nets. June 2001.

HUT-TCS-A70 Petteri Kaski

Isomorph-Free Exhaustive Generation of Combinatorial Designs. December 2001.

HUT-TCS-A71 Keijo Heljanko

Combining Symbolic and Partial Order Methods for Model Checking 1-Safe Petri Nets.

February 2002.

ISBN 951-22-5886-2

ISSN 1457-7615

