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ABSTRACT

The topic of this thesis is mathematical modeling of computations taking place
in the visual system, the largest sensory system in the primate brain. While a
great deal is known about how certain visual neurons respond to stimuli, a very
profound question is why they respond as they do. Here this question is approached
by formulating models of computation which might underlie the observed response
properties. The main motivation is to improve our understanding of how the brain
functions. A better understanding of the computational underpinnings of the visual
system may also yield advances in medical technology or computer vision, such as
development of visual prostheses, or design of computer vision algorithms.

In this thesis several models of computation are examined. An underlying as-
sumption in this work is that the statistical properties of visual stimuli are related
to the structure of the visual system. The relationship has formed through the
mechanisms of evolution and development. A model of computation specifies this
relationship between the visual system and stimulus statistics. Such a model also
contains free parameters which correspond to properties of visual neurons. The
experimental evaluation of a model consists of estimation of these parameters from
a large amount of natural visual data, and comparison of the resulting parameter
values against neurophysiological knowledge of the properties of the neurons, or
results obtained with other models.

The main contribution of this thesis is the introduction of new models of compu-
tation in the primary visual cortex. The results obtained with these models suggest
that one defining feature of the computations performed by a class of neurons called
simple cells, is that the output of a neuron consists of periods of intense neuronal
activity. It also seems that the activity levels of nearby simple cells are positively
correlated over short time intervals. In addition, the probability of the occurrence of
such regions of intense activity in the joint space of time and cortical area seems to
be small. Another contribution of the thesis is the examination of the relationship
between two previous computational models, namely independent component anal-
ysis and local spatial frequency analysis. This examination suggests that results
obtained with independent component analysis share some important properties
with wavelets, in the way their localization in space and frequency depends on their
average spatial frequency.
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Notations and abbreviations

Constants and variables

lower- or uppercase letter scalar, or random variable
i, k, `, n general-purpose indices
t, τ time indices
∆t delay in time
K,N, T general-purpose upper limits for indices
xk kth component of observed data
wk kth weight in a linear model
yk kth (processing unit) output or latent variable
sk kth latent variable (in Publication 7)
yk(t) kth output signal or latent signal
sk(t) kth latent signal (in Publication 7)
vk(t) kth variance signal or latent signal
zk(t), uk(t) latent signals
(x, y) spatial image coordinates
(x, y, t) spatiotemporal image sequence coordinates
boldface lowercase letter column vector

x = [x1 · · · xN ]
T

observed data
x(t) observed signals
wk vector of weights corresponding to kth linear unit
y outputs or latent sources
y(t) output signals or latent signals
v(t) latent signals
boldface uppercase letter matrix
W matrix relating observations to outputs
A, M weight matrices in generative models



8

Functions

f (·), g (·), G (·) scalar-valued nonlinear functions
E {·} expected value (over a set of samples)
Et {·} expected value (over time)
cov {·, ·} covariance
κ4 (·) kurtosis (a fourth-order cumulant)
varλ (·) local variance with decay parameter λ
p (·) probability density function
I(x, y) (spatial) image
I(x, y, t) (spatiotemporal) image sequence
h (·, ·) spatial neighborhood function
φ (t) temporal filter
abs (·) function mapping vector components to absolute values

Abbreviations

CRF classical receptive field
DC direct current (constant part of a signal)
ICA independent component analysis
IT inferior temporal
K koniocellular
LGN the lateral geniculate nucleus
M magnocellular
MST medial superior temporal
MT medial temporal
P parvocellular
PCA principal component analysis
V1 the primary visual cortex
V2–V5 visual cortical areas 2–5
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Chapter 1

Introduction

1.1 Motivation and overview

At the back of our heads, there is a brain area called the primary visual cortex. As
the name suggests, this brain area is involved in the sense of vision, in transforming
light entering our eyes into visual experiences. The brain area has been labeled
“primary” because it is generally thought that the majority of visual processing
that takes place in the cortex is initiated in this area (Wurtz and Kandel 2000a).

Visual processing in the primary visual cortex is performed by a network of
neurons, basic cells of the nervous system (Kandel 2000). Information is transmitted
out of a neuron in a train of nerve impulses, or spikes. Neurons in the network can be
connected to each other and to neurons outside the primary visual cortex. Neurons
in the primary visual cortex can be divided into different classes based on the way
they respond to visual stimuli. Probably the two most important classes bear the
names simple cells and complex cells. These names were given by Hubel and Wiesel
(1962, 1968), who first described these neuron classes, and the names reflect the
fact that these researchers found it simpler to describe the response properties of
the cells in the first class.

There exists a large amount of research results on how the spike trains emitted by
simple and complex cells change in response to various visual stimuli. For example,
it is known that many simple cells respond vigorously – that is, emit a large number
of spikes in a given unit of time – when a line or an edge with a certain orientation
is shown at a particular location of the visual field (e.g., Palmer 1999). Simple and
complex cells may well be the most thoroughly studied types of neurons in the whole
brain. Research has also shed light on the properties of many other neurons, located
in different brain areas, which seem to take part in visual perception. To name just
a few examples of recent research, there have been suggestions of neurons that
signal the orientation of surfaces (Tsutsui et al. 2002), and neurons representing
the quantity of a small number of visual objects (Nieder et al. 2002).

All of the previous examples were cases where an intuitively important visual
quality – a small line or an edge, a surface, or the number of objects – was associated
with the responses of a class of neurons. This approach is very intuitive, since it
relates neural responses to something that we find easy to understand. Despite
these advances in relating neural activity to visual qualities, there are several key
open issues regarding the way in which visual information is represented in the
brain.
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First, some lines of evidence point to more complicated representations in the
brain. For example, already in the 1960s results obtained in a branch of vision
science called visual psychophysics – the quantitative study of the relations be-
tween visual sensations and stimuli – suggested that some processing in the visual
system might utilize the representation of the visual world in terms of spatial fre-
quencies, instead of basic spatial image elements like lines and edges (Blakemore
and Campbell 1969). This suggestion received support later in neurophysiological
measurements (Albrecht et al. 1980; DeValois et al. 1982). These measurements
indicated that the response properties of simple cells are more complicated than
what would be expected of line and edge detectors, and perhaps more suitable for
a frequency-based representation.

Let us assume for a while that the visual system indeed utilizes a frequency
representation. This prompts the obvious question: why? We certainly do not
perceive ordinary visual scenes in terms of frequencies. To put it in another way,
those physical properties of objects that are important to us seem to be related
to everyday concepts like edges and surfaces, and not some esoteric properties like
frequencies, which are alien to everyday thinking. Thus, it is difficult to find a
match for the frequency representation in the way we intuitively perceive the visual
world. Perhaps, then, the frequency representation is used by the visual system
because it is suitable for the type of information processing tasks, or computations,
that the brain performs.

Second, the same question why is just as important, but less obvious, even if we
assume that edges, lines, and bars do constitute a low-level representation of the
visual world in the brain. Currently we do not know how such a representation en-
ables an animal to do its tasks. In fact, we do not know how any other information
processing system, for that matter, could utilize such a representation to perform a
wide variety of visual tasks; the design of general-purpose computer vision systems
has proven notoriously difficult. While it may seem intuitive to first identify the
lines and edges in an image, and then proceed to the identification of surfaces and
objects, how this could really be accomplished in a complex visual scene remains
a mystery. As Mumford (1994) has stated: “Introspection turns out often to be a
very poor guide to the complexity of a problem.” Therefore, in this case as well,
we lack knowledge of the possible computational advantages of such a representa-
tion. Furthermore, cells in the primary visual cortex can not be described only
by stating that they respond vigorously to basic image elements. The cells have
other properties: for example, they respond differently to different types of motion
(DeAngelis et al. 1993a), and the principles that seem to determine their locations
on the cortex are complicated (Blasdel 1992). Again, we may ask the question:
why? In order to provide an answer, we need quantitative theories that are able to
predict the properties of visual neurons.

At this point a word of caution regarding the question why is in order. While
it certainly looks like a good question to be posed, it is also a risky research topic,
because the answer may be very complicated. Our biological characteristics are a
result of millions of years of evolution. The way in which these characteristics are
present in a population depends upon the traits of preceding populations, is influ-
enced by random components, and is constrained by laws of physics and chemistry
(Stearns and Hoekstra 2000). But, on the other hand, the potential payoff in terms
of a significant increase in our understanding of the brain balances this risk.

An underlying assumption in this work is that a central element in the answer
to the question why is provided by the properties of stimuli that we typically see.
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In particular, we assume that the statistical properties of visual stimuli are related
to the structure of the visual system (Attneave 1954; Barlow 1961; Simoncelli 2003;
Olshausen 2003). Mechanisms that have enabled the formation of this relationship
are evolution, and development of the visual system during the early stages of the
life of an animal, including the fetal period. The models of computation examined
in this thesis specify this relationship between simplified models of visual neurons
and stimulus statistics. Our models of visual neurons are simplified models of
real neurons – these simplified models can be used efficiently to perform various
calculations, for example, in our estimation algorithms.

The models of computation discussed in this thesis can be thought of as ideas of
what kind of a representation of visual stimuli the brain employs. They do not try to
answer the question why with a complete answer: they do not state how the results
of the computation affect the reproductive success, or the behavior, of an animal.
Instead, the models try to offer a description of what seem to be the important,
defining properties of the representation. Previous research on such models has
produced intriguing connections between the structure of the visual system and the
statistics of natural stimuli. For example, it has been demonstrated that a high
proportion of a set of basic simple-cell models tends to have very low activity in a
natural scene (Olshausen and Field 1996). This points to a representation in which
activity on the primary visual cortex is sparse. To be more precise, the activity
seems to be maximally sparse. Note again that this model of computation does not
relate the properties of visual neurons to the way in which we observe the visual
world, nor to the tasks of an animal, but to hypothetical information-processing
principles.

To specify the relationship between stimuli and properties of visual neurons,
a computational model contains a number of parameters whose exact values are
not specified in the model. These parameters correspond to properties of visual
neurons. The exact values of the parameters can be estimated by applying the
relationship between the simplified models of visual neurons and natural stimulus
statistics, as specified by the computational model. The resulting parameter values
are then compared against neurophysiological measurements, or results obtained
with other computational models. For example, we have compared the orientation
selectivity of basic simple-cell models, specified completely after the parameters
were estimated, to the orientation selectivity of simple cells. Such comparisons are
an integral part of the assessment of the neuroscientific contribution of a model.

On the whole, the assessment of the neuroscientific contribution of a model con-
sists of two parts. One is the analysis of the degree to which the model and real
neurons support the same set of input-output mappings – a property which we will
here call implementational equivalence. The second is the evaluation of the predic-
tive power of the model where, ideally, we would like the implications of a model
to agree with all previous physiological data, and also to provide an array of new
hypotheses, which could then be verified or falsified by new neuroscientific mea-
surements. Our models, as well as other existing similar computational models, are
not completely implementationally equivalent to real neurons, nor do they possess
perfect predictive power:

• Neurons are much more complicated than the simplified neuron models (see
Section 2.4), which are mathematical abstractions that we use to represent
the response properties of neurons; also, neurons do not perform exact mathe-
matical calculations like our neuron models. On the other hand, our simplified
neuron models seem to capture many important response properties of real
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neurons, thereby providing a partial match to the observed computational
(response) properties of real neurons.

• The evaluation of the predictive power of a model can be divided roughly
into three stages: i) qualitative evaluation based on visual inspection of es-
timated parameter values and physiological measurements, ii) quantitative
comparison against earlier physiological measurements, and iii) quantitative
comparison against new physiological measurements inspired by the model.
In this thesis, the evaluation of models of computation takes place at the level
of the first two stages – that is, we evaluate the models qualitatively, and
quantitatively against earlier physiological measurements. No new physiolog-
ical measurements are reported in this thesis. Furthermore, the comparison
of our predictions against earlier physiological measurements does not result
in a perfect match.

The neurophysiological contribution of the models will be discussed further in Sec-
tion 4.6, where we summarize the results obtained with our models.

The main scientific contribution of this thesis is the introduction of new mod-
els of computation in the primary visual cortex. The results obtained with these
models suggest that one defining feature of the computations performed by simple
cells is that the output of a neuron consists of limited periods of intense neuronal
activity. We call this principle temporal coherence of activity levels. It also seems
that the activity levels of nearby simple cells are positively correlated over short
time intervals, resulting in a principle we call spatiotemporal activity level depen-
dencies. Combining these principles, and the principles of sparseness and spatial
activity level dependencies described in previous research, points to a model of corti-
cal computation in which activation is limited to a few cortical patches at any given
time, but when a patch is activated, it tends to remain active for a while. This is
what we have called bubble coding, because one can visualize such activity as a set
of bubbles in a three-dimensional space, defined by time and the two-dimensional
cortical surface. An additional contribution of this thesis is the examination of the
relationship between two previous computational models, independent component
analysis (ICA) and local spatial frequency analysis. This analysis suggest that the
results obtained with ICA are similar to wavelet representations, in that the spatial
localization of the basis vectors obtained with ICA increases with their mean spatial
frequency, while their localization in frequency decreases.

This thesis consists of an introductory part and 7 original articles. The rest of the
introductory part is organized as follows. The publications of this thesis, along with
the contributions of the current author, are described in the next section. Then an
overview of the primary visual cortex is provided in Chapter 2. Chapter 3 contains
a review of some important previous computational models, and a description of
the contribution made in the first publication of this thesis. The main contribution
of this thesis is described in Chapter 4, and a short summary is given in Chapter 5.

1.2 Publications of this thesis

The ordering of the publications of this thesis follows a logical progression from the
analysis of previous computational models (Publication 1) to new models (Publica-
tions 2–7), so that the model describing the computational properties of individual
neurons (Publication 2) is extended to multiple neurons (Publications 3 and 4),
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and the two approaches are presented in a common generative model framework
(Publication 5). The case of spatiotemporal receptive fields is then studied (Pub-
lication 6), and, finally, a model unifying a number of computational principles is
presented (Publication 7).

Before their publication, all of the articles have gone through a review process
in which at least two independent reviewers have assessed the manuscript.

Publication 1 Jarmo Hurri, Aapo Hyvärinen, and Erkki Oja. Wavelets and nat-
ural image statistics. In M. Frydrych, J. Parkkinen, and A. Visa (Eds.), Proceedings
of the 10th Scandinavian Conference on Image Analysis, pages 13–18, 1997.

In this paper we analyzed the connections between wavelets and results ob-
tained by applying independent component analysis (ICA) to image data, by using
concepts from time-frequency analysis.

The current author suggested the application of concepts from time-frequency
analysis to analyze ICA results, designed and performed the experiments and wrote
the paper, with Dr. Hyvärinen and Prof. Oja taking part in the editing. The inde-
pendent component analysis algorithm applied in the paper was originally developed
by Dr. Hyvärinen and Prof. Oja.

Publication 2 Jarmo Hurri and Aapo Hyvärinen. Simple-cell-like receptive fields
maximize temporal coherence in natural video. Neural Computation, volume 15,
number 3, pages 663–691, 2003.

This paper introduced temporal coherence of activity levels as a possible com-
putational principle behind simple-cell receptive field structure. A gradient-based
algorithm was developed for solving the resulting constrained optimization problem.
The results (linear receptive field models) estimated from natural image sequences
were compared quantitatively against corresponding results obtained with earlier
models (independent component analysis / sparse coding). Several control experi-
ments were also done to verify the novelty and validity of the results.

The concept of temporal coherence of activity levels was developed jointly by the
authors of the paper. The current author also developed the algorithm, performed
the experiments and wrote the paper, with Dr. Hyvärinen taking part in the editing.

Publication 3 Jarmo Hurri and Aapo Hyvärinen. A novel temporal generative
model of natural video as an internal model in early vision. In A. E. C. Pece
(Ed.), Proceedings of the First International Workshop on Generative-Model-Based
Vision, pages 33–38, 2002.

This paper extended the concept of temporal coherence of activity levels by
including inter-cell dependencies over time. These dependencies seem to capture
important properties of the connectivity and organization of simple cells. Both
intra- and inter-cell dependencies were captured by the first layer of the formulated
two-layer multivariate autoregressive generative model. An algorithm based on the
method of moments and least mean squares estimation was developed to solve the
estimation problem.

The formulation of activity level dependencies as an autoregressive generative
model was originally suggested by Dr. Hyvärinen. The model presented in this
paper was developed jointly by the authors of the paper. The current author also
developed the algorithm, performed the experiments and wrote the paper, with Dr.
Hyvärinen taking part in the editing.
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Publication 4 Jarmo Hurri and Aapo Hyvärinen. Temporal and spatiotemporal
coherence in simple-cell responses: A generative model of natural image sequences.
Network: Computation in Neural Systems, volume 14, number 3, pages 527–551,
2003.

This paper extended the work started in Publication 3 in several ways. First,
we introduced a new and faster algorithm for solving the problem. Second, the
differences between the model and standard independent component analysis were
assessed. Third, the effect of the approximations made in the estimation was ana-
lyzed. An intuitive explanation of the results was also presented.

The new algorithm presented in this paper was developed jointly by the authors
of the paper. The current author also performed the experiments and wrote the
paper, with Dr. Hyvärinen taking part in the editing.

Publication 5 Jarmo Hurri and Aapo Hyvärinen. Temporal coherence, natural
image sequences, and the visual cortex. In S. Becker, S. Thrun, and K. Obermayer
(Eds.), Advances in Neural Information Processing Systems, volume 15, pages 141–
148, 2003.

In this paper temporal activity level coherence and inter-cell temporal activity
level dependencies were presented in a unified generative model framework. This
framework was originally suggested by Dr. Hyvärinen. The current author per-
formed the experiments and wrote the paper, with Dr. Hyvärinen taking part in
the editing.

Publication 6 Jarmo Hurri, Jaakko Väyrynen and Aapo Hyvärinen. Spatiotem-
poral linear simple-cell models based on temporal coherence and independent com-
ponent analysis. Proceedings of the Eighth Neural Computation and Psychology
Workshop, in press.

In this paper the concept of temporal coherence of activity levels was studied in
the case of spatiotemporal receptive fields. The results were compared against phys-
iological measurements and results obtained with independent component analysis
/ sparse coding.

The current author suggested the topic of the research described in the paper.
The experiments were designed mainly by the current author, in co-operation with
other authors. The experiments were done jointly by Mr. Väyrynen and the current
author, with the current author as the supervisor. The current author also wrote
the paper, with the other authors taking part in the editing.

Publication 7 Aapo Hyvärinen, Jarmo Hurri, and Jaakko Väyrynen. Bubbles:
A unifying framework for low-level statistical properties of natural image sequences.
Journal of the Optical Society of America A, volume 20, number 7, pages 1237–1252,
2003.

In this paper we defined a model which unifies three types of suggested coding
principles in the visual cortex: sparseness, temporal activity level dependencies, and
inter-cell activity level dependencies. The resulting coding principle, bubble coding,
describes computation in the cortex as patches of activity which are contiguous over
both time and cortical surface, and also occur rarely both in time and on the surface.

The generative model and the estimation method presented in this paper were
developed by Dr. Hyvärinen, and the experiments were performed by Mr. Väyrynen.
The current author participated in the design of the experiments, contributed part
of the software used in the experiments and took part in the editing of the paper.
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Chapter 2

The primary visual cortex:

overview and basic neuron

models

2.1 The primate visual system

This section is a very short introduction to the visual system of primates. While
in general in this work we refer to measurements made from primates, we will in
some cases also refer to studies concerning the visual system of the cat. There
are two reasons for this. First, some groundbreaking measurements in the field
of visual neuroscience were made from cats. Second, there are some important
research results concerning cats which, to my knowledge, have not been reproduced
in primates. For a review of the visual system of the cat, the reader is referred to
(Sherman and Spear 1982).

The different brain areas related to perception are traditionally divided into
unimodal and multimodal areas. The unimodal areas are thought to process in-
formation of one particular sensory type, such as visual information, or auditory
information. The multimodal areas combine sensory information from a number of
different modalities. For simplicity, here we limit our discussion to unimodal visual
processing.

Unimodal visual processing in the primate brain is performed mainly in the
retina, thalamus, and a number of cortical areas residing at different locations of
the cortex.1 The retina (e.g., Tessier-Lavigne 2000; Masland 2001) is located in
the eye, and is the organ responsible for converting light intensities and spectra
into neural activity. It also presumably takes part in other information processing
tasks – such as contrast enhancement, motion detection, and control of pupil size
and eye velocity – and has over ten different types of output (ganglion) cells. In
the thalamus, which is located in the middle of the brain between the two cerebral
hemispheres, the lateral geniculate nucleus (LGN) (e.g., Wurtz and Kandel 2000a;
Sherman and Guillery 2002), is generally seen as a relay between the retina and
visual cortical areas. Approximately 90% of outgoing fibers (axons) from the retina

1The superior colliculus and the pulvinar have been excluded from these considerations. The
role of the superior colliculus in visual processing seems to be related to the control of voluntary
eye movement; the role of the pulvinar is unclear (Bullier 2002).
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terminate in the LGN. The neurons in the LGN are driven by the input from the
retina, but they are also modulated by a large number of inputs from other brain
regions; in fact, only 5–10% of the inputs to the relay neurons in the LGN are from
the retina, while approximately 60% are from cortical areas and the brainstem (the
rest are local connections coming from inside the LGN). For a short review of some
computational models of the retina and the LGN, see Section 3.4.

Further unimodal visual processing is performed in different visual cortical areas,
including

• the primary visual cortex (also known as area V1, or striate cortex )

• area V2 and area V4

• area V5 (also known as medial temporal cortex2 or area MT ),

• inferior temporal cortex3 (also known as area IT ), and

• medial superior temporal cortex4 (also known as area MST ).

The identification of these different areas is sometimes fairly complicated. In cases
where visual areas are located adjacent to each other on the cortex, the identification
is based on factors such as differences in the response properties of cells to visual
stimuli, size and density of cell bodies, density of myelin (a substance which forms
a sheath around axons), and changes in the way in which the response properties of
nearby neurons are related to each other (Bullier 2002). The primary visual cortex
is the largest visual area, and will be described in more detail below. The other
visual cortical areas are generally thought to have various tasks in perception of
form, color, motion, depth etc. (e.g., Wurtz and Kandel 2000b; Lennie 2000).

While a great deal is known about the properties of different visual cortical
areas, the way in which a visual perception is formed in the brain is not clear.
One of the most influential theories has been the classic feedforward processing
paradigm (e.g., Lamme and Roelfsema 2000; Bullier 2002). In this paradigm, the
visual system is considered as a hierarchy of processing layers, where the upper
layers process increasingly more complex visual information. Neurons at low layers
of the hierarchy, such as at the level of V1, are considered to respond to simple image
features like short edges and lines (see also Section 3.2). At the higher layers, such
as V4, the outputs of lower layers would then be combined to form representations
of more complicated visual elements, such as shapes of objects (Pasupathy and
Connor 2002). As useful and influential as the feedforward paradigm may be, it
seems to be an insufficient model of the visual system (Lamme and Roelfsema
2000; Bullier 2002). Visual areas residing at different layers in the hierarchical
model are in reality heavily interconnected, so feedback connections are abundant.
The activities of neurons at the lower layers have been observed to be affected
by phenomena that are supposed to take place at higher layers – one example is
the perceptual completion of partially observed objects (Sugita 1999). While the
feedforward model has definitely not been abandoned, a different type of model has
gained considerable evidence: a model in which perception is a result of the dynamic
interactions of different cortical areas (Lamme and Roelfsema 2000; Bullier 2001;

2medial: being or occurring in the middle; temporal: of or relating to the temples or the sides
of the skull behind the orbits

3inferior: lower
4superior: upper
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Tong 2003). We will return to the role of these interactions below when we discuss
the primary visual cortex in more detail.

Parallel processing and specialization are common properties in the brain. For
example, different parts of the visual field can be processed in parallel by different
neural circuits, although these circuits typically have at least some interconnections.
Regarding specialization, certain types of neurons can be sensitive, for example, to
stimulus color, while the response of other neurons depends only on light intensity
changes. Parallelism and specialization can be seen clearly in the case of different
visual pathways: qualitatively different types of visual information are processed
in at least partially physiologically separate channels in parallel. In the earliest
parts of primate visual systems – the retina and the lateral geniculate nucleus – at
least three different pathways have been identified (e.g., Wurtz and Kandel 2000a;
Hendry and Reid 2000; Bullier 2002): magno- (M), parvo- (P), and koniocellular
(K). Cells in the magno- and parvocellular pathway differ from each other in their
response latencies, and the way they respond to changes in color, luminance, spatial
frequency, temporal frequency: M cells respond faster than P cells, are insensitive
to color, less sensitive to spatial frequency than P cells, and more sensitive to lu-
minance and temporal frequency. Functional properties of cells in the koniocellular
pathway seem to be more heterogenous and not very well known (Hendry and Reid
2000).

In the study of cortical visual areas, the two most prominent pathway candidates
that have been identified are the ventral5 and dorsal6 pathways (e.g., Kandel and
Wurtz 2000). Both pathways pass through V1, and supposedly also through V2;
thereafter the ventral pathway extends via V4 to the inferior temporal cortex, while
the dorsal pathway leads to the posterior parietal7 cortex through area MT. The
ventral pathway has been labeled as the “what” pathway, and seems to be mostly
concerned with color and form. The dorsal pathway, on the other hand, has been
named either as the “where” (Mishkin et al. 1983) or “how” (Goodale and Milner
1992) pathway, depending on whether it is thought to exhibit specialization in
depth and motion, or in information about how to act on the objects (as opposed
to representing the objects). It is possible that the ventral pathway is driven by the
parvocellular pathway, and the dorsal pathway by the magnocellular pathway, but
this seems to be a matter of some controversy (Hendry and Reid 2000). It seems
that considerable convergence of the magnocellular, parvocellular and koniocellular
pathways takes place in the primate V1 (Sawatari and Callaway 1996; Callaway
1998; Vidyasagar et al. 2002). Thus, in general it is not feasible to associate V1
neurons specifically with any of these prominent pathways.

Another general property of the brain is that the response properties of nearby
neurons tend to have certain similarities. For example, retinotopy refers to the
preservation of the spatial arrangement of inputs from the retina (Kandel and Wurtz
2000). That is, the spatial arrangement of neurons in a cortical area is similar to
the spatial arrangement of their inputs in the retina. In the next section we will
see some other such topographic properties of neurons in the primary visual cortex.

5ventral: abdominal (in this case, lower)
6dorsal: located near or on the back (in this case, upper)
7posterior: situated behind; parietal: of, relating to, or forming the upper posterior wall of the

head
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2.2 The primary visual cortex

This thesis focuses on modeling the response properties of neurons in the primary
visual cortex. In this section we discuss shortly some aspects of current neuro-
physiological knowledge on the response properties of neurons in this visual area.
However, it must immediately be noted that the responses of neurons in the primary
visual cortex are affected by other parts of the visual system, especially those that
lie in the pathway from the eye to this area of the brain. Therefore, when we talk
about response properties of V1 cells, what we actually mean is the mapping from
visual input to V1 responses; cells in the retina and the lateral geniculate nucleus
obviously influence this response, and other parts of the brain may also do so.

In the term “primary visual cortex”, the word “primary” refers to the idea that in
a hierarchy of cortical areas, this part of the cortex receives/processes visual infor-
mation first. What this really means is a complicated matter, since visual stimulus
information can reach other cortical areas via routes that bypass the primary vi-
sual cortex (e.g., Schoenfeld et al. 2002), the visual areas are interconnected, and
there are other visual areas which respond to visual stimuli almost as quickly as V1
(Vanni et al. 2001; Bullier 2002). But in general it seems that in the cortex, the
processing of the majority of visual information at least begins in V1.

Originally, three major classes of cells were identified in the primary visual cor-
tex: simple cells, complex cells and end-stopped cells, also known as hypercomplex
cells (e.g., Hubel and Wiesel 1968; Palmer 1999). More recent measurements sug-
gest that end-stopping is not a property of a particular class of neurons, but can be
exhibited by simple or complex cells to different degrees (DeAngelis et al. 1994).
In what follows, we will limit our discussion to simple and complex cells.

Simple and complex cells share some important response properties: they typi-
cally respond strongly to stimuli located at a certain position in the visual field and
having a particular frequency (scale) and orientation (e.g., Hubel and Wiesel 1968;
Palmer 1999; Wurtz and Kandel 2000a). Typical stimuli that were initially used to
elicit strong responses from these cells included lines, edges, and bars, with different
orientations (Hubel and Wiesel 1968); modern research describes stimuli that elicit
strong responses in terms of sinusoidal gratings (see Figure 2.1). Most simple and
complex cells are insensitive to variations in the color of the stimulus, that is, the
neurons are achromatic (Hubel and Wiesel 1968; Lennie 2000); in what follows,
we will limit our discussion to achromatic response properties. Also, in both cell
classes, some cells are directionally selective, that is, the most vigorous response is
elicited from these cells when the stimulus is moved in a certain direction with a
certain speed (e.g., Hubel and Wiesel 1968; DeAngelis et al. 1993a).

But there are some fundamental differences between simple and complex cells.
Originally the classification was based on whether a cell responded to both onset
and offset of light at a certain position in the visual field (complex cells), or just
one of these (simple cells) (Hubel and Wiesel 1962; Hubel and Wiesel 1968). A
more modern description is that simple and complex cells differ in their sensitivity
to the phase/position of the stimulus. This difference in the response properties
of the cells is perhaps best illustrated by considering their responses to sinusoidal
gratings, which are standard tools in the study of visual cells. A sinusoidal grating
is completely specified by four parameters: amplitude, orientation, frequency, and
phase. Figure 2.1 illustrates two such gratings, having the same amplitude, orien-
tation, and frequency, but differing in their phase. When a simple cell is excited
with these gratings, its response varies greatly with the phase of the grating, while
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A B

Figure 2.1: Two sinusoidal gratings. The grating in (B) has the same amplitude,
frequency, and orientation as the grating in (A), but different phase.

a complex cell is insensitive to phase changes.
One theory is that complex cells exhibit this phase/position invariance because

they combine the outputs of multiple similarly oriented simple cells with similar pre-
ferred spatial frequencies and directional selectivities, but different phases/positions
(Hubel and Wiesel 1962). Recent neurophysiological measurements made from cats
support this theory (Alonso and Martinez 1998; Martinez and Alonso 2001). We
will return to this theory below in Section 2.4. There are also other theories hy-
pothesizing, for example, that physiologically different pathways lead to simple and
complex cells (see, e.g., the short review Callaway 2001; see also Chance et al.
1999).

Much of the research on the primary visual cortex concerns the way in which
simple and complex cells are organized in this inherently three-dimensional cortical
area. It seems that the organization is such that several properties of nearby cells
tend to be continuous, that is, change slowly (e.g., Callaway 1998; Blasdel and
Campbell 2001). The most important of these properties seems to be

• the preferred orientation of the cell

• ocular dominance: which eye dominates in determining the response of the
cell

• retinotopy (see Section 2.1, page 17).

The resulting ordering with respect to these properties seems to follow primarily
columnar organization: if one moves directly into the cortex from the surface of
the cortex, the properties stay the same. Gradual changes in the properties take
place when one moves along the surface of the cortex. This means that when one
examines how preferred orientation, ocular dominance, and retinal position change
in the cortex, the examination can be restricted to two dimensions, that is, to
changes along the surface of the cortex. It seems that different properties dominate
in the ordering at different scales: preferred orientation seems to be the dominant
property at the smallest scale, and retinotopy at the largest (Blasdel and Campbell
2001). The resulting topography is very complex (Blasdel 1992). Still, in general,
cells that code for similar orientation, input coming from the same eye, and similar
retinal locations, tend to be close to each other. Another property of the cells that
may have an effect on the topographic organization is preferred spatial frequency
(Tootell et al. 1988; DeAngelis et al. 1999).
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In the classic feedforward processing paradigm (see Section 2.1), the role of
V1 has been the identification of elementary image features (e.g., Palmer 1999;
Wurtz and Kandel 2000a). According to this traditional textbook view, simple and
complex cells detect elementary image features – like lines, bars, and edges – and
pass these on to other visual cortical areas for further processing. However, the
primary visual cortex is connected reciprocally to other visual areas (e.g., areas V2
and V5) – that is, there is a dense network of feedback connections to V1 from
“higher” cortical visual areas (Bullier 2002). Also, as will be discussed in the next
section, the way in which a V1 neuron responds is affected by the context in which
the stimulus is perceived. It seems likely that V1 is not only a servant of the higher
visual areas, but an active component in visual perception (Bullier 2001; Rees et al.
2002; Tong 2003). This complicates the description of response properties of V1
neurons, as we will see next.

2.3 Classical receptive fields and contextual effects

The output of a neuron in the primary visual cortex is a continuous train of action
potentials (spikes), all-or-none type of impulses with a duration of approximately
1ms (Kandel 2000). With no visual input into the retina, the visual neurons still
spike occasionally. The rate at which this spiking occurs is called the spontaneous
firing rate. In the primary visual cortex, the spontaneous activity of different neu-
rons is correlated, and forms similar activity patterns as when actual visual input
activates the cells (Tsodyks et al. 1999). The spontaneous firing rate decreases
when moving up the visual pathway, that is, it is high in the retina but low in the
cortex (e.g., Bair et al. 2002). What is particularly important from the point of
view of this work is that the spontaneous firing rate of simple cells is typically low
(Heeger 1992; DeAngelis et al. 1993a).

For a given neuron, the part of the visual field where a change in light intensity
can raise the firing rate above the spontaneous firing rate is called the classical
(spatial) receptive field of the neuron (e.g, Freeman et al. 2001; however, see also
Sugita 1999 for an experiment in which simple cells exhibited excitation even with
no change inside the classical receptive field). For example, the simple cells of
monkeys can be excited from visual areas ranging typically between 1

4

◦
and 3

4

◦

(Hubel and Wiesel 1968). Complex-cell receptive fields are generally thought to
be larger than simple-cell receptive fields (Hubel and Wiesel 1968), although some
more recent measurements indicate that in cats, the receptive fields of these two cell
types have similar sizes (Freeman et al. 2001). Binocular neurons – that is, neurons
which can be excited from either eye – actually have two receptive fields, one for
each eye (Bullier 2002); however, in this work we focus on modeling monocular
neurons. The same term “receptive field” is also used to refer to the part of the
retina where a change in light intensity can excite the neuron.

If there is no change in incoming light inside the classical receptive field of a
visual neuron, the activity of the neuron remains very low (Bullier 2002). That
is why achromatic neuronal response properties in fact describe responses to light
intensity changes. Below we will see that the description of a classical receptive
field is often accompanied by a map showing the effect of light intensity changes at
different positions of the visual field. In fact, in neuroscience the term “receptive
field” is tightly associated with this map. When this kind of terminology is used,
the (classical) spatiotemporal receptive field refers to a combination of the classical
spatial receptive field, and a map showing the temporal profiles of the effect of
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Figure 2.2: A simplified illustration of classical spatial and spatiotemporal receptive
fields. (A) A prototype of an orientation-selective spatial receptive field that would
respond strongly to a suitably oriented line or bar. The intensity of each point (x, y)
in the receptive field describes how a light change at time τ at that position would
affect the firing rate of the cell at time τ + ∆τ, where ∆τ denotes the time it takes
for the cell to respond to visual stimuli. The medium gray background indicates the
area where light intensity changes have no effect. White color inside the medium
gray background indicates area where changes to brighter tend to increase the
firing rate, and changes to darker tend to decrease the firing rate; in the darker
gray areas, the effects of light changes are the opposite. (B) The cross-section of
a prototype of a directionally selective spatiotemporal receptive field that would
respond strongly to a vertical line or bar moving into a suitable direction with an
appropriate speed. The actual receptive field is three-dimensional, with coordinates
(x, y, t) – for simplicity, we show only one x–t cross-section of the receptive field at
a fixed y-coordinate y = y0, and assume that the x–t profile of the receptive field is
similar for all y. The intensity of each point (x, y0, t) in the receptive field describes
how a light change at time τ − t, at spatial position (x, y0), would affect the firing
rate of the cell at time τ + ∆τ, where ∆τ denotes the time it takes for the cell to
respond to visual stimuli. The grayscale coding is the same as in (A).

light intensity changes at different positions. Simplified examples of spatial and
spatiotemporal receptive fields are shown in Figure 2.2.

While excitation of achromatic visual neurons above the spontaneous firing rate
is possible only if there are light intensity changes within the classical receptive
field, there are many other factors which influence the induced response.

• Spatially, the strength of the response can be affected from regions outside
the classical receptive field (e.g., Zipser et al. 1996; Freeman et al. 2001).
These regions are often described as belonging to the nonclassical receptive
field.

• Temporally, adaptation to input can modify the response strength of the
neuron (Marlin et al. 1988), or even the structure of the receptive field (Marlin
et al. 1991; see also Stanley 2002).

• Factors other than visual stimuli – such as the behavioral state of the animal –
also affect the responses of visual neurons. For example, attention or arousal
can change the response properties of neurons in the primary visual cortex
(Wörgötter and Eysel 2000).

Collectively these phenomena are called contextual effects (Albright and Stoner
2002). Most of these effects influence the response properties on a longer timescale
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than what is relevant for the models discussed in this thesis. In what follows, we
will focus on the relatively fast modulatory spatial contextual effects, which are
inherently related to the nonclassical receptive field.

There exists evidence that classical response properties (as defined by classical
receptive fields) and spatial contextual effects represent two different stages of pro-
cessing of stimulus information in the visual system: spatial contextual modulation
seems to take place some 100–250ms after the initial response of the neuron (Zipser
et al. 1996). This points to a first stage of a fast feedforward sweep – described
by the classical receptive fields of neurons – followed by recurrent processing which
mediates spatial contextual effects (Lamme and Roelfsema 2000). When an un-
derstanding of the functioning of the visual system is developed, it is important to
understand both the properties of the feedforward stage, and the complicated, re-
current interactions taking place at later stages. In the case of physiological studies
of the primary visual cortex, studies of the classical receptive fields of simple and
complex cells, as well as research on how complex cells utilize simple-cell outputs
in the feedforward stage, represent the former effort.

In this work we too, like those neuroscientists who have studied classical re-
ceptive fields, apply the reductionist approach to the problem of understanding
vision: we focus on computational modeling of the feedforward stage and, as a con-
sequence, on the classical receptive fields of neurons. We think that a fundamentally
important approach to building computational models of the brain is to break the
computations performed the whole system into smaller constituents, insofar as this
is possible. Also, from the practical point of view of building computational models,
we have to dissect the visual system into parts which lend themselves to such mod-
eling and further analysis. Some models of classical receptive fields are suitable for
these purposes, as we shall see in the next section. Furthermore, such descriptions
of classical receptive fields can be used to predict a number of neuronal response
properties: preferred orientation, direction, spatial frequency etc. Thus, as we shall
see next, they provide one answer to a central problem in the description of neu-
rons: how well can we capture the response properties of a visual neuron with a
convenient mathematical model?

2.4 Basic neuron models

Capturing response properties

There are many different ways to characterize the responses of visual neurons to light
intensity changes inside their receptive fields (e.g., Palmer 1999). For example, one
can measure the (spatial) orientation selectivity of the neurons by examining how
the orientation of a bar or a sinusoidal grating (see Figure 2.1, page 19) influences
the response. Similarly, frequency selectivity indicates how the response depends on
the frequency of the sinusoidal grating, and phase selectivity measures dependence
on the phase of the grating. When the temporal domain is included, one can for
example measure the direction selectivity of the neuron, that is, how the response
depends on the direction of movement of a stimulus.

All of these selectivities are important characterizations of visual neurons, but in
order to obtain a full description of neural response properties, a model giving the
output of the neuron as a function of the input is desired. The development of such
models involves model design and evaluation, and for models with free parameters,
also parameter estimation from physiological measurements.
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One of the open issues in neuroscience is the question of the type of information
carried by the signal at different timescales (e.g., deCharms and Zador 2000). That
is, what properties of the neural representation of stimuli, motor commands, or
other concepts presented in the brain can be “read out” by considering average
firing rates over a certain time interval. For example, in the middle temporal (MT)
visual area, the temporal precision of spike trains seems to be of order 2–3ms, as
measured by the standard deviation of spike times in repeated experiments with
the same stimulus (Burac̆as et al. 1998). Here the mean firing rate seems to
convey information about the mean direction of motion, and measuring the rate
over shorter time intervals seems to provide more detailed information about the
fine temporal structure of the motion. This suggests that in this case, a shorter
time window means better temporal precision. However, it is an open issue whether
qualitatively different type of information than temporal structure – such as the
spatial structure of a stimulus – can be passed at different timescales (deCharms
and Zador 2000). In general, the question of exact timing is also related to the
possibility of synchronized activity among a set of neurons.

In the computational models studied in this thesis, the output of a neuron is
the mean firing rate taken over nonoverlapping 40ms time windows. This temporal
precision is set by the 25Hz sampling rate of the natural image sequence data we
are using. Ideally, a faster sampling rate would be desirable – however, previous
research has shown that the 25Hz sampling rate is adequate, for example, for
quantitative analysis of resulting spatiotemporal receptive field models. In fact, one
of the advantages of our data set is that it has also been used in other research (van
Hateren and Ruderman 1998; Olshausen 2000), which improves the comparability
of the results.

After the mean firing rate has been chosen as a descriptor of cell output, and
we want to use a model giving the output of the neuron as a function of visual
stimulus, the question then becomes: what kind of a model is sufficiently powerful?
On one hand, we want the model to be as simple as possible, so that its parameters
can be estimated successfully from measurement data, or from natural stimulus
data (by using the rules specified by the computational model). On the other hand,
the model should be expressive enough to account for the observed properties of
the actual neurons: for example, we might want the model to account for the
observed orientation selectivity of simple cells. Below, we will consider some basic
neuron models used in computational neuroscience, and discuss their applicability
in modeling cells in the early visual system, especially neurons in the primary visual
cortex.

Linear models

Linear models are the ubiquitous workhorses of science and engineering. They are
also the simplest successful neuron models of the visual system, despite the fact that
their output can be negative, while the firing rate of a neuron is always nonnegative.
For our purposes the best way to present them is in a vector-matrix formulation.
In this formulation, spatial or spatiotemporal visual input – that is, an image or an
image sequence – is vectorized before it is used as input in the model. Vectorization
means that we transform two- or three-dimensional data into a one-dimensional
form which lends itself easily to certain computations. For images, vectorization
can be done by concatenating the columns of the two-dimensional image into a
vector – for an image of size N × N pixels this yields a vector of length N2. For
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a sequence of length T of such images, we concatenate all the T vectors obtained
by applying the previous procedure to each image in the sequence – this yields a
vector of length TN2.

For static input – that is, images – we use the following notation to denote a
linear model. Let x denote a vectorized image patch. For such an image patch
input, the output of a neuron with index k, denoted by yk, k = 1, ...,K, is given by

yk = wT
k x =

∑

i

wk,ixi, (2.1)

where vector wk is the vectorized spatial filter implementing a linear transformation
from x to yk. Collecting the outputs of a set of K neurons into one output vector
y = [y1 · · · yK ]

T
, the input-output relationship can be expressed as

y = Wx, (2.2)

where W = [w1 · · ·wK ]
T

. Temporal input, such as image sequences, can be trans-
formed linearly by using spatial, temporal, or spatiotemporal linear models. Let us
denote vectorized visual input at time t by vector x(t). Then in the linear model
the output of a neuron with index k at time t, denoted by yk(t), is given by

yk(t) = wT
k x(t), (2.3)

or, denoting y(t) = [y1(t) · · · yK(t)]
T

,

y(t) = Wx(t). (2.4)

If we are using a spatial linear model, then x(t) is just a vectorized image from the
image sequence at time t. If the model is spatiotemporal, then x(t) is a vectorized
subsequence of images from the sequence at times t, t−∆t, ..., t−(T −1)∆t, and two
temporally close input vectors x(t) and x(t−∆t) correspond to partly overlapping
image sequences. The purely temporal model can be considered, for example, as a
spatiotemporal model where each image consists of only a single pixel.

In the previous section, we discussed the map describing the effect of intensity
changes at different positions of the receptive field of the cell. The linear model is a
basic mathematical description of this map. The average image intensity (mean of
x(t)) is typically assumed to be 0, so that average intensity yields a zero firing rate
– this is then defined to be the spontaneous firing rate (see Section 2.3). Thus, in
the model, x(t) is equivalent to changes from average image intensity, and y(t) is
equivalent to deviations from the spontaneous firing rate, and the model specifies
a relationship between these two. The filter w is simply called the receptive field
of the cell. Simplified graphical examples of what the contents of w could be were
shown in Figure 2.2 (page 21). In those examples, an element of w could only have
one of three values: 0 (medium gray region), a > 0 (white region), or b < 0 (dark
gray region).

Linear receptive-field models can be estimated from visual neurons by employing
a method called reverse correlation (Dayan and Abbott 2001). In this method, a
linear filter is estimated so that the mean square error between the estimated yk(t)
in equation (2.3), and change in the actual firing rate is minimized, where the mean
is taken over a large set of visual stimuli. The name “reverse correlation” comes
from the fact that the general solution to this problem involves the computation of
the time-correlation of stimulus and firing rate. However, the solution is simplified
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when temporally uncorrelated (white noise) sequences are used as visual stimuli –
in this case, the optimal w is obtained by computing an average stimulus over those
stimuli which elicited a spike.

As was mentioned above, the linear model maps changes in light intensity to
changes in the firing rate. If a neuron has a relatively low spontaneous firing rate,
this may be problematic: the firing rates predicted by the linear model may then
tend to be negative, thus providing a poor match with how the neuron responds.
This is less of a problem for ganglion and LGN cells, since their spontaneous firing
rates are relatively high. Linear models have turned out to account for several
properties of retinal ganglion cells (Enroth-Cugell et al. 1983; Enroth-Cugell and
Robson 1984), and have proved to be useful models in the description of cells in the
lateral geniculate nucleus (Cai et al. 1997).

As for modeling simple and complex cells, neurons in the primary visual cortex
have relatively low spontaneous firing rates (Heeger 1992; DeAngelis et al. 1993a).
Nevertheless, in the case of simple cells, linear models have turned out to be good
predictors of orientation selectivity (orientation preference and tuning), and also
account reasonably well for spatial and temporal frequency selectivity, and direction
of preferred motion (DeAngelis et al. 1993b; Lampl et al. 2001). There are a
number of simple-cell response properties that linear models are not able to predict.
The most important may be the magnitudes of the responses to moving stimuli,
which also determine the degree of directional selectivity (Tolhurst and Dean 1991;
DeAngelis et al. 1993b; Lampl et al. 2001). Some other discrepancies between
linear predictions and actual cell responses will be described in the next section,
along with more advanced models. For complex cells, linear models are clearly
inadequate (e.g., Movshon et al. 1978; Szulborski and Palmer 1990). For example,
the original characteristic feature of complex cells was considered to be their positive
response to both light increases and decreases at the same position in the visual
field – this is something a linear model can not predict.

As for the use of linear neuron models in computational models of visual neu-
rons, linear models have been used widely in computational models of retinal neu-
rons (e.g., Atick and Redlich 1990), neurons in the lateral geniculate nucleus (e.g.,
Dong and Atick 1995b), and simple cells (e.g., Olshausen and Field 1996; Olshausen
and Field 1997; Bell and Sejnowski 1997; van Hateren and van der Schaaf 1998;
van Hateren and Ruderman 1998; Olshausen 2000). Despite their limitations as
simple-cell models, the results obtained with linear models have created great in-
terest in the neuroscience community. For example, computational models utilizing
sparseness (Olshausen and Field 1996; Olshausen and Field 1997) and independent
component analysis (Bell and Sejnowski 1997; Hyvärinen et al. 2001) (see Sec-
tion 3.4) have prompted comparisons against neurophysiological data (van Hateren
and van der Schaaf 1998; van Hateren and Ruderman 1998) and new neurophysio-
logical measurements (Vinje and Gallant 2000; Weliky et al. 2003).

The starting point in the new computational models introduced in this thesis
is the application of linear models, as was also the case with sparse coding and
independent component analysis. However, we will be paying attention to the
interpretation of the results when some basic nonlinearities are taken into account.
In what follows we will consider some nonlinear models for simple and complex
cells.
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Basic nonlinear models for simple and complex cells

The response properties of simple cells include a number of nonlinear characteristics,
and complex cells require nonlinear models in the first place. Here we will shortly
discuss three different types of models to handle nonlinearities in V1 neurons: the
Wiener model, the divisive normalization model, and the energy model.

In the Wiener model (e.g., Mathews and Sicuranza 2000), a linear stage is
followed by a static nonlinearity f :

yk(t) = f
(

wT
k x(t)

)

. (2.5)

In neuron models, f is typically nonnegative so that yk(t) will fulfill this basic
requirement of the firing rate. A special case of the Wiener model is half-wave
rectification (e.g., Heeger 1992), defined by

f(α) = max {0, α} . (2.6)

This is the nonlinearity we will occasionally apply in this thesis. Half-wave recti-
fication offers one way to interpret the purely linear model (2.3) in a more phys-
iologically plausible way: the linear model combines the outputs of two half-wave
rectified (nonnegative) cells with reversed polarities into a single output yk(t) – one
cell corresponds to linear filter w and the other to filter −w (see Publication 2).

It was mentioned in the previous section that linear models of simple cells fail to
predict the degree of directional selectivity of simple cells. A Wiener model which
performs better in this prediction is one consisting of a cascade of half-squaring and
an expansive exponent (Albrecht and Geisler 1991; DeAngelis et al. 1993b):

f(α) = (max {0, α})n
, (2.7)

where n > 1. When the exponent n is estimated from neurophysiological mea-
surements, its value turns out to be different for different neurons, with a mean of
approximately 2.3–2.5 (Albrecht and Geisler 1991; DeAngelis et al. 1993b).

One of the most accurate currently known simple-cell models, in terms of pre-
dictive power, is the divisive normalization model (e.g., Heeger 1992; Carandini
et al. 1997; Carandini et al. 1999). Let w1, ...wK denote a set of filters, and σ
a scalar parameter. In the divisive normalization model, the output of the cell
corresponding to filter wk is given by

yk(t) =
f

(

wT
k x(t)

)

∑K

i=1 f
(

wT
i x(t)

)

+ σ2
, (2.8)

where f is again a static nonlinearity, such as half-wave rectification. The divisive
normalization model can account for a number of observed simple-cell nonlinearities,
including response saturation: at high contrast values, a change in input contrast
yields a smaller change in cell response than what is predicted by the linear model
(Carandini et al. 1999).

As was already mentioned above, for complex cells the linear model is completely
inadequate. A basic nonlinear complex-cell model is the energy model (Adelson and
Bergen 1985; see also Watson and Ahumada 1985). In this model, the output of a
complex cell is computed as a sum of squares of the responses of linear filters:

yk(t) =
∑

i

(

wT
i x(t)

)2
. (2.9)
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This model bears obvious resemblance with the idea that a complex cell combines
the responses of a number of simple cells to achieve phase invariance, as was dis-
cussed in Section 2.2. Each of the linear transformations wT

i x(t) in equation (2.9)
would then correspond to the outputs of two half-rectified simple cells, with recep-
tive fields wi and −wi, as discussed above, and the different filters wi would have
similar orientation, frequency, and scale, but different phase/position. The energy
model has received some support from neurophysiological measurements (Emerson
et al. 1992; Gaska et al. 1994).
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Chapter 3

Some previous computational

principles for early vision

3.1 Approaches to understanding visual processing

in the brain

Different approaches can be taken in order to study the nature of computations in
the visual system. Perhaps the most straightforward one is to try to relate neural
responses to visual qualities that are familiar to us in everyday life – we will examine
an example of this approach in more detail in Section 3.2. In the history of vision
science, another approach resulted from the examination of the capabilities of the
visual system in terms of their response to different spatial frequencies – we will
return to this approach in Section 3.3.

A majority of the studies discussed here, including the major contribution of this
thesis (Chapter 4), and many of the previously suggested computational principles
described in this chapter (Sections 3.4–3.6), belong to an approach in which it is
assumed that the visual system has adapted to the statistics of visual stimuli that
the animal receives in its environment (e.g., Attneave 1954; Barlow 1961; Field 1987;
Field 1994; Simoncelli and Olshausen 2001; Olshausen 2003; Simoncelli 2003). The
approach has been applied especially to the parts of the visual system which are
thought to be involved in the very first stages of visual processing – the retina, the
LGN, and the primary visual cortex – which are often called collectively the early
vision.

In this approach, it is assumed that the properties of visual stimuli have in-
fluenced the structure and functionality of the visual system either genetically or
during development – although it must be remembered that developmental mech-
anisms themselves are under the pressure of evolutionary selection – so that some
properties of the system have become optimal for statistics of the stimuli. Research
on visually deprived cats (Sherman and Spear 1982), cats reared in strobe illumi-
nated environments (Humphrey and Saul 1998), and cats reared in environments
where a single orientation dominates the visual input (Blakemore and Cooper 1970;
Sengpiel et al. 1999), clearly shows that the properties of visual input during the
early stages of the life of an animal play a role in determining the response prop-
erties of visual cells. It is therefore clear that properties of visual stimuli have a
major influence on the response characteristics of visual neurons.
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But there are several possible pitfalls in this hypothesis which relates typical
natural stimuli to the way in which the visual system functions. First, the concept
of a “typical” stimulus is very hard to define (Simoncelli 2003). Customarily in
this field a set of visual stimuli, such as images or image sequences, is collected,
and this set is considered to be representative of typical stimuli; however, there
is currently no way to quantify the degree to which the data set covers the space
of natural stimuli. Second, it is also dangerous to assume that evolution or de-
velopment yields behavior or structures that are absolutely optimal. Evolution is
nondeterministic and greedy, and builds upon earlier solutions – in many cases this
yields nonoptimal solutions. Even though at least some behaviors – such as deciding
the composition of the diet, or sampling uncertain food locations – of some species
seem to be optimal or near-optimal (e.g., Krebs and Davies 1993), in some cases
the results of evolutionary selection are not optimal. In the domain of vision, visual
illusions (e.g., Palmer 1999; Eagleman 2001) represent one type of nonoptimality.
In addition, even if the outward behavior of an animal would have been driven
by evolution and development to be optimal or near-optimal, there can be many
different internal mechanisms which yield similar fitness values. In terms of evolu-
tionary theory, this is a consequence of neutral evolution – genetic variation that
is not correlated with reproductive success – which has been demonstrated exper-
imentally with replicated bacteria populations (e.g., Stearns and Hoekstra 2000).
It is therefore even more difficult to draw any conclusions about the optimality of
internal physiological mechanisms.

Furthermore, the computational models described so far in literature practically
ignore the tasks of the organism and computational constraints set by the limita-
tions of neurons (Simoncelli and Olshausen 2001). The tasks of the organism, in
turn, depend on factors such as predator-prey relationships, the diet of an animal,
mating behavior etc. It seems plausible that in higher animals, such as mammals,
the representation of sensory stimuli is least dependent on the external functions of
the organism (such as motor commands) on the primary sensory cortices, and the
dependency increases in neural networks closer to the motor cortex or similar areas
(deCharms and Zador 2000). This seems reasonable because low-level representa-
tions are used for many different behavioral purposes. Therefore, examining the
relationship between behavior and neural activity on the primary visual cortex can
be very difficult. However, the relationship between neuronal activity and cognitive
tasks, such as perception, memory and learning, is also of great importance, and
might be easier to investigate. But current computational models have not been
able to establish this connection.

In spite of all these reservations, the study of the relationship between sensory
systems and the statistics of stimuli has gained considerable interest (e.g., Field
1987; Olshausen 2003; Simoncelli 2003). Within this research field, two different
types of computational model families can be identified. The first family of models
focuses on optimal properties of the outputs of neurons. These models typically
optimize the output of linear or nonlinear models using some optimality principle,
such as statistical independence, or minimal change over time. The second family
consists of generative models of natural stimuli (Hinton and Ghahramani 1997;
Olshausen 2003). In these models, natural stimuli are generated by underlying,
hidden (latent) variables, according to the rules specified by the model. When the
model is estimated from natural stimulus data, the parameters of the model and
the latent variables may then represent the properties and outputs of neurons. The
idea of describing natural stimuli by a generative model, and interpreting the hidden
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variables of this model as a neural representation, may at first seem counterintuitive,
because the stimuli are not generated by the neural network. However, a generative
model can express explicitly information about the regularities in the stimuli as
properties of hidden variables. If these regularities can be used to make inferences
about the underlying real world, the visual system might benefit from such an
internal representation of its stimuli (Knill and Richards 1996).

What is most important for research on the relationship between sensory systems
and the statistics of stimuli is that this research has also spurred new neurophys-
iological measurements in two sensory systems – the visual system (van Hateren
1992; Dan et al. 1996; Vinje and Gallant 2000; Nirenberg et al. 2001; Weliky
et al. 2003; see also the review Reinagel 2001) and the auditory system (Chechik
et al. 2001) – and also new psychophysical measurements (Párrage et al. 2000). In
computational modeling, the emphasis has been in the utilization of redundancy –
which is discussed in more detailed below – but other models have been developed
as well.

What follows below is a short review of some of the central computational prin-
ciples and models related to early parts of the visual system.

3.2 Line and edge detection with filters

Line and edge detection are basic image processing tasks, used for example in the
initial stages of image segmentation in machine vision (e.g., Gonzalez and Woods
1992). A common way to detect these basic image elements is to identify certain
properties in the responses of one or more filters. To illustrate this, let us consider
the following simple example. Let x1, ...,xN denote a set of 9-dimensional vectorized
(see Section 2.4) small image patches, originally of size 3 × 3 pixels, taken from a
larger image. Let us remove the mean intensity from each of these patches, and
normalize them to unit Euclidean norm; these steps are useful when we want to
discard the mean intensity and local average contrast. Let us denote the resulting
vectors by xn,∗, n = 1, ..., N, for which, because of the previous two steps, we have
∑

i xn,∗,i = 0 and ‖xn,∗‖ = 1. Now let w denote the vectorized form of the spatial

filter shown in Figure 3.1A. Note that
∑

i wi = 0, and that the multiplier 1/(3
√

2)
in front of the spatial filter ensures that ‖w‖ = 1; these properties simplify things
a bit below. Let yn denote the result obtained when xn,∗ is filtered with w:

yn = wT xn,∗ =
∑

i

wixn,∗,i. (3.1)

Equation (3.1) is the inner product between vectors w and xn,∗. Since each xn,∗

has unit Euclidean norm, the maximal yn is obtained when xn,∗ = w, that is,
when xn,∗ corresponds to a thin oblique white line. The minimal yn is obtained
when xn,∗ = −w, that is, when xn,∗ corresponds to a thin oblique black line.
Thus, each yn can be considered to be a measure of the similarity between w and
xn,∗: the larger yn, the more similar the image patch is with the template w.
By applying a (nonlinear) scheme like the one described here – removal of mean
intensity, normalization, and linear transformation – at every position of a larger
image, the resulting values yn could be used to detect image positions containing
thin oblique lines. Similarly, the filter in Figure 3.1B could be used to detect
vertical edges. Other properties than maxima or minima can also be considered.
For example, one operational definition of an edge is that it is a maximum of
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Figure 3.1: Simple spatial filters for the detection of lines and edges. (A) A filter
which can be used to detect thin oblique lines. (B) A filter which can be used to
detect vertical edges. The multipliers in front of the filters scale the filters so that
they have unit norm. See text for details.

the derivative of intensity – such maxima can be detected as zero-crossings of filters
computing some approximation of the second derivative (Gonzalez and Woods 1992;
Palmer 1999). Also, spatiotemporal filters similar to the ones in Figure 3.1 can be
devised to detect moving lines and edges.

The idea of simple cells as detectors of lines, edges, and bars (thicker lines) is
without a doubt the most influential suggestion of the computations performed by
these cells. As was mentioned in Section 2.2, in the original studies by Hubel and
Wiesel (1962, 1968), simple cells were observed to respond most vigorously to one of
these image elements with a certain orientation. This observation, together with the
importance of the detection of lines and edges in engineering-oriented approaches,
and the construction of filters such as those presented in Figure 3.1, led to the
idea that the task of simple cells was to identify low-level image features (see also
Marr and Hildreth 1980). Because of its fundamental importance, this theory of
the computational role of simple cells is the one that is presented, for example, in
some neuroscientific textbooks.

However, there are some reasons that have led researcher to study other hypothe-
ses about the tasks of these cells. The first two reasons are related to important
psychophysical and neurophysiological observations:

1. Psychophysical observations led to a suggestion that images might not be pro-
cessed in the early parts of the visual system as a collection of local primitive
spatial elements, such as short edges and lines, but spatial frequency elements
(sinusoidal grating patches) (Blakemore and Campbell 1969; Palmer 1999).
To be more precise, it was suggested that there are neurons in the visual
system that are selective especially to the spatial frequency of the stimulus.

2. More detailed measurements of simple-cell responses to different stimuli, and
of the receptive fields of simple cells, suggested that the spatial structure of
these receptive fields is somewhat more complicated than that of a basic edge
or line detector, and provided support for the frequency element processing
model (Albrecht et al. 1980; DeValois et al. 1982).

We will return to these observations and models in the next section.
In addition, while the edge and line detection hypothesis is important and in-

tuitive, it seems that it is too simplistic to offer a true explanation of the role of
these cells. Engineering efforts utilizing such simple detectors have shown that the
identification of objects is a very difficult task – in many cases other methods have
to be used, and the selection of the method depends largely on the particular char-
acteristics of the problem (Gonzalez and Woods 1992). From the point of view of
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visual neuroscience, many questions related to the role of simple cells remain unan-
swered. If simple cells detect elementary image features, how are these combined to
form a perception? What is the role of feedback connections? Why do simple cells,
when stimulated with moving lines and edges, exhibit various degrees of direction
selectivity? What is the contribution of simple cells in tasks like texture analysis,
or determination of the structure of objects from shading (Palmer 1999)?

In the following sections we will see some alternatives to the edge and line de-
tection hypothesis. We start by considering a model in which images are considered
as combinations of different frequencies, instead of combinations of simple localized
image elements.

3.3 Local spatial frequency analysis

In the theory of the Fourier transform there is a deep mathematical result, which
concerns the localization of the representation of signals in time (ordinary signal
representation) and frequency (Fourier representation). This theorem, known as the
time-bandwidth product theorem, or the uncertainty principle, (e.g., Cohen 1995),
sets a limit on the joint localization of the signal in the time domain and in the
frequency domain. Informally, if a signal is highly localized in time, it must contain
a wide spectrum of different frequencies, whereas if the signal contains a very limited
range of frequencies, it must have a long duration. Although in its basic form the
uncertainty principle applies to functions with one argument – for example, a signal
and its Fourier transform – similar limitations apply to multivariate functions, such
as images, and their Fourier representations (Daugman 1985).

The uncertainty principle has important implications for linear systems. A linear
system can be specified completely by its response to an impulse in the input. Linear
filtering (convolution) can be represented as the product of the Fourier transforms
of this impulse response and the input (e.g., Ifeachor and Jervis 2002). Because
the impulse response is also a signal (in the one dimensional case) or an image (in
the two-dimensional case, where it is often called the point spread function), the
uncertainty principle applies to the impulse response as well. Suppose that one
wants to build a linear spatial filter to sift a very limited band of frequencies from
a certain location in an image. From the point of view of multiplication in the
frequency domain, this means that the filter would have to be highly localized in
frequency. The uncertainty principle would then limit the degree to which the filter
could be localized spatially.

What makes this issue important for computational modeling of the visual sys-
tem is the theory of psychophysical spatial frequency channels and its possible neu-
rophysiological implementation in the primary visual cortex (e.g., Blakemore and
Campbell 1969; Palmer 1999). The psychophysical spatial frequency channel theory
posits that some functioning of the visual system can be decomposed into opera-
tions on a set of distinct spatial frequency channels, each channel being selective to
a range of frequencies and orientations. Some impressive experimental results sup-
port the theory (Palmer 1999). For example, decreased sensitivity – or fatiguing,
or adaptation – caused by prolonged exposure to visual stimuli seems to take place
selectively in different spatial frequency channels. Because simple and complex cells
are selective to frequency and orientation, and since their receptive fields are also
spatially localized, it has been suggested that they might be contributing to spatial
frequency channels by performing local spatial frequency analysis (Marcelja 1980;
Daugman 1980; Pollen and Ronner 1983). When linear models are used to model
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simple cells, localization and frequency selectivity are limited by the uncertainty
principle.

Two particularly important linear models are closely related to local spatial
frequency analysis: wavelets and Gabor functions are linear operators localized in
both spatial and frequency domains, with the uncertainty principle as a limitation
(for a related theory called scale-space analysis, see, e.g., Lindeberg and Mardia
1994). A wavelet is a member of a wavelet family, a set of functions generated
from a ’model function’ called a mother wavelet by elementary operations such as
scaling, translation, and rotation (e.g., Cohen and Kovačević 1996; Hess-Nielsen
and Wickerhausen 1996). Many different mother wavelets exist. Some applications
in which wavelets have proven to be useful are feature detection, compression, noise
removal, computer vision and graphics, and time-frequency description of signals
(e.g., Kovačević and Daubechies 1996). A Gabor function is formed by modulating
a sinusoidal (see Figure 2.1 on page 19) by a Gaussian (bell-curve-like) window,
that is, it is the product of a sinusoidal and a Gaussian (e.g., Field 1987). The
localization of Gabor functions in space and frequency reach the lower bound of
the uncertainty principle (Daugman 1985). Certain subsets of Gabor functions can
be constructed to have similar spatial and frequency properties as wavelet families
(e.g., Lee 1996). In a classic paper, Jones and Palmer (1987) showed that Gabor
functions provide a good fit to spatial simple-cell receptive fields in the cat primary
visual cortex (however, see Palmer et al. 1991 for a critique of the Gabor model
of simple cells). Gabor functions are used extensively as computational models of
simple cells, and in the estimation of descriptive parameters from computationally
obtained receptive-field models.

The local spatial frequency analysis theory can be considered as the second
paradigm about the function of the cells in the primary visual cortex, the first
being the line and edge detector paradigm put forward by Hubel and Wiesel. The
local spatial frequency analysis theory represents a major step in the development of
computational theories of vision, in that it departs from analyzing visually obvious
features in stimuli.

3.4 Utilizing redundancies in sensory data

Sensory data are highly redundant : for example, knowing the brightness of a pixel
in a digital image enables us to make a pretty good guess about the brightness of a
nearby pixel (Kersten 1987; see also Eckert and Buchsbaum 1993; Dong and Atick
1995a for descriptions of redundancies in natural image sequences). The utilization
of redundancies has been associated with the processing of sensory data since the
classic papers by Attneave (1954) and Barlow (1961). The foundations of much
of the research focusing on redundancy can be found in information theory which
(Cover and Thomas 1991) “answers two fundamental questions in communication
theory: what is the ultimate data compression, and what is the ultimate trans-
mission rate of communication.” Originally the central idea in the application of
information theory to the visual system was that information about the environ-
ment might be presented in the brain as compactly as possible, so that redundancy
would have been stripped away (Attneave 1954; Barlow 1961). One of the moti-
vations of this view was the thought that it was uneconomical, or perhaps even
impossible, for the brain to handle all visual input data (Attneave 1954; Barlow
2001). In the case of no noise, another way to state this idea of maximizing the
capacity of available computational resources is that each cell should use its output
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channel with maximum capacity, and there should be no redundancies between the
outputs of different cells (Simoncelli 2003). In this short review we will discuss only
some models in which redundancy plays a central role, namely decorrelation and
independent component analysis / sparse coding (why the last two of these methods
are related will be discussed below).

There have been hypotheses about both spatial and temporal decorrelation by
visual neural networks. In the spatial case, decorrelation removes linear correla-
tions – that is, correlations of the form E {yky`} – between the outputs of different
neurons, whereas in the temporal case it removes temporal linear correlations of the
form Et {yk(t)yk(t − ∆t)} in the output of an individual cell. When combined with
low-pass filtering to attenuate high frequency noise, decorrelation has proved to be
a prominent model of the first layers of mammalian vision: in the case of spatial
decorrelation, of retinal ganglion cells (Atick and Redlich 1992; see also Atick and
Redlich 1990; Nirenberg et al. 2001), and in the case of temporal decorrelation, of
the lateral geniculate nucleus (Dong and Atick 1995b; Dan et al. 1996).

Independent component analysis (ICA) and sparse coding have probably been
the most promising statistical models in linking simple-cell receptive-field structure
to natural stimulus statistics. One of the motivations for the development of these
statistical methods was the observation that decorrelation alone is not sufficient to
lead to the emergence of oriented and localized filters (Field 1987). Independent
component analysis (e.g., Jutten and Herault 1991; Comon 1994; Bell and Sejnowski
1995; Cardoso 1998; Lee 1998; Girolami 1999; Hyvärinen et al. 2001; Cichocki and
Amari 2002) is a method in which traditionally (several extensions of the basic
model exist) a special form of generative model is assumed for the observed data
x: the assumption is that the data have been generated linearly from a set of
statistically independent source (latent) variables s, that is, x = As (and A is
invertible). Both the mixing coefficients – that is, the mixing matrix A – and
the underlying sources s are unknown. If the generative model holds, the only
assumption that is needed to recover both the mixing matrix and the sources, up
to permutation and scaling, is that at most one of the latent variables has a normal
distribution (Hyvärinen et al. 2001). One intuitive view of why this is possible is
based on the central limit theorem (Papoulis 1991), which states that the linear
combination of independent random variables approaches a normal distribution
as the number of variables grows. Intuitively, then, if two non-Gaussian sources
are mixed linearly together, the mixtures are “more Gaussian” than the sources –
therefore, in the space of all random variables that can be obtained linearly from the
sources, the sources themselves are “maximally non-Gaussian”. Quantifications of
“non-Gaussianity” can then be used as objective functions to find the inverse of the
mixing matrix, that is, the inverse which gives the sources from the observations.
This is one approach to independent component analysis, for an extensive review
of different approaches see (Hyvärinen et al. 2001).

In natural image and image sequence data, the ICA model does not hold. One
consequence of this is that the “independent components” obtained in linear ICA are
not fully independent; we will discuss the nature of these dependencies in more detail
in Section 3.5. However, since the model does not hold, we have to take a closer look
at the objective function in order to understand what an ICA algorithm is really
doing. As was mentioned above, independent analysis is related to sparse coding;
in fact, in many cases an objective function used in ICA can also be interpreted as
a measure of sparseness.

In sparse coding, a data set is transformed into another data set so that in this
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new data, the occurrence of values that are close to zero – that is, have very small
magnitudes – is maximized. To put it another way, the occurrence of values that are
“significantly” or substantially different from zero is minimized. What “significant”
or substantial really mean depends on the measure of sparseness, and has to be
defined mathematically. Sparse coding, or learning a sparse code, means that the
transformation from the original data x to new data y is optimized so that the
new data set is as sparse as possible. There are two kinds of sparseness (Willmore
and Tolhurst 2001): population sparseness and lifetime sparseness. To illustrate
these, consider a random vector y. This random vector y has high population
sparseness if, on the average, the number of components differing substantially
from zero is small in the samples drawn from y. On the other hand, high lifetime
sparseness is a property of a single random variable – in our example, a random
variable yk (a component of y) would have high lifetime sparseness if, on the average,
samples drawn from yk would seldom attain values with substantial magnitudes.
In computational models, additional constraints, such as the uncorrelatedness of
the components of y, can be used to learn a code that exhibits both lifetime and
population sparseness. Further constraints, such as unit variance constraint on each
of the yk’s, are needed to avoid degenerate solutions.

One way to explain the connection between sparse coding and ICA is to point
out that a Gaussian random variable is neither very sparse nor very dense (dense
being here the opposite of sparse), so measures of sparseness can also be used to
measure “non-Gaussianity”. This is why some statistical measures, such as kurtosis
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}
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y2
k

})2
(3.2)

can be used in both ICA and sparse coding (e.g., Field 1994; Hyvärinen et al. 2001).
An additional link between the two methods can be observed by noting that some
sparse coding algorithms can be interpreted as ICA algorithms; most notably the
algorithm introduced in (Olshausen and Field 1996) can be recast as estimation
of a linear generative model, in which the underlying components – in addition to
being sparse – are also statistically independent (Simoncelli and Olshausen 2001).

One further note about the role of redundancy is in order before discussing the
application of ICA and sparse coding to modeling the primary visual cortex. As
was mentioned above, the original work done in this field emphasized the role of
redundancy reduction. However, in some cases the redundancy is not reduced, it is
transformed. For example in ICA / sparse coding, the variance of the output of a
filter is typically fixed. In the family of random variables with a fixed mean and
variance, the Gaussian random variable has maximal differential entropy (Cover
and Thomas 1991), a quantity which can be used to compare the uncertainties of
continuous random variables. Therefore, when maximizing non-Gaussianity with
a fixed variance constraint, the redundancy in a single component increases, while
inter-component dependencies are decreased. Or, as Barlow (2001) has stated in
his recent review: “There is therefore no hidden redundancy; it is all manifest in
the nonoptimal frequencies of activity in the elements.” So there has been a shift
in the paradigm towards the discovery and recognition of redundancy. Pinpointing
redundancies may, for example, help find important regularities in the data. One
demonstration in which the importance of redundancy was shown clearly was the
work reported in (Becker and Hinton 1992), where surface depth was discovered
from random dot stereograms: this was done by extracting the redundant disparity
information from multiple stereograms of the same scene.

Returning to the role of ICA and sparse coding in modeling properties of the
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primary visual cortex, there have been a number of studies linking these models to
spatial (Olshausen and Field 1996; Bell and Sejnowski 1997; see also Publications 1
and 2) and spatiotemporal (van Hateren and Ruderman 1998; Olshausen 2000; see
also Publication 6) simple-cell receptive fields, and also some reports that describe
how the theories could be related to chromatic and binocular processing (Hoyer
and Hyvärinen 2000), the structure of complex cells (Hyvärinen and Hoyer 2001;
Szatmáry and Lőrincz 2002), and end-stopping and contour coding (Hoyer and
Hyvärinen 2002). The obtained results have shown good agreement with physiolog-
ical measurements in both the case of spatial (van Hateren and van der Schaaf 1998)
and spatiotemporal (van Hateren and Ruderman 1998) linear models (however, see
Ringach 2002 for critique of results obtained with ICA / sparse coding). The the-
ories have also spurred new neurophysiological measurements (Vinje and Gallant
2000; Weliky et al. 2003), which have indicated that neural responses of simple cells
are relatively sparse when the cells are stimulated from within the classical receptive
field. Furthermore, the responses become even sparser if a naturalistic visual stim-
ulus also overlaps the nonclassical receptive field (Vinje and Gallant 2000). This is
a promising observation which will hopefully lead to new theoretical developments.

There are also interesting connections between the results obtained with ICA,
and the local spatial frequency theory, which was discussed in Section 3.3. It was
shown in Publication 1 that the basis vectors (columns of matrix A) obtained with
ICA are localized in both space and frequency, and that there is a relationship
between the spatial frequencies of the basis vectors, and the degree of their local-
ization: spatial localization increases, and frequency localization decreases, with
spatial frequency. This is also typical of wavelets (e.g., Hess-Nielsen and Wicker-
hausen 1996).

3.5 Modeling dependencies between linear filters

In the previous section we saw that in independent component analysis (ICA),
and in some sparse coding algorithms, it is assumed that the outputs of the linear
filters are statistically independent of each other. However, further research on
the topic has suggested that important dependencies exist between simple-cell-like
filters. These dependencies have intriguing connections to the topographic layout
of simple cells in the cortex, and to the way in which complex cells presumably pool
the outputs of groups of simple cells.

Although the results of applying basic ICA on natural visual stimuli are difficult
to interpret because the linear generative model does not hold, the results still sug-
gest that the outputs of simple-cell-like filters could be approximately statistically
independent when computed over a wide range of natural scenes. Further studies
have shed light on the remaining dependencies between the outputs in the case of
static image input (Zetzsche and Krieger 1999; Hyvärinen and Hoyer 2000; Wain-
wright and Simoncelli 2000; Schwartz and Simoncelli 2001; Hyvärinen and Hoyer
2001; Hyvärinen et al. 2001; Welling et al. 2003; Karklin and Lewicki 2003). In
these studies, it has been discovered that in natural image data, simple-cell-like fil-
ters exhibit correlations in the energies (or variances) of their outputs. That is, for
some pairs of filters, the large magnitude of the output of one of the filters implies
that, on the average, the output of the other filter will also have a large magnitude.
For example, such dependencies are strong in filters with similar frequency and
orientation, but slightly different positions (Schwartz and Simoncelli 2001).
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In some earlier work, Hyvärinen et al. have obtained interesting results by mod-
eling these dependencies. First, when a model was specified so that groups of filters
with strong dependencies would be pooled together, and the actual filters (free pa-
rameters) in the model were subsequently learned from natural image data, the
resulting filters in each group possessed a number of similarities (Hyvärinen and
Hoyer 2000). In particular, filters belonging to the same group had similar orienta-
tion and frequency, but differed in their phase and, to some extent, in their spatial
position. A similar kind of pooling of a group of simple cells with similar orienta-
tion and frequency, but different phase and location, is thought to take place at the
level of complex cells in the primary visual cortex (see Section 2.2). In a second
model, the filter locations were specified in a two-dimensional lattice so that filters
with strong dependencies would tend to be located close to each other in the lattice
(Hyvärinen and Hoyer 2001; Hyvärinen et al. 2001; for another model introducing
a similar idea see Welling et al. 2003). When the filters were learned from natural
image data, the result was that filters which were close to each other in the lat-
tice had similar spatial location and/or orientation and/or frequency, but differed
in their phase. A similar type of topographical ordering with respect to location,
orientation, and frequency has also been observed in the locations of simple cells in
the primary visual cortex (see Section 2.2).

As a final note on the subject of inter-filter dependencies, the work of Schwartz
and Simoncelli (2001) suggests that the kind of energy dependencies described here
can be removed by a slightly modified version of the divisive normalization cell
model (see equation (2.8) on page 26)

yk(t) =
(wkx(t))

2

∑K

`=1 βk,` (w`x(t))
2

+ σ2
, (3.3)

where the parameters βk,` and σ are estimated from natural image data. This kind
of a model seems to be able to remove the dependencies between the energies of the
filters, and also accounts for a number of nonlinearities observed at the simple-cell
level – see (Schwartz and Simoncelli 2001) for details.

3.6 Temporal coherence

The term “temporal coherence” refers to a coding principle in which, when process-
ing temporal input, the representation of this input in the computational system
changes as little as possible over time. In computational visual neuroscience, tem-
poral coherence has traditionally been associated with the invariance properties of
complex cells. In this section we will review shortly some of the most important
research concerning temporal coherence. The work presented in some of the articles
of this thesis can also be considered to contribute into this research area – these
contributions are presented separately in detail below in Chapter 4.

Földiák was one of the first authors to suggest the usefulness of temporal co-
herence in computational neuroscience (Földiák 1991; see also Hinton 1989). He
developed a two-layer network which was able to learn to identify a fixed feature,
such as a line with a fixed orientation, even if the way the feature was expressed
in the data changed, for example, if the line was translated. Földiák used tempo-
ral coherence as a tool to learn translation invariances: artificially generated input
data were temporally coherent (consecutive input frames contained translated ver-
sions of a line with the same orientation), and by using competition and short-term
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memory, the output was also taught to be temporally coherent. This associated
translated versions of a feature with each other.

Since Földiák several researchers have studied temporal coherence. For example,
Stone (1996) used a multi-layer nonlinear network to discover surface depth from
stereograms; learning was achieved by using a temporal sequence of slightly different
stereograms, and by maximizing short-term temporal smoothness of output while
preserving long-term variability in output. Let w denote the parameters in the
model, f be the mapping from input to output, and varλ a measure of local variance
with decay parameter λ (the smaller λ, the faster the decay, and the more temporally
localized the measure of variance). Learning was accomplished by maximizing the
following objective function

O(w) = log
varλL

{f(w,x)}
varλS

{f(w,x)} , (3.4)

where λS � λL, that is, the numerator measures long-term variance, while the
denominator measures short-term variance. What is common in the studies re-
ported in (Földiák 1991; Stone 1996) is that the input data sets were generated so
that there was an underlying, coherent parameter in the data, and the objective
was to find that parameter by using coherence. Thus, the main result was the
demonstration of the usefulness of temporal coherence using simulated data.

Recently researchers have started to apply temporal coherence to natural visual
stimuli (Kayser et al. 2001; Berkes and Wiskott 2002; Hashimoto 2003; see also
Kohonen et al. 1997). In (Kayser et al. 2001), a network with a number of
“slowly varying subspaces” was learned from natural image sequence data. The
outputs of this network were complex-cell-like energy detectors (see Section 2.4)
which pooled the energies of a number of filters – the filters that formed a subspace.
Learning of multiple temporally coherent outputs was achieved by using an objective
function containing a sum of terms similar to equation (3.4). As a result, the
outputs of the network exhibited orientation selectivity and translation invariance,
thereby resembling the response properties of complex cells. In (Berkes and Wiskott
2002), the authors applied slow feature analysis (Wiskott and Sejnowski 2002) to
simulated image sequence data. In slow feature analysis, the average change in
the output is minimized, with the constraint that the output signal must have unit
variance – this is equivalent to maximizing linear temporal correlation at the output
(see Publication 2). The simulated image sequences were obtained by moving a
window in natural images using different transformations: translations, rotations,
and zooming (translation towards or away from camera). The class of functions used
to compute the output from the input was the set of second-degree polynomials.
Also in this case, the resulting network exhibited various complex-cell-like response
properties, most notably phase invariance and orientation selectivity, but also other
characteristics such as end-inhibition.
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Chapter 4

New computational models

utilizing stimulus dynamics

4.1 Introduction

In this chapter we focus on the main contribution of this thesis: the research con-
cerning temporal coherence of activity levels, spatiotemporal activity level depen-
dencies, and bubble coding (Publications 2–7). A short overview of the underlying
principles is provided here – more detailed descriptions of the models and results
can be found in the publications.

Whereas previous research has focused mostly on static properties of the outputs
of simple-cell-like filters (see Sections 3.2–3.5 and Publication 1), or temporal prop-
erties of complex-cell-like invariant feature detectors (see Section 3.6), the starting
point of the work described in this chapter is the nature of temporal properties of
simple-cell-like linear filters. We begin by discussing the natural image sequences
used in the experiments, and then proceed to consider the temporal response prop-
erties of simple-cell-like filters when the input consists of image sequences.

4.2 Natural stimulus data

A key feature in this work is the use of large quantities of natural image sequence
data in the experimental evaluation of our models. That is, we do not generate
simplified image sequence data ourselves from simple object worlds or static images.
This, in our opinion, is of major importance, since it exposes the model to the
complex phenomena that are present in real dynamic visual stimuli.

The natural image sequences used as data in the experiments of Publications
2–7 were a subset of those used in (van Hateren and Ruderman 1998). The original
data set consists of 216 monochrome video clips of 192 seconds each, taken from
television broadcasts. More than half of the videos feature wildlife, the rest show
various topics such as sports and movies. Sampling frequency in the image sequences
is 25 frames per second, and each frame has been block-averaged to a resolution of
128 × 128 pixels. Unfortunately the reproduction of example image sequences in
this thesis is not possible because of copyright issues.

For our experiments this data set was pruned to remove the effect of human-
made objects and artifacts (see Publication 2), which left us with 129 videos. The
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motivation behind the pruning of the videos was to make the data as “natural” as
possible. The pruning does have a real effect on the results: for example, if pruning
is not done, the resulting spatial ICA filters computed from data sampled from the
videos show more horizontally or vertically oriented, elongated receptive fields.

In most of our experiments utilizing the image sequence data we assume that
a neuron receives its input from a small, stationary window, containing a spatially
small proportion of the whole image sequence. While the existence of spatially
limited classical receptive fields justifies the assumption of a restricted input area,
the assumption of a stationary window is not as well-founded. This is because in real
visual systems, there are dynamic components which cause the part of the visual
field feeding into the receptive field to change in time. One obvious component is
observer movement, which is actually included to some degree in our data, since
the camera is moving and zooming. However, another important factor is eye
movement, which is not included in the data, or our models.

Eye movement is a very complicated phenomenon, because the trajectory of the
eyes depends on the task of an animal, as well as the visual input. These dependen-
cies would have to be modeled, if eye movements were to be fully incorporated into
our stimulus data or into our models. Since the task of an animal and analysis of
the contents of a scene are concepts which are beyond the early levels of the visual
system, we have decided to not include eye movements into our experiments.

4.3 Temporal coherence of activity levels

Simplified intuitive illustration

Objects can undergo a number of transformations in image sequences: translation,
rotation, occlusion, and, for objects that are not rigid, deformation. A transforma-
tion in the three-dimensional space can induce a different transformation in an image
sequence. For example, a translation towards the camera induces a change of object
size in the image sequence. It seems that most typical transformations of objects
in the three-dimensional world result in something similar to local translations of
lines and edges in image sequences. This is obvious in the case of three-dimensional
translations, and is illustrated in Figure 4.1A for two other types of transforma-
tions: rotation and bending. The phenomenon illustrated here is also related to the
aperture problem: when the movement of a long straight line is observed inside a
small window, the observer always perceives motion perpendicular to the direction
of the line, regardless of the direction of the actual motion (e.g., Palmer 1999).

What happens at the output of a simple-cell-like filter in the case of such a local
translation? This is illustrated in Figure 4.1B. When the filter is suitably oriented,
it tends to respond strongly at consecutive time points, but the sign of the response
may change. In other words, the variance of the output is large. We call this
kind of temporal coherence temporal coherence of activity levels, and measure such
coherence with temporal response strength correlation.

Temporal response strength correlation

In Publication 2 we showed that not only do simple-cell-like filters exhibit temporal
coherence of activity levels, but they are optimal with respect to a measure of
such coherence as follows. We use the basic linear cell model, as described by
equation (2.4). Temporal response strength correlation, the objective function, is
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t − ∆t t

Figure 4.1: A simplified illustration of temporal coherence of activity levels in
the outputs of simple-cell-like filters. (A) Transformations of objects in the three-
dimensional world induce local translations of edges and lines in local regions in
image sequences: rotation (left) and bending (right). The solid line shows the po-
sition/shape of a line in the image sequence at time t − ∆t, and the dotted line
shows its new position/shape at time t. The dashed square indicates the sampling
window. (B) Temporal coherence of activity levels: in the case of a local trans-
lation of an edge or a line, the response of a simple-cell-like filter with a suitable
position and orientation tends to be strong at consecutive time points, but the sign
may change. The figure shows a translating line superimposed on an oriented and
localized receptive field at two different time instants (time t − ∆t, solid line, left;
time t, dotted line, right).

defined by

f(W) =

K
∑

k=1

Et {g(yk(t))g(yk(t − ∆t))} , (4.1)

where the nonlinearity g is strictly convex, even (rectifying), and differentiable.
The symbol ∆t denotes a delay in time, which varied between 40ms and 960ms
in our experiments (see Publication 2). The nonlinearity g measures the strength
(amplitude) of the response of the filter, and emphasizes large responses over small
ones. Examples of choices for this nonlinearity are g1(x) = x2 and g2(x) = ln cosh x.
A set of filters which has a large temporal response strength correlation is such that
the same filters often respond strongly at consecutive time points, outputting large
(either positive or negative) values, thereby expressing temporal coherence of the
activity of populations of neurons. In addition to the objective function, some
constraints are also needed to limit the dynamic range of the outputs, and to rule
out the noninteresting solution where all the filters (rows of W) are identical – see
Publication 2 for details.

Note that, in comparison with a “traditional” measure of temporal coherence,
the objective function (4.1) is a measure of short-term nonlinear temporal correla-
tion, whereas in slow feature analysis (Wiskott and Sejnowski 2002), the objective
function measures short-term linear temporal correlation (see Section 3.6).

Figure 4.2A shows the results (rows of W) after optimizing equation (4.1) for
a large set of natural image sequence samples. In this case, the spatial filters are
of size 16 × 16 pixels (see Publication 5 for more information on the experimental
setup which yielded these results). As can be seen, the resulting filters are local-
ized, oriented, and have different scales, which are the defining qualitative features
of simple-cell receptive fields (see Section 2.2). In Publication 2, results obtained by
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A

B

Figure 4.2: Filters and basis vectors maximizing temporal response strength cor-
relation. (A) A set of filters (rows of matrix W), estimated from natural image
sequences by optimizing temporal response strength correlation (equation (4.1),
here nonlinearity g(x) = ln cosh x and ∆t = 40ms). The filters have been ordered
according to Et {g(yk(t))g(yk(t − ∆t))} , that is, according to their “contribution”
into the final objective value (filters with largest values top left). (B) The corre-
sponding set of basis vectors (columns of matrix A) – see text for details.
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maximizing temporal response strength correlation were compared quantitatively
against results obtained with independent component analysis / sparse coding (see
Section 3.4); the results indicate that the two methods produce quantitatively sim-
ilar results with respect to several important parameters. A similar comparison
between ICA results and physiological measurements from simple cells had been
reported earlier in (van Hateren and van der Schaaf 1998).

Several control experiments, described in detail in Publication 2, were performed
to ensure the validity and novelty of the results. Also, while the linear model applied
here in fact models the output of two nonnegative cells (see Section 2.4), preliminary
results suggest that a similar principle may apply even in the case of a half-rectified
(nonlinear) model (see Section 2.4 and Publication 2).

Generative-model interpretation and some related physiolog-

ical observations

As was mentioned in Section 3.1, within the research linking natural stimulus statis-
tics to the properties of the visual system, two different lines of research can be
identified: one where optimal properties of the outputs of neurons are employed,
and another in which a generative model of natural stimulus data is postulated.
The interpretation of equation (4.1) given above is in the spirit of the optimal neu-
ral output approach. However, another view of equation (4.1) is to consider it as
a way to estimate a generative model, as shown in Publication 5. This interpre-
tation is based on the concept of sources with nonstationary variances (Matsuoka
et al. 1995; Hyvärinen 2001; Pham and Cardoso 2001), and the use of objective
function (4.1) in the estimation of linear generative models where sources have non-
stationary variances, is analogous to the application of measures of sparseness in the
estimation of linear generative models with non-Gaussian sources (see Section 3.4).

The linear generative model for x(t), the counterpart of equation (2.4), is similar
to the one in (Hyvärinen and Hoyer 2001; Olshausen and Field 1996):

x(t) = Ay(t). (4.2)

Here A = [a1 · · · aK ] denotes a matrix which relates the image patch or short image
sequence (in the case of spatiotemporal simple-cell models) x(t) to the activities
of the simple cells, so that each column ak, k = 1, ...,K, gives the two- or three-
dimensional feature that is coded by the corresponding simple cell. Within the
generative-model community, it has become customary to regard columns of A as
descriptors of features coded by the neurons (Olshausen and Field 1996; Hyvärinen
and Hoyer 2001; Hyvärinen et al. 2001); the set of basis vectors corresponding to the
filters in Figure 4.2A is shown in Figure 4.2B. The basis vectors are otherwise similar
to the filters, except that high frequencies have been attenuated – see (Hyvärinen
and Hoyer 2001) for additional discussion.

The nonstationarity of the variances of sources y(t) means that their variances
change over time. In practice, it is typically also assumed that the variance is
correlated at nearby time points, that is, that the variance changes smoothly. An
example of a signal with nonstationary, smoothly changing variance is shown in
Figure 4.3. It can be shown that optimization of a cumulant-based criterion, which
is similar to equation (4.1), can separate independent sources with nonstationary
variances (Hyvärinen 2001). Thus, the maximization of the objective function can
also be interpreted as estimation of a generative model in which the activity levels
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Figure 4.3: Illustration of nonstationarity of variance. (A) A temporally uncor-
related signal y(t) with nonstationary, smoothly changing variance. (B) Plot of
y2(t).

of the sources vary over time, and are temporally correlated over time. The sources
would then correspond to simple-cell outputs.

In fact, in a recent review of research on neural responses to natural stimuli,
Reinagel (2001) described these responses as follows: “The experiments summa-
rized above show that spiking neurons respond to many natural visual stimuli with
discrete high-frequency firing events separated by periods of low firing or complete
silence.” This verbal description of the outputs of real neurons is strikingly similar
to what a signal with nonstationary variance looks like.

Another interesting neurophysiological observation related to the model pre-
sented here is the importance of spike bursts in synaptic transmission. It seems
that synapses – sites at which neural activity is transmitted from one neuron to
another – transmit information about individual (isolated) spikes with very low
probability, but respond much more readily to bursts of spikes, even if the bursts
are very short (see Lisman 1997 for a review). In other words, the synapses seem to
act as “filters that transmit bursts, but filter out single spikes” (Lisman 1997). An
objective function such as equation (4.1) rewards burst-like high-activity periods,
and may therefore be related to increased transmission reliability in synapses.

The case of spatiotemporal filters

The discussion in the previous sections was limited to spatial filters, but a similar
phenomenon seems to apply also in the spatiotemporal case. Figure 4.4 shows an
intuitive illustration of how directionally selective spatiotemporal filters could also
exhibit temporal response strength correlation.

Figure 4.5 shows a subset of spatiotemporal basis vectors maximizing temporal
response strength correlation. Quantitative analysis of the spatiotemporal results
can be found in Publication 6. The most important difference between these results
and neurophysiological measurements is that our results are not localized tempo-
rally. A similar discrepancy was also found when we extracted a corresponding set
of spatiotemporal filters by using ICA. The ICA results become more temporally
localized if a deflationary algorithm – in which the filters are extracted one by one
(Hyvärinen et al. 2001) – is used and dimensionality reduction is applied to the
data. This observation is in concordance with the results obtained by van Hateren
and Ruderman (1998). An analogous change in the algorithm and preprocessing
methods improves slightly the temporal localization of results obtained by maxi-
mizing temporal response strength correlation, but not to the same degree as in the
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Figure 4.4: An illustration of how the outputs of simple-cell-like spatiotemporal
filters could exhibit large temporal response strength correlation. A phenomenon
analog to translation in the spatial case can be observed in the spatiotemporal
domain. Let x and y denote the horizontal and vertical spatial coordinates, re-
spectively, and let t denote the temporal coordinate. (A) The spatiotemporal trace
(solid line) of a horizontally moving vertical line is shown here in the x–t coordinate
system. The plot is similar for all y-coordinates because the moving line is verti-
cal. Two different overlapping spatiotemporal input windows, separated by a small
time difference, are also marked, one with dashed line, and the other with dot-
ted line. (B) A simple-cell-like spatiotemporal filter, with position and orientation
that match the initial position of the line and its direction of movement, responds
strongly to the moving line. Here the spatiotemporal filter has been superimposed
over the dashed temporal window – white color indicates large positive values in
the filter, dark color indicates large negative values, and middle gray indicates zero
values. (C) When the same spatiotemporal filter, at the same spatial position, is
applied to the same input a moment later (dotted spatiotemporal input window),
the response is still strong, but the sign changes. Therefore the temporal response
strength correlation of the outputs of the simple-cell-like spatiotemporal filter would
be large for this kind of input.

case of ICA. So far we have been unable to pinpoint the reason for this difference.
Further research is needed to clarify the issue.

To be exact, some of the results in Publication 2 also describe spatiotemporal
filters. This is because in some experiments, a temporal filter was used in pre-
processing. A cascade consisting of a temporal filter and a spatial filter is in fact
a space-time separable spatiotemporal filter; the spatiotemporal filter illustrated in
Figure 4.4, on the other hand, can not be represented as such a cascade, and is called
space-time inseparable (e.g., Adelson and Bergen 1985; DeAngelis et al. 1995). The
difference between the spatiotemporal results in Publication 2 and Publication 6 is,
then, that in Publication 2 the spatiotemporal filters were forced to be space-time
separable.
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Figure 4.5: Spatiotemporal basis vectors maximizing temporal response strength
correlation. A subset of 20 spatiotemporal basis vectors obtained by maximizing
temporal coherence of activity levels in natural image sequences (10 basis vectors
in the image on the left and 10 on the right). Each of the 20 rows corresponds to
one spatiotemporal basis vector, and the frames in the row correspond to spatial
basis vectors at consecutive time instants.

4.4 Spatiotemporal activity level dependencies

Simplified intuitive illustration

In the previous section we discussed maximization of nonlinear time-correlation of
output activity levels, and saw that it provides an alternative to sparse coding and
independent component analysis as a computational principle underlying simple-
cell receptive-field structure. This time-correlation can be considered as temporal
activity level dependency: the activity level of a filter at time t is not independent
of the activity at time t − ∆t. It seems that this temporal dependency is not the
only type of activity level dependency in a set of simple-cell-like filters. Figure 4.6
illustrates how two different simple-cell-like filters with similar profiles – having the
same orientation and scale but slightly different positions – respond at consecutive
time instants when the input is a translating line. It can be seen that the outputs
of both filters tend to be highly active at both time instants, but again, the signs of
the outputs vary. This means that in addition to temporal activity dependencies
(the activity of a filter is large at time t−∆t and time t), there are two other kinds
of activity level dependencies.

Spatial (static) dependencies Both filters are highly active at a single time in-
stant. This kind of dependency is an example of the activity level depen-
dencies modeled in previous research on static images (Zetzsche and Krieger
1999; Hyvärinen and Hoyer 2000; Wainwright and Simoncelli 2000; Hyvärinen
et al. 2001; Schwartz and Simoncelli 2001; Welling et al. 2003).

Spatiotemporal dependencies The activity levels of different filters are also re-
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Figure 4.6: A simplified illustration of static and short-time temporal and spa-
tiotemporal activity level dependencies in the outputs of simple-cell-like filters. For
a translating edge or line, the responses of two similar filters with slightly different
positions (filter 1, top row; filter 2, bottom row) are large at nearby time instants
(time t − ∆t, solid line, left column; time t, dotted line, right column). Each sub-
figure shows the translating line superimposed on a spatial filter. The magnitudes
of the responses of both filters are large at both time instants. This introduces
three types of activity level dependencies: temporal (in the output of a single fil-
ter at nearby time instants), spatial (between two different filters at a single time
instant) and spatiotemporal (between two different filters at nearby time instants).
The model introduced in this section includes temporal and spatiotemporal activity
level dependencies (marked with solid arrowheaded lines).

lated over time. For example, the activity of filter 1 at time t − ∆t is related
to the activity of filter 2 at time t.

In what follows, we describe a model – originally introduced in Publication 3 –
which incorporates both temporal and spatiotemporal activity level dependencies;
the model and the related estimation algorithm were developed and analyzed further
in Publication 4.

A two-layer generative model with activity level dependencies

The generative model of natural image sequences employing activity level dependen-
cies has two layers, as illustrated in Figure 4.7. The first layer, which captures the
temporal and spatiotemporal activity level dependencies, is a multivariate autore-
gressive model between the activity levels (amplitudes) of filter responses at time
t and time t − ∆t. The signs of the responses are generated by a latent signal be-
tween the first and the second layer. The second layer is linear, and maps responses
to the image space. The mathematical details of the model, including additional
constraints, are described in Publication 4. The algorithms for the simultaneous
estimation of both layers employ the method of moments and the method of least
mean squares – see Publications 3 and 4 for details. In the estimation algorithms,
both of the layers of the model are estimated simultaneously; this is a significant
improvement on most multi-layer statistical models of early vision (Hyvärinen and
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abs (y(t)) = Mabs (y(t − ∆t)) + v(t) x(t) = Ay(t) x(t)v(t) ×

sign generation

P (yk(t) > 0 || yk(t − ∆t) > 0 ) = Pret

y(t)abs (y(t))

Figure 4.7: The two layers of the generative model with temporal and spatiotem-
poral activity level dependencies. Let abs (y(t)) = [|y1(t)| · · · |yK(t)|]T denote the
activity levels (amplitudes) of filter responses. In the first layer, the driving noise
signal v(t) generates the activities of the filters abs (y(t)) via a multivariate au-
toregressive model. Matrix M captures the temporal and spatiotemporal activity
level dependencies in the model. The signs of the responses are generated between
the first and the second layer to yield signed responses y(t). The probability that
a latent signal yk(t) retains its sign is Pret. In the second layer, the natural image
sequence x(t) is generated linearly from filter responses. In addition to the rela-
tions shown here, the generation of v(t) is affected by Mabs (y(t − ∆t)) to ensure
nonnegativity of abs (y(t)) . See Publication 4 for details.

Hoyer 2000; Wainwright and Simoncelli 2000; Hyvärinen and Hoyer 2001), because
no a priori fixing of either of these layers is needed. Two other models where
both layers of a two-layer model are estimated simultaneously have recently been
introduced in (Hashimoto 2003; Welling et al. 2003).

The basis vectors and their spatiotemporal dependencies – that is, matrices A

and M – can be visualized simultaneously by using an interpretation of M as a
similarity matrix (see Publication 4). Figure 4.8 illustrates the basis vectors laid
out at spatial coordinates derived from M in in this way. The resulting basis vectors
are again oriented, localized and multiscale, as in the previous section. We can also
see that local topography emerges in the results: those basis vectors which are close
to each other seem to be mostly coding for similarly oriented features at nearby
spatial positions. As was discussed above in Section 2.2, this kind of grouping is
characteristic of pooling of simple-cell outputs at the complex-cell level, and also
similar to the topographic relationships in the primary visual cortex. It should also
be noted that the qualitative properties of the results in Figure 4.8 do not change
even if we adopt the idea in which a linear model in fact represents two neurons
with reversed polarities (see Section 2.4). For additional analysis of the results, see
Publication 4.

4.5 Bubble coding

In order to motivate the development of the bubble coding model, let us summarize
the key research results on modeling the properties of the neural representation at
the simple-cell level. Results obtained using sparse coding / independent compo-
nent analysis suggest that, on the average, at a single time instant relatively few
simple cells are active on the cortex (see Section 3.4). In this thesis, we have de-
scribed an alternative model, which suggests that simple cells tend to be highly
active at consecutive time instants – that is, their outputs are burst-like (see Sec-
tion 4.3). On the other hand, previous research on static dependencies between
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Figure 4.8: Grouping similar to complex-cell pooling of simple-cell outputs, and to
the topographic properties of neurons in the primary visual cortex, emerges from
spatiotemporal activity level dependencies. Here we have plotted the basis vectors
(columns of A) at two-dimensional coordinates, obtained by applying multidimen-
sional scaling to the similarity values defined by M (see Publication 4 for details).
As can be seen, nearby basis vectors seem to be mostly coding for similarly ori-
ented features with similar frequencies at nearby spatial positions. In addition,
some global topographic organization also emerges: those basis vectors which code
for horizontal features are on the left in the figure, while those that code for vertical
features are on the right. Some short distances were magnified in order to be able
to show the basis vectors in a reasonable scale.
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simple-cell-like filters, and the relationship between these dependencies and cortical
topography, suggest that the active cells tend to be located in cortical patches, that
is, close to each other on the cortex (see Section 3.5). Again, as we saw in the pre-
vious section, an alternative model also leads to topographic properties resembling
cortical topography, a model which utilizes time-correlations between the outputs
of different filters.

These different principles – sparseness, temporal coherence of activity levels,
spatial activity level dependencies, and spatiotemporal activity level dependencies –
are not conflicting. That is, none of the principles excludes the existence of another.
Perhaps, then, each of these models offers just a limited view to a more complete
model of cortical coding at the simple-cell level. In fact, the following description
of simple-cell activation is in accordance with all of the principles: when an animal
is viewing a natural scene, a relatively small number of patches of cortical area are
highly active in the primary visual cortex, and the activity in these areas tends to
be sustained for a while. That is, activity is sparse, and contiguous both in space
and time. This is the bubble coding model, proposed in Publication 7.

In order to use consistent notation in this introductory part of the thesis, we
denote latent response signals again with y(t) (in Publication 7, these responses are
denoted by s(t)). In the bubble coding model, the generative mapping from latent
responses to natural image sequence data is linear, like in the previous sections:
x(t) = Ay(t). The main idea in the bubble coding model is the way in which the
responses are generated so that they have bubble-like activity. This is accomplished
by introducing a bubble-like variance signal for y(t), as illustrated by an example in
Figure 4.9. The spatiotemporal locations of the variance bubbles are determined by
a sparse process u(t) (Figure 4.9A). A temporal filter φ and spatial pooling function
h, both of which are fixed a priori in the model, spread the variance bubbles tem-
porally and spatially (Figures 4.9B and C). The resulting variance bubbles can also
overlap each other, in which case the variance in the overlapping area is obtained as
a sum of the variances in each bubble; in Figure 4.9, however, the variance bubbles
are nonoverlapping. It is also possible that at this point a fixed static nonlinearity
f is applied to rescale the magnitudes of the variance bubbles. These steps yield

Figure 4.9: (facing page) Illustration of the generation of response signals yk(t) in
the bubble coding model for one-dimensional topography. (A) The starting point is
the set of sparse signals uk(t). (B) Each sparse signal uk(t) is filtered with a temporal
low-pass filter φ(t), yielding signals φ(t)∗uk(t). In this example, the filter φ(t) simply
spreads the impulses uniformly over an interval. (C) In the next step, a neighbor-
hood function h(k, `) is applied to spread the bubbles spatially. A static nonlinearity
f may also be applied at this point to rescale the magnitudes of the variance bub-
bles. This yields variance bubble signals vk(t) = f

(
∑

` h(k, `) [φ(t) ∗ u`(t)]
)

. In this
example, the neighborhood function h is simply 1 close-by and 0 elsewhere, and the
static nonlinearity f is just the identity mapping f(α) = α. (D) Gaussian tempo-
rally uncorrelated (white noise) signals zk(t). (E) Responses are defined as products
of the Gaussian white noise signals and the spatiotemporally spread bubble signals:
yk(t) = zk(t)vk(t). Note that in subfigures (A)–(C), white denotes value zero and
black denotes value 1, while in subfigures (D) and (E), medium gray denotes zero,
and black and white denote negative and positive values, respectively.
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the variance signals

vk(t) = f

(

∑

`

h(k, `) [φ(t) ∗ u`(t)]

)

. (4.3)

The burst-like oscillating nature of the responses inside the bubbles is introduced
through a Gaussian temporally uncorrelated (white noise) process z(t) (Figure 4.9D).
Finally, the responses are generated from the variance bubbles and the noise signals
by multiplying the two together (Figure 4.9E):

yk(t) = vk(t)zk(t). (4.4)

Note that all three different types of activity level dependencies – temporal, spatial,
and spatiotemporal (see Figure 4.6 on page 47) – are present in the bubble-coding
model.

In order to estimate the bubble coding model, an approximative maximum like-
lihood scheme is used (details can be found in Publication 7). Note that because
the pooling function h is fixed, it enforces the spatial pooling, while in the two-layer
model described in the previous section, this pooling was learned from the data.
The temporal smoothing (low-pass) filter φ is also fixed in the model. In the ex-
periments with image sequence data, the choice of the length of this temporal filter
was directed by the experiment in which the effect of different lengths was exam-
ined; this was done by generating signals having similar temporal dynamics as the
presumably underlying source signals in natural image sequences (see Section 3.C.
in Publication 7). The size of the spatial pooling function h was chosen arbitrarily
to be 1 inside a 3 × 3 window around each unit in the lattice.

Figure 4.10 shows the resulting spatial basis vectors, obtained when the bubble
coding model was estimated from natural image sequence data. The basis consists
of simple-cell-like linear receptive-field models, similar to those obtained with the
models introduced in the previous sections, or by maximization of sparseness. The
orientation and the location of the feature coded by the vectors change smoothly
when moving on the topographic grid. Low-frequency basis vectors are spatially
segregated from the other vectors, so there also seems to be some ordering based
on preferred spatial frequency. Such an organization with respect to orientation,
location, and spatial frequency is similar to the topographic ordering of simple
cells in the primary visual cortex, as was discussed in Section 2.2. An animated
example of a spatiotemporal basis estimated using this method can be found at
http://www.cis.hut.fi/jarmo/animations/bubbleanimation.gif . Note that
also in this case, as in the case of spatiotemporal filters maximizing temporal re-
sponse strength correlation, the spatiotemporal results do not exhibit a great degree
of temporal localization.

4.6 Discussion of neuroscientific contribution

In this chapter, we have shortly described three sets of results obtained with new
computational models utilizing stimulus dynamics, namely the results obtained by

• maximizing the temporal coherence of activity levels (Section 4.3)

• estimating the two-layer model utilizing temporal and spatiotemporal activity
level dependencies (Section 4.4)
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Figure 4.10: A set of spatial basis vectors, estimated from natural image using the
bubble coding estimation method, and laid out at spatial coordinates defined by
the lattice in the bubble coding model. The topographic organization of the basis
vectors exhibits ordering with respect to orientation, location, and spatial frequency
of the vectors.



54 4. New computational models utilizing stimulus dynamics

• estimating the bubble coding model (Section 4.5).

Here we will discuss the neuroscientific contribution of these models.
In Chapter 1, the assessment of the neuroscientific contribution of a model

was divided into two parts: evaluation of the implementational equivalence of the
mathematical model and its biological counterpart, and evaluation of the predictive
power of the model. In what follows, we will discuss both of these aspects in detail.

In the development of computational models of the brain, one must strive for
implementational equivalence and predictive power. But it must also be remem-
bered that the models are abstractions of the real world, and do not provide a
perfect match with modeled phenomena. Therefore, in order to be able to position
a model realistically inside a research field, not only should we compare the model
against the ideal, but also against other comparable research. In current research
on computational models of the primary visual cortex, the best established research
is offered by the work on ICA/sparse coding, including (Olshausen and Field 1996;
Bell and Sejnowski 1997; van Hateren and van der Schaaf 1998; van Hateren and
Ruderman 1998; Hyvärinen and Hoyer 2000; Hyvärinen et al. 2001; Schwartz and
Simoncelli 2001). Thus, in the following discussion, we will contrast the results
presented in this chapter with results obtained with ICA/sparse coding.

Implementational equivalence

In this work, we have used linear and half-wave rectified simple-cell models (see
Section 2.4). The results obtained by maximizing temporal response strength cor-
relation, including the spatiotemporal results, were based on the linear model (see
Publications 2 and 6). An experiment in which half-wave rectification was used
was reported in the spatial case (see Figure 12 in Publication 2). However, in that
experiment the same set of constraints was used as in the experiments with linear
models – unit variance and uncorrelatedness constraints on the signed outputs – so
the results are more difficult to interpret. Also, the filters that were obtained in
the experiment were somewhat different from results obtained with a purely linear
simple-cell model: the filters were not as well defined, and seemed to span a smaller
range of scales (frequencies).

The results obtained by estimating the two-layer model can be readily inter-
preted from the point of view of either the linear or the half-wave-rectified cell
model. For the half-wave-rectified cell model, the results suggest that simple-cell-
like filter pairs have temporal and spatiotemporal activity level dependencies (see
Section 7.2. in Publication 4). For the bubble-coding model, interpretation in the
case of a half-wave-rectified cell model is complicated, because it implies that within
a bubble, half of the cells have zero activity.

In comparison, the vast majority of research applying ICA/sparse coding to learn
receptive-field models has been based on linear cell models (Olshausen and Field
1996; Bell and Sejnowski 1997; van Hateren and van der Schaaf 1998; van Hateren
and Ruderman 1998; Hyvärinen and Hoyer 2000; Hyvärinen et al. 2001). However,
in recent years, nonnegative sparse coding models have been introduced and applied
in learning receptive-field models (Hoyer and Hyvärinen 2002; Hoyer 2003). It seems
that with respect to implementational equivalence, the research reported in this
thesis lies somewhere between traditional ICA/sparse coding research, and these
new nonnegative models.
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Predictive power

In the discussion of the predictive power of the models, we will employ the rough
division of the level of evaluation, introduced in Chapter 1:

1. qualitative comparison of results against previous neurophysiological measure-
ments

2. quantitative comparison of results against previous neurophysiological mea-
surements

3. quantitative comparison of results against new neurophysiological measure-
ments inspired by the model.

The results obtained with models presented in this thesis have so far not led
to new neurophysiological experiments, while ICA/sparse coding research has al-
ready prompted new measurements from the brain (Vinje and Gallant 2000; Weliky
et al. 2003). However, it must be noted that initial theoretical results concerning
ICA/sparse coding have existed for considerably longer than our results. It is our
hope that the work presented here will eventually lead to new hypotheses and their
empirical evaluation. In what follows we will limit our discussion to comparison
against previous neurophysiological measurements.

In the case of spatial filters, the results obtained with all three models exhibit
the qualitative properties of spatial simple-cell receptive fields – localization, orien-
tation, and different scales – as can be seen in Figures 4.2 (page 42), 4.8 (page 49),
and 4.10 (page 53). These results link the models strongly to these fundamental
qualitative properties of spatial receptive fields of simple cells. Some important
quantitative properties – related to selectivity to spatial frequency and orientation
– of our results are similar to those of filters obtained with ICA (see Figure 4 in
Publication 2). This comparison against ICA results also provides a link to neu-
rophysiological measurements, because ICA results have been compared against
physiological measurements in (van Hateren and van der Schaaf 1998), although
the preprocessing methods in our study were a bit different (in particular, we had
no significant dimensionality reduction). Measurements made from ICA results dif-
fer from physiological measurements in the distribution of peak spatial frequencies,
but show reasonable agreement with respect to other measurements such as pre-
ferred orientation, orientation bandwidth, and spatial frequency bandwidth (van
Hateren and van der Schaaf 1998). It must be noted, however, that in compar-
isons of spatial selectivity, a common unit (visual angle) can not be established
for computational results and neurophysiological measurements (van Hateren and
van der Schaaf 1998). This reservation also applies to other comparisons of spatial
selectivity mentioned below. Overall, it seems that in the case of spatial filters, the
predictive power of our models and that of ICA/sparse coding models are approxi-
mately similar.

For spatiotemporal filters, the spatial properties of the filters seem to be in
reasonable agreement with physiological measurements (see Publication 6). In par-
ticular, the distribution of peak spatial frequencies agrees better with physiological
measurements than in the case of spatial filters, as was also noted by van Hateren
and Ruderman (1998). However, temporal properties of our results seem to dif-
fer from measurements made from simple cells. In particular, our results seem to
exhibit a smaller degree of temporal localization than the spatiotemporal recep-
tive fields of simple cells, both in the case of maximization of temporal coherence
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(see Figure 4.5) as well as bubble coding (see Section 4.5). Thus, with respect to
temporal properties of spatiotemporal filters, the predictions of ICA/sparse coding
seem to match neurophysiological observations somewhat better (van Hateren and
Ruderman 1998).

Two of the models presented in this thesis – the two-layer generative model
and the bubble coding model – also make predictions related to the topographical
ordering of simple cells in the primary visual cortex, and the way in which complex
cells presumably pool the outputs of a number of simple cells. These predictions
are qualitative: filters nearby each other in the resulting topography tend to have
similar location and/or orientation and/or frequency, and filters presumably pooled
by higher-order units share similar characteristics (see Figure 4.8 on page 49 and
Figure 4.10 on page 53). The topography observed in the primary visual cortex
is very complicated, with different organizational principles governing at different
scales (Blasdel 1992; Blasdel and Campbell 2001). Some ICA/sparse coding models
make similar predictions as our models (Hyvärinen and Hoyer 2000; Hyvärinen
et al. 2001; Hyvärinen and Hoyer 2001; Welling et al. 2003) – some quantitative
comparison against physiological measurements can also be found in (Hyvärinen
and Hoyer 2001). Overall, it seems that ICA/sparse coding models and our models
make similar predictions in this area; however, the predictions made by ICA/sparse
coding models have been analyzed somewhat more quantitatively than ours.



57

Chapter 5

Summary

Neurophysiological measurements of the brain have revealed a wide variety of re-
sponse properties of neurons in the primary visual cortex, describing how the neu-
rons respond to different visual stimuli. What remains largely unknown, however,
is why the neurons have these observed properties.

In this thesis, this question has been approached by formulating models of com-
putation for some cells and cell groups in the primary visual cortex. These compu-
tational models relate properties of a class of visual neurons, called simple cells, to
natural stimulus statistics. An underlying assumption in the development of these
models has been that stimulus statistics have influenced the response properties of
the neurons through evolution and development.

The main contribution of this thesis is the introduction of three new models of
computation. The first of these models characterizes computation on the simple-
cell level as bursts of activity. The second model relates the activity levels of
different simple cells, located close to each other on the cortex, at nearby time
instants to each other. The third model combines these two characterizations,
along with other characterizations described in previous research, yielding a unifying
model with sparse bubble-like activity regions in the three-dimensional space formed
by time and the two-dimensional cortical surface. An additional contribution is
the examination of the relationship between two previous models of computation,
namely independent component analysis (ICA) and local spatial frequency analysis.

In this thesis, the computational models have been evaluated experimentally
by estimating the free parameters of the models, and comparing the resulting pa-
rameter values against our knowledge of the properties of visual neurons, or results
obtained with other models of computation. The experimental results concerning
the new computational models link these models to several observed properties of
simple cells, including spatial localization, orientation selectivity, spatial frequency
selectivity, directional selectivity, and topographic organization in the cortex. The
experimental examination of the relationship between ICA and local spatial fre-
quency analysis suggest that results obtained with ICA share some properties with
wavelets: spatial localization tends to increase with mean spatial frequency, while
frequency localization tends to decrease. Ideally, the evaluation of a model should
also include generation of new hypotheses, and their validation or falsification by
new neurophysiological measurements. The models presented here have not yet
entered that stage of evaluation.

The computational models examined in this thesis can be considered as poten-
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tial partial answers to the question why : the models do not link the properties of
visual neurons to the tasks of the animal – instead, they specify hypothetical char-
acteristics of the neural representation at the simple-cell level. Some suggestions
as to why these characteristics might be useful have been provided in this thesis,
but in future research, the question why has to, in turn, be applied to these new
hypothetical coding principles.
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