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Abstract

Statistical data analysis is applied in many fields in order to gain understanding
to the complex behaviour of the system or process under interest. For this goal,
observations are collected from the process, and models are built in an effort to
capture the essential structure from the observed data. In many applications, e.g.
process control and pattern recognition, the modeled process is time-dependent,
and thus modeling the temporal context is essential.

In this thesis, neural network methods in statistical data analysis and espe-
cially in temporal sequence processing (TSP) are considered. Neural networks
are a class of statistical models, applicable in many tasks from data exploration to
regression and classification. Neural networks suitable for TSP can model time
dependent phenomena, typically by utilizing delay lines or recurrent connections
within the network.

Recurrent Self-Organizing Map (RSOM) is an unsupervised neural network
model capable of processing pattern sequences. The application of the RSOM
with local models in temporal sequence prediction is presented. The RSOM is
applied to divide the input pattern sequences into clusters, and local models are
estimated corresponding to these clusters. In case studies, time series prediction
problems are considered. Prediction results gained from the RSOM model show
better performance than the model with conventional Self-Organizing Map. The
RSOM can capture temporal context from the pattern sequence, which is useful
in the presented prediction tasks.

As another application, a neural network model for optimizing a Web cache
is proposed. Web caches store recently requested Web objects, and are typically
shared by many clients. A caching policy decides which objects are removed
when the storage space is full. In the proposed approach a model predicts the
value of each cache object by utilizing features extracted from the object. Only
syntactic features are used, which enables efficient estimation and application of
the model. The caching policy can be optimized based on the predicted values and
a cost model designed according to the objectives of the caching. In a case study,
different stages and decisions made during the data analysis and model building
are presented. The results gained suggest that the proposed approach is useful in
the application.
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AIC Akaike Information Criterion
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Chapter 1

Introduction

Statistical data analysis methods can be applied to gain understanding to a process
under interest, which is too complex to be modeled analytically. Data from the
process is first collected by measuring selected variables. These observations are
then analysed by applying statistical methods to infer knowledge from the pro-
cess. The results of the analysis depend on the prior knowledge about the process
and the methods employed during the analysis. Essentially, all the choices made
during the analysis, starting from the data collection, and ending to analysing the
results gained from a statistical model have an effect on the inferred knowledge.

The main theme of this work is to consider neural network methods in data
analysis. Neural networks constitute a class of statistical models, which can be
applied in a broad range of applications, from exploratory data analysis and visu-
alizations to classification and regression problems. In neural network modeling,
the goal is to build a model based on the observed data, which can represent the
essential properties of the process under interest.

The other main theme of this work is to present neural network methods ca-
pable of temporal sequence processing (TSP). Specifically, time series prediction
is considered. A time series consist of measurements or observations of a natu-
ral, technical or economic process, that are made sequentially in time. The main
motivation of the time series research is the desire to predict the future and to un-
derstand the underlying phenomena and processes of the system under study. The
goal is to construct a model that can capture the essential features of the process
by utilizing the available measurements and the prior knowledge. The model that
can predict the future of a time series most accurately is usually considered to
characterize the process best.

In chapter 2, data analysis and modeling with neural networks is reviewed.
The process of statistical data analysis is presented, starting from data collection,
moving to building the model, and ending at the analysing the model. In data
collection section, preprocessing data and feature selection and extraction are dis-



2 Introduction

cussed. In model building section, issues relating to model architecture, parameter
estimation and model complexity are presented. In model analysis section, meth-
ods for model checking are discussed.

In chapter 3, neural networks in TSP are reviewed. Short review of tradi-
tional methods for TSP is first presented. Neural networks methods applicable to
TSP, divided to unsupervised and supervised models, are then overviewed. The
Multilayer perceptron network (MLP) and the Recurrent Self-Organizing Map
(RSOM), which are employed in subsequent chapters, are also presented in more
detail.

In chapter 4, case studies in TSP are presented. The models applied in the
cases, including linear autoregressive model (AR), the MLP, and the RSOM with
local models, are first presented. Application of the RSOM with local models
in time series prediction is then proposed. Specifically, the RSOM learning al-
gorithm is modified to facilitate learning temporal sequences of ordered input
vectors. Also, the application of local models with RSOM to enable temporal
sequence prediction is presented. Three time series prediction cases are then pre-
sented, which involve univariate one-step prediction problem. In these cases, the
prediction performance of the RSOM is compared with other models. As a fourth
case, multivariate one-step prediction problem is presented, where the properties
of the RSOM model are studied in more depth. The results from the prediction
cases show that the RSOM with local models can reach more accurate predic-
tions than conventional SOM with local models. This suggest that the RSOM
can capture certain temporal context from the pattern sequences which is useful
in the presented tasks. Contributions of the author in this chapter include the
proposed modification of the RSOM learning algorithm, implementation of the
RSOM with local models to time series prediction, and performing all case stud-
ies and analysing the results.

In chapter 5, an application of a neural network model in Web cache opti-
mization is presented. A short review of the cache optimization and previously
presented methods is first given. The problem in cache optimization is to devise
an optimal caching policy, which decides which objects to remove from the cache
when it is full. Heuristic rules such as Least recently used (LRU) are still typi-
cally applied, but are not optimal for the Web cache. A novel approach to Web
cache optimization is then proposed, where a model predicts the value of cache
objects based on syntactic features collected from the objects. The caching policy
can be optimized based on the predicted values and a cost model, which is de-
signed according to the objectives of the caching. A case study is carried out to
test the feasibility of the proposed approach. In the case study, Web objects are
gathered based on real Web cache log. Two classifiers, MLP committee model
and Generalized linear model, are employed to classify the objects based on their
popularity. The syntactic features extracted are visually analysed with the SOM.
The classification results show that the proposed approach can be useful in the
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case. The MLP committee can separate the classes based on the syntactic features
more accurately than the Generalized linear model. The performance gain from
the proposed model is demonstrated by running simulations with Web caches that
utilize the classifier in the caching policy. Finally, some further considerations
about applying the proposed model are discussed. Contributions of the author in
this chapter include the proposed approach for Web cache optimization, and per-
forming the case study where this approach is tested. This included analysing the
collected data, building the models, and conducting the simulation studies.

Finally, in the last chapter a brief conclusion is drawn.





Chapter 2

Data Analysis with Neural
Networks

2.1 Introduction

This chapter discusses data analysis with neural network methods. The goal of the
analysis is to “understand” the system behind the observed phenomena, based on
the available data and the prior knowledge of the system. In statistical data anal-
ysis methods and models by which we can infer knowledge from the observed
data are used (Webb, 1999). These methods are typically applied when the phe-
nomenon or the process under interest is too complex or unknown in order to be
modeled analytically. The goal is to build a model that will capture the essential
properties of the process, by using the observed data and the prior knowledge.

Artificial neural networks, or neural networks (NN) for short, can be viewed
as a class of statistical models employed in data analysis and modeling (Bishop,
1995). Neural network methods are applicable in all areas of statistical modeling
and analysis, but especially in classification and regression problems. Neural net-
works come in many forms and consequently there is no universally accepted def-
inition. One could characterize them as biologically inspired models that typically
consist of simple computing units connected in some manner, see e.g. (Haykin,
1994). Structure of the connections between units and the computation that a unit
performs vary in different neural models.

Characteristic for neural networks is that the optimization of all the model pa-
rameters is carried out at the same time with a learning algorithm. When trained
correctly, the mapping formed by the network can exhibit some capability for
generalization beyond the training data. Also typical to neural networks and as-
sociated learning algorithms is that they are somewhat robust against redundant
input variables or missing values in the training data. Neural networks are es-
pecially useful for classification and regression problems which are tolerant of



6 Data Analysis with Neural Networks

some imprecision, which have lots of training data available, but to which heuris-
tic rules (such as those that might be applied in an expert system) cannot easily be
applied. Many different types of neural networks, such as Multilayer perceptron
(MLP) (Rumelhart et al., 1986) and Radial basis function network (RBF) (Orr,
1996) have been proved to be universal function approximators (Cybenko, 1989;
White, 1990), which means that almost any finite-dimensional vector function on
a compact set can be approximated to arbitrary precision if there is enough data
and enough computing resources.

The process of statistical data analysis can be divided in three stages. The
first stage involves collecting the data set. It includes selecting the variables to be
measured, normalising the data, selecting the features, and taking care of outliers
and missing values. In the second stage the model is built using the data. Model
family, training algorithm and optimising criteria are selected according to the
objectives of the analysis. In the third stage, results from the model are analysed,
and the model and features used are reviewed. If the model performs adequately,
it can be implemented for its planned purpose.

The rest of this chapter is structured according to the process of the statistical
analysis presented above. In the next sections, issues relating to data collection,
model building, and analysing the model are discussed, focusing to neural network
methods in statistical data analysis.

2.2 Data Collection

Statistical data analysis begins with the data collection phase. The choices made
in collecting the raw data, preprocessing it, and making further choices on what
methods to empoly in feature extraction or selection have their effect on the final
results. Consequently, informed choices should be preferred instead of ad hoc
methods. The choices made can be based on prior knowledge, or the results gained
from using the model. Since the process from data collection to analysing the
results involves quite many choices which affect the result, it is evident that the
more prior knowledge can be exploited right from the beginning, the better.

The prior knowledge may include some expert’s knowledge of the factors that
have an effect on the modeled process. Having this knowledge can help in circum-
venting some problems in data collection, or help in making more sound choices.
For instance, measurement of the variables may be difficult, time consuming or
expensive, and a decision of which variables are included in the model is needed.
On the other hand, there may be virtually unlimited amount of measurements
available, and in order to limit the required storage space, decision on the sam-
pling method employed must be made. Also, there may be some general infor-
mation about the shape of the mapping (regression or classification) that should
be applied, or some constraints that it should satisfy. If there is no knowledge
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of the properties of the process to be modeled, one has to begin with analysing
the observations at hand, building a model and then analysing the results gained
from the model. Also in this scenario prior knowledge is involved, that is the prior
knowledge of the expert who is building the model.

Neural networks form a mapping from an input space to an output space. In
order to perform this mapping, every part of the input space needs to be covered
or represented. In the most general case, the amount of input data needed is pro-
portional to the hyper-volume of the input space. Since the volume of the input
space grows exponentially with respect to the number of input variables so does
the amount of needed data. This unavoidable dependency is called the curse of di-
mensionality, referring to the exponential growth of hyper-volume as a function of
dimensionality (Bishop, 1995). As a consequence, networks with lots of irrelevant
inputs behave relatively badly: the dimension of the input space is high, and the
network uses almost all its resources to represent irrelevant portions of the space.
In general smooth, global functions are less sensitive to curse of dimensionality,
while local functions are more sensitive. Also unsupervised learning algorithms
are typically prone to this problem, as well as conventional RBF networks. A
partial remedy is to preprocess the input in the right way, for example by scaling
the components according to their "importance". However, importance of the in-
put variables may be difficult to estimate. Another option is to try to reduce the
dimensionality e.g. with Principal component analysis (PCA) method. Different
methods for dimensionality reduction are applied during feature extraction and
feature selection stages of the model building process.

Finally, the implementation of the model in a real application may raise issues
which are usually not considered in more theoretical data analysis. In research
and prototyping difficulties in data collection are often ignored. Also simplifying
assumptions about data are made, which do not hold in the real environment.
Often the measured variables are assumed to be independent of each other and
measurement error distributions to be normal. Also the issue of missing values is
often neglected altogether. In practice the data collection process is critical to the
application and cannot be ignored.

In the rest of this section, issues relating to data collection are discussed. Dif-
ferent methods employed in preprocessing the data are presented first, after which
feature extraction and selection methods are presented. Different topics are dis-
cussed in the typical order of the data collection process. However, also the data
collection phase may be iterative in nature.

2.2.1 Preprocessing Data

Data preprocessing involves manipulating the data into a suitable form which can
be modeled with neural networks. First step in preprocessing should be getting
acquainted with the available data. Different methods for explorative data anal-
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ysis (see e.g.Vesanto (2002)) can be applied in this stage. Typically, descriptive
statistics such as mean, variance, and range of the variables are calculated. Also
histograms and more advanced nonparametric methods (see e.g. Conover (1999))
can be useful. Different visualization methods should also be applied in this stage.
For instance, measurement errors or outliers can be located from the data, in order
to prevent problems in the normalising of the data.

Normalizing of the data is carried out next. This phase is dependent on the
model and the nature of the modeling task. The distance measure, which mea-
sures the errors during the training of the model, and the normalising method
applied for the data must match. Otherwise, the model may not be able to learn
correct mapping from the data. For instance, in order to visualize the data with the
Self-Organizing Map (SOM) (Kohonen, 1997), the input variables should be nor-
malised to unit variance, since Euclidean distance is employed as the error metric.
If the input variables are not normalised, the mapping realised by the SOM may
be dictated by some variable which has a much larger variance than the others.
Naturally, this is not the desired mapping of the data.

Variable encoding is required for the nonnumerical input variables since neu-
ral networks process only numerical information. Different models may require
different encodings of the input variables. For instance, in classification tree algo-
rithms (see e.g. Breiman et al. (1984)) it is usually possible to use unordered or
ordered categorical variables as such, since the model can readily process them.
In neural networks, however, typically applied training algorithms do not treat
categorical variables appropriately. In essence, the encoding ensures a correct er-
ror metric to be produced within the training algorithm for different values of the
nonnumerical variables.

Missing data refers to having missing values for certain input or output vari-
ables. There are several methods which can be employed for dealing with such
situations. Depending on the amount of data and the nature of the modeling task,
this issue can be either omitted by just dropping all samples which include miss-
ing values, or on the other extreme, using sophisticated methods for replacing the
missing values with estimates. A typical approach for instance in time series pre-
diction could be replacing a missing value of a variable by using its previously
measured value, or an estimate calculated e.g. as a moving average over few sam-
ples.

The issue with non-typical data values, often called outliers, was already men-
tioned. The methods used for dealing with outliers are also dependent on the case
and the nature of the modeling task. In some applications, dealing with the out-
liers may be essential in order to gain adequate results. On the other hand, in
some cases the outliers might be omitted completely from the data. For instance,
if the model was employed for classifying the quality of a product based on cer-
tain measurements from it, having an outlier in the measured variables could lead
to manual inspection. In this case, the model only needs to recognize the outlier,
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and possibly give an estimate of the accuracy of the classification.
In the following sections, descriptive statistics, distance measures, normalis-

ing and encoding the data, and dealing with missing data and outliers are discussed
in more depth.

Descriptive Statistics

Before the actual preprocessing, different statistical measures should be calculated
from the raw data. These measures are needed in the following preprocessing
steps. For each variable at least the measures describing the location and spread of
values should be calculated. In most cases, estimates of first and second moment
(mean and variance) are used as measures of location and spread, respectively.
Estimating also higher moments e.g. skewness and kurtosis may be useful in some
cases. Depending on the data, the effect of missing values and outliers should also
be analyzed with appropriate methods. Methods which are resistant to outliers are
often called robust.

Sample average is a simple and popular measure of location. If the data sam-
ple comes from a normal distribution, then the sample average is also optimal,
since it is unbiased and consistent estimate of the true mean. Recall that an es-
timate is unbiased when its mean converges to the true value, and is consistent,
when its variance tends asymptotically to zero. However, any real data is con-
taminated with outliers, data entry errors and glitches and the sample average is
sensitive to these problems. The median and trimmed mean are two measures that
are resistant (robust) to outliers. The median is the 50th percentile of the sample,
which will only change slightly if a large perturbation is added to any value. The
idea behind the trimmed mean is to ignore a small percentage of the highest and
lowest values of a sample when determining the center of the sample (Venables
and Ripley, 1999).

The range (the difference between the maximum and minimum values) is the
simplest measure of scale. But if there is an outlier in the data, it will usually
be the minimum or maximum value. Thus, the range is not robust to outliers.
The standard deviation and the variance are popular measures of spread that are
optimal for normally distributed samples. Neither the standard deviation nor the
variance is robust to outliers. The Interquartile Range (IQR) is the difference
between the 75th and 25th percentile of the data. Since only the middle 50% of
the data affects this measure, it is robust to outliers (Venables and Ripley, 1999).

Distance Measures

Distance measures give a measure of similarity or dissimilarity between data sam-
ples (vectors). Distance measures satisfy the general axioms of symmetry, posi-
tive semi-definiteness, and triangular inequality (Theodoridis and Koutroumbas,
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1999).
Let a and b be real-valued data vectors of dimension m, and d the distance

operator. Distance d is symmetric, when d(a, b) = d(b, a), and d is positive
semi-definite, when d(a, b) > 0 if a �= b, and d(a, b) = 0 if a = b. Distance
d satisfies the triangular inequality when the distance between a and b cannot be
shortened by going through c. Thus, the equality d(a, c) + d(c, b) = d(a, b)

holds when the point c is located on the line connecting a and b.
The most commonly applied distance for quantitative data is the Euclidean

distance. Unweighted squared Euclidean distance is defined as

d2(a, b) =
∑

j

(aj − bj )
2 = (a − b)T (a − b) , (2.1)

where subscript T denotes the transpose of the column vector. The contours of
equal Euclidean distance from a point are hyper-spheres (circles in two dimen-
sions).

The Manhattandistance is defined as

d(a, b) =
∑

j

|aj − bj | , (2.2)

where | · | is absolute value. Manhattan distance can be useful e.g. when categor-
ical variables are encoded by using binary representation. The contours of equal
Manhattan distance from a point are diamonds in two dimensions.

The Mahalanobisdistance is a generalization of Euclidean distance, defined
as

d(a, b) =
∑

i

∑
j

(ai − bi )�
−1
i j (aj − bj ) = (a − b)T�−1(a − b) , (2.3)

where � is the within-group covariance matrix (Webb, 1999). Mahalanobis dis-
tance measures the distance between groups of data points (distributions), and
can be employed in classification as a class separability measure. In basic linear
discriminant analysis, the covariance matrix � is typically assumed to be nondi-
agonal and symmetric, and same for each class. In a more general case, each class
is assumed to have a different covariance matrix.

There exists other distance measures which can be useful in specific cases. In
general, the choice of the distance measure depends on the application and may
also depend on several factors including distribution of the data and computational
considerations.

Normalising the Data

Normalising means adjusting a series (vector) of values according to some trans-
formation function in order to make them comparable with some specific point of



2.2 Data Collection 11

Table 2.1: Encoding category variables.

Red 1 0 0
Green 0 1 0
Blue 0 0 1

reference (for example, a unit of length or a sum). Normalising is needed when the
incompatibility of the measurement units across variables may affect the results
(e.g., in calculations based on cross products) without carrying any interpretable
information. It is also often beneficial to report the final results in a application
specific meaningful/compatible units, thus normalising could also be useful in that
sense.

Rescalinga vector means to add or subtract a constant and then multiply or
divide by a constant, as in to change the units of measurement of the data, for
example, to convert a temperature from Celsius to Fahrenheit.

Normalizinga vector most often means dividing by a norm of the vector, for
example, to make the Euclidean length of the vector equal to one. In the neural
networks literature, "normalising" also often refers to rescaling by the minimum
and range of the vector, to make all the elements lie between 0 and 1.

Standardizinga vector most often means subtracting a measure of location and
dividing by a measure of scale. For example, if the vector contains random values
with a Gaussian distribution, the mean is first subtracted and the result divided
by the standard deviation, thereby obtaining a "standard normal" random variable
with mean 0 and standard deviation 1.

Variable Encoding

Variable encoding is performed for the nonnumerical input variables to facilitate
processing with neural networks. Input variables can be divided to nominal, ordi-
nal, interval, and ratio variables (Webb, 1999).

Nominal variablesallow for only qualitative classification. They can be mea-
sured only in terms of whether the individual items belong to some distinctively
different categories, but we cannot quantify or even rank order those categories.
Typical examples of nominal variables are gender, race, color, city, etc. Categories
are encoded using dummy variables. Each dummy variable is given the value zero
except for the one corresponding to the correct category, which is given the value
one. An example of encoding categories is shown in Table 2.1.

Ordinal variablesallow to rank order the items measured in terms of which
has less and which has more of the quality represented by the variable, but still
they do not allow to describe "how much more". A typical example of an ordinal
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Table 2.2: Encoding ordinal category variables.

Rich 1 1 1
Middle Class 0 1 1
Poor 0 0 1

variable is the socioeconomic status of families. An example of encoding ordered
variables is shown in Table 2.2.

Interval variablesallow not only to rank order the items that are measured,
but also to quantify and compare the sizes of differences between them. For ex-
ample, temperature, as measured in degrees Fahrenheit or Celsius, constitutes an
interval scale. Ratio variablesare very similar to interval variables; in addition to
all the properties of interval variables, they feature an identifiable absolute zero
point, thus they allow for statements such as x is two times more than y. Typical
examples of ratio scales are measures of time or space. Most statistical data anal-
ysis procedures do not distinguish between the interval and ratio properties of the
measurement scales.

Missing Data

Missing data refers to the values of variables within data sets which are not known.
Although such cases that contain missing data are incomplete, they can still be
exploited in data analysis. There are several approaches to this problem (Webb,
1999):

• Omit all incomplete vectors (patterns) from the analysis

• Use all available information, i.e. calculate estimates by using only those
observations for which measurements have been made

• Substitute the missing values and proceed with the analysis as if the data set
was complete

Omitting all incomplete data may be acceptable, but not if the data contains
many observations with missing values. If missing data are randomly distributed
across cases, one could easily end up with no "valid" cases in the data set, be-
cause each of them will have at least one missing data in some variable. Also,
this approach implicitly assumes that the mechanism which is responsible for the
omission of data is independent of the data itself. If this is not the case, then the
effective data distribution will be modified by the case-wise deletion. However,
the case-wise deletion of missing data is the only way to obtain a "true" correlation
matrix, where all correlations are obtained from the same set of observations.
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Using all available data for calculating the estimates is another approach. For
instance, in estimating the correlation matrix, pairwise deletion of missing data is
applied, where the correlation between each pair of variables is calculated from all
cases that have valid data on those two variables. In many instances there is noth-
ing wrong with that method, especially when the total percentage of missing data
is low, and they are relatively randomly distributed between cases and variables
(Webb, 1999). However, it may sometimes lead to serious problems. For example,
a systematic bias may result from a "hidden" systematic distribution of missing
data, causing different correlation coefficients in the same correlation matrix to
be based on different subsets of subjects. In addition, real problems may occur
when such matrices are subjected to another analysis (e.g., multiple regression,
factor analysis, or cluster analysis) that expects a "true correlation matrix", with a
certain level of consistency and "transitivity" between different coefficients.

Various methods exist to substitute missing data. In mean substitution, the
missing data is replaced by the means for the respective variables during the anal-
ysis. This method is prone to serious problems, as the estimated mean may be
biased. Also interpolation and extrapolation may be applied. In interpolation a
curve is projected between known data points to infer the value of a function at
points between. In extrapolation the value of unknown data points are predicted
by projecting a function beyond the range of known data points. A more elab-
orate approach is to express any variable which has missing values in terms of
regression over the other variables using the available data, and then to use the
regression function to fill in the missing values (Bishop, 1995). This approach
may cause problems since it underestimates the covariance in the data.

Outliers

An outlier is an observation which does not correspond to the phenomenon being
studied, but instead has its origin in background noise or in a gross measurement
(or assignment) error. In practice, nearly all experimental data samples are subject
to contamination from outliers, a fact which reduces the real efficiency of theo-
retically optimal statistical methods. Methods which perform well even in the
presence of outliers are called robust methods.

There are two different approaches for resolving the outlier problem (see e.g.
Rousseeuw and Leroy (1987)). Regression diagnosticsinvolves first identifying
and removing outliers according to some rule of outlier rejection, and then reana-
lyzing the remaining data. This can also be an iterative process, sometimes called
“build and criticize” approach. This approach may work well if the number of
outliers is small.

In robust statisticsthe goal is to devise estimators that are tolerant of large
residual values. After computing the robust estimate, the outliers are identified by
examining the residual values. This approach usually works better than regression
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diagnostics when the number of outliers is large. One of the best known methods
is least median of squares (LMedS) (Rousseeuw and Leroy, 1987). Other meth-
ods include M-estimators (Huber, 1981), where the least squares error function is
replaced with another function. Also outlier removal methods based on Random
sample consensus (RANSAC) (Fischler and Bolles, 1981) are popular especially
among computer vision applications. Here minimal configurations are randomly
sampled, and the one which maximises the number of inliers that fall inside some
predefined threshold is selected.

In (Brandt, 2002) a Maximum likelihood robust estimator (MLRE) was pro-
posed. It was shown to be asymptotically optimal in the sense that it reaches the
same estimate that would have been achieved without contaminants (false obser-
vations) in the data. Here outliers are defined to be residuals of false observations,
so that outliers can overlap with the residuals of good observations and their dis-
tribution is not assumed to be symmetric. The problem is now to estimate the
residual density of the model. First, residual distributions for good and false ob-
servation are set to some initial value according to a priori assumptions. Thus,
each residual is given a probability of belonging either to good or false observa-
tions. Then a Maximum likelihood (ML) estimator is fitted to the data, where the
probability of the sample belonging to the good observations is used as a weight-
ing factor in the error metric (negative log likelihood of the data). The residual
distributions are then updated by applying Bayes’ rule, and the procedure is iter-
ated until convergence. For instance, a Gaussian mixture model, where one Gaus-
sian models the distribution of good residuals, and the rest (one or several) model
the outlier distribution can be applied. The number of Gaussian functions can be
selected e.g. by Minimum description length (MDL) (Rissanen, 1996) principle,
and the parameters of the model are estimated by Expectation-maximisation (EM)
(Jordan and Jacobs, 1994) type iterative algorithm.

2.2.2 Feature Extraction and Selection

Collected data must often be processed further in order to get better results. Re-
dundant variables may be removed, or higher level characteristic variables may be
calculated based on them.

The objective is to represent the data in a reduced number of dimensions.
Reasons for doing this may be easier subsequent analysis, improved classification
or prediction performance through more stable representation, removal of redun-
dant or irrelevant information, or an attempt to discover underlying structure by
obtaining a graphical representation.

Given a set of measures, dimensionality reduction can be achieved in essen-
tially two different ways. The first approach is to identify those variables that do
not contribute to the modeling task. For instance, in a classification task, those
variables that do not contribute to class separability may be neglected. Thus, the
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task is to seek k variables out of the available m measurements. This is termed
feature selection in the measurement space or simply feature selection.

The other approach is to find a transformation from the m measurements to
a lower-dimensional feature space. This is termed feature selection in the trans-
formed space or feature extraction. This transformation may be linear or nonlinear
combination of the original variables and may be supervised or unsupervised. In
the supervised case, the task is to find the transformation for which a particular
criterion is maximised (e.g. in classification case, certain separability measure).

It should be noted that both the feature extraction and feature selection are
highly dependent on the application, and may also be dependent on the model.
Different methods applied in feature extraction and selection are discussed in the
next sections.

Feature Extraction

Collected data often includes redundant variables, which should be removed. Also
to avoid the curse of dimensionality, number of variables used in the model must
be kept as small as possible (Theodoridis and Koutroumbas, 1999). Feature ex-
traction is the process of generating fewer, higher level variables than the data
itself for the modeling purpose. This is achieved by using some transforma-
tion (linear or nonlinear) from the original variables to features. Extracted fea-
tures may be general features, which are evaluated to ease further processing, or
application-oriented, like those needed for image recognition. For instance, ex-
tracting edges in an image (sharpening) is an example of a general algorithm,
whereas identifying the boundaries of individual chromosomes in medical imag-
ing is an application-dependent example.

Principal Component Analysis in Feature Extraction

Principal component analysis (PCA) is commonly applied in feature extraction
phase to transform the feature vectors to orthogonal coordinate system, and to
select those that are used in the model (Webb, 1999). PCA produces an orthogonal
coordinate system in which the axes are ordered in terms of the amount of variance
in the original data for which the corresponding principal components account.
Dimension reduction is gained when only those axes that account for the most of
the variation are selected. New feature vectors are then gained by transforming
the original feature vectors onto this lower dimensional space.

Derivation of the principal components is reviewed shortly next. Consider
a set of N observed data samples on each of the m variables, denoted X =
(x1, ..., xN), where each xi is an m-dimensional (feature) vector. Let µx be the
estimated mean and Cx the estimated covariance matrix of the same data set. The
eigenvectors ei and the corresponding eigenvalues λi are solutions of the equation
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Cxei = λi ei , i = 1, ..., n. Eigenvectors can be solved e.g. from the characteristic
equation |Cx −λI | = 0. The equation becomes of order m, which is easy to solve
only if m is small. In a more general case, solving eigenvalues and eigenvectors
is a non-trivial task, and many methods exist. Suppose that eigenvectors have
been solved, and let Ak be a matrix having the k first eigenvectors (in the order
of descending eigenvalues) of the covariance matrix Cx as the row vectors. Each
vector xi can then be projected on the coordinate axes having the dimension k as
yi = Ak(xi −µx). By selecting the eigenvectors having the largest eigenvalues as
little as possible information in is lost in the mean-square sense.

It should be noted that the transformation gained with the PCA is dependent
on the normalisation of the original data. If the data is concentrated in a linear
subspace, using PCA provides a method to compress data without losing much
information and simplifying the representation. However, since PCA is a linear
transformation, it may be inadequate in nonlinear data.

Self-Organizing Map in Feature Extraction

The SOM (Kohonen, 1989, 1997) is one of the best-known neural networks in the
unsupervised category. The role of the SOM in feature extraction is to construct
optimal codewords in abstract feature spaces. Individual feature values can then
be replaced by these codes, which results in data compression. Furthermore, hier-
archical systems can be built in which the outputs from the maps are again used as
inputs to subsequent layers. The topological property of the feature maps is then
essential for low-error performance (Lampinen, 1997).

SOM belongs to the class of vector codingalgorithms. In vector coding, the
problem is to place a fixed number of vectors, called codewords, into the input
space which is usually a high-dimensional real space Rm. The input space is rep-
resented by a training set X = (x1, ..., xN) ∈ Rm. An essential extra feature in the
SOM is that the neurons are arranged to a 1-, 2- or multidimensional lattice such
that each neuron has a set of neighbours. The goal of learning is not only to find
the most representative code vectors for the input training set in the mean square
sense, but at the same time to realise a topological mappingfrom the input space
to the grid of neurons. For example, the inputs can be gray-scale windows from
a digital image, measurements from a machine or a chemical process, or financial
data describing a company or a customer. The dimension m is determined by the
problem and can be large.

Each codeword will correspond to and represent a part of the input space:
the set of those points in the space which are closer in distance to that codeword
than to any other codeword. Each such set is convex and its boundary consists of
intersecting hyperplanes. This produces a so-called Voronoi tessellation into the
space. The overall criterion in vector coding is to place the codewords in such a
way that the average distances from the codewords to those input points belonging



2.2 Data Collection 17

to their own Voronoi set are minimised. This is achieved by learning algorithms
that are entirely data-driven and unsupervised. With the SOM the vector coding
criterion can be satisfied when the neighbourhood is set to zero at the end of
the learning phase. This quantization phase fine tunes the locations of the code
vectors. Coding facilitates data compression and makes possible postprocessing
using the discrete signal codes. Typically, the codewords are found to correspond
to relevant clusters among the input training data. There may be one or several
code vectors corresponding each cluster.

An example of an application which employs SOM in feature extraction is
face recognition, where microfeatures from an image are clustered by the SOM
is presented in (Lampinen and Oja, 1995). Another example is autonomous robot
control (Heikkonen and Koikkalainen, 1997), where the input vector is combined
of both sensory inputs and corresponding control signals of the robot. These vec-
tors are then clustered by the SOM. Third example is speech recognition (Kangas,
1994), where certain time-dependent spectral features are extracted from the raw
speech signal. The SOM creates a representation of the spectral relations between
the speech samples. Essentially, certain regions in the map space correspond to
certain phonemes of the speech. The mapping realised by the SOM can be used
in visualization of the spectral patterns and in speech recognition. In order to rec-
ognize words and sentences, the trajectory of the best matching unit on the map
space as a function of time is processed further.

Feature Selection

Different feature selection procedures can be applied when the number of avail-
able features is too large to be used in the model. Also as noted before, using too
many features is inefficient due to the curse of dimensionality.

The problem is to find the best subset (of size k) of features from the avail-
able m variables. Thus, transformations of the variables are not considered here,
only selecting those m variables that contribute most to model predictions or clas-
sifications. The performance of the selected features is evaluated based on the
available data, and consequently supervised methods are employed. For instance
in a classification case, class separability gained by the selected features can be
used as a performance metric. Feature selection methods can be divided to cat-
egories based on the subset generation method, and the selection criteria for the
best subsets (Dash and Liu, 1997).

The methods applied in generation of the subsets can be further divided to
three categories: complete, heuristic, or random. Using the complete set of fea-
tures is usually intractable, since there are 2m − 1 possible subsets of features in
a set of size m. For instance branch-and-bound (Theodoridis and Koutroumbas,
1999) selection method belongs to this category. Usually some heuristics are used
to search a small but hopefully interesting fraction of the space of all subsets of
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features. Forward and backward selection, reviewed shortly in the next section,
are popular heuristic feature selection methods. Third option is random selection
of features. For instance, genetic algorithms and simulated annealing methods
belong to this category (Dash and Liu, 1997).

The selection criteria for finding the best subset from the generated subsets can
be divided to two broad groups. In the first group belong all the distance metrics,
class separability metrics, information measures, and dependence measures which
are calculated from the subset of features, independently of the model applied. In
the second group belong the metrics based on the performance of the model with
the selected subset. Methods for estimating the performance of the model after the
model has been built are discussed in the last section of this chapter. Essentially
these methods are based on estimating the generalization ability of the model
which includes specific subset of features, by using the available data.

For feature selection with neural networks, prior knowledge of useful features
can also be gained by first analysing the features with simpler models. For in-
stance, neural networks may be difficult to train with large number of features.
An option is to first estimate a linear model or a classification tree for the task
with complete subsets of features, and select the best subset of features based
on the model performance. The subset of features selected by the linear model
may also prove to be useful with neural network model. Some methods useful in
feature selection are briefly presented in the next sections.

Forward and Backward Feature Selection

Forward selection and backward elimination are the simplest heuristic rules for
feature selection (Theodoridis and Koutroumbas, 1999). Forward selection starts
with an empty subset to which one feature (the one which most reduces the er-
ror) is added at a time, until some chosen criterion stops decreasing. Backward
elimination starts with the full subset from which one feature (the one which least
increases the error) is removed at a time, until the chosen criterion stops decreas-
ing.

The criterion for stopping is usually the error rate, since minimum expected
classification or prediction error is the main objective in model design. Error
rate can be estimated with a separate test data set, which is not used during the
model building, including the feature extraction or selection phases. More often,
though, all data is needed in model building, and consequently cross-validation or
bootstrapping methods are applied to estimate the error rate. These methods are
discussed in more depth in Section 2.3.3.
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Class Separability Metrics in Feature Selection

Another approach for feature selection is to compare directly the separability of
different feature sets. This approach can be useful in classification cases, since
separability of the classes can be easily verified (Webb, 1999). The overlap be-
tween the distributions from which the data are drawn are estimated for each class.
Those feature sets for which this overlap is minimal (maximising separability) are
then favoured.

The approach has the benefit of being independent of the model. There exists
a plethora of different heuristic measures of separability. These include different
generalizations and extensions of Mahalanobis distance measure presented previ-
ously. In practice, finding a useful separability measure may be difficult, since real
data may not fit well the presumed distribution. Furthermore, it is often compu-
tationally intensive to calculate the separability measures for all different feature
sets. Therefore, in many practical situations, these methods cannot be applied
effectively.

Classification Trees in Feature Selection

Classification or decision trees are capable of modeling complex nonlinear de-
cision boundaries. An overly large tree is usually first constructed by using the
training data, and then pruned to minimise a cost-complexity criterion. The re-
sulting tree is easily interpretable and can in some cases provide insight into the
data structure.

Classification and regression trees (CART) (Breiman et al., 1984) is a popular
classification tree and algorithm. In CART, feature selection is an integral part
of building the model. The building of the tree usually starts with a single root
node which contains all the training data. For this node a rule that maximises
the selected criterion is chosen. For instance, in classification case, all possible
divisions of data based on the value of an input variable are explored. The selected
rule then divides the training data to two child nodes. Building of the tree then
continues until there is no data left to divide (all samples in a node belong to the
same class), or the number of samples in one node is smaller than some predefined
number.

In some cases, where the number of input variables is large, and it is assumed
that only few can be used in practice, it may be helpful to build a classification
tree in order to explore the importance of the variables. Furthermore, CART can
include an alternate rule in each node based on using another input feature when
the value of the preferred feature is missing. This technique, called surrogate
splits, can be applied in classification of the sample in case of missing values.
Thus, surrogate splits provides information about interchangeable features, which
may be useful.



20 Data Analysis with Neural Networks

2.3 Model Building

Building the statistical model is perhaps the most complicated task in the data
analysis. It is often an iterative process, as the model is first build, then tested and
analysed, then tuned and built again.

The goal in neural network training is not to learn an exact representation of
the data itself, but rather to build a statistical model of the process which gener-
ates the data. The effective flexibility or complexity of the model must be selected
carefully, so that the best generalization is achieved. Generalization error can be
decomposed into the sum of biassquared plus the variance(Geman et al., 1992).
Too inflexible model in relation to the particular data set will have a large bias,
while too flexible model will have a large variance. Bias and variance are com-
plementary quantities, and consequently the best generalization is a compromise
between small bias and small variance. In practice, it is often useful to start with a
simple model, analyse the results, and then move on to more complicated models
if the results are not satisfactory.

The process of building the model can be divided into three parts: Selecting
the model architecture, estimating the parameters of the model, and choosing the
complexity of the model. Since all three are dependent on each other, the process
of model building becomes a cycle. In the next sections the phases of this cycle
are discussed.

2.3.1 Model Architecture

Model architecture includes the model family, number and type of input and out-
put variables, and other variables which affect the mapping which the model per-
forms. As discussed previously, inputs to the model can be generated in a sep-
arate process, where general features and application specific features are first
extracted. Usually the model is known when the features are extracted, and thus
normalising the data and selecting the features can be carried out to suit the model.
Output of the model depends on the application. For instance, when the model is a
classifier, it may have separate output variables corresponding each class. For each
input, the class with the largest output value is then selected. On a more sophis-
ticated model, each output variable may instead give an estimate of the posterior
probability of the class. Probability estimates gained for each class may then be
used in subsequent decision making, for instance with associated cost model.

The model family can be represented by the functional form (or the mapping
from the input to the output) which the model performs. The problem how to
choose the model family M cannot be adequately formalized. In practice, the
selection is based on human judgment and prior knowledge of the kinds of models
that have been employed in the past, perhaps by other researchers.
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Parametric Models

In traditional statistical modeling parametric models are frequently applied. Com-
monly used model class consists of parametrised probability densities

M = p(X|θ), θ = (θ1, ..., θk) , (2.4)

where X = (x1, ..., xN) contains N observed data samples. θ contains the param-
eter values, and k is the number of estimated parameters for the model.

The observed sample X is assumed to be drawn from random variable χ ,
which has an unknown distribution. This unknown, “true” distribution is then
approximated by the model class M . An estimator θ̂ for parameter values is cal-
culated by using the observed data.

In general, parameter value optimization can be carried out in several differ-
ent ways, which are discussed in Section 2.3.2. The most common estimation
procedure, however, is Maximum likelihood (ML) estimation.

The tradition for using parametrised distributions is rather long, and properties
of some models are well known. Commonly employed parametric models include
Gaussian distribution, and others from exponential distribution family.

Nonparametric Models

Nonparametric modeling includes no assumptions about probability distribution
which generated the observed data. Thus, there is no predetermined set of param-
eters to be optimized, rather the estimate is determined directly from the data, and
the number of parameters in the model grows with the number of data. Exam-
ples of nonparametric methods include histograms, i.e. tabulating the data, kernel
estimates and nearest neighbour estimates (see e.g. Conover (1999)).

Nonparametric methods are often computationally quite demanding. Often
they also suffer considerably from the curse of dimensionality. For instance, con-
sider approximating the function f (x) by tabulating the values of f (x) for x with
m dimensions. Each dimension m is divided to n fragments with size s. The
maximum interpolation error is now e ≤ sL, where L is given by the differen-
tial L ≥ | ∂ f

∂x |. In order for the approximation error to remain bounded when the
dimension grows, the number of data samples needed is nm.

Semiparametric Models

Certain types of neural networks can be regarded as being semiparametric models.
For instance mixture (distribution) models, the MLP and the RBF networks, and
certain regulated nonparametric models belong to this class (Bishop, 1995).

In semiparametric models the goal is to estimate the underlying probability
distribution with a generic function (an universal approximator). Assumptions
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about the the underlying probability distribution, however, are less strict than with
parametric models, since the models can represent a large number of potentially
useful mappings for the observed data. Thus, the model is fitted to the data such
that the effective number of parameters depends on the characteristics of the un-
derlying distribution. The effective number of parameters is usually less than the
number of available parameters and thus it corresponds to the complexity of the
model (Moody, 1992).

Neural networks in general belong to nonlinear models. The functional form
and consequently the complexity of the mapping realised by the neural network
model may vary depending on the parameter values of the model. MLP network
is one of the popular neural network models (Bishop, 1995). The architecture of
the MLP consists of a description of how many layers it has, the number of neu-
rons in each layer, each layer’s activation function, and how the layers connect to
each other. The best architecture to employ depends on the type of problem to be
represented by the network. Typically, sigmoidal function is used as the activation
function in the neurons. Thus, when using small weights in the network, the map-
ping results to almost linear function which has a low effective complexity. This
is because the central region of sigmoidal activation function can be approximated
by a linear transformation. The MLP is discussed in more depth in Section 3.3.1.

2.3.2 Parameter Estimation

Parameter estimation is the second phase is model building. In parameter esti-
mation, the output of the model come to approximate the target values given the
inputs in the training set. If the model is fitted adequately, it will have the ability
to generalize to cases which were not included in the training set. This means that
the outputs of the model approximate the target values given inputs that are not in
the training set.

Generalization is not always possible, and it requires prior knowledge or as-
sumptions to build a model with this ability. There are three necessary conditions
to yield a model with generalization ability (Sarle, 1997b). First condition is using
relevant inputs in the model, second is having some restricted class of input-output
functions that contains an adequate approximation of the function to model, and
third is that the cases to be generalized bear some resemblance to the training
cases.

The parameter values for the model are estimated by using the collected train-
ing data. Thus, a criterion for selecting the best values for the parameters is
needed. A popular selection is using Maximum likelihood (ML) estimates. For
instance, least squares is a popular optimization method applied in linear regres-
sion, which can be derived from ML principle. Minimising the sum squared error
corresponds to the ML principle, when the residual error distribution for the data
is assumed Gaussian (Bishop, 1995). Other choices for parameter estimation in-
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clude using Maximum a posteriori (MAP) principle or Bayesian inference. Issues
relating to the training algorithm, and different methods for estimating the param-
eters are presented in the next sections.

Training Algorithm

Parameter estimation of the model is carried out with a training algorithm, which
by using the training data gradually optimizes the parameters (or weights) in the
model. In other words, the training algorithm implements the search method
which estimates the values for the parameters of the model.

In linear models the parameter values can be estimated from the training data
by using linear algebra. There may be situations when insufficient or noisy data
prevents estimating the parameters, but this situation cannot be improved by the
training algorithm. For nonlinear models, there only exist iterative algorithms by
which the parameter values are estimated.

Gradient descent optimization is one of the methods for estimating the param-
eter values. The gradient of the error with regard to the parameters of the model is
estimated with current parameter values. The parameter values are then corrected
in the direction of the gradient, thus gradually driving the model toward the opti-
mal parameter values. Common problem with the gradient descent optimization is
difficulty in evaluating whether the model is in a local or in a global minimum. In
practice, applied algorithms include different methods which try to prevent from
getting trapped to local minima.

Depending how the algorithm corrects the parameters, two general types of
algorithms are applied, namely stochastic gradient and batch learning. In stochas-
tic learning algorithm an input vector is chosen randomly from the training set,
output of the model is calculated, and based on the error (calculated as the differ-
ence between the output and desired target output), the weights of the model are
corrected slightly toward the gradient. In batch learning algorithm the approxi-
mate gradient is evaluated for the entire input data at the same time, which allows
more accurate estimate of the gradient.

Supervised and Unsupervised Learning

Training algorithms can be further divided to unsupervised and supervised algo-
rithms. In supervised learning, the model estimates a mapping from input space to
corresponding output space. Training data contains samples from this mapping,
including representative input vectors and desired output vectors. Training algo-
rithm presents these samples to the model, and applies some optimization method
to estimate the parameters of the model in order to minimise the selected error
metric. In this case, the error metric is computed from the difference between the
model output and the desired output.
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In unsupervised learning, only samples from the input space are available.
The model is expected to provide a mapping from the input space back to the
input space through some latent space usually with reduced dimensionality. As
with the supervised learning, also in unsupervised learning the training algorithm
presents these samples to the model, and uses some optimization method to esti-
mate the parameters of the model in order to minimise the selected error metric.
The error metric to be minimised is typically based on distance metrics between
input vectors and model parameters. For instance, in vector quantization algo-
rithms, the error is defined as the sum of all input vectors (Euclidean) distances
from the quantized vectors.

Maximum Likelihood Estimation

Two different approaches to parameter estimation are Maximum likelihood (ML)
estimation and Maximum a posteriori (MAP) estimation. A third, quite different
approach known as Bayesian inference is discussed at the end of Section 2.3.3.

Consider a random variable χ which is modeled with a model family M ,
which consists of parametrized probability densities p(X|θ), θ = (θ1, ..., θk). ML
estimation involves optimizing the parameter values θ̂ such that the probability of
observing the data X = (x1, ..., xN), given the model M is maximised (Bishop,
1995). When the observed samples are assumed to be independently drawn from
the distribution p(X|θ), the joint probability density of the whole data set X is:

L(θ) =
N∏

i=1

p(xi |θ, M) , (2.5)

where L(θ) can be viewed as a function of θ for fixed X, in which case it is
referred to as the likelihood of θ for the given X. In practice, maximising the
likelihood L(θ) is often converted to minimising the negative logarithm of the
likelihood:

E = − log L(θ) = −
N∑

i=1

log p(xi |θ) . (2.6)

The negative log-likelihood can be regarded as an error function. For most choices
of the density function, the optimum θ̂ is found with iterative parameter estimation
procedure, i.e. a training algorithm.

Properties of the ML estimate (Theodoridis and Koutroumbas, 1999):

• Asymptotically unbiased, which means that the estimate converges in the
mean to the true value.

• Asymptotically consistent, so the estimate converges in mean square. Thus,
for large sample size N, the variance of the ML estimate tends to zero.
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• Asymptotically efficient, which means that the variance of the estimate
reaches the Cramer-Rao lower bound, which is the lowest value any esti-
mate can achieve.

• The probability distribution of the ML estimate approaches the Gaussian
(with the true value as the mean) as sample size N goes to infinity.

If there exists a consistent and efficient estimator for the parameters θ , which
can be represented by model family M , then maximum likelihood estimation will
find this estimator. However, if the model family M is not selected appropriately,
even the the best (maximised) likelihood does not fit the data well.

Problems of ML estimation include choosing the model family, including
making assumptions about the “correct model” and the distribution of residuals,
which must be made before the parameter estimation is possible. Thus, it is obvi-
ous that ML estimation does not address the problem of model selection.

Maximum a Posteriori Estimation

In the MAP estimation, the objective is to maximise the posterior probability
p(θ |X) given the model M with parameters θ (Theodoridis and Koutroumbas,
1999). The posterior probability is given by the Bayes’ formula:

p(θ |X) = p(X|θ)p(θ)

p(X)
, (2.7)

where p(θ) is the prior probability for parameters θ , p(X|θ) is the likelihood,
and the denominator p(X) = ∫

p(X|θ)p(θ)dθ is a normalising factor. MAP
estimation chooses the estimate θ̂ , which maximises the posterior p(θ |X), given
the prior p(θ) and observed data X:

p(θ̂ |X) = max
θ

p(θ |X) . (2.8)

Since the posterior p(θ |X) is proportional to p(X|θ)p(θ), the MAP estimate
is usually found by minimising the negative logarithm:

E = − log p(X|θ) − log p(θ) . (2.9)

The difference between ML and MAP estimates lies in the involvement of the
prior p(θ) in the MAP. If it is assumed that prior distribution is uniform, that is,
constant for all θ , then both estimates yield identical results.
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2.3.3 Model Complexity

Selecting the correct complexity of the model is in general a separate problem
from the parameter estimation. Several approaches to the problem exist.

With parametric models, a popular approach to model complexity selection is
to build models with different number of parameters, and choose amongst them
based on the estimated predictive ability. Here cross-validation or bootstrapping
procedure can be applied to estimate the generalization error for each model, and
the model with the smallest error is selected. In linear models, statistical the-
ory provides several simple estimators of the generalization error under various
sampling assumptions. These estimators adjust the training error for the num-
ber of weights being estimated, and in some cases for the noise variance if that
is known (Venables and Ripley, 1999). These statistics can also be regarded as
crude estimates of the generalization error in nonlinear models when there is a
"large" training set. Correcting these statistics for nonlinearity requires substan-
tially more computation (Moody, 1992), and the theory does not always hold for
neural networks due to violations of the regularity conditions.

With nonparametric or semiparametric models, such as neural networks, se-
lecting the complexity of the model based on the number of parameters is in gen-
eral not feasible. In semiparametric models, the complexity of the mapping re-
alised can change in a flexible manner based on the parameter values. In (Moody,
1992), the concept of effective number of parameters was proposed as a measure
of the complexity of the model. Thus, the selection of model complexity can be
turned into restricting the effective number of parameters. This can be achieved
during the parameter estimation, by adding a penalty term which is dependent
on the complexity of the model to the error function. Techniques applied in this
manner are called regularization(Bishop, 1995). Regularization is effective in
particular with semiparametric models. With adequate regularization, it is possi-
ble to apply flexible models with far more free parameters than is used in effect.
Essentially, in regularization some prior knowledge about what kind of function
the model should implement is exploited. With neural networks, weight decay is
one popular technique.

Other approaches to model complexity selection include using criteria based
on information theory, or using Bayesian inference for the model building. Several
information theoretic metrics have been proposed, of which Akaike information
criterion (AIC), Bayesian information criterion (BIC), and the MDL are perhaps
the best known, and are reviewed shortly in this section. Bayesian inferenceis
another approach to the model complexity selection, where the prior knowledge
about the model complexity and parameters are given in a form of probability
distributions for each entity, and separate hyperparameters describe the prior as-
sumptions about the model complexity (Lampinen and Vehtari, 2001).

In the next sections, methods for model complexity selection are discussed,
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including regularization, cross-validation and bootstrapping, and using different
information theory based criteria. Finally, Bayesian inference is discussed.

Regularization

Regularization is used to restrict the model complexity during the parameter esti-
mation. Usually regularization is employed with flexible semiparametric or non-
parametric models, which include large amount of free parameters.

Regularization is based on restricting the model complexity (e.g. the func-
tional form of the mapping) by using some prior assumptions about what kind
of mappings are probable to exist in the current data. This means that while the
training data may suggest highly nonlinear dependencies (which may be due to
noise or outliers in the data), the model tends to reach a functional form expressed
in the prior assumptions, and optimizes the parameters given that assumption. In
practice, results depend on the case and correctness of the prior assumptions.

Weight decayis an example of a regularization method. It can be applied e.g.
with neural networks trained with backpropagation algorithm (Krogh and Hertz,
1992). Weight decay adds to networks prediction error E a penalty term, which
depends on the weights wi . The usual penalty is the sum of squared weights times
a decay constant α:

Er = E + α
∑

w2
i (2.10)

Typically large weight values get larger penalty than smaller weights. In
Bayesian setting, this can be also viewed as special case of zero mean Gaussian
prior over the weights. In linear regression framework, this form of weight decay
is equivalent to ridge regression (Hertz et al., 1991). Ridge regression originated
as a method to solve numerical difficulties in performing the matrix inverse. Here
the penalty terms are added to the diagonal elements of the matrix, thus forming
a ridge.

In general form of MLP networks, large weights correspond to nonlinear map-
ping (or large change on the neuron’s output), and small weight values correspond
to linear mapping (small change on the neuron’s output). Thus, weight decay re-
stricts the functional form of the network, driving it toward more smooth map-
pings. Generalization ability of the network may depend heavily on the decay
constant, especially with small training sets. One approach to choosing the decay
constant is to train several networks with different amounts of decay and estimate
the generalization error for each. The decay constant, which minimises the es-
timated generalization error is then chosen. Problem with weight decay is that
different types of weights in the network will usually require different decay con-
stants for good generalization.

Early stoppingtraining is another method to restrict the model complexity
(Bishop, 1995). As opposed to weight decay, no specific prior knowledge about
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the functional form is enforced. Early stopping was popular as a method for pre-
venting overtraining of the MLP. In the typical setting, the data set is divided to
design data set and the test data set. The design data set is further divided to train-
ing data and validation data. During the training of the model, the error for the
validation data is frequently checked, and when the error starts to grow, training
is stopped. Essential to the early stopping to be effective, is to employ a training
algorithm where the model weights are adjusted only slightly during each itera-
tion. Early stopping can be applied in committee models, where each model uses
a different validation data set. Averaging the result from all models in the com-
mittee reduces the bias of the error, while keeping the variance the same. The
early-stopping MLP committee is presented in Section 3.3.1.

Cross-validation and Bootstrapping

Cross-validation and bootstrapping are both methods for estimating generalization
error based on "resampling". Both are useful for model selection purposes since
they allow using all available data for parameter estimation of the model, and
estimating its generalization ability is still possible with adequate precision.

In V -fold cross-validation(Picard and Cook, 1984; Amari et al., 1997) the
data is first divided to V subsets of equal size, of which one is selected to be used
for validation, and the rest of the data for training the model. After the model
has been trained, validation error is calculated from the left-out subset of data.
Similarly, each of the V subsets is selected at a time for validation, and the rest
for training. After all V models have been trained, validation error estimate for
the whole data is calculated by averaging over all V cases.

A special case of cross-validation is leave-one-out (LOO) validation, where
the validation data set contains only one data sample. Leaveoneout is useful es-
pecially when training set is quite small. LOO is also computationally demand-
ing, since with data size N, each model is trained N times. While leave-one-out
provides more accurate estimates of the generalization ability, it also may prefer
models with more complexity (parameters). This may happen when the training
set is quite large and it contains similar samples. Now, when the used N − 1
samples are modeled more accurately, also in average the accuracy for the left-out
sample becomes more accurate. As a consequence, noise in the samples tend to
be modeled more accurately, and the number of parameters of the model becomes
larger.

Bootstrapping(Efron and Tibshirani, 1993) in its simplest form includes an-
alyzing subsamples of the data instead of subsets of data. Each subsample (boot-
strap sample) is a random sample with replacement from the full sample. Depend-
ing on the case, number of subsamples B might be anywhere from 50 to 2000. In
leave-one-out bootstrap, one data sample is first selected randomly for the test,
and a bootstrap sample is drawn from the remaining data set. In a more general
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case, a predefined portion of samples can be selected for the nondesign data set
containing both validation data and test data, and the bootstrap sample for training
is drawn from the remaining data. For each of B bootstrap trials:

• Randomly draw cN, c ∈ (0, 1) samples without replacement to form the
nondesign data set

• Randomly draw N samples with replacement from the remaining N − cN
samples to form the training data set

• Decide the split of the nondesign set into validation and test data sets

Leave-one-out cross-validation and leave-one-out bootstrap methods were com-
pared in (Efron and Tibshirani, 1997). Methods for correcting the bias in bootstrap
estimates for the generalization error were also proposed. Furthermore, there are
many sophisticated bootstrap methods that can be applied not only for estimat-
ing generalization error but also for estimating confidence bounds for network
outputs.

Information Theory Based Criteria

Information theory offers a simple, intuitive point of view to model complexity
determination: if we find a simple description for the observations, then we have
found an interesting structure in the data.

Typically the metric calculated for each model involves the maximum likeli-
hood error of the model, to which a penalty term is added. Penalty for a model
is estimated as some approximation of information theoretic complexity of the
model. Since the penalty is larger for more complex models, and the maximum
likelihood error is larger for the most simple models, the criteria finds a compro-
mise. It should be noted that none of the criteria can state which model family
should be selected in each case. AIC, BIC, and MDL criteria are discussed in the
following sections.

Akaike Information Criterion (AIC)

The AIC (Akaike, 1973; deLeeuw, 1992) has its roots in information theory,
where Kullback-Leibler distance (or relative entropy) between the models (or
probability distributions) f and g is defined for the continuous functions as the
integral

I ( f, g) =
∫

f (x) log(
f (x)

g(x|θ)
)dx , (2.11)

where log denotes the natural logarithm. K-L distance relates to the “information”
lost when g is used to approximate f .
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In model selection, a model that loses as little information as possible is
searched. This is equivalent to minimising I ( f, g). The function f is consid-
ered to be given and g varies over a space of models indexed by θ . Another
interpretation of minimising I ( f, g, ) is finding an approximating model g that is
the shortest distance away from the “true model” f .

K-L distance itself cannot be computed. As an approximation of it Akaike
derived the relative expected K-L distance, which led to the AIC criterion. It
was argued that the maximised log-likelihood is biased upwards as an estimator
of the model selection target criterion, and that under certain conditions this bias
is approximately equal to k, the number of estimated parameters in the model
g. Under further conditions of large sample size N and “good” models, the AIC
becomes:

AIC = −2 log(L) + 2k , (2.12)

where L is the maximised likelihood for model g with k parameters θ = (θ1, ..., θk),
and N is the number of data samples X = (x1, ..., xN).

Bayesian Information Criterion (BIC)

The Bayes Factor (integrated likelihood ratio) test is one method which quantifies
the evidence for one hypothesized model against the other (Kass and Raftery,
1995). The BIC (Schwarz, 1978) is a large sample approximation to twice the
logarithm of the integrated likelihood. BIC is defined as

BIC = −2 log(L) + log(N)k . (2.13)

where parameters L , N and k are the same as with AIC.
Derivation of BIC involves Laplace approximation to the integrated log likeli-

hood. It ignores the terms of constant order, including those from the prior, which
are dominated by terms from the likelihood when the data size N is large enough.
Minimizing the BIC is equivalent to maximising integrated likelihood, which is
equivalent to maximising posterior probability of a model when the priors are all
equal. When the sample size N = e2, AIC and BIC are the same. BIC favors
simpler models more than AIC when the sample size N is larger than 8.

Minimum Description Length (MDL)

According to the MDL principle the best model or model class among a collection
of tentatively suggested ones is the one that gives the smallest stochastic complex-
ity (shortest description length) to the given data (Rissanen, 1986).

MDL has its roots in the algorithmic or descriptive complexity theory of Kol-
mogorov (see e.g. Cover and Thomas (1991)). Kolmogorov complexity can be
seen as a characterization of probability based on the length of the shortest com-
puter program that describes the object (or event) (Hansen and Yu, 2001). This
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quantity is the descriptive complexity of the object. While Kolmogorov complex-
ity is not computable, approximations of the principle have been proposed for
model selection purpose. In MDL, the attention is first restricted to those descrip-
tions that correspond to probability models or distribution, and then the descrip-
tion length interpretationof these distributions are emphasized, rather than the
actual finite-precision computations involved.

Features of MDL (Hansen and Yu, 2001):

• Unlike in traditional statistics, the data need not to be assumed to form
a sample from a population with some distribution law. More generally,
there’s no need to assume anything about how the observed data was gen-
erated.

• The objective is not to estimate an assumed but unknown distribution, but
to find good models for the data.

• The principle permits comparison of any two models or model classes, re-
gardless of their type. Hence, it provides more general criterion than AIC,
BIC and other criteria that depend only on the number of parameters.

There are different forms of MDL based on using a certain model. Consider a
simple parametric model class M , consisting of a family of distributions indexed
by parameter θ ,

M = p(X|θ), θ = (θ1, ..., θk) (2.14)

where X = (x1, ..., xN) denotes the data (string). Now MDL can be described
by using a two-stage coding scheme, where the code length takes the form of
penalized likelihood, the penalty being the cost to encode the estimated parameter
values θ̂ . Under certain assumptions about the encoding of the parameters, and
“smooth” likelihood surface, the MDL then becomes:

M DL = − log p(X|θ̂ ) + k

2
log(N) . (2.15)

MDL can also be estimated by using only the observed data sample. The
prior distribution for the parameter coding is estimated with normalisation over
the parameter space, thus obtaining the distribution

L(X|θ̂ ) = − log p(X|θ̂ )∑
y − log p(y|θ̂ )

, (2.16)

which is called Normalized maximum likelihood (NML) distribution of the model
(Rissanen, 1996).
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Bayesian Inference

Bayesian inference offers a different methodology for building the model. As
discussed before, in ML estimation the idea is to find a single set of parameters
for the model that maximises the fit to the training data, perhaps modified by some
sort of weight penalty to prevent overfitting.

In Bayesian data analysis, all uncertain quantities are modeled as probability
distributions, and inference is performed by constructing the posterior conditional
probabilities for the unobserved variables of interest, given the observed data sam-
ple and prior assumptions (Lampinen and Vehtari, 2001). Before we have seen any
data, prior opinions about what the true relationship might be can be expressed in
a probability distribution over the model parameters that define this relationship.
The unknown degree of complexity is handled by defining vague priors for the
hyperparameters, that determine the model complexity. After the data have been
observed, revised opinions are captured by a posterior distribution over model
parameters. Parameters that seemed plausible before, but which don’t match the
data very well, will now be seen as being much less likely, while the probability
for values of the weights that do fit the data well will have increased.

The posterior probability for the parameters θ in a model M given the data X
is, according to the Bayes’ rule,

p(θ |X, M) = p(X|θ, M)p(θ |M)

p(X|M)
, (2.17)

where p(X|θ, M) is the likelihood of the parameters θ , p(θ |M) is the prior prob-
ability of θ , and p(X|M) is a normalising constant, called evidence of the model
M . The term M denotes all the hypotheses and assumptions that are made in
defining the model, including the selection of model family, specific noise model
etc.

In this notation the normalisation term p(X|M) can be seen as marginal prob-
ability of the data, conditional of M , integrated over everything the chosen as-
sumptions M and prior p(θ |M) comprise

p(X|M) =
∫

θ

p(X|θ)p(θ, M)dθ . (2.18)

p(X|Mi ) is the likelihood of the model i , which can be used in comparing the
probabilities of different models, therefore it is also called the evidence of the
model.

In Bayesian inference the posterior probability distribution of model param-
eters given the data must be estimated. Different sampling algorithms based on
Markov Chain Monte Carlo (MCMC) (Gilks et al., 1996) are applied for the pur-
pose. MCMC in general is a method to integrate over possibly high-dimensional
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probability distributions to make inference about parameters or to make predic-
tions. Monte Carlo integration draws samples from the required distribution, and
then forms sample averages to approximate expectations. MCMC draws these
samples by running a cleverly constructed Markov chain for a long time. Gibbs
sampling is a popular implementation of a Monte Carlo approach to generate sam-
ples from the posterior probability distribution.

After a large number of samplings, the samples tend in distribution to a ran-
dom variable whose joint density is p(θ |X). Evaluation of the expectation of a
function f of interest is then achieved by approximation

E[ f (θ)] = 1

n − b

n∑
i=b+1

f (θ i ) , (2.19)

where n is the number of iterations and b is number of initial samples discarded
during the burn-in period.

Bayesian model selection can be implemented by estimating the posterior
probabilities of the models using MCMC methods. For instance, variable di-
mension MCMC methods have been proposed (Stephens, 2000). The variable
dimension MCMC visits models according to their posterior probabilities, and
thus models with small probability are not probably visited in finite time. The
models with the highest number of visits are then investigated further.

It should be noted that also Bayesian inference involves methods where prior
knowledge is required in order to achieve results in a limited time. Thus, the
results gained are sensitive to the prior choices made during the model building.

2.4 Analysing the Model

As discussed earlier, model building is often an iterative process. Depending on
the application and the objectives of the modeling, this iterative process may in-
clude several steps involving estimation of importance of input variables, choos-
ing the correct model family and model complexity, and evaluating the model’s
performance in real application environment. Often the process of model building
begins with using a simple model, which is then analysed in order to get insight
into what kind of dependencies the data contains. More complex models can then
be built by using the prior knowledge gained from the previous results.

Main objective of the analysis is to find optimal model for the task at hand.
This objective can be divided to finding optimal input variables for the model, and
an optimal model architecture. Assessing the importance of the input variables is
in general useful, since most models benefit when unnecessary input variables are
removed. Due to the curse of dimensionality, the training data is exploited more
efficiently when there is less input variables in the model. However, it should be
noted that some models can handle excessive input variables better than others,
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and some models may require that the input variables are encoded in a specific
way. Also, using less input variables facilitates easier analysis of the resulting
model. Furthermore, limiting the number of input variables is often desired since
it reduces the cost of the implementation.

Comparing different models in order to find the optimal model architecture is
usually carried out by estimating the predictive ability of each model. Different
methods for estimating the predictive ability have been already discussed. Gen-
eralization error is the most popular metric for assessing the performance of the
model. The generalization error is often estimated by using separate portion of
the data for testing. Cross-validation and bootstrapping can also be applied. Fur-
thermore, with Bayesian methods posterior probabilities for each model can be
estimated.

Methods for assessing the importance of the input variables and estimating
the predictive ability of the model are discussed in the following sections.

2.4.1 Importance of Input Variables

Determining the relevance of the inputs is of great importance in practical mod-
eling problems, in both choosing the inputs in the model as well as analyzing the
final model. The most common notions of importance are predictive importance,
which can be assessed by the increase in the generalization error if the variable is
omitted from the model, and causal importance, which can be seen in the change
of the model outputs caused by the change in the input variable (Sarle, 1997a).

Change in the error function when an input is removed from the model can
be used as a measure of the importance of an input. The change in the error
function is a direct measure of predictive importance. However, this measure
can be misleading when the inputs are correlated. It is important to estimate the
parameters for the model after removing the input. Simply deleting an input from
the model without retraining is equivalent to clamping the value of that input to
zero for all cases. If zero is not a reasonable value for that input, the model’s
outputs are likely to be nonsense.

The causal importance is directly measurable only if the inputs are uncorre-
lated (which allows independent manipulation of the input values). If the inputs
are not statistically independent, it is even more difficult to measure the impor-
tance of inputs, because the effects of different inputs cannot generally be sepa-
rated.

For noisy data, all of the measures of importance of inputs are subject to sam-
pling variation. It is difficult to estimate the amount of sampling variation (e.g.,
the standard errors of the importance measures). Possible ways to assess the vari-
ability of importance measures are cross-validation or bootstrapping.
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Sensitivity Analysis

Sensitivity analysis is based on calculating the gradient of the output with respect
to the inputs. This gradient can also be computed in a manner similar to the usual
backpropagation algorithm.

The gradient is a vector of partial derivatives. Each partial derivative, by defi-
nition, gives the local rate of change of the output with respect to the correspond-
ing input, holding the other inputs fixed. Consider a model yk = f (x|θ) with
k outputs and inputs xi . The sensitivity of the output yk with respect to input
variable xi can be approximated as:

�yk ≈
∑

i

∂yk

∂xi
�xi (2.20)

A partial derivative applies only to a small neighbourhood of the input point at
which it is computed, and thus they need to be evaluated at a large, representative
sample of points from the input space. The importance of an input depends not
only on the size of the partial derivatives, but also on the location of points in the
input space with large partial derivatives. Consequently, it may be impossible to
determine the importance based on partial derivatives (Bishop, 1995).

Saliency of Parameters

The estimation of the squared error surface with respect to model parameters can
be employed in error analysis. This method can be applied in estimating the
saliency of the parameters and can be used for all weights in the model. Change in
the error function can be approximated by using the Hessian matrix. This method
may give poor results if the number of training data is not much larger than the
number of weights, if the optimal weights are infinite, or if the hidden units are
not statistically well-identified (Bishop, 1995).

The error surface can be approximated by a second order Taylor expansion at
the minimum of error function as follows:

E(θ) = E(θ̂) + 1

2
(θ − θ̂ )T H(θ − θ̂ ) , (2.21)

where the Hessian matrix H for the model parameters θi , θj is also evaluated at θ̂ :

H(θ)i, j = ∂2 E

∂θi ∂θj
. (2.22)

Since exact computation of the Hessian is in general not applicable with neural
network models, different approximations can be applied. In diagonal approxima-
tion the posterior distribution of the parameters is assumed symmetric Gaussian
distribution, i.e. parameters are not correlated. In practice, this is often not the
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case. In outer product approximation Hessian is approximated by the outer prod-
uct of the first order derivatives. The approximation gives adequate results when
the number of samples is large, and when the residual error is small. In practice,
this applies when the target function is smooth, the error variance is small, or
when the model is first fitted to the training data and the Hessian is approximated
by using the same data. In testing phase a different set of data is used, in which
case the latter does not hold.

Automatic Relevance Determination

Automatic relevance determination (ARD) prior was proposed by MacKay (1994)
and Neal (1996) as an automatic method for determining the relevance of input
variables in MLP. Irrelevant inputs should have smaller weights in the connections
to the hidden units than the more important weights. Thus, in ARD the relevance
measure of an input is related to the size of the weights connected to that input.
In linear models these weights define the partial derivatives of the output with
respect to the inputs, which is equal to the predictive importance of the input, and
in the case of non-correlated inputs, also the causal importance.

In nonlinear models like MLP, however, the situation is more complex, since
small weights in the first layer can be compensated by larger weights in the sub-
sequent layers. Furthermore, the nonlinearity in the hidden layer unit changes
the effect of one input depending on all other inputs. However, it was argued in
(Vehtari and Lampinen, 2001) that ARD prior can be favourable in Bayesian in-
ference with the MLP, since it loosens the assumption that all the input weight
groups should have the same variance (nonlinearity).

2.4.2 Predictive Ability

The ability of the model to predict accurately (in classification or in regression),
and also to generalize for the cases which were not presented during the training
of the model, is the single most important capability of the model. In the following
sections the concept of expected utilities is presented, and one Bayesian approach
for model checking is discussed.

Estimating Expected Utilities

In prediction and decision problems, the predictive ability of the model can be
assessed by estimating expected utilities (see e.g. Bernardo and Smith (1994)).
This corresponds to estimating the generalization ability of the model, and taking
into account the application specific costs. Utility is a measure of the relative val-
ues of consequences. By using application specific utilities, the expected benefit
or cost of using the model for predictions or decisions can be computed. Also,
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in lack of application specific utilities, many general discrepancy and likelihood
utilities can be used. In comparing different models the expected utilities have the
benefit of revealing the true cost or benefit for using certain model over another.
For instance, it may be possible that a statistically better model would only yield
small benefit over a simpler model whose implementation in the real application
is less expensive.

As the estimation of the generalization error requires a full model fitting (or
perhaps k model fittings) for each model candidate, this approach is useful for
analysing or choosing between a few models. The generalization error is typi-
cally estimated by using cross-validation or bootstrapping methods, which were
discussed previously. Furthermore, on a more theoretical note, it has been argued
that cross-validation cannot be used in general case for estimating the generaliza-
tion error (Wolpert, 1996). This can be explained by the notion that in the case
of very large number of models, the probability that one model exactly represents
the training data set goes to one. This model is then selected as the best according
to cross-validation criteria. However, since the model is overfitted to the train-
ing data set, the generalization ability of the model for a new data set is probably
poor. Cross-validation estimates for the generalization error can still be applied in
practical cases for choosing between a limited set of models. As has been argued
before, the choice of the set of candidate models is of great importance. Prior
knowledge that have been gained during the process of analysing the data should
be used for this purpose.

In (Vehtari and Lampinen, 2002), practical methods for obtaining distribu-
tions of expected utility estimates were presented. Methods based on importance
sampling leave-one-out and k-fold cross-validation were reviewed, and a quick
method based on Bayesian bootstrap for obtaining samples from the distributions
of the expected utility estimates was proposed. The models applied were MLP
networks and Gaussian processes.

Posterior Predictive Simulation

Posterior predictive simulation can be used in model checking for Bayesian mod-
els. General discussion and also number of applications of the method are pre-
sented in (Gelman and Meng, 1996).

The idea in the posterior predictive model checking goes as follows: Let X
be the observed data sample, θ the model parameters, p(X|θ) the likelihood, and
p(θ |X) the posterior distribution. Assume that n samples from the posterior dis-
tribution of the model parameters θ1, ..., θn are drawn using e.g. MCMC method.
Now for each i = 1, ...n, a hypothetical replication of the data Xrep

i is drawn given
the simulated parameters θi . If the model is reasonably accurate, the hypothetical
replications should look similar to the observed data X.

In essence, the idea is compare the observed data to simulations from a model.
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The Bayesian way allows treating the model parameters as unknown quantities,
since the parameters are themselves drawn from their posterior distributions. Hy-
pothetical replications of data with the observed data can be compared by choos-
ing a test variable T(X), whose distribution is compared with observed X and
posterior predictive distribution Xrep.

2.4.3 Visualizations

Data visualization is an important means of extracting useful information from
large quantities of raw data. Visualizations are useful in all phases of data analysis.

In the data collection and preprocessing phase they can be used to get a first
hand feeling of what is going on in the observed variables, what kind of distri-
butions and ranges the variables have, and which need to be analysed more thor-
oughly. One option is to compute a reasonable number of the sample percentiles.
This provides information about the shape of the data as well as its location and
spread. Sample percentiles can be visualized e.g. by box plots and histograms.
Visualizations can also be used after the preprocessing to visually confirm that the
scaled input variables are indeed in permitted ranges.

Multidimensional Scaling

The human eye can distinguish very well patterns from two-dimensional plots,
but higher dimensional data cannot be viewed as easily. Thus, different methods
are applied for transforming the data to a lower, usually two-dimensional space.

Principal component analysis (PCA), as discussed in Section 2.2.2, can also
be applied in visualization. The PCA analysis is carried out to the input vectors,
and scores for each variable is calculated.

In a more general setting, any clustering algorithm, e.g. k-means (see e.g.
Theodoridis and Koutroumbas (1999)) can be applied in clustering the input pat-
terns (vectors). After the clustering, some multidimensional scaling method is
applied to represent the distances between the clusters in a lower dimensional
space, which can be visualized usually in two dimensions. Different methods for
multidimensional scaling exist, of which the Sammon mapping is one of the most
popular methods (see e.g. Webb (1999)). These methods can also be applied in
visualizing the raw data. However, in order to distinguish patterns and shapes
from the data, the number of data samples visualized has to be quite small.

Self-Organizing Map

The SOM (Kohonen, 1997) was discussed in Section 2.2.2 as a method for feature
extraction. Perhaps even more typical application of the SOM is in the exploration
and visualization of high dimensional data (see e.g. Cottrell et al. (1999); Vesanto
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(2002)). The basic procedure involves training a two dimensional SOM with avail-
able data and using the result to plot various graphs, which are visually analysed
and interpreted. Depending on the quality of the data and the projection realised
by the SOM, clusters of similar data (with respect to the used distance measure)
appear on the map space. An application expert can then find useful groupings of
data from the map, which can be analysed further.

One typically used graph is the component plane visualization. Here com-
ponents from the SOM weight vectors are shown in the shape of the map lattice.
Comparing the component planes of two or more variables can reveal some depen-
dencies between the variables. In another graph the distances between neighbour
units, measured in the input space, are visualized in the map space using typically
color coding. This graph can give insight into whether the data contains separa-
ble clusters. On a well organized map, the cluster boundaries should be clearly
visible, since the neighbour units belonging to the same cluster should have small
distances in the input space.

In the feature analysis, the SOM can be applied in evaluating visually the per-
formance of the feature set used, for instance in inspecting the class separability.
The SOM is trained with the data set using the features selected. After the map
is trained, the point density function, p(w), of the weight vectors approximates
the point density function, p(x), of the underlying sampled distribution in the in-
put space (Cottrell, 1997). In a classification case, the number of input vectors
belonging to each unit of the map is calculated (separately for each class) and
visualized by color coding. Comparing visually the maps generated, by inspect-
ing the differences and similarities between the maps, can give some clues of the
separation or mixing of the classes. This method is applied in Section 5.4.2.





Chapter 3

Neural Networks in Temporal
Sequence Processing

3.1 Introduction

This chapter discusses temporal sequence processing (TSP) with neural networks.
TSP is a research area having applications in diverse fields varying from weather
forecasting to time series prediction, speech recognition and remote sensing. The
problems of the TSP can be divided into the following categories (Sun, 2001):

• sequence prediction, in which the objective is to predict elements of the
sequence based on the preceding elements

• sequence generation, in which the goal is to generate elements of the se-
quence one by one in their natural order

• sequence recognition, in which the objective is to determine whether the
sequence is a legitimate one according to some criteria

• sequential decision making, in which the goal is to select a sequence of
actions in order to accomplish a goal, to follow a trajectory, or to maximise
a reinforcement function

The sequence generation problem can essentially be formulated as a sequence
prediction problem. Also sequence recognition problem can be turned into se-
quence generation/prediction problem, by basing recognition on prediction.

The time aspect of the problem under interest may vary corresponding to dif-
ferent properties of time, such as (Chappelier et al., 2001):

• time as a simple order relation (time as the index used to order events)

• time as metrics (time duration is meaningful)
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• discrete time versus continuous time

• time over a finite versus infinite interval

The prototypical use of the classical neural network models (e.g. the MLP
and the SOM) concerns staticdata processing. These models are not well suited
to working with data varying over time. In response to the need to model time
dependent phenomena, different temporal neural network models have appeared
and constitute a continuously growing research field.

In this chapter, neural network models applicable to TSP are discussed, con-
centrating to their application in sequence (time series) prediction. Different ap-
proaches to temporal sequence prediction are first discussed, and neural network
models based on supervised or unsupervised learning are then presented. The dis-
cussion concerns mostly discrete time processes, where observations range over
a finite interval of time. In the sequence prediction problems, both the order and
duration aspects of time are meaningful.

3.2 Temporal Sequence Prediction

A time series consist of measurements or observations of a natural, technical, or
economic process, that are made sequentially in time. The main motivation in
the time series research is the desire to understand the underlying phenomena
and processes of the system under study. The major goals of time series analysis
include system identification and reconstruction, and prediction and control of
future events of the system.

In science, technology and economy there exist many interesting processes
and phenomena, whose prediction is either very useful or profitable. These in-
clude different industrial processes that can be modeled, predicted and controlled
based on some sensory data. Many phenomena of nature, such as daily rainfall
or the probability of an earthquake would also be useful to predict. Medical ap-
plications include for example modeling biological signals such as EEG or ECG
to understand better the patient’s state. In economy stock market prices are an
example of a possibly very profitable prediction task.

In general, consecutive samples of a time series are dependent on each other to
an extent dictated by the process in question. Because of this dependency, it makes
sense and it is possible to predict the future of the series. Whether the dependency
is linear or nonlinear in nature, it can be estimated from the measured series using
statistical methods. However, observations of the process usually contain noise
that cannot be canceled out. Another problem is that the process may be dependent
on some unknown variables, whose effect on the process cannot be estimated.
Furthermore, there exists the question whether a process is predictable or not. In
nature and in economy one can find complex processes that show self-organizing
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criticality (Bak, 1996). In this case the answer to the question is not obvious.
However, this question is passed here by taking the view that a statistical model
can be fitted to the available data, and the performance of the model in future
predictions evaluates the usefulness of the method.

The problem is now to construct a model that can capture the essential features
of the process using the measurements that are available. The model that can pre-
dict the future of a time series most accurately is usually considered to characterize
the process best (Gershenfeld and Weigend, 1993). Usually, the model is built in
such way that the input of the model consists of past samples from the series, and
the output gives the desired prediction.

In one-step prediction the model output gives the prediction of the next value
of the series. In n-step prediction, the model predicts n samples ahead in time. It
is also possible to predict n samples to the future by making iteratively n one-step
predictions to the future. However, this may not succeed with required accuracy,
since the prediction errors quickly accumulate and lead to inaccurate predictions.

The problem of how to select the input variables fed to the model is not easily
solved. In fact, the selection of the input variables is dependent on the nature
of the model employed in the prediction. For traditionally applied static linear
models, autocorrelation between the consecutive samples can be estimated, and
used as a guideline when deciding the number of input variables. On the other
hand, when the model is nonlinear and dynamic in nature, the selection of input
variables cannot be solved in a general case. This problem is discussed in more
depth in the following sections.

The reconstruction problem, i.e. how to represent the time series for the
model, is typically handled by using delay coordinate embedding (Sauer, 1993).
The input vectors (patterns) for the model are constructed by using windowing
technique to split the time series into input vectors of constant length. The prob-
lem is thus converted into selection of the type and length of the window. Typi-
cally the input vectors contain past samples of the series up to certain length. The
time is in effect converted into additional spatial dimension of the input vectors
and the temporal context between consecutive samples is lost. After this conver-
sion, conventional regression models, either linear or nonlinear, can be employed
to model the dependence between the future values of the series, and the input
vector containing past samples from the series.

For instance, a discrete time univariate time series consisting of N observa-
tions from variable x is denoted {xN} = {x1, x2, ..., xN}. One-step prediction yt

can now be estimated by the model f , which has k past samples of the series {xN}
as the input:

yt = f (xt−1, xt−2, ..., xt−k) . (3.1)

When the series is stationary, the delay coordinate embedding can be applied
without losing too much from the original information. When the series is non-
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stationary, it can be difficult to determine a proper window length, i.e. the number
of past samples used in the prediction. This is a considerable problem for global
nonadaptive models. In general, the optimal window length for the model varies
in the time series, and thus the windowing should be adaptive. This approach,
however, can be applied effectively only when the changes in the statistics of the
process are slow.

A time series can be nonstationary but still predictable if the changes in the
statistics of the process are tractable (Papoulis, 1984). In this case, model pa-
rameters can be changed adaptively to reflect these changes. Adaptation of the
parameters can be carried out i.e. with Kalman filter (Tsoi, 1998a). Another case
is when the changes in the statistics of the process can be explained by different
states in the process. In this case, it is possible to identify a local model for each
state. The prediction of the time series is then produced by predicting first the state
of the process, and then using the corresponding local model to gain the desired
prediction (Sauer, 1993).

Another approach is to try to capture the essential context that is lost in the
delay coordinate embedding with some other techniques. One way is to store the
contextual information that exists between the samples and consecutive vectors to
a memory in the model. The memory can store relevant information from the past,
which is not visible in current input vector of the model. For instance, memory
can store the current state of the process, which then determines the local model
applied for prediction. One way of adding memory into the model is creating state
variables into the model by using feedback (recurrent) connections. The memory
structures used in neural networks are discussed at the end of this section.

Linear and nonlinear models

In order to construct a model for a process, data is gathered by measuring values of
certain variables sequentially in time. Usually the data is incomplete and contains
noise. In most cases, the underlying process is assumed stochastic. The goal
for model building is to reveal the underlying process from the data. Model is
estimated by using statistical methods to find regularities and dependencies that
exist in the data.

Several computational techniques have been proposed to gain more insight
into processes and phenomena which contain temporal information. Statistical
methods based on linear and nonlinear models have been effective in many appli-
cations (Gershenfeld and Weigend, 1993). Among linear regression methods au-
toregressive (AR) and autoregressive moving average (ARMA) (Box et al., 1994)
models have been the most popular methods in practice since Yule’s paper in the
1920’s (Yule, 1927). The theory of linear models is well known, and many algo-
rithms for model building are available.



3.2 Temporal Sequence Prediction 45

In practice almost all measured processes are nonlinear to some extent and
hence linear modeling methods turn out to be in some cases inadequate. Non-
linear methods became widely applicable in 1980’s with the growth of computer
processing speed and data storage. Among the nonlinear methods, neural net-
works soon became very popular. Neural networks have gained a lot of interest in
TSP due to their ability to learn effectively nonlinear dependencies from large vol-
ume of possibly noisy data. Many different types of neural networks, such as the
MLP and the RBF have been proved to be universal function approximators (Cy-
benko, 1989; White, 1990). This gives neural networks certain attractiveness in
time series modeling (see e.g. Mozer (1993); Tsoi and Back (1994); Lehtokangas
(1995)).

Local and global models

Different models can be divided into global and local models. In global model
approach only one model characterizes the measured process. Traditional mod-
els, such as the AR model and the MLP, when applied as in (Lapedes and Far-
ber, 1987), are examples of global models. Global models give best results with
stationary time series. However, when the series is nonstationary, identifying a
proper global model becomes more difficult. During the last decade, local mod-
els have gained a growing interest, because they can often overcome some of the
problems of the global models (Singer et al., 1992). Local models are based on
dividing the data set to smaller sets of data, each being modeled with a simple
local model.

An example of an extension of the AR model to build a local linear model is
the threshold autoregressive model (TAR) (Tong, 1990). The TAR consist of sep-
arate AR models that are used in different parts of the data according to threshold
values. The selection of the current AR model giving the prediction is carried
out by comparing the value of the time series at certain point in the past with the
threshold values. The model selection problem of the TAR model contains de-
ciding the number of local models, the number of parameters in each model, and
the time lag with which the model selection is carried out. The estimation of the
model includes optimizing the threshold values and the parameters of local AR
models.

In the local model approach, division of the data can be carried out with some
clustering or quantization algorithm such as the k-means, the SOM (Walter et al.,
1990; Vesanto, 1997), or neural gas (Martinetz et al., 1993). An approach where
each unit of the SOM represents an AR model with its reference vector was pre-
sented in (Lampinen and Oja, 1989). After clustering the data, local models for the
generated local data sets are estimated. The problem of data division for achieving
the best prediction accuracy remains in a general case to be solved. One method
using an iterative learning algorithm to solve the division of the data and the local
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model parameters at the same time is Hierarchical Mixtures of Experts (Jordan
and Jacobs, 1994). Here a gating network decides which local models are used
to in the prediction. The parameters of local models and the gating network are
optimized with iterative Expectation-Maximization algorithm.

Neural Network Architectures

Different neural network architectures have been proposed to capture the inher-
ently complex time structure in the modeled time series. Methods for capturing
the temporal context can be roughly divided to two categories, however, also both
of these methods can be employed in the same model.

The first method involves using tapped delay line registers, which store previ-
ous values of the input and the model state. In this method, the input of the model
consists usually of segmented input vectors from the time series. Thus, the delay
lines store previous input vectors, and previous values of the output values of the
neurons. Using delay lines in the input layer of the network corresponds to using
delay coordinate embedding to the time series. Delay lines within the network
are not so easily interpreted, because the mappings formed inside the networks
are nonlinear. The weights (parameters) which connect the delayed values to the
network have to be estimated differently than in a static network, since the output
of the model depends also on the previous values of the series.

The second method involves using positive feedback, that is making the net-
work recurrent. The feedback allows the input-output function of the model to
change according to time context. Thus, the function is no longer a static, but a
dynamic function. Also in this case, the weights of the network which form the
recurrent connections, have to be estimated by taking into account the previous
inputs and the previous states of the network.

In both methods, memory is created within the network. To characterize mem-
ories in different architectures, two dimensions, depth and resolution has been
proposed (Mozer, 1993). Roughly, depth refers to how far into the past the mem-
ory stores information relative to the memory size, and resolution how accurately
information concerning the individual elements of the input sequence is preserved.
Memories of equal size have different depth and resolution based on the way they
store the information. The size of the memory can be calculated as the number of
state variables in the model. The tapped delay line structure has high resolution,
but low depth. Each data sample is stored in the delay line without any change,
so there is no information loss. Since in practice the delay line has finite length,
it can only store information from limited time period. The recurrent (feedback)
connection has low resolution, but high depth. In the most simple case, the output
of the state variable equals the weighted sum of current input and past output of
the variable: yt = xt + αyt−1. Here the feedback coefficient α controls the depth
of the memory. The state variable stores information farther from the past when
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the value of α is increased. However, this also makes the resolution of the memory
lower.

In dynamic linear models the state of the system determines the output of
the model for each input (Pole et al., 1994). The same holds also for nonlinear
dynamic models. The state of the system is stored in the memory structure of
the model. The memory structure then determines which kind of dynamic sys-
tems can be modeled. It can be argued that an optimal memory structure should
minimise the size of the memory while retaining the essential information from
the data. This corresponds to finding the best encoding for the dynamics in the
observed phenomena.

In (Elman, 1990) it was proposed that there is no globally optimal way of
representing the effect of time. It is then obvious that there cannot be a glob-
ally optimal memory structure, and since different memory structures have their
limitations, one should search for optimal memory structure in each case. Conse-
quently, there is vast number of different neural network architectures which try
to capture the time context in the data. A general division of these architectures
can be done based on the memory structure of the model as follows:

• Delay lines or memory registers between connections

• Different feedback connections

• Dynamic neuron models

• Combinations of the above

In this chapter the discussion concerns models which belong to the first or the
second class, or are combinations of them. These models have also gained the
most interest in time series prediction and modeling. Dynamic models of neuron
are not discussed as separate models. Partly this is due to restricting the scope to
the most important models, and partly due to the fact that in general the dynamic
models of neuron can be represented by using the conventional perceptron, and
adding recurrent and time delay memories to the network. Also, the discussion is
restricted to models which process discrete time data.

In time series prediction with neural networks, the main problems have been
deciding the length of the input vectors and the structure of the network. These
problems remain mostly the same for all architectures discussed. In addition, with
the recurrent networks, the stability of the model and the learning algorithm must
be considered. Neural network models based on supervised learning are discussed
in Section 3.3. and unsupervised learning algorithms are presented in Section 3.4.
In both of these categories, delay lines and recurrent connections can be employed
to enable processing of temporal context.
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3.3 Supervised Learning

Several different supervised neural network architectures have been proposed,
based on the artificial perceptron model. The most popular are the MLP and
the RBF network. The cascade correlation (CC) network has also gained some
interest. These neural network architectures consist of layered units, connected
feedforward from input layer to output layer. Neural network architectures appli-
cable to TSP, which include time delays or feedback connections, can be viewed
as modifications to these static feedforward networks. A review and a taxon-
omy of supervised neural networks models capable of processing spatio-temporal
problems was presented in (Kremer, 2001).

In the following sections, the popular MLP is first briefly reviewed, and then
network architectures based on time delay structures and recurrent connections
are presented.

3.3.1 Multilayer Perceptron Network

Feedforward multilayer networks are architectures, where the neurons are assem-
bled into layers, and the connection between the layers go only into one direction,
from the input layer to the output layer. There are no connections between the
neurons in the same layer. Also, there may be one or several hidden layers be-
tween the input and the output layer.

These architectures are also static, so the mapping between the input and the
output is a static function. In practice, this also means that the network does not
have memory, where it could store contextual information from the past. There-
fore, the input of the network must contain all the necessary contextual informa-
tion which is used in representing the output.

The MLP is a nonlinear model consisting of number of neurons (units) orga-
nized to multiple layers, forming a mapping y = f (x, w) between the input x and
the output y, adjusted by the weights w. This mapping, with a certain architec-
ture and weights, forms a static, nonlinear function. The complexity of the MLP
network can be changed from an almost linear model to a highly nonlinear model
by varying the number of layers, the number of units in each layer, and the values
of the weights. A typical single hidden layer MLP network architecture with K
outputs gives rise to the model fk(x, w), k = 1, ..., K with weights w. The model
has the functional form

fk(x, w) = wk0 +
q∑

j =1

wk j g

(
wj 0 +

p∑
i=1

wj i xi

)
, (3.2)

where p number of inputs, q is the number of hidden layer units, g is the activation
function for the hidden layer units and indices j and i correspond to output and
hidden units, respectively.
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The MLP is often considered as a generic semiparametric model meaning
that the effective number of parameters may be less than the number of available
parameters. The effective number of parameters determines the complexity of
the model. For small weights the network mapping is almost linear and has low
effective complexity. This is because the central region of sigmoidal activation
function can be approximated by linear transformation.

A practical problem with neural networks is the selection of the correct com-
plexity of the model, i.e., the correct number of hidden units or correct regular-
ization parameters. It is well known that plain ML optimization of the MLP may
lead to severe overfitting. Recall that ML searches for the optimal parameter val-
ues which maximize the likelihood, and the respective learning algorithms search
to minimise the error metric for the given data. Usually, the model that gives the
smallest error for the training data does not generalize well in the new data. This is
because the model starts to represent the noise in the training data. Since the MLP
is quite flexible model, and efficient learning algorithms are applied in searching
the optimal parameter values, overfitting is likely to happen. Consequently, reg-
ularization methods are needed in order to provide a good generalization ability.
Traditionally, complexity of the MLP has been controlled with early stopping or
weight decay methods (Bishop, 1995).

The early stopping method was discussed in Section 2.3.3. Briefly, the design
data set is divided to training data and to validation data, and iterative learning al-
gorithm gradually optimizes the network weights, until the error metric estimated
from the validation data set starts to grow. Since training is stopped before a mini-
mum of the training error is reached, the complexity of the model is regularized. It
should be pointed out that early stopping in its basic form is rather inefficient, due
to the fact that it is very sensitive to the initial conditions of the network, and only
part of the data is available for training the model. These limitations can easily
be alleviated by using a committee of early stopping networks, with different par-
titioning of the data to training and validation sets for each network. The output
of the committee model is calculated as the mean of the all committee member’s
outputs. When applied with caution, the MLP early stopping committee turns out
to be a good baseline method for neural networks (Lampinen and Vehtari, 2001).

3.3.2 Time Delay Networks

The simplest way to insert memory into the model is to add registers which store
consecutive values of the model input (Mozer, 1993). These registers can be im-
plemented as tapped delay lines, which are fed with new value at each time incre-
ment, and can store up to k past values of the input. This corresponds to making
the delay coordinate reconstruction from the time series. Traditional way of us-
ing neural networks in TSP is to convert the temporal sequence into concatenated
vector via a tapped delay line, and to feed the resulting vector as an input to a
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network. Using the tapped delay line as an input layer in a multilayer perceptron
network was one of the first successful implementations of neural networks in
time series prediction (Lapedes and Farber, 1987). In more advanced models (see
e.g. Mozer (1993); Chappelier et al. (2001)), tapped delay lines are also employed
in the connections between the layers of the network.

In the tapped delay line memory the time dimension is converted into spatial
representation. In this reconstruction, neural network approximates the mapping
between the input vectors and the desired output. Often the output is one-step
prediction of the time series. In this function approximation the contextual in-
formation between the consecutive input vectors is lost. Also, the time difference
between consecutive samples is implicitly assumed to be equal in all input vectors.

In many cases, this reconstruction can capture the essential information from
the sequence, allowing to build models to predict it. Especially, if the series is
stationary, the reconstruction is often successful. When the series is nonstation-
ary, it can be difficult to determine a proper window length. Selecting the order
of the delay coordinate embedding, or the length of the input vector, is usually
carried out by using the model selection methods. However, the optimal window
length for the model may vary in the time series, and thus the windowing should
be adaptive. This approach, however, can be applied effectively only when the
changes in the statistics of the process are slow.

The memory structure based on delay lines can be regarded as having high
resolution, but low depth (Mozer, 1993). Since the values are stored without any
encoding to delay registers, there is no information loss. However, the size of
the memory increases linearly with the length of the memory. Use of delay lines
between neurons in a multilayer architecture has been justified by the fact that
in biological neurons there are also communication delays, which can be several
tenths of milliseconds. It has been argued that these delays are essential in the
way that brain processes information (Haykin, 1994). Another justification of the
delay lines comes from the theory of dynamic linear systems. Delay coordinate
reconstruction has been proved to capture the dynamics of the state vector with
certain restrictions (Sauer, 1993). However, nonlinear dynamic systems may not
be as easily modeled, since the state vector can have large changes due to the
nonlinearity, and consequently the requirements of the delay coordinate recon-
struction for to capture the dynamics of the system may not hold.

There are several drawbacks in using delay line memories. One drawback in
using separate memory registers within the model is the inability to detect when
a change occurs in the memory. Thus, it may be difficult to decide when the out-
put of the model should be evaluated. However, this can be easily circumvented
in models which process information only in discrete time steps. Output of the
model can be evaluated at each time increment, when also the state of the mem-
ory registers is updated. Another drawback is the strictly limited length of the
delay registers. This allows the model only process information, which is explic-
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itly stored in the delay lines. This means that the model cannot process sequences
which exceed the length of the delay lines. This can lead to overly long delay
registers which complicate the model building process. Furthermore, detecting
similar sequences of different length may be difficult or even impossible.

Despite the drawbacks, delay lines have been popular in neural networks
which process temporal information. The structure of the memory is simple, and
the memory’s effect to the output of the model has only limited length. Thus
the estimation of the model parameters can be carried out with slightly modified
learning algorithm of a static network, which takes this effect into account. Most
importantly, MLP with added tapped delay memories can be trained with modi-
fied backpropagation algorithm (Werbos, 1990). This architecture, known as Time
delay neural network (TDNN), is discussed next.

Time Delay Neural Network

The MLP was applied in time series prediction first by (Lapedes and Farber,
1987). It was based on using a tapped delay line in the input layer. Otherwise,
the network structure is static. Other popular neural networks which employ the
delay line memory include Time delay neural network (TDNN) (Waibel et al.,
1989; Lang et al., 1990), Finite impulse response neural network (FIR NN) (Wan,
1993; Back and Tsoi, 1991), and Gamma memory neural network (de Vries and
Principe, 1992). In the Gamma memory neural network, the memory is built from
FIR filters, which include local feedback connections, thus making it a hybrid
architecture, utilizing both delay lines and recurrent connections.

The TDNN has been the most popular network using delay lines. In the
TDNN, the network has an input layer, an output layer, and one or several hidden
layers. The number of neurons used may vary. The input of the network is fed
to the delay line. Values stored in the delay line are then fully connected to the
hidden layer neurons, thus the input layer implements the delay coordinate em-
bedding of the time series. The difference between TDNN and MLP comes from
the hidden layer. In the TDNN, also the previous outputs of the hidden layer units
are stored in delay lines. These values are then fully connected to the output layer
(in univariate case output neuron), which combines all values together.

The TDNN has been successfully applied in speech recognition, specifically
in isolated phoneme recognition (Waibel et al., 1989; Lang et al., 1990). In this
application, spectral features are first extracted from the raw speech signal. Af-
ter the feature extraction, each input vector represents the power spectrum of the
speech signal at predefined frequency ranges. The time resolution of the spec-
trum is around 10-30 ms, but actual spectral values might be calculated from a
longer time period in order to gain more accurate estimate of the power spectrum.
The delay line of the input layer stores all samples from the spectrogram of one
phoneme. Thus, the time is converted into spatial representation. The hidden
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layer acts as a compressor, which finds the essential patterns from the signal. The
output layer neurons then implement the classification of the sample to one of the
possible phonemes.

The FIR neural network has the same functional form as the TDNN, but the
training algorithm, named Temporal backpropagation (Wan, 1993), is different.
Also, the vectoral presentation of the FIR network allows presenting the architec-
ture in similar form as the MLP. Figure 3.1 shows a schematic picture of an FIR
neural network with two inputs, one output and three hidden layers.

FIR filters
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Figure 3.1: Schematic picture of the FIR neural network (Wan, 1993). At the bottom,
the general structure of the network is shown. The network has two inputs, three hidden
layers and one output. In the middle, a neuron j in hidden layer l with three inputs is
shown. Each input connection is an FIR filter, that stores T past values of the output from
the neuron in layer l − 1.
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The FIR network can be built from a conventional MLP by replacing each con-
nection weight in the neurons with an FIR filter. Each filter consists of a tapped
delay line and a weight vector. Output of the filter is calculated as a product from
the values stored in the delay line and the weight vector. In effect, this has the
same function as using a delay line, from which each value is fully connected to
all neurons. However, by using the FIR structure, the learning algorithm can be
presented as a vectoral generalization of the conventional backpropagation algo-
rithm (Wan, 1993). Learning algorithms for neural networks which include delay
lines are discussed next.

Learning Algorithms

TDNN can be trained with Backpropagation through time(BPTT) (Werbos, 1990)
algorithm, which takes into account the past values of the time series and hidden
layer units, which affect the current output of the network. BPTT is based on
constructing a static network, which can then be trained with conventional back-
propagation error gradient algorithm. Since the TDNN only includes limited time
dependencies, BPTT can train the network without approximations.

In BPTT, the network is first simulated with the training data, and values
stored in delay lines as well as networks output are saved at each time increment.
Then the network is unfolded in time, originating an equivalent feedforward net-
work called encoding network. This encoding network is a static version of the
TDNN corresponding to each time step. The static version of the network con-
tains replicated weights corresponding each time step. Correction terms are then
calculated with standard backpropagation rule for each weight. Finally the cor-
rection terms calculated for the static network are accumulated to get correction
terms for the weights in the TDNN network.

A serious drawback of the BPTT is that the number of calculations required
is proportional to the square of the time steps in the simulation. In batch training,
also the memory consumption can be quite large, since all values stored in the
delay lines as well as the output of the network must be stored, before training
the network one epoch is possible. Since the computational and memory require-
ments of the BPTT are quite extensive, different approximations of the training
algorithm can be applied.

The Temporal backpropagationalgorithm is an alternative algorithm for train-
ing the TDNN. Originally it was proposed by (Wan, 1993) for training the FIR
neural network. Temporal backpropagation can be seen as a vectoral extension of
the backpropagation algorithm. It is based on the idea of backward filtering the
error gradient terms through the FIR connections to form the error gradient terms
for the previous layer. The process is applied layer by layer, starting from the
output and working through the network, in a similar fashion as in backpropaga-
tion algorithm. The algorithm uses certain approximations in calculating the error
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gradient. Convergence of the algorithm has been proved as long as the learning
coefficient is kept small.

The greatest benefit of the Temporal backpropagation over the BPTT comes
from the linear scaling of the computational complexity. The backward propaga-
tion of error terms can be calculated by parallel distributed processing. Also, the
number of calculations per iteration grows only linearly with the number of layers
and connections in the network. Disadvantage of the algorithm is that since it is
based on utilizing the idea of reverse filtering the error terms, it cannot be imple-
mented effectively as a batch algorithm. Therefore, training the network may take
more time, and consequently the number of required calculations grows.

3.3.3 Recurrent Networks

As discussed previously, in the tapped delay line memory the time dimension
is converted into spatial representation. In this reconstruction, neural network
approximates the mapping between the input vectors and the desired output. Most
time series are not stationary, and consequently the delay coordinate embedding
may remove contextual information. The time-delay neural network approach
has also other drawbacks, one of the most serious ones of being the difficulty to
determine the proper length for the delay line. If the delay line is too long, it will
increase the parameters in the model. This will complicate the estimation of the
model, since more data is needed to obtain reliable estimates. Also the training
time increases. If the input vector is too short, it may not capture the needed
information from the series, which would allow predicting the series.

Using recurrent connections is another approach for temporal sequence pro-
cessing. A number of dynamic neural networks models have been designed for
TSP to capture inherently the essential context of the temporal sequence without
the need of external time delay mechanics (see e.g. Mozer (1993); Chappelier
et al. (2001)). In these models, the learning equations are often described by dif-
ferential or difference equations and the interconnections between the network
units may include a set of feedback connections, i.e., the networks are recurrent
in nature. The recurrent connections allow the mapping of the model from input
to output to change dynamically according to changes in the modeled phenom-
ena. In essence, the recurrent connections allow storing information from the past
input and the past state of the model.

The simplest form of the recurrent connection is making the feedback from the
neuron’s output back to its input. This kind of neurons have been called (depend-
ing on the context and the form of the feedback) time summating neuron, leaky
integrator neuron, state unit, or context unit. In this case, the previous output of
the neuron at time k − 1 is fed back to its input at time step k. If the neuron has
linear output function, it acts as an infinite impulse response (IIR) filter. In prac-
tice, the neuron may also include logistic function, which changes the feedback
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to act as a nonlinear filter. The context unit stores exponentially decaying values
of the previous outputs of the neuron. The output can be seen as a state variable,
whose impulse response can be represented as

c(k) = wαk , (3.3)

where α is the feedback coefficient, whose value is usually α ∈ {0, 1}, and w is
the input weight. In a more general case, there are more inputs. The output of the
neuron can also be calculated using the current input and previous output as

y(k) = wx(k) + αy(k − 1) . (3.4)

Context unit stores recent inputs more accurately than those farther in the past.
There is no strict limit for the memory’s length. Depending on the value of α, the
context unit can store information from longer or shorter time period. The depth
of the memory is in this case large, since information is stored (or integrated) in
one state variable from several time steps. The resolution of the memory is small,
since previous values of the output are lost in the summing. Thus, the depth of the
memory is gained at the expense of the resolution.

Using recurrent connections has certain benefits over the time delay memo-
ries, since it is in general a more flexible way of representing the temporal context
(Tsoi, 1998b). One of the most important benefits is the ability to store informa-
tion from long time periods. Thus, it is possible to build models without estimat-
ing the length of the input vector beforehand. For instance, the state of the process
can be stored for long time periods within few context units. If the process has
several states, the ability to store the state efficiently with few estimated param-
eters simplifies the model building. Context units can also capture the temporal
information that exists between the consecutive vectors of the data, which is lost
in delay coordinate embedding. Thus, dividing the time series into input vectors
may be avoided altogether, if the input only contains the current value of the se-
ries. That is, the series is fed serially to the model, instead of using the delay
coordinate embedding.

Drawbacks of the recurrent networks include more complicated parameter es-
timation. In theory, with fully recurrent connections the output of the network is
affected by all previous inputs. Consequently, when estimating the parameters of
the model, all these inputs (and previous values of context units) should be taken
into account in the training algorithm. In practice, all previous inputs cannot be
taken into account, since memory and time requirements of such an algorithm
would be impractically large. Often only limited time period is taken into account
during the training of the model. Since the effect of the feedback decays expo-
nentially, this approximation may lead to quite acceptable results. However, this
approximation also forces the model to represent and detect only patterns which
“fit” into the selected time period. Hence, while the model’s memory structure
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may be potentially able to represent longer and subtler contextual dependencies,
the training algorithm ultimately controls what kind of mappings can be repre-
sented.

In recurrent neural networks the training algorithm also has to take stability
into account. Since the feedback connection may drive the context unit into un-
stable stage or into saturation, the feedback weights must be regulated during the
training. Also, in general the convergence into local minimum may not be certain,
and it may be difficult to choose the correct time to stop the training. In particular,
training the fully recurrent neural network may be complicated. The estimated
prediction error can oscillate during the training, and convergence into minimum
is not certain. In general, the outcome of the training depends upon the initial
parameters of the network and the training algorithm (Tsoi, 1998a).

In spite of the complications in the training, recurrent neural networks have
been popular subject for research. Most of the suggested architectures and algo-
rithms are based on some kind of restricted feedback, which makes the parameter
estimation easier. In practice, many of the proposed recurrent networks applied
in time series prediction have employed both time delay memory and recurrent
connections. Typically, the input to the model includes the tapped delay line, and
the context units are located in the hidden layer of the multilayer network. These
architecture are discussed next.

Recurrent Architectures

Recurrent connections can be added to layered architectures in several ways,
yielding a plethora of different recurrent architectures. An overview of different
recurrent neural network architectures was presented, and also a canonical form
of networks and transforming from one architecture to another were discussed in
(Tsoi, 1998b).

The most general network (and presumably also the most complicated) is the
fully recurrent neural network, proposed by many authors, see below. In this
architecture, there are no separate layers, no separate input layer or output layer.
All neurons are connected to all other neurons with one time unit delay. The input
is fed to some selected set of neurons, and similarly the output is read from some
selected set of neurons.

It is possible to build different network architectures by limiting the num-
ber and location of the recurrent connections. Most of these networks are built
by adding recurrent connections between or within the layers in a multilayer net-
work. These partly recurrent networks include e.g. Elman network (Elman, 1990),
which employs context units in the hidden layer. The outputs from the context
units are fed back to the input layer. In Jordan network (Jordan, 1986), context
units form a part of the input layer, and store previous values of the output layer
of the network. In (Williams and Zipser, 1989), a general network where the neu-
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rons can act as an input, an output, a hidden neuron, or a combination of input and
output was proposed. In addition, connections between the neurons may have a
time delay with adjustable weight.

Four different categories of architectures were proposed for identification pur-
poses in (Narendra and Parthasarathy, 1990). In the most general category, the
output of the model is formed by a nonlinear combination of both past input and
output values. This model is closely related to NARMAX neural networks, which
are nonlinear replacements of the ARX and ARMAX models (AR and ARMA
models with exogenous inputs) (Chen and Tsay, 1993). In Locally feedback neu-
ral network (Frasconi et al., 1992) the feedback connections are restricted between
neurons. Only recurrent connections from the output of the neuron back to its in-
put are allowed. Also different transfer functions may be utilized to build a longer
memory. In (Back and Tsoi, 1991), modifying the MLP by replacing the weights
with FIR or IIR filters was proposed. As discussed earlier, the case with the FIR
synapses corresponds to the TDNN. Furthermore, architectures have been pro-
posed to circumvent the limitations of the learning algorithms based on gradient
descent (Bengio et al., 1994; Hochreiter and Schmidhuber, 1997).

The vast number of different proposed architectures can be explained by the
shear number of possibilities. In general, restricted feedback allows for simpler
training algorithm, while in many practical situations it can still prove to be ade-
quate for modeling the phenomena of interest. Since the training of the recurrent
networks has been the most serious drawback of the models, it is natural that dif-
ferent models have been proposed. In the next section, learning algorithms for
recurrent neural networks are discussed.

Learning Algorithms

Backpropagation through time(BPTT) (Werbos, 1990), which was briefly dis-
cussed as a learning algorithm for TDNN, is a general algorithm which can also
train recurrent neural networks. The idea of unfolding the network in time can
also be utilized with recurrent connections. Since the feedback connections in
theory have an infinite memory, the BPTT must be truncated to take into account
only predefined number of previous time steps.

For instance, the output of the output layer depends on the current and previ-
ous outputs of the hidden layer (and if the output layer has feedback connections,
also on its previous values). In order to adjust the weights, the hidden layer is
replicated, such that each replicated layer has the output from one step further
into the past. The number of replications is restricted to some meaningful value.
During one training step, the weights are adjusted by standard gradient descent
rule, and the cumulative effect of the adjustments from previous time steps are
finally summed together to get the final adjustment the weights.
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Real time recurrent learning(RTRL) (Williams and Zipser, 1989) is another
algorithm proposed for training recurrent networks. As opposed to BPTT, the
training is carried out in “real time”, and the correction terms are calculated after
each time increment with each new input value to the network. Also RTRL is quite
heavy computationally. However, it has been shown that in the case of modifying
the RTRL algorithm to batch update, the BPTT and the RTRL are dual of one
another (Tsoi, 1998a).

These general algorithms (BPTT and RTRL) are seldom applied in practi-
cal problems as such. Often different approximations of the training rule are
employed, allowing faster computations or using less memory. The most sim-
ple approximation is to take into account only limited time period from the past
when training the network. Drawbacks of using BPTT or RTRL with recurrent
networks include the quite high computational and memory requirements. More
importantly, it has been shown that learning long term dependencies is difficult
with algorithms based on gradient descent (Bengio et al., 1994). Since the weight
adjustments are calculated as the gradients from the previous values, the adjust-
ments effectively diminish to negligible small when going further into the past.
Recall that with the TDNN the length of the delay lines restricts the length of
the sequences that the network can process, and thus the TDNN can in general
be trained with the BPTT. However, with the recurrent networks trained with the
BPTT (or more generally, by gradient descent algorithm) the length of the se-
quences that the network can represent is limited by the algorithm, not by the
network architecture.

3.4 Unsupervised Learning

Most recurrent neural networks are trained via supervised learning rules. Only
quite few unsupervised neural networks models have been proposed for temporal
sequence processing, although, it can be argued that in TSP unsupervised neural
networks could reveal useful information from the sequences at hand in analogy
to unsupervised neural networks’ reported power in cluster analysis, dimension-
ality reduction and visualization of their ’static’ input spaces. Moreover, in many
TSP applications unsupervised learning could utilize more effectively the avail-
able temporal data than supervised learning methods, because no preclassification
or prelabeling of the input data is needed. Based on the above the needs for
the unsupervised learning methods in TSP are immense. A recent review and a
taxonomy of unsupervised neural networks models capable of processing spatio-
temporal problems can be found in (de A. Barreto et al., 2003). Most of the
proposed models are based on the Self-Organizing Map.

The SOM in its basic form has no ability to process temporal context between
the input vectors. Several different modifications have been proposed to allow
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sequence processing with the SOM. In the following sections, a short review of
the SOM in sequence processing is first presented. Two modifications of the SOM,
Temporal Kohonen Map (TKM) and Recurrent Self-Organizing Map (RSOM) are
then presented in more detail.

3.4.1 Self-Organizing Map

In this section, the learning algorithm for the conventional SOM is first reviewed
shortly. The search criteria for the best matching unit (bmu), and the update rule
for the weights of the bmu and its neighbours are presented. In the proposed
architectures based on the SOM, these learning rules must be modified in order to
allow processing of sequences of input vectors.

Learning in SOM

The stochastic learning algorithm of the SOM is described next, since it can be
compared with the respective learning rules applied with the TKM and the RSOM.
However, in practice the batch learning algorithm is more frequently applied with
the SOM, since it allows more efficient and accurate estimation of the weights of
the map.

In the stochastic training algorithm of the SOM, one sample, the input vector
x(n) from the input space VI ∈ Rm , is selected randomly and compared against
the weight vector wi of the unit i in the (typically two-dimensional) map space
VM ∈ R2. The best matching unit b to given input pattern x(n) is selected using
some metric based criterion, such as

‖x(n) − wb(n)‖ = min
i∈VM

{‖x(n) − wi (n)‖} , (3.5)

where ‖‖ denotes the Euclidean vector norm. Initially all weight vectors are set
randomly to their initial positions in the input space. During the learning phase
the weights in the map are updated toward the given input pattern x(n) according
to

wi (n + 1) = wi (n) + γ (n)hib(n)(x(n) − wi (n)) , (3.6)

where i ∈ VM and γ (n), 0 ≤ γ (n) ≤ 1, is a scalar valued adaptation gain.
The neighbourhood function, hib(n), gives the excitation of unit i when the best
matching unit is b. A typical choice for hib is a Gaussian function hib(n) =
exp(−‖ri − rb‖2/σ(n)2), where σ controls the width of the function and ri , rb are
the SOM index vectors of the unit i and the best matching unit b.

During learning the function hib normally approaches delta function, i.e., σ

slowly approaches zero as training progresses. When good quantization is desired,
the map should be trained with only b in hib once the map has organized (Koho-
nen, 1997). During this quantization stage the gain has to be sufficiently small
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to avoid losing the map ordering, how small exactly varies from case to case. In
order to guarantee convergence of the algorithm, the gain γ (n) should decrease as
a function of time or training steps according to conditions (Ritter and Schulten,
1988):

lim
t→∞

∫ t

0
γ (t ′)dt′ = ∞ ,

lim
t→∞

∫ t

0
(γ (t ′))2dt′ = C, C < ∞ . (3.7)

If the map is trained properly, i.e the gain and the neighbourhood functions
are properly decreased over training a mapping is formed, where weight vectors
specify centers of clusters satisfying the vector quantization criterion:

E = min{
M∑

j =1

||xj − wb(xj )||}, (3.8)

where we seek to minimise the sum squared distance E of all input patterns,
xj , j = 1, ..., M , to the respective bmus with weight vectors wb(xj ).

When the SOM is applied as vector quantization method as described above,
it is closely related to k-means quantization, and becomes essentially equal to the
online k-means algorithm (Flexer, 2001). The difference is the ordering of the
codebook vectors in the SOM, which results from the employed neighbourhood
function. Also, in k-means, the objective is to select the number of code book vec-
tors k such that each code vector corresponds to one cluster in the observed data,
while in the SOM the number of units in the map can be much larger. Further-
more, in a more typical case, the neighbourhood of the SOM is not set to exactly
zero at the end of the training. In this case Equation 3.8 does not hold.

As has been discussed before, the SOM is typically applied in data exploration
because of its prominent visualization properties. In visualization, the number of
units in the SOM may be large, and the neighbourhood function essentially pro-
vides reguralization which allows smooth mapping of the input space. The SOM
can also be employed as an intermediate method in data clustering, providing
clustering via visualization. For instance, k-means can cluster the weight vectors
of the SOM built from the observed data. Also other methods can be applied to
find more quantative information from the generated SOM, such as summaries
and interesting groupings of map units (see e.g. Vesanto and Alhoniemi (2000)).

SOM in Sequence Processing

The first popular applications of the SOM in sequence processing exploited the
trajectory of the best matching units. In this approach, no changes are made to the
SOM itself, rather it is used for dimensionality reduction. Subsequent processing
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of the bmu trajectories was applied for instance in the Phonetic Typewriter (see
e.g.Kohonen (1989)) application, where the speech was converted into writing in
real time.

The proposed methods for extending the SOM can be divided in three classes.
In the first class, recurrent connections or time delay memories are added to the
units in the map. The memory can store past inputs, past activations, or past
errors of each unit. The map itself has a single layer structure similar to the
conventional SOM. The search method for the bmuof the map, and the learning
rule for updating the weights in the map are modified to take into account the effect
of the stored past. The TKM (Chappell and Taylor, 1993) and the RSOM (Varsta
et al., 1997a,b) belong to this class. These maps are discussed in Sections 3.4.2.
and 3.4.3. The Recursive SOM (RecSOM) proposed in (Voegtlin, 2002), belongs
also into this class, and was shown to be able to learn local representations of
temporal sequences. In RecSOM, the map has one layer and each unit of the map
has two weight vectors, wx and wy, that are compared to the input vector x(n), and
to the activities at the previous time step, y(n − 1), respectively. The bmuof the
RecSOM is searched in the same way as in the SOM, by taking into account both
weight vectors. In order to prevent unstable representation, a nonlinear transfer
function updates rule of the weights wy, which include the feedback. The weights
wx are updated as in the SOM.

In the second class, two or more SOMs are employed as a hierarchical struc-
ture. Recurrent connections or time delay memories can be used to store past
activations of bmu trajectories of the first map, which are then fed to the subse-
quent maps. In (Kangas, 1994) a hierarchical model which has two layers with an
integrating memory connecting the maps was proposed. The first map performs
a nonlinear transformation of the data. The transformations are stored in the in-
tegrating memory, which serve as the input for the second map. In (Carpinteiro,
1999) a hierarchical SOM was proposed, which resembles the model by Kangas.
The model utilizes an integrating memory in both maps, and includes a nonlinear
transformation between the maps.

In the third class, the Euclidean distance measure which typically determines
the bmu, is replaced with another operator. These operators can be defined ac-
cording to the application. In (Lampinen and Oja, 1989), the Self-Organizing
Map of competing autoregressive models (AR-SOM) was proposed. Here every
unit of the SOM represents an autoregressive (AR) model with its reference vec-
tor. In AR-SOM, the parameters of the AR models are updated by an adaptive
least mean squares method. The bmusearch method is modified to take into ac-
count several past input vectors in order to make it more robust against outliers.
Furthermore, operator maps utilizing dynamic time warping (DTW) and Hidden
Markov models (HMM) have been proposed (see e.g. Somervuo (2000)). DTW
is an algorithm for comparing a sequence of observations with a reference or a
template sequence (see e.g. Sakoe and Chiba (1978)). In DTW-SOM each unit in
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the map is associated with a reference sequence, and DTW algorithm is applied
for searching the bmu. The flexibility of the DTW matching allows comparing
sequences of different lengths, which makes it appropriate for speech processing.
Hidden Markov models were applied in the state space map (Somervuo, 2000) to
replace the Euclidean distance operators in the map units. Here a trajectory of
bmus corresponding the input vector sequence is searched by Viterbi algorithm.
Each input vector is then associated with certain bmu, which represents one of the
HMM states.

In the rest of this section, two modifications to the SOM, namely the TKM
and the RSOM, are presented in more detail. These maps belong to the first class
of the modifications of the SOM discussed above.

3.4.2 Temporal Kohonen Map

The TKM was proposed by Chappell and Taylor (1993) as a modification to the
original SOM. This modification is not only capable of separating different input
patterns but is also capable of giving context to patterns appearing in sequences.
In the TKM the involvement of the earlier input vectors in each unit is represented
by using a recursive difference equation which defines the current unit activity as
a function of the previous activations and the current input vector.

The outputs of the normal SOM are reset to zero after presenting each input
pattern and selecting the bmuwith the typical winner take all strategy, hence the
map is sensitive only to the last input pattern. In the TKM the sharp outputs are
replaced with leaky integrator outputs which, once activated, gradually lose their
activity.

The modeling of the outputs in the TKM is close to the behaviour of natural
neurons, which retain an electrical potential on their membranes with decay. In
the TKM this decay is modeled with the difference equation:

Vi (n) = dVi (n − 1) − (1/2)‖x(n) − wi (n)‖2 , (3.9)

where 0 < d < 1 can be viewed as a time constant, Vi (n) is the activation of the
unit i at step n, wi (n) is the reference or the weight vector in the unit i and x(n) is
the input pattern. Now the best matching unit b is the unit with maximum activity.
Equation 3.9 has the following general solution:

Vi (n) = −(1/2)

n−1∑
k=0

dk‖x(n − k) − wi (n − k)‖2 + dnVi (0) , (3.10)

where the involvement of the earlier inputs is explicit. Further analysis of Eq. 3.10
shows how the optimal weight vectors in the vector quantization sense can be
solved explicitly when n is assumed to be sufficiently large to render the last
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residual term corresponding to initial activity insignificant. The analysis, when
wi is assumed constant, goes as follows:

∂V(n)

∂w
= −

n−1∑
k=0

dk(x(n − k) − w). (3.11)

Now, when w is optimal in the vector quantization sense (Eq. 3.8) the derivative
in Eq. 3.11 is zero as this minimises the sum in Eq. 3.10. Hence substituting the
left hand side of Eq. 3.11 with 0 yields:

0 = −
n−1∑
k=0

dk(x(n − k) − w) ,

w =
∑n−1

k=0 dk(x(n − k))∑n−1
k=0 dk

. (3.12)

The result shows how the optimal weight vectors in the vector quantization sense
are linear combinations of the input patterns. Since the TKM is trained with the
normal SOM training rule, it attempts to minimise the normal vector quantization
criterion in Eq. 3.8, which is other than the criterion suggested by Eq. 3.12. As a
consequence it appears that it may be possible to properly train a TKM only for
relatively simple input spaces.

3.4.3 Recurrent Self-Organizing Map

The RSOM was proposed in (Varsta et al., 1997a,b), and can be seen as an en-
hancement for the TKM. In brief, RSOM defines a difference vector for each unit
of the map, which is used for selecting the bmuand also for adaptation of weights
of the map. The difference vector captures the magnitude and direction of the
error in the weight vectors and allows learning temporal context. Weight update
is similar to the SOM algorithm—except that weight vectors are moved towards
cumulative sum of past difference vectors and the current input vector.

Some of the problems of the original TKM can be solved by relocating the
recurrent connection, giving rise to the modified TKM called Recurrent Self-
Organizing Map. In the TKM, the leaky integrator memory stores past activations
of each unit. Thus, the memory captures a linear sum of the squares of the past
difference vectors. In the RSOM, the whole difference vector is instead included
in the recurrent connection. Thus, the memory stores a linear sum of past dif-
ference vectors. While the difference between the maps may seem small, it is
significant, since it allows the definition of a simple SOM-like learning rule for
the RSOM (Varsta et al., 2001).

The difference vector yi (n) in each unit of the map is defined as

yi (n) = (1 − α)yi (n − 1) + α(x(n) − wi (n)) , (3.13)
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Figure 3.2: Schematic picture of an RSOM unit which acts as a recurrent filter.

Here 0 < α ≤ 1 is the leaking coefficient analogous to d in the TKM, yi (n) is
the leaked difference vector while x(n) and wi (n) have their previous meanings.
Schematic picture of an RSOM unit is shown in Fig. 3.2.

Large α corresponds to short memory while small values of α correspond to
long memory and slow decay of activation. In the extremes of α RSOM behaves
like a normal SOM (α = 1) while in the other extreme all units tend to the mean
of the input data.

Eq. 3.13 can be written in a familiar form by replacing x′
i (n) = x(n) − wi (n),

yielding:
yi (n) = (1 − α)yi (n − 1) + αx′

i (n); (3.14)

which describes an exponentially weighted linear IIR filter with the impulse re-
sponse h(k) = α(1 − α)k, k ≥ 0. For further analysis of the Eq. 3.14, see e.g.
(Proakis and Manolakis, 1992).

Since the feedback quantity in RSOM is a vector instead of a scalar it also
captures the direction of the error which can be exploited in weight update when
training the map. The best matching unit b at step n is now searched by

yb = mini {‖yi (n)‖} , (3.15)

where i ∈ VM . Then the map is trained with a slightly modified Hebbian training
rule given in Eq. 3.6 where the difference vector, (x(n) − wi (n)) is replaced with
yi . Thus the unit is moved toward the linear combination of the sequence of input
patterns captured in yi .

Repeating the mathematical analysis on RSOM earlier done with the TKM in
Eqs. 3.11 and 3.12 yields:

y(n) = α

n∑
k=1

(1 − α)(n−k)(x(k) − w). (3.16)

The square of the norm of y(n) is

||y(n)||2 = α

n∑
k=1

(1 − α)(n−k)(x(k) − w)T (x(k) − w). (3.17)
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Optimizing the vector quantization criterion given in general form in Eq. 3.8 with
respect to y yields the following condition:

∂||y(n)||2
∂w

= −2α

n∑
k=1

(1 − α)(n−k)(x(k) − w) = 0, (3.18)

when w is optimal. The optimal w can be analytically solved:

w =
∑n

k=1(1 − α)(n−k) x(k)∑n
k=1(1 − α)k

. (3.19)

From Eq. 3.19 one immediately observes how the optimal w’s are linear combi-
nations of the x’s. Note how this result is essentially identical with the result in
Eq. 3.12 so it might seem that the algorithms are essentially the same. However
since the RSOM is trained with the y’s it seeks to minimise the quantization cri-
terion suggested by Eq. 3.18 while the TKM seeks to minimise the normal vector
quantization criterion in Eq. 3.8. Nevertheless the resolution of the RSOM is lim-
ited to the linear combinations of the input patterns with different responses to the
operator in the unit inputs. If a more sophisticated memory is required one has to
resort to hierarchical maps or operator maps as discussed before.

A more detailed comparison of the RSOM and the TKM, both analytical and
experimental, was presented in (Varsta et al., 2001). It was shown that the RSOM
is a significant improvement over the TKM, because the RSOM allows simple
derivation of a consistent learning rule.





Chapter 4

Case Studies in Temporal
Sequence Processing

4.1 Introduction

In this chapter, the RSOM is presented as a method for TSP. Specifically, temporal
sequence prediction problem is considered. A local model approach is proposed,
which is based on applying the RSOM for clustering the input pattern sequence,
and estimating local models corresponding to each cluster. A modification to the
training algorithm of the RSOM is proposed, which enables applying the model
in temporal sequence prediction. Also the methods for model selection and esti-
mation are presented.

In order to study the properties of the proposed method, case studies are pre-
sented where linear and nonlinear models, as well as global model and local model
approaches are applied in TSP. In the case studies, four different time series pre-
diction problems are presented and the results analysed. Each time series repre-
sents a different system, which is modeled by predicting the future of the series.
The time series were selected based on the type of the system that the series char-
acterizes, the availability of long enough series to be analysed, and also the pop-
ularity of the series in other case studies presented previously. Since each case
represents a different system, the performance of the model in these cases gives
also valuable knowledge about its applicability in time series prediction tasks in
general.

Results from the first three cases have been published in (Koskela et al.,
1998b,a). Contributions of the author in these publications include the proposed
episode learning for the RSOM and the implementation of the model selection.
Also all presented case studies were performed by the author. The main objective
here was to study the performance of the proposed RSOM model and learning
algorithm, by comparing the gained prediction results with other methods. The
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prediction task in all cases was one-step prediction, and all series are univariate,
consisting of observations of one variable. The first series represents a chaotic
system, the second series consists of hourly measurements of electricity consump-
tion, and the third series consist of measurements of the intensity of an infrared
laser. From each series four cross-validation data sets were generated for model
selection purposes. The same data sets were used for all models to prevent biasing
the results based on different data sets.

The fourth case involves using RSOM with local models in multivariate time
series prediction. The river flow is predicted based on daily measurements of
three variables: river flow, temperature, and precipitation Also in this case, one-
step prediction problem was considered, and cross-validation scheme was applied
for model selection. The objective of this case was to study in more depth the
properties of the RSOM model. For this purpose, plots and graphs are used for
visualizing the model predictions. Also clustering of the input patterns, or “tem-
poral quantization”, realised by the RSOM is visualized. Prediction results gained
with the RSOM model are in this case compared with earlier published results.

In the following sections, the models applied are first reviewed, and their im-
plementation in the prediction task is discussed. Then the four cases are presented,
and finally discussion based on the results is presented.

4.2 Models

The models which were applied include linear and nonlinear regression models.
The basic AR model was selected to act as the “baseline” model and the MLP was
employed as a nonlinear model. The RSOM with local linear models is compared
to these baseline models. The more advanced neural network methods, such as the
TDNN or recurrent NN, were not considered in these comparisons. Reasons for
this include restricting the number of models, and relatively high complexity of
the parameter estimation and model selection processes involved in these models.
In the next sections, the usage of the selected models in time series prediction is
presented.

4.2.1 Recurrent SOM

The RSOM was discussed in Section 3.4.3. In this section, implementation of the
RSOM in TSP is presented. In the RSOM the feedback in the difference vectors
allows the past to affect the mapping that is formed, thus it can be described to re-
alize “temporal quantization” of the input vectors. In the conventional SOM, only
the current input vector affects the mapping. The RSOM can separate input vector
sequences based on the context stored in the difference vectors. The limitations of
the stored context were analysed in (Varsta et al., 2001). Essentially, the context
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stored in the difference vectors is limited to linear combinations of the past input
vectors.

The best matching unit (bmu) of the RSOM at each time is selected accord-
ing to the (Euclidean) norm of the difference vectors. Hence the selection of the
bmuis dependent on every input fed to the map starting from the beginning of the
series. This suggests that the updating rule for the parameters of the map should
include the whole history of the inputs. In this case, however, it is noticed that the
effect of the feedback goes quickly toward zero in time. Since the computations
are implemented with limited accuracy, this occurs with certain number of itera-
tions. Hence the difference vector can be approximated by using certain number
of past samples of the input vectors.

Based on this approximation, the learning algorithm of RSOM is implemented
as follows. The map is presented an episodeof consecutive input vectors starting
from a random point in the data. The number of vectors belonging to the episode
is dependent on the leaking coefficient α of the units. At the end of the episode,
the impulse response h(k) of the recurrent filter (see Fig. 3.2) is below 5 % of the
initial value. The bmu is selected at the end of the episode based on the norm of
the difference vector. The updating of the vector and its neighbours is carried out
as in Eq. 3.6. After the updating, all difference vectors are set to zero, and a new
random starting point from the data is selected. The above scenario is repeated
until the mapping has formed.

Figure 4.1 shows the procedure for building the models and evaluating their
prediction abilities with testing data. The time series is first divided to training and
testing data. Input vectors to RSOM are formed by delay coordinate embedding,
i.e. “windowing” the series. For model selection purposes the training data is
divided to cross-validation data sets. Here v-fold cross-validation is applied, in
which the training data is first divided to v disjoint subsets. Cross-validation error
then gives an estimate of the generalization error of the model.

In training phase the free parameters of RSOM include length of the input
vectors, time step between input vectors, leaking coefficient in the units and the
number of RSOM units. The episode length is dependent on the leaking coef-
ficient as described earlier. After the training the RSOM is employed to divide
(cluster) the data into local data sets according to the bmu on the map. Linear
regression models, that have the same number of parameters as the vectors of
RSOM units, are then estimated using these local data sets. The prediction error
for each model consisting of RSOM and associated local model is estimated using
cross-validation error. Finally, the best model according to cross-validation error
is selected. The selected model is trained again with the whole training data. This
model is then applied in predicting the test data set that has not been presented to
the model before.

The RSOM with local linear models were estimated as follows: The input
vector length p, time step between consecutive input vectors s, number of units
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Figure 4.1: Schematic picture showing the procedure for building the RSOM and local
models, and evaluating their performance with the test data.

nu and the leaking coefficient α of the units in the map were free parameters
giving rise to model RSOM(p, s, nu, α). In the studied cases the number of
RSOM units was varied as nu ∈ {5, 9, 13}, and the leaking coefficient was varied
as α ∈ {1.0, 0.95, 0.78, 0.73, 0.625, 0.45, 0.40, 0.35} corresponding to episode
lengths 1, ..., 8. The time step between consecutive input vectors was varied as
s ∈ {1, 3, 5} while the length of the input vector p was varied differently in the
cases as described later. The number of linear regression models equals the num-
ber of RSOM units nu. The order of the regression models equals the length of
the vectors p in RSOM units. Local model parameters were estimated with least
squares algorithm, by using the data for which the corresponding RSOM unit was
the bmu.

It should be noted that the RSOM corresponds to the conventional SOM when
the value of the leaking coefficient α equals 1, and the episode length is also 1.
In the subsequent prediction cases, the results were also reported for this case.
The benefits of the RSOM compared to the SOM in the presented cases can be
estimated from these results.

4.2.2 Multilayer Perceptron Network

The MLP was selected as the baseline global nonlinear model for the time series
prediction cases. Using the MLP in TSP was discussed in Section 3.3.2. Here
the time series is converted by delay coordinate embedding into input patterns,
and consequently static MLP architecture and learning algorithms can be applied.
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Using the MLP in this way corresponds to using a TDNN, which has tapped delay
lines only in the input layer. The benefits and restrictions of time delay memories
apply also in this case. More specifically, in the MLP the information between
consecutive input patterns is lost. Also the length of the time context which can
be represented is restricted by the length of the input vectors.

However, in spite of the restrictions, the MLP has been successful in many
time series prediction cases (see e.g. Gershenfeld and Weigend (1993)). Further-
more, it has been proved that static MLP model implements some nonlinear gen-
eralization of usual statistical AR predictors (Lapedes and Farber, 1987). Thus,
the MLP can be employed as a nonlinear replacement of the conventional linear
models. Since the MLP is a semiparametric model, it can be adjusted according to
the complexity of the modeled process. If the modeled process contains nonlinear
dependencies, then the MLP can provide more accurate predictions than a linear
model. Another benefit of the MLP is the ability to “degrade gracefully” in the
case of unrepresentative input patterns (not seen in the training data). With appro-
priate training, the mapping from the input space to the output space is smooth,
and thus the MLP can typically interpolate and extrapolate better than a linear
model.

In the following cases, the MLP was implemented as follows. The weights
of the network were estimated with Levenberg-Marquardt learning algorithm. An
MLP(p,s,q)network with one hidden layer, p inputs and q hidden units was used.
Here s is the time step between consecutive input vectors. In order to make com-
parison of the results fair, parameters p and s were chosen to be the same as in
RSOM models. The number of hidden units was varied as q ∈ {3, 5, 7, 9}. The
training was performed five times for each MLP(p,s,q)model and for each cross-
validation data set with different initial weights. The smallest errors of each fold
of the cross-validation data sets were selected to get an estimate of the prediction
error. The model that gave the smallest cross-validation error was then trained
again with the whole training data, and evaluated with the test data.

4.2.3 Autoregressive Model

The Autoregressive (AR) model was selected as the baseline global linear model
for the time series prediction cases. The history of using AR models in time series
prediction, system identification and control is long, starting from the 1960’s.
The properties of linear models are well known, and efficient algorithms exist for
parameter estimation. Also, for AR and ARMA models, procedures for model
selection in time series prediction have been proposed, and are widely applied
(see e.g. Box et al. (1994)).

AR models relate the current value of a series x(n), to values of the series
exhibited in the past, x(n − k) : k = 1, 2, ..., p. Autoregressive model of order p,
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denoted AR(p), is defined by

x(n) = a0 +
p∑

k=1

a(k)x(n − k) + ε(n) , (4.1)

where the model parameters a(k), autoregressive coefficients, do not vary with
time. ε(n) is the noise term consisting of series of independent, zero mean, con-
stant variance, normally distributed stochastic variables. AR(p) models with p
inputs were estimated by using the least-squares algorithm. The order of the AR
model was varied as p ∈ {1, ..., 50}. The same cross-validation scheme as with
other models was applied. In this case the prediction errors serve as an example
of the accuracy of a global linear model in the current tasks.

4.3 Mackey-Glass Chaotic Series

Description

The first of the test cases is the Mackey-Glass time series, produced by a time-
delay difference system of the form (Mackey and Glass, 1977):

dx

dt
= βx(t) + αx(t − γ )

1 + x(t − γ )10
(4.2)

where x(t) is the value of the time series at time t . This system is chaotic for
γ > 16.8. In the present test the time series was constructed with parameter
values α = 0.2, β = −0.1 and γ = 17 and it was scaled between [-1,1]. From the
beginning of the series shown in Fig. 4.2 3000 samples was selected for training,
and the rest 1000 samples were left for testing. For RSOM and MLP models
length of the input vector was varied as p ∈ {3, 5, 7}.
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Figure 4.2: Mackey-Glass chaotic time series.
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Prediction Results

The sum-squared errors gained for one-step prediction task are shown in Table 4.1.
The MLP(3,1,7) model gives the smallest cross-validation error but fails to predict
the test set accurately. This result suggest that the model selection procedure was
not successful in this case. For the AR(2) model the results are opposite. AR
model does not model here the underlying phenomena, instead it predicts the next
value of the series using mainly the previous value. This scheme gives in this case
the best prediction accuracy. RSOM(3,1,5,0.95) gives moderate accuracy for both
cross-validation and test data sets. Closer inspection revealed that most of the
error were due to large prediction errors for the first samples of the series, while
the rest of the series were predicted with similar accuracy to the AR model. It is
noted that the conventional SOM with local models yields almost identical results
to RSOM. This was expected since in the RSOM with leaking coefficient value
0.95 the stored temporal context is quite limited.

Table 4.1: One-step prediction errors for Mackey-Glass time series.

CV Error Test Error
SOM(3,1,5) 6.6353 3.1162
RSOM(3,1,5,0.95) 6.5556 3.1115
MLP(3,1,7) 0.3157 3.7186
AR(2) 4.1424 1.600

4.4 Electricity Consumption

Description

Electricity consumption series contains measured load of an electric network.
Measurements contain hourly consumption of electricity over a period of 83 days
(2000 samples). The series was rescaled between [-1,1]. From the beginning of
the series shown in Fig. 4.3, 1600 samples were selected for training, and the rest
400 samples were left for testing. For RSOM and MLP models length of the input
vector was varied as p ∈ {4, 8, 12}.

Prediction Results

The sum-squared errors gained for one-step prediction task are shown in Table 4.2.
The electricity consumption series contains 24 hours long cycle and also slower
trend and noise in the form of measurement errors.
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Figure 4.3: Electricity consumption time series.

AR(30) model is found to reach quite acceptable results, due to the fact that
model includes the whole 24 hour cycle. As the results with MLP(8,1,9) model
show, nonlinear model can reach better predictions with a shorter window length.
In this case RSOM(8,1,13,0.73) model does not give any improvement due to
the insufficient input vector length used in model estimation. Furthermore, with
conventional SOM model the cross-validation error is almost the same as with the
RSOM, but with a shorter input vector. However, results with the test data show
that the RSOM can reach more accurate predictions.

Table 4.2: One-step prediction errors for electricity consumption time series.

CV Error Test Error
SOM(4,1,13) 18.2537 3.1231
RSOM(8,1,13,0.73) 18.0673 2.6735
MLP(8,1,9) 7.6007 1.4345
AR(30) 6.5698 2.1059

4.5 Laser Fluctuations

Description

Laser time series consists of measurements of the intensity of an infrared laser
in a chaotic state. Explicit measurement conditions and the theory of the chaotic
behaviour in the series is given in (Weigend and Gershenfeld, 1993). The data
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is available online 1. The training data contains first 2000 samples of the laser
series as depicted in Fig. 4.4. The rest 1000 samples were left for the testing.
Both series were scaled between [-1,1]. For RSOM and MLP models length of
the input vector was varied as p ∈ {3, 5, 7}.
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Figure 4.4: Laser time series.

Prediction Results

The sum-squared errors gained for one-step prediction task are shown in Table 4.3.
The laser series is highly nonlinear and thus the errors gained with AR(12) model
are considerably higher than for other models. The series is also stationary and
almost noiseless, which explains the accuracy of the MLP(9,1,7) model predic-
tions. In this case RSOM(3,3,13,0.73) gives results that are better than with AR
model but worse than with MLP model. SOM with local models seem to perform
similarly to RSOM according to cross-validation error, but with the test data the
predictions with RSOM are substantially more accurate.

Table 4.3: One-step prediction errors for laser time series.

CV Error Test Error
SOM(3,1,13) 15.4727 12.1527
RSOM(3,3,13,0.73) 14.6995 7.3894
MLP(9,1,7) 4.9574 0.9997
AR(12) 69.8093 29.8226

1http://www-psych.stanford.edu/%7Eandreas/Time-Series/SantaFe/ containing files A.dat (first
1000 samples) and A.cont (as a continuation to A.dat 10000 samples)
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4.6 Riverflow Series

Description

The fourth time series case involves predicting the river flow based on observa-
tions of the flow, mean temperature and precipitation. The mean daily flow of
Jökulsa Eystri River in Iceland was observed during the period Jan. 1, 1972 -
Dec. 31, 1974. Daily precipitation and mean daily temperature were observed
in Hveravellir. There are 1096 observations of all three variables. An important
hydrological feature of this river is that there is a glacier on the drainage area.
Consequently, temperature has certain influence on the riverflow besides melting
the snow. These datasets has been analysed by various nonlinear modelers. For
further information on the data, see the book by (Tong, 1990). The data is avail-
able online in the Time Series Data Library 2. Figure 4.5 shows the riverflow
(m3/s), temperature (degrees of Celsius), and precipitation (mm/day).

The riverflow depends on the previous flow, the precipitation and the temper-
ature. During winter, precipitation does not affect the riverflow, since the rain
consist of snow. During summer, precipitation will affect the riverflow after cer-
tain delay. During spring, when the temperature is below 1 degrees, riverflow is
not significantly affected. When the temperature rises above 1 degrees, the river-
flow on the next day increases substantially due to snow melting.

RSOM Models

For this case, only RSOM model was applied. Prediction results gained with other
models are summarized in Table 4.6 and referred to (Chen and Tsay, 1993).

The input variables of the model were chosen based on the previous results.
The input vectors for the RSOM contained ordered triplets of temperature t , pre-
cipitation p and flow v. The number of these triplets was varied as {2, 3, 4},
and the length of the RSOM input vectors was p ∈ {6, 9, 12}, respectively. For
instance, the input vector containing observations from two previous days was
x(k) = {t (k − 2), p(k − 2), v(k − 2), t (k − 1), p(k − 1), v(k − 1)}, where k
is the time index. The desired output of the model was y(k) = v(k). Stepsize
between consecutive input vectors was not varied in this case. The time index k
went through all the values in the sample k = {1, 2, ..., N}.

The number of RSOM units was varied as nu ∈ {5, 9, 13} and the leaking
coefficient α ∈ {1.0, 0.95, 0.78, 0.73, 0.625, 0.45, 0.40, 0.35} corresponding to
episode lengths {1...8} as with the previous cases presented. Data from the first
two years was selected for training, and the third year was kept aside for testing.
All series were scaled to unit variance. The training data set was used in estimating
the variance of each variable.

2http://www-personal.buseco.monash.edu.au/%7Ehyndman/TSDL/
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Figure 4.5: From top to bottom: Daily riverflow (m3/s), daily temperature (Celsius) and
daily precipitation (mm/day).

Prediction Results

4-fold cross-validation errors and test data errors are shown in Table 4.4. In or-
der to conform with previously published results (Chen and Tsay (1993)), mean
squared error is reported. The best models using observations from 2, 3 and 4
previous days as inputs are shown. As with previous cases, the best models ac-
cording to cross-validation error were built again by using the whole training data,
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and applied in one-step prediction of the test data. The smallest cross-validation
error is gained with model RSOM(6,1,5,0.78), which includes 2 previous values
from each variable as the input, has 5 local models, and the leaking coefficient α

has value 0.78.

Table 4.4: One-step prediction errors for river time series.

CV Error Test Error
RSOM(6,1,5,0.78) 43.76 70.29
RSOM(9,1,5,0.95) 49.84 69.81
RSOM(12,1,5,0.35) 49.27 77.21

Figure 4.6 shows how the RSOM clusters the training data, in the case where
the input vectors contain four previous values of each variable. The clustering is
presented for model RSOM(12,1,5,0.35), which gave the smallest cross-validation
error in this case. In the figure, each variable, temperature t , precipitation p, and
flow v is visualized separately. The weights of the RSOM units are plotted with
different markers. The mean value of the input patterns for each unit is plotted
with solid line, and the interquantile range (25% and 75%) is plotted with dotted
line. Precipitation is plotted in logarithmic scale. From the figure it can be seen,
that RSOM units are ordered according to temperature (top row) and flow (bottom
row). For precipitation such ordering is not achieved, instead unit 3 represents a
wide range of values.

Following figures are presented for the test data, which was not used dur-
ing the model estimation. The results from the best model according to cross-
validation error, RSOM(6,1,5,0.78), are viewed in these visualizations. Figure 4.7
shows the scatterplot of the flow as a function of the temperature, and Figure 4.8
as a function of the precipitation for the test data. The division of the data for
the local models according to RSOM(6,1,5,0.78) is shown with different markers.
Also in this case, the RSOM has 5 units, and thus there are 5 local models. It
can be seen from the figures, that local models 5 and 4 are responsible for lower
temperatures, when the rain consist mostly of snow. Model 3 is responsible for
the heavy rain periods, while the model 1 is applied during flood. Model 2 seems
to be a more general model. These results agree with the clustering achieved for
the training data shown in Figure 4.6, where four previous values of each variable
were included in the model.

Figure 4.9 and Figure 4.10 show the the change in riverflow between current
and previous day divided by the change in precipitation and temperature, respec-
tively, as a function of the temperature for the current day. From these figures
it can further be seen, that local model 3 is also responsible for predicting the
changes in the flow when the temperature is below zero, and that the flow during
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Figure 4.6: Clustering of the training data realised by the RSOM(12,1,5,0.35) model.
Input vector contains four values of each variable. Temperature t is shown on the top,
precipitation p in the middle, and flow v at the bottom row. Columns represent each
RSOM unit (1...5), respectively.

−15 −10 −5 0 5 10 15
20

40

60

80

100

120

140

Temperature

F
lo

w

1
2
3
4
5

Figure 4.7: The flow as a function of temperature showing the corresponding RSOM
local models for the test data.

the warmest days is predicted by local model 2.

Figure 4.11 shows the RSOM model predictions for the spring period in the
test data. River flow is plotted with solid line and dots marking the observed
data, and model predictions with dashed line. The local model applied in each
prediction is indicated with different markers. From the shown time period it is



80 Case Studies in Temporal Sequence Processing

10
−1

10
0

10
1

10
2

20

40

60

80

100

120

140

Precipitation

F
lo

w

1
2
3
4
5

Figure 4.8: The flow as a function of precipitation showing the corresponding RSOM
local models for the test data. The precipitation is plotted on logarithmic scale.
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Figure 4.9: ∂v/∂p shown as a function of temperature calculated from the test data.

noticed that the largest prediction errors occur during the floods. The first flood in
the figure is due to snow melting, and the second is mostly due to heavy rainfall.

Figure 4.12 shows the autocorrelation estimates for the prediction error resid-
uals calculated from the test data. There seems to be a noticeable correlation
between the prediction errors and the river flow with 2 days delay. However,
closer inspection of the prediction errors revealed that the estimate was inaccu-
rate. Since the test data contained only 365 samples, the two largest prediction
errors, also visible in the Figure 4.11, caused the estimate to be inaccurate.

In order to analyze the models more thoroughly, one-step prediction errors
were also calculated for other RSOM models, which were rejected based on the
cross-validation criterion. Models giving the smallest error for testing data are
shown in Table 4.5.
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Figure 4.10: ∂v/∂t shown as a function of temperature calculated from the test data.

110 120 130 140 150 160 170

40

60

80

100

120

140

160

Days

F
lo

w

1
2
3
4
5

Figure 4.11: RSOM model predictions for the riverflow in the test data, showing the
largest prediction errors.

It is noted that the best model according to cross-validation criterion does not
give the best performance for the test data. Also, cross-validation seems to favor
smaller models, since the number of RSOM units was 5 in all three cases. These
results can be explained to be due to insufficient or unrepresentative training data,

Table 4.5: Smallest one-step prediction errors for river time series.

Train Error Test Error
RSOM(6,1,13,0.73) 17.96 65.75
RSOM(9,1,9,0.73) 18.06 67.76
RSOM(12,1,9,0.73) 17.19 63.36
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Figure 4.12: Autocorrelation estimates for the RSOM model prediction error residuals
calculated from the test data.

or inaccurate model selection procedure.
It is evident that the training data set is somewhat unrepresentative. The test

data set contains more rainfall than the training data, and also the variance of
the precipitation is larger in test data. Specifically, during three days the rainfall
exceeds all previously observed values. Prediction errors for these days only can
dominate the overall result, and add to the uncertainty of the model selection
process.

Results with 4-fold cross-validation may be inaccurate due to splitting the
data to four large blocks for the cross-validation. As a consequence, the training
data portion for each 4-fold case doesn’t have equal amount of data from each
season of the year. Taking this into account, a better suited strategy could be
splitting the data by using a smaller block size for the cross-validation, and using
e.g. 3 months/weeks for the training, and leaving the 4th month/week for the
testing. However, smaller block size for cross-validation was not tested, since it
would have reduced the usable training data and increased computational burden
and complexity of the model selection. Having more blocks reduces the number
of available training data, since the first samples in the block cannot be used in
estimating the model parameters. This is because the episode learning of the
RSOM. Also, the model selection procedure becomes more complicated and time
consuming when the number of blocks increases. Recall that RSOM weights have
to be estimated first, after which the local model parameters can be estimated.
These steps have to be repeated v times for v-fold cross-validation.

One-step prediction errors for Linear, TAR and NARX models (presented in
Chen and Tsay (1993)) and for RSOM model are compared in Table 4.6. While
the TAR and the NARX models applied also current values of the precipitation
and temperature in predicting the river flow, in RSOM only observations from the
previous days were included. Taking this into account, as well as the best results
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Table 4.6: Comparison of linear, TAR, NARX and RSOM models.

Linear TAR NARX RSOM
81.99 66.67 65.52 70.29

gained with RSOM for the test data, it can be argued that the prediction ability of
the RSOM with local models is similar to the best piecewise linear models.

4.7 Discussion

Time series prediction using the RSOM with local linear models has been pre-
sented. For the selected prediction tasks this approach gives promising results.

However, the prediction accuracy of the RSOM model in the one-step predic-
tion tasks was in some cases somewhat disappointing. It can be argued that the
prediction accuracy of the model should be at least the same as with pure linear
models. Due to the selection of the RSOM parameters, this was not achieved in
all cases. However, in the case of highly nonlinear laser series the RSOM model
gave considerably better prediction results than linear models. Also, in the studied
cases the MLP seems to perform better than the RSOM. This is mainly due to the
selected one-step prediction problem, where the MLP could yield the underlying
mapping effectively. Another reason for the RSOM not achieving as good results
as the MLP is the linear models employed.

The prediction results of the RSOM model were in all studied case better than
with models using the conventional SOM as the clustering method. These results
can be explained to be due to at least two characteristics of the RSOM. Firstly, it
can be argued that the RSOM finds underlying dependencies between the consec-
utive input vectors, thus providing a better representation of the temporal context.
This representation is then utilized by the local linear models, and ultimately leads
to better accuracy in predictions. Secondly, it can be argued that the RSOM is less
sensitive to outliers and noise in the data, since the selection of the bmu is de-
pendent on several past input vectors. The recurrent connection acts as a filter,
dampening the effect of noise in the sequence of input vectors, leading to a more
robust selection of local model at each time step.

Compared with other clustering algorithms, both RSOM and SOM provide
more attractive visualization possibilities. In the case studies, visualizations based
on the topology of the map were not exploited to the full potential of the SOM.
For instance, in the case of two-dimensional map, the state changes of the process
can be visualized with the location of the bmuin the map as a function of time. It
could be expected that this visualization capability is perhaps the most important
point in using the RSOM instead of other clustering algorithms.
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Another attractive property of the RSOM is the unsupervised learning of the
context from the data. It allows building models from the data with only a little
a priori knowledge. The selection of the value of the leaking coefficient α can be
handled as model selection problem, by applying cross-validation or other means
for estimating the generalization ability of the model.



Chapter 5

Application in Web Cache
Optimization

5.1 Introduction

In this chapter, a novel approach to Web cache optimization is proposed. The
method is based on applying a statistical model to classify cache objects based on
syntactic features extracted from the objects. The main content of this chapter has
been published in (Koskela et al., 2003). The author acted in a leading role in all
aspects of this publication. Contributions of the author include the proposed ap-
proach for Web cache optimization, conducting a case study where this approach
is tested, running all simulations and analysing the results.

Web caching is a technique which aims to reducing WWW network traffic and
improving response time for the end users. Modern computers and their CPUs,
operating systems and distributed file systems have caches for data accesses be-
tween clients and servers. In all of these systems, caches work well because it is
very likely that some piece of data will be accessed repeatedly. Access delays are
minimised by keeping popular data close to the entity which needs it.

The same holds true for the Web as well. Especially proxy caches have some
very attractive advantages when implemented correctly. The proxy caches can be
accessed simultaneously and they can be shared by many users. They are often
located near network gateways to reduce the bandwidth required over expensive
dedicated Internet connections. As a disadvantage, caching can lead to increased
latency or to providing outdated documents to users. Also the rate of change in
today’s Web is very fast, which tends to make the caching less attractive (Douglis
et al., 1997).

Since the storage capacity of the cache is limited, cached objects must be
removed from the cache when new objects are brought in. The decision which
objects to remove is made by a caching policy algorithm (also called replacement
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policy or removal policy). The problem is to find the value of an object, and
whether it should be cached, without dramatically increasing computation and
communication overheads. Most Web caches still apply traditional heuristic rules
as caching policies. For instance, Least Recently Used (LRU) is simple to imple-
ment and efficient in the case of uniform size objects, like in the memory cache.
However, since it does not consider the size or the download latency of documents,
it does not perform well in Web caching (Williams et al., 1996). Consequently,
designing a better suited caching policy that would optimize the performance of
the Web cache has been under a continuous research. Several different algorithms
have been proposed for this task (Williams et al., 1996; Cao and Irani, 1997; Rizzo
and Vicisano, 2000).

Most of the caching policies estimate a value (or cost) for each cache object.
When the cache is full, objects with the lowest value are first removed from the
cache. There is a number of different ways to estimate the object’s value. The
simplest rules, such as LRU, take into account only the request statistics of the
object. The more advanced policies try to estimate a more realistic value of the
object by utilizing some statistics from the network and the server involved.

Both semantic and syntactic information from the cached object might be uti-
lized in the caching algorithm. In the syntactic case information can be gathered
from the HTTP (Hypertext Transfer Protocol) responses of the Web server and
from the HTML (Hypertext Markup Language) structure of the object. Extracting
syntactic information does not involve complex calculations and decisions about
the type of the features. On the other hand in applications such as document cat-
egorization, semantic information is frequently extracted (Kohonen et al., 2000).
However, in the case of the caching algorithm, extracting semantic features e.g.
word frequencies from each cached object would not be sensible, hence this ap-
proach is not discussed further.

In this chapter, a method which is based on using all useful syntactic infor-
mation in the caching algorithm is proposed. The proposed method is based on
using a model to predict the value of each cache object. If these values can be
predicted correctly, usage of the cache can be optimized irrespective of the objec-
tives. Inputs of applied models consist of numerical features which are extracted
from the HTTP responses of the WWW server and from the HTML structure of
the document. Using only syntactic information simplifies the model building and
makes the implementation of the model more efficient.

In the next sections Web cache optimization is first introduced, and the pro-
posed approach to Web cache optimization is presented. Then a case study is
presented, where different models classify HTML documents according to their
popularity. Finally, some further issues about applying the proposed approach in
Web caches are discussed.
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5.2 Web Cache Optimization: A Short Review

Web cache optimization involves designing the caching policy such that the cho-
sen set of objectives are achieved. Typical objectives of Web caching include
reducing network traffic, alleviating server bottlenecks, minimising user access
latency, and maintaining transparency to the end user. A conventional way of de-
signing the caching policy is described next. It can be called a heuristic approach,
since the caching policies applied are typically heuristic rules whose parameter
values are optimized. It can also be referred as an empirical approach, since the
optimization is made based on the measured or simulated Web cache access log
traces.

The design of the caching policy algorithm can be considered to have three
stages: In the first stage, the objectives of caching are chosen. The main objec-
tives usually include minimising the access latency for the users or minimising
the outbound traffic volume. In the second stage, the performance metrics which
describe the cache operations are chosen. Typical metrics are described in more
detail in the next section. For instance, hit rate represents what percentage of
the requests is served straight from the cache, without causing outbound network
traffic. The performance metrics are chosen according to the objectives set. In the
third stage, experiments with different caching policy algorithms are made, and
the one which maximises chosen performance metrics is selected. Five proposed
caching policies are described at the end of this section. Experiments can be car-
ried out as simulations using real measurements, or using simulated data. Another
possibility is running experiments in a real environment. This procedure must be
repeated if there are changes in the objectives, network or server resources, or
traffic patterns.

5.2.1 Performance Metrics

In order to define the most popular performance metrics in more detail, let N be
the total number of requests (objects), bi the size of the i -th request and let δi = 1
if the request i is in the cache while δi = 0 otherwise.

The request hit rate H r is then defined as the percentage of documents that are
in the cache (Williams et al., 1996),

H r =
∑N

i=1 δi

N
. (5.1)

Then the relative request hit rate is defined as H r/H r
max, where H r

max is the request
hit rate obtained for a cache with an infinite size. The byte hit rate H b is the
percentage of bytes transferred from the cache, defined as follows

H b =
∑N

i=1 bi δi∑N
i=1 bi

. (5.2)
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Then relative byte hit rate is H b/H b
max, where H b

max is the request hit rate obtained
for a cache with an infinite size. The latency ratio H t is defined as the ratio of
the sum of download time of missing documents over the sum of all downloading
latencies,

H t =
∑N

i=1 ti (1 − δi )∑N
i=1 ti

, (5.3)

where ti is the time to download the i -th referenced document from its server to
the cache.

5.2.2 Caching Policies

The key issue in maximising the selected performance metrics is to apply a suit-
able caching policy. Several of them have been proposed in the literature, and
some of them being implemented in real systems (e.g. LRU in Squid Squid
(2000)), and some others being proved to be optimal using simulations with ac-
tual cache access logs (Davison, 1999). However, most of these policies are sub-
optimal since they only optimize a particular performance metric. Some policies
also include statistics from request rates and server response times, which allows
adaptation to changing conditions in the network or server resources (Cao and
Irani, 1997; Rizzo and Vicisano, 2000). Below five different policies and their
main advantages and disadvantages are reviewed.

• LRU: The Least Recently Used documents are removed first.

Advantages: Efficient in the case of uniform objects like in the memory
cache, applied in other areas of caching for decades. Simple to implement.

Disadvantage: Does not consider size or download latency of documents.

• LFU: The Least Frequently Used documents are removed first.

Advantages: Simplicity.

Disadvantage: Does not consider size or download latency of documents
and may keep obsolete documents indefinitely in the cache.

• SIZE (Williams et al., 1996): Big documents are removed first.

Advantages: Removes big documents, therefore keeps a lot of small files in
the cache, resulting in high request hit rate.

Disadvantages: May keep small documents indefinitely in the cache (even
if they are never accessed again). Low byte hit rate.

• GD-SIZE (Cao and Irani, 1997): Greedy-Dual algorithm. Each object is
associated a value H . When an object is brought into the cache, H is set to
1/s where s is the size of the object. When a replacement has to be made,
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the object with the smallest H (Hmin) is removed from the cache, and every
object has its H reduced by Hmin. If an object is accessed again, then its H
is restored to its cost.

Advantages: Tries to remove objects which are no longer requested by
clients, and therefore to overcome the drawback of SI Z E policy. More
general cost functions can also be applied. However, the simple 1/s variant
yielded the best performance in (Cao and Irani, 1997).

Disadvantages: Does not take into account the delays induced by the net-
work and the frequency at which documents are accessed.

• LRV (Rizzo and Vicisano, 2000): LRV estimates for each object in the
cache the relative value,

V = C

B
Pr , (5.4)

where B is the benefit and C is the cost involved in purging the object from
the cache, and Pr is the estimated re-access probability for the object. When
a cost model based on traffic is chosen, C/B is approximately constant and
denotes the overhead in traffic when the object is fetched to the cache. Thus,
V is directly proportional to re-access probability Pr of the object. Pr is
estimated as follows:

Pr (i, t, s) =
{

P(1, s)(1 − D(t)), if i = 1

P(i )(1 − D(t)), otherwise
(5.5)

Here i denotes the number of previous accesses, t is the time since the last
access and s is the size of the object. The dependency of Pr (i, t, s) on s is
neglected when i > 1. P(i ) is the probability that the object is re-accessed
again after the i -th access and P(1, s) is the re-access probability for a new
object whose size is s. D(t) is estimated time between accesses. Its cal-
culation involves estimating values for three parameters. P(i ) is estimated
by partitioning the objects in a small number of sets according to the pa-
rameter value i . A counter in each group will then suffice to estimate P(i )
adaptively. A similar partitioning is done based on the object size s when
i = 1. An important property in the approximation made in Eq. 5.5 is that
the objects with the same i retain the LRU ordering. Thus, it is only needed
to calculate Pr for the first object in each group, and to select the object
with the lowest value for replacement.

Advantages: Includes access statistics for all objects. The replacement de-
cisions are made in constant time.

Disadvantages: Needs additional data to be kept in memory. The cost model
does not include access latencies for the objects.
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In addition, several other policies have been proposed in the literature. For
instance, in (Foong et al., 1999) logistic regression models were applied in a sim-
ilar approach to LRV, where the value of the document is predicted by the model.
The inputs of the model include the document size and type, number of requests
and time since the last request. Other policies are discussed e.g. in (Bolot and
Hoschka, 1996; Niclausse et al., 1998).

5.3 Proposed Approach

A novel approach to Web cache optimization is proposed next. Preliminary work
on this approach can be found in (Koskela et al., 2001). In this approach, the
value of each cache object is predicted with a model which is built by using real
measurement data. Syntactic features are extracted from the HTTP responses
of the server, from the Web cache logs, and from the structure of the HTML
document. These features include e.g. URL (uniform resource locator), content
type, size, modification and expiration dates, Cache-control HTTP headers, the
number of hyperlinks and the number of images. All information available from
each object is collected and transformed into numerical form. This numerical data
is then used for building the model.

A neural network model is proposed, which can represent complex nonlinear
dependencies (Bishop, 1995). The architecture of the model and its parameter
values are estimated by using a learning algorithm. The inputs Xi of the model
include numerical features extracted from each object. The output of the model
Y is the prediction of the value of the object. During the training of the model,
each object must be assigned a target value. Since training is carried out offline,
the history of requests to the object is known. Thus the value can be calculated
from the real access statistics. For instance, popularity of the object (the number
of requests) during the chosen time period represents how valuable that object is
for the cache.

The utility of this approach can be evaluated by using the model to predict
the values of the objects that have not been used in the training of the model. If
the mapping implemented by the model from the input features to the predictions
generalizes to new objects, then the predictions gained from the model are useful.
When the value of each object in the cache can be predicted to a certain accuracy,
the caching policy can be optimized according to any objectives set.

Designing a caching policy which utilizes the predictions from the model in-
volves choosing a cost model. The cost model essentially contains factors which
are dependent on the environment, such as the cache storage size and network
bandwidth. One possible approach is to utilize the prediction Y of the model as a
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substitute for the re-access probability Pr in Eq. 5.4:

V = C

B
Y (5.6)

The caching policy then replaces first the object with lowest relative value V ,
which is the predicted value Y weighted by the ratio C/B. In this case, choosing
the values for C and B constitutes the design of the cost model for the cache.

B is the benefit of purging an object from the cache, and can be estimated to
be proportional to the storage space freed in the cache. C is the cost of purging an
object from the cache. However, estimating C is more complicated, since it should
be easily calculated, and it should reflect the main objectives set for the caching.
For instance, if the main objectives include minimising user access latency, C
can be chosen to be proportional to the time needed to fetch the object. Another
choice for C is proportional to the traffic involved in fetching the object, which
was selected in (Rizzo and Vicisano, 2000).

The advantage in the proposed approach over previously presented ones is that
no heuristic rules or selections based on empirical or simulated data are needed.
Instead, by applying a suitable model and a learning algorithm, the model is fitted
according to the data collected. Since only syntactic information is utilized, the
extraction of features is simple.

The disadvantages in the proposed approach include difficulties in collecting
a comprehensive data set. Predictions of the model can only be as good as the data
available. Also the learning phase is computationally quite intensive. In practice,
the model should be built in a separate computer with a large memory and a fast
processor. The completed model can be implemented on-line in the Web cache,
since evaluating the model output does not require much computational power.

5.4 Case Study

The objective of this case study was to build models which predict the value (pop-
ularity) of each cache object by using numerical input features collected from
the objects, and to test whether this approach can improve the performance of
the cache. The selected models were built and their parameters estimated from a
training data set collected for the purpose. The prediction ability of the models
was then estimated from a new data set, which was not used during the course of
building the models. The performance gain from using the built models was then
estimated by carrying out a simulation where a conventional cache and a cache
which utilized the built model were compared.

To simplify the modeling task, it was first transformed into a classification
problem. Each object was assigned either a high or a low value (class one or
class zero) according to its popularity during a chosen time period. In addition,
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only HTML documents (objects with content type text/html) were consid-
ered. Linear and nonlinear classifiers were built by using the collected data.
Inputs of the classifier included the collected features from each object, and its
output gave the class of the object. Finally, the performance gain from applying
the classifier was estimated. In order to study the effect of different workloads,
synthetically generated cache request streams were employed in the simulations.
In addition, the simulations were limited to comparing conventional LRU and
GDS (Greedy Dual Size) caches with LRU and GDS caches which utilized the
predicted class of the objects, respectively.

5.4.1 Data Collection

For this case study an access log containing one day requests was obtained from
the FUNET (Finnish University and Research Network) Web cache. A Web robot
was applied to retrieve each HTML document in the log and a HTML parser to
parse its structure and store the features in a data file. Table 5.1 shows the selected
features in more detail. Features 1–49 contain the number of certain HTML tag
existing in the document. Features 50–56 include information extracted mostly
from the Web cache access log. Features 51 ’Last modified’ and 52 ’Expires’
were assigned value 1 if the feature existed in the document headers and value 0
otherwise. Feature 55 ’Path depth’ states how many "/" characters the document
URL contains. The collected data was cleaned from empty HTML documents and
from features that had the same value throughout the data (usually either missing
or zero). Also features which had extremely sparse data (only few differing val-
ues) were deemed useless and removed from the data.

Linear correlation analysis of collected features was also made. Correlation of
each feature with the desired output of the classifier was calculated. It was found
that most of the features, especially those collected from the HTML structure of
the document, had only negligible linear correlation with the classification. These
results suggest that the linear model may not be adequate to the task.

Feature analysis could also be utilized in selecting the features for the classi-
fier. However, also cross-correlations of the features should be calculated before
discarding features. For instance, some combinations of the simple HTML fea-
tures can prove to be useful. Furthermore, linear correlation analysis is inadequate
in this case, since also a nonlinear model was employed as a classifier. Thus, no
features were removed from the data based on the correlation analysis.

Final data consisted of 48765 HTML documents with 56 features from each
document. HTML documents with two or more requests in the access log were
labeled to belong to the class 1 (high value), and all the others to the class 0 (low
value). Labeling the objects with one request to the class zero can be justified
by studies of Web server and proxy cache workloads, which suggest that “one-
timers” should not be cached (see e.g. Busari and Williamson (2002)). Also, the
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Table 5.1: Features collected from the HTML structure of the document and Web cache
access log.

01 02 03 04 05 06 07
<a> <address> <area> <b> <base> <big> <blink>
08 09 10 11 12 13 14
<blockquote> <body> <br> <center> <div> <dl> <dt>
15 16 17 18 19 20 21
<dd> <em> <font> <frame> <frameset> <h1> <h2>
22 23 24 25 26 27 28
<h3> <h4> <h5> <h6> <head> <hr> <html>
29 30 31 32 33 34 35
<i> <iframe> <img> <li> <link> <map> <meta>
36 37 38 39 40 41 42
<p> <param> <pre> <script> <select> <small> <strong>
43 44 45 46 47 48 49
<td> <textarea> <th> <title> <tr> <u> <ul>
50 51 52 53 54 55 56
Doc length Last modified Expires Length of content Content type Path depth Domain

selected class boundary was convenient in this case, since the number of samples
in each class was approximately equal.

5.4.2 Feature Analysis with SOM

The Self Organizing Map was utilized as a method to evaluate visually the per-
formance of the feature set. The SOM in feature analysis was briefly discussed in
Section 2.4.3. In this procedure, the map is trained with the whole training data
using the features selected. After the map is trained, the point density function,
p(w), of the weight vectors approximates the point density function, p(X), of the
underlying sampled distribution in the input space (Cottrell, 1997). This means
that the SOM can visualize the separation of the classes by the features used.

The stochastic learning algorithm of the SOM was presented in Section 3.4.1.
In practice, batch learning procedure is often employed instead. Here approximate
gradient is evaluated for the entire input data and the weights are updated to the
global optimum given the current partitioning of the data. When batch learning
algorithm is applied, the map may reach a state where all units are exactly at the
centroids of the samples in their regions of activity (Kohonen, 1997).

The feature analysis with the SOM was performed as follows. The extracted
feature vectors, containing 56 values for each object, were first normalised so that
each feature had a unit variance. The 2D SOM with 8x8 units was then trained by
using the batch learning algorithm with all collected data. The SOM was trained
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Figure 5.1: The class-conditional histograms of the features on a 8x8 SOM. Class 1 on
left (value 1 represents 3903 objects), and class 0 on the right (value 1 represents 2886
objects).

with the SOM Toolbox 1 library implementation for Matlab (Alhoniemi et al.,
2000). After this the number of objects belonging to each unit in the map were
calculated for both classes. These histograms now approximate the conditional
class distributions in the map space.

Figure 5.1 shows the result for both classes. Class 1 contained total 23919
objects, and class 0 24846 objects. The number of objects in each unit in the
SOM lattice is shown with a color coding: white units include the most objects,
and black units have none. From the figure it can be seen that the spread of the
objects among the units is quite similar irrespective of the class, i.e. the classes
are strongly overlapping. Also some differences can be found. Noticeably the
lower left corner unit, which includes the most objects from class 1, does not have
as large portion of objects from the class 0. However, from the visual inspection
it can be speculated that a linear model may not be successful in the classification
task.

5.4.3 Models

The models which were applied include linear and nonlinear classifiers. The gen-
eralized linear model was selected to act as the “baseline” classifier and the Multi-
layer perceptron (MLP) network committee was applied as a nonlinear classifier.

1Available from http://www.cis.hut.fi/projects/somtoolbox/
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Generalized Linear Model

In linear models, the output of the model is a linear function of the input variables.
There are several ways in which such functions can be generalized. One method
is using a monotonic, nonlinear activation function g(a) which acts on the linear
sum to give the form:

f (x, w) = g

(
w0 +

d∑
i=1

wi xi

)
, (5.7)

One notable choice for the activation function is the logistic sigmoid function,
which maps the interval (−∞,∞) onto (0, 1):

g(a) = 1

1 − exp(a)
(5.8)

Function f (x, w) is called the discriminant function, since it separates the
classes from each other. In statistics literature, the models with logistic sigmoid
activation function are often referred as logistic discrimination. In case |a| is
small, g(a) can be approximated by a linear function. In this sense the model con-
tains the linear function as a special case. The logistic sigmoid is also important
in case of two-class classification. Here, output of the discriminant function can
be interpreted as the posterior probability of class membership P(Ck|x), where
Ck is the class, and x is the input vector (Bishop, 1995). These probabilities can
be utilized in a subsequent decision-making stage to achieve a classification.

The logistic sigmoid was selected as the activation function for this case study.
However, the probability interpretation of the class membership was not consid-
ered. The objects were classified directly to appropriate classes according to the
value of the discriminant function. All simulations were carried out with Net-
lab 2 library implementation of the generalized linear models for Matlab (Nabney,
2001).

Multilayer Perceptron Network

The MLP was discussed previously in Section 3.3.1. In the case study, an early-
stopping MLP committee model was applied. This model provides a good base-
line nonlinear model, as demonstrated for instance in (Lampinen and Vehtari,
2001; Heikkonen et al., 1999).

Since the main objective of the case study was to test the proposed approach,
and not to search for the best model, the model selection for the committee ar-
chitecture was not carried out. Instead, the number of committee members and
the number of hidden units of each MLP were chosen such that the model can

2Available from http://www.ncrg.aston.ac.uk/netlab/
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Table 5.2: Confusion matrices for each cross-validation training case.

1 2 3 4 5
Linear 0.67 0.33 0.67 0.33 0.67 0.33 0.66 0.34 0.66 0.34
model 0.44 0.55 0.44 0.55 0.44 0.56 0.45 0.56 0.43 0.57
MLP 0.74 0.26 0.75 0.25 0.75 0.25 0.76 0.24 0.74 0.26
model 0.36 0.64 0.35 0.65 0.37 0.63 0.38 0.62 0.36 0.64

represent complex mappings, while keeping the computational complexity of the
model reasonable. Therefore, the committee consisted of 10 MLP networks, each
of which had one hidden layer with 20 units, and one output with one logistic
output, yielding a model model f (x, w), with weights w:

f (x, w) = g(w0 +
m∑

j =1

wj g

(
wj 0 +

d∑
i=1

wj i xi

)
) , (5.9)

where g is the logistic activation function and indices j and i correspond to output
and hidden units, respectively.

The output of the committee model is calculated as the mean of all the com-
mittee member’s outputs, and final classification result is gained by simple thresh-
olding, i.e. if the output of the model is larger than 0.5, the sample is classified
to class 1, and otherwise to class 0. The MLP networks in the committee were
trained with Rprop algorithm (Riedmiller and Braun, 1993). For each MLP net-
work a unique 10 % portion of the data was used for deciding when to stop train-
ing.

5.4.4 Classification Results

In order to be able to use all the data collected, 5-fold cross-validation was applied
to estimate the classification error for each model. The data was first divided to
5 subsets of equal size. Each model was then trained 5 times, each time leaving
out one of the subsets from training, and using the omitted subset to compute the
classification error.

Table 5.2 shows the confusion matrices for each of the 5-fold cross-validation
cases for both the linear and the MLP models. The upper left corner value of the
confusion matrix represents the classification percentage of the class 0, and the
lower right corner value represents the classification percentage for the class 1. In
the case of the linear model the matrices are almost identical, supposedly because
the model cannot learn any useful mapping from the training data. For the MLP
model, there are some differences. However, differences are quite small regarding
the amount of training samples available.
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Table 5.3: Classification percentages of classifiers in the test data. Class 0 refers to a low
value of the object (do not cache) and class 1 refers to a high value of the object (store in
cache).

Method Class 0 Class 1
Linear model 0.67 0.56
MLP model 0.74 0.64

Table 5.3 shows the classification results. The linear model classifies 67 per-
cent of class 0 and 56 percent of class 1 correctly. The nonlinear MLP model
classifies 74 percent of class 0 and 64 percent of class 1 correctly. In this case,
the nonlinear model can distinguish objects that have a high value from those that
have a low value much more accurately than the linear model. Thus the results
with the MLP committee model turn out to be quite promising. However, more
simulations with different data sets should be carried out to evaluate the usefulness
of the MLP committee model in more detail. As is evident from the classification
results with the linear model, there are no strong linear correlations between the
features and the desired classification. Therefore, more advanced feature analysis
taking cross-correlations and nonlinear dependencies into account should also be
carried out.

5.4.5 Simulation with Analytical Workload

In order to evaluate the usefulness of the gained classifications also in terms of
the usual performance metrics for Web caches, a simulation with a cache request
stream was carried out.

There are two different ways of generating realistic cache workloads for re-
search purposes (Barford and Crovella, 1998). In a trace-based approach, the mea-
sured Web cache log files are sampled in order to generate a new request stream.
In an analytical approach, mathematical models for the workload characteristics
of interest are utilized. For instance, the popularity and the size of the request
stream objects are modeled with parametrised statistical distributions. A random
sampling technique is then applied to produce a request stream that conforms to
these models.

An analytical approach was chosen for the simulation, since it allows more
flexibility in generating the request streams. ProWGen synthetic workload gen-
eration tool was applied for the purpose. Interested readers are directed to the
Ref. (Busari and Williamson, 2002) for the details of the mathematical models
involved. The parameters with ProWGen were chosen as follows: The total num-
ber of requests in the workload n = 10000, the percentage of distinct documents
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Table 5.4: Parameters of the simulation with analytical workload.

Zipf slope α Tail % Size of the cache % Classification accuracy %
0.6, 0.7, 0.8, 0.9, 1.0 10, 20, 30, 40, 50 1, 2, 5, 10 50, 60, 70, 80, 90, 100

of total number of requests d = 30%, the percentage of 1-timers out of the dis-
tinct documents o = 50%, the correlation between popularity and the file size
c = 0, the size of the dynamic LRU stack model which introduces temporal lo-
cality l = 1000, the mean and the standard deviation of the lognormal values
characterizing the body of the file size distribution m = 7000 and s = 11000, and
the heavy tail index of the workload h = 1.2.

In order to study the performance of the cache with different classifier accu-
racies, as well as different request streams, simulations with different parameters
were carried out. Table 5.4. shows these parameters and their values. Zipf slope α

refers to the Zipf-like popularity distribution of the cache objects, given by equa-
tion

Fi = 
/i α , (5.10)

where Fi is the popularity of the object ranked at position i and 
 is a normalising
constant. Empirical studies with measured cache traces have shown that the pop-
ularity follows the Zipf-like distribution with different values of α (Breslau et al.,
1999). The tail percentage gives the portion of objects, whose size is drawn from
the tail of the size distribution, thus increasing the total volume of the request
stream. The size of the cache was varied depending on the total volume of the
request stream objects. The variation of the classification accuracy is described
next in more detail.

The request stream produced by the ProWGen contains cache object identi-
fiers and sizes. The class label was added for the objects as follows: For each
object k in the request stream, the class equals one if the same object appears
within the next L requests, otherwise zero. The length L was selected to be equal
to the maximum number of cache objects len = 500, which was used in the sim-
ulation. After labeling the objects, the accuracy of the classification was degraded
by labeling a predefined portion of the objects (selected by random sampling) to
the wrong class.

Simulation with LRU Cache

A conventional LRU cache was first compared with a LRU cache, which utilizes
the class information of the objects (referred as LRU-C). The LRU-C operates
similarly as LRU, with the exception of handling the class zero objects. When
an object which is not found in the cache is requested, the class of the object is
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Figure 5.2: Hit rate (left) and byte hit rate (right) for LRU and LRU-C cache with 50%
and 100% accuracy of the classifier, as a function of the cache size (1%, 2%, 5% and 10%
of total size).
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Figure 5.3: Hit rate (left) and byte hit rate (right) for LRU and LRU-C cache with 50%
and 100% accuracy of the classifier, as a function of the Zipf slope α = (0.6...1.0).

checked. If the class is zero the object is placed into the middle of the LRU stack,
otherwise on the top of the LRU stack. If the object was found in the cache, it is
placed on the top of the stack, irrespective of the class. Removing of the cache
objects is carried out the same way in both caches, the objects in the bottom of the
stack are removed first when the cache is full.

The results of the simulations are shown in the Figures 5.2 and 5.3. As ex-
pected, the LRU-C outperformed the conventional LRU in all cases. Figure 5.2
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shows the hit rate and the byte hit rate with different sizes of the cache. The plotted
values were calculated as averages over the different tail percentages and values
of α. Since the portion of one-timer objects was 50% of the distinct objects, on
average the LRU-C gave slightly better hit rate than the LRU even with 50% accu-
racy in classification (i.e. random classifier). However, a substantial performance
gain can be attained with more accurate classifications, especially with smaller
cache sizes.

Figure 5.3 shows the hit rate and byte hit rate with different values of popular-
ity distribution parameter α. The plotted values were calculated as averages over
the different tail percentages and cache sizes. The hit rate grows with the value
of α as expected. With larger values of α, there are fewer “hot” objects in the
request stream, and the LRU stack can store most of them all the time. Since in
the simulations there was no correlation between the object size and popularity,
the size distribution affects the results with byte hit rate more than the value of α.
As reported in (Busari and Williamson, 2002), byte hit rate is highly sensitive to
individual large objects in the request stream, which can be seen in the Figure 5.3.

Simulation with GDS Cache

Another simulation was carried out with Greedy-Dual-Size (GDS) cache. The
comparison was made with a conventional GDS cache and with a GDS cache,
which utilizes the class information of the objects (referred as GDS-C). The GDS-
C operates similarly as GDS, with the exception of handling the class one objects.
When an object which is not found in the cache is requested, its value H is set
to cost/size, where the cost is a constant value. In the GDS, cost was set to
cost= 1 for all objects. In the GDS-C, the cost of the class one objects was set to
cost= 2. If the object is found in the cache, its value is replaced with cost/size,
where cost= 2, irrespective of the class. Removing of the cache objects is carried
out the same way in both caches, the objects with the lowest value are removed
first when the cache is full.

The results of the simulations with Greedy-Dual-Size are shown in the Fig-
ures 5.4 and 5.5. The GDS-C outperformed the conventional GDS in all cases.
Figure 5.4 shows the hit rate and the byte hit rate with different sizes of the cache.
Figure 5.5 shows the hit rate and byte hit rate with different values of popularity
distribution parameter α.

5.5 Discussion

To summarize a novel approach to Web cache optimization has been presented.
The results of a case study suggest that nonlinear classifier can find some regular-
ities from the collected data, which can be utilized in predicting the value (class)
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Figure 5.4: Hit rate (left) and byte hit rate (right) for GDS and GDS-C cache with 50%
and 100% accuracy of the classifier, as a function of the cache size (1%, 2%, 5% and 10%
of total size).
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Figure 5.5: Hit rate (left) and byte hit rate (right) for GDS and GDS-C cache with 50%
and 100% accuracy of the classifier, as a function of the Zipf slope α = (0.6...1.0).

of the object. This value can further be applied in optimizing the Web cache. The
suggested method effectively replaces heuristic algorithms by a statistical model
which is based on real measurement data. The preliminary results obtained from
the case study turned out to be encouraging. However, further experiments should
be carried out to fully evaluate the usefulness of the method. It is emphasized that
building a good model requires a large amount of collected data. Also finding a set
of suitable features, the model architecture and estimating the model parameters
can be a computationally intensive task.
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The cache operation can be optimized further if certain factors typical in Web
caching are taken into account. One possible case is optimizing the use of cache
storage. The distribution of requests for the cache objects is typically very heavily
tailed (Bolot and Hoschka, 1996). The most popular objects get the most requests,
while a large portion of objects which are stored in the cache are never requested
again. Caching policy can take this into account, and use the predicted value for
each object to decide which objects should not be stored in the cache at all. While
the obtained classification percentage for class 1 was moderate 64% in this case
study, class 0 was classified with a 74% accuracy. This classification with the
associated cost model could be used for example to decide not to store big objects
with a small value.

Another way how the cache operation can be further optimized is minimising
the user access latency. As discussed in (Cohen and Kaplan, 2002), the access
latency for an object which is validated (i.e. checked with the server whether
it is still fresh) is often nearly as long as fetching the whole object. Validation
request occurs when a cached object is requested from the cache, and the object
has gone stale, i.e. it is uncertain whether it is still up to date. To ensure that the
most popular objects in the cache are always fresh would help in minimising user
access latencies. Since validation requests use computing and network resources,
a policy for choosing the objects to be validated is needed. A straightforward
policy would be using active refresh for the objects with the highest value.

The proposed approach may be difficult to implement in real Web caches. In
order to be applicable, the prediction of the object value should be carried out
within the caching policy algorithm. However, the initial parameters of the model
can be estimated beforehand, which greatly reduces the computational burden.
Since the statistics of requested objects change continuously, the model parame-
ters should also be tuned frequently as a part of the caching algorithm.



Chapter 6

Conclusions

The vast majority of the neural network models proposed have been concerned
with the learning of static mappings. However, time is important in many practical
tasks that contain decision making and responses to temporal stimuli, such as
pattern recognition, signal processing, and process control. A number of neural
networks for temporal sequence processing have been proposed to overcome the
limitations of static models. Most of the proposed models have been supervised,
although unsupervised learning could be useful in many applications, such as in
feature extraction or redundancy reduction of unlabeled temporal data.

One of the main themes in this work was presenting the Recurrent Self- Orga-
nizing Map (RSOM) as an unsupervised model for temporal sequence processing.
The RSOM with local models was presented for the time series prediction task.
The methodology for estimating the model and the procedures for the model se-
lection were proposed. The results from the case studied showed that the context
stored in the units of the RSOM allowed for useful representations of the delay
coordinate embedded time series data. The performance of the “temporal quanti-
zation” was estimated based on the predictive ability of the constructed model in
the one-step prediction tasks. In all studied cases, the local model approach gave
better results when the RSOM was used as the quantizer instead of the conven-
tional Self-Organizing Map.

The other main theme of this work was presenting the process of statistical
data analysis with neural networks. The Web cache optimization case study served
as an example of this process. After presenting the research problem, a novel ap-
proach based on modeling the value of cache objects based on syntactic features
extracted from the objects was proposed. Issues with collecting and preprocess-
ing the data, feature analysis, and model design were then addressed. The results
gained from the case study suggest that the proposed approach is useful. More
specifically, the collected data contains some dependencies that could be repre-
sented with neural network based classifier. Furthermore, a conventional linear
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model could not represent this underlying dependency. While the modeled pro-
cess was time-dependent, the model was converted into processing only static
data. This was mainly due to the collected data, which contained data from too
short time period to facilitate modeling the temporal aspects. Finally, to anal-
yse the benefits of using the proposed model in a Web cache, a simulation study
with analytically generated sequence of objects was presented. The benefits of the
proposed approach were confirmed.

To summarize the results of this thesis, neural network methods for data anal-
ysis and for modeling time varying processes have been addressed. The method-
ology of using the RSOM with local models in time series prediction, including
modifications of the training algorithm to facilitate learning of temporal patterns
is proposed. Another main contribution of this work is the proposal of a statistical
model for optimizing the Web cache, including the process and methods involved.
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