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real-space electronic structure calculations, we use axially symmetric model systems in the study of nanostructures. This 
approximation reduces the computational demands and allows studies of rather large nanoscale systems encompassing 
hundreds or thousands of electrons. In addition, by restricting the geometry to the axial symmetry and resorting to jellium 
models, many random effects related to the detailed ionic structure are absent, and the relevant physics is easier to extract 
from the simulations. 

Nanowires can be considered as the ultimate conductors in which the atomistic confinement of electrons perpendicular to 
the wire and the atomistic length of the wire lead to quantum mechanical effects in cohesive and transport properties. The 
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residing in a Na island on the Cu(111) surface form a quantum dot system, in which the quantum mechanical confinement 
in all directions determines the electronic properties. We have developed a simple jellium model system which reproduces 
the characteristics of the confined electron states seen in scanning tunneling microscope experiments. 

electronic structure, density-functional theory, multigrid method, parallel computing, nanowire, quantum dot

58 + 40

951-22-6469-2 / 952-9821-85-9

951-22-6470-6 1455-1802 / 0787-7498

Laboratory of Physics, Helsinki University of Technology / CSC - Scientific Computing Ltd. 

✔

i



Preface

This thesis has been prepared during the years 1999-2003, mainly in the
Computational Condensed Matter and Complex Materials Group (COMP)
in the Laboratory of Physics of the Helsinki University of Technology. In
April 2002, CSC – Scientific Computing Ltd. and COMP started a collab-
orative project MIKA (Multigrid Instead of K-spAce) for development and
application of real-space methods for electronic structure calculations. As a
project manager of the MIKA-project, I have been employed by CSC during
the final stage of the work.

I would like to thank my supervisor Academy Prof. Risto Nieminen for the
opportunity to work in his excellent research group and also for encouraging
me to work with first real-space first-principles methods and then axially
symmetric models for nanowires in the early stage of this project, thereby
catalyzing the birth of a program development effort with surprisingly large
proportions. My deepest gratitude, however, is due to my advisor, Prof.
Martti Puska whose guidance and collaboration has been of crucial impor-
tance in all stages of this work. I would also like to thank Paula Havu, Mika
Heiskanen, Janne Ignatius, Vanja Lindberg, Mikko Lyly, Eduardo Ogando,
Sampsa Riikonen, Juha Ruokolainen, Prof. Bo Hellsing and Prof. Nerea
Zabala for collaboration in both published and unpublished work, and all
the people working in the Laboratory of Physics and at CSC for creating
pleasant working atmospheres.

I acknowledge financial support from Vilho, Yrjö and Kalle Väisälä founda-
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1 Introduction

Miniaturization has been the key ingredient for the rapid advance of the
electronic technology. Today, the feature sizes in integrated circuits are of
the order of 100 nm. In the near future the ultimate limit set by the atomic
scale of 1 nm will be approached. But already before that the technology
based on classical electron physics will move over to the domain where
the principles of quantum mechanics have to be taken into account. This
domain is referred to as nanotechnology.

In this thesis, basic research focused on quantum systems relevant for the
future nanotechnologies is performed. Nanowires can be considered as the
ultimate conductors in which the atomistic confinement of electrons per-
pendicular to the wire and the atomistic length of the wire lead to quantum
mechanical effects in cohesive and transport properties. Electrons residing
in a Na island on the Cu(111) surface form a quantum dot system, in which
the quantum-mechanical confinement in all directions determines the elec-
tronic properties. The research is modeling based on electronic structure
calculations using the density-functional theory. For the solution of the en-
suing Kohn-Sham equations, we have developed a new numerical scheme
based on the Rayleigh quotient multigrid method (RQMG), described in
Publications I and II.

Conductance properties of chains consisting of a few Na atoms sandwiched
between two metallic leads are examined in Publication III. We find that
the conductance depends in an oscillatory manner on the number of atoms
in the chain. In addition, we show that the shape of the contact leads has an
important effect on the conductance. Cohesive and conducting properties
of a nanocontact during the breaking process are studied in Publication IV
using a model system, which highlights the effects of the electronic struc-
ture, ignoring the evolution of the detailed ionic configuration during the
breaking process. Together with atomistic simulations and experiments, our
model provides complementary insight into cohesive properties of nanowires.
Finally, in Publication V, we develop a model system for adsorbed Na quan-
tum dots on the Cu(111) surface. The electronic properties obtained can
be quantitatively compared with scanning tunneling microscope measure-
ments. In the future, our goal is to apply this model to study the reactivity
of quantum dots, i.e. how different parameters as the size, shape and com-
position of the quantum dot may influence its ability to promote or prevent
molecular dissociation or adsorption. The listed parameters control the
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local electronic structure which in turn determines the scenario of an ap-
proaching gas phase molecule. This rather new field of surface physics is
often referred to as nano-catalysis.

The computational framework for our nanostructure studies consists of the
application of the Kohn-Sham scheme of density-functional theory in ax-
ial symmetry. We have chosen the axially symmetric approach, since this
approximation reduces the computational demands and allows us to study
rather large systems encompassing hundreds (Publications III and IV) and
even thousands (Publication V) of electrons. In addition, by restricting the
geometry to the axial symmetry and resorting to “jellium” models, we re-
move many random effects related to the detailed and uninteresting atomic
structure from the model, and the relevant physics becomes more trans-
parent in the simulations. In addition, it is particularly straightforward
to exploit massively parallel computer architectures in the solution of the
axially symmetric Kohn-Sham equations.

The RQMG-method reported in Publications I and II is a central ingre-
dient in the numerical methodology used in our axially symmetric imple-
mentation of the Kohn-Sham scheme. Another motivation for developing
the RQMG-method is for future applications in large-scale symmetry un-
restricted atomistic real-space electronic structure calculations. For such
calculations, plane-wave pseudopotential methods are nowadays routinely
used. However, there are several aspects favoring the use of real-space meth-
ods. Therefore, in a second thread of this thesis project, the author has
contributed to several key steps towards applications of the RQMG-method
in atomistic calculations, involving e.g. structural relaxation of defects in
semiconductors.

During this work, the Computational Condensed Matter and Complex Ma-
terials Group (COMP) of the Laboratory of Physics of the Helsinki Uni-
versity of Technology and CSC – Scientific Computing Ltd. have started a
collaborative project called MIKA (Multigrid Instead of the K-spAce) to-
wards the development and application of real-space methods in electronic
structure calculations. The author has been appointed as the project man-
ager of the MIKA-project. One of the first fruits of this collaboration has
been the realization of the fact that the finite-element method and Krylov
subspace techniques as implemented within the program package Elmer,
developed at CSC, can be quite readily applied to electronic structure cal-
culations. The finite-element approach has certain strengths, notably the
adaptability of the mesh, that are absent from our current finite-difference
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implementation of the RQMG-method. We expect, that the combination
of the experience with the RQMG-method and electronic structure calcu-
lations gathered at COMP and the expertise on finite-element methods
available at CSC will give rise to further improvements in the efficiency and
accuracy of our numerical methods.
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2 Electronic structure calculations

The goal of computational materials science and also that of modeling of
nanoscale manmade structures is to calculate from first principles various
physical and chemical properties. These properties can in principle be cal-
culated by solving for the many-body wave function, which is a function
of both the electronic and nuclear degrees of freedom. Due to the large
difference in mass between the electrons and the nuclei, the electronic and
nuclear degrees of freedom may be decoupled. In the Born-Oppenheimer
approximation, the nuclei are assumed to be fixed in space, and the anti-
symmetric wave function Ψ(r1, . . . , rN) depending on the spatial electronic
coordinates1 is obtained from the Schrödinger equation

ĤΨ(r1, . . . , rN) = EΨ(r1, . . . , rN), (1)

Ĥ = −1

2

∑
i

∇2
i −

∑
i

Vext(ri) +
∑
i<j

1

|ri − rj|
. (2)

The external potential may be caused by the nuclei as discussed above

Vext =
∑

I

ZI

|ri −RI |
, (3)

or it may have some other form. In Eqs. (1-3), ri refers to the position
of electron i and ZI and RI to the charge and position of nucleus I, re-
spectively. Eq. (1) can in practice be numerically solved only in the case
of a few electrons. Above, and throughout this thesis, atomic units where
e = ~ = me = 1, are used. The energy unit is thus 1 Hartree (Ha) ≈ 27.2
eV.

2.1 Density-functional theory

In the density functional theory [1–5], the many-body problem is approached
from a different viewpoint. Instead of the many-body wave function Ψ, the
central quantity is the electron density n(r). The number of degrees of
freedom is reduced from 3N to 3, and the problem is drastically simpli-
fied. This idea dates back to the early works of Thomas [6] and Fermi [7].

1For simplicity, we neglect the electron spin.
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A formal justification for this replacement is provided by the Hohenberg-
Kohn (HK) theorems [8]. The first HK theorem states that the ground state
electron density determines the external potential Vext within an additive
constant. Since Vext defines the Hamiltonian in Eq. (2), the electron den-
sity also defines the ground state wave function and hence all the ground
state properties, including the ground state energy E0 = E[n0]. The sec-
ond HK theorem associates a variational principle with the ground state
energy: E0 = minE[n], where the search is over V -representable densities
that correspond to some external potential. A more general formulation
of this theorem [9] expands the search over N-representable densities – the
non-negative densities that integrate to N particles. This more general for-
mulation of the HK-theorem is known as constrained search and states

E0 = min
n(r)→N

{
min

Ψ→n(r)
〈Ψ| T̂ + V̂e−e |Ψ〉+

∫
drn(r)Vext(r)

}
. (4)

F [n] = minΨ→n(r) 〈Ψ| T̂ + V̂e−e |Ψ〉 does not depend on the details of the
external potential and is therefore a universal functional. A closed form for
F [n] is unfortunately not known.

Kohn and Sham [10] suggested to split F [n] as follows,

F [n] = Ts[n] +

∫
drdr′

n(r)n(r′)

|r− r′|
+ Exc[n], (5)

where Ts[n] is the kinetic energy of a reference system of noninteracting
electrons with the density n(r). All the many-body effects have now been
hidden in the functional Exc[n]. It may be instructive to list the three
physical effects included in Exc. First, a negative potential energy term is
included (the exchange energy, tending to cancel part of the Hartree po-
tential energy). This arises because the antisymmetry of the wave-function
causes electrons of the same spin projection to avoid each other. Another
negative potential energy term, the correlation potential energy, a further
reduction of the Hartree potential energy, occurs because the Coulomb po-
tential causes electrons of either spin to avoid each other. Finally Exc en-
compasses a positive correlation contribution to the kinetic energy, an effect
of the uncertainty and Pauli principles; mutual avoidance reduces the space
available and hence raises the kinetic energy.

In practice, the Kohn-Sham scheme leads to the self-consistent solution
of the N lowest eigenvalues εi and the corresponding single-particle wave
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functions ψi(r) of the coupled set of Kohn-Sham equations,

−1

2
∇2ψi(r) + Veff(r)ψi(r) = εiψi, (6)

n(r) =
N∑
i

|ψi(r)|2, (7)

Veff(r) = Vext(r) + VH(r) + Vxc(r), (8)

VH(r) =

∫
n(r′)

|r− r′|
dr′, (9)

Vxc(r) =
δExc[n(r)]

δn(r)
. (10)

The first equation (6) is a Schrödinger equation for non-interacting particles
in an effective potential Veff(r). The electron density n(r) is obtained from
a sum over the N occupied states. The effective potential consists of an
external potential Vext(r) due to ions (or nuclei in all-electron calculations),
the Hartree potential VH(r) calculated from the electron density distribu-
tion, and the exchange-correlation potential Vxc(r), which is obtained as a
functional derivative of Exc.

The simplest approximation forExc is the local density approximation (LDA)
already suggested by Kohn and Sham in their original paper [10]. In this
approximation, the properties of the homogeneous electron gas (EG) are
extrapolated to inhomogeneous systems,

ELDA
xc =

∫
drn(r)εEG

xc (n(r)), (11)

where εEG
xc (n) denotes the exchange-correlation energy per electron of a

uniform electron gas with density n. Using the results of quantum Monte-
Carlo calculations for this system [11], accurate parametrizations have been
derived [12–14]. From its definition, one would only expect the LDA to give
accurate results for systems with slowly varying electron densities. However,
for real systems, especially solids, where this condition is strongly violated,
LDA is surprisingly accurate. However, LDA has limitations, especially for
open systems like surfaces and molecules.

For more accurate description of such systems, exchange-correlation func-
tionals involving, for example, the gradient of the electron density have
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been developed. The first functional that falls into the class of general-
ized gradient approximations (GGA) was proposed by Perdew and Wang
[15]. Also the BP86-functional, which is a combination of Beckes exchange
functional B88 [16] and Perdew’s correlation functional P86 [17] is widely
used. Beckes three-parameter hybrid functional (B3LYP) [18, 19], a linear
combination of Hartree-Fock and DFT energies, has been found in many
situations to improve the energies of pure DFT functionals [20]. For more
recent developments of GGA-functionals by Perdew et al., the reader is
referred to Refs. [21–23]. With the introduction of GGA-functionals, the
accuracy of DFT for molecular systems has become competitive with more
traditional quantum chemical formalisms, which aim at direct approximate
solution of the many-body Schrödinger equation (Eq. 1), while the scaling
of the computational cost of DFT with system size is more attractive.

2.2 Jellium models

The jellium model has long traditions in self-consistent electronic-structure
calculations of systems that are nowadays often referred to as nanostruc-
tures, such as surfaces, vacancies and voids, atomic clusters, and nanowires.
It simplifies the problem by replacing the discrete ions by a uniform rigid
positive charge density background, which globally neutralizes the electron
negative charge. The effective potential of the Kohn-Sham equations is
written as

Veff =

∫
n−(r′)− n+(r′)

|r − r′|
dr′ + Vxc[n−(r)], (12)

where the first term on the right-hand side includes the electron-electron
and electron-positive background Coulomb interactions and the second term
gives the exchange-correlation potential within the LDA.

2.2.1 Stabilized jellium

Different types of jellium approaches have been introduced. The simple
jellium (SJ) model corresponding to Eq. (12) has the problem that there
is only one equilibrium charge density, at rs ≈ 4.18 a0 (n− = 3/(4πr3

s))
corresponding approximately to the average conduction electron density in
the Na metal. This means that for rs values lower (higher) than ∼4.18 a0,
the jellium system tends to expand (compress). In the SJ-model the elec-
tron density has the same mean value as the positive background due to the
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electrostatic forces. The SJ-model gives incorrect predictions of properties
such as the cohesive energy, surface energy and bulk modulus, due to the
tendency of the system to compress or expand. To improve the results,
corrections can be added to the SJ-model [24], e.g. using the so-called sta-
bilized jellium model [25] introduced by Perdew et al. [26] and Shore and
Rose [27]. We have used the stabilized jellium model to describe conical Na
leads in Publication III. In Publication V, we have used two slabs of simple
jellium of different densities in our two-jellium model, which captures the
essential physics of the adsorption system Na on Cu(111).

2.2.2 Ultimate jellium

In Publication IV, we have used the ultimate-jellium (UJ) model, the phi-
losophy of which differs from the stabilized jellium model in that it does
not try to correct the above-mentioned deficiencies of the SJ-model. The
peculiarity of the UJ-model is that the positive charge background is al-
lowed to relax. The UJ-model represents the ultimate limit in which the
positive background can completely relax to have the same density as the
electrons at every point, leading not only to global but also local neutral-
ization. In this way, the Coulomb terms in the total energy and effective
potential vanish. The total energy is then minimized in the interplay be-
tween the exchange-correlation and the kinetic energies. From the practical
numerical point of view, the UJ-model has a gratifying property - the lack
of Coulomb interactions and therefore the lack of the charge sloshing. The
self-consistent iterations converge rapidly and the speed of convergence (in
terms of the number of iterations) is independent of the system size.

One limitation of the UJ-model is that for an infinite system, as in the
SJ-model, there is only one equilibrium charge density, at rs ≈ 4.18 a0.
The absence of electrostatic potential disables the mechanism to keep the
electrons at a given density, and inside the UJ the mean electron density
becomes equal to the equilibrium density. Another property of the UJ-
model, as a consequence of the absence of electrostatic potential, is that
the shape of the electron density is to a large extent uncontrollable, and it
evolves until the ground state is achieved. This property has been used to
study the most favorable shapes of simple-metal atom clusters [28–30]. The
realm of applications of the UJ-model may be extended by application of
controlling restrictions, such as an external potential [31, 32]. Moreover, in
Publication IV we have used, in order to model the cohesive properties of
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nanowires, the conservation of certain symmetries and the conservation of
the shape of the effective potential in certain parts of the system.
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3 Real-space methods

The plane-wave pseudopotential method has proven to be an excellent
computational tool for solving large-scale electronic structure problems in
condensed-matter physics [33, 34]. Notable strengths of the method are
the ability to use the fast Fourier transform for updating the Kohn-Sham
equations, lack of dependence of the basis on atom positions, and the clear
control of convergence with the cutoff energy determined by the shortest-
wavelength mode. However, the method encounters difficulties in treating
widely varying length scales. This issue is relevant for all-electron calcula-
tions, surfaces, clusters, and the hard pseudopotentials of first-row elements
or transition metals, which vary rapidly near the nucleus. It is not neces-
sary to use the supercell approximation, when treating clusters or molecules
with real-space methods. However, it should be noted, that this is not nec-
essary in the plane-wave methodology either. Barnett and Landman [35]
have implemented a plane-wave scheme for isolated clusters.

Real-space approaches, where the basis functions are atom-centered or float-
ing Gaussians or atomic orbitals, are very well established, and are used
by the majority of the quantum-chemistry community as well as by an
increasing number of condensed-matter physicists. A wide selection of
well-established codes based on atom-centered basis functions is available,
including e.g. Gaussian [36], Dmol [37], Adf [38], Turbomole [39],
NWChem [40] and Siesta [41]. The basis sets used in these methods are
smaller than in the plane-wave methods, but the magnitude of the related
basis-set truncation error is more difficult to estimate.

Considerable effort has recently been focused also on developing “fully nu-
merical” real-space methods [42], which permit systematic studies of conver-
gence in the spirit of the plane-wave methods. These methods are based on
finite elements [43–47], finite-difference discretizations [48–54] or wavelets
[55]. Advantages of these approaches include the free choice of boundary
conditions, allowing e.g. the treatment of finite and periodic systems with
equal effort. Near-locality of the kinetic energy operator in real-space repre-
sentations leads to simplicity in developing domain-decomposition parallel
algorithms. In addition, it is possible to implement adaptive grid-refinement
strategies to focus effort in spatial regions with large variations in the com-
puted functions, for example near the nuclei. In finite-difference methods,
the available strategies for mesh refinement include composite grids [56–
58] and adaptive coordinates [54, 59]. In finite-element methods, on the
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other hand, there is more freedom in the choice of the computational mesh.
However, generating an optimal finite element mesh (or finite-difference
composite grid) for a given problem is a nontrivial task [60–62], which ei-
ther requires a priori knowledge of the spatial dependence of the required
density of the mesh, or involves a repeated sequence of solving the problem
in a given mesh, making an a posteriori error estimation and then remesh-
ing. Representations on real-space grids allow also the use of multigrid
(MG) algorithms with their excellent convergence characteristics and scal-
ing properties [63, 64]. A real-space formulation is also often used in efficient
implementations of O(N) methods for electronic-structure calculations, in
which the computational work required scales linearly with the number of
atoms [65, 66].

Among the pioneers of real-space methods for molecular systems were A.
D. Becke [67, 68] and Pyykkö et al. [69–71], who made highly accurate fully
numerical all-electron real-space calculations for diatomic molecules, em-
ploying the prolate spheroidal coordinate system. In the axial symmetry of
diatomic molecules, the azimuthal dependence of the single-particle func-
tions can be treated analytically and the ensuing numerical problem is two-
dimensional. Their approach for diatomic molecules is very similar to our
more general method for axially symmetric systems, described in Sec. 4. Be-
sides density-functional theory, Pyykkö et al. applied their fully numerical
approach to other quantum chemical models such as Hartree-Fock, MCSCF,
and relativistic DFT calculations [69].

Several approaches employing the multigrid idea within electronic structure
calculations have appeared during the last decade [50–53, 66, 72]. The main
idea of multigrid methods is that they avoid the critical slowing-down (CSD)
phenomenon occuring when a partial differential equation discretized on a
real-space grid is solved with a simple relaxation method such as the Gauss-
Seidel method. The discretized operators use information from a rather
localized region of the grid at a time. Therefore the high-frequency error of
the length scale of the grid spacing is reduced very rapidly in the relaxation.
However, once the high-frequency error has effectively been removed, the
slow convergence of the low-frequency components dominates the overall
error reduction rate [63], i.e. CSD occurs. In multigrid methods one stops
the relaxation on a given (fine) grid before CSD sets in and transfers the
equation to a coarser grid (the so-called restriction operation) where the low-
frequency components can be solved more efficiently. On the coarsest grid
the problem is solved exactly or as accurately as possible, after which one
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interpolates (the so-called prolongation operation) the correction to finer
grids, performing simultaneously relaxations in order to remove the high-
frequency errors introduced in the interpolation. Refs. [73, 74] are classical
textbooks on multigrid methods. Introductory material can be found in the
recently appeared second edition of the Multigrid tutorial by W. L. Briggs
et al. [75].

The full-approximation storage method [63] (FAS) is a standard recipe for
nonlinear problems. Beck et al. [53, 76] have applied the FAS eigensolver
of Brandt et al. [64] for electronic structure calculations of small molecules.
Costiner and Ta’asan [77, 78] have made several technical improvements to
overcome various obstacles related to the application of the FAS-method in
electronic structure calculations. It has also been noted [78, 79], that the
FAS-scheme, applicable to nonlinear systems of equations, can be directly
applied to the nonlinear Kohn-Sham problem, bypassing the self-consistency
iterations. However, according to the author’s knowledge, none of these
methods are yet routinely applied in large-scale electronic structure cal-
culations. When many eigenfunctions are solved simultaneously, the FAS
methods may suffer from problems with representing the eigenfunctions ac-
curately on the coarse levels, limiting the number of levels that can be used.

Briggs et al. [50, 72] apply a linearized multigrid algorithm, where the po-
tential does not appear at all in the coarse-grid equations. Thus, on the
coarse grids, they solve for a Poisson equation, obtaining some acceleration
for the convergence of the Schrödinger equation, accurately discretized on
the fine level only. Although this scheme clearly does not reach optimal
convergence speeds, it has been used on a routine basis for several years in
electronic structure calculations.

Multigrid methods are not the only efficient solvers for the matrix eigen-
problems arising from the finite-difference or finite-element discretization of
the Kohn-Sham equations. Chelikowsky et al. [48, 80–82] have succesfully
applied iterative diagonalization schemes based on preconditioned Krylov
techniques, such as the Lanczos method [83]. However, even for such meth-
ods, multigrid methods may have relevance as the optimal preconditioners
for the ensuing linear systems of equations, when the system size is large.
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3.1 The Rayleigh quotient multigrid method

In order to avoid the coarse grid representation problems we have devel-
oped a generalization of the so-called Rayleigh quotient multigrid method
(RQMG) introduced by Mandel and McCormick [84]. Our generalization is
presented in Publication I. In this method the coarse grid relaxation passes
are performed so that the Rayleigh quotient calculated on the fine grid will
be minimized. In this way there is no requirement for the solution to be
well represented on a coarse grid and the coarse grid representation prob-
lem is avoided. Mandel and McCormick [84] introduced the method for the
solution of the eigenpair corresponding to the lowest eigenvalue. We have
generalized it to the simultaneous solution of a desired number of lowest
eigenenergy states by developing a scheme which keeps the eigenstates sep-
arated by the use of a penalty functional, Gram-Schmidt orthogonalization,
and subspace rotations.

A basic ingredient of our scheme is a very simple relaxation method called
coordinate relaxation [85]. Coordinate relaxation is a method of solving the
discretized eigenproblem

Hu = λBu (13)

by minimizing the Rayleigh quotient

〈u|H|u〉
〈u|B|u〉

. (14)

Above, H and B are matrix operators chosen so that the Schrödinger equa-
tion discretized on a real-space point grid with spacing h is satisfied to a
chosen order O(hn). In Eq. (14) u is a vector, containing the values of
the Kohn-Sham orbitals at the grid points. In the relaxation method, the
current estimate u is replaced by u′ = u+ αd, where the search vector d is
simply chosen to be unity in one grid point and to vanish in all other points,
and α is chosen to minimize the Rayleigh quotient. This leads to a simple
quadratic equation for α. For complex eigenfunctions it is possible to either
solve a remarkably complicated coupled pair of quadratic equations for the
real and imaginary parts of α, or to sequentially apply separate coordinate
relaxation steps for the real and imaginary parts. A complete coordinate
relaxation pass is then obtained by performing the minimization at each
point in turn and these passes can be repeated until the lowest state is
found with desired accuracy.
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Naturally, also the coordinate relaxation suffers from CSD because of the use
of local information only in updating u in a certain point. In order to avoid
it one applies the multigrid idea. In the multigrid scheme by Mandel and
McCormick [84] the crucial point is that coarse grid coordinate relaxation
passes are performed so that the Rayleigh quotient calculated on the fine
grid will be minimized. In this way there is no requirement for the solution
to be well represented on a coarse grid. In practice, a coarse grid search
substitutes the fine grid solution by

u′f = uf + αIf
c ec, (15)

where the subscripts f and c stand for the fine and coarse grids, respectively,
and If

c a prolongation operator interpolating the coarse grid vector to the
fine grid. The Rayleigh quotient to be minimized is then

〈uf + αIf
c dc|Hf |uf + αIf

c dc〉
〈uf + αIf

c dc|Bf |uf + αIf
c dc〉

=
〈uf |Hfuf〉+ 2α〈Ic

fHfuf |dc〉+ α2〈dc|Hcdc〉
〈uf |Bfuf〉+ 2α〈Ic

fBfuf |dc〉+ α2〈dc|Bcdc〉
.

(16)
The second form is obtained by relating the coarse grid operators, Hc and
Bc, with the fine grid ones, Hf and Bf , by the Galerkin condition

Hc = Ic
fHfI

f
c ; Bc = Ic

fBfI
f
c ; Ic

f =
(
If
c

)T
. (17)

Note, however, that the Galerkin condition is not satisfied in our actual
implementation – instead we discretize the original equation separately on
each grid to obtain Hc and Bc [discretization coarse grid approximation
(DCA)].

The key point to note is that when Hfuf and Bfuf are provided from
the fine grid to the coarse grid, the remaining integrals can be calculated
on the coarse grid itself. Thus one really applies coordinate relaxation on
the coarse grids to minimize the fine level Rayleigh quotient. This is a
major departure from the earlier methods, which to some extent rely on the
ability to represent the solution of some coarse grid equation on the coarse
grid itself. Here, on the other hand, one can calculate the exact change in
the Rayleigh quotient due to any coarse grid change, no matter how coarse
the grid itself is. There is no equation whose solution would have to be
representable.

Next we consider the generalization of the RQMG method to the simultane-
ous solution of several (N) mutually orthogonal eigenpairs. The separation
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of the different states is divided into two or three subtasks. First, in order
to make the coarse grid relaxations converge towards the desired state we
apply a penalty functional scheme. Given the current approximations for
the k lowest eigenfunctions, the next lowest, (k + 1)’th state is updated by
minimizing the functional

〈uk+1|H|uk+1〉
〈uk+1|B|uk+1〉

+
k∑

i=1

qi
|〈ui|uk+1〉|2

〈ui|ui〉 · 〈uk+1|uk+1〉
. (18)

The modulus of the overlap integral in the penalty term is squared to make
the penalty positive definite. The denominator is required to make the
functional independent of the norms of ui, i = 1 . . . k+1. The minimization
of this functional is equivalent to imposing the orthonormality constraints
against the lower k states, when qi → ∞. By increasing the shifts qi any
desired accuracy can be obtained, but in order to obtain a computationally
efficient algorithm a reasonable finite value should be used, for example

qi = (λk+1 − λi) + Q, (19)

where Q is a sufficiently large positive constant. In our calculations we have
used the value Q = 2 Ha.

The substitution (15) is introduced in the functional (18) and the mini-
mization with respect to α leads again to a quadratic equation. This time
the coefficients contain terms due to the penalty part.

While the penalty functional keeps the states separated on the coarse levels,
we apply a simple relaxation method (Gauss-Seidel) on the finest level.
The Gauss-Seidel method converges to the nearest eigenvalue, so ideally
no additional orthogonalizations would be needed. In practice, however,
we use Gram-Schmidt orthogonalizations and subspace rotations. However,
the number of fine grid orthogonalizations remains small, for example, in
comparison with the conjugate gradient search of eigenpairs employing only
the finest grid [49].

3.2 Obtaining self-consistency

The Kohn-Sham equations have to be solved self-consistently, i.e. the wave
functions solved from the single-particle equation determine via the den-
sity (solution of the Poisson equation and the calculation of the exchange-
correlation potential) the effective potential for which they should again be
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Figure 1: Strategy of self-consistency iterations. First, the Kohn-Sham
orbitals are solved nonselfconsistently using the full multigrid method in
the initial potential corresponding to the superposition of pseudoatoms.
Then the effective potential is updated (this is denoted by P in the figure).
The potential update amounts to calculation of the new electron density,
the solution of the Poisson equation and calculation of the new exchange
correlation potential. Next the Kohn-Sham orbitals are updated by one V-
cycle. These two steps are repeated until self-consistency has been reached.

solved. To approach this self-consistency we apply an optimized strategy
so that numerical accuracy of the Kohn-Sham orbitals and that of the po-
tential increase in balance, enabling the most efficient convergence. Our
strategy consisting of sequential updates for the Kohn-Sham orbitals and
the potential during the self-consistency iterations is illustrated in Fig. 1.

It is well known that using the output potential of an iteration step as a
new input for the subsequent iteration might lead to instabilities in the it-
eration process. In fact the source of this instability can be traced to the
long range of the Coulomb potential and is particularly severe for large sys-
tems. An input potential which deviates from the self-consistent potential
contains spurious Coulomb contributions which cause the electronic charge
to overshoot from iteration to iteration. This phenomenon is called charge
sloshing. To damp the charge density oscillations, we have applied the con-
ventional mixing scheme, where the new effective potential V n+1

in is obtained
from the input and output potentials of the previous iteration as

V
(n+1)
in = (1− κ)V

(n)
in + κV

(n)
out , 0 < κ ≤ 1. (20)

In our test calculations for the CO2-molecule and bulk Si reported in Pub-
lication I, we obtain rapid convergence with κ ≈ 0.5. Later, however, we
have encountered systems, where very small values for κ are necessary to
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avoid divergence, and hundreds of iterations are needed to obtain conver-
gence. Therefore, it is important to implement a more sophisticated mixing
scheme in the future [86–93]. One idea [86–88] which we have already im-
plemented, is to use, instead of the Poisson equation, the following recursive
modified Helmholz equation

(∇2 − k2)V
(n)
C (r) = −4π

(
ρ(r) +

k2

4π
V

(n−1)
C (r)

)
, (21)

the solution of which is

V
(n)
C =

∫
exp(−k|r− r′|)

|r− r′|

(
ρ(r) +

k2

4π
V

(n−1)
C (r)

)
. (22)

It can be seen that at convergence this scheme will give the correct Coulomb
potential. In addition, the exponential kernel in Eq. (22) essentially elimi-
nates contributions from ρ(r) outside a sphere of radius equal to 1/k. Thus
this scheme eliminates problems due to long-range Coulomb interactions
of spurious charge oscillations. In plane-wave methods, the related scheme
known as the Kerker mixing [89] is widely used.

3.3 MIKA – a program package and a project

The RQMG-method described above has been harnessed for use in several
applications, i.e. computer programs devoted to the modelling of specific
classes of physical systems. It is convenient to refer to the collection of
applications and the numerical implementation of the RQMG-method col-
lectively with a single name. Thus the name Mika (Multigrid Instead
of K-spAce) was coined for the program package (Publication II). In the
middle panel of Fig. 2, the main components of the program package are
shown. The numerical solvers for the Schrödinger and Poisson equations
are collected in the subroutine library MGLIB. The first applications of the
atomistic, three-dimensional real-space pseudopotential method as imple-
mented in rspace were discussed in Sec. 3.1. In addition, some recent
developments of rspace are briefly discussed is Sec. 3.4. In the left panel
of Fig. 2 an example from an archetypal application of electronic structure
calculations is shown – the electron density corresponding to the so-called
deep states in the neutral, ideal (no ion-relaxation) vacancy in Si.

Special software, the program cyl2, has been written for electronic structure
calculations in axial symmetry. Applications to diverse nanophysics prob-
lems (Publications III,IV,V) are discussed in Sec. 4. Quantum dots and
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Figure 2: Left panel: electron density isosurface corresponding to the deep
states localized at the neutral, ideal (no ion relaxation) vacancy in bulk
Si. Middle panel: Schematic illustration of the software comprising the
Mika-package. Right panel: Isosurface of the positron state localized at a
Si vacancy in SiO2.

quantum dot molecules in two-dimensional electron gas are being studied
using RS2Dot [94–96] – a code designed for electronic structure calculations
in two dimensions. Software for studying positron annihilation in solids has
been developed earlier [97], and referred collectively with the name doppler.
In these programs, a key ingredient is the numerical solver of the positron
wave function. The RQMG-method has replaced the former, less efficient,
conjugate-gradient method [49] in this application as well. As an example of
positron calculations, the right panel of Fig. 2 shows a positron wave func-
tion localized in the Si-vacancy in SiO2. It should be added here, that a one-
dimensional version of the RQMG-method has been implemented as well,
and applied in the calculation of the influence of electron-electron interac-
tions on the supercurrent in superconductor-normal metal-superconductor
(SNS) structures [98].

In addition to the program package described above, the name MIKA has
been adopted for a collaborative project, started in 2002 by CSC and
COMP. In addition to COMP, three other Finnish research groups have
expressed their interest in joining this collaborative effort towards develop-
ment and application of real-space methods for electronic structure.

3.4 Work in progress

Recently [99], several steps were taken to develop further the three-dimen-
sional RQMG-based pseudopotential code rspace. The program was paral-
lelized over k-points and real-space domains. The time-saving double-grid
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Figure 3: Some electronic structure calculations using Elmer. All-electron
calculations for the molecules CO and C60 were done. Schrödinger equation
was solved in a periodic potential corresponding to bulk silicon. See also
the text.

method of Ono and Hirose [100] was implemented. The Hellman-Feynman
forces [101] and relaxation of the ionic coordinates using the Broyden--
Fletcher-Goldfarb-Shanno (BFGS) algorithm [102–106] were implemented.
With the aim of relaxing structures of positron-decorated defects in solids,
the calculation of positron-induced ionic forces was implemented. In prac-
tice, this was realized by making a subroutine call from rspace to the
well-established implementation of the atomic-superposition method [97]
within doppler. A preliminary relaxation of the positron-decorated silicon
vacancy was done using the 63-atom supercell. The Brillouin-zone was sam-
pled using the Γ-point only. The results of this calculation will be reported
elsewhere, after a careful review of the details of the implementation and
proper convergence of the calculation. It should be noted here that Probert
et al. [107] have recently shown that accurate calculations for the neutral
vacancy in Si require special care in the choice of the supercell and k-point
sampling. The same may be true for the positron decorated vacancy in Si.

At CSC, a general purpose program package Elmer for partial differential
equations has been developed during the last decade. In Elmer, the equa-
tions are discretized using the finite-element method [108, 109] on arbitrary
meshes, which can be generated to match the demands of the problem to
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be solved.

A natural first step in the collaboration of COMP and CSC in the Mika-
project was to assess the feasibility of using Elmer for electronic structure
calculations. Fig. 3 illustrates three successful test cases, indicating the fea-
sibility of Elmer in electronic structure calculations. The most important
strength of Elmer in comparison to rspace is the flexibility of the finite-
element mesh. Although equivalent adaptivity can be reached in finite-
difference methods through the use of composite grids [56–58], the related
technical difficulties may be sufficient to suppress their actual implemen-
tation within the Mika-package. Nonuniform meshes allow the treatment
of systems with multiple length scales. Such systems are quite common
in electronic structure calculations – examples are all-electron calculations,
hard pseudopotentials and surfaces. The need for accurate treatment of
such systems is one of the main reasons for developing real-space methods.

As the first self-consistent calculation within the local-density approxima-
tion of the density-functional theory using Elmer, an all-electron calcu-
lation for the carbon monoxide molecule was done. The top left panel of
Fig. 3 illustrates the selected finite-element mesh. Since the divergent (1/r)
potential has to be represented on the mesh, a very fine mesh is used in the
immediate neighbourhood of the singularity. The Lanczos method [83] with
shift-and-invert preconditioning [110] was used to solve the resulting eigen-
problem with high accuracy at each iteration of the self-consistency cycle.
The initial guess for the effective potential was the sum of the bare nuclear
potentials. Although a very small value for κ in Eq. (20) was needed in
the first few SC-iterations, tight convergence in less than 20 iterations was
obtained by increasing κ in an ad hoc manner during the self-consistency
cycle. In the middle panel of the upper row of Fig. 3 a contour plot of a
single-particle wave function provided by the Kohn-Sham scheme is shown.
Also larger molecules can be treated using this all-electron scheme within
Elmer. The top right panel of Fig. 3 shows a selected orbital from an
all-electron calculation of the C60-molecule. The lower left panel illustrates
the electron density of C60, obtained from a parallel calculation involving
eight processors and 4× 105 degrees of freedom. The lower middle panel of
Fig. 3 illustrates the partitioning of the mesh that was used – domains with
different colours were mapped to different processors. Periodic boundary
conditions were implemented within Elmer, and in order to compare the
computational efficiency of the RQMG method and the Lanczos method,
the Schrödinger equation was solved (i.e. a non-self-consistent calculation
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was done) in a periodic potential corresponding to bulk silicon using both
methods. A uniform grid consisting of 323 points was used in the 64-atom
supercell. The computational efficiencies of the two methods were similar –
an accuracy of 10−5 eV (or better) in the eigenvalues was obtained in 900
seconds. The lower right panel of Fig. 3 illustrates a selected eigenfunction
from this periodic test case.

There is plenty of room for improvement in the computational efficiency of
our finite-element scheme. While the highly accurate all-electron calculation
for C60 with 4× 105 degrees of freedom required 48 hours of wall-clock time
when calculated using 8 processors on an IBM eServer Cluster 1600, a pseu-
dopotential calculation using rspace on 483 grid required only 15 hours on
a single processor. Implementing pseudopotentials, higher-order elements
and possibly the RQMG-method within Elmer will improve the efficiency.
The high-order finite-difference approach allows the use of coarse grids in
pseudopotential calculations, but the price to be paid is lower accuracy due
to the coarse sampling of the potential [48]. However, in the high-order
finite-element approach the potential is represented as accurately as in the
dense-mesh, low-order case.

21



4 Nanophysics in axial symmetry

In Publications III, IV and V, we have applied the RQMG-method in var-
ious nanostructure studies. We found it convenient in all these projects
to use axially symmetric model systems instead of atomistic models. This
approximation reduces the computational demands and allows us to study
rather large systems encompassing hundreds (Publications III and IV) and
even thousands (Publication V) of electrons. In addition, by restricting
the geometry to the axial symmetry and resorting to jellium models, many
random effects related to the detailed and sometimes unimportant atomic
structure disappear, and the relevant physics is easier to extract from the
simulations.

In the axial symmetry, the Eq. (6) for the Kohn-Sham orbital

ψmkn(r) = eimφUmkn(r, z) (23)

can be replaced by the following equation

−1

2

(
1

r

∂

∂r
+

∂2

∂r2
− m2

r2

∂2

∂z2
+ 2Veff

)
Umkn(r, z) = εmknUmkn(r, z). (24)

We denote the components of the k-vector by kz and k‖. The z-component
kz of the k-vector only has relevance in periodic systems, such as the
nanowires studied in Publication IV. In the periodic case, the following
Bloch boundary condition

Umkn(r, z + Lcell) = eikzLcellUmkn(r, z) (25)

is satisfied. The radial component k‖ enters in Publication V, where we
approximate a planar system by a hexagonal lattice of circles. We see that
the numerical problem is reduced to a two-dimensional one. Furthermore,
the problem is conveniently split into a number of independent subproblems
– the Kohn-Sham orbitals with different m or k are automatically orthog-
onal and can be solved simultaneously in a massively parallel computer
environment.

4.1 Conductance oscillations in atomic chains

In Publication III, our focus has been on atomic Na chains as ultimate
conductors. Monatomic Na wires consisting of more than one atom have
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not been reported experimentally yet, while a possibility of the forma-
tion of three-atom-long Na wires in the breaking process of a nanocontact
has been demonstrated theoretically [111] in ab initio molecular dynam-
ics simulations. Following a theoretical prediction of similar atomic-scale
metallic nanowires consisting of Au atoms by Sørensen et al. [112], such
wires have actually been produced by scanning tunneling microscope (STM)
[113, 114] and mechanically controllable break junction (MCBJ) technique
[115]. Chains of Au atoms up to a length of 7-8 atoms have been observed
to remain stable for more than an hour [116]. In addition, gold atom chains
have been observed to form on stepped Si surfaces [117].

Half a century ago, Fröhlich [118] and Peierls [119] discovered an instability
in one-dimensional electron systems that has come to be called the Peierls
instability: the regular chain structure in a one-dimensional wire with a
partly filled band will never be stable (at zero temperature), since one can
always find an energetically favourable structure with a longer periodicity
(e.g. doubled for a dimerized chain), for which a band gap occurs at the
Fermi-level. The wire changes from metallic to insulator in this process.
We do not consider the possible effects of Peierls distortions for finite Na-
chains in Publication III. Note, however, the calculation by Häkkinen et
al. [120], where a dimer is formed in the middle of a four-atom Au-chain
between leads. For a recent study on Peierls instability in Al Wires, see
Ref. [121].

Metallic atomic-sized contacts can be characterized by a finite set of con-
ductance eigenchannels, each of which has its own associated transmission
probability. For a point contact of just a single atom in cross section, the
number of valence orbitals of the atom fixes the number of eigenchannels
[122]. Thus, for monovalent metals, such as Na or Au, only a single channel
contributes to the conductance.

While chains of monovalent atoms can be considered as the simplest pos-
sible conductors, their properties are not yet completely understood. Bias
voltages as high as 2 V have been applied without damage to monatomic
gold wires [123, 124]. With a conductance equal to 2e2

h
this corresponds to

150µA, or a current density of 2× 1015 A
m2 . This current density is seven or-

ders of magnitude greater than the current density that turns the tungsten
wire inside a light bulb white-hot. Such high current densities are made
possible by the ballistic nature of the transport.

Different theoretical model calculations have predicted an oscillatory depen-
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Figure 4: Geometry of the present model. Na pseudoatoms are located
between two jellium cones. The cone angle α can be varied continuously.
The dotted line gives the boundaries of the calculation cell.

dence of the conductance on the number of Na atoms in the chain [125–127].
In recent STM experiments of gold nanocontacts [128], a small variation of
conductance within the region of a unit conductance quantum was observed
(Fig. 1(a) of Ref. [128]) as the STM tip is stretched before breaking. As
argued in Ref. [127], the small but abrupt jump in the conductance might
originate from an addition of an extra gold atom to the chain. That is, the
observed conductance variation may be a signature of the even-odd parity
effects in the atomic wire.

The first reported observation of the even-odd oscillation for Au atoms
appeared recently as a statistical analysis of many separate conductance
measurements performed using the MCBJ technique [129]. The observed
variation of the conductance was of the order of 0.01G0.

Our research reported in Publication III has been largely motivated by the
works of Sim et al. [126] and Yeyati et al. [130]. Sim et al. showed that
a half-filled resonance induced by a Na molecular orbital causes the high
conductance for an odd number of Na atoms in the chain. For an even
number of chain atoms, the resonance is filled, and below the Fermi level,
which lowers the conductance. Yeyati et al. showed that the role of the
contact leads cannot be ignored, when studying the conductance of atomic
chains. To enable a systematic study of the dependence of the conductance
not only on the length of the chain but also on the shape of the contacts,
we replace the leads by jellium cones of finite size. The cone opening angle
can be varied continuously. The geometry of our model is shown in Fig. 4.

24



1 2 3 4
0

0.5

1

Number of Na atoms in the wire

69o

    
0

0.5

1

C
on

du
ct

an
ce

 (
2e

2 /h
)

68o

    
0

0.5

1

67o

−0.2 −0.1 0 0.1 0.2
0

200

400

600

800

1000

1200

LD
O

S
 (

ar
b.

 u
ni

ts
)

Energy (eV)

67o

68o

69o

Total

−0.2 −0.1 0 0.1 0.2
0

50

100

150

200

250

300

350

400

67o

68o

69o

Energy (eV)

LD
O

S
 (

A
rb

.u
ni

ts
)

m=0

Figure 5: Left panel: Conductances of the chains of one, two, three and four
Na atoms between two jellium leads. The conductances are shown for three
different jellium cone angles. The number of electrons in each cone is 300.
Middle and right panels: Chain of two Na atoms between two jellium leads.
The local density of states (LDOS) near the Fermi level (energy zero) is
given for different cone angles. The middle panel shows the even (solid line)
and odd (dashed line) m = 0 LDOS’s calculated for the atom chain between
the jellium edges. The right panel shows the total LDOS’s calculated for
the atom chain and the tips of the leads to the depth of rs from the jellium
edge. The LDOS’s corresponding to the two uppermost angles are shifted
in steps of 100 and 200 units in the middle and right panels, respectively.

In the zero-bias limit, the mirror symmetry and the Friedel sum rule then
give the conductance [131]

G =
2e2

h
sin2

[π
2
(Ne −No)

]
, (26)

where Ne and No are the numbers of electrons in the even- and odd-parity
states, respectively.

As Sim et al. [126], we find the even-odd behaviour of the conductance as
a function of the number of atoms in the chain. However, while Sim et al.
studied atomistic leads of only one shape and found with high accuracy the
conductance of 1 G0 for an odd number of atoms, we find that the phase of
the even-odd oscillation has a sensitive dependence on the shape of the leads
– which in our simple model is reflected by the cone angle. This dependence
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is illustrated in the left panel of Fig. 5.

The total electron density increases close to the tip as the cone angle in-
creases. But it is important to note that them > 0 electron states contribute
most of the density increase. As a result, the m = 0 resonance states feel an
increased Coulomb repulsion and are pushed upwards in energy. The shift
of the m = 0 states towards higher energies can be seen in the LDOS inte-
grated over the region of the chain – the volume limited by the two planes at
the central jellium edges (middle panel of Fig. 5). The right panel of Fig. 5
gives the total LDOS calculated by including the tips of the cones into the
integration; the limiting planes are at the depth of rs from the central jel-
lium edges. We see that in this volume, which is important for the charge
neutrality of the atom chain, the m = 0 features of the left panel are hardly
visible. The change of this total LDOS is also less dramatic than that of
the m = 0 LDOS at the atom chain. On the basis of the above discussion
we can conclude that the m > 0 states have an important contribution to
the local charge neutrality and influence the conductance of the chain, even
though only m = 0 states contribute to the single conducting channel of the
system.

The finite-size effects make the interpretation of the results of our jellium
calculations as well as the atomistic calculations of Sim et al. difficult. While
we have made no attempt to mask the finite-size effects, Sim et al. have
artificially obtained a “bulk-like” flat density of states at the Fermi level for
their reference system consisting of leads only. They obtain this condition
by moving the atoms slightly on the vacuum side of their lead clusters [132].
Thereby their resonance-states can couple to bulk-like states exactly at the
Fermi-level, leading to half-filling and thus a conductance of 1 G0 in the
case of an odd number of atoms.

As already mentioned, in the measurements for chains of Au atoms, the last
conductance plateau of about one conductance quantum is not smooth but
exhibits abrupt changes synchronized with abrupt changes in the elongation
force [128]. The steps in the conductance may be of the order of one tenth
of the conductance quantum. Our findings give two explanations for these
small conductance changes. The conductance may jump abruptly when the
number of atoms in the chain increases. On the other hand, the geometry
of the lead tips changes affecting also the conductance. These two effects
may be superimposed during the actual elongation process.

While the Friedel sum rule of Eq. (26) is only applicable in the case of
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a single conducting channel and zero bias, more sophisticated methods
will be required in the future for theoretical assessing of the transport
properties of molecular devices. A promising scheme for this purpose is
the non-equilibrium Green’s function (NEGF) technique [133] combined
with self-consistent density functional calculations for the electronic struc-
ture. Using this approach, Tsukamoto and Hirose [134] have studied the
electron transport properties of Na chains under applied bias voltage. A
density-functional method for nonequilibrium electron transport has also
been implemented within the program package TranSiesta by Brandbyge
et al. [135]. In addition, several other groups are currently exploring NEGF-
DFT approaches for transport calculations [136–141].

4.2 Jellium models for nanowires

Using remarkably simple experimental techniques it is possible to gently
break a metallic contact so that during the last stages of the pulling a neck-
shaped wire connects the two electrodes [116]. The diameter of the con-
ducting nanowire is reduced down to a single atom upon further stretching.
For some metals, it is even possible to form a chain of individual atoms in
this fashion, as it was discussed in Sec. 4.1.

By indenting one electrode into another and then separating them in the
mechanically controllable break junction (MCBJ) technique [142] or by re-
tracting the tip of a scanning tunneling microscope (STM) [113, 128, 143]
from a substrate, a stepwise decrease in the electrical conductance is ob-
served, down to the breakpoint. A correlated oscillating decrease of the
mechanical force required to pull the wire has also been observed in the
STM-experiments [113]. Each scan of the dependence of conductance on
the elongation is different in detail, as the atomic configuration of each con-
tact may be different. However, statistically, many scans together produce a
histogram of the probability for observing a given conductance value, which
is quite reproducible for a given metal and for fixed experimental param-
eters. By carefully analyzing such histograms for Na nanowires, Yanson
et al. [144–146] have observed that certain conductance values are much
more probable than others. As the conductance can be related to the ra-
dius at the narrowest part of the wire, it follows, that there are magic radii
with enhanced stability. These findings have been interpreted as electronic
[144, 145] and atomic [146] shell structures of nanowires – in striking anal-
ogy with the corresponding shell structures observed previously in atomic
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Figure 6: Surface energy of infinite uniform cylindrical UJ nanowires as a
function of the nominal wire radius as defined in Publication IV. In the
inset the pure oscillations of the total energy per unit length are shown and
the first magic radii are marked.

clusters [147, 148].

Using a simple theoretical model [149, 150], the observed shell and super-
shell structures for Na have been quantitatively explained [151, 152]. In
this model, the nanowires are modeled as infinite uniform stabilized jellium
cylinders. The research reported in Publication IV is largely inspired by
these previous studies. The aim of the paper is to simulate the breaking
of nanowires. Thus the approximation of the wire as a uniform cylinder
has to be abandoned. We use the ultimate jellium (UJ) model (see Sec.
2.2), previously used by Manninen et al. to investigate the structure of the
alkali-metal clusters. To our knowledge, Publication IV is the first reported
study of nanowires, where the UJ model is used.

To gain insight into the properties of the UJ-nanowires, and to relate Pub-
lication IV to the previous studies of stabilized-jellium cylinders, we first
studied the stability of infinite cylindrical UJ-wires by calculating the sur-
face energy as a function of the wire radius (Fig. 6). The pure quantum
oscillations of the total energy per unit length can be seen more clearly in the
inset of Fig. 6, where the average behaviour, fitted to a liquid-drop model
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[153] - type function, is subtracted. The minima of this oscillating function
correspond to magic radii with enhanced stability. The supershell structure,
producing the periodic attenuation of the amplitude of the oscillations, can
be seen as well.

Previous theoretical studies of the breaking process of nanowires can be split
in two groups. The first group includes classical and ab initio molecular-
dynamics simulations, in which the atomic structure of nanowires is taken
into account. These investigations have been successful in many aspects,
e.g. showing the atomistic mechanisms of the narrowing process (appearence
of dislocations, order-disorder stages, etc.) and their connection to other
measurable quantities such as the elongation force or the conductance [112,
154]. From the viewpoint of the results obtained in Publication IV, we
notice the predictions for preferred clusterlike configurations of atoms in
Na constrictions, based on atomistic ab initio simulations of the breaking
process [154–156].

The second group of models is more related to properties due to the con-
finement of electrons in reduced dimensions, and ignores the atomistic and
discrete structure of matter. In these calculations analytic approximations
as well as self-consistent models have been used, mainly within jellium mod-
els. Whereas the first group of models tries to repeat the experiments as
accurately as possible and thereby gain insight into the actual atomic pro-
cesses, the second group of models tries to find the essential physics behind
the phenomena seen in experiments or in atomistic simulations. The second
class of methods reflect the measured average behaviour rather than individ-
ual breaking events. The methods can explain the cohesive and electronic
transport properties of nanowires, especially in the case of alkali metals with
strong free-electron character [151, 152, 157–160].

While Publication IV falls in the second group, it differs from methods
where ad hoc shapes, like hyperbolic [159], parabolic [157] or cosine [160]
are used for the constriction. In our model the electrons themselves acquire
self-consistently the shape, which minimises the Kohn-Sham energy func-
tional, and carry along the positive background. However, we restrict the
shapes of nanowires to the axial symmetry in order to reduce computational
demands and to highlight the important phenomena from the complexity
of possible solutions. The freedom of the electronic structure to deform
and thereby affect the ionic structure may roughly correspond to the exper-
imental conditions at temperatures close to the melting point. Note also
that in the experimental conductance histograms [144, 145] for Na, the shell
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Figure 7: Left panel: Schematic view of the model system for simulations of
breaking finite nanowires supported by two leads. Right panel: Supported
UJ wire. The UJ constriction contains eight electrons. Density contour
plots for four different elongation lengths: ∆L = 7.9 a0 (a), 19.8 a0 (b),
20.8 a0 (c), and 25.8 a0 (d) are shown. The snapshots in (b) and (c) are
from consecutive self-consistent calculations and the snapshot (d) is the last
step before the nanowire breaking.

and supershell structures are most clearly seen at the temperature of the
order of 80 K. The finite temperature clarifies the quantum shell structure
because the ions can rearrange to minimize the total energy.

In order to study the formation and evolution of nanoconstrictions between
two supporting leads we follow the next procedure. First, we fix the num-
ber of electrons in the periodic supercell and solve self-consistently for the
electronic structure of a uniform UJ wire having a stable magic radius. The
uniform shape is stable due to the quantum shell structure in cylindrical
geometry. Then, the potential at both ends of the periodic cell is ”frozen”.
This means that, although the Kohn-Sham equations are solved in the whole
wire, in these regions the potential is not updated in the self-consistency
process. The function of this ”frozen” part is to emulate the lead parts
where ion rearrangement does not occur as efficiently as at the constriction.
In our calculation, these leads serve as handles to grab the UJ and pull it.
The rest of the wire, the UJ at the middle part of the supercell, is the place
where the wire will stretch. A sketch of the configuration is shown in the
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left panel of Fig. 7.

In Fig. 7(a) the electron density is shown after the elongation of ∆L = 7.9 a0.
The catenoid-like density profile appears as expected for a classical fluid.
When we continue elongating the nanowire the shape of the electron density
changes dramatically from the classical one.

In Fig. 7(b) ∆L = 19.8 a0 and the electrons in the constriction form a
cluster-derived structure (CDS) [154, 155]. The electron density per unit
length has two minima at both sides of the CDS and there are 7.1 electrons
between these narrowest cross sections. The embedded cluster resembles
the spherical closed-shell cluster of eight electrons, but there are some dif-
ferences. There are not enough electrons and the symmetry is not exactly
spherical. The CDS, which reflects the spherical shell structure, is analyzed
in detail in the paper by studying the single-particle wave functions.

Figure 7(c) shows the next consecutive elongation step with ∆L = 20.8 a0.
Note that the CDS disappears and a sudden change in the mean radius
happens. In fact, the conductance changes simultaneously abruptly from
3 G0 to 1 G0 (see the inset in the left panel of Fig. 8). Here, we want to
emphasize that the shape of the constriction is again far from the catenoid
having a constant magic radius corresponding to the cylindrical shell struc-
ture. Figure 7(d) is for ∆L = 25.8 a0, the last step before the nanowire
breaks. Again a CDS appears during the elongation from the third to the
fourth snapshot. There are 1.8 electrons between the two minimum cross
sections at both sides of the CDS. This CDS can be interpreted as an em-
bedded two-electron cluster. We observe that the radius of the constrictions
is more or less constant with the same value as in the previous snapshot in
Fig. 7(c).

The conductance, shown in the left panel of Fig. 8 is roughly estimated
with the adiabatic and semiclassical approximation used by Brandbyge et
al. [143]. The constriction is divided into transversal slices. Then for each
slice a uniform wire with the z-independent effective potential of the slice is
built, and the subband bottoms are calculated by solving the Schrödinger
equation. The subband bottoms give effective potentials along the wire axis.
To evaluate the transmission probability of the electrons at the Fermi level
through the barrier at the constriction the semi-classical WKB formula is
used. The elongation force, shown in the right panel of Fig. 8 is evaluated
as the negative derivative of the total energy with respect to the elongation.
The rearrangement of the wire charge leads to discontinuous upward steps
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Figure 8: Main figures: conductance and elongation force for a wire with
initial radius R = 20.7 a0 and about 60 UJ-electrons in the constriction.
Insets: the same quantities for the wire in Fig. 7 with initial radius R = 10 a0

and 8 UJ-electrons in the constriction. The arrows mark the points were
the density has been plotted in Fig. 7.

in the force, while if the radius changes smoothly the force draws a con-
tinuous buckling curve. Here, we want to point out the superiority of the
UJ model in the force calculation over other jellium models [150, 157, 158].
In contrast with experiments [113, 128], the latter show a continuous os-
cillating behavior of the force without any steps. Moreover, for narrow
constrictions positive values are obtained when the wire crosses an unstable
zone. Note that in our model the force is always negative, as observed in
the experiments [113, 128] and in atomistic simulations [111, 112, 143, 154].
Our results show clearly that the transport, geometrical and mechanical
properties of the nanowires under elongation are related.

4.3 Adsorbed Na quantum dots on Cu(111)

Although the 4s-valence electrons in copper behave almost like free elec-
trons, there is a bandgap in the bulk band structure projected onto the
Brillouin-zone boundary along the (111) direction. When Na is deposited
on the Cu(111) surface, the valence electrons induced by the adatoms are
confined to the surface region by the bandgap on the substrate side and the
vacuum barrier on the other side. Due to this confinement the Na valence
electrons will form a two-dimensional nearly free electron gas, thus forming
quantum well states. Another interesting feature is that, as indicated by
recent STM measurements [161, 162], the second Na monolayer grows via
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the formation of roughly hexagonal adatom islands, providing confinement
also in the lateral direction for some of the quantum well states. Since
these systems confine electrons in three dimensions, they are quantum dots
(QD). Adsorbed nanostructures are interesting in order to promote or pre-
vent specific chemical reactions, e.g. adsorption or molecular dissociation.
in a controlled manner. As the local electron structure depends on atomic
species and coordination (the shape of the QD), it is in principle possible
to design a QD to initiate a specific reaction. An example of this new
field, nanocatalysis, is the detailed experimental and theoretical study of
the nanoscale hydrodesulfurization catalysts [163].

The usefulness of Na islands on Cu(111) as a nanocatalyst (or other pur-
poses) can be examined, besides by experimental methods, also through
computational modeling. The question arises, what level of sophistication
for the computational model should be used. Since the typical Na islands in-
clude of the order of hundreds of atoms, full atomistic ab initio treatment of
these islands on top of a Na monolayer on top of bulk copper (described e.g.
as a slab of ten atomic layers, therefore implying on the order of 104 atoms
in the supercell of a periodic system) seems intractable, although the newly
introduced order-N methods [41, 65, 66, 164] are promising tools for very
large scale first-principles electronic structure calculations. Free-electron
model calculations have been performed for circular [165] and hexagonal
[166] free-standing Na-islands. All-electron calculations for an unsupported
Na monolayer [167] and plane-wave pseudopotential slab calculations for
one-atomic Na layer in (2×2) and (3/2×3/2) adsorbate structures [168] on
Cu(111) have been presented. As a model for Na on Cu(111), we present
in Publication V self-consistent two-density-jellium calculations within the
density-functional theory. The model enables the study of systems of real-
istic size, thereby including thousands of Na atoms.

We wish to model an isolated Na island on the top of an infinite planar Na
monolayer on top of the semi-infinite copper substrate. Our first approxi-
mation is the replacement of the discrete Na atoms by a uniform positive
backgound charge density with sharp boundaries (the jellium model, see
Sec. 2.2). As a next step, we make the supercell approximation, where, in-
stead of an isolated Na island on top of the monolayer, we treat the system
as a periodic hexagonal superlattice. Finally, we replace the hexagonal unit
cell of this lattice by a circle with the same area as the original hexagon as
illustrated in the top left panel of Fig. 9. This approximation scheme is a
two-dimensional analogue of the well known Wigner-Seitz method in solid-
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Figure 9: Top left: Hexagonal lattice of area-covering circles. Bottom left:
Schematic view of the background charge density in a plane containing the
z-axis in our two-density model for a quantum-dot on top of a full monolayer
of Na on Cu(111) Right: Local density of states on top of a cylindrical QD
of 550 electrons on two-jellium substrate.

state physics [169]. The Brillouin-zone of the lattice of circles is sampled
at two k-points, which correspond to Kohn-Sham orbitals that are odd and
even with respect to the boundary of the circle.

A schematic view of the background charge density profile in our model
system is presented in the bottom left panel of Fig. 9. The essential physical
effects caused by the underlying copper monolayer are captured by using a
slab of lower-density jellium below the Na monolayer to mimic the decay
of the surface states into the substrate. We thereby introduce two free
parameters into our model – the density parameter rs2 and the width w2 of
the lower density slab. These parameters are fitted so that the bottoms of
the two most important surface-state bands coincide with the experimental
results. We have selected to fit the second band, consisting of states with
one horizontal nodal plane, in the case of one monolayer coverage, and the
third band (states with two horizontal nodal planes) in the case of a coverage
consisting of two full monolayers. The experimental positions of these band
bottoms are 0.1 eV below and above the Fermi level, respectively [170–172].

We solved the Kohn-Sham equations self-consistently using our axially sym-
metric implementation of the Rayleigh quotient multigrid method (Sec.
3.1). Due to the large size of the system, we encountered quite severe
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Figure 10: Left: Isosurfaces of the electron density and the LDOS at energies
corresponding to the dominant peaks shown in the right panel of Fig. 9.
The quantum numbers of the dominant states contributing at each energy
is indicated. Right: the step height of the second Na monolayer determined
from calculated constant-current surfaces (Eq. 28) is shown as a function of
the bias voltage (energy relative to the Fermi level). The inset shows the
LDOS isosurface profiles (height-to-radius ratio exaggerated) at energies
−400 meV (dashed line) 0 meV (solid line) and 400 meV (dash-dotted
line).

problems due to the well known phenomenon of charge sloshing (Sec. 3.2).
In our simple model, however, the self-consistent effective potential of the
large model system could be accurately estimated from the knowledge of
Veff(r, z) for a smaller (more easily convergent) system, after which only
small changes occured during the self-consistency iterations. For future cal-
culations of this type, however, more sophisticated mixing schemes (Sec.
3.2) should be considered.

The tunneling current and differential conductance dI/dV are typical quan-
tities measured in the STM experiments. When the applied voltage V is
small, the differential conductance is proportional to local density of states
(LDOS) [173, 174], which is directly available from our model calculations,

dI(V, r, z)

dV
∝

∑
mkn

(2− δ0m)|Umkn(r, z)|2δ(εmkn − eV ). (27)

In our numerical calculations we replace the δ-function by a Lorenzian.
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Further, we obtain a simple formula for the tunneling current,

I(V, r, z) =

∫ V

0

dI(V, r, z)

dV
dV ∝

∫ EF +eV

EF

ρ(E, r, z)dE, (28)

where ρ(E, r, z) is the LDOS at height z and distance r from the axis.
This enables us to calculate constant-current topographs within our simple
model, from which we can further extract the voltage dependence of the
step height at the perimeter of the Na QD (right panel of Fig. 10).

In the STM study by Kliewer and Berndt [166], constant-current topographs
and dI/dV measurements are presented for a Na island on the Na mono-
layer on Cu(111). The size of the island is 230× 170 a0

2 (120× 90 Å2). We
have studied a cylindrical jellium dot with similar dimensions, i.e. having
the radius of 85 a0 and containing thus about 550 electrons. The Na/Cu
substrate is described in our calculations by a cylindrical two-density-jellium
supercell with the radius of 160 a0 and containing 2000 electrons. We cal-
culated the LDOS at 18a0 above the Na islands (right panel of Fig. 9) – a
typical height in the STM dI/dV measurements. Because of the exponen-
tial decay of the Kohn-Sham orbitals into the vacuum, only those orbitals
that have the slowest decay rate contribute to the LDOS at this height.
These are exactly the states that have two horizontal nodal planes within
the quantum-dot region e.g. the resonance states most strongly localized
into the quantum dot in our model. The LDOS peaks can be labeled with
the ”quantum number” N by counting for the number of radial nodes of the
corresponding Kohn-Sham orbital in the 2 ML part. The states strongly
peaked in the QD are resonance states due to the hybridization of localized
QD states with the states of the surrounding monolayer and span the whole
system. Besides the delocalization of the states, the resonance character
causes the fact that in the LDOS (Fig. 9) several peaks may correspond to
the same resonance state. We have identified the LDOS peaks by exam-
ining the Kohn-Sham single-particle wave functions. The horizontal lines
below the quantum numbers m and N connect the peaks belonging to the
resonance in question.

The relative positions of the peaks appearing in the experimental dI/dV
spectra by Kliewer and Berndt [166] are shown in the right panel of Fig. 9
as arrows pointing downwards. We find that our model can reproduce quan-
titatively the experimental peak positions. According to our calculations the
resonance width increases towards higher energies. The increase is maybe
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slightly stronger than in experiment, indicating somewhat too weak a con-
finement of the resonance states in our model.

We have also calculated the isosurfaces of the LDOS (Fig. 10) at the ener-
gies corresponding to the dominant peaks in the right panel of Fig. 9. The
development of the nodal structure is clear and compares qualitatively well
with that found in the experimental dI/dV maps [162]. Our results support
the idea of surface states which are localized as resonances at the quantum
dots. The future applications of the model will include studies of the adsorp-
tion and dissociation of molecules in the vicinity of alkali metal quantum
dots. The possibility to relax the approximation of axial symmetry has
been planned as well. Hexagonal (instead of cylindrical) three-dimensional
jellium quantum dots can be modelled e.g. with the finite-element method
(FEM) discussed briefly in Sec. 3.4. Using FEM, the sharp boundaries
of the jellium system can be well represented, and coarsening the mesh in
the vacuum region is straightforward. For more accurate modeling of the
reaction mechanisms involving the adsorbant atom and the atoms in the
QD, a cluster of atoms embedded in the jellium QD can be used. Another
future direction under consideration is a fully atomistic calculation in slab
geometry for reasonable-sized quantum dots, performed using the atomic
orbital based, optionally linear scaling, Siesta -code [41].
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5 Summary

In this thesis, basic research focused on quantum systems relevant for the
future nanotechnologies is presented. Conductance properties of chains con-
sisting of a few Na atoms sandwiched between two metallic leads are exam-
ined. We find that the conductance depends in an oscillatory manner on
the number of atoms in the chain and the shape of the contact leads has an
important effect on the conductance. Cohesive and conducting properties of
a breaking nanocontact are studied using a model system, which highlights
the effects of the electronic structure, ignoring the evolution of the detailed
ionic configuration during the breaking process. The results enlighten the
physics of the phenomena seen in experiments and in atomistic simulations.
Finally, a model system is developed for adsorbed Na quantum dots on
the Cu(111) surface. The electronic structure arising from the model is in
agreement with scanning tunneling microscope measurements. The goal is
to apply this model in the future to study the reactivity of quantum dots, i.e.
how different parameters as the size, shape and composition of the quantum
dot may influence its ability to promote or prevent molecular dissociation
or adsorption. This rather new field of surface physics is often referred to
as nano-catalysis.

The computational framework for the nanostructure studies consists of the
application of the Kohn-Sham scheme of the density-functional theory in
axial symmetry. The axially symmetric approach is chosen, since this ap-
proximation reduces the computational demands and allows one to study
rather large systems encompassing hundreds and even thousands of elec-
trons. In addition, by restricting the geometry to the axial symmetry and
resorting to jellium models, many random effects related to the detailed
and sometimes unimportant atomic structure disappear, and the relevant
physics is easier to extract from the simulations. In addition, it is partic-
ularly straightforward to exploit massively parallel computer architectures
in the solution of the axially symmetric Kohn-Sham equations.

The Rayleigh quotient multigrid (RQMG) method developed in the work
is a central ingredient in the numerical methodology used in the axially
symmetric implementation of the Kohn-Sham scheme. In addition, it has
been applied to the study of positron states in solids and to electronic
structure calculations for quantum dots in two-dimensional electron gas. In
the future, our goal is to apply real-space methods to large-scale symmetry
unrestricted first-principles electronic structure calculations on a routine
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basis. In a second thread of this work, several key steps towards this goal
have been taken. The different applications based on the RQMG-method
are collectively referred to as the Mika-package (Multigrid Instead of the
K-spAce).

During this work, the Computational Condensed Matter group (COMP)
of the Laboratory of Physics of the Helsinki University of Technology and
CSC – Scientific Computing Ltd. have started a collaborative project called
MIKA for the development and application of real-space methods in elec-
tronic structure calculations. The author has been appointed as the project
manager of the MIKA-project. The plan is to gradually expand the project
through collaborations with both Finnish and foreign researchers.

Some electronic structure calculations done at CSC using the finite-element
method and Krylov subspace techiques, as implemented in the Elmer-
solver, developed at CSC, have already demonstrated the practicability of
Elmer in electronic structure calculations. Together, Elmer and Mika
provide a good basis for further development of real-space methods for elec-
tronic structure calculations within the MIKA-project.
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