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Symbols and abbreviations

The main symbols and notations used in the text are summarized below in alphabetical
order. The section or chapter, where each symbol has appeared for the first time, is also
mentioned. ’Local’ variables or functions have not been included in the list. The meaning
of the variables and functions have also been explained in the main text, when used for
the first time.

Symbols Section or Chapter

A Coefficient matrix in state-space representation 3.1
ak, a Volume ratio of mixers in series 3.4
B Coefficient matrix in state-space representation 3.1
C Coefficient matrix in state-space representation 3.1
cc Reagent concentration in a test system 6.2
ci Input concentration 2.2
ck Static gain of reference in state feedback control 6.3
co, c Output concentration 2.2
c0, c1, c2, ... Intermediate concentrations 3.3
cpi Output concentration of an ideal mixer without dynamics 6.2
D Derivative part in the PID controller output 6.1
D Coefficient matrix in state-space representation 3.1
d1, d2 Constant coefficients in the function defining

the modified time scale 3.1
dMA Amount of component A in flow 2.2
dM Volumetric flow element 2.2
dt, dτ Infinitesimal time intervals 2.2
E Residence time distribution function; same as p 2.4
E System matrix in the transformed state representation 7.2
e Control error (reference-system output) 6.1
F Matrix in the transformed state representation 7.2

v



f Function which defines the volumetric scale 2.4
ft Restriction function corresponding to the scale zt 4.5
G Matrix in the transformed state representation 7.2
g Weighting function (same as p′) 2.1
H Matrix in the transformed state representation 7.2
h Inverse function of f 2.4
I Integration part in the PID controller output 6.1
i Time index 3.3
J Cost in LQ control 6.3
j Time index 3.4
Kpz, Kiz, Kdz Tuning coefficients of the PID controller 6.1
K Proportional gain in PID controller 6.1
K Observer gain 6.4
k Scalar function causing time-variability

in the system realization 3.1
k Time index 3.3
kt Fixed value of function k at time t 6.4
L Controller coefficient in state feedback control 6.4
lk Flow and volume ratio of mixers in series 3.4
M Amount of material 2.3
MA,ME Observability gramian 7.2
Mn Class of Lyapunov transformation matrices 7.2
m Number of inputs 3.1
N ‘Strength’ of the impulse 2.3
N Number of points in the discretized impulse response 5.3
N Coefficient in the lag part of the modified PID

controller algorithm 6.1
n Number of states 3.1
n Number of vessels in series 3.3
P Proportional part in the PID controller output 6.1
P Transformation between the state variables 7.2
p′ Weighting function (same as g) 2.2
p Residence time distribution 2.2
Q0 Nominal process flow rate in a test system 6.2
Qi Input flow rate 2.2
Qo Output flow rate 2.2
Q1, Q2, ... Intermediate flow rates 3.3
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Qpi Input flow rate of a test system 6.2
Qpo Output flow rate of a test system 6.2
Qc Reagent flow rate in a test system 6.2
R Weight (matrix) related to the input variable in LQ control 6.3
r Number of outputs 3.1
r Absolute time instant, in which a particle leaves the vessel 4.2
r Reference variable 6.3
R1, R2 Abbreviations for two corresponding state representations

in time and z-domains 3.2
S Variable (matrix) in the Riccati equation 6.3
S(tf ) Weight (matrix) related to the cost of the

final state in LQ control 6.3
S Symbolic representation of a system 7.1
s Complex variable used in the Laplace transformation 4.1
T Sampling interval 6.1
T, T0 Specified time intervals 4.1
Tz Specified time interval in z-domain 4.1
Td Delay function 4.1
Tdap Approximation of the delay function 4.2
Ti Integration time in PID controller 6.1
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t Time variable 2.1
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t0 Initial time 2.1
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Chapter 1

Introduction

Control design of complex industrial plants is usually based on analysis of unit operations.
The reason for that is the fact that the model structure of idealized small process entities
is usually much simpler than the structure of larger process blocks. The total operation
of the plant can then be analysed by combining the basic models together to represent
larger entities of operation in the plant. If the connections between the unit models are
defined properly, the analysis and control design of the whole plant becomes feasible.

One of the most elementary unit operations in process industry is mass transport, which
has the purpose of moving material in a pipe from, say, one batch process to another.
An important case is the continuous production line, in which material is pumped con-
tinuously through the process, and the unit operations take place in vessels like mixing
tanks, chemical reactors etc. A traditional modelling technique is to describe the process
as a combination of basic idealized models like perfect mixers and plug flow vessels, which
may contain dead space and bypass or recycle flows (Levenspiel, 1962).

The dynamics of a continuous flow process is dependent on the mass flow rate. In a
mixing tank the time constant of the process is determined by the flow rate through the
vessel and the liquid volume in it. In traditional design the process is usually assumed
to be in a nominal operation point so that the flow rates and volumes are constant, but
this assumption is not always valid. Because of disturbances and intentional changes in
the production rate the flow rate through a process entity is not always constant. The
purpose of this text is to develop a systematic and mathematically sound theory, which
can be used in the analysis and controller design of processes having such characteristics.

The origin of the theory of residence time distributions (RTDs) is usually credited to
Danckwerts (1953), who used population-balance methods in the modelling of flow and
mixing dynamics in vessels. The key idea was to consider the macroscopic balance of the

1



2 CHAPTER 1. INTRODUCTION

process and to define suitable models for the residence times of particles in the system. The
concepts internal age distribution, external age distribution (residence time distribution),
intensity function, C, I, F and E curves formed the basic building blocks of the theory,
which is now considered classical, see e.g. (Levenspiel, 1962), (Seinfeld and Lapidus, 1974),
(Himmelblau and Bischoff, 1968).

The most attractive feature of the above models, especially in the case of the RTD, is the
conceptually straightforward experimental determination of them by using suitable tracer
testing. For example, if the flow process is linear with respect to particle concentrations
flowing through the system, and if the system is in stationary operating conditions, the
RTD and impulse response of the system are actually identical (the only difference is that
the area under the RTD curve is scaled to unity). By injecting a suitable tracer impulse-
wise into the system and measuring its output concentration continuously thereafter gives
the impulse response, from which the RTD is easily calculated.

It is noteworthy that although the residence time distribution theory is a well-established
and even age-old theory today, in many unit processes in process industry the experimental
determination of the RTD is still the only applicable method to get a model of the system.
The inspection of the curve gives the engineer an immediate view of the process dynamics
and possible anomalies like mean residence times, by-passing, dead-space etc. One step
further is then to fit a structural model to the measured RTD curve; traditionally a
combination of perfect mixers, plug flow reactors, by-pass and recycle flows have been
used. The structural model can then be used in control design. However, in many cases
the tracer tests are used in process analysis and process design only (Thereska et al.,
1996).

Both chemical and radioactive tracers are used in the modelling of processes in several
industry branches e.g. in petroleum industry, mineral processing and waste-water treat-
ment plants (Thereska, 2001). Today there exist specific software packages for proper
data handling related to the tracer test, measurements, model generation and validation,
see e.g. (Z̆itný and Thýn, 1996). The background in the methods and the related software
is to fit a structural model to the measured RTD (Bazin and Hodouin, 1988).

The classical residence time distribution covers only the case of stationary operating
conditions, i.e. the flow rate through the system and the liquid volume in the system
are constant. However, there is a strong practical demand to consider processes under
unsteady operating conditions also, because of disturbances and intentional changes in
the process operation. To consider such systems with time-varying dynamics brings the
classical RTD theory beyond its scope, and extensions to the theory are needed.

References concerning RTDs under unsteady operating conditions of the process are quite
rare in the literature. The classical work by Nauman (1969) presents a systematic ap-
proach to define time-varying age functions for stirred tank reactors. Dickens et al.,
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(1989) studied the RTDs of unsteady flows in a baffled tube. Nir (1973) studied the mix-
ing dynamics of lakes in unsteady operating conditions and actually defined a modified
time scale similar to that discussed later in this work. Fernández-Sempere et al., (1995)
considered the general problem of variable flow and volume in perfect mixers, plug flow
reactors and vessels with dispersion. The paper contains a reasonably concise treatment
of the problem, although some of the results in it have been known earlier, see e.g. (Niemi,
1977a), (Niemi, 1988), (Niemi, 1990).

The most systematic work in the theory related to time-varying RTDs and their applica-
tions in control has been done by Niemi and his co-workers. The origin of this work dates
back to the paper (Niemi, 1977a), in which the basic theory of time-variable residence
time functions and weighting functions in processes with variable flow were presented. The
same ideas – now including flow processes with variable liquid volume – were approached
in (Niemi, 1981) and (Niemi, 1990). In these papers processes with different velocity pro-
files were covered, and fundamentals of time-variable controllers were presented. Some
other papers can also be mentioned in this context, e.g. (Niemi, 1988), (Niemi, 1991).

The key idea of reducing the complexity of time-variable flow process models (assuming
a constant velocity profile) is to use a modified time scale (z), and to represent the model
equations with respect to this variable. The idea is a true extension to the use of the
variable θ, which is known in classical RTD literature (Levenspiel, 1962), (Seinfeld and
Lapidus, 1974). The θ scale is used when a flow system is in different stationary operating
conditions; the flow rate is not allowed to vary continuously.

The theory developed further, when new researchers joined Niemi’s group. The funda-
mental work of time-variable age distributions discussed earlier by Nauman (1969) was
extended by Zenger (1995), who discussed and formulated the theory of time-variable
RTDs, weighting functions and internal age distributions in a unified framework. The
idea of using state-space representations to the analysis and controller design of time-
variable flow processes was recognized at that time; for the main results of that approach,
see (Zenger, 1992, 1993). Time-variable delays in plug flow vessels under variable flow
rate mentioned already by Niemi (1977a) were modelled and analyzed by Zenger (1992),
and more deeply by Zenger and Ylinen (1994). It is interesting to note that some of these
results have connections to the work by Nihtilä (1991), who studied the adaptive control
of processes with variable delays.

Applications of the theory have also been studied extensively by Niemi and his group.
The idea of using a modified time scale to make the process model ‘time-invariant’ (with
respect to the new scale) is useful in the sense that classical methods in the analysis and
synthesis of dynamic systems become possible. Most of the work so far has been done in
the fields of control and system identification.

The fact that the PID controller with constant coefficients in z-domain leads to a similar
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controller with variable coefficients in time domain was first noticed by Niemi, and this
controller has been studied and used extensively, see e.g. (Niemi, 1991), (Niemi et al.,
1990), (Jutila and Jaakola, 1986), (Jutila et al., 1999), (Zenger, 1992). The stability
issues of the controller were studied by Zenger (1992, 1993). Practical tests were carried
out and reported by Zenger et al. (1996). It is worth to mention that the algorithm in
a slightly different form has been used by Jutila in several industrial projects. Also, in
the report (Jutila, 1983) several adaptive algorithms in the control of pH processes were
tested involving issues related to varying liquid flow.

Another idea in modelling has been to store the measured RTD as a time series only
(in the scale z) and not to approximate it with a structural model. That idea has been
elaborated on extensively by Tian (1994), see also (Tian et al., 1992). In these studies an
on-line identification method leading to a FIR model of the system (Wigren, 1990) was
extended to the case of variable flow and variable volume. Robust control based on the
identified model was considered by Tian (1994) and Niemi et al. (1997). An example of
the loop-shaping control was presented by Niemi et al. (2001). Generally, it is somewhat
surprising that the control applications related to models given by the RTD are few in
the literature.

Apart from control viewpoint research results related to the general RTD theory can be
found here and there in the literature. For example, Anderson and Pucar (1995) and
Isaksson (1993) considered the estimation of the mean residence time of flow processes
under unsteady flow; their method is an application of the theory of the modified time
scale. Najim et al. (1996) considered the calculation of RTD of continuous flow nonlinear
multivariable systems.

Additionally, there is a wide amount of literature concerning ”standard” applications,
in which the RTD has been measured to investigate the process behaviour. As an ex-
ample of contemporary activities in tracer technology, see e.g. the Proceedings of the First
International Congress Tracer and Tracing Methods, Nancy, France, 2001.

The outline of the thesis is as follows. In Chapter 2 the time varying residence time
functions are defined. The starting point in the analysis is to consider material transport
through a flow system and to model the input-output dynamics of the system. In this
respect, the impulse response, weighting function and RTD are connected to each other
in the case that the flow rate and the liquid volume are changing. The modified time
scale (volumetric scale, z-scale) is introduced, and it is shown that under fairly general
assumptions the weighting function and RTD coincide, when presented with respect to
the new time scale.

Structural models of flow systems are discussed in Chapter 3. The input-state-output
behaviour is considered by standard state-space representation, which can easily be formed
e.g. by using models of a perfect mixer, mixers in series, mixers with bypass and recycle
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flows etc. The conditions under which the time-variability (changing flow rates and liquid
volumes) of the representation can be changed invariant with respect to the modified time
scale are proved. Structural properties, i.e. stability, controllability and observability are
discussed, and they are shown to remain invariant in the transformation. A series of
perfect mixers is used as an example, and the result, indicated already in Chapter 2, that
the complexity reduction is possible in the case of changing flow rates but not generally
under changing liquid volumes, is proved.

In Chapter 4 systems with variable time delays are connected to the previous theory. In
system dynamics changing time delays arise naturally by considering plug flow vessels
under changing flow rates and liquid volumes. It is shown that the variable delay changes
into a constant, if the modified time scale is used. Again, that holds in the case of variable
flow rate only; the case of variable liquid volume must be excluded. There are however
ways to approach the variable volume case also and one alternative way is presented. The
new concept of the delay function is introduced, and its properties are investigated.

Tracer experiments carried out with a laboratory-scale pilot plant are presented in Chapter
5 to verify the results obtained in previous chapters. Both chemical and radioactive
tracers were used to three different kinds of vessels, which were subject to flow and liquid
variations. The results showed an excellent match when compared to the results predicted
by theory.

Controller design is the topic of Chapter 6. The idea is to start from a time-variable
process model, change it into an invariant form with respect to the modified time scale,
carry out controller design with classical techniques well-known for time-invariant systems,
and finally transform the controller algorithm back into time domain. That procedure
usually (but not always) leads to a controller with time variable coefficients. A good
example is the time-variable PID controller, which is discussed first. By measuring the
flow rate continuously the coefficients can be changed automatically such that e.g. the
stability of the closed-loop system can be guaranteed. As a second example, LQ optimal
control is discussed in connection to state feedback and state observer of time-variable
systems.

In Chapter 7 the concept of a z-invariant system is formulated to put the results discussed
earlier in a proper theoretical framework. Now the results are formulated in terms of
general system theory without considering any process classes in particular. Linear time-
variable state transformations are then considered as an alternative approach to changing
the independent time variable. The motivation here is to develop and propose more
general methods to analyse and control linear time-variable systems. Controller design
by using LQ optimal control is used as an example.

Conclusions are given in Chapter 8.
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The main contributions of the thesis can be summarized as follows:

• Material transport in flow systems with variable flow rates is considered, assuming
that the velocity profile of particles going through the system does not change in
spite of flow variations. If the system can be assumed linear with respect to in-
put/output characteristics of material transport, the (time-varying) weighting func-
tion and residence time distribution function have a connection, which depends on
the input and output flow rates, but not on the liquid volume in the system ex-
plicitly. The formula expressing the above relationship can be used to determine
the residence time distribution from the measured impulse response data also in the
case that the input and output flow rates have varied during the impulse test.

• When expressed as functions of the modified time scale (volumetric scale, z-scale)
the weighting function and residence time distribution become equal in the case of
variable flow rate. However, that does not hold if the liquid volume in the system
also changes (input and output flow rates differ). The concept of the modified time
scale has been known earlier, and it is not the invention of the author of the thesis.

• The theoretical framework is extended by considering state-space representations of
flow systems, which arise naturally as models of perfect mixers, series of perfect mix-
ers and possible bypass and recycle flows. The concept of a z-invariant realization is
introduced to characterize a model, which can be changed into a constant-coefficient
form by a change of the time-variable. The above system models are shown to be
z-invariant in the case of variable flow rate. If the liquid volume is also changing,
the system is z-invariant only in special cases.

• The structural properties of the system models (stability, controllability, observabil-
ity) are shown to be invariant in the transformation. That makes the analysis and
synthesis techniques of classical control theory of time-invariant systems feasible
in the case of z-invariant systems. In other words, the design techniques are now
on a mathematically sound basis. The theory is a true generalization to that of
the scaled time variable, which is used in classical literature to model systems in
different stationary operating conditions.

• The technique is then extended to cover time-variable delays caused by variable
flow in plug flow vessels. The delay is described by the delay function, which has
a complicated analytical form and which is difficult to calculate in closed form.
However, with respect to the modified time scale the delay becomes constant, which
is easy to deal with by classical methods. Systems of perfect mixers, plug flow
vessels and bypass and recycle flows can now be modelled with state equations of
constant coefficients and constant delay terms. Again, the delay becomes constant
in the case of variable flow but not if the liquid volume is also changing. The latter
case can be dealt with by using a new function (restriction function), but it is not
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analytically attractive. Its use would necessitate the storing of liquid volume values
continuously; the system is not truly z-invariant, if values from different time scales
(t and z) are mixed in this way.

• A time-variable PID controller and a time-variable linear quadratic optimal con-
troller are presented as applications of the use of the theory. Stability results are
discussed, and it is shown that a PID controller with constant coefficients does not
necessarily stabilize a system under variable flow conditions, while a corresponding
controller with variable parameters achieves a stable closed-loop system under all
flow conditions. This phenomenon is also demonstrated by a practical pilot-plant
test.

The time-variable PID controller has been known earlier; it was not invented by the
author. The LQ theory is also a classical one, but the application in z-invariant
systems surprisingly leading in a constant feedback control law, is new.

• Examples describing the use of the technique are presented to verify the results.
Tracer tests are used under variable flow conditions to determine the residence time
distribution in time and z-domains, respectively. The theoretical result that the
residence time distribution is invariant under the volumetric scale is verified.

• For comparison, a direct method of changing a time-varying system representation
into a constant-coefficient form by a direct state transformation in time domain,
is developed. However, this technique is still immature and it is presented for
comparison purposes only. Theoretically, it has a wider application area than that
discussed in the main part of the thesis.

• In short, the contribution of the work is to introduce the concept of z-invariant
systems and to formalize it on a sound mathematical basis making both analysis
and synthesis techniques tractable. Although the background behind the variable
change has been known earlier, and the technique has been used in applications,
the new formalism gives a much wider view on the subject, showing the possibilities
and limitations clearly. For z-invariant systems controller design and analysis of the
closed-loop operation are then straightforward by using the variety of tools available
in the classical theory of time-invariant systems.



Chapter 2

Material Transport in Flow
Processes

The basic theory for material transfer of mixing processes under unsteady operating con-
ditions is developed in this chapter. Two different residence distributions are defined
to characterize the residence time of particles in a flow system, in which the flow rate
and liquid volume may be time-varying. The impulse response and weighting function
are connected to the analysis to establish the input-output behaviour of the system with
respect to concentrations. The volumetric scale is introduced in order to transform the
time-varying system models into forms, which are invariant with respect to the new vari-
able. Under the assumption of an invariant flow pattern the new scale means a complexity
reduction, which can be seen as an extension to methods described in classical literature.

2.1 Input-output models of linear systems

Consider a single input–single output (SISO) system, which is assumed to be linear. The
system can be described by the input-output model

y(t) =
∫ t

t0
g(t, τ)u(τ)dτ, t ≥ t0 (2.1)

where y(·), u(·) are the output and input functions, respectively, and g(·, ·) is the weighting
function. The weighting function coincides with the unit impulse response of the system
(from the time that the impulse enters the system). The system is assumed to be causal,
which implies that g(t, τ) = 0 for all t < τ . Further, the system is relaxed at some
time instant t0, which means that the initial condition is zero (Chen, 1999). Sometimes

8
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the lower limit −∞ in (2.1) is used in literature emphasizing that the system is relaxed
initially. In this case the system must be assumed to be stable, because otherwise equation
(2.1) will not give finite results. In what follows the symbol t0 is used as a lower limit of
the integral in (2.1) giving a natural time origin. For example, this time origin can be 0
or −∞, whichever is convenient.

The system is generally time-varying implying that the value of the weighting function
depends on two absolute time instants. In the case of a time-invariant system equation
(2.1) can be written as the convolution integral

y(t) =
∫ t

t0
g(t − τ, 0)u(τ)dτ =

∫ t

t0
g(t − τ)u(τ)dτ (2.2)

in which the usual convention g(t − τ, 0)
�
= g(t − τ) has been used for convenience.

In chemical modelling, tracer tests have been a practical method to determine the weight-
ing pattern. The test is carried out by injecting an amount of a substance impulsewise
into the vessel and by measuring the concentration continuously at the outlet of the vessel.
When properly scaled the result gives the residence time distribution (RTD), which for
linear and time-invariant systems coincides with the weighting function and unit impulse
response of the system. Because the transfer function of the system is obtained as the
Laplace transformation of the weighting function, the possibility for analysis and control
design by classical methods is then apparent.

The situation is more complicated, if there are variations in the flow rate and liquid
volume. The system and its model are then time-varying, which makes analysis much more
involved, because the well-known classical theory of time-invariant systems in not usable
anymore. The purpose of this chapter is to show, how the theory of weighting functions
and RTDs can be extended to the time-varying case. A mathematical transformation is
presented, which can be used to reduce the complexity of the resulting models into a form,
where classical design methods again become possible.

2.2 Residence time functions

Consider a flow system with one input and one output. The liquid is assumed to be
incompressible, and the system is closed meaning that all material entering the system
with the flow will leave eventually. Furthermore, it is assumed that the process is linear
with respect to concentrations.

The flow rate going through the system and the liquid volume in it may be time-varying,
but the flow pattern is assumed to be invariant. That means that the statistical distribu-
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tion of the flow elements going through the system remains the same despite of variations
in the flow rate or liquid volume. Although the system model may contain time-varying
coefficients the structure of the model describing the system does not change (Niemi,
1977a), (Zenger, 1995).

Consider a volumetric flow element dM(τ) entering the system in an infinitesimal time
interval [τ, τ +dτ ]. (In short, the element enters at time τ .) Correspondingly, a volumetric
flow element dM(t) is assumed to leave the system during the time interval [t, t + dt].
The time that a single flow element stays in the system can be characterized by two
distributions. The function p(t, τ) expresses the distribution of the residence times of
particles entering at time τ , while p′(t, τ) characterizes the residence time of particles
leaving the system at time t. Because of the possible variations in flow and volume, the
absolute time instants (τ or t) are important here. This means that the system and its
model are time-varying in contrast to the theory of time-invariant systems, for which only
the difference of τ and t would be enough to characterize the input-output behaviour
of the flow system (Levenspiel, 1962), (Seinfeld and Lapidus, 1974), (Himmelblau and
Bischoff, 1968).

(Note that the apostrophe in p′(t, τ) above is used to make a distinction to the function
p(t, τ); it does not mean differentiation. In this text the notation for the derivative is
always d/dt or a ‘dot’ above a variable, e.g. ċ(t).)

Following the original derivation by Niemi (1977a), the residence functions and their
relationship can be derived as follows. If the input and output flow rates are denoted
by Qi(·) and Qo(·), respectively, the volumetric material equations for the entering and
leaving volume elements at times τ and t are

dM(τ) = Qi(τ)dτ (2.3)

dM(t) = Qo(t)dt (2.4)

The flow rates are assumed to be positive at each time instant. If the symbol d[dM(t)] is
used to express the amount in the leaving volume element which entered at the time τ ,
i.e. with the element dM(τ), the equation

d[dM(t)] = dM(τ)p(t, τ)dt = Qi(τ)dτ p(t, τ)dt (2.5)

follows, in which the function p(·, ·) expresses the distribution of the residence times of
particles entering at a fixed time instant τ . If the time t is considered, the entering time
of particles τ is distributed. That can be expressed by the function p′(·, ·), and it follows
that

d[dM(t)] = dM(t)p′(t, τ)dτ = Qo(t)dt p′(t, τ)dτ (2.6)

By combining (2.5) and (2.6)

Qi(τ)dτ p(t, τ)dt = Qo(t)dt p′(t, τ)dτ (2.7)
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which simplifies to

p(t, τ) =
Qo(t)

Qi(τ)
p′(t, τ) (2.8)

Physical reasons give additional constraints to the two residence functions. Firstly, for all
t < τ it holds p(t, τ) = p′(t, τ) = 0. Secondly,

∫ ∞

τ
p(t, τ)dt = 1 (2.9)

and ∫ t

−∞
p′(t, τ)dτ = 1 (2.10)

which mean that all entering material will leave eventually and all leaving material has
entered at some earlier time.

The above two constraint equations emphasize the probability density nature of the two
residence functions. It is possible to interpret that the residence functions express the
probability of the life time of a particle entering or leaving the system.

Analysis can also be carried out with respect to a fixed component of the process material.
Consider a component A in the flow and denote its amount or mass MA in the incoming
or outgoing fluid. The momentary amount of material A in the incoming stream at time
τ and in the outgoing stream at time t can be expressed as

dMA(τ) = Qi(τ)ci(τ)dτ = ci(τ)dM(τ) (2.11)

dMA(t) = Qo(t)c(t)dt = c(t)dM(t) (2.12)

in which ci(·) and c(·) denote concentrations of the component A at the input and output,
respectively.

If the amount of material A at the output at time t, which has entered at time τ , is
denoted by d[dMA(t)], it follows that

d[dMA(t)] = dMA(τ)p(t, τ)dt = ci(τ)dM(τ)p(t, τ)dt = ci(τ)Qi(τ)dτ p(t, τ)dt (2.13)

in which equations (2.3) and (2.11) have been used. The total amount of A in the effluent
stream at time t can be calculated by summing all material components of A, which have
entered earlier and are leaving at time t. Mathematically this means that

dMA(t) =
∫ t

t0
d[dMA(t)]dτ (2.14)

By combining the equations (2.12), (2.13) and (2.14), it follows that

Qo(t)c(t)dt = (
∫ t

t0
ci(τ)Qi(τ)p(t, τ)dτ)dt (2.15)
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and finally

c(t) =
∫ t

t0
ci(τ)

Qi(τ)

Qo(t)
p(t, τ)dτ =

∫ t

t0
p′(t, τ)ci(τ)dτ (2.16)

From a system theoretic viewpoint the result shows that the residence function p′(·, ·) can
be identified with the weighting function g(·, ·) of the system. The integral

c(t) =
∫ t

t0
g(t, τ)ci(τ)dτ (2.17)

where in this case
g(·, ·) = p′(·, ·) (2.18)

is the well-known input-output relationship of a linear but possibly time-varying system,
which is initially relaxed meaning that the initial conditions are zero.

Equation (2.8), which has also been used in (2.16), gives an interesting relationship be-
tween the two residence functions. The function p(·, ·) is called the residence time dis-
tribution (RTD) in classical literature (Seinfeld and Lapidus, 1974), (Levenspiel, 1962).
The weighting function p′(·, ·) on the other hand is a basic concept in system theory as
explained in any basic textbook of linear systems, see e.g. (Padulo and Arbib, 1974),
(Chen, 1999). The importance of equation (2.8) lies in the fact that it becomes possible
to conveniently use general system theory in the analysis of flow systems modelled by
residence time distributions.

Additionally, there are two important points to notice in equation (2.8). Firstly, the
possibly varying liquid volume does not appear explicitly in the equation. Instead, starting
from mass balances and assuming a constant density, the equation

V̇ (t) = Qi(t) − Qo(t) (2.19)

is obtained (Denn, 1986), which shows how the liquid volume depends on the incoming
and outgoing flow rates. (It is assumed that the flow rates are such that the liquid volume
is positive all the time.) Secondly, if the flow rate through the system is constant all the
time, the two residence functions become the same, which confirms the well-known fact
(Niemi, 1977a, 1988) that for time-invariant flow systems the residence time distribution
and weighting function are equal. From the general system theory it is further known
(Padulo and Arbib, 1974) that in the time-invariant case

g(t, τ) = g(t − τ, 0)
�
= g(t − τ) (2.20)

which means that only the time difference between two time instants is important when
characterizing the input-output behaviour of a linear time-invariant system. The same
holds for the residence time distribution also

p(t, τ) = p(t − τ, 0)
�
= p(t − τ) (2.21)



2.3. IMPULSE RESPONSE, RTD AND THE WEIGHTING FUNCTION 13

Actually, the term residence time distribution is mathematically incorrect, and e.g. res-
idence time density function would be more appropriate. However, for historical reasons
the phrase ‘residence time distribution’ (RTD) is here used, as in almost all literature
discussing this concept.

2.3 Impulse response, RTD and the weighting func-

tion

There is an alternative approach to derive relationship (2.8) by using the well-known fact
that in a linear system the weighting function and unit impulse response are equal from
the time instant that the impulse has entered the system (Rugh, 1993). Let an amount M
of material enter a system at time τ ; for example, M moles of tracer is injected in a vessel
impulsewise in a very short time interval. All material is assumed to leave eventually so
that

M =
∫ ∞

t0
Qo(t)c(t)dt =

∫ ∞

t0
Qi(t)ci(t)dt =

∫ ∞

t0
Qi(t)Nδτ (t)dt = NQi(τ) (2.22)

where ci(·) is the input concentration of the injected material and N expresses the
‘strength’ of the impulse. The units in the above equation are [M ] = mol, [Qi] = [Qo] =
m3/s, [ci] = [c] = mol/m3, [N ] = mol · s/m3. Equation (2.13) can be solved leading to

p(t, τ)dt =
d[dMA(t)]

dMA(τ)
(2.23)

But the material A was injected impulsewise to the system at time τ ; hence it holds that
d[dMA(t)] = dMA(t), and by equations (2.12) and (2.22) the result

p(t, τ)dt =
Qo(t)c(t)dt

M
=

Qo(t)c(t)dt∫ ∞
τ Qo(t)c(t)dt

(2.24)

follows. Note that for constant flow rates the result simplifies to

p(t, τ)dt =
c(t)dt∫ ∞

τ c(t)dt
(2.25)

which is the classical expression for the RTD (Levenspiel, 1962), (Seinfeld and Lapidus,
1974).

Interpreting the impulse response (impulse entering at time τ) as the weighting function
gives the output concentration (Zenger, 1995)

c(t) = Np′(t, τ) (2.26)
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and further, by using (2.22), (2.24) and (2.26)

p(t, τ) =
Qo(t)c(t)

M
=

Qo(t)

Qi(τ)
p′(t, τ) (2.27)

(t ≥ τ). The result is the same as (2.8).

2.4 A modified time scale

The close relationship between the two residence functions p(·, ·) and p′(·, ·) leads to the
natural question, whether there exists a transformation that would make the two functions
equal. It would also be beneficial if the resulting input-output relationship could be
expressed with a weighting function that would somehow have a ‘time-invariant’ nature.
To study the existence of such a transformation let p′(t, τ) be the weighting function of
the system. Let z = f(t) where f : t �→ f(t) is a positive, continuously differentiable
and monotonously increasing function with the inverse h : z �→ h(z) such that for t ≥ τ ,
t = h(z) and τ = h(ξ). A straightforward change of variables in equation (2.16) leads to

c(h(z)) =
∫ z

z0

p′(h(z), h(ξ))ci(h(ξ))ḣ(ξ)dξ (2.28)

(z0 = f(t0)) which can be expressed as

c̄(z) =
∫ z

z0

p̄′(z, ξ)c̄i(ξ)dξ (2.29)

in which for all t, τ and the corresponding z, ξ it holds that c̄(z) = c(h(z)) = c(t),
c̄i(ξ) = ci(h(ξ)) = ci(τ), p̄′(z, ξ) = p′(h(z), h(ξ))ḣ(ξ). By using the well-known formula
for the derivative of the inverse function ḣ(ξ) = 1/ḟ(τ) the relationship

p̄′(z, ξ) = p′(t, τ)/ḟ(τ) (2.30)

follows. If, additionally, for all t, τ

p′(t, τ)

ḟ(τ)
= p̄′(z − ξ, 0) (2.31)

the representation is invariant with respect to z, i.e.

p̄′(z, ξ) = p̄′(z − ξ, 0) (2.32)

The system is then called z-invariant with respect to the function f(·). The variable z =
f(t) can be interpreted as a new time variable, which transforms the system representation
into a ‘time-invariant’ form.
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Remark: Note that the system has been assumed to be relaxed initially, meaning that
the initial values are assumed to be zero. As will be discussed in Chapter 7, the above
definition should actually be zero-state z-invariant.

Note that corresponding to the normalization conditions (2.9) and (2.10) it follows that∫ ∞

ξ
p̄(z, ξ)dz = 1 (2.33)

∫ z

−∞
p̄′(z, ξ)dξ = 1 (2.34)

in which
p̄(z, ξ) = p(h(z), h(ξ))ḣ(z) = p(t, τ)/ḟ(t) (2.35)

and p̄′(z, ξ) is given by (2.30).

By using (2.30) and (2.35) the equation (2.8) can be written as

p̄(z, ξ) =
Qo(t)

Qi(τ)

ḟ(τ)

ḟ(t)
p̄′(z, ξ) (2.36)

and using the transformation

z = f(t) =
∫ t

t0

Qi(ν)

V (ν)
dν (2.37)

in which V (·) denotes the volume of the liquid in the system, it changes into

p̄(z, ξ) =
Qo(t)

Qi(t)

V (t)

V (τ)
p̄′(z, ξ) (2.38)

The result shows that in the case of varying flow rates but constant volume

p̄(z, ξ) = p̄′(z, ξ) (2.39)

meaning that the residence time distribution and weighting function are equal when rep-
resented as functions of the modified time scale. If the system is z-invariant, the above
equation can be written as

p̄(z, ξ) = p̄(z − ξ, 0) = p̄′(z − ξ, 0) (2.40)

There are a few important observations to be made at this point. The concept of a z-
invariant system is related to the chosen scale z = f(t), so when the concept is used it is
assumed that the scaling (or scaling function) has been given.

The fact that the RTD, weighting function and (unit) impulse response become equal
in the volumetric scale makes an interesting analogy to the classical theory of linear



16 CHAPTER 2. MATERIAL TRANSPORT IN FLOW PROCESSES

systems and RTDs. However, the system representation is still in ‘time-varying’ form; if,
additionally, equation (2.31) holds, the system becomes z-invariant making it possible to
use analysis and synthesis methods of the classical and well-established theory of linear
time-invariant control systems.

The varying flow rate is hidden under the transformation, which actually means that the
complexity reduction is achieved by using a time-varying transformation. Note that the
result (2.39) holds in the case of varying flow rates but not if the liquid volume is also
changing i.e. if the input and output flow rates differ from each other.

Because the variable z is interpreted as a modified time, it must be monotonously in-
creasing. In equation (2.37) it means that both the flow rate and liquid volume must be
positive.

For a practical application consider the possibility to determine the RTD by using a
tracer experiment (Zenger, 1995). When an amount of tracer is injected in a flow system
impulsewise, the impulse response is obtained by measuring the output concentration as
a function of time. That output concentration can be expressed by c(t) = k1p

′(t, τ) in
which k1 is a constant. By considering equation (2.9) the RTD is then calculated by
normalizing the area under the concentration curve to unity.

From equation (2.8) it is seen that the value of k1 is indeed a constant, if the flow rate
through the system (and thus the liquid volume also) is constant. However, if the flow rate
is changing the measured impulse response must be multiplied by the output flow rate
before normalization in order to get a correct RTD. So, the normalization is applied to the
function p1(t, τ) = Qo(t)c(t) where c(·) is the measured response. In the stationary case
the calculation of p1(t, τ) first is not necessary, because scaling is then properly performed
by the normalization procedure.

To demonstrate the above ideas and results an example case is considered.

Liquid is flowing through a vessel with a constant flow rate Q. The input and output
flow rates are equal so that the liquid volume in the vessel is also a constant V . The
volumetric scale is then

z =
∫ t

0

Q

V
dν =

Q

V
t =

t

t̄
(2.41)

in which the time origin has been chosen to be zero for convenience. The term t̄ = V/Q
is the mean residence time. In the dimensionless volumetric scale the formulas for the
weighting function and the RTD are

p̄′(z, ξ) =
p′(t, τ)

ḟ(τ)
= t̄p′(t̄z, t̄ξ) (2.42)
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p̄(z, ξ) =
p(t, τ)

ḟ(t)
= t̄p(t̄z, t̄ξ) (2.43)

If the system is time-invariant, it is z-invariant also so that

p̄′(z, ξ) = t̄p′(t̄(z − ξ), 0) (2.44)

p̄(z, ξ) = t̄p(t̄(z − ξ), 0) (2.45)

Moreover, the above two equations are equal, see (2.39). If the impulse is assumed to
enter at time 0 (τ = 0, ξ = 0), then

p̄′(z, 0) = p̄(z, 0) = t̄p(t̄z, 0) (2.46)

As an example consider a flow system under a steady operating condition t̄1 = V1/Q1,
which has the RTD p1(t, 0). Let the operating point be changed into another stationary
point t̄2 = V2/Q2. If the flow system has an invariant flow pattern despite of the change
in the operating point, the RTD p2(t, 0) in terms of p1(t, 0) can be calculated as follows.
Choose a volumetric time scale z = t/t̄2. By using equation (2.46) the RTDs become

p̄1(z, 0) = t̄1p1(t̄1z, 0)

p̄2(z, 0) = t̄2p2(t̄2z, 0)

Because the system is z-invariant, the two functions must be equal, which means

p2(t, 0) =
t̄1
t̄2

p1(
t̄1
t̄2

t, 0) (2.47)

or

p1(t, 0) =
t̄2
t̄1

p2(
t̄2
t̄1

t, 0) (2.48)

In classical literature the variable θ

θ =
t

t̄
(2.49)

has been used instead of z to define the scaled time variable with respect to which the
RTD can be made constant under different steady operating conditions. Formula (2.46)
is well-known to apply in different constant steady states, see e.g. (Himmelblau and
Bischoff, 1968), (Levenspiel, 1962). Note that in the literature the variable E has usually
been used to denote the RTD; equation (2.46) is then presented in the form

Ē(θ) = τE(t) |t=τθ

or even
E(θ) = τE(t)

The above analysis shows that under the assumption of an invariant flow pattern the
idea of using a scaled time variable can be extended to the case of continuously varying
flow rates and liquid volumes. The use of the general volumetric scale z is then a clear
extension to the existing RTD literature.



Chapter 3

Differential Systems

To proceed further in the development of the ideas presented in the previous chapter, some
kind of a structure is needed to characterize the system model. A differential system is a
natural candidate for several reasons. Firstly, flow processes are continuous systems, and it
is therefore natural to use continuous time models. Secondly, in the classical literature and
also in the practical modelling of chemical reactors today, such systems are modelled by
combinations of perfect mixers, plug flow reactors and recycle flows. The models of these
kinds of systems are easily available as a combination of differential equations. Thirdly,
the effect of varying flow rates and liquid volumes in the model arises naturally in that the
system structure does not change but the coefficients become time-variable instead. The
basic assumption that the flow pattern does not change in spite of variations in flow and
volume is then automatically contained in the process model. From the analysis point of
view it is a big advantage that although the model becomes time-varying, it still remains
linear.

It is not the purpose of this text to start from the theoretical definition of a differential
system or system in general. For an extensive discussion on this topic (Zadeh and Desoer,
1963) provides a standard reference. Another starting point would be the input-output
representation described e.g. by Blomberg and Ylinen (1983), or in a more general setting
by Orava (1973, 1974).

In the current text a differential system means a system whose input and output are
related by one or more ordinary differential equations (Zadeh and Desoer, 1963). In order
for the model to be meaningful in technical perspective, it is assumed that the system has a
unique solution through a given point, which is usually given as the initial condition. The
differential equations are further transformed to a set of first order differential equations
(state-space representation), and an output mapping provides the connection between
the input, state and output variables. In what follows, when the term representation or
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realization is used, a state-space representation is generally meant.

3.1 State-space representations

Consider the state-space representation of a system

ẋ(t) = A(t)x(t) + B(t)u(t) x(t0) = x0 (3.1)

y(t) = C(t)x(t) + D(t)u(t)

in which the state x(·) ∈ (�n)�, input u(·) ∈ (�m)�, and output y(·) ∈ (�r)�; the
coefficients A(·) ∈ (�n×n)�, B(·) ∈ (�n×m)�, C(·) ∈ (�r×n)�, and D(·) ∈ (�r×m)� are
continuous functions on the real numbers �.

The representation is defined to be z-invariant , if a new time scale z exists such that the
equations change into ones with constant coefficient matrices.

As in Chapter 2, let z = f(t) where f : t �→ f(t) is a continuously differentiable and
monotonously increasing function with the inverse h : z �→ h(z).

Proposition 1 The state-space representation is z-invariant, if and only if it satisfies
the following two conditions.

1. A(t) = k(t)Ā and B(t) = k(t)B̄, where k(t) is a positive and continuous scalar
function, and Ā and B̄ are constant matrices.

2. C(t) = C̄ and D(t) = D̄ are constant matrices.

The transformation is then

z = f(t) = d1

∫ t

t0
k(ν)dν + d2 (3.2)

d1 > 0, d2 ≥ 0 and the equivalent system

dx̄(z)

dz
= (1/d1)Āx̄(z) + (1/d1)B̄ū(z) x̄(z0) = x̄(f(t0)) = x0 (3.3)

ȳ(z) = C̄x̄(z) + D̄ū(z)
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Proof: Consider the composite mapping x(f(t)). Because both x(·) and f(·) are differ-
entiable functions, the chain rule can be applied in equation (3.1), which gives then

dx

dz
(z)

df

dt
(t) = A(t)x(h(z)) + B(t)u(h(z)) (3.4)

y(h(z)) = C(t)x(h(z)) + D(t)u(h(z))

Because z is monotonously increasing, ḟ(t) > 0 and

dx

dz
(z) =

A(t)

ḟ(t)
x(h(z)) +

B(t)

ḟ(t)
u(h(z)) (3.5)

y(h(z)) = C(t)x(h(z)) + D(t)u(h(z))

Because ḟ(t) is a scalar function, it must hold that for all t A(t)/ḟ(t), B(t)/ḟ(t), C(t)
and D(t) are constant matrices. Each element in matrices A(·) and B(·) must then have
a common factor k(·). Equation (3.2) gives a general solution for z = f(t). �

Remark 1: In Chapter 2 the concept of a z-invariant system was defined, in which the
input-output relationship was invariant with respect to a scale z. Now the concept of a
z-invariant representation is introduced. It is possible that a z-invariant system has two
different state-space representations, one of which is z-invariant, while the other one is
not. So it makes a difference, whether z-invariant systems or representations are discussed.

Remark 2: The fact that the coefficient matrices in (3.1) are assumed to be continuous
functions guarantees that the system has a unique and continuously differentiable solution.
Sometimes, e.g. in the case of switching systems, it is necessary to consider cases, in which
the system matrix is only piecewise continuous. As discussed by Coddington and Levinson
(1955) and Zadeh and Desoer (1963), let ẋ(t) = A(t)x(t), in which A(t) is a regulated
function meaning that the matrix elements are piecewise continuous and have a right-
hand limit at every point. Moreover, in each finite interval the amount of the discontinuity
points is countable. Under these assumptions there is a unique and continuous function
x(t)

x(t) = x0 +
∫ t

t0
A(τ)x(τ)dτ

which satisfies the above differential equation except at the discontinuity points. For
brevity, it is said that the continuous function x(t) is the solution of the homogenous
differential equation.

In the current text the possibility that the state equation may not have a solution at
each time instant is avoided by assuming that the system matrix is continuous. The
transformation f(·) is assumed to be even continuously differentiable; in practice that is
implied by the transformation (3.2), k(t) being continuous.
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3.2 Structural properties

An important result given by the next two propositions states that the structural proper-
ties i.e. stability, controllability, and observability are preserved under the transformation
(Zenger, 1993). For brevity, call the time-varying representation (3.1) R1 and the corre-
sponding representation with constant coefficients (3.3) R2. Stability is considered with
respect to the origin (xe = 0). The equivalence between the two system representations
is so strong that the following two results follow immediately. In fact, proving them feels
like proving the inevitable.

Proposition 2 If the function z = f(t) that transforms R1 into R2 tends to infinity as
t → ∞, the following holds:

1. R1 is (asymptotically) stable, if and only if R2 is (asymptotically) stable.

2. R1 is uniformly stable, if and only if R2 is stable.

3. R1 is uniformly exponentially stable, if and only if R2 is asymptotically stable.

4. R1 is (zero state) BIBO stable, if and only if R2 is (zero state) BIBO stable.

Proof: R1 and R2 are equivalent in the sense that x̄(z) = x(t), ū(z) = u(t), ȳ(z) = y(t),
where the ‘time’ variables t and z have a one-to-one relationship z = f(t), t = h(z). If
R1 is stable, for every ε > 0 there is a δ > 0 such that ‖x(t0)‖ < δ implies ‖x(t)‖ < ε
for all t ≥ t0. The equivalence of the variables then guarantees that ‖x̄(z0)‖ < δ implies
‖x̄(z)‖ < ε, so that R2 is stable as well. In a similar manner it can be proved that the
stability of R2 implies the stability of R1.

For every interval [t0, t1) there is a corresponding unique interval [z0, z1) and vice versa.
Moreover, z1 → ∞ as t1 → ∞. Hence, if the state variable of R1 or R2 approaches the
origin as the ‘time’ variable tends to infinity, so does the state variable of the other repres-
entation. The asymptotic stability of one representation thus guarantees the asymptotic
stability of the other as well.

For the second item note that the solutions of the state equations of R1 and R2 are the
same, which in terms of the state transition matrices can be written as

ΦR1(t, τ) = e
∫ t

τ
A(ν)dν = eĀ

∫ t

τ
k(ν)dν

= e(1/d1)Ā(z−ξ) = ΦR2(z, ξ) (3.6)

where z = f(t), ξ = f(τ). Now, a linear time-varying system is uniformly stable, if
there exists a finite positive constant γ such that for any t0 and x0 the solution of the
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autonomous system satisfies

‖ x(t) ‖≤ γ ‖ x0 ‖, t ≥ t0 (3.7)

(Brockett, 1970), (Rugh,1993). Moreover, the state equation is uniformly stable if and
only if for the state transition matrix it holds

‖ Φ(t, τ) ‖≤ γ (3.8)

for all t, τ such that t ≥ τ , (Rugh, 1993). The proof of the second item in the proposition
follows now directly, because the state transition matrices have exactly the same values
for the corresponding t, τ and z, ξ. (Note that for a time-invariant system stability is
always uniform.)

A time-varying linear state equation is uniformly exponentially stable if there exist positive
constants γ, λ such that for any t0 and x0 the corresponding solution satisfies

‖ x(t) ‖≤ γe−λ(t−t0) ‖ x0 ‖, t ≥ t0 (3.9)

Moreover, the equation is uniformly exponentially stable if and only if there exist positive
constants γ and λ such that

‖ Φ(t, τ) ‖≤ γe−λ(t−τ) (3.10)

for all t, τ such that t ≥ τ , (Rugh, 1993). The result in the theorem follows immediately
by the equivalence of the state transition matrices.

The equivalence of the two input-output systems R1 and R2 can be seen directly by
writing the solution

y(t) = C(t)ΦR1(t, t0)x0 +
t∫

t0

C(t)ΦR1(t, τ)B(τ)u(τ)dτ + D(t)u(t)

= C̄e
Ā

∫ t

t0
k(ν)dν

x0 +
t∫

t0

C̄eĀ
∫ t

τ
k(ν)dνk(τ)B̄u(τ)dτ + D̄u(t)

= C̄e(1/d1)Ā(z−z0)x0 +
z∫

z0

C̄e(1/d1)Ā(z−ξ)(1/d1)B̄ū(ξ)dξ + D̄ū(z)

= C̄ΦR2(z, z0)x0 +
z∫

z0

C̄ΦR2(z, ξ)(1/d1)B̄ū(ξ)dξ+D̄ū(z)

= ȳ(z)

(3.11)

If a finite input signal gives a finite output in R1, the same occurs for R2 also, and vice
versa. �

By means of the weighting function a result concerning the zero state BIBO stability can
easily be stated. Consider the system (3.1), in which the matrix D(·) is bounded. The
system is zero state BIBO stable, if and only if there exists a number K such that for all
t ≥ τ it holds ∫ t

τ
‖ p′(t, ν) ‖ dν ≤ K (3.12)
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For references, see e.g. (Brockett, 1970), (Jamshidi and Malek-Zavarei, 1986), (Rugh,
1993).

If the weighting function is z-invariant, the above condition can then be used with respect
to z to deduce whether the system is zero state BIBO stable in z-domain. As an example,
let a mixing process be described by the residence time distribution, which is assumed to
be invariant with respect to z. The zero state BIBO stability is guaranteed, because the
weighting function and the residence time distribution are known to be equal in z-domain,
and the integral of residence time distribution from the time t0 to infinity is 1.

Proposition 3 If the function z = f(t) that transforms R1 into R2 tends to infinity as
t → ∞, the following holds:

1. R1 is controllable, if and only if R2 is controllable.

2. R1 is observable, if and only if R2 is observable.

Proof: The representation R1 is controllable, if and only if for each t0 there is a t1 such
that the controllability Gramian

WR1(t0, t1) =

t1∫
t0

ΦR1(t0, t)B(t)BT (t)ΦT
R1

(t0, t) dt (3.13)

is non-singular (Rugh, 1993). This can be shown to be equivalent to the fact that the rows
of the matrix ΦR1(t0, ·)B(·) are linearly independent functions of time on [t0, t1], (Padulo
and Arbib, 1974). The condition becomes

UR1(t0, τ) = ΦR1(t0, τ)k(τ)B̄ = k(τ)e
−Ā

∫ τ

t0
k(ν)dν

B̄ (3.14)

For R2 the corresponding matrix is

UR2(z0, ξ) = ΦR2(z0, ξ)(1/d1)B̄

= (1/d1)e
−(1/d1)Ā(ξ−z0)B̄ (3.15)

By considering (3.6) it follows easily that

UR2(z0, ξ) = (1/d1)e
−Ā

∫ τ

t0
k(ν)dν

B̄

=
1

d1k(τ)
UR1(t0, τ) (3.16)

Since the term d1k(·) is always positive, the rows of UR1(t0, τ) are linearly independent
on [t0, τ ], if and only if the rows of UR2(z0, ξ) are linearly independent on [z0, ξ]. That
completes the proof of the first part of the theorem.
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The representation R1 is completely observable, if and only if for each t0 there is a t1 such
that the observability Gramian

MR1(t0, t1) =

t1∫
t0

ΦT
R1

(t, t0)C
T (t)C(t)ΦR1(t, t0) dt (3.17)

is non-singular. Again, this is equivalent to that the columns of the matrix C(·)ΦR1(·, t0)
are linearly independent functions of time on [t0, t1], (Padulo and Arbib, 1974). The proof
of the second part of the theorem follows by applying this result in a similar manner as
above. �

Remark: Notice that the condition that z must tend to infinity as t → ∞ is actually
essential only in the case of asymptotic stability. When stability, controllability and
observability are concerned, this presumption in the above two propositions could be
relaxed.

For a simple example consider the differential equation

ẋ(t) = −e−tx(t) + e−tu(t)

with x(t0) = x0. The equation is z-invariant, and it can be written in z-domain as

dx̄(z)

dz
= −x̄(z) + ū(z)

x̄(z(t0)) = x̄(0) = x0. The latter equation is asymptotically stable. To study the former
representation, choose u(t) ≡ 0. The solution of the equation is then

x(t) = x0e
−e−t0ee−t → x0e

−e−t0 
= 0

as t → ∞. Hence, the differential equation in time domain is not asymptotically stable.
The explanation for this is that the range of the z-variable

z(t) =
∫ t

t0
e−νdν = e−t0 − e−t

is [0, e−t0) so that the variable does not tend to infinity.

3.3 Differential models of basic mixing processes

Consider an ideally mixed vessel through which a liquid consisting of a solvent and dis-
solved solute is flowing continuously. An ideal mixing process but no chemical reaction



3.3. DIFFERENTIAL MODELS OF BASIC MIXING PROCESSES 25

is assumed to occur in the vessel. The input and output flow rates — and thus the
liquid volume also — can vary, but they are assumed to be positive-valued continuous
functions. With respect to concentrations the system can be modelled by the equations
(Zenger, 1992)

d(V (t)c(t))

dt
= Qi(t)ci(t) − Qo(t)c(t) (3.18)

V̇ (t) = Qi(t) − Qo(t) (3.19)

A simple manipulation of the two equations leads to the time-varying state equation

ċ(t) = −Qi(t)

V (t)
(c(t) − ci(t)) (3.20)

from which the weighting function is easily obtained

p′(t, τ) =
Qi(τ)

V (τ)
e−

∫ t

τ

Qi(ν)

V (ν)
dν (3.21)

According to equation (2.8) the RTD is then

p(t, τ) =
Qo(t)

Qi(τ)
p′(t, τ) =

Qo(t)

V (τ)
e−

∫ t

τ

Qi(ν)

V (ν)
dν (3.22)

By introducing the new time scale

z = f(t) =
∫ t

t0

Qi(ν)

V (ν)
dν (3.23)

and by using (2.30) it follows that

p̄′(z, ξ) =
p′(t, τ)

ḟ(τ)
= e−

∫ t

τ

Qi(ν)

V (ν)
dν = e−(f(t)−f(τ)) = e−(z−ξ) (3.24)

which also fulfills (2.31) so that the system is z-invariant. For the RTD

p̄(z, ξ) =
p(t, τ)

ḟ(t)
=

Qo(t)

Qi(t)

V (t)

V (τ)
e−(z−ξ) (3.25)

which is in accordance with (2.38). Note that although the system is z-invariant, the
RTD curve in the volumetric scale remains invariant if the flow rate – but not the liquid
volume – is changing. If the input and output flow rates differ from each other, the RTD
curve changes also.

The above results can be calculated easier by first transforming the state equation (3.20)
by (3.23) into

dc̄(z)

dz
= −c̄(z) + c̄i(z) (3.26)



26 CHAPTER 3. DIFFERENTIAL SYSTEMS

from which (3.24) follows easily.

The impulse response of the system will be calculated as an example. Let M moles of
tracer be injected into the input flow at time τ . By equation (2.22) the ‘strength’ of
the impulse is thus N = M/Qi(τ). By using equations (2.26) and (3.21) the output
concentration can be verified to be

c(t) =
M

V (τ)
e−

∫ t

τ

Qi(ν)

V (ν)
dν (3.27)

Note that at time τ the concentration is M/V (τ), which can be interpreted to be the initial
concentration of the substance in the total volume of the system. This is in accordance
to the definition of a perfect mixer stating that any particle entering the system can be
found anywhere in the system with equal probability. It should be noted however that
equation (2.22) is more profound, because it gives a relationship valid for not only perfect
mixers but other flow systems as well.

Additionally, it is interesting to note that by using relationship (2.19) the output concen-
tration can also be expressed as

c(t) =
M

V (t)
e−

∫ t

τ

Qo(ν)
V (ν)

dν (3.28)

Equations (3.27) and (3.28) show implicitly that for all t the terms
∫ t
−∞

Qi(ν)
V (ν)

dν and∫ ∞
t

Qo(ν)
V (ν)

dν must diverge, as noticed also by Nauman (1969). It is actually a consequence

of the basic assumptions (2.10) and (2.9), which can easily be shown by direct integration.

To illustrate, consider the flow rate Q(t) = e−t , which is a positive function that ap-
proaches zero asymptotically. Let the liquid volume be a constant V . The modified time
scale becomes

z =
1

V

∫ t

t0
Q(ν)dν = − 1

V
(e−t − e−t0)

so that

z ∈ [0,
1

V
e−t0)

The z-variable thus approaches a finite limiting value meaning that equations (2.9) and
(2.10) do not hold. However, this confusing result is due to the very peculiar nature of the
flow rate; the same example was actually considered in the end of the previous section.

The determination of the weighting function in z-domain can easily be derived in the
case of a z-invariant state-space representation. Consider equation (3.1) with x(t0) = 0,
A(t) = k(t)Ā, B(t) = k(t)B̄ , C(t) = C̄, D(t) = 0, where k(t) is a positive and continuous
function. By using the transformation

z = f(t) = d1

∫ t

t0
k(ν)dν
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(d1 > 0) the equations change into the form

dx̄(z)

dz
= (1/d1)Āx̄(z) + (1/d1)B̄ū(z) (3.29)

ȳ(z) = C̄x̄(z) (3.30)

with x̄(0) = 0. The state transition matrix of the system equation is

Φ(z, ξ) = e(1/d1)Ā(z−ξ) (3.31)

The impulse response or weighting function is

p̄′(z, ξ) = (1/d1)C̄e(1/d1)Ā(z−ξ)B̄ (3.32)

assuming that the unit impulse δξ(z) has entered at time ξ = f(τ), τ ≥ t0. In time
domain the result is

p′(t, τ) = d1k(τ)(1/d1)C̄e(1/d1)Ād1

∫ t

τ
k(ν)dνB̄ = k(τ)C̄eĀ

∫ t

τ
k(ν)dνB̄ (3.33)

Example: Consider two perfect mixers in series and assume that V1 = V2 = V . The
weighting function in time-domain can easily be computed using the above equation

p′(t, τ) =
Q(τ)

V
e−

∫ t

τ

Q(ν)
V

dν
∫ t

τ

Q(ν)

V
dν (3.34)

It is instructive to compare the transformation technique to the use of convolution integrals
as a method to determine the impulse response. The concentration at the outlet of the
first vessel is

c1(t1) =
∫ t1

t0
c0(τ)p′(t1, τ)dτ (3.35)

where p′(t, τ) is the weighting function of one ideally mixed. Applying the convolution
integral to the second vessel gives

c2(t) =
∫ t

t0
c1(t1)p

′(t, t1)dt1 =
∫ t

t0

∫ t1

t0
c0(τ)p′(t1, τ)dτ p′(t, t1)dt1 (3.36)

where t0 ≤ t1 ≤ t. Now, let the input concentration be c0(t) = δτ (t). The expression
for the output concentration simplifies to (notice the selecting property of the impulse
function and the fact that p′(t1, τ) = 0, if t1 < τ)

c2(t) =
∫ t

τ
p′(t1, τ)p′(t, t1)dt1 (3.37)

Substituting the expression for p′(t, τ) to the equation above gives the final result

c2(t) =
∫ t

τ

Q(τ)

V

Q(t1)

V
e−

∫ t

τ

Q(ν)
V

dνdt1 =
Q(τ)

V
e−

∫ t

τ

Q(ν)
V

dν
∫ t

τ

Q(ν)

V
dν (3.38)
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Next, consider a system consisting of n perfect mixers in series. The flow rate through the
mixers as well as the liquid volumes in the vessels may be time-variable. Let the output
flow rates of the vessels be Q1(t), Q2(t), . . . , Qn(t), and the input flow rate and input con-
centration of the first vessel Q0(t), c0(t) = ci(t). Correspondingly, the output concentra-
tions are c1(t), c2(t), . . . , cn(t), and the liquid volumes in the vessels V1(t), V2(t), . . . , Vn(t).

The representation of one perfect mixer, equations (3.18)-(3.20), can easily be extended
to the case of n mixers in series. This gives

ċk+1(t) = − Qk(t)

Vk+1(t)
(ck+1(t) − ck(t)) (3.39)

V̇k+1(t) = Qk(t) − Qk+1(t) (3.40)

where k = 0, 1, 2, . . . , (n − 1). The state-space representation (3.1) is thus obtained, in

which xi(t)
�
= ci(t), i = 1, 2, . . . , n, u(t) = c0(t), y(t) = cn(t), and the matrices are

A(t) =




−Q0(t)
V1(t)

0 0 0 · · · 0
Q1(t)
V2(t)

−Q1(t)
V2(t)

0 0 · · · 0

0 Q2(t)
V3(t)

−Q2(t)
V3(t)

0 · · · 0
...

0 0 · · · 0 Qn−1(t)
Vn(t)

−Qn−1(t)
Vn(t)




B(t) =




Q0(t)
V1(t)

0
...
0




C(t) =
[

0 0 0 · · · 0 1
]

D(t) = 0

The representation is not z-invariant, because the relationship between flow rates and
liquid volumes is complex and it is in general impossible to find a common time-variable
scalar factor. Before discussing this issue further consider the special case, in which the
liquid volumes are constant, but the flow rate through the system may vary. Now the
representation is z-invariant with respect to

z = (1/VK)
∫ t

t0
Q(ν)dν (3.41)

where VK can be any (positive) constant. If the total volume VK =
∑n

i=1 Vi is used,

Q0(t) = Q1(t) = · · · = Qn(t)
�
= Q(t), and the representation (3.3) follows with d1 = 1/VK
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and

Ā =




− 1
V1

0 0 0 · · · 0
1
V2

− 1
V2

0 0 · · · 0

0 1
V3

− 1
V3

0 · · · 0
...
0 0 · · · 0 1

Vn
− 1

Vn




B̄ =




1
V1

0
...
0




C̄ =
[

0 0 0 · · · 0 1
]

D̄ = 0

The impulse response can now easily be calculated from the state-space representation.
As an example consider the two ‘extreme’ cases. If V1 = V2 = · · · = Vn, the result is

p̄′(z) =
nn

(n − 1)!
zn−1e−nz (3.42)

If on the other hand Vi 
= Vj for all i 
= j it follows that

p̄′(z) =
V n

K
n∏

i=1
Vi

n∑
j=1

Kje
−VK

Vj
z

(3.43)

in which

Kj = lim
s→−VK

Vj

1
n∏

i=1
i�=j

(
s + VK

Vi

) =
1

n∏
i=1
i�=j

(
VK

Vi
− VK

Vj

) (3.44)

From the impulse response the input-output relationship

c̄n(z) =
∫ z

0
c̄0(ν)p̄′(z − ν)dν (3.45)

follows. The same results have been obtained by Niemi (1977a), but starting from the
theory of residence time distributions and using convolution integrals in time domain.

3.4 Series of perfect mixers

It is interesting to study, under which conditions the system of perfect mixers in un-
steady flow and volume conditions is z-invariant. The question was originally discussed
in (Zenger, 1992), and the analysis presented here is based on the original derivation.
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The condition for the system to be z-invariant can be deduced from the system realization
(3.39)-(3.40). The condition is

Qk(t)

Vk+1(t)
= lk

Q0(t)

V1(t)
(3.46)

where k = 1, 2, . . . , (n− 1), and lk is a constant for each k. The flow rates and liquid vol-
umes in the system are assumed to be positive at every time instant. The transformation
is

z = f(t) =
∫ t

t0

Q0(ν)

V1(ν)
dν (3.47)

Applying equation (3.46) repeatedly gives

Vk(t)

Vk+1(t)
=

lk
lk−1

Qk−1(t)

Qk(t)
(3.48)

where l0 = 1 by definition. Unfortunately, the above formula does not give much insight
on the conditions under which the system of a series of mixers becomes z-invariant. In
other words, it is not easy to calculate the flow rates and volumes such that (3.46) or
(3.48) hold. To analyse the system further some more assumptions are now needed. Note
that

Qk(t) = lkQ0(t)
Vk+1(t)

V1(t)
(3.49)

which makes it easy to do the reasonable assumption used also in (Guizerix, 1990) that
the volume ratio of each two successive mixers is always a constant. Hence, it is assumed
that

Vk(t)

Vk+1(t)
= ak (3.50)

with positive constants ak. From (3.49) it is immediately seen that the flow rates (and
volumes) are then constant multiples of each other. That provides a sufficient condition
for the system to be z-invariant.

To calculate any flowrate as a function of the input and output flow rates of the whole
system use equations (3.40) and (3.50) repeatedly so that for any k = 1, 2, . . . , (n − 1)

Qk(t) = Qk+1(t) +
1

ak

V̇k(t) = Qk+1(t) +
1

akak−1

V̇k−1(t)

= Qk+1(t) +
1

akak−1 · · · a1

V̇1(t)

= Qk+1(t) +
1∏k

i=1 ai

(Q0(t) − Q1(t)) (3.51)

Similar equations can be written for Qk+1(t), Qk+2(t) · · ·Qn−1(t). Substituting Qk+1(t)
into the above equation and repeating the process for Qk+2(t) and so on leads to

Qk(t) = Qk+2(t) + (
1∏k

i=1 ai

+
1∏k+1

i=1 ai

)(Q0(t) − Q1(t)) = · · · (3.52)
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= Qn(t) + (
1∏k

i=1 ai

+
1∏k+1

i=1 ai

+ · · · + 1∏n−1
i=1 ai

)(Q0(t) − Q1(t))

Let

Sn(k)
�
=

1∏k
i=1 ai

+
1∏k+1

i=1 ai

+ · · · + 1∏n−1
i=1 ai

k = 1, 2, . . . (n − 1), which is by definition a sum containing n − k terms. The equation
for Qk(t) can be written

Qk(t) = Qn(t) + Sn(k)(Q0(t) − Q1(t)) (3.53)

Writing Q1(t) according to the above formula, solving for Q0(t)−Q1(t) and substituting
back into (3.53) gives

Qk(t) =
Sn(k)

1 + Sn(1)
Q0(t) +

(1 + Sn(1) − Sn(k))

1 + Sn(1)
Qn(t) (3.54)

It is immediately noticed that if Q0(t) = Qn(t) then Qk(t) = Q0(t) = Qn(t) for all k.
Subsequently, the liquid volumes would be at constant values.

The flow rates Qk(t) can be calculated, if Q0(t) and Qn(t) are continuously measured and
the constants ak are known. In the special case that the volume ratios ak = a are the
same, the following simplified expression for Sn(k) is obtained

Sn(k) =




1−( 1
a
)(n−k)

ak−1(a−1)
a 
= 1

n − k a = 1
(3.55)

The condition ak = a = 1 means that the liquid volumes in the different vessels are
the same, although they are varying as a function of time. In that case equation (3.54)
simplifies to

Qk(t) =
1

n
((n − k)Q0(t) + kQn(t)) (3.56)

which has also been reported in (Guizerix, 1990).

If the system is assumed to be z-invariant, equations (3.49) and (3.50) give

Qk(t) =
lk

a1a2 · · · ak

Q0(t) (3.57)

Solving for lk and then using (3.54) gives the values for the constants lk, k = 1, 2, . . . , (n−
1).

lk = a1a2 · · · ak(
Sn(k)

1 + Sn(1)
+

(1 + Sn(1) − Sn(k))

(1 + Sn(1))

Qn(t)

Q0(t)
) (3.58)
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Because the numbers lk are assumed to be constant, the ratio between the output flow rate
and the input flow rate (Qn(t)/Q0(t)) must also be constant. Note that if Qn(t) 
= Q0(t),
the vessels will eventually become empty or there will be an overflow.

According to the definition of Sn(k) it holds that

• Sn(k) > 0 for all k.

• Sn(i) > Sn(j), if and only if i < j, so that 1 + Sn(1) − Sn(k) ≥ 1 for all k.

and further

lk > a1a2 · · · ak
Sn(k)

1 + Sn(1)
(3.59)

which gives the lower limits for the constants lk.

The result obtained can be stated again in a compact form. Given that the volume ratios
of the vessels are constants ak (according to equation (3.50)), the representation of the
system is z-invariant, if and only if the ratio between the output flow rate and the input
flow rate is constant. The flow rates between the intermediate vessels are then given by
(3.57), where the values lk are obtained from (3.58).

If the output flow rate and input flow rate are equal, then lk = a1a2 · · · ak so that Qk(t) =
Q0(t) as noted earlier. If the volumes of the vessels are equal (ak = 1 for all k), the
expression for lk simplifies to

lk =
n − k

n
+

k

n

Qn(t)

Q0(t)
(3.60)

In spite of the rather extensive analysis presented above, it should be remembered that
the conditions under which a series of mixers with variable flow and volume is z-invariant
are restrictive. The complexity of a system with several process units under variable flow
and volume can generally not be reduced by the use of a modified time scale.

Under the assumption of constant volume ratios, the dynamic behaviour of the concen-
trations can be calculated by determining Qk(t) continuously and applying repeatedly the
formula

ck+1(t) =
∫ t

t0
ck(ν)p′(t, ν)dν =

∫ t

t0
ck(ν)

Qk(ν)

Vk+1(ν)
e
−

∫ t

ν

Qk(τ)

Vk+1(τ)
dτ

dν (3.61)

with k = 0, 1, 2, . . . , (n − 1).



Chapter 4

Systems With Time Delays

In Chapter 3 it was seen that time-varying linear differential systems are a natural way
to model mixing processes under unsteady flow and volume. By considering a system
model consisting of a combination of perfect mixers and recycle and bypass flows a large
spectrum of typical flow systems can be covered (Zenger, 1992). But nothing has so
far been said about delays, which are commonly present in process control applications.
In flow processes the delay can in a natural way be modelled by a plug flow vessel,
through which the process material is assumed to flow without any mixing occurring.
The concentration of the solute at the outlet of the vessel is the same as in the inlet
a certain time ago. Under steady flow conditions the delay time can be calculated by
dividing the liquid volume in the vessel by the flow rate.

In this chapter the delay is studied under the assumption of unsteady flow conditions. The
delay caused by the plug flow vessel turns out to be time-varying, and the delay function
is introduced to model it. It is shown that a similar change of time scale as in Chapter 3
can be used to change the delay into a constant. The result gives the tools to study a
time-variable flow system consisting of perfect mixers, plug flow vessels and recycling by
first transforming the model into a form with constant coefficients and constant delays.
The delay function has some interesting properties, which are discussed in detail.

4.1 The transformation of delays

Consider a delay system with input u(t) and output y(t), which are related by

y(t) = u(t − Td(t)) (4.1)

33
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where Td(·) is a non-negative continuous function (the delay function). The equation
means that the output at time t is the same as the input at time t− Td(t). For example,
a plug flow vessel with a constant flow rate can be modelled by

c(t) = ci(t − V/Q) (4.2)

where c(·) and ci(·) denote output and input concentrations, respectively. V is liquid
volume in the vessel and Q the flow rate through the vessel. The constant delay (function)
is obtained by dividing the liquid volume in the vessel by the flow rate. In the case of
varying flow rates and liquid volumes the determination of the delay function is not so
straightforward as it will be seen in what follows.

Let z = f(t), where f : t �→ f(t) is a positive, continuously differentiable and monotonously
increasing function with the inverse h : z �→ h(z). Use the same abbreviations as before
viz. ū(z) = u(h(z)), ȳ(z) = y(h(z)). If equation (4.1) can be written in the z-domain as

ȳ(z) = ū(z − zc) (4.3)

where zc is a constant, it is called z-invariant. The necessary and sufficient condition for
equation (4.1) to be z-invariant is given in the following proposition.

Proposition 4 Let system (4.1) be defined on a time interval T . The equation is z-
invariant, i.e. (4.3) holds, if and only if there exists a positive constant zc such that for
all t

f(t) − f(t − Td(t)) = zc (4.4)

Proof: Suppose first that
f(t) − f(t − Td(t)) = zc

holds. Then
t − Td(t) = h(f(t − Td(t))) = h(f(t) − zc) = h(z − zc)

so that
y(t) = y(h(z)) = u(t − Td(t)) = u(h(z − zc))

which is the same as
ȳ(z) = ū(z − zc)

Conversely, suppose that
ȳ(z) = ū(z − zc)

or
y(h(z)) = u(h(z − zc))

But according to (4.1) this is the same as

y(t) = u(t − Td(t))
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which means
t − Td(t) = h(z − zc)

Hence
f(t − Td(t)) = z − zc = f(t) − zc

or
f(t) − f(t − Td(t)) = zc

�

Remark: In the above proposition the system model is assumed to be valid on a specified
time interval. If T0 = [t0,∞), then T = [t1,∞), where t1 > t0 is chosen such that for all
t ≥ t1, t − Td(t) ∈ T0 and y(t) = 0 for all t < t1.

As mentioned earlier, under stationary conditions the input-output relationship of the
plug flow vessel is given by (4.2). If the flow rate changes, i.e. Q = Q(t), one might be
tempted to write

c(t) = ci(t − V/Q(t))

which is however incorrect. This is easy to see by considering a concentration pulse (or
particle) at the output of the vessel at time t. The time that has elapsed since the pulse
entered the vessel is not generally given by V/Q(t), because the flow rate may have been
continuously changing during the time that the pulse has stayed in the vessel.

The correct form of the equation is obtained as follows. During the time that a hypothet-
ical concentration pulse stays in the vessel, the volume V of material must pass through
the vessel irrespective of flow changes. This can be stated mathematically by

∫ t

t−Td(t)
(Q(τ)/V )dτ = 1 (4.5)

which holds for all t on the time interval T . The equation can also be regarded as the
definition of the delay function Td(·). An important result follows, when a change of
variables is done

z = f(t) = (1/V )
∫ t

t0
Q(τ)dτ (4.6)

so that

f(t) − f(t − Td(t)) =
∫ t

t−Td(t)
(Q(τ)/V )dτ = 1 (4.7)

By Proposition 4 the model for the plug flow vessel in z-domain is then

c̄(z) = c̄i(z − 1) (4.8)

and the time-varying nature of the equation has disappeared. Note that zc has the value
1, if the scaling factor V in the formula for the z-scale is the constant liquid volume in
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the plug flow vessel. If another coefficient is used, zc will have some other constant value.
Under steady operation conditions (Q(t) = Q, constant) the previous calculations give
(Q/V )Td(t) = zc = 1, so that Td(t) = V/Q as expected. In the time-varying case the
determination of the delay function is generally a difficult problem, as might be expected
from equation (4.5).

The above result (4.8) can also be derived by using a different approach. Let the number
of equal-sized perfect mixers in series tend to infinity so that the total liquid volume in
the system (VK = nV ) is constant. Taking the Laplace transformation with respect to z
in equation (3.42) gives

P̄ ′
n(s) =

nn

(s + n)n
=

1

(1 + s
n
)n

(4.9)

Letting n approach infinity leads to

lim
n→∞ P̄ ′

n(s) = e−s (4.10)

Hence it holds that

lim
n→∞ p̄′n(z, 0) = δ(z − 1) (4.11)

which denotes the same input-output behaviour as (4.8). The result confirms the well-
known fact that a growing number of equal perfect mixers in series approximates the
dynamics of a plug flow vessel, if the total liquid volume is kept constant.

The delay function has some interesting theoretical properties, which are studied in the
next section.

4.2 Properties of the delay function

Consider a plug flow vessel with varying flow rate but constant liquid volume. The delay
function Td(t) is defined by (4.5). If t0 is the absolute time origin, it is assumed that
t − Td(t) ≥ t0 for all t, so that the signals are properly defined. Moreover, Td(·) is
assumed to be a positive function. It can be shown (Zenger, 1994) that a function having
these properties and fulfilling (4.5) is continuously differentiable.

By differentiating (4.5) and solving for Ṫd gives

Q(t) − Q(t − Td(t))(1 − Ṫd(t)) = 0 (4.12)

and further

Ṫd(t) = 1 − Q(t)

Q(t − Td(t))
(4.13)
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which makes it possible to simulate the delay function numerically. The initial condition
can be obtained e.g. by assuming that the flow rate has been constant during the initial
time period and Td(t) = V/Q holds initially.

Based on the Proposition 4 it is easy to provide a numerical way to calculate the delay
function. The algorithm is formulated in discrete time so that the delay function can
be calculated on line as flow measurements are obtained from the process. Furthermore,
no initial conditions are needed. The algorithm presumes that the time values and the
corresponding values of the z-variable are stored so that the values for t − Td(t) exist for
all t. Assume that the constant delay of the plug flow vessel is zc, if the modified time
scale f : t �→ f(t) is used. The algorithm can be given as follows:

Algorithm:

• Measure the flow rate continuously at discrete time instants.

• Store the values of t and z = f(t) in each time instant.

• For every t, calculate z1 = f(t) − zc and determine the nearest time instant t1 that
corresponds to the value z1.

• Determine the value of the delay function at time t as Td(t) ≈ t − t1.

• Delete the stored values related to smaller time instants than t1.

The algorithm is a straightforward application of the definition of the delay function and
of the fact that the delay is constant in z-domain. Naturally, the accuracy depends on the
measurement interval, i.e. the discretization interval of the delay function. The ‘nearest’
time instant corresponding to z1 can be calculated by interpolation or simply by choosing
the time value corresponding to the stored value z that has the largest value smaller than
or equal to z1. The delay function is considered to be undefined until enough data is
available to include values corresponding to z1.

The delay function has some interesting properties, which are not immediately obvious.
‘Definition’ (4.5) is a mathematical way to describe the time that a pulse stays in the
vessel. In order for the solution function to be physically meaningful the following points
must be noticed.

• If the delay function is defined on an interval T , then for each t ∈ T the function
must satisfy t − Td(t) ∈ T0, where T0 is the time interval in which the system is
assumed to be in operation.

• Td(t) is a positive and continuously differentiable function.
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• For all t ∈ T it holds Ṫd(t) < 1.

As mentioned in Section 4.1, if Q(·) is defined on the interval [t0,∞), the definition interval
of the delay function can be chosen as T = [t1,∞), in which t1 is such that equation (4.5)
is properly defined. For the second item, note that in Proposition 4 only the continuity of
the delay function was assumed; however the ‘physical’ relationship (4.5) implies that the
function is even continuously differentiable. The differentiability also makes the derivation
of (4.13) from (4.5) justified. From the differential equation of the delay function the last
condition in the above list is immediately obvious, because the flow rate has been defined
to be positive. It is interesting, though, that this property can be explained also by direct
physical properties of the plug flow vessel. To this end, consider the function

η(t) = t − Td(t) (4.14)

which states that a particle leaving the vessel at time t has entered at time η(t). The
condition Ṫd(t) < 1 is equivalent to

η̇(t) > 0 (4.15)

Suppose that the previous equation would not hold, i.e. η̇(t) could be negative or zero
at some time instant(s). That would mean that a particle at the outlet of the vessel at
time t + dt would have entered the vessel earlier than or at the same time as another
particle, which leaves the vessel at time t. But in a plug flow vessel this is impossible so
that necessarily Ṫd(t) < 1 (or η̇(t) > 0).

The function η(t) gives the absolute time instant at which a particle leaving the vessel
at time t has entered. The delay function on the other hand gives the total time that
the particle stays in the vessel. It is also possible to define a function, which indicates
the departure time of a particle that has entered at time t, (Nihtilä, 1991). To this end,
note that the derivative of η(·) is positive; therefore it has a unique and monotonically
increasing inverse function r(·) such that η(r(t)) = t. Combining this with (4.14) leads to

η(r(t)) = r(t) − Td(r(t)) (4.16)

so that

r(t) − Td(r(t)) = t (4.17)

If a particle enters the vessel at time t, it leaves at time r(t) and spends the time Td(r(t))
in the vessel. Taking the derivative of the previous equation gives

ṙ(t) − Ṫd(r(t))ṙ(t) = 1 (4.18)

so that

ṙ(t) =
1

1 − Ṫd(r(t))
=

Q(t)

Q(r(t))
(4.19)
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where equation (4.13) has been used. The same result can also be derived by writing the
following condition to the plug flow vessel (c.f. with (4.5))

∫ r(t)

t

Q(ν)

V
dν = 1 (4.20)

By taking the derivative and solving for ṙ(t) gives (4.19).

Note that equation (4.19) cannot usually be solved at time t, because r(t) is a time instant
in the future. However, in (Nihtilä, 1991) the concept of the function r has been used in
the design of control algorithms for systems that have time-varying input delays.

Next, consider the ”natural” approximation of the delay function

Tdap(t) =
V

Q(t)
(4.21)

Its derivative is then

Ṫdap(t) = −V
Q̇(t)

(Q(t))2
(4.22)

which shows that the slope of the approximation can exceed the value 1, if the flow rate
decreases rapidly. At least in that case the approximation can be expected to give bad
results regarding the delay function.

It is also interesting to study the error caused by incorrect initial value when applying
equation (4.13). Consider a nominal solution T ∗

d (t) starting from a given initial segment
during the time interval [t0, t1]. Then consider another solution Td(t) such that T ∗

d (t1) and
Td(t1) differ by a small amount. The function ξ(t) = Td(t) − T ∗

d (t) describes the error of
the solution with respect to a difference in the initial condition. The main interest is to
consider the stability of ξ(·); if the function is asymptotically stable in the sense that it
remains bounded and converges to zero, the motion Td(·) is also stable meaning that the
error caused by an incorrect initial value is ”small” and vanishes as time goes to infinity.

Note that the above idea of the stability of a trajectory with respect to a nominal tra-
jectory is a natural extension to the classical stability theory, in which the stability of an
equilibrium point has usually been considered. For more on that issue, see e.g. (Willems,
1970) or (Mohler, 1991).

By writing equation (4.13) as

Ṫd(t) = u(Td(t), t) (4.23)

the derivative of ξ(t) = Td(t) − T ∗
d (t) becomes

ξ̇(t) = u(ξ(t) + T ∗
d (t), t) − u(T ∗

d (t), t)
�
= u1(ξ(t), t) (4.24)
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which satisfies u1(0, t) = 0. The stability of the motion Td(·) is then equivalent to the
stability of the differential equation

ξ̇(t) = u1(ξ(t), t) (4.25)

with respect to the equilibrium state ξ(0) = 0. In terms of (4.13) the differential equation
becomes

ξ̇(t) =
Q(t)

Q(t − T ∗
d (t))

− Q(t)

Q(t − T ∗
d (t) − ξ(t))

(4.26)

The corresponding linearized equation around ξ = 0 is

δξ̇(t) = −Q(t)Q̇(t − T ∗
d (t))

(Q(t − T ∗
d (t)))2

δξ(t) (4.27)

from which the stability properties of the perturbed solution around the nominal one
can be investigated. It is obvious that at least decreasing flow rates can cause stability
problems meaning that the error in the simulated delay function (according to (4.13))
increases, if the initial value is incorrect.

4.3 Systems containing perfect mixers and plug flow

vessels

In Chapter 3 it was shown that under variable flow but constant liquid volume a series
of perfect mixers is z-invariant. In the current chapter the same was found to hold for
one plug flow vessel. It is natural to consider whether similar conclusions can be made
concerning systems consisting of an arbitrary topology of perfect mixers, plug flow vessels
and possible recycling or bypass flows. Results of this nature are particularly important,
because it is common practice to use such models in the description of the dynamics of real
processes, see e.g. (Thereska et al., 1996), (Bazin and Hodouin, 1988). The idea is then
to model a process by e.g. a tracer test to determine the RTD, after which a structural
model is used and the parameters of it are fitted to match the measured RTD as closely
as possible.

It turns out that the previous results can be extended to a composition of basic unit
processes relatively easy. To this end, consider the representation

ẋ(t) = A(t)x(t) + B(t)u(t) +
id∑

i=i1

ai(t)xi(t − Tdxxi(t)) +
jd∑

j=j1

bj(t)uj(t − Tdxuj(t)) (4.28)

y(t) = C(t)x(t) + D(t)u(t) +
kd∑

k=k1

ck(t)xk(t − Tdyxk(t)) +
ld∑

l=l1

dl(t)ul(t − Tdyul(t)) (4.29)
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in which x(·) ∈ (�n)�, u(·) ∈ (�m)�, y(·) ∈ (�r)�, A(·) ∈ (�n×n)�, B(·) ∈ (�n×m)�,
C(·) ∈ (�r×n)�, D(·) ∈ (�r×m)� are continuous functions. The scalar functions xi(·),
xk(·), uj(·), ul(·) consist of those terms in the state and input variables that contain delays.
The delays are assumed to be positive and differentiable functions. The coefficients ai(·),
bj(·), ck(·), dl(·) are scalar-valued continuous functions.

Consider equations (4.28) and (4.29) on a time interval T . The representation is called z-
invariant, if the change of the time variable with another variable z leads to state equations
with constant coefficients and constant delay terms, and where the input-, state- and
output variables of the original and new representation have a one-to-one relationship.
The following theorem gives necessary and sufficient conditions for the representation to
be z-invariant.

Proposition 5 Let the system be described by equations (4.28) and (4.29). The repres-
entation is z-invariant, if and only if the following two conditions hold.

1. For the coefficient matrices and scalar functions it holds that A(t) = k(t)Ā, B(t) =
k(t)B̄, C(t) = C̄,D(t) = D̄, ai(t) = k(t)āi, bj(t) = k(t)b̄j, where k(t) is a positive
and continuous scalar-valued function, Ā, B̄, C̄, D̄ are constant matrices, and āi,b̄j,
ck(t) = c̄k, dl(t) = d̄l are constants for each index value.

2. Every function z = f(t) = d1

∫ t
t0

k(τ)dτ +d2 with d1 > 0, d2 ≥ 0, fulfils the equations

f(t) − f(t − Tdxxi(t)) = zxxi

f(t) − f(t − Tdxuj(t)) = zxuj

f(t) − f(t − Tdyxk(t)) = zyxk

f(t) − f(t − Tdyul(t)) = zyul

where zxxi, zxuj, zyxk, zyul are constants for every index i, j, k and l.

The representation in z-domain is then

dx̄(z)

dz
= (1/d1)Āx̄(z) + (1/d1)B̄ū(z) + (1/d1)

id∑
i=i1

āix̄i(z − zxi) + (1/d1)
jd∑

j=j1

b̄jūj(z − zxj)

ȳ(z) = C̄x̄(z) + D̄ū(z) +
kd∑

k=k1

c̄kx̄k(z − zyk) +
ld∑

l=l1

d̄lūl(z − zyl)
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The proof is simply a technical combination of Propositions 1 and 4, and is therefore
omitted here.

The significance of the above proposition becomes evident by noting that in the case
of variable flow but constant volume all models containing ideally mixed vessels, plug
flow vessels and bypass (recycle) flows with constant flow ratios can be transformed into
z-domain to get a representation with constant coefficient matrices and constant delay
terms (Zenger, 1992).

4.4 Examples

To give some idea on the explicit expressions of delay functions, a few examples are now
considered. Assume a plug flow vessel with a constant liquid volume V , and let the flow
rate through the vessel be Q(t) = 1/t, t > 0. By using the equation (4.5) and taking the
condition t − Td(t) > 0 into account, the delay function is found to be

Td(t) = t(1 − e−V ) (4.30)

which is a straight line. The differential equation (4.13) is

Ṫd(t) =
Td(t)

t
(4.31)

which is satisfied by the above delay function. The solution to the differential equation
is Td(t) = (Td(t0)/t0)t, which shows that an incorrect initial value at some time instant
t0 > 0 (e.g. in simulation) leads to a constantly increasing absolute error in the delay
function. The result is in accordance with the theoretical analysis in Section 4.2. If
T0 = [t0,∞), t0 > 0, the correct initial value in the simulation can be taken as t0(e

V − 1)
at time t1 = t0e

V .

In the example the initial value determines the slope of the simulated delay function.
It should be noticed that differential equation (4.13) is also satisfied by the incorrect
candidates of the delay function v.i.z. t(1 + e−V ), the other solution of (4.5) for which
t−Td(t) < 0, and V/Q(t) = V t, the approximation (4.21). The function t(1 + e−V ) has a
slope larger than 1, so that it is clearly incorrect. The function V/Q(t) = V t would have
the correct slope, if 1 − e−V = V , but that holds only if V = 0.

Consider next the rather ‘pathological’ case of exponentially decreasing flow rate Q(t) =
e−t, which is defined for all t ∈ (−∞,∞). An analytical solution of the delay function
can easily be shown to be

Td(t) = ln(V et + 1) = ln(
V

Q(t)
+ 1) (4.32)
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Figure 4.1: Delay functions related to different flow rates

For small time values the flow rate is large, and therefore the delay time is very small.
As the flow rate decreases exponentially, the delay function grows without a limit. The
approximation of the delay V/Q(t) = V et can give highly erroneous results, because for
t > −ln(V ) the slope exceeds the value 1. Note, however, that for large values of time
the exact solution behaves almost in a linear manner. This is because

Td(t) ≈ ln(V et) = ln(V ) + t (4.33)

The differential equation of the delay function is correspondingly

Ṫd(t) = 1 − e−Td(t) (4.34)

If T = [t0,∞), where −∞ < t0 < ∞, the initial value is ln(e−t0/(e−t0 − V )) at time
t1 = ln(1/(e−t0 − V )). From that it can be deduced that the constant liquid volume in
the vessel is restricted to the values V < e−t0 . This is an interesting result, which can
be explained by the rapidly decreasing flow rate. If the liquid volume in the vessel is
too large, a particle entering the vessel at time t0 will never reach the outlet. Another
reflection of this phenomenon follows by looking at the modified time scale (4.6). The
value of z is in this case restricted to the interval [0, 1

V
e−t0), which means that the modified
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time will never grow beyond a limit value. Additionally, if V ≥ e−t0 the modified time z
will not reach the value 1 in a finite time meaning that the total flow through the system
(starting at time t0) will never exceed the value V .

The exact solution of (4.34) is

T ∗
d (t) = ln(1 + k∗et−t0) (4.35)

in which k∗ = eT ∗
d (t0) − 1. If an erroneous initial value is used, the absolute error becomes

T ∗
d (t) − Td(t) = ln(

1 + k∗et−t0

1 + ket−t0
) ≈ ln

k∗

k
(4.36)

where the approximation is good for large values of t. The error approaches a constant
value, which depends on the error of the initial value.

The delay function is shown in Fig. 4.1 (upper left picture) for V = 1. The solid line
represents the accurate solution, whereas the dashed line gives the approximation V/Q(t).
It is noticed that for small time values the fraction V/Q(t) is small, and the approximation
coincides well with the actual delay function. For larger time values the approximative
solution gets very poor.

The solid line in the figure actually shows three results, which are on top of each other.
They have been obtained by using the explicit solution of the delay function, by simulation
based on the differential equation, and by using the numerical algorithm with the sampling
interval 0.01. The results cannot be distinguished from each other.

Notice, however, that in this example the flow rate represents an extreme case. (The
same example was actually discussed in another context in the end of Section 3.2.) In
what follows it will be demonstrated that if the flow rate through the process changes
within reasonable limits only, the approximative solution V/Q(t) usually gives pretty good
results.

Consider the case, in which an abrupt change in the flow rate from one stationary value
to another occurs. If the constant flow rate Q(t) = Q0 changes at time t0 to the value
Q(t) = kQ0, where k is a positive constant, the delay changes from one constant value
V/Q0 dynamically according to equation (4.13)

Ṫd(t) = 1 − k (4.37)

The slope of the delay function is a constant until the time instant t1 = t0 + (V/(kQ0)),
after which the delay remains constant, Td(t) = V/(kQ0). The delay, which has been
obtained by using the numerical values Q0 = 1, V = 1, k = 1.5, t0 = 2, is shown in Fig.
4.1 (upper right figure).
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Note that the flow rate in this example is not a continuous function so that Td(·) is not
differentiable at each time point. That does not lead to theoretical difficulties, see Remark
2 on page 20.

Next, consider a sinusoidally varying flow rate Q(t) = 2 + sin(t). The application of
equation (4.5) leads to

2Td(t) + cos(t − Td(t)) = V + cos(t) (4.38)

which is hard to solve analytically. The differential equation according to (4.13) is

Ṫd(t) =
sin(t − Td(t)) − sin(t)

2 + sin(t − Td(t))
(4.39)

In Fig. 4.1 (lower left picture) the delay function has been calculated by three methods.
The dashed line shows the approximation V/Q(t), where V = 1. For t0 = −10 the
initial time for the simulation based on the differential equation has been calculated to
be t1 ≈ −9.57, so that Td(−9.57) ≈ −9.57 + 10 = 0.43. The solid line shows the result
of the simulation. The dashed-dotted curves show the approximations obtained by using
the numerical algorithm with discretization intervals 0.01 and 0.1. In the former case the
result cannot be distinguished from the simulated solution; however, for the larger interval
0.1 the numerical error can already be seen (the curve with clearly noticeable rectangular
corner points).

It is seen that in this case the easiest way to approximate the delay function, Td(t) ≈
V/Q(t), is reasonably good and can be expected to be accurate enough for most applica-
tions.

Almost identical conclusions can be made from the case Q(t) = ln(t), see Fig. 4.1 (lower
right picture). The dashed and solid lines show the approximative and simulated so-
lutions, respectively, which are almost the same. The dashed-dotted curves show the
results obtained by the numerical algorithm. The values are V = 1, t0 = 1.1, t1 ≈ 2.72,
Td(2.72) ≈ 2.72 − 1.1 = 1.62, dt = 0.1, 0.01. The largest discretization interval gives the
result with a noticeable deviation from the other curves.

As the last example consider a system consisting of an ideally mixed vessel and a plug
flow vessel in series such that the output flow of the perfect mixer is led through the plug
flow vessel. The flow rate through the vessels, Q(t), is assumed to be time-varying. The
constant liquid volumes in the vessels are V1 and V2, respectively.

The state equations of the system are

ċ1(t) = −(Q(t)/V1)c1(t) + (Q(t)/V1)c0(t) (4.40)

y(t) = c1(t − Td(t))



46 CHAPTER 4. SYSTEMS WITH TIME DELAYS

where c0(t) and c1(t) are the input and output concentrations of the perfect mixer, and
y(t) = c(t) is the output concentration of the plug flow vessel. Consider the modified time
scale

z = f(t) =
1

(V1 + V2)

∫ t

0
Q(ν)dν (4.41)

It follows that

f(t) − f(t − Td(t)) =
1

(V1 + V2)

∫ t

t−Td(t)
Q(ν)dν (4.42)

=
V2

(V1 + V2)

∫ t

t−Td(t)
(Q(ν)/V2)dν =

V2

V1 + V2

= zc

where the property corresponding to equation (4.5) for a plug flow vessel has been taken
into account. The representation of the system is z-invariant

dc̄1(z)

dz
= −(V1 + V2)

V1

c̄1(z) +
(V1 + V2)

V1

c̄0(z) (4.43)

ȳ(z) = c̄1(z − V2

V1 + V2

)

The behaviour of the system can now be analyzed e.g. by taking the Laplace-transformation
to obtain the transfer function. The output can be calculated by using the input function
(in z-domain), calculating the output and transforming back into time domain.

An interesting question arises from the previous analysis. How will the situation change,
if the two vessels are placed in reverse order i.e. the output flow from the plug flow vessel
is led into the perfect mixer? In the stationary case the two systems are input-output
equivalent, but if the flow rate is allowed to vary, the situation is not so clear anymore.
The state equations in that case are

ċ(t) = −(Q(t)/V1)c(t) + (Q(t)/V1)c0(t − Td(t)) (4.44)

y(t) = c(t)

in which co(t) is the input concentration of the plug flow vessel, and the state variable
c(t) is the output concentration of the perfect mixer.

Using the same modified time scale as above the equations become

dc̄(z)

dz
= −(V1 + V2)

V1

c̄(z) +
(V1 + V2)

V1

c̄0(z − V2

V1 + V2

) (4.45)

ȳ(z) = c̄(z)

The input-output behaviour of the two system configurations turns out to be the same.
That result follows easily by calculating the transfer functions of (4.43) and (4.45), which
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are the same. Actually, the two systems are zero-state equivalent, which can also be proved
directly from the representations (4.40) and (4.44).

The result of the above example is interesting, but it should be pointed out that it
represents an example case only. For time-varying system models the order of the system
‘blocks’ is usually important.

4.5 The case with variable volume

The analysis presented in Section 3.4 showed that the models with varying liquid volumes
are more complex than those with varying flow rates only, and it is often impossible to find
a transformation that would change the representation into one with constant coefficients.
Consider the case of a plug flow vessel, in which both the throughput flow rate and the
liquid volume change. The model equations are

y(t) = u(t − Td(t)) (4.46)

V̇ (t) = Qi(t) − Qo(t) (4.47)∫ t

t−Td(t)
Qi(τ)dτ = V (t) (4.48)

in which u(·) and y(·) are the input and output concentrations, Qi(·) and Qo(·) are the
flow rates, and V (·) is the liquid volume in the plug flow vessel. Equation (4.48) can again
be understood as the definition of the delay function. It is the property of an (ideal) plug
flow vessel that during the time that a particle stays in the vessel, the volume V (t) of new
liquid must enter, V (t) being the total liquid volume at the time that the particle leaves
the vessel. In other words, all ‘old’ material must have left the vessel when the observed
particle is at the outlet of the vessel.

By differentiating equation (4.48) it is easy to derive

Ṫd(t) = 1 − Qo(t)

Qi(t − Td(t))
(4.49)

from which the delay function can be calculated numerically.

Proposition 4 (Section 4.1) can now be used to investigate, whether the system is z-
invariant with respect to a modified time scale. But for the obvious choice

z = f(t) =
∫ t

t0

Qi(τ)

V (τ)
dτ (4.50)
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it follows that

f(t) − f(t − Td(t)) =
∫ t

t−Td(t)

Qi(τ)

V (τ)
dτ (4.51)

which is not constant in general, note (4.48). Equation (4.48) might suggest the new scale

z1 = f1(t) =
1

V (t)

∫ t

t0
Qi(τ)dτ (4.52)

but it is easy to check that this does not lead to a z-invariant representation either.
Moreover, the scale (4.52) is not generally an increasing function, which means that the
correspondence between the time scale and z-scale is not necessarily one-to-one.

But consider the scale zt = ft(t), in which ft : τ �→ ft(τ) is defined on the time interval
[t0, t] such that

ft(τ) =
1

V (t)

∫ τ

t0
Qi(ν)dν (4.53)

The function is monotonously increasing (the flow rate and liquid volume are assumed to
be positive as usual), and it is possible to change the independent variable in (4.46)

ȳ(zt) = ȳ(ft(t)) = ū(ft(t − Td(t))) = ū(
1

V (t)

∫ t−Td(t)

t0
Qi(ν)dν)

= ū(
1

V (t)
(
∫ t

t0
Qi(ν)dν −

∫ t

t−Td(t)
Qi(ν)dν))

= ū(zt − 1) (4.54)

By noticing that

zt =
1

V (t)

∫ t

t0
Qi(ν)dν = z1 (4.55)

it follows that

ȳ(z1) = ū(z1 − 1) (4.56)

which might suggest that the system is z-invariant in a similar way as described earlier.

However, it must be pointed out that the modified time scale has now been defined by
means of the function ft(·), which is defined on the time interval [t0, t]. When moving
from time instant t to t + dt the values of the function according to (4.53) change on the
whole domain [t0, t + dt]. The true meaning of that can be explained as follows:

Consider equation (4.56) which is understood to mean that the system is z-invariant with
respect to the scale z1. The output concentration at time t can be calculated by looking
at the input concentration at time z1−1. The whole idea of z-invariant systems in general
is in the simple input-output characteristics of a system, when modified time scales and
the corresponding concentrations are used. The real time t is needed only to calculate the
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modified scale as time goes by; the input concentration values are tabulated as a function
the new scale. The values of real time can be forgotten.

The situation changes, if relationship (4.56) is used. To calculate the output concentration
at time t, the input concentration at the modified time z1 − 1 has to be determined. But
what is the input concentration at time z′ = z1 − 1? It is difficult to know, because at
time t the whole past history of z has been re-scaled, and the old values of z have been
forgotten. That is a direct consequence of the definition of the function (or actually its
domain) and shows that the relationship (4.56) in this case must be seen as a formal result
only. The plug flow vessel in the case of variable volume is not truly z-invariant in the
true meaning of the concept.

The function ft(·) is sometimes called restriction of f1(·), because of the changing defi-
nition domain (Zenger, 1992). The origins of the concept comes from the function f1(·),
(4.52), which has been mentioned in the literature in the context of dealing with delay
models or velocity profile models of processes with varying liquid volume.



Chapter 5

Tracer Tests

In process industry the determination of the RTD is a widely used and often the only
possible practical modelling technique. Originally developed by Danckwets (1953) it still
is a potential topic of interest especially among the practitioners and scientists in the
field of chemical engineering (Thereska et al. 1996). In practice the RTD is determined
experimentally by a tracer test, in which an amount of chemical or radioactive substance
it injected at the input of the flow system impulsewise; the concentration of the tracer is
then continuously measured at the outlet of the system. After a proper treatment of the
output data the RTD is obtained.

In the previous chapters a systematic method has been developed to change the time-
varying RTD of a flow system into a form suitable for analysis using the classical theory
of time-invariant linear systems. The method can be interpreted as a complexity reduction
in a more general setting, because the RTD yields the input/output characterization of
the continuous flow process. In practical processes the measurements of the flow rate and
liquid volume are usually available, implying that the use of the modified time scale in
process analysis and controller design can easily be implemented in the process computer.

To test the method in practice a laboratory-scale pilot plant was used. Three different
process vessels were constructed, and their RTDs under unsteady flow conditions were
determined by using both chemical and radioactive tracers. The modified time scale was
then introduced to test the validity of the invariance of the weighting function or RTD as
predicted in the theory. These tests and their results are described in the current chapter.

1The content of this chapter is essentially the same as in (Niemi et al., 1998).
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Figure 5.1: Pilot system for testing and control of continuous flow vessels under variable
flow and volume

5.1 A laboratory-scale pilot system

A pilot system ( Fig. 5.1) was used for practical testing of the results presented in the
previous chapters. Three process vessels were built each having one feed channel and
one outlet channel. Analyzers were used at the inlet and at the outlet of the vessel; the
analyzers may be radiation probes, pH meters etc. A raw stream of tap water or other
liquid was pumped from a storage vessel to the plant. A minor stream of a chemical agent
was added to and mixed with it, in order to establish the final feed to the plant. The
flow rate of the main stream was measured by an electromagnetic flow meter and that of
the minor stream by a sensor for the stroke length of the chemical pump. A level height
sensor delivered a signal which is proportional to the volume of liquid in the plant.

The measured signals and controls of the two pumps as well as the one at the outlet were
stored in a PC computer. An interface card was used to transmit digital output data
and analog input data between the computer and the pilot. Moreover, a programmable
logic controller (PLC) was used to produce physical control signals to the actuators. The
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Output measurement 1    Measurement 2

Figure 5.2: Flow vessel with mechanical agitator

necessary programs for conducting the tests were programmed for PC in C-language. As
far as the radioactive tracer tests are concerned, an additional PC was used to collect data
from the radiation gauges. All the time care was taken to make sure that the combination
of data provided by the two PC’s took place correctly without any timing errors. The
first of the tested process vessels is shown in Fig. 5.2. It consists of a well-mixed part with
a circular cross-section and a rectangular part. The output measurement can be done
either at the well-mixed section or at the real outlet of the vessel.

A number of test series of different types was made for the determination of the RTD
of the plant under constant and variable conditions. In each test, the liquid volume
and the total feed flow were held constant or varied in a pre-programmed manner by
the computer control system. In the first tests, single pulses of chemical tracer were
injected under different, constant conditions, and the pH of the outlet liquid was measured
and used for derivation of the RTD. Continuously variable chemical concentration was
produced in the tests of the second series by means of the chemical agent stream, and
the RTD was identified on the basis of pH measurements at the inlet and outlet, under
constant and variable flow rates. Thirdly, radioisotope tracer pulses were injected under
constant and variable flow rates and volumes, and the RTD was obtained by appropriate
transformations of the outlet activities measured. Conductivity sensors were used in
additional series of pulse tests which were made together with radiotracer tests or alone.
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5.2 Tests with a chemical tracer

The plant was tested for its RTD with a short pulse of high concentration. The process
liquid was tap water acidified with HCl, and each input pulse consisted of 4 ml of a strong
NaOH solution injected in less than 3 seconds into the feed pipe. The titration curve of
the process liquid was determined before the tests and its numerical equivalent was stored
in the computer. This was used in the tests for conversion of the pH values measured
at the outlet to Na+ -ion concentrations which were only due to the added base. These
were then converted to RTD readings by dividing them with the integral of the output.
The tests were made under stationary operation conditions (constant flow rate and liquid
volume), and the results were presented as functions of the dimensionless time variable
θ = t/t̄, which under stationary conditions is equivalent to z, see (2.41).

In the first test the liquid volume was kept constant, but the flow rate had three constant
values. Figure 5.3 shows the RTDs obtained (solid line: Q=550ml/min, dashed line: Q
= 760 ml/min, dashed-dotted line: Q =900 ml/min, V =1200 ml in all cases). The pH
sensor was positioned inside the vessel (at the output of the presumed well-mixed area),
see Fig. 5.2.

The results in Fig. 5.3 show, similarly as the results obtained by Niemi et al. (1993),
that the use of the dimensionless time variable brings the three RTDs close to each other.
Although the deviations and their origination in errors of measurement or changes of flow
pattern have not been evaluated as values of a quantitative criterion, the results suggest
the same degree of invariability in the variable flow case as well, if the variations of flow
keep within the same range. This means that argument θ of the RTD may be replaced
with z.

Two additional test results (Figs. 5.4 and 5.5) show a similar degree of invariability when
presented as a function of variable z. Note that Fig. 5.4 describes tests in which the
output sensor was placed at the end of the cylindrical part of the vessel (well-mixed
area). The vessel had a rectangular section following the cylindrical part, and in the later
tests (Fig. 5.5) the output sensor was placed at the outlet of this section.

5.3 Identification by means of random signals

The process of flow and mixing in a continuous flow plant is normally linear with regard
to concentrations of the material components involved. If the flow rate and volume are
constant, the material transport dynamics can be represented by a constant parameter
RTD or weighting function. The relationship from the concentration at the inlet to that
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Figure 5.3: Chemical tracer tests (Q=550 ml/min (solid), 760 ml/min (dashed), 900
ml/min (dashed-dotted), V =1200 ml). In upper picture time scale in seconds; RTD scale
in 1/s
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Figure 5.4: Chemical tracer tests (Q=550 ml/min, V =980 ml (solid), 550 ml (dashed)
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Figure 5.5: Chemical tracer tests. Measurement from the outlet of the extended vessel
(Q=550 ml/min (solid), 760 ml/min (dashed), V =1400 ml)

at the outlet is expressed by convolution (5.1), which in terms of discrete time obtains
the form (5.2). The function p′ is here truncated to a finite impulse response (FIR), at a
time N∆t after which its value is negligible.

c(t) =
∫ t

−∞
p′(t − ν)ci(ν)dν =

∫ N∆t

0
p′(ν)ci(t − ν)dν (5.1)

c(t) =
N∑

i=0

p′(i∆t)ci(t − i∆t)∆t (5.2)

In the above equations the notation p′(ν) is used instead of p′(ν, 0). General methods
have been developed which can be used for process identification by means of continuous,
random concentration signals measured at the inlet and outlet. Such a method is the
recursive parameter estimation algorithm by Niemi et al.(1993), which has been applied
experimentally in the pilot plant process described above.

In these tests, the raw feed flow was held constant, while a continuous variable stream
of chemical agent (NaOH) of about 100-fold concentration was added to and mixed with
it. The chemical pump was controlled with a white noise signal generated by random
noise software of the computer. The input and output concentrations were obtained by
pH measurements and conversions. The estimation algorithm was repeatedly used for
identification of the RTD of the plant as a sequence of 31 parameters, i.e. values of
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Figure 5.6: Identified responses under constant and variable flow (Niemi et al., 1993)

p(i∆t), (0 ≤ i ≤ N ; N = 30). After an initial period of less than 20 min, the estimates
converged, and the data in Fig. 5.6 represent the averages of their 150 last values, with θ
as argument. In the figure one time unit corresponds to 50s.

Under variable flow, the weighting function model of the plant is described by a lin-
ear, variable parameter model p′(t, ν), and the functional relationship of its input and
output concentrations has the form of (5.3). The resulting input/output relationship in
discretized form is given in (5.4).

c(t) =
∫ t

−∞
p′(t, ν)ci(ν)dν (5.3)

c̄(z) =
N∑

i=0

p̄′(i∆z)c̄i(z − i∆z)∆z (5.4)

Note that the latter equation holds under the assumption that the system is z-invariant,
see equations (2.29) and (2.32) in Chapter 2. The parameters of p̄′(i∆z) can be estimated
in the same manner as those of p′(i∆t), for equi-spaced values of z; for details, see (Tian,
1994). In order to accomplish the identification in practice, the flow rate in the system
of Fig. 5.1 was measured in real time and integrated for production of the needed values
of the modified time scale argument. The variable flow rate of the process medium was
produced under pre-programmed control of the main pump. The variation was typically
sinusoidal with the mean of 750 ml/min and amplitude of 225 ml/min. The chemical
pump was controlled by a similar, parallel signal needed for production of a constant
mean value of the final input, plus a white noise signal of zero mean superimposed with
the former one. The resulting input and output concentrations were obtained by pH
measurements and conversions. The parameter estimation procedure converged similarly
as in the previous test described producing the RTD of Fig. 5.6 as a function of z.

The general form of the function is very similar to that obtained under constant flow.
The identifications thus show that the flow pattern of the plant is not observably affected
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by the variation of flow rate within a wide range of amplitude and that the integrated
flow variable z takes correctly into account the variation.

The RTDs produced by recursive parameter estimation show random fluctuation which is
typical to results produced by such discrete estimation methods, but agree well, for most
part of their course, with the responses of the same process vessel obtained with chemical
tracer (Figs. 5.3-5.5). The systematic difference of the identified RTDs and the less peaky
pulse test results at low values of the argument seem to be connected with large changes
of the concentration in the pulse tests which the pH sensor is not able to follow due to its
slow dynamics. Another possibility is the diffusion of the highly concentrated chemical
constituting the pulse. The flow variation is not a probable cause of the difference, because
the models identified under constant and variable flow are practically coincident here.

5.4 Tests with radioisotope tracers

The same plant was submitted to tests with small amounts of radioisotope tracer. Tc-99
was obtained from a Mo-Tc isotope generator in sodium pertechnetate solution and was
considered a suitable tracer element due to its short half-life and low gamma energy, and
because of its known uses in medical diagnosis. A dose of 18MBq in 0.5 ml of liquid which
could be injected within less than a second was found sufficient after some preliminary
testing. The two scintillation detectors were provided with collimators and located at the
same points as the pH detectors in the earlier tests; the first one was used only for the
zero-time signal. The flow rate and level height meters were calibrated for computation
of the modified time scale.

Steady state tests were first made at a fixed volume for different, constant values of feed
flow rate. Their results were shown as functions of θ or z, examples of which are presented
in Fig. 5.7 (Q=550 ml/min (solid), Q=760 ml/min (dashed), Q=900 ml/min (dashed-
dotted), V = 1200 ml in all cases). The results of a test in which both the flow rate and
liquid volume varied sinusoidally are presented in Fig. 5.8 (Qi = 650 + 200sin(2πt/T )
ml/min, V = 980 + 150sin(2πt/T ) ml , T=50 min, (solid line), T=25 min (dotted line),
T=15min (dashed-dotted line)). The measurement was made at a point inside the vessel
(at the output of the presumed well-mixed area). The responses were very similar in all
the cases tested. A perfect mixer model including a delay factor as adjustable parameter
was fitted to the RTDs obtained. The value of the delay was chosen for the best fit over the
range of variation of z in the tests. These and later tracer tests with the same plant have
proved that this operates in the manner of a perfect mixer preceded by a small plug flow
element of zd of about 0.06, corresponding to the pipeline before the mixer. A second test
series was carried out by taking the measurement from the final output of the vessel. The
RTDs are presented in Fig. 5.9 and the flow rates and volumes in Fig. 5.10. The solid and
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Figure 5.7: Radioisotope tracer tests under steady state conditions
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Figure 5.8: Radioisotope tracer tests under sinusoidal flow rate and volume variations
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Figure 5.9: Radioisotope tracer tests. Measurement at the output of the extended vessel
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Figure 5.10: Radioisotope tracer tests. Flow rates and liquid volumes
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dashed lines represent tests with different constant flow rates and constant liquid volume
(Q=550 ml/min and 760 ml/min, V =1400ml). The dashed-dotted line represents a test
with sinusoidally varying flow rate and constant liquid volume (Qi = 650+200sin(2πt/T )
ml/min, T=10 min, V = 1400ml ). The uniformity of the results shows the usefulness of
the variable z under variable flow conditions, and in the case of variable volume and feed
flow in the almost perfectly mixed vessel, at least if the parameters change slowly. It is
also evident that the flow patterns of the plant are not observably affected by variation
of flow rate and volume within a wide range.

The results are generally similar but clearly more accurate than those obtained by means
of continuously variable, random concentration signals. They are now recorded at much
shorter intervals and the random scatter is less. The peak of RTD is higher and steeper
and has obviously been reproduced better by the radioisotope tracer. This is related to the
small sample volume within the liquid and to low background achieved with a properly
collimated and shielded detector, which contributed to the accuracy of the radiotracer
method.

The results differ even more from those obtained with the chemical tracer method. The
latter proved unable to follow fast concentration changes delivering, at least if used as de-
scribed previously, a very coarse picture of the real RTD, even if this is independent of the
flow rate. It is obvious that the dynamics of the count rate meter is much faster than that
of the pH meter, and that, because of the low chemical concentration of the radioisotope
tracer pulse, diffusion has a negligible effect on the response which it generates.

5.5 Tests with radioisotope and chemical tracer

An oblong open vessel was constructed aiming at an approximately laminar velocity profile
of the liquid and another series of tests was carried out (Fig. 5.11). The pH transducers
were substituted with conductivity sensors which were then used, together with nuclear
gauges, for recording of the responses to simultaneous injections of the salt solution and
the radiotracer. Fig. 5.12 shows the results for the stationary states of Q=500 ml/min
(solid line), Q=700 ml/min (dashed line), Q=800 ml/min (dashed-dotted line), V ≈2100
ml in all cases. The general form of the responses resembles to some degree that of the
theoretical laminar flow vessel (Niemi, 1990), but is lower and less steep at both sides
and shows less of time delay. A dependence of the input/output flow pattern on the
stationary point of operation is in this case shown by the differing course of one of the
three RTD functions of z (case of low flow rate). Deviation of the internal flow pattern
from laminar flow was then demonstrated by means of a dye. It thus turned out, after some
improvements of the vessel had been tried, that the establishment of a laminar flow pattern
in the major part of an open, pilot size vessel in laboratory meets difficulties. The results
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Figure 5.12: Test responses of an oblong open vessel
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Figure 5.13: Tests with a tubular vessel (Zenger, 1995)

of this test series showed however that appropriate tracer conductivity measurements were
more accurate than the use of pH sensors, the somewhat slow dynamics of which can cause
distortion of the shape of response. The use of salt solution as tracer and conductivity
measurements could, at least in this case of a single electrolyte in water, well be used as
a feasible alternative to radiotracer test.

5.6 Tests with a tubular vessel

The results of the previous tests were the reason for trying to set up a process, in which a
laminar flow pattern could be accomplished more accurately. A 10 meter long rubber tube
1 cm in diameter was chosen as process vessel. Low flow rates of 200 to 500 ml/min were
used; turbulent conditions could be expected in only one test. The measurements were
done by using water from an ion-exchange as process flow, into which 1 ml of salt solution
was injected at the inlet of a premixer preceding the vessel. The tracer concentration was
varied during the test series, because it was not known what tracer concentration would
give the best accuracy of the output measurement. In Fig. 5.13 all RTDs obtained are
shown as functions of time and volumetric scales. It is noticed that the curves become
reasonably close to each other if expressed in z-domain. Their shape is now closer to the
theoretical response: the height of many peaks is near to p = 4 and the delay near to z =
0.5 being always somewhat larger, which refers to a real delay in series with the laminar
flow component. The only exception appearing clearly in the figure was the result of
the test with highest amount of the tracer which obviously did not mix properly in the
premixer.
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5.7 Conclusions of the tests with the pilot plant

The RTDs of a continuous flow process can be expressed, under changing flow rate and
liquid volume, as unambiguous function of an integrated variable introduced previously, if
the flow pattern is not affected by the changes. Such a general RTD can be derived from
the regular RTD for stationary conditions, but it can also be determined experimentally,
if the flow and volume are measured on line during the test.

The pilot system described enabled to vary flow rates and liquid volume under computer
control in chosen, arbitrary manners, and likewise the input concentration, in addition
to a pulse injection of the tracer. All relevant process variables were measured and data
transferred to a computer in real time, in order to obtain the RTD as a function of
the appropriate integrated variable. It turned out that such RTDs of the well mixed
vessel tested were, under constant and varying flow and volume, almost identical and in
agreement with the perfect mixer model accompanied by a minute delay and expressed
in terms of the same variable. In the extended vessel tested, the RTDs measured differed
from that of a single perfect mixer, but the mixing was still good and the change of
variable brought the responses close to each other, despite the changing flow rate. Similar
conclusion applies to a vessel whose input/output flow pattern is close to that of the
laminar flow vessel.

The radioisotope tracer and electrolyte tracer measured by conductivity were well suited
to laboratory testing for RTDs. The measurement of a chemical tracer by pH is applicable
to on-line identification, but is inaccurate in pulse testing. The use of chemical analyzers
of other types and corresponding tracers was not studied. The presented methods have
potential to full scale application, since although the flow rate and volume or level height
of liquid are variable in industrial plants, they are usually measured and therefore available
for extraction and use of RTDs in real time. Radiotracers are obviously least sensitive
to disturbances but practically limited to pulse testing of such processes. The use of
chemicals and measurement of pH or conductivity for identification is often effectively
limited by various dissolved and particulate components of the process medium.



Chapter 6

Controller Design

The ideas developed in the previous chapters can be applied in the controller design of such
flow processes, in which the flow rate and liquid volume are variable. If the parameters
of the model are time-varying, it is difficult to design a controller that performs well in
all operation conditions. In traditional control design various methods have been used to
solve that problem. Specifically, the principle of gain scheduling has been widely used, see
e.g. (Åström and Wittenmark, 1995), (Niemi et al., 1990). The idea in gain scheduling
is that the controller is tuned at several operation points to form a schedule, which is
then used to change the controller parameters continuously as the operation point of
the process changes. The use of the method requires that the operation point can be
measured.

Controller design based on the use of the modified time scale has a close relationship to
the concept of gain scheduling. If a flow process model is z-invariant, the controller can be
designed to operate in z-domain to eliminate the effects of varying flow rate and varying
volume. The values of these quantities must be measured and/or calculated in order to
determine the z-variable. The control law is then transformed back into time domain,
which leads to an algorithm in which the parameters are continuously changing, when
the flow rate and volume measured from the process are changing. The change of the
parameters takes place automatically, and no pre-programmed schedule is needed. Only
the basic tuning of the controller in a nominal operation condition is needed.

In the current chapter a PID controller with time variable parameters is developed. Ex-
amples on how to construct suitable discrete-time versions of the algorithm for a possible
use in a digital automation system are given. An example of a practical application is
presented, and the performance of the algorithm is demonstrated.

The results concerning the PID controller and its modifications are extremely important

64
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from the practical viewpoint. For example, according to Åström and Hägglund (1995)
more than 95 % of unit controllers in process industry are of PID or PI type. Many
of these have been tuned badly, so that the operation of the closed loop system is far
from being optimal. In an example case reported by Bialkowski (1993), a process with
2000 control loops was investigated. 97 % of these were of PI type, and 20 % of them
were found to work well. Reasons for bad operation were mainly because of poor tuning
and actuator problems. Other problems reported have been e.g. sensor malfunctions, bad
choice of the sampling rate or antialiasing filters. There are even studies claiming that
a large percentage of controllers are operated in manual mode or use the factory tuning,
meaning that they have never been tuned for the process they are used to control!

The necessity to provide automatic tuning methods is obvious. The time-varying con-
troller to be presented below does not provide the basic tuning, but it helps to keep the
tuning correct in the case of time-variable disturbances affecting the process.

Another application from the field of optimal control is discussed in the last part of the
chapter.

6.1 A time-variable PID controller

Consider a mixing process with variable flow and volume. If the system model is z-
invariant, the time-varying characteristic of the model can be removed by writing the
model equations in z-domain. The controller can then be designed and tuned in z-
domain to give a good performance of the closed-loop system. The controller is realized
by transforming the control algorithm back to time domain.

The method can be motivated by using the following heuristic reasoning: For every inter-
val Tz (z ∈ [z0, z1]) there is a unique interval Tt (t ∈ [t0, t1]) such that the model variables
of the system obtain exactly the same values within Tz and Tt, respectively. If the closed
loop performance of the system is good in Tz, it can be expected to be good in Tt as well.
Hence, the design of a controller in z-domain for a z-invariant system seems to be a rea-
sonable procedure, because the time-varying nature of the process is implicitly included
in the z-variable and standard design methods can easily be applied in z-domain.

However, it should be pointed out that the presented strategy is based on heuristic rea-
soning, and it therefore deserves criticism. Although the performance of the closed loop
system would be optimal in z-domain with respect to some criterion, the optimality in
time domain according to a similar criterion is not necessarily achieved. For large vari-
ations of the flow rate the z-variable may deviate so much from the time variable that
a good performance in z-domain does not mean a desired performance in time domain.
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However, if the flow rate varies within reasonable limits only, the design procedure seems
to be applicable.

Let us now use the design method to construct a time-varying PID controller. If the
process model is z-invariant, the controller can be given in that domain as

ū(z) = Kpz ē(z) + Kiz

∫ z

0
ē(ξ)dξ + Kdz

dē(z)

dz
(6.1)

where ū is the controller output, ē is the controller input (error signal) and Kpz, Kiz, Kdz

are the (constant) gains of the controller. By using the familiar transformations z = f(t),
t = h(z) again, the control algorithm can be written in time domain. For the three
different terms the equations are

Kpz ē(z) = Kpze(h(z)) = Kpze(t)

Kiz

∫ z

0
ē(ξ)dξ = Kiz

∫ z

0
e(h(ξ))dξ = Kiz

∫ t

t0
e(τ)ḟ(τ)dτ

Kdz
dē(z)

dz
= Kdz

de

dz
(h(z)) = Kdz

de

dh
(h(z))

dh

dz
(z) = Kdz

de

dt
(t)(

df

dt
(t))−1

Using the z-variable

z = f(t) =
∫ t

t0

Q(ν)

V (ν)
dν

the control algorithm becomes in time domain

u(t) = Kpze(t) + Kiz

∫ t

t0

Q(ν)

V (ν)
e(ν)dν + Kdz

V (t)

Q(t)

de(t)

dt
(6.2)

The same controller expression was originally derived by Niemi (1991).

The algorithm is time-varying, because the flow rate Q(t) and the liquid volume V (t)
have an effect on the gain terms. In fact, the controller can be implemented by writing
the standard PID controller algorithm as

u(t) = K(t)[e(t) +
∫ t

t0

e(ν)

Ti(ν)
dν + Td(t)

de(t)

dt
] (6.3)

where the coefficients are continuously modified as

K(t) = Kpz (6.4)

Ti(t) =
KpzV (t)

KizQ(t)
(6.5)

Td(t) =
KdzV (t)

KpzQ(t)
(6.6)
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Note that if a PID algorithm is realized in this way, the integral action is implemented
according to equation (6.3), so that the coefficient Ti(t) is part of the integrand.

It is interesting to note that the algorithm operates like an ‘automatic’ gain scheduling
controller, because the tuning parameters are continuously changed according to the flow
measurement.

In the case that a discrete-time controller is desired, it is straightforward to discretize
equation (6.2). If the integral part is approximated by a forward approximation and the
derivative part by taking the backward difference, the result becomes

u(iT ) = P (iT ) + I(iT ) + D(iT ) (6.7)

where
P (iT ) = Kpze(iT ) (6.8)

I(iT + T ) = I(iT ) + Kiz
Q(iT )

V (iT )
e(iT )T (6.9)

D(iT ) = Kdz
V (iT )

Q(iT )
[
e(iT ) − e(iT − T )

T
] (6.10)

In the above equations the absolute time instant is iT , in which T is the sampling interval
and i is an integer value.

It is easy to derive similar results for many existing modifications of the PID algorithm.
For example, let the controller algorithm be given in Laplace domain as

U(s) = K[E(s) +
1

Ti

E(s)

s
− sTd

1 + sTd/N
Y (s)] (6.11)

where E is the error signal, Y is the measured process output signal and U is the controller
output. The tuning parameters are gain K, integration time Ti, derivation time Td and
the value N , which is used in the lag term of the derivative part. (According to Åström
and Wittenmark (1997) this term is typically in the range 3-10.) Note that the inverse
Laplace transformation of the controller algorithm now operates as a function of ‘time’ z.

Simple calculations show that the discrete time-varying algorithm is again of the form
(6.7), where the P and I parts are

P (iT ) = Ke(iT ) (6.12)

I(iT + T ) = I(iT ) +
K

Ti

Q(iT )

V (iT )
e(iT )T (6.13)

The derivative part fulfils the differential equation

Td

N

dūd(z)

dz
+ ūd(z) = −KTd

dȳ(z)

dz
(6.14)
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which in time domain is

Td

N

dud(t)

dt
· V (t)

Q(t)
+ ud(t) = −KTd

dy(t)

dt
· V (t)

Q(t)
(6.15)

Discretization gives then

ud(iT ) =
TdV (iT )

TNQ(iT ) + TdV (iT )
ud(iT − T ) − KNTdV (iT )

TNQ(iT ) + TdV (iT )
y(iT )

+
KNTdV (iT )

TNQ(iT ) + TdV (iT )
y(iT − T ) (6.16)

and D(iT ) = ud(iT ) in (6.7).

The method of designing a z-invariant controller for a z-invariant process is easy to un-
derstand, because the resulting closed-loop system performs as a function of z like any
time-invariant system. Transforming the controller algorithm back into time domain and
discretizing it if desired are then straightforward operations.

A different approach has been presented by Andersson and Pucar (1995) and used e.g.
by Åström and Wittenmark (1995). A time-varying system model has been changed into
a discrete form with constant coefficients by using a time-variable sampling interval. A
discrete-time controller with constant coefficients, which uses the same sampling intervals,
can then be designed. To explain the method consider the system (3.1), where A(t) =
k(t)Ā, B(t) = k(t)B̄. Assume that the functions k(·) and u(·) are constant during the
intervals iT ≤ t ≤ iT +Tt, where the real number Tt denotes the (time varying) sampling
interval. At time t the solution of the state equation can be written as

x(t) = eĀk(iT )(t−iT )x(iT ) +
t∫

iT
eĀk(iT )(t−τ)k(iT )B̄u(iT )dτ

= eĀk(iT )(t−iT )x(iT ) + k(iT )

[
t∫

iT
eĀk(iT )(t−τ)dτ

]
B̄u(iT )

= eĀk(iT )(t−iT )x(iT ) + k(iT )

[
t∫

iT

∞∑
l=0

1
l!

(
Āk(iT )(t − τ)

)l
dτ

]
B̄u(iT )

= eĀk(iT )(t−iT )x(iT ) + k(iT )
∞∑
l=0

1
l!
Ālk(iT )l

[
t∫

iT
(t − τ)l dτ

]
B̄u(iT )

= eĀk(iT )(t−iT )x(iT ) +
[ ∞∑
l=0

Ālk(iT )l+1

(l+1)!
(t − iT )l+1

]
B̄u(iT )

(6.17)

At the time t = iT + Tt the sampled system is

x(iT + Tt) = eĀk(iT )Ttx(iT ) +

[ ∞∑
l=0

Ālk(iT )l+1

(l + 1)!
T l+1

t

]
B̄u(iT ) (6.18)

By using the sampling interval

Tt =
α

k(t)
(6.19)
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where α is any nonzero real number, the resulting system becomes

x(iT + Tt) = eĀαx(iT ) +

[ ∞∑
l=0

Ālαl+1

(l + 1)!

]
B̄u(iT ) (6.20)

which is independent of the function k(·). Note that the function k(·) has been assumed
to be constant in the sampling interval. The interval Tt is determined from (6.19) in the
beginning of the sampling period after which it is held constant until the next sampling
instant.

The method can also be discussed by using the technique of the modified time scale.
Consider equations (3.1), (3.2), (3.3), where A(t) = k(t)Ā, B(t) = k(t)B̄, C(t) = C̄,
D(t) = D̄. Because the state, input, and output variables in (3.1) and (3.3) are in one-
to-one correspondence, it is evident that the discretized forms of the realizations have a
similar correspondence, too. Assuming a zero-order hold and a constant sampling interval
in (3.3) leads to a discrete representation with constant coefficients. If a corresponding
discretization is carried out in (3.1), the two systems are again in one-to-one correspon-
dence with each other. Note however that a constant interval Tz = ∆z is time-varying
(Tt) in time domain. Also note that the method is equally valid for all z-invariant systems,
including those that contain delay.

There still remains the question of determining the correct sampling instant. In the
above analysis based on the results of Andersson and Pucar (1995) the sampling interval
was chosen to be inversely proportional to the function k(·). However, it was assumed
that both the functions u(·) and k(·) are constant between the sampling instants. It is
reasonable to look at that a little closer. Intuitively, the principle of ‘inverse sampling’
can be derived also by the following simple way. By the definition of the modified time
scale it holds

ḟ(t) = d1k(t) (6.21)

Approximating the derivative by a forward difference gives

f(t + ∆t) − f(t) ≈ d1k(t)∆t (6.22)

where ∆t is the sampling interval. Choosing ∆t inversely proportional to k(t) is now
obvious to make Tz (approximately) constant. In practice, it is possible to synchronize
the sampling mechanism with a positive displacement meter instead of a clock (Niemi,
1991).

Let the constant sampling interval in z-domain be

Tz = ∆z = f(t + ∆t) − f(t) = d1

∫ t+∆t

t
k(ν)dν (6.23)

The derivative must be zero

d(∆z)

dt
= d1[k(t + ∆t)(1 +

d(∆t)

dt
) − k(t)] = 0 (6.24)
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Figure 6.1: A simple concentration control system

and so
d(∆t)

dt
=

k(t)

k(t + ∆t)
− 1 ≈ k(t)

k(t) + dk(t)
dt

∆t
− 1 (6.25)

where the term k(t+∆t) has been approximated with the first order Euler approximation

k(t + ∆t) ≈ k(t) + dk(t)
dt

∆t. But for the choice ∆t = α
k(t)

it follows that

d(∆t)
dt

≈ k(t)

k(t)+
dk(t)

dt
· α
k(t)

− 1 = −
dk(t)

dt
· α
k(t)

k(t)+
dk(t)

dt
· α
k(t)

≈ −
dk(t)

dt
· α
k(t)

k(t)
= −α

dk(t)
dt

k2(t)

(6.26)

in which it has been assumed that the term dk(t)
dt

1
k(t)

is small compared with k(t). The

result is noticed to be the same as the direct derivative of ∆t = α/k(t).

However, the inverse sampling method is an approximation, which is accurate only if the
function k(·) does not change much during each sampling interval. If, on the other hand,
a constant sampling rate in time domain is used, the resulting equations are time-varying
but exact. That is the case e.g. when the PID controller (6.2), (6.7) is used.

To demonstrate the performance of the time-varying PID controller consider the example
presented by Åström and Wittenmark (1995), see Fig. 6.1. The system consists of a
perfect mixer, where the liquid volume is constant although the flow rate can vary. The
input to the system is the concentration of a chemical. However, there is a delay in the
control (input) signal. The system can be described by

V
dc(t)

dt
= Q(t)(ci(t − Td(t)) − c(t)) (6.27)

where c is the concentration in the mixer, ci is the input concentration, Q(t) is the flow
rate, V is the volume of the mixer, Vd is the volume of the pipe that causes the delay in
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the concentration input, Td(t) is the delay function. The following simulations are done
with different constant flow rates; in each case the delay function is then given by

Td(t) = Vd/Q (6.28)

The input concentration to the mixer can be modelled by combining the process flow and
the flow of a reagent in a small vessel with negligible dynamics. The reagent is assumed
to be so strong that the control flow is small compared with the process flow.

Notice that both the delay in the concentration input and the time constant of the process
are inversely proportional to the flow rate. When the flow rate is small the control of the
system becomes more difficult.

The simulations demonstrate the operation of the closed loop system, when a standard
PID controller, equation (6.3) with K(t) = K, Ti(t) = Ti, Td(t) = Td constants, or the
time-varying PIDz controller, equation (6.2), are used to control the reagent flow in order
to obtain the desired concentration at the outlet of the mixer. The parameters of the
process have been chosen such that nominally Q = 1 so that the time constant of the
process is 1. The parameter Vd has the value 1. The simulations describe the closed loop
response of the system, when a step change from 0 to 1 has occurred in the reference
value of the concentration at the time 0.

Figure 6.2 shows four closed loop responses of the system. In each case the flow rate
has been a different constant, and a PID controller with constant coefficients has been
used. The parameter values of the controller are K = 0.5, Ti = 1.1, Td = 0, which
gives a good response with the nominal flow rate Q = 1. It is obvious that the response
of the closed loop system is different, when the flow rate changes. With small flow rates
the performance deteriorates clearly, because the time delay and the time constant of the
process are larger.

In Fig. 6.3 results have been presented, when the time-varying PIDz controller of (6.2) is
used. The constant tuning parameters Kpz = 0.5, Kiz = 0.45, Kdz = 0 correspond to the
ones in the previous figure. The time-varying controller compensates clearly the effects
caused by the different flow rates. The responses are clearly better than those shown in
the previous figure.

It is interesting to note that almost identical results as in Figs. 6.2, 6.3 have been obtained
in Åström and Wittenmark (1995), where a controller with varying sampling interval has
been used as discussed earlier. Possible small deviations are due to the fact that the
controller and its parameters are not totally specified in the reference.

The stability of the closed loop system can be studied by means of the theory developed
in Section 3.2. The control algorithm (6.2) is equivalent to (6.1), which has constant
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Figure 6.2: Closed loop step responses. PID controller with constant coefficients.
1:Q=0.5, 2:Q=0.9, 3:Q=1.1, 4:Q=2.0.
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Figure 6.4: PID controller with constant coefficients. K=5, Ti=0.91, Td=0.

coefficients. If the process model is z-invariant, the closed loop system can thus be mod-
elled in a constant-coefficient form in z-domain. Under the assumption that z tends to
infinity as the time variable tends to infinity, the stability of the closed loop system can
be determined according to the Proposition 2. Note that the assumption made on z is not
a severe limitation, because the flow rate is assumed to be positive for all time instants.

The result that the stability of the closed loop system can be guaranteed in spite of
flow variations by using a time-varying controller is an additional motivation to the use
of the PIDz controller. As an example, consider the process of three perfect mixers in
series under variable flow but constant volumes. Let the process be controlled first by
an ordinary PID controller, which is tuned such that for a constant nominal flow rate
the closed-loop system is stable but near the stability limit. Next, let the flow rate vary
sinusoidally as shown in Fig. 6.4. In the figure, Q is the flow rate, ci is the controller
output, and c is the concentration at the process output. A step change from 0 to 1 has
occurred in the reference value in the beginning of the simulations. The numerical values
used in the simulations are: V1 = V2 = V3 = 1/3, Kpz = 5, Kiz = 5.5, Kdz = 0, Q0 = 1
(in tuning), Q(t) = 1 + 0.5 sin(0.1t).

The system seems to be stable for large flow rates but starts to oscillate when the flow
rate decreases. Loosely speaking, the system thus ‘oscillates’ between stable and unsta-
ble behaviour. The figure Fig. 6.5 shows the same simulation, but the corresponding
time-varying PIDz-controller has now been used. The system is stable in spite of flow
variations. Notice that if the controller were tuned such that the closed-loop system were
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Figure 6.5: PIDz controller. Kpz=5, Kiz=5.5, Kdz=0.

unstable in z-domain, it would then be unstable in time domain for all flow rates.

The variation of the closed loop poles has been presented in Fig. 6.6 for the constant flow
rates 0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5. It is seen that the closed-loop system controlled by
a PIDz controller is always stable, while the PID controller leads to an unstable system
for small flow rates.

6.2 Flow rate as the control signal

In the examples of the previous section the input signal to the process was considered
to be a concentration, which was formed by combining the process flow and the reagent
flow in a small vessel with no dynamic properties. However, the actual control signal is
the reagent flow rate through the control actuator and not concentration directly. In the
current section this issue is considered in detail.

Consider the process of an ideally mixed vessel. The process input and output flow rates
are Qpi(t) and Qpo(t), respectively, and the concentration of a chemical within the process
flow is cpi(t). The control signal (flow through a control valve) is Qc(t), and the reagent
concentration is cc (constant). Usually the reagent is so strong that the control flow rate
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Figure 6.6: Location of closed-loop poles for seven constant flow rates

is very small compared to the process flow rate, Qc(t) � Qpi(t). That implies that if the

liquid level is well controlled, then Qpi(t) ≈ Qpo(t)
�
= Q(t), and the volume V of the liquid

in the vessel is approximately constant. The state equation for the vessel becomes

ċ(t) ≈ −(Q(t)/V )c(t) + (Qc(t)/V )cc + (Q(t)/V )cpi(t) (6.29)

where c(t) is the state variable, Qc(t) is the control signal, and cpi(t) can be regarded as
a disturbance term.

The problem with the above equation is that it is not z-invariant, because it is not possible
to define a scale z such that the equation would have constant coefficients with respect
to z. That is because the ratio between the flow rates Q(t) and Qc(t) is not necessarily
constant.

But consider Fig. 6.1, where the two input flows are first combined in a small vessel (ignore
the delay, which is not important now). The idea is that the input to the ideally mixed
vessel can be described by the flow rate Qi(t) and concentration ci(t). The mixing in the
small vessel is assumed to have no dynamics so that it can be described by the following
two equations

Qpi(t) + Qc(t) = Qi(t) (6.30)

Qpi(t)cpi(t) + Qc(t)cc = Qi(t)ci(t) (6.31)
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The input concentration can be solved and written in the form

ci(t) =
1

1 + Qc(t)/Qpi(t)
cpi(t) +

Qc(t)

Qpi(t) + Qc(t)
cc ≈ cpi(t) +

Qc(t)

Q(t)
cc (6.32)

where the approximations regarding the relations of the flow rates have been taken into
account. The equation obtained gives a relationship between the control signal Qc(t) and
the input concentration of the process cpi(t). The state equation of the ideally mixed
vessel is

ċ(t) =
Qi(t)

V
(ci(t) − c(t)) ≈ Q(t)

V
(ci(t) − c(t)) (6.33)

Substituting the expression for ci(t) into this gives equation (6.29), which shows that
under the approximations made the idea of mixing the two flow rates in a vessel without
dynamics is justified.

To summarize, the process can be modelled by the equations

V ċ(t) = −Q(t)c(t) + Q(t)ci(t) (6.34)

ci(t) = cpi(t) +
Qc(t)

Q(t)
cc (6.35)

The former expression is the familiar model of an ideally mixed vessel. Although the
latter expression can in z-domain be written as

c̄i(z) = c̄pi(z) +
Q̄c(z)

Q̄(z)
cc

the equation is dependent on the flow rate, which means that the system model of the
two equations is not invariant with respect to z.

The control design can now be based on the fact that the process model is given by a
z-invariant differential equation (6.34) and by an algebraic equation (6.35). The dynamic
part is controlled by the time-varying PID controller, equation (6.2), and the controller
output ci(t) is realized by choosing Qc(t) according to (6.35). The actual control signal
Qc(t) thus becomes

Qc(t) =
Q(t)

cc

(ci(t) − cpi(t))

=
Q(t)

cc

(Kpze(t) + Kiz

∫ t

t0

Q(ν

V (ν)
)e(ν)dν

+Kdz
V (t)

Q(t)

de(t)

dt
− cpi(t)) (6.36)

for Qc(t) ≥ 0. The algorithm is a combination of feedback and feedforward control,
because the term cpi(t) must be measured from the process flow. If it is not believed to
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vary much, it is possible to use the nominal value cpi0, which leads to a constant bias term
in the algorithm.

In some cases the bias term in the above control algorithm can also be presented in a
more attractive way. To this end, use the normal approximation Qpi(t) ≈ Qi(t) = Q(t)
and consider small changes in the process and reagent flow rates Q(t) = Qo + ∆Q(t),
Qc(t) = Qco + ∆Qco(t), in which the constants Qo and Qco denote nominal flows. The
controller (6.36) can be written as

Qc(t) =
Q(t)

Qo

[
KpzQo

cc

e(t) +
KizQo

cc

∫ t

t0

Q(ν)

V (ν)
e(ν)dν +

KdzQo

cc

V (t)

Q(t)

de(t)

dt
− Qo

cc

cpi(t)] (6.37)

In a pH-process, where strong base (process flow) is neutralized by a strong acid (reagent)
it holds in steady state (pH=7) that Q0cpi = −Qc0cc. This can be explained by noticing
that a strong acid can be regarded as a negative base, and the goal in control is to keep
the value ci close to zero. The two input flows thus form a neutral salt. It then follows
that

Qc(t) =
Q(t)

cc

(ci(t) − cpi(t))

=
Q(t)

Qo

(Kpe(t) + Ki

∫ t

t0

Q(ν

V (ν)
)e(ν)dν

+Kd
V (t)

Q(t)

de(t)

dt
+ Qco) (6.38)

in which Kp = KpzQo/cc, Ki = KizQo/cc and Kd = KdzQo/cc. The algorithm was
invented by Jutila, see e.g. (Jutila and Jaakola, 1986), who derived the equation using
heuristic methods. Actually, Jutila’s algorithm uses slightly different notations, and it
is most often written in discrete time; however, it is identical to the equation presented
above. It is interesting to note that the algorithm can be derived starting from the
z-transformation technique as described.

Finally, some remarks about the approximations used in the above derivations are made.
The practical but difficult problem of pH control has been discussed widely in the lit-
erature, and several algorithms have been tested. In one example discussed by Jutila
(1983) a waste-water treatment plant was considered. In principle, the system can be
described as a similar concentration process as described above. Some typical values
of the variables in the plant are Qpi = 1 m3/s, cpi = 5 mol/m3, Qc = 0.0001 m3/s,
cc = 15000 mol/m3. Clearly Qc � Qpi, which leads to Qc/Qpi = 0.0001 and Qpi + Qc =
1.0001 m3/s ≈ 1 m3/s. Substituting the numerical values into the equation (6.32) gives
ci = (4.9995 + 1.5/1.0001) mol/m3 ≈ (5 + 1.5) mol/m3. The approximations made in
(6.32) are thus found to be good in the particular process example.

The same testing equipment, which was described in Section 5.1, was again used to test
the PID type controllers. The purpose of these tests was to compare a conventional and
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a new controller with each other, and especially to verify the theoretical results on the
stability aspects of the corresponding control loops. A diagram of the test system is shown
in Fig. 6.7.

The testing equipment (pilot-plant) has actually been constructed to control the acidity
of liquid in the vessel. This is the well-known pH control problem, which is nonlinear
in nature and which has been discussed widely in the literature. In the case of strong
acids and strong bases it is possible to linearize the control loop by the titration curve,
which means that the problem is approximated by a linear concentration control problem.
The approximation is good as long as the assumption of strong acids and strong bases
is valid. For details, see (Niemi and Jutila, 1977b), (Jutila, 1983), (Jutila and Jaakola,
1986), (Jutila et al., 1999).

As the process flow passed continuously the process vessel, the output pH was measured
and converted to concentration by using the stored titration curve. The setpoint of
acidity was fixed to a constant value in the beginning of a test. The controllers were used
to regulate the small amount of strong chemical reagent by means of a controllable pump.
The process flow was held at a constant value and at a chosen time changed stepwise to
another constant value.

Both controllers were tuned to give a similar, stable behaviour of the system at the initial
part of the test, when the flow rate was high. Damped oscillations were observed at the
output as this approached the reference value. In the second phase after the flow rate
had been reduced to 50 % of the original value, the loop with the PID controller with
constant coefficients became unstable exhibiting a growing oscillation up to saturation (see
Fig. 6.8). The loop with PIDz controller remained stable and showed a similar behaviour
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Figure 6.8: Test 1: PID controller with constant coefficients

in both parts of the test (see Fig. 6.9). The result agrees completely with the theory.

Numerical values related to the performed tests were: Process liquid, HCL in water,
pH≈ 3.3; Control liquid, NaOH in water, pH≈ 12.1; Liquid volume in the vessel 0.7l;
Process flow rate 800 ml/min, 400 ml/min; Chemical flow 0-23 ml/min. In the beginning
of both tests the set point of concentration has been changed from 7E-4 mol/l (pH≈ 5.8)
to 9E-4 (pH≈ 8.3).

To end this section a few general comments are appropriate. The control problem of
a mixing tank discussed is both nonlinear and time-varying. Nonlinearity is caused by
the fact that the control signal is reagent flow rate, not concentration, whereas time
variability is caused by the changing process flow rate. The solution proposed was to
divide the process equations into static and dynamic parts thus making it possible to
use the modified time scale to simplify the time-varying dynamics, and the static part
to generate the final control signal (reagent flow rate). Although the solution is neat, it
required the assumption of a small reagent flow rate compared to the process flow rate. In
the first test a discretized version of a conventional PID controller was used (programmed
in PC); the time-variable PIDz controller was used in the second test, and the results were
compared. If the mentioned approximation is not valid, it might be possible to use some
other kind of linearization technique. For some literature on this issue, see e.g. (Balchen
et al., 1988), (Henson and Seborg, 1990) and (Kravaris and Soroush, 1990). These papers
discuss methods to use suitable variable transformations to make the system linear in
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Figure 6.9: Test 2: PID controller with time-variable coefficients (PIDz-controller)

terms of the new variables, whereafter a linear controller operating on the new variables
is designed. A nice application in the multivariable nonlinear control problem of a mixing
tank using these ideas has been reported by Häggblom (1993). However, phenomena
related to time-varying processes were not discussed in the mentioned papers. Also, the
variable transformations do not include any modification of the time scale.

From a more general system theoretic viewpoint there exist a wide literature on lineariza-
tion techniques and their applicability in controller design. For a good textbook see e.g.
(Marino and Tomei, 1995).

6.3 LQ optimal control

Besides PID control it is reasonable to consider other control strategies, which are based
on the structural model of the process. Among the classical control strategies is the linear
quadratic (LQ) control, which is based on the idea that the feedback law is determined in
order to minimize a given quadratic cost function.

Consider the process model

ẋ(t) = A(t)x(t) + B(t)u(t) x(t0) = x0 (6.39)
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y(t) = C(t)x(t) + D(t)u(t)

where the dimensions of the functions are as given in Section 3.1. The cost criterion to
be minimized is

J(t0) =
1

2
xT (tf )S(tf )x(tf ) +

1

2

∫ tf

t0
[xT (t)X(t)x(t) + uT (t)R(t)u(t)]dt (6.40)

where t0..tf is the optimization horizon and S(tf ), X(·) and R(·) are suitable n×n, n×n
and m×m dimensional weighting matrices. S(tf ) is assumed to be positive semidefinite;
X(t) and R(t) are assumed to be positive semidefinite and positive definite, respectively.

It is well known, see e.g. (Lewis and Syrmos, 1995), that the solution to the problem is
the state feedback law

u∗(t) = −R−1(t)BT (t)S(t)x(t) (6.41)

where the function S(·) is given as a solution to the Riccati equation

−Ṡ(t) = AT (t)S(t) + S(t)A(t) − S(t)B(t)R−1(t)BT (t)S(t) + X(t) (6.42)

with the end condition S(tf ). The minimum cost achieved by using this control law is

J∗(t0) =
1

2
xT (t0)S(t0)x(t0) (6.43)

Note that the above control problem is a regulator problem, in which it is desirable to
drive the state close to the origin of the state space. If the objective is to follow a reference
trajectory, a servo or tracking problem has to be considered. However, in most control
problems in the process industry the objective is to keep the controlled variable constant.
In that case the state equations can always be scaled so that the desired state is zero.

Even though the solution to the control problem seems to be compact, it is difficult
to solve it in practice, because the Riccati equation is a group of nonlinear differential
equations with time-varying coefficients. If the optimization horizon is long (tf − t0 large)
the suboptimal solution can be used in the time-invariant case (Lewis and Syrmos, 1995),
(Anderson and Moore, 1989), setting Ṡ(t) = 0 and hence using the stationary solution
of the Riccati equation. For time-invariant processes this is even desirable, because it
leads to a state feedback law, in which the controller gain matrix is constant. Moreover,
good software is available to solve the problem numerically. The situation is not the same
in the case of time-varying processes, because the Riccati equation still has time-varying
coefficients and is therefore difficult to solve.

But consider a process model, in which A(t) = k(t)Ā and B(t) = k(t)B̄. The system is
z-invariant with respect to the scale

z = f(t) =
∫ t

t0
k(ν)dν (6.44)
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If the weighting matrices in the cost criterion are chosen as X(t) = k(t)X̄, R(t) = k(t)R̄,
it follows that the system equations and cost criterion change into the form

dx̄(z)

dz
= Āx̄(z) + B̄ū(z) (6.45)

J̄(0) =
1

2
x̄T (zf )S̄(zf )x̄(zf ) +

1

2

∫ zf

0
[x̄T (z)X̄x̄(z) + ūT (z)R̄ū(z)]dz (6.46)

such that for all t and the corresponding z, S̄(zf ) = S(tf ), x̄(z) = x(t), ū(z) = u(t). The
problem has changed into a ‘time-invariant’ form (with respect to z), and the solution is
given by the equation

−dS̄

dz
(z) = ĀT S̄(z) + S̄(z)Ā − S̄(z)B̄R̄−1B̄T S̄(z) + X̄ (6.47)

with the given end condition S̄(zf ), and

ū∗(z) = −R̄−1B̄T S̄(z)x̄(z) (6.48)

The minimum cost is

J̄∗(0) =
1

2
x̄T (0)S̄(0)x̄(0) (6.49)

Note that in time and z-domains the solutions to the Riccati equations, the resulting
control laws and the system dynamics are equivalent. Additionally, if the stationary
solution for S̄ is used, the feedback law becomes in time domain

u∗(t) = −R̄−1B̄T S̄x(t) (6.50)

which can be directly used.

However, it should be noticed that the above equivalence holds only, if the weighting
matrices in the cost criterion are chosen as X(t) = k(t)X̄, R(t) = k(t)R̄. For other
choices the problem still remains ‘time-varying’ even in z-domain, and the use of the new
scale does not make the solution simpler.

Consider the example presented earlier in Section 6.1, in which an unstable closed loop
system was stabilized by a PIDz controller. If Fig. 6.10 simulation results have been
presented, in which PIDz control and LQ control have been applied. The simulation time
interval has now been 0..10 (earlier 0..100) to investigate the transient response in more
detail. In the beginning the concentration reference has been changed from zero to one,
and from the time t = 5 to t = 6 a pulse disturbance of amplitude 0.3 has affected the
input of the process. In LQ control the controller has the form

u∗(t) = −Lx(t) + ckr(t) (6.51)

where r(t) is the reference and the constant ck is chosen such that the static gain from the
concentration reference to output concentration is one. In all curves the solid line denotes
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Figure 6.10: Concentration control by PIDz and LQz controllers

the output concentration, while the dashed line is the control signal. In the upper left
plot the PIDz controller with the same tuning as earlier (Kpz = 5, Kiz = 5.5, Kdz = 0)
has been used. A stable but oscillatory response resulted, as expected. Result obtained
by using a better tuning (Kpz = 1, Kiz = 1.3, Kdz = 0) is shown in the upper right plot.
That result is clearly comparable to the two lower plots, where LQ control was applied.
The tuning matrices in the lower left and right plots were

X̄ =




0.01 0 0
0 0.01 0
0 0 0.01


 , R̄ = 0.1

X̄ =




1 0 0
0 1 0
0 0 1


 , R̄ = 1

respectively.

All previous controllers can naturally be understood as pole-placement algorithms, and
differences in the closed loop behaviour can naturally be explained in this way. The poor
PIDz tuning was because the closed loop had a poorly damped pair of poles -0.04+j4.3,
-0.04-j4.3. A better tuning moved that pair to -1.1+j2.2, -1.1-j2.2. In the LQ case
the oscillatory poles were at the locations -2.8+j0.7, -2.8-j0.7 and -3.3+j1.4, -3.3-j1.4,
respectively.
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6.4 State feedback and state observer

A classical design method for systems represented by state-space representations is pole-
placement, in which the concepts of state feedback and state observer are utilized (see
any classical textbook of control, e.g. (Chen, 1999)). Consider the system representation
(6.39) with A(t) = k(t)Ā, B(t) = k(t)B̄, C(t) = C̄ and D(t) ≡ 0 (for simplicity). In
general, the state feedback is formed by

u(t) = −Lx(t) + r(t) (6.52)

in which L is the feedback coefficient matrix and r is the reference signal, which possibly
includes a pre-filter to make the static gain from the reference to the system output to
the value one. The state equation in closed loop becomes

ẋ(t) = k(t)(Ā − B̄L)x(t) + k(t)B̄r(t) (6.53)

which is z-invariant. The result can be well understood in the light of the previous
section, in which the weights in the cost function were chosen in a way that leads to a
state feedback control law with a constant coefficient matrix.

It is interesting to note that the ‘frozen’ eigenvalues of the closed loop system matrix
k(t)(Ā − B̄L) change with k(t) along straight lines. To explain, consider kt = k(t) at an
arbitrary but fixed time t. The characteristic equation at this time instant is

pt(s) = det[sI − kt(Ā − B̄L)] = det[kt(
s

kt

I − Ā + B̄L)] = det(kt)det(s̄I − Ā + B̄L) = 0

(6.54)
in which s̄ = s/kt. Because k(t) is a positive function, the ‘frozen’ poles are seen to
vary along straight lines in the complex plane. If the pole-placement design is carried
out in z-domain, the poles are placed in any chosen fixed places in the complex plane.
With respect to ordinary time domain the same controller (6.52) leads to a time-varying
closed-loop system, in which the ‘frozen’ eigenvalues change along straight lines in the
complex plane. (This characteristics was clearly visible earlier in Fig. 6.6.)

By using the analogy to time-invariant systems, it is noticed that the damping ratio
remains constant but the natural frequency changes, as kt varies. That means that the
oscillation amplitude remains the same, but the frequency of the oscillation changes. That
makes sense, because the operation in time and z-domains involve a time scaling.

In general, the transfer function at one specified time instant is

Gt(s) = C̄(sI − ktĀ)−1ktB̄

= C̄
[
kt(

s
kt

I − Ā)
]−1

ktB̄

= C̄( s
kt

I − Ā)−1B̄

= C̄(s̄I − Ā)−1B̄

(6.55)
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where s̄ = s/kt. The result shows that the poles and zeros of a system in z-domain
(Ā, B̄, C̄) correspond to those of the ‘frozen’ system at time t. In this respect, possible
pole-zero cancellations occur in both cases, too.

However, it must be kept in mind that the analysis of time-varying systems pointwise in
time by classical methods is not scientifically sound. For example, the frozen eigenvalues
of a time-varying system do not give information on system stability, see e.g. (Rugh,
1993). However, the application of the Proposition 2 shows that a z-invariant system is
stable, if the ‘frozen’ eigenvalues remain in the left half plane in spite of changes in k(t).

The state observer can be presented in the form

dˆ̄x(z)
dz

= Āˆ̄x(z) + B̄ū(z) + K
[
ȳ(z) − C̄ ˆ̄x(z)

]
ˆ̄y(z) = C̄ ˆ̄x(z)

(6.56)

where the ˆ notation is used to mean an estimate value. Using (6.44) the equation is in
time domain

˙̂x(t) = k(t)Āx̂(t) + k(t)B̄u(t) + k(t)K
[
y(t) − C̄x̂(t)

]
(6.57)

and

˙̂x(t) = k(t)
(
Ā − KC̄

)
x̂(t) + k(t)

[
B̄ K

] [
u(t)
y(t)

]
(6.58)

which is z-invariant. The dynamics of the estimation error

x̃(t) = x(t) − x̂(t) (6.59)

becomes
˙̃x(t) = k(t)

[
Ā − KC̄

]
x̃(t) (6.60)

As expected, the dynamics of the estimation error can be described by the eigenvalues
(calculated pointwise in time) of the estimator, which change as multiples of kt = k(t).
With respect to the z-scale, the eigenvalues are constant.

If the estimated state is used in feedback as

u(t) = −Lx̂(t) + r(t) (6.61)

the closed loop equation can be written as

ẋ(t) = k(t)(Ā − B̄L)x(t) + k(t)B̄Lx̃(t) + k(t)B̄r(t) (6.62)

The dynamic equations for the state and state error can be combined leading to the
representation[

ẋ(t)
˙̃x(t)

]
= k(t)

[
(Ā − B̄L) B̄L

0 (Ā − KC̄)

] [
x(t)
x̃(t)

]
+ k(t)

[
B̄
0

]
r(t)

y(t) =
[

C̄ 0
] [

x(t)
x̃(t)

] (6.63)
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which shows that the classical results on the separation of state feedback design and
observer design are analogously valid for z-invariant representations.



Chapter 7

Z-invariant Systems

The concept of z-invariant state-space representation was introduced in Chapter 3. The
conditions obtained for a representation to be z-invariant are generally restrictive, al-
though they are satisfied for representations of certain system classes like simple flow
process models with varying flow rate. The purpose of the current chapter is to consider
the concept of a z-invariant system a little more deeply than in the earlier practically ori-
ented chapters. Also, it is then natural to consider alternative approaches for the analysis
and controller design of such time-varying processes, which are not z-invariant.

7.1 Preliminary definitions and concepts

The concept of a z-invariant system is a natural extension to that of a time-invariant
system. Some basic definitions are now given, so that the presentation and analysis of
z-invariant systems becomes possible. The following definitions and results are based on
the material given in (Zadeh and Desoer, 1963) and (Padulo and Arbib, 1974).

Let a system Σ be defined as an input-output mapping, S(t, τ, x, u), which has the prop-
erty that the state x of the system at a certain time instant τ and the input u from that
time on uniquely determine the output of the system for all times t > τ . The input,
output and state spaces as well as the structure of the mapping have been chosen prop-
erly to meet some basic consistency conditions (Zadeh and Desoer, 1963). Moreover, a
unique zero state 0 is known to exist, which produces zero output, when zero input is
applied. Using an arbitrary input acting on a system originally at zero state, the zero
state response S(t, τ, 0, u) is obtained. When zero input is applied to the system being in
an arbitrary state, the zero input response S(t, τ, x, 0) of the system is produced.

87
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The system is zero state time-invariant , if for all inputs and all time shifts, the zero state
response of the system shifted in time is identical to the zero state response of the system,
when the input has been shifted correspondingly. The weighting function can only assure
that the system in question is zero state time-invariant, but it is impossible to deduce
whether the system is generally time-invariant.

The system is called zero input time-invariant , if for all initial states α, all initial times
t0, and all time shifts δ the zero input response of the system starting in state α at time
t0 − δ is identical (to within a translation by amount δ along the time axis) with the zero
input response of the system starting in state α at time t0.

Finally, the system is (generally) time-invariant, if for all initial times t0 and starting
states α, all inputs u, and all shifts δ the output, when translated δ units in time, is equal
to the output produced by using the translated input to the system being in state α. If
the condition given holds for certain initial states only, the system is called time-invariant
with respect to these states.

In addition to the above definitions it is possible to use the concept of a weakly time-
invariant system. This property means that if (u, y) is the input-output pair of the
system, so is the pair, in which both u and y are shifted in time by an arbitrary amount.

If a system is weakly time-invariant, it is not necessarily time-invariant generally, but for
a linear differential system the implication holds. More important to the current text is
the result that if a linear system is both zero state and zero input time-invariant, it is
time-invariant. The above result can then be stated mathematically as follows: A linear
system is time-invariant, if and only if its input-output relation admits the representation

y(t) = F (t − t0)x(t0) +
∫ t

t0
p′(t − τ, 0)u(τ)dτ (7.1)

for all t0, x(t0) and u. If the system representation can be written as above for certain
initial states x(t0) only, the system is time-invariant with respect to these states.

Next, consider two systems Σ and Σ1, which have the same set of admissible input func-
tions Ω. The state x of Σ is defined to be equivalent to the state x1 of Σ1 at time τ , if
for any admissible input the following holds as t > τ :

SΣ(t, τ, x, u) = SΣ1(t, τ, x1, u)

The condition simply means that the states are equivalent if, when using the same input,
the same output results for both systems (the number of inputs as well as the number of
outputs of the systems are assumed to be the same).

Two systems Σ and Σ1 are equivalent if, for any time t0 and for every state x of Σ there
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is a state x1 of Σ1, which is equivalent to x at t0, and vice versa (for any state of Σ1 there
is an equivalent state in Σ).

Two systems Σ and Σ1 are zero state equivalent , if for every zero state 0 of Σ there is a
zero state 01 of Σ1 such that

SΣ(t, t0, 0, u) = SΣ1(t, t0, 01, u)

for every input function u.

Note that in the current text it is always assumed that the zero state of the system is the
origin of the state space. Assuming that the two systems have equal dimensions it would
be possible to write 0 instead of 01 in the definition above. The zero state is defined in
the same way as before; it is a state of the system, which produces zero output for all
t > t0, when the system is in that state at time t0 and zero input is used from there on.

Two systems that have identical zero state responses are zero state equivalent, and in linear
case zero state equivalent systems have identical impulse responses. If two linear systems
are equivalent, they are also zero state equivalent, but the converse is not necessarily true.

To put these ideas into a more practical setting, a more concrete model class must be
considered. As discussed earlier, the weighting function provides a convenient input-
output model for linear systems, which are relaxed initially. If a state-space realization is
available, a rich spectrum of analysis and synthesis methods are available.

For future use consider the following well-known result (Padulo and Arbib, 1974), (Rugh,
1993): If the system is described by its weighting function p′(t, τ), the system has a
state-space realization, if and only if there exist functions K(·) and L(·) such that for all
t ≥ τ :

p′(t, τ) = K(t)L(τ)

7.2 Linear differential systems

The concept of equivalent systems is a rather general one, because no assumptions about
linearity or the dimensions of the state spaces of the systems have been made. Even for
linear cases, equivalent systems do not necessarily have the same amount of state variables,
which usually makes it difficult to find representations, from which the equivalence can
be deduced. There is however one concept, called algebraic equivalence, which presumes
state representations of the same dimensions (Padulo and Arbib, 1974). The concept can
be motivated as follows. Consider the original system

ẋ(t) = A(t)x(t) + B(t)u(t) x(t0) = x0 (7.2)
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y(t) = C(t)x(t) + D(t)u(t)

and a state transformation
x(t) = P (t)s(t) (7.3)

where x(t) and s(t) are n-dimensional vectors and P (t) is a non-singular n×n dimensional
matrix. Regarding s a new state variable the realization of the target system becomes

ṡ(t) = E(t)s(t) + F (t)u(t) s(t0) = s0 (7.4)

y(t) = G(t)s(t) + H(t)u(t)

where s0 = P (t0)
−1x(t0) = P−1

0 x0 and

E(t) = P−1(t)[A(t)P (t) − Ṗ (t)]

F (t) = P−1(t)B(t)

G(t) = C(t)P (t) (7.5)

H(t) = D(t)

Two systems represented by (7.2) and (7.4) are called algebraically equivalent, which
actually means that a non-singular square matrix P (t) can be found such that two system
realizations can be obtained from each other by using the given linear state transformation.
If a constant matrix P is used, it is called the similarity transformation in classical control
literature.

Let us look at algebraically equivalent systems a little closer for the purpose of future use.
Considering the autonomous part of the state equations in (7.2) and (7.4), the solutions
become x(t) = ΦA(t, t0)x0 and s(t) = ΦE(t, t0)s0, where ΦA(·, ·) and ΦE(·, ·) are the state
transition matrices of the system matrices A(·) and E(·), respectively. By combining
these solutions with the fact that x(t) = P (t)s(t) it follows

P (t) = ΦA(t, t0)P0Φ
−1
E (t, t0) (7.6)

Also, the transformation matrix P (·) can be obtained as a solution to the initial value
problem

Ṗ (t) = A(t)P (t) − P (t)E(t), P (t0) = P0 (7.7)

The relationship of the two state-transition matrices becomes accordingly

ΦA(t, τ) = P (t)ΦE(t, τ)P−1(τ) (7.8)

or
ΦE(t, τ) = P−1(t)ΦA(t, τ)P (τ) (7.9)

By using these relationships it follows that the weighting functions of the input-output
systems become

p′A(t, τ) = C(t)ΦA(t, τ)B(τ) (7.10)
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p′E(t, τ) = G(t)ΦE(t, τ)F (τ)

= C(t)P (t)ΦE(t, τ)P−1(τ)B(τ) (7.11)

= C(t)ΦA(t, τ)B(τ)

(for simplicity, it has been assumed that the systems are strictly proper so that D(t) ≡ 0
and H(t) ≡ 0; for a short discussion, see Section 7.3). The result shows that the weighting
functions and impulse responses of algebraically equivalent systems are the same, which
is a well-known fact, see e.g. (Tsakalis and Ioannou, 1993).

As for controllability and observability, consider the controllability gramian

WA(t0, t1) =

t1∫
t0

ΦA(t0, t)B(t)BT (t)ΦT
A(t0, t) dt (7.12)

which for the target system becomes

WE(t0, t1) =
t1∫
t0

ΦE(t0, t)F (t)F T (t)ΦT
E(t0, t) dt

=
t1∫
t0

{
P−1(t0)ΦA(t0, t)P (t)P−1(t)B(t)BT (t)(P T (t))−1P T (t)·

ΦT
A(t0, t)(P

T (t0))
−1

}
dt

= P−1(t0)WA(t0, t1)(P
T (t0))

−1

(7.13)

Because the matrix P (t0) has full rank, the definiteness of the gramians WA and WE is the
same. Controllability remains thus invariant in the transformation. A similar calculation
shows that the observability gramian

MA(t0, t1) =

t1∫
t0

ΦT
A(t, t0)C

T (t)C(t)ΦA(t, t0) dt (7.14)

changes into the form
ME(t0, t1) = P T (t0)MA(t0, t1)P (t0) (7.15)

Observability is invariant with respect to the transformation.

To investigate the preservation of stability, the important concept of a Lyapunov trans-
formation is introduced. Results related to this theory can be seen here and there in the
literature, see e.g. (Lyapunov, 1966), (Rugh, 1993), (Harris and Miles, 1980), (Markus,
1955), (Nemytskii and Stepanov, 1960). Consider an autonomous system (7.2), where
B(t) ≡ 0, C(t) ≡ 0, D(t) ≡ 0. Define the class Mn of n×n matrix-valued functions X(·),
which satisfies the conditions

• the elements of X(·) are bounded and continuous for every t in �,
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• Ẋ(·) exists, and its entries are bounded and continuous for every t in �,

• there exists a constant M > 0 such that | det X(t) |> M for every t in �.

In the case that the transformation P (·) satisfies the above three conditions, i.e. P (·) ∈
Mn, it is called a Lyapunov transformation. The stability properties are then known to
be the same in the (autonomous) original and in the (autonomous) target system (7.4),
F (t) ≡ 0, G(t) ≡ 0, H(t) ≡ 0. There are alternative formulations on the stability
conditions in literature, but the key issue is to determine, whether the matrix

P (t) = ΦA(t, t0)P0Φ
−1
E (t, t0) (7.16)

is a Lyapunov-transformation matrix or not. As long as the transition matrices ΦA(·, ·)
and ΦE(·, ·) are not known, there seems to be no general procedure to determine this.

In the above definition of Lyapunov transformation it has been assumed that the norm
of the derivative of the matrix is bounded. This is actually not needed for preserving
stability; it only guarantees that bounded matrices are mapped to bounded matrices in
the transformation. Another definition used by Rugh, (1993) is: An n×n matrix P (t) that
is continuously differentiable and invertible at each t is called a Lyapunov transformation
if there exist finite positive constants ρ and η such that for all t

‖P (t)‖ ≤ ρ, |detP (t)| ≥ η (7.17)

which is equivalent to finding a finite positive constant ρ such that

‖P (t)‖ ≤ ρ,
∥∥∥P−1(t)

∥∥∥ ≤ ρ (7.18)

The fact that a Lyapunov transformation preserves the stability can easily be proved by
noticing that for any non-singular n × n matrix A it holds

∥∥∥A−1
∥∥∥ ≤ ‖A‖n−1

|detA| (7.19)

where ‖ · ‖ denotes the spectral norm of a matrix, (Rugh, 1993)1. By using the stability
results given in Section 3.2 in terms of the state-transition matrix, and approximating the
norms of equations (7.8) and (7.9) by using the inequality gives the proof immediately.

The concept reducibility is defined to imply that a system matrix can be changed into a
constant form by using a Lyapunov-transformation. More generally, two representations
which are equivalent through a Lyapunov transformation are called kinematically simi-
lar by Harris and Miles (1980); the term topologically equivalent realizations is used by
Tsakalis and Ioannou (1993). A well-known result in classical literature is that periodic
systems are always reducible; see e.g. (Brockett, 1970), (Rugh, 1993).

1Actually, proving the inequality (7.19) has turned out to be a nice mathematical exercise to the
enthusiasts!
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7.3 z-invariant systems

To define a z-invariant system, one step further has to be taken: a system is z-invariant,
if it has a representation, which, when represented as a function of some scale z = f(t),
is invariant with respect to the variable z.

It would be possible to modify all different definitions of ‘time- invariant’ systems such
that ‘z-invariant’ systems would be defined analogously. However, for the current purposes
it is enough to use two concepts viz. zero state z-invariant and (generally) z-invariant
systems. Both of them are discussed in what follows.

A linear system is z-invariant (with respect to some fixed z), if its input-output behaviour
can in z-domain be written as

ȳ(z) = F (z − z0, 0)x̄(z0) +
∫ z

z0

p̄′(z − ξ, 0)ū(ξ)dξ (7.20)

for all initial times z0, initial states x̄(z0) and inputs ū. If the above representation is
valid for certain initial states x̄(z0) only, the system is z-invariant with respect to these
states.

The equation simply states that a system is z-invariant, if it is zero state z-invariant and
also ‘invariant’ with respect to the initial conditions. A z-invariant system is trivially zero
state z-invariant.

The following results are easy to prove.

• If the system can be described by a z-invariant state-space realization, it is z-
invariant.

• If the system is time-invariant, it is z-invariant also.

• If a z-invariant system has a state-space realization, this is not necessarily z-invariant.

To prove the first item note that a z-invariant state-space realization can be written as

ẋ(t) = k(t)Āx(t) + k(t)B̄u(t)

y(t) = C̄x(t) + D̄u(t) (7.21)

with x(t0) = x0. Consider first the case D̄ = 0 meaning that the system is strictly proper.
It follows that

p′(t, τ) = C̄Φ(t, τ)k(τ)B̄ = k(τ)C̄eĀ
∫ t

τ
k(ν)dνB̄ (7.22)
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Using the transformation

z = f(t) = d1

∫ t

t0
k(ν)dν (7.23)

gives

p′(t, τ)

ḟ(τ)
= (1/d1)C̄e

(1/d1)Ād1(
∫ t

t0
k(ν)dν−

∫ τ

t0
k(ν)dν)

B̄ = (1/d1)C̄e(1/d1)Ā(z−ξ)B̄ (7.24)

which is a function of z − ξ only so that the system is zero state z-invariant. Now, the
zero input response of the system is

yzs(t) = C̄Φ(t, t0)x0 = C̄e
Ā

∫ t

t0
k(ν)dν

x0 (7.25)

In z-domain the result is
ȳzs(z) = C̄e(1/d1)Āzx0 (7.26)

which is a function of z − z0 = z only. The system is z-invariant.

In the case that the matrix D̄ 
= 0 above, generalized functions have to be used in (7.22).
Loosely speaking it means that the weighting function becomes

p′(t, τ) = C̄Φ(t, τ)k(τ)B̄ + D̄δτ (t) = k(τ)C̄eĀ
∫ t

τ
k(ν)dνB̄ + D̄δτ (t) (7.27)

where δτ (t) is a unit impulse (Dirac delta function) entering at time τ . However, this kind
of a representation is only formal, because the impulse is not a function in the sense of the
classical function theory, and it is actually incorrect to speak about impulse functions at
some particular time instant. The concept of generalized functions covered in distribution
theory has to be used instead, see e.g. (Zadeh and Desoer, 1963), (Schwartz, 1951, 1957),
(Beckenbach, 1961).

Let the transformation of the unit impulse δτ (t) be δ̄ξ(z) in z-domain. Let ϕ(t) be a test
function, which can be differentiated an arbitrary number of times and which is identical
to zero outside a finite interval (Zadeh and Desoer, 1963). In z-domain this test function
is ϕ̄(z) = ϕ̄(f(t)) = ϕ(t). In the following equation the transformation z = f(t), t = h(z)
has been used, after which the selecting property of the impulse function is applied:∫ ∞

−∞
ϕ̄(z)δ̄ξ(z)dz =

∫ ∞

−∞
ϕ(t)δτ (t)ḟ(t)dt = ϕ(τ)ḟ(τ) (7.28)

The result implies that δ̄ξ(z) is an impulse also (it has the selecting property), but it is
not a unit impulse. The expression for it is

δ̄ξ(z) = ḟ(τ)δξ(z) = (dh(ξ)/dξ)−1δξ(z) (7.29)

where δξ(z) is the unit impulse in z-domain, which is assumed to enter at time ξ = f(τ).
Now, if δ̄τ (t) is the distribution in time-domain, which corresponds to δξ(z), it follows:∫ ∞

−∞
ϕ(t)δ̄τ (t)dt =

∫ ∞

−∞
ϕ̄(z)δξ(z)(dh(z)/dz)dz = ϕ̄(ξ)(dh(ξ)/dξ) (7.30)
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Again, δ̄τ (t) is seen to be an impulse

δ̄τ (t) = (dh(ξ)/dξ)δτ (t) = (ḟ(τ))−1δτ (t) (7.31)

It is seen that the transformation of a unit impulse is an impulse with a different strength.

Solving for δτ (t) from (7.31) and substituting into (7.27) gives

p′(t, τ) = C̄Φ(t, τ)k(τ)B̄ + D̄δτ (t) = k(τ)C̄eĀ
∫ t

τ
k(ν)dνB̄ + D̄f ′(τ)δ̄τ (t) (7.32)

But δ̄τ (t) = δξ(z) for all τ , t, and the corresponding ξ, z so that

p′(t, τ)

ḟ(τ)
= (1/d1)C̄e(1/d1)Ā(z−ξ)B̄ + D̄δξ(z) (7.33)

and the system is zero-state z-invariant. (Note that δξ(z), which is often written as δ(z−ξ)
is a function of the difference z − ξ only.)

For the proof of the second item, take z = f(t) = at + b, where the constants have been
chosen such that z > 0 as t ≥ t0. Because the system is time-invariant, the weighting
function can be represented as p′(t, τ) = p′(t − τ, 0). It follows that

p′(t − τ, 0)

ḟ(τ)
= (1/a)p′(

1

a
(z − ξ))

where ξ = f(τ). For a time-invariant system the zero input response is a function of t− t0
only. Because

t − t0 = (1/a)(z − z0)

the zero input response is also invariant with respect to z.

To show the validity of the last item an example can be used. Let a system with zero
initial conditions be given by the weighting function

p′(t, τ) = τ 2et3−τ3

which cannot be written as a function of t − τ so that the system is time-varying. By
using

z = f(t) =
∫ t

t0
ν2dν = (1/3)(t3 − t30)

it follows
p′(t, τ)

ḟ(τ)
= et3−τ3

= e3(z−ξ)

and the system is zero state z-invariant.
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The weighting function can be written

p′(t, τ) = τ 2e−τ3

et3

so that a state-space representation for the system in question exists. Simple calculations
show that the following two representations both describe the system

ẋ(t) = t2e−t3u(t)

y(t) = et3x(t)

and
ẋ(t) = 3t2x(t) + t2u(t)

y(t) = x(t)

(x(t0) = 0 in both cases). The former representation is not z-invariant, while the latter
one is.

A more practical example of a system having a z-invariant and a non-z-invariant rep-
resentation is given next. Consider the process of two perfect mixers in series with
varying flow rate Q(t) but constant liquid volumes V1 and V2. As discussed in Chap-
ter 3 the model of the system is given by equations (3.39) and (3.40) with k=0,1,
Q0(t) = Q1(t) = Q2(t) = Q(t). The state representation is clearly z-invariant. However,
by defining the state variables as x1(t) = c2(t), x2(t) = ċ2(t), the state representation of
the system becomes

[
ẋ1(t)
ẋ2(t)

]
=


 0 1

−Q2(t)
V2V1

Q̇(t)
Q(t)

− Q(t)
V1

− Q(t)
V2




[
x1(t)
x2(t)

]
+

[
0

Q2(t)
V2V1

]
u(t)

y(t) =
[

1 0
] [

x1(t)
x2(t)

]

where u(t) = c0(t), y(t) = c2(t). In order for the realization to be valid for the system,
the differentiability of the flow rate function has to be assumed. The realization is not
z-invariant, although it represents the same process.

The usefulness of the equivalence concepts presented becomes obvious with the following
two propositions. Both of them assume linear systems that can be described by state-space
equations. The first theorem is an extension to an assertion concerning time-invariant
systems presented by Zadeh and Desoer (1963).

In the propositions and results it is assumed that a transformation function f(·) is fixed.

Proposition 6 If a system is zero state z-invariant and zero state equivalent to a z-
invariant system, it is then z-invariant with respect to all states that can be reached from
the zero state.
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Proof: Let the weighting functions of the two systems be p̄′A(z, ξ) = p̄′A(z − ξ, 0),
p̄′B(z, ξ) = p̄′B(z − ξ, 0), respectively. Because the systems are zero-state equivalent it
holds ∫ z

z0

p̄′A(z − ξ, 0)ū(ξ)dξ =
∫ z

z0

p̄′B(z − ξ, 0)ū(ξ)dξ (7.34)

so that ∫ z

z0

(p̄′A(z − ξ, 0) − p̄′B(z − ξ, 0))ū(ξ)dξ = 0 (7.35)

Because this is valid for all ū it follows

p̄′A(z − ξ, 0) = p̄′B(z − ξ, 0) (7.36)

Consider the responses of the systems

ȳA(z) = F̄A(z, z0)x̄(z0) +
∫ z

z0

p̄′A(z − ξ, 0)ū(ξ)dξ (7.37)

ȳB(z) = F̄B(z, z0)x̄(z0) +
∫ z

z0

p̄′B(z − ξ, 0)ū(ξ)dξ (7.38)

where x̄(z0) is reachable from the zero state. It is known that F̄B(z, z0) = F̄B(z − z0, 0).
But it must also hold that F̄A(z, z0) = F̄A(z − z0, 0) = F̄B(z − z0, 0), because otherwise a
control signal ū could be chosen, which first drives the systems from zero state to x̄(z0) and
from there to some other states different for the systems A and B. But this is impossible,
because the two systems were known to be zero-state equivalent by assumption. �

Proposition 7 If a system is algebraically equivalent to a z-invariant system, it is z-
invariant also.

Proof: Consider two algebraically equivalent systems (7.2) and (7.4) so that (7.5) is valid.
The weighting functions are identical so that the two systems are zero-state z-invariant.
But the zero input responses

yA(t) = C(t)ΦA(t, t0)x0 (7.39)

yE(t) = G(t)ΦE(t, t0)s0 = C(t)P (t)P−1(t)ΦA(t, t0)P (0)P−1(0)x0

= C(t)ΦA(t, t0)x0 (7.40)

are also equivalent. If follows that if one of the systems is z-invariant, the other one is
too. �

Two corollaries follow easily from the presented theorem.
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Corollary 1 If a system is algebraically equivalent to another system, which has a re-
alization with constant coefficient matrices, the two systems are time-invariant and thus
z-invariant also.

Proof: The proof is an immediate consequence of the equivalence of the solutions of
algebraically equivalent system realizations. �

Corollary 2 If a system is algebraically equivalent to a system, which has a z-invariant
realization, the system is z-invariant.

Proof: A system with a z-invariant state-space representation is always z-invariant. The
proof follows immediately by applying the Proposition 7. �

Example: Consider a system A, which has a state-space realization

ẋ(t) = t2e−t3u(t)

y(t) = et3x(t) (7.41)

The weighting function of the system is p′(t, τ) = τ 2et3−τ3
, and it was earlier shown that

the system is zero-state z-invariant.

Representation

ẋ(t) = 3t2x(t) + t2u(t)

y(t) = x(t) (7.42)

can be considered to represent another system B, which has the same weighting function,
and is therefore zero-state equivalent to system A. Now, the realization of B is z-invariant,
so that the system is z-invariant. The system A is controllable, and so according to
Proposition 6 it is then z-invariant with respect to all initial states. Hence, the system A
is z-invariant irrespective of the initial state.

The same result follows also from Proposition 7 by noticing that the systems A and B
are algebraically equivalent; the state transformation matrix is P (t) = e−t3 .

Example: Consider a system with the representation

ẋ(t) = −2tx(t) + et−t2u(t)

y(t) = 3et2−tx(t) (7.43)

(x(t0) = x0). The representation is not z-invariant. The weighting function of the system
can easily be calculated to be p′(t, τ) = 3e−(t−τ), which shows that the system is zero state



7.4. STATE TRANSFORMATIONS AND LQ OPTIMAL CONTROL 99

time-invariant. The use of a state transformation P (t) = et−t2 gives

ẋ1(t) = −x1(t) + u(t)

y(t) = 3x1(t) (7.44)

(x1(t0) = P−1(t0)x0). The new representation has constant coefficients so that it repre-
sents a time-invariant system. The system is time-invariant and z-invariant also.

The result may be difficult to believe by the form of the state equation. Indeed, the defi-
nitions of a time-invariant system vary in literature, and according to some definitions the
above system would be called time-varying. Specifically, the behaviour of the state is de-
pendent on that particular time instant, when the input is considered to enter. This alone
would cause the system to be time-varying according to the other definitions mentioned.
However, in the current text the definition previously given is used, which emphasizes
the input-output behaviour of the system; this mapping behaves in an invariant manner
irrespective of time.

7.4 State transformations and LQ optimal control

For comparison to the use of the modified time scale in analysis and synthesis, it is
interesting to consider another approach, which is based on a direct state transformation
in time domain. However, the idea is somehow analogous to the preceding discussion: how
to change a linear but time-varying process model into a form more suitable for controller
design by classical techniques. To this end, consider equations (7.2)-(7.5) in Section 7.1
again.

The idea is to use a state transformation with an invertible time varying matrix P (·).
Through the transformation x(t) = P (t)s(t) realizations (7.2) and (7.4) are equivalent.
The weighting functions and input-output responses are equal. It is further known that
if P (·) is a Lyapunov transformation, stability, controllability and observability remain
invariant in the transformation. It follows that if realization (7.4) would be more suitable
for controller design than (7.2), it would then be a good idea to use the changed realization.

An ideal situation would occur, if realization (7.4) would have constant coefficient ma-
trices, such that control design could be carried out by using well-established methods
of time-invariant systems. Unfortunately, this is not possible in general, because equa-
tions (7.5) cannot be solved for arbitrary desired matrices E(·), F (·), G(·) and H(·). But
consider the following approach.
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Consider the ‘original’ and ‘target’ systems

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0

y(t) = C(t)x(t)
(7.45)

ṡ(t) = E(t)s(t) + F (t)v(t), s(t0) = s0

y(t) = G(t)s(t)
(7.46)

The real-valued time-varying coefficient matrices A(·), E(·) are n × n dimensional, B(·),
F (·) are n×m dimensional and C(·), G(·) r×n dimensional. By applying singular value
decomposition (SVD) to the functions B(·) and F (·)

B(t) = UB(t)ΞB(t)V T
B (t)

F (t) = UF (t)ΞF (t)V T
F (t)

(7.47)

it follows that
ẋ(t) = A(t)x(t) + UB(t)ū(t)
y(t) = C(t)x(t)

(7.48)

ṡ(t) = E(t)s(t) + UF (t)v̄(t)
y(t) = G(t)s(t)

(7.49)

where
ū(t) = ΞB(t)V T

B (t)u(t)
v̄(t) = ΞF (t)V T

F (t)v(t)
(7.50)

In (7.47) the unitary (or even orthogonal, because they are real-valued) matrices UB(·),
UF (·) and VB(·), VF (·) have the dimensions n × n and m × m, respectively. The n ×
m dimensional matrices ΞB(·), ΞF (·) contain the singular values of B(·) and F (·) in
descending order in their main diagonal; other elements are zero.

From equations (7.48) and (7.49) it is seen that the input variables u(·) and v(·) have
been augmented to n-dimensional vectors, such that the coefficient matrices UB(·) and
UF (·) are n×n-dimensional and invertible. As mentioned, they are even orthogonal such
that UB(t)−1 = UB(t)T , UF (t)−1 = UF (t)T . The idea in the augmentation of variables
in the described way is in the fact that now the relationship between the original and
target systems can be used in a mathematically useful way. To this end, consider the
transformations

x(t) = P (t)s(t)
ū(t) = U(t)v̄(t)

(7.51)

where P (·) and U(·) are n × n-dimensional matrices, which are invertible at each time
instant. It then holds that

E(t) = P−1(t)
[
A(t)P (t) − Ṗ (t)

]
UF (t) = P−1(t)UB(t)U(t)

(7.52)
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If the coefficient matrices E(·) and UF (·) in the target system are chosen and thus fixed,
the transformation matrices are

P (t) = ΦA(t, t0)P (t0)Φ
−1
E (t, t0)

U(t) = U−1
B (t)P (t)UF (t) = UT

B (t)P (t)UF (t)
(7.53)

which are invertible. The relationship between the augmented input and state variables
of the original and target systems are then one-to-one through equation (7.51). Note that
if the matrices P (·), UB(·) and UF (·) are Lyapunov transformations for each t, then U(·)
is also a Lyapunov transformation. That implies that the state vector pairs x(·), s(·) and
ū(·), v̄(·) are compatible in the sense that there exist positive constants ρ1, ρ2, µ1, and
µ2 such that ‖x(t)‖ ≤ ρ1 ‖s(t)‖ , ‖s(t)‖ ≤ ρ2 ‖x(t)‖ and ‖ū(t)‖ ≤ µ1 ‖v̄(t)‖ , ‖v̄(t)‖ ≤
µ2 ‖ū(t)‖.

For a control application, consider target system (7.49) and use the criterion

Js(t0) =
1

2
sT (tf )S(tf )s(tf ) +

1

2

tf∫
t0

[
sT (τ)X(τ)s(τ) + v̄T (τ)R(τ)v̄(τ)

]
dτ (7.54)

to be minimized. The optimal control is then

v̄(t) = −L(t)s(t) (7.55)

where
L(t) = R−1(t)UT

F (t)S(t) (7.56)

and S(·) is obtained as a solution to the Riccati equation

−Ṡ(t) = ET (t)S(t) + S(t)E(t) − S(t)UF (t)R−1(t)UT
F (t)S(t) + X(t) (7.57)

with the boundary condition S(tf ). In terms of the original system (7.48) the control
signal is

ū(t) = U(t)v̄(t) = −U(t)L(t)s(t)
= −U(t)L(t)P−1(t)x(t) = −U−1

B (t)P (t)UF (t)L(t)P−1(t)x(t)
= −UT

B (t)P (t)UF (t)L(t)P−1(t)x(t)
= −UT

B (t)P (t)UF (t)R−1(t)UT
F (t)S(t)P−1(t)x(t)

(7.58)

and the closed loop state equation is given by

ẋ(t) =
[
A(t) − UB(t)UT

B (t)P (t)UF (t)R−1(t)UT
F (t)S(t)P−1(t)

]
x(t)

=
[
A(t) − P (t)UF (t)R−1(t)UT

F (t)S(t)P−1(t)
]
x(t)

(7.59)

Criterion (7.54), which is minimized by using the optimal control, can be written in the
form

Jx(t0) = 1
2
xT (tf )P

−1(tf )
T S(tf )P

−1(tf )x(tf )

+1
2

tf∫
t0

[
xT (τ)P−1(τ)T X(τ)P−1(τ)x(τ) + ūT (τ)U−1(τ)T R(τ)U−1(τ)ū(τ)

]
dτ

(7.60)
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The optimal cost becomes

J∗
s (t0) =

1

2
sT (t0)S(t0)s(t0) (7.61)

which is the same as

J∗
x(t0) = 1

2
(P−1(t0)x(t0))

T
S(t0) (P−1(t0)x(t0))

= 1
2
xT (t0)

(
P T (t0)

)−1
S(t0)P

−1(t0)x(t0)
(7.62)

It is interesting to note that by choosing

X(t) = P T (t)X2(t)P (t)
R(t) = UT (t)R2(t)U(t) = UT

F (t)P T (t)UB(t)R2(t)U
T
B (t)P (t)UF (t)

S(tf ) = P T (tf )S2(tf )P (tf )
(7.63)

where X2(·), R2(·) and S2(tf ) are n × n dimensional weight matrices, criterion (7.60)
changes into the familiar form

Jx(t0) =
1

2
xT (tf )S2(tf )x(tf ) +

1

2

tf∫
t0

[
xT (τ)X2(τ)x(τ) + ūT (τ)R2(τ)ū(τ)

]
dτ (7.64)

The question whether the resulting control law is asymptotically stable, is somewhat
sophisticated. If the optimization horizon is finite, the value of the criterion is also finite,
and the question of stability is actually not relevant. However, if the optimization horizon
is infinite, the results on stability are usually restricted to the case of time-invariant
systems in the literature (state-space representation with constant coefficient matrices,
criterion with constant weight matrices). If the system and the criterion are time-varying,
a reference is usually made to Kalman’s work in early 60’s, and even then the question
of stability does not seem to be very clear. For references, see e.g. (Anderson and Moore,
1989), (Lewis and Syrmos, 1995).

If the system matrices A and B are constant, and the state and input weights in the
criterion, X and R, are also constant, the question of stability is well-known. If the pair
(A, B) is stabilizable and (A, C) detectable, where C = XT X, the solution of the Riccati
equation is unique and positive definite, and the resulting closed-loop system is asymptot-
ically stable. (Stronger conditions than stabilizability and detectability are controllability
and observability, which can also be used for sufficient conditions of asymptotic stability.)

Suppose that the ‘original’ time-varying state representation has been changed into a time-
invariant ‘target’ representation with linear time-varying state and input variable changes,
which are both Lyapunov transformations. If the criterion is set for the target system with
constant weight matrices, the theory on stability can now be used. If the stabilizability
and detectability conditions hold, the closed-loop target system is asymptotically stable.
Therefore the original system is asymptotically stable also, because the variables are
connected through Lyapunov transformations.
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A drawback in the previous reasoning is that it is not at all certain that suitable Lyapunov
transformations exist, that change a given system into a time-invariant form. Still, the
strong connection between the two systems guarantees that if the other is stable, the
other is too.

The above theories of optimal control seem nice, but a fundamental problem remains. The
one-to-one relationship between an arbitrary target system and the given original system
was obtained only by using augmented control variables. Control law (7.58) must be
realized by a control signal of the original (real) system, i.e. considering equation (7.50).
It must hold

ū(t) = ΞB(t)V T
B (t)u(t) (7.65)

But that equation does not generally have a solution for u(·) except in the rare case that
n = m. Of course, an approximative solution could be tried

u(t) =
(
ΞB(t)V T

B (t)
)†

ū(t) (7.66)

where the notation (·)† means the pseudoinverse of a matrix. However, it has been
shown by Montagnier et al. (2001) that this kind of an approximative solution does not
necessarily give a good control response. In fact, the closed-loop system might even run
unstable. Although the study of Montagnier et al. (2001) concerned linear time-periodic
systems the difficulty might be fundamental for all time-varying systems as well.

Consider first the case n = m, so that B(·) is a square matrix, which is further assumed
to be invertible at each time instant. Now the control signal can be realized exactly

u(t) =
[
ΣB(t)V T

B (t)
]−1

ū(t) = VB(t)Σ−1
B (t)ū(t) (7.67)

giving
u(t) = −VB(t)Σ−1

B (t)UT
B (t)P (t)UF (t)R−1(t)UT

F (t)S(t)P−1(t)x(t)
= −B−1(t)P (t)UF (t)R−1(t)UT

F (t)S(t)P−1(t)x(t)
(7.68)

Note that in the criterion (7.60) it is now possible to choose R(·) as

R(t) = U−1
F (t)P T (t)B−1(t)T R2(t)B

−1(t)P (t)UF (t) (7.69)

so that the criterion, which is minimized by the control law, becomes

Jx(t0) =
1

2
xT (tf )S2(tf )x(tf ) +

1

2

tf∫
t0

[
xT (τ)X2(τ)x(τ) + uT (τ)R2(τ)u(τ)

]
dτ (7.70)

The control law then obtains the final form

u(t) = −B−1(t)P (t)UF (t)U−1
F (t)P−1(t)B(t)R−1

2 (t)BT (t)P−1(t)T UF (t)UT
F (t)

·S(t)P−1(t)x(t) = −R−1
2 (t)BT (t)P−1(t)T S(t)P−1(t)x(t)

(7.71)
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Note that in this particular case, where n = m, the above control law could have been
calculated directly without any augmentations of the input variables. The starting point
would be the system representations and transformations (7.2)-(7.5), and a LQ criterion
in transformed variables, with the weight matrices chosen such that it becomes (7.70).
The calculation is omitted here, because the case n = m represents a rare and therefore
relatively unimportant exception. However, note that the idea behind the use of the
transformation of variables is to obtain a target system, in which the Riccati equation is
easy to solve. For example, the target representation may be time-invariant.

Next, let n > m and assume that in each time instant rank(B(t)) = m. Equation (7.65)
does not generally have a solution, but an approximative solution that minimizes the
Euclidean norm of the equation error is available. Because matrix B(·) was assumed to
have ”full” rank, the pseudoinverse has a simple matrix representation, see e.g. (Skogestad
and Postlethwaite, 1996), and the approximative solution is

u(t) =
[(

ΣB(t)V T
B (t)

)T (
ΣB(t)V T

B (t)
)]−1 (

ΣB(t)V T
B (t)

)T
ū(t)

=
[
VB(t)(ΣT

B(t)ΣB(t))V T
B (t)

]−1 (
VB(t)ΣT

B(t)
)
ū(t)

= V −1
B (t)T

(
ΣT

B(t)ΣB(t)
)−1

ΣT
B(t)ū(t)

= VB(t)
(
ΣT

B(t)ΣB(t)
)−1

ΣT
B(t)ū(t)

(7.72)

But for the singular value decomposition it holds

ΣB(t) =

[
Σ1B(t)

0

]
; Σ1B(t) = diag (σ1B(t) · · ·σmB(t)) (7.73)

where
diag (σ1B(t) · · ·σmB(t))

denotes the diagonal matrix with the singular values of B(t) in the main diagonal. (Note
that the singular values are positive, because B(t) was assumed to have full rank.) Now
it follows that

ΣT
B(t)ΣB(t) =

[
ΣT

1B(t) 0
] [

Σ1B(t)
0

]
= Σ2

1B(t)

= diag (σ2
1B(t) · · ·σ2

mB(t))
(7.74)

and the controller law obtains the form

u(t) = VB(t)
(
Σ2

1B(t)
)−1

ΣT
B(t)ū(t) (7.75)

Finally, consider the case m > n and assume that rank(B(t)) = n at each time instant.
Now (7.65) has an infinite number of solutions. The one with the minimal norm is given
by the pseudoinverse

u(t) =
(
ΣB(t)V T

B (t)
)T

[
ΣB(t)V T

B (t)
(
ΣB(t)V T

B (t)
)T

]−1

ū(t)

= VB(t)ΣT
B(t)

[
ΣB(t)V T

B (t)VB(t)ΣT
B(t)

]−1
ū(t)

= VB(t)ΣT
B(t)

[
ΣB(t)ΣT

B(t)
]−1

ū(t)

(7.76)
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Again the singular values of B(t) are known to be positive and it follows

ΣB(t) =
[

Σ1B(t) 0
]
; Σ1B(t) = diag (σ1B(t) · · ·σnB(t)) (7.77)

and further

ΣB(t)ΣT
B(t) =

[
Σ1B(t) 0

] [
ΣT

1B(t)
0

]
= Σ2

1B(t)

= diag (σ2
1B(t) · · ·σ2

nB(t))
(7.78)

The final form of the control law is

u(t) = VB(t)ΣT
B(t)

[
Σ2

1B(t)
]−1

ū(t) (7.79)

As an example, consider again the system of three perfect mixers in series, which was
earlier discussed in Sections 6.1 and 6.3. The system is z-invariant with A(t) = k(t)Ā,
B(t) = k(t)B̄, where k(·) denotes the flow rate. The target system (7.46) is chosen as
E(t) = Ā, F (t) = B̄, which gives an interesting comparison to the technique of the
modified time scale, because the ‘target’ system in both cases has constant coefficients.
The state transformation matrix becomes

P (t) = ΦA(t, t0)P0Φ
−1
E (t, t0) (7.80)

where

ΦA(t, t0) = e
Ā

t∫
t0

k(ν)dν

(7.81)

and

ΦE(t, t0) = eĀ(t−t0) (7.82)

Choosing P0 = I and t0 = 0 gives after some calculations

P (t) = e
Ā

[
t∫
0

k(ν)dν−t

]

detP (t) = e
tr(Ā)

t∫
0

[k(ν)−1]dν

(7.83)

where the well-known theorem of Abel-Jacobi-Liouville (see e.g. Harris and Miles, (1980))
has been used. The theorem states that for the state-transition matrix related to any
system matrix A(·) it holds

detΦA(t, τ) = e

t∫
τ

trA(ν)dν

Choosing again k(t) = 1 + 0.5sin(0.1t) it is easy to see that the exponentials in P (t) and
detP (t) are bounded, so that P (t) is a Lyapunov transformation.
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Figure 7.1: Some components of the transformation matrix P (t)

In Fig. 7.1 some components of matrix P (·) are shown. The matrix and its inverse stay
bounded, although the values of the inverse matrix grow large as time approaches the
value 10. The weight matrices in criterion (7.54) were chosen as

X =




0.01 0 0
0 0.01 0
0 0 0.01




R =




0.1 0 0
0 0.1 0
0 0 0.1




and control law (7.58) with the ‘realization’ (7.72) were used to control the process. A
suitable static gain was added to the control loop to make the controlled system track
the constant reference value 1. In Figs. 7.2 and 7.3 the simulation results have been
presented. The dashed lines show the results obtained by the LQz controller described
earlier in Section 6.3, while the solid line corresponds to the new time-variable control
algorithm. The new controller establishes oscillations in the control signal at those time
intervals, in which the function P−1(t) has extremely large values. This oscillation can be
removed by limiting the values of P−1(t), which can be seen in Figs. 7.4 and 7.5. However,
this cannot be regarded as a very beautiful solution. Although the performances of the
z-controller and the new controller seem to be alike, the z-controller must be preferred,
because the derivation of it did not contain any approximations or numerical tricks. On
the other hand, the new time-variable controller covers a much larger set of processes,
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Figure 7.2: Closed loop performance for t < 50
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Figure 7.3: Closed loop performance for t < 150
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Figure 7.4: Closed loop performance for t < 50; modified control law
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Figure 7.5: Closed loop performance for t < 150; modified control law
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because they need not be z-invariant. It is evident that further research is needed in order
to understand the new time-variable controller more deeply.

It should be noted that the method of using a Lyapunov transformation to change the
realization into a more tractable form, and then doing controller design by using this
target system, is an interesting but not the only available possibility. For example, in LQ
design it is quite possible to use the time-varying equations as such to solve the control
problem, as discussed in classical textbooks like Anderson and Moore (1989) or Lewis
and Syrmos (1995), just to mention two examples. The drawback is that solving the
time-varying equations is a hard problem, even numerically.

A more ‘modern’ approach would be to use robust control theory, H2 and H∞ methods,
which also consider robustness issues of control design. The essentials of this approach
are well documented in the literature, see e.g. Zhou and Doyle (1998). Robust control
theory for linear time-varying systems is discussed e.g. in the interesting book by Ichikawa
and Katayama (2001). However, the methods described in these references differ consid-
erably from those presented in the current text, because they do not exploit any variable
transformations, but merely consider the system equations as such and develop necessary
analytical tools by extending the theory of time-invariant systems. The approach can be
compared to that in Anderson and Moore (1989), but it is questionable, how practical
the solutions are in reality. In the current text a more traditional and different method
has been sought. There is no denying, however, that the results obtained are somewhat
inconclusive.



Chapter 8

Conclusions

A systematic methodology for the analysis and controller design of a class of time variable
systems has been developed in the text. It is well-known that nonlinear or time-variable
systems are difficult to control, because their mathematical models are much more complex
than those of linear time-invariant systems. For example, a general theory for the analysis
and synthesis problems of linear but time variable systems is still lacking.

An important class of systems in the process industry deals with material transport, in
which the liquid flow rates and volumes may be continuously varying. Often it is possible
to describe these kinds of systems with linear models, in which the parameters are variable.
The presented work has been an attempt to develop a general theory for these kinds of
systems. The result is an extension to that known in the classical literature, where a
modified time scale has been used to change the residence time distribution constant
between different stationary operation constants. Now the theory has been extended to
cover continuously varying operation conditions, viz. the case of varying flow rates in a
material transport process. Also, the case with varying volumes has been discussed, and
the related problems in this case have clearly been revealed by the developed mathematical
methodology. Also, systematic controller design methods, which lead to time variable
control algorithms, have been developed. The analysis has been strictly model-based in
order to keep the development on a sound theoretical basis.

The background in analysis was in the modelling of material transport by using the
residence time distribution theory and extending it to the time-varying case by letting
the flow rates and liquid volumes be varying. The system theoretic connection of input-
output behaviour was established by relating the RTD to the weighting function. The
modified time scale (volumetric scale, z-scale) was then introduced to make the RTD and
weighting functions equal. The concept of a z-invariant system was introduced to state
conditions under which the model becomes invariant under the new scale making the
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analysis by classical methods possible. The ‘scaled time variable’ known in the classical
literature was shown to be a special case in the new theory.

More structure was added in the development by using state-space representations and
studying, whether a change of the time-variable leads to a similar simplification of the
model as discussed earlier. It was demonstrated that this is indeed the case for models
consisting of combinations of perfect mixers with possible recycling and bypass flows under
variable flow rates. However, the question of variable liquid volumes turned out to be a
much more difficult problem, which was to be expected based on the previous analysis
also. There are computational ways to deal with the case of variable volume, but a real
solution, which would be mathematically as beautiful as the previous case, was never
found.

The discussion was then extended to cover time delays, which are naturally modelled by
using plug flow vessels. The concept of the delay function was introduced, and it was
shown that time-varying delay changes into a constant in the volumetric scale; however,
again the assumption of a variable flow rate but constant liquid volume was needed.

The developed theory was tested by using a laboratory scale pilot plant with different
process vessels. Both chemical and radioactive tracers were used under changing flow
rates and volumes in the determination of the time-variable residence time distribution.
The unification of the RTDs predicted by the theory was verified by excellent results in the
tests. Some problems were met by one particular vessel, which had a very different velocity
profile under different flow rates. That was the result of bad design in the construction
of the vessel, and it was unfortunate that the case of varying liquid volume could only be
tested by another vessel, which behaved almost like a perfect mixer.

Systematic controller design methods were then developed to demonstrate the practical
applicability of the theory. PID controllers were discussed, and it was shown how a
controller with time varying parameters resulted by assuming a z-invariant system model
and using a normal PID controller in z-domain. The stability of the closed loop system
was shown to be a direct consequence of the design method. The performance and the
particular stability result was demonstrated by both simulation and by using the pilot
plant. An LQ controller was also developed and its operation was tested by simulation.

The developed theory is restricted to z-invariant systems, and although this class is im-
portant in process industry, the boundaries encountered for example in the case of varying
liquid volumes are not pleasant. Therefore an effort was made to establish a totally dif-
ferent but more general way to control linear time-varying systems. This new concept is
based on a direct transformation of the state and input variables to change the model
amenable to analysis and control, whereafter the control of the original process becomes
straightforward. Even if techniques related to ‘the change of variables’ is not unfamil-
iar in control theory generally, the discussion in this text concerning variable changes in
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input-output models is believed to be new. The results turned out to be promising and
interesting, but there is no denying the fact that there are difficult problems to bring
this approach into a general and mature design technique. Fundamentally, this is because
time-variable systems are analytically much more difficult to deal with than time-invariant
systems or some particular classes of time-variable systems.
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