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Abstract

Surface physics aims at understanding the basic atomistic processes and
mechanisms responsible for the variety of observed structures during surface
growth. In addition, surface growth has important consequences in modern
technological applications. Molecular beam epitaxy (MBE) is an established
method to grow surface structures, admitting also modeling surface growth
through simple microscopic processes such as diffusion and deposition of
atoms. The rather limited parameter range in MBE where smooth layer-
by-layer growth is realized can be extended, e.g., with ion assisted deposition
techniques. Thus new microscopic processes are added to traditional MBE
growth. Customarily island growth and step-flow are treated as separate
growth modes. Consequently, there does not exist a growth model which
includes all relevant aspects of surface growth in a realistic way.

The aim of this thesis is to bridge the gap between these traditional ap-
proaches. Including other microscopic processes in addition to deposition
and surface diffusion introduces new scaling relations and length scales. In
addition, not only the scaling of the growth structures but also their stability
is of importance. Moreover, unstable growth often possesses a dynamically
selected length scale. It is of interest to understand the behavior of these
new time and length scales and their scaling properties when constructing
more realistic growth models.

To this end, we consider various aspects of surface growth. First, we simu-
late island growth with aggregation, fragmentation, and deposition on flat
surfaces. The generalized rate equations are introduced, and the scaling
forms for the island size distributions and the mean island size are proposed
and compared with simulation results. Next, stability of circular islands is
studied by generalizing the rectangular case to radial geometry. A stability
criterion for the island radius is derived in the long wavelength limit. Then,
stability of step edges on vicinal surfaces is considered. The simulation re-
sults demonstrate the dynamical wavelength selection with a quantitative
prediction for the selected wavelength as well as the mechanism behind the
instability. The average shape of the unstable step patterns is found to have
an invariant form, insensitive to the parameters of the model. Finally, the
simulations extended to include both island growth and step edge instability
reveal that these growth modes are coupled with a new length scale, and
are inpendent only in the submonolayer regime.
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1

Introduction

During the past few decades crystal surfaces have attracted considerable
interest, mainly due to advent of atomic resolution imaging techniques [2].
Novel experiments reveal many previously unknown features and phenom-
ena on surfaces which need to be explained. In particular, self-assembling
patterns and growth instabilities form challenging topics in surface physics
needing communication between experiments and theoretical models. The
models can be tested and improved by comparing model predictions with
experimental results. On the other hand, the predictions from theoreti-
cal models could guide new experimental efforts. Also technological ap-
plications require proper understanding of the means to obtain surfaces
with known properties. For example, it would not be possible to man-
ufacture modern computer chips without a detailed knowledge of surface
growth on semiconductor materials. Consequently, growth of surface struc-
tures provides intriguing examples of both equilibrium and nonequilibrium
physics [3].

Molecular beam epitaxy (MBE) is a method to grow thin films on surfaces
with good quality [4]. Its essential advantage is the ability to control the
growth process in the atomistic scale (below 10−7 meters). MBE also en-
ables theoretical modeling based on a relatively simple picture of relevant
physical processes during growth which are schematically depicted in Fig.
1.1. The growth scenario is as follows. Atoms are randomly deposited from
the supersaturated gas phase onto a surface where they are adsorbed. These
adsorbed atoms (adatoms) perform random walk on a surface due to ther-
mal coupling with the lattice vibrations. As more adatoms appear on a
surface they eventually nucleate clusters of adatoms (islands) or attach to
pre-existing pinning sites such as other islands, step edges, or dislocations.
Adatom desorption back to the gas phase can be ignored since typically
growth during MBE occurs at rather low temperatures. Thus the mor-
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1. Introduction

k−

k+

Φ

D

Figure 1.1. A schematic picture of a vicinal (stepped) surface during MBE
growth. Atoms are deposited at the rate Φ onto a surface where they are
adsorbed. Adatoms diffuse on flat parts of the surface with a diffusion
coefficient D, and attach to the step edges with rates k− (from above) and
k+ (from below). If Φ is large enough island nucleation on terraces takes
place.

phology and dynamics of growing layers are completely determined by the
interplay between deposition of atoms and relaxation of the surface profiles
through surface diffusion [5].

In surface growth it is usually desirable to grow layers in a smooth layer-
by-layer mode. On flat surfaces atomic layers are formed by nucleation and
growth of adatom islands. If the deposition flux is small relative to surface
diffusion these islands are two-dimensional and the first layer completes be-
fore the second one appreciably nucleates [6,7]. Layer-by-layer growth is also
achieved on vicinal surfaces which are miscut relative to a high-symmetry
crystal plane. Such surfaces consist of steps and high-symmetry terraces
between them. For small enough fluxes deposited atoms preferentially at-
tach to step edges instead of nucleating new islands. Thus the step edges
uniformly advance as more material is deposited onto a surface resulting
in smooth step-flow growth. Surfaces are often, however, subject to insta-
bilities under growth conditions. It is important to know the mechanisms
producing unstable growth since usually instabilities lead to non-uniform
layers. By understanding the processes responsible for instabilities, one can
suppress them during surface growth.

With MBE the parameter range where smooth layer-by-layer growth is ob-
tained is rather limited. Large fluxes or low temperatures lead to formation
of three-dimensional structures. One can, however, utilize other growth
techniques such as ion-beam assisted deposition [8] or sputtering deposi-
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tion [9] in order to obtain smooth growth. These techniques can be also
modeled including new microscopic processes to the MBE scenario. For ex-
ample, during ion-beam assisted deposition island mobility and dissociation
processes are induced [10]. In these cases new processes lead to new scaling
laws and length scales. Moreover, since the processes are reversible there
is no guarantee that island growth and step-flow can be treated as sepa-
rate processes as conventionally assumed. It is possible that island growth
and step-flow are equally important and lead to completely new features of
growth in addition to novel scaling relations and length scales.

The aim of this thesis is to take a step towards a general picture of surface
growth where both island growth and step-flow are taken into account in
a realistic way. This is a formidable task, however, and to this end the
work is focused on some of the important aspects of pattern formation
during surface growth. These are the emergence of new scaling relations
due to additional growth processes, study of stability of island boundaries
and surface steps and corresponding length scales, and a general growth
situation where both island growth and step-flow are present.

Island growth forms an important part of all surface growth problems since
it acts as a basis for further structure formation [11, 12]. In homoepitaxial
systems where the deposited material is the same as the substrate the basic
processes such as aggregation [13], deposition [14], and detachment [15], and
length scales and scaling laws [16,17] related to island growth are rather well
understood. These scaling ideas and corresponding rate equations in island
growth are reviewed in Chapter 2.

Stability of surface steps is important in step-flow growth on vicinal surfaces
since step instability leads eventually to break-down of the step-flow mode
and formation of three-dimensional structures [18]. Unstable step mor-
phologies result due to asymmetric mass currents across [19] or along [20]
the step edges. The associated length scale in the former case is well under-
stood. Chapter 3 discusses instabilities related to step-flow growth, namely
Bales-Zangwill instability [19] and the kink Ehrlich-Schwoebel effect [20].

The simulation methods are reviewed in Chapter 4. The Bortz-Kalos-
Lebowitz algorithm enables us to simulate surface growth on vicinal sur-
faces in a semi-realistic way with realistic system sizes, energy parameters,
and temperature and flux ranges. The particle coalescence method used in
island growth simulations, and in particular, a new improved version of it,
are introduced.

3



1. Introduction

The central results of the thesis are reported in Chapter 5. These are essen-
tially aimed at fulfilling the gaps between the existing traditional approaches
in island growth and step-flow. The results would help to construct a more
general growth model, e.g., in a continuum level.

First, the scaling laws and length scales in island growth with aggregation,
fragmentation, and deposition are discussed. The rate equations describing
the growth process are presented and the scaling forms for the size distri-
butions and the mean island size are proposed. The validity of the scaling
functions are confirmed by simulations. New results for the scaling expo-
nents (see Appendix A) and an equation for the mean island size are derived
supplementing Publication I.

The meandering instability in radial geometry is then discussed. Not only is
structure formation such as island growth important but also the stability
of growth structures. Here the focus is on the stability of circular islands in
the initial stages of growth. The purpose is to examine whether the stability
of island shapes has any effects on growth in the time and length scales of
interest. The correction terms to the rectangular case due to curvature and
the smallest unstable island size are derived.

Following this, we consider the case where the meandering instability and
consequent wavelength selection are controlled by kink Ehrlich-Schwoebel
barriers along the step edges. A quantitative prediction for the wavelength
is shown to agree with the simulations as well as experiments. The aver-
age meander profile is shown to have an invariant shape which is rather
insensitive to the external parameters such as temperature or flux.

Finally, the combined growth simulations with island nucleation and step
meandering instability are discussed. In realistic growth conditions both
island growth and step-flow are present. It is of interest to know to what
extent these growth modes can be regarded as separate processes. The
simulation results show that island formation and meandering instability
are mutually independent only in the submonolayer regime but develop a
nontrivial coupling when islands and steps begin to coalesce.

The thesis ends with Chapter 6 containing a summary and discussion fol-
lowed by two appendices where the scaling exponents and the scaling func-
tion for the mean island size are derived, and the details of the meandering
instability in radial geometry are given.
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2

Island growth on flat surfaces

Island growth on a flat surface during submonolayer deposition plays an
important part in surface growth since it forms the basis for all further
growth [11, 12]. Information about the microscopic processes responsible
for the surface structures can be obtained through the scaling properties of,
e.g., the mean island size, the scaling function of the island size distribution
[16], or the island separation [21]. In the following, concepts and different
processes related to island growth are introduced.

2.1 Nucleation of islands

Growth of surface structures e.g. with MBE involves deposition of atoms
onto a surface, subsequent diffusion of those adatoms on the surface, and
eventually nucleation of adatom clusters, commonly called islands. As
atoms are deposited onto a surface they are adsorbed and begin to ran-
domly migrate at non-zero temperatures. If there are only a negligible
number of other possible attachment sites, adatoms eventually meet each
other and form together an island. The smallest island size which is more
likely to grow than to decay is defined as the critical island size [17]. For
example, at sufficiently low temperatures an adatom pair (dimer) can be
taken as the critical size.

Nucleation of islands proceeds as long as adatoms form new islands instead
of attaching to the existing ones. A stationary state is reached when the
number of islands N remains constant and only island sizes change. Rate
equation studies predict that N scales as a power-law with respect to the
surface diffusion coefficient D and the incoming flux Φ [22,23]. This implies
that one can measure the surface diffusion coefficient D by calculating the
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2. Island growth on flat surfaces

number of islands on a surface [21]. The scaling relation is given by [22]

N ∼
(
D

Φ

)−χ
, (2.1)

where χ is the scaling exponent which depends on the spatial dimension d,
microscopic surface processes, and the critical island size [17, 22–24]. For
a given model χ is well-defined usually in some temperature or flux range.
This so-called mean-field (MF) form is valid and useful in the parameter
region where χ is a constant. For example, it does not apply in compound
semiconductor systems [25], or if long-range adatom interactions are impor-
tant [26].

One can also argue that N scales with a single length scale `n [23], called the
nucleation length, leading to the relation `n ∼ (D/Φ)χ/d, where d is spatial
dimension. This enables one to calculate the scaling exponent χ within the
minimal model of stable and immobile dimers [23]. Following arguments in
Refs. [23,27] one obtains the expression for the nucleation length:

`n ∼
(
D

Φ

)1/(2d+2)

, (2.2)

where numerical factors of order unity have been omitted, and the scaling
exponent χ = d/(2d+2) is obtained. If temperature is high enough to break
a dimer the scaling exponent is modified [24]. Also on vicinal surfaces the
nucleation length is more difficult to calculate since the number of incoming
adatoms onto the surface region is not necessarily given by Φ`d [28].

2.2 Scaling of the size distributions and the
mean size

A powerful method to study film growth in the submonolayer regime is based
on scaling ideas. This lies on the assumption that quantities of interest can
be scaled at arbitrary time (in a scaling regime) with some characteristic
length scale. For example, in the scaling regime the island size distributions
are completely determined by the knowledge of the mean island size [17].
During island growth the mean size naturally sets an intrinsic length scale
for the system. From the size distribution one can deduce the uniformity
of growing islands and possibly manipulate the distributions by tuning the
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2.2. Scaling of the size distributions and the mean size

external parameters. Scaling also implies that one can predict the properties
of the system with different parameter values and at different times by
measuring them at one point in the parameter space or at one moment
of time. Then the quantities of interest with another set of parameter
values can be obtained simply by scaling them using the appropriate scaling
relations.

During submonolayer island growth the mean island size is defined by [16,17]

s̄ =

∑
s s

2ns∑
s sns

, (2.3)

where the island size distribution ns(t) is the areal density of islands of size s
in the system. In the following, ns(t) ≡ 〈ns(r, t)〉, i.e. the size distributions
are understood to be averaged over an ensemble of systems or a sufficiently
large surface region [17].

Scaling forms for the mean island size can be proposed by examining how
s̄ qualitatively behaves as a function of time or other parameters. These
scaling forms can be justified and the corresponding scaling exponents de-
termined from rate equations, as described in the following Sections. For
irreversible growth s̄ grows monotonically in time or coverage and it is plau-
sible to expect that [16]:

s̄ ∼ θβ, (2.4)

where θ = Φt is the coverage, t is the deposition time, and β is the dynamic
scaling exponent. Another scaling relation can be obtained with respect
to the external parameters. If the external flux is small, adatoms landing
onto the surface have enough time to diffuse and attach to islands before
deposition of the next atom. For large fluxes there are many adatoms
diffusing around and nucleating new islands leading to a smaller mean island
size. The opposite is true at low temperatures where adatoms diffuse slowly
compared to high temperature regime. Consequently, one finds a scaling
relation with respect to the diffusion coefficient of an adatom D and the
external flux Φ [16,17]:

s̄ ∼ Rχ, (2.5)

where R = D/Φ and χ is the scaling exponent whose value depends on d
and the microscopics of the system, e.g. surface diffusion processes [23,24].

At the onset of growth the only relevant length scale in the system is the
mean island size. In this submonolayer regime a scaling ansatz for the size
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2. Island growth on flat surfaces

distribution function is proposed [16,17,29]:

ns ∼
θ

s̄τ
f(s/s̄), (2.6)

where τ is the scaling exponent to be specified later, and f(x) is a scaling
function independent of θ and R. The scaling function is normalized as∫
f(x)dx = 1. It must be emphasized that this scaling form is rather

general, applying equally well e.g. to scaling of the cluster size distribution
function in percolation problems [30]. The specific functional form of the
scaling function depends on the details of the model [16, 31], e.g. on d,
whether diffusion is isotropic, and whether detachment of adatoms from
islands is operative. The point is that, within the model, the scaled size
distributions collapse into one universal curve independent of θ and R.
Note that the scaling form Eq. (2.6) does not require s̄ to follow a power
law behavior [17].

2.3 Rate equations

Insight into island growth or clustering process in general can be obtained
from rate equations. These are a coupled set of deterministic differential
equations describing the time evolution of ns. Despite that introduced al-
ready a century ago by Smoluchowski [32] rate equations are still used in
various applications ranging from materials science [22], biology [33], and
financial analysis [34] to astrophysics [35]. In fact, in many cases rate equa-
tions provide a simple method to get reliable information of the complicated
problem. In the following, aggregation, irreversible island growth, aggrega-
tion with fragmentation, and reversible growth are reviewed.

2.3.1 Aggregation

The set of the rate equations for clustering follows when one counts all
aggregation events increasing or decreasing the number of clusters of size
s. This is experimentally realized, e.g., in aerosol systems or on surfaces
where islands have a non-zero diffusion coefficient. One ends up with the
Smoluchowski rate equation [32,36]:

dns
dt

=
1

2

∑
i+j=s

K(i, j)ninj −
∞∑
i=1

K(s, i)nsni, (2.7)
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2.3. Rate equations

where K(i, j) is the aggregation kernel (also called the coagulation or reac-
tion kernel), denoting the probability per unit time to aggregate two clusters
with sizes i and j. The first term on the right hand side denotes the gain by
aggregation of smaller islands whereas the second term is the loss term due
to aggregation events between an island of size s and any other size i. This
equation can be derived from the master equation [37] using the method
of compounding moments [38]. It must be emphasized that since ns is an
average over a surface region or an ensemble, spatial correlations are not
taken into account in the rate equations. Thus the rate equations describe
the system in the mean-field (MF) limit.

In many cases of interest the kernels K(i, j) can be reasonably approximated
to have simple homogeneous forms [13,39]. These homogeneous forms admit
the scaling solutions of Eq. (2.7). The homogeneity of the kernel K(i, j)
implies [13]:

K(ai, aj) = aλK(i, j), (2.8)

where a > 0 is a constant and λ is called the homogeneity exponent. Phys-
ically relevant values are λ < 2 since the reactivity of an island cannot
grow faster than its size [13]. In the cases interest to us λ < 1, corre-
sponding to non-gelling solutions [13]. Conservation of the total mass of
the system M =

∑
k knk in aggregation yields τ = 2 in the scaling form Eq.

(2.6). From the Smoluchowski equation it follows that the mean size obeys
asymptotically (t→∞) a simple power law [13,29]:

s̄ ∼ tz, (2.9)

where the dynamic scaling exponent is

z =
1

1− λ
, (2.10)

and depends only on the homogeneity exponent of the kernel.

The scaling function f(x) introduced in the scaling ansatz for the size dis-
tribution [Eq. (2.6) with τ = 2] can be calculated in principle for a given
model (i.e. for a given aggregation kernel). Unfortunately this is analyt-
ically possible only in some restricted cases. For example, in the case of
interest to us the kernel has the form K(i, j) ∼ i−µ + j−µ (µ > 0) in which
case the scaling function turns out to be [13]

f(x) ∼ x−1 exp[−x−µM0/(µM−µ)], (2.11)

where the moments are defined as Mk =
∑

s s
kns.

9



2. Island growth on flat surfaces

2.3.2 Irreversible growth

The rate equations introduced in the previous Section can be also applied
to study irreversible island growth during submonolayer deposition. In the
case of immobile islands and irreversible growth (size of an island can only
increase) only aggregation events between an island and an adatom are
taken into account. One obtains the rate equations for the size distributions
[17]:

dns
dt

= Dn1σs−1ns−1 −Dn1σsns, (2.12)

where the first term takes into account for the increase of the number of
islands of size s due to adatom attachment into the island of size s− 1, and
the second term losses due to similar process for the island of size s. For
monomers one obtains [17]:

dn1

dt
= Φ− 2Dσ1n

2
1 −Dn1

∞∑
i=2

σsns, (2.13)

where the first term is due to deposition of adatoms onto a surface, and
σs is the capture number for an island of size s. All terms due to direct
capture from the incoming flux are omitted. The capture rates contain
microscopic information of the small scale processes and long-range correla-
tions between islands [17]. In the point island approximation it is sufficient
to set σ = const. [16] but when island geometry has to be taken into account
it holds generally that σ = σ(s) [17]. Also, non-local adsorbate mediated
interactions can be taken into account in a reasonable way in σs [40].

In the case where island geometry has to be taken into account the capture
numbers play an important role determining the correct size distributions.
One could solve the capture numbers self-consistently assuming that the sur-
rounding of an island is independent of its size in the case of immobile islands
which correctly reproduces the adatom and total island densities [17]. The
full size distributions were resolved only recently when strong correlations
between island sizes and separations were realized [41, 42]. This leads to a
contribution to σs from the correlations in island sizes and separations [41].
The correlations between the capture zones and island separations can be
constructed in terms of tesselation based on the Voronoi area for each is-
land [43]. Such treatment produces correctly the average quantities as well
as the size distributions both in the point-island approximation and the
compact island case [43]. However, as far as generic features of growth are
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2.3. Rate equations

concerned the correlations between island sizes and separations can be omit-
ted. In addition, it turns out that correlations are negligible when island
mobility or fragmentation are taken into account.

2.3.3 Aggregation and fragmentation

To take into account reversible island processes in addition to aggregation,
i.e. adatom detachment (e.g. at high temperatures) or fragmentation of
islands (e.g. during ion bombardment of a surface), one modifies the rate
equations for aggregation to include terms of the form F (i, j)ni+j to break
an island of size s = i+ j into two smaller islands with sizes i and j. If the
fragmentation kernel has a homogeneous form, one expects to obtain scaling
solutions also in this case. One customarily chooses the fragmentation kernel
to be of the form F (i, j) = F0(i+ j)α for binary fragmentation [44,45]. The
probability to choose an island of size s is ns, and let us assume that any
of those s− 1 bonds can be broken with equal probability. Thus, the total
probability to break a bond in an island of size s is ns(s − 1)−1p(s) where
p(s) is the probability for breaking a bond. It is commonly assumed that
p(s) has the form p(s) ∝ (s−1)sα which leads to the above form for F (i, j).
With these assumptions the rate equations read [44–46]:

dns
dt

=
1

2

∑
i+j=s

[K(i, j)ninj − F (i, j)ni+j]−
∞∑
i=1

[K(i, s)nins − F (i, s)ni+s] .

(2.14)

The scaling forms for the mean island size are different from the pure ag-
gregation case. Since aggregation decreases the number of islands and in-
creases the mean island size and fragmentation does the opposite, one could
assume that after some characteristic time the system reaches a stationary
state [44, 47]. Define the ratio κ = F0/K0 which measures the relative im-
portance between fragmentation and aggregation. Before the steady state
is reached the system is in the aggregation-dominated regime which implies
that s̄ scales as in Eq. (2.9). In the steady state the mean size is constant
in time but the characteristic time scales as τ ∼ κ−a. One assumes that
also s̄ scales as [47]

s̄ ∼ κ−y, (2.15)

where the scaling exponent y has the value [44,45]

y =
1

−λ+ α + 2
. (2.16)
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2. Island growth on flat surfaces

This depends only on the homogeneities of aggregation λ and fragmentation
α. These scaling forms suggest that one can make a scaling ansatz for the
mean size [47] s̄ = τ zΨ(T ), where T = t/τ and Ψ(T ) is a scaling function
independent of κ for T � 1, and independent of time for T � 1.

The size distribution function is shown to scale as in Eq. (2.6). In the case
of interest to us the functional form for the scaling function f(x) turns out
to be [44]

f(x) ∼ xδ+1e−cx, (2.17)

where δ = 1− λ+ α [48] and c is a constant†.

2.3.4 Reversible growth

As previously discussed including reversible processes such as fragmentation
leads to new scaling relations and length and time scales. For example, in
aggregation with fragmentation a new time scale for approach to a station-
ary state can be defined with a new scaling exponent. In island growth in
many practical cases reversible processes take place, for example at high
temperatures adatom detachment from islands. Adatom detachment can
be taken into account in the rate equations (2.12) by including the cor-
responding terms of the form ns/τs [49], where τs is the mean rate for
adatoms to escape from an island of size s. Detachment can be included in
a self-consistent way in capture numbers for islands in analog to irreversible
growth [49]. Detachment during growth leads to a different time depen-
dence, e.g., for the mean island size which grows logarithmically instead of
a power law [50,51]. Generalized reversible processes in island growth with
aggregation, fragmentation, and deposition are discussed in Chapter 5.

†Note that in Ref. [47] expressions δ = 1−λ+α (for λ > 1+α;λ > 1+2α), δ = 1−(1+λ)/2
(for λ > 1;λ < 1 + 2α), and δ = 1− λ (for λ < 1 + α;λ < 1) are obtained.
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3

Instabilities of surface steps

Generally in surface growth islands grow on terraces between steps. More-
over, growing islands are also stepped structures. Both island boundaries
and steps on vicinal surfaces are one-dimensional objects, and consequently
even in equilibrium they are rough at any finite temperature. During sur-
face growth unstable step edge structures can be produced, e.g., due to
asymmetric mass currents along the different surface directions. While the
instability of the straight step edges due to the Ehrlich-Schwoebel barrier
is well known, relatively less studied case is the curved steps. Here the
established models of the instability at straight steps are reviewed which
also form a basis for a discussion about more complicated structures. The
meandering of curved steps is discussed in Chapter 5.

3.1 Bales-Zangwill instability

Energy barriers related to microscopic processes can have significant con-
sequences on surface morphologies during growth. For example, on many
surfaces an adatom close to the downhill step edge is more likely to be
reflected back than crossing the edge due to the Ehrlich-Schwoebel (ES)
barrier [52, 53]. The extra barrier can be understood on the basis of low
coordination of an adatom at the intermediate position between the initial
and final states during step crossing. The large ES barrier induces different
effects on growth morphology: It is responsible for instabilities associated
with mound formation on flat surfaces [54] and meandering of surface steps
on vicinal surfaces [19], but also stabilization of vicinal surfaces against step
bunching [55].

For a non-vanishing ES barrier adatoms nucleate new islands on top of
existing ones leading to growth of mounds on flat surfaces. Moreover, for
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3. Instabilities of surface steps

an infinite ES barrier steep mounds appear quickly and growing smooth
layers is hindered [56]. On vicinal surfaces the ES barrier stabilizes any step
spacing other than the average distance L thus preventing step bunching. If
a terrace is larger than L it receives more mass from the deposition flux than
the smaller terraces and consequently the step edge in the uphill direction
advances faster than the other steps. On the other hand, if a terrace is
smaller than L the step in the uphill direction has a smaller velocity than
other steps until the average terrace width is reached. However, the same ES
barrier produces a meandering instability of steps. If there is a fluctuation at
the step edge adatoms on a terrace attach to the protrusion more likely than
to other parts of the edge. For a non-zero ES barrier this effect is asymmetric
with respect to the lower and the upper terraces. Thus protrusions will
gather more mass from the lower than from the upper terrace as atoms
are deposited onto a surface. This leads to meandering of steps and is the
origin of the Bales-Zangwill (BZ) instability [19] discussed in the following.
Moreover, simulations using a solid-on-solid (SOS) model have shown that
after the BZ instability has developed a secondary instability sets in leading
to mounds also on a vicinal surface [18].

Quantitatively the meandering of step edges can be studied on the basis
of the Burton-Cabrera-Frank (BCF) model of crystal growth [57] and the
Mullins-Sekerka instability [58]. BZ showed [19] that small fluctuations
in the linear order produce morphologically unstable step edges. In the
spirit of BCF the adatom concentration ρ obeys the diffusion equation on
a terrace [57]:

∂ρ

∂t
= D∇2ρ− ρ

τ
+ Φ, (3.1)

where D is the adatom diffusion coefficient, τ is a characteristic time for
desorption, and Φ is the incoming adatom flux. One can define a length
scale xs =

√
Dτ which corresponds to the scale an adatom diffuses before

desorption back to the gas phase. Defining a new variable u = ρ− τΦ Eq.
(3.1) becomes the Helmholtz equation for u in the stationary limit [19]:

∇2u− u

x2
s

= 0, (3.2)

where the stationary condition ∂tρ ≈ 0 can be justified if the steps move
slowly compared with the rate at which the adatom concentration relaxes to
its equilibrium value [19]. For large step velocities a convective term must
be included [59].
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3.1. Bales-Zangwill instability

The problem is fully specified when the boundary conditions are given. The
normal velocity of the step is [59]

vn = ΩD
(
∇ρ |+ −∇ρ|−

)
· n, (3.3)

where Ω is the atomic area, ∇ρ|± are the contributions to the velocity from
the lower and upper terrace, respectively, and n is the unit vector locally
perpendicular to the edge. The local velocities are [59]

±D∇ρ · n = k± [ρ− ρeq] |±, (3.4)

where k± are the kinetic coefficients describing atom attachment to the
step from the lower and upper terraces, and ρeq is the equilibrium adatom
concentration at the step edge. For a curved edge one uses the Gibbs-
Thomson relation [60]:

ρeq = ρ0
eq exp(Ωγκ/kBT ) ≈ ρ0

eq + Γκ, (3.5)

where ρ0
eq is the equilibrium concentration at the straight step, κ is the local

curvature of the edge, Γ = Ωρ0
eqγ/(kBT ), γ is the step stiffness, and kBT is

thermal energy.

The solution of Eq. (3.1) for the straight step is u0(x) = a0 sinh(x/xs) +
b0 cosh(x/xs), where x is the coordinate along the step direction. The co-
efficients a0 and b0 are determined by the boundary conditions. The linear
stability analysis is now performed around the straight step solution. One
introduces a periodic perturbation of the straight step at y with a particular
wave number q as ξ(x) = y + ε exp(iqx + ωt), where ε is a small parame-
ter and ω(q) is the growth rate. If ω > 0 the straight step is unstable.
The solution to the first order in ε is u(x, y) = u0(x) + ε[Aq sinh(Λqy) +
Bq cosh(Λqy)] exp(iqx + ωt), where Λq =

√
q2 + x−2

s . In the linear analysis
this is put into the step velocity and solved in the first order in ε. On the
other hand, the velocity is also given by vn = v0 + ω(q)ε exp(iqx + ωt),
where v0 is the velocity of the straight step. From these one finds the
expression [19]:

ω(q) = (d− − d+)g(q)− q2f(q), (3.6)

where the functions g(q) and f(q) are positive for all q (see Ref. [19] for the
complete expressions), and d± = D/k±.

From Eq. (3.6) we conclude that the step edge is always stable if d− ≤
d+, i.e. k− ≥ k+. For k− < k+ there is a band of wave numbers and
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3. Instabilities of surface steps

wavelengths λ = q/2π which correspond to ω > 0 for certain parameter
combinations. One would then observe unstable step patterns with the
wavelength corresponding to the maximum of ω, i.e. perturbations with the
wavelengths λ > λc will grow, and the fastest growing mode corresponds to
λu =

√
2λc. In the limit where desorption vanishes (τ →∞) one obtains:

λu ∝
(
D

Φ

)1/2

, (3.7)

where the proportionality constant equals to 4π
√

Ωγc0
eq/(kBTL

2). This

expression prevails also in the non-linear regime [61].

For further reference we also give here the expressions for the critical wave
number defined through ω(qc) = 0 in the limiting cases. We have for L� xs
[19]:

xsqc =


√

xs
ξ
, xsqc � 1;√

4
3
(1− 2ξ), xsqc � 1,

(3.8a)

where ξ = Γ/(τ∆Φ) is the capillary length and τ∆Φ = τΦ − ρ0
eq. For

L� xs (and L2q2
c � 1) we obtain [19]:

xsqc =

√
L

2ξ
. (3.8b)

From these expressions it is clear that there is a competition between the
stabilizing and destabilizing effects, viz. diffusion xs and line tension ξ,
respectively. For example, as xs →∞ step flow is unstable for a finite value
of ξ at long wavelengths. The generalization to the radial geometry is given
in Chapter 5.

3.2 Kink Ehrlich-Schwoebel effect

The meandering instability observed in SOS simulations [18] and also the
first experimental results were interpreted through the BZ explanation [62].
Recent STM experiments on vicinal Cu surfaces demonstrated that the se-
lected wavelength does not quantitatively agree with the BZ prediction [63].
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3.2. Kink Ehrlich-Schwoebel effect
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a) Close-packed step b) Open step

Figure 3.1. A top view of a fcc surface with a) close-packed and b) open
step edges. Solid circles correspond to the upper and open circles the lower
terrace. Energy barriers on a Cu surface [67] for a few processes denoted
by the arrows are given in the units of eV.

The first simulations with the simplified SOS model suggested that the kink
Ehrlich-Schwoebel effect (KESE) may lead to formation of a step instabil-
ity [64,65]. In addition, SOS simulations have shown that both the BZ and
KESE instabilities are possible, depending on the relative importance of
edge diffusion [66]. However, quantitative data of the selected wavelength
and the structure of the patterns were still unresolved. Also, most results
were for the weak KESE while one assumes that on Cu surfaces the oppo-
site is true. Calculations of energy barriers indicate the extra barrier about
0.25 eV for kink rounding at close-packed step edges [67] but experimental
evidences of KES barrier are still few (see, however, Refs. [68, 69]). In any
case, if it does exist, the KES barrier could have rather large consequences
on interpretation of experiments, especially determining the value of the ES
barrier via the time-dependent step correlation function [70].

During the growth of a vicinal surface incoming adatoms landing on terraces
will eventually attach to step edges if terrace nucleation is suppressed. On
many surfaces an adatom at the edge preferentially diffuses along the step
rather than detaches back to the terrace (for simple metal surfaces, see
Ref. [67]). This leads to the formation of one-dimensional (1D) islands at
the edge. As the first row of 1D islands at the edge have grown large enough
subsequent adatoms coming to the step attach on top of them. Now, KESE
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3. Instabilities of surface steps

for a non-zero kink ES barrier ensures that almost all adatoms stay on
top of the first-row islands and cross the kink sites only rarely. Thus KESE
induces destabilizing mass currents along the up-kink direction and unstable
structures onto the step edges, in analog of the mounding instability on flat
surfaces [20].

The above discussion of the destabilizing character of KESE applies well to
close-packed steps where the KES barrier is believed to exist. For example,
on fcc surfaces one can have both close-packed and open steps (see Fig. 3.1)
with different energy barriers at the edge. Based on symmetry arguments
one can argue that KESE is actually stabilizing open steps [20,71]. This is
further elucidated in Fig. 3.1. At open steps adatoms diffuse along steps
via a two-step process. Thus protrusions have triangular shapes with close-
packed sides. An adatom attaching to the side of the triangle preferentially
seeks the two-fold coordinated site close to the edge since at the tip of the
triangle it experiences the KES barrier. Of course, it might be the case that
for open steps strain effects could play an important part and influence
diffusion processes at the edge.

3.2.1 Wavelength of patterns

Define a scale Ln as a characteristic length of an edge above which islands
form, i.e. at the edges with L > Ln nucleation occurs. In the case of dimer
nucleation in 1D the length is given by [22,72]

Ln ∝
(
Ds

Φs

)1/4

,

where Ds ∝ exp(−Es/kBT ), Es is the diffusion barrier along the straight
edge, and Φs = ΦL is the flux onto the edge. For weak KESE the wavelength
λ of unstable step patterns can be determined from the linear stability
analysis and turns out to be [72,73]

λ ∝

√
L3
n

Ls
, (3.9)

where Ls = exp[(Ek − Es)/kBT ] − 1 is the kink ES length [20] and Ek is
the KES barrier. For strong KESE Eq. (3.9) is no longer valid. In this case
one can assume that λ is set by dimer nucleation at the onset of growth so
that λ ≈ Ln.
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3.2. Kink Ehrlich-Schwoebel effect

3.2.2 Mass currents along the edge

Due to mass conservation at the step edge, the edge profile ζ(x, t) obeys the
continuity equation [20,72]:

∂ζ

∂t
= Φs −

∂Jtot

∂x
, (3.10)

where Φs is the incoming flux onto the edge, and Jtot is the total mass
current along the edge. The total current decomposes into terms Jtot = Jk+
Je + Jn + JSB. Define the variables M(x) = ∂xζ and m(x) = M/

√
1 +M2.

Expressing the currents in terms of M(x) and m(x), and embedding some
of the constants into x and t by appropriate scaling gives the stabilizing
Gibbs-Thomson current including the edge diffusion [61,74]:

Je =
2DSΓ̃

Φ

(
1√

1 +M2
+

DL

DSL

)
1√

1 +M2

∂

∂x

(
∂xM

(1 +M2)3/2

)
=

2DSΓ̃

Φ

(√
1−m2 +

DL

DSL

)√
1−m2(∂xxm),

(3.11)

the current onto the step from the flux [61,74]:

Jd = L
M

1 +M2

= Lm
√

1−m2,

(3.12)

the current which breaks the front-back symmetry of the step profiles [72,
73]:

JSB =
DSΓ̃L

Φ

∂xM

(1 +M2)3/2

1

1 +M2

∂

∂x

(
∂xM

(1 +M2)3/2

)
+
L2

3

M

1 +M2

∂xM

(1 +M2)3/2

(√
1 +M2 +

2√
1 +M2

)
=− DSΓ̃L

Φ
(∂xm)(∂xxm)

√
1−m2 +

L2

3
m(∂xm)(3−m2),

(3.13)

and the destabilizing current due to KESE [20]:

Jk =
(1− |M |)M√

1 +M2(|M |+ L−1
n )2

=
m(
√

1−m2 − |m|)
√

1−m2

(|m|+ `−1
c

√
1−m2)2

.

(3.14)
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3. Instabilities of surface steps

In these expressions DS = Dc0
eq is the macroscopic diffusion coefficient on a

terrace, DL ∝ exp(−EL/kBT ) is the macroscopic diffusion coefficient along
step edges, EL is the corresponding hopping barrier, and Γ̃ = γ̃/kBT is the
scaled step stiffness. In all cases the lattice constant is equal to one.

These currents are phenomenological in nature, and contain qualitatively
relevant behavior of the system. We have not included, e.g., the stabilizing
currents arising from adatom detachment from the edge or random nucle-
ation which both would have a contribution of the form J = K∂xxxζ, where
K is depends on the slope of the profile [73]. However, for low temperatures
adatom detachment is not a relevant process. Also, if one is interested in
the stationary profile nucleation is a rare event for large slopes and can
be neglected. Moreover, in the case of nucleation this form of the current
applies only for weak KESE [73].
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4

Methods

Conventional Metropolis Monte Carlo simulations (a hit-and-miss method)
of surface growth become extremely slow at low temperatures since usu-
ally many microscopic processes with different energy and time scales are
present. Improved methods, for example Monte Carlo with the Bortz-Kalos-
Lebowitz algorithm [75], can be orders of magnitudes faster than Metropolis
Monte Carlo at low temperatures. In the case of rate equations numerical
integration is not always straightforward, especially when a large number of
coupled differential equations is needed. The particle coalescence method
(PCM) [76] is a method to simulate rate equations in a simple way. In the
following the fast Monte Carlo technique and PCM are reviewed and a new
improved version of PCM for simulating rate equations is introduced.

4.1 The Bortz-Kalos-Lebowitz Monte Carlo
algorithm

In order to reach typical time scales and system sizes in atomistic growth
simulations one must perform a coarse-graining procedure from the micro-
scopic description of the system to a larger scale. For example, lattice
vibrations (phonons) in metals have typically a characteristic time scale of
10−13 seconds [77] whereas in many surface growth problems characteristic
times from 10−3 up to seconds are encountered. This clearly makes direct
Molecular Dynamics type of simulations unfeasible and one is directed to
use Monte Carlo (MC) techniques in addition to continuum models and rate
equations.

The traditional MC method is based on the theory of Markov chains which
assumes that the next state of the system depends only on the present
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state [78]. In a MC simulation using the Metropolis importance sam-
pling [78] one starts with the system in the initial configuration c. Then
the final configuration c′ is chosen with the uniform probability 1/N , where
N is the total number of possible transitions. The attempt to change the
state is successful with probability νc→c′/νmax, where νc→c′ is the rate for
the transition from c to c′, and νmax is the maximum of the all transition
rates. Usually νmax is normalized to unity, and the transition probability is
given by the Boltzmann factor exp(−∆E/kBT ), where ∆E = Ef − Ei is
the energy difference between the final and initial states. If the attempt is
accepted the system moves into the new configuration, otherwise it is left in
the initial state. In this way the system always evolves toward equilibrium,
i.e. (at least locally) to the minimum energy configuration [78]. The ad-
vantage of the traditional MC is that one needs to know explicitly only the
relative transition probabilities. On the other hand, the drawback is unsuc-
cessful events. For example, in the case of thermally activated transitions
the Boltzmann factor involves the inverse temperature in the exponential.
Thus the hit-and-miss method becomes extremely slow in computation time
at low temperatures due to many unsuccessful attempts to change the con-
figuration. As a consequence the actual evolution of the system is slow
at low temperatures and one needs many MC steps between the measure-
ments in order to collect uncorrelated data. The same applies in any MC
simulation where the probability to accept the next state is small.

To increase the success ratio of the trial moves one can use the Bortz-Kalos-
Lebowitz (BKL) algorithm [75]. The idea is to always choose an event with
the correct probability, hence the success ratio is always unity. In this
way the time step becomes stochastic since for every transition there is
associated a waiting time the system stays in the initial configuration. In
traditional MC this waiting time is (on the average) explicitly taken into
account through unsuccessful attempts. In BKL every attempt is successful
and so the time step must be drawn correctly. Since the events are evenly
placed on a time axis the time step ∆t is exponentially distributed with the
decay constant equal to the total transition rate Γc of the configuration c:

P (∆t) = Γc exp(−Γc∆t). (4.1)

The inverse of the total transition rate is equal to the time the system stays
in the initial state. Note that since time is now a stochastic variable one
must be careful when measuring time-dependent observables. In fact, one
should divide the time interval into bins and calculate the average time for
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4.2. Particle coalescence method

each bin. This introduces also errors in time measurements in addition to
errors in observables.

The drawback of the BKL method is that at every step the correct value of
Γc is needed. This implies that after every transition new transition rates
at each site must be calculated (if they have changed). The task becomes
feasible if the energy barriers associated with the transitions depend only
locally of the neighborhood of a site. In this case the local configuration at
each site can be determined and the corresponding transition rate associated
with that particular neighborhood. Thus the whole algorithm highly relies
on the discrete nature of the problem. However, there has been a recent
attempt to extend the method also to a continuous set of transitions [79].

Another drawback of BKL is that it is much more complicated to implement
on a computer than the Metropolis method. For example, to choose an event
with the correct weight one must know the rates of all sites in the system.
One can order all sites with the same rate into the same class, choose first
between the classes, and then choose the site within the class with the
uniform probability [75, 80]. After the transition the changed classes must
be updated. Another way is to construct a binary tree where searching an
event is fast [81] but the updating the tree is slightly more complicated than
with the event classes.

4.2 Particle coalescence method

Calculating the average quantities in island growth from MC simulations can
be done in reasonable computing time. However, to calculate e.g. the size
distribution function roughly the same statistics is needed for every island
size to have good data. This can be a very heavy computational task with
a realistic MC simulation. Also, if one needs to study the island population
dynamics using a realistic description of island morphology, complications
due to geometric effects arise. To circumvent these problems one can use the
particle coalescence method (PCM) [76] which is an example of a traditional
MC method. The idea of PCM is to treat all islands as point-like, i.e.
an island occupies only a single lattice site with a label carrying its size.
In this way the rate kernels K(i, j) can be specified exactly without any
complications arising from island geometry. The events are then conducted
stochastically using the kernels as probabilities for the transitions. Thus in
this point-island limit the rate equations [Eq. (2.7)] are simulated exactly
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with PCM [76]. There is no need to restrict PCM for point islands but then
one must take into account geometric effects due to finite sizes of islands.
One could calculate the kernels for example in the microscopic simulations
and use them as input to PCM simulations [76]. It must be emphasized
that PCM is not only related to island growth but it can be used to solve
any problem where the rate equations are needed. Depending on the nature
of the problem either PCM or numerical integration can be used.

The PCM simulations of island growth are carried out as follows. Let us
first assume that the model concerns only aggregation events between is-
lands. The system consists of a lattice with some distribution of islands.
An island is chosen from the island list in the system and a random lattice
site is chosen. If the final site is empty the island is moved into that site
with uniform probability, otherwise one tests for an aggregation event with
probability given by the kernel K(i, j). If the aggregation event is accepted,
a new island is formed with size s = i+ j, otherwise islands are left in their
original positions in the lattice. The fragmentation events can be accounted
for as easily as aggregation. With fragmentation, an attempt is made to
break the island. If this is not successful, an aggregation event is attempted
as described above. The fragmentation event is successful with probability
given by the fragmentation kernel F (i, j). If the external particle flux is
included, deposition events occur at the rate given by the flux parameter Φ
such that at every Φ−1th MC step a particle is deposited.

It must be emphasized that island jumps into empty lattice sites with equal
probability are conducted only because of the MF assumption. Rate equa-
tions describe the system only in some average sense that applies to PCM,
too. The MF approach is valid only if the spatial density of islands is uni-
form. In other words, in PCM the island lattice must be mixed enough so
that on the average every island has non-zero probability to aggregate with
any other island. If the jumps into empty sites are not introduced artificial
correlations build up due to the incorrect implementation. It turns out,
however, that the superfluous island hopping can be suppressed as will be
discussed in the next Section.

Even if PCM is suitable strictly speaking only for simulating the system in
the MF sense, one can mimic the effect of spatial correlations using different
ways to choose aggregation and jump events [76]. Once the island is chosen
the final site can be taken with the nearest neighbor (NN) or MF rule.
With the NN rule one chooses the nearest neighbor site in the lattice and
attempts an aggregation event or a jump if the site is empty. With the
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MF rule any site in the lattice can be chosen. If there were any deviations
between these two rules there would be deviations also in the real system due
to spatial correlations between neighboring islands [76]. This would then
mean that the spatial dimension is less than the upper critical dimension
for the system. In larger dimensions spatial fluctuations can be neglected.

4.3 Revised particle coalescence method

As discussed above the MF assumption implicit in PCM requires that is-
lands on the lattice must be mixed since the lattice itself does not represent
any physical object. In practice the mixing can be implemented by allowing
islands to jump into an empty lattice site with an equal probability. Im-
plementing mixing in this way is straightforward but also time consuming.
For example, in a 2D lattice with the system size L2 = 104 and Nisl = 500
islands the probability for an island to jump into an empty site instead of
an aggregation attempt is (L2 −Nisl)/L

2 = 0.95. This becomes even worse
if the system size is increased since initially Nisl is very small.

Next we describe a new and fast method which improves the performance
of PCM. These are unpublished results obtained by the author [1]. It was
already realized in the original papers of PCM that picking an island from
the island list, attempting the aggregation event with another island, and
putting the resulting island (or islands) back to the list would be a good
MF approach [76]. This could have been implemented e.g. with the sim-
plified cluster-cluster aggregation model [82]. However, in this simplified
picture the connection between physical time and simulation time step is
not possible [76]. The mixing of the island list through island hopping was
introduced in order to be able to study correctly the time dependence of
the aggregation process [76], otherwise, for example, the dynamic exponent
would be incorrect.

We adopt the notion that in the simulations the correct time step is not a
constant but rather a stochastic variable in analog with the BKL method
in Section 4.1. The BKL time becomes the same as the constant step on
the average after many events. By introducing the variable time step the
correct time development is obtained and there is no need for the actual
lattice with islands and empty sites. One needs only the list of islands in
the system and an imaginary system size L since the overall deposition rate
depends on L.
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In traditional MC the total transition rate is not known but a transition be-
tween configurations c and c′ is performed with the probability νc→c′/νmax

(see Section 4.1). It can be shown that in traditional Monte Carlo the
correct time step can be drawn from the distribution given by Eq. (4.1)
with Γc replaced by ΓM = Nνmax [83], where N is the number of all pos-
sible transitions in the system. In other words, at every step the physical
time is incremented with ∆t drawn from the correct distribution, no matter
whether the transition attempt c→ c′ is successful or not.

This procedure can be easily generalized to include aggregation, fragmen-
tation, and deposition. One has to count at every step all possible events
for different processes which gives a transition rate for each process. Then,
the total rate is given by ΓM = Γdep + Γagg + Γfrag = Ndepν

dep
max +Naggν

agg
max +

Nfragν
frag
max, where Ndep is the number of possible deposition events, and νdep

max

is the corresponding maximum transition rate. Nagg, Nfrag, νagg
max, and νfrag

max

are the corresponding quantities for aggregation and fragmentation events.
The event is randomly chosen according to the total rates of the event
classes. One subtlety must be kept in mind, however. If the underlying
lattice structure of the original PCM is removed deposition and fragmenta-
tion rates must be changed accordingly. This is due to the fact that jumps
and aggregation events are grouped together where jumps correspond to
waiting between two aggregation events. This leads in the new picture to
shorter times between two fragmentation or deposition events. An obvious
correction term is given by the number of empty sites removed from the
system L2 −Nisl. Thus for each process one has the rates:

Γagg = 2K0Nisl(Nisl − 1);

Γfrag = νfrag
maxNisl(L

2 −Nisl); (4.2)

Γdep = L2K0

R
(L2 −Nisl),

where K0 is the prefactor of the aggregation kernel, L2K0/R = Φ is the
deposition rate, R = K0/Φ, and νfrag

max depends on the specific form of the
fragmentation kernel. If the fragmentation kernel has the form F (i + j =
s) ∝ sα(s − 1) with α > −1, then νfrag

max = F (smax), where smax is the max-
imum island size in the system. Note that the correction term is included
both in the fragmentation and deposition rates. Using the exact time steps
and thus avoiding unnecessary island jumps needed to implement the MF
approach makes the simulations faster even by a factor of 2000. With this
improvement one can simulate at least five orders of magnitude inR whereas
with the old PCM only two orders of magnitude is feasible.
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Results

In this Chapter we provide some insight into the problems posed in the
Introduction. New scaling relations in island growth in the case of the
aggregation with fragmentation and deposition are presented followed by the
results on the stability of circular islands. Then the meandering instability
during step-flow is discussed and the selection of the meander wavelength
and the invariant profile shape are demonstrated. At the end, coupling
between island growth and meandering instability on vicinal surfaces is
discussed.

5.1 Aggregation, fragmentation, and deposi-
tion

Generalizing the rate equations for aggregation to include fragmentation
and deposition is straightforward. The final equation attains the form [31]:

dns
dt

=
1

2

∑
i+j=s

[K(i, j)ninj − F (i, j)ni+j]

−
∞∑
i=1

[K(i, s)nins − F (i, s)ni+s] + Φδs,1

(5.1)

where K(i, j) and F (i, j) are the aggregation and fragmentation kernels,
respectively, and Φ is the particle flux. The kernels are assumed to have
homogeneous forms: K(ai, aj) = aλK(i, j) and F (ai, aj) = aαF (i, j), where
a > 0 is a constant. The homogeneity exponents λ and α are the input
parameters of the model together with the ratiosR = K0/Φ and κ = F0/K0.

The scaling functions of the size distributions and the scaling properties of
the mean size in aggregation with fragmentation suggest the scaling forms
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(µ, α) y β γ δ ψ0

(2,0) 1/4 0.87 0.52 2.95 1.32

(2,−1
2
) 2/7 0.88 0.53 2.70 1.34

(1, 0) 1/3 1.12 0.63 1.95 1.50

(1,−1
2
) 2/5 1.13 0.59 1.55 1.63

Table 5.1. The scaling exponents y, β, γ, and δ and the constant ψ0 as
defined in the text. The exponent y = 1/(µ + α + 2) is given by the MF
relation. The analytical predictions are given by β = 2/(1 + µ), γ = β/2,
and δ = 1 + µ+ α. Errors are ±0.15 for β and γ, and ±0.05 for δ.

also in the present case. The scaling exponents for the mean island size and
the size distributions are derived in Appendix A together with the expression
for the scaling function of the mean size. For the size distribution an ansatz
of the form is proposed [31]:

g(x) = Axδ exp(−cx), (5.2)

where A and c are constants and the scaling function g(x) is related to the
function f(x) in Eq. (2.6) as g(x) = xf(x). The task now is to determine
the scaling exponents, in particular δ, since the size distribution specifies
completely the problem once s̄ is known.

In Publication I the scaling properties of the size distributions and the mean
quantities have been simulated with PCM described in Section 4.2. The
reaction kernels for aggregation and fragmentation were chosen to be [31]:

K(i, j) = K0ϕ(i, j) = K0(i−µ + j−µ);

F (i, j) = F0φ(i, j) = F0(i+ j)α,
(5.3)

where the aggregation kernel takes the form K(i, j) ∝ Di + Dj in two di-
mensions [36], and Di ∝ i−µ is the diffusion coefficient of an island of size
i. The form of the fragmentation kernel leads to the total fragmentation
rate F (s) =

∑
i+j=s F (i, j) ∝ sα(s − 1) [44]. Thus the aggregation and

fragmentation kernels are homogeneous functions with the homogeneity ex-
ponents λ = −µ and α, respectively. In simulations we used the values
1 ≤ µ ≤ 2 which are reasonable choices for the island diffusion on metal
surfaces [84, 85], and −1/2 ≤ α ≤ 0, assumed to be reasonable in the case
of ion-beam assisted deposition (IBAD) [86]. Other details are given in
Publication I.
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Figure 5.1. The scaling function for the mean size Ψ(Θ) [Eq. (A.8)] is
displayed for the cases (µ, α) = (2, 0), (2,−1

2
), (1, 0), and (1,−1

2
) with the

parameters 10−7 ≤ κ ≤ 10−5 and 0.5×105 ≤ R ≤ 2.0×106. The exponent β
is measured from the slopes for Θ < 1. In all cases the mean field exponent
y = 1/(µ+α+ 2) for aggregation-fragmentation gives a good data collapse.
Values for β and ψ0 are reported in Table 5.1.

Simulation results for the scaling function for the mean island size confirm
the scaling form proposed in Eq. (A.8). The scaling function is plotted
in Fig. 5.1 as a function of the scaled coverage for various values of the
homogeneity exponents and the parameters κ and R. The scaling function
behaves as a power-law for small argument values and approaches a con-
stant at large values for all combinations of (µ, α), κ, and R. Only at the
cross-over region there are some deviations from the monotonic behavior
for (µ, α) = (2, 0). For the smallest values of κ the data points are in the
power-law regime of the scaling function with the exponent β reported in
Table 5.1. The measured values of β are larger than the result β = 2/3
obtained in the point-island approximation during irreversible growth [17].
The value of γ is consistent with models where adatom detachment occurs
easily [15], but larger than MC simulation results with mobile islands where
γ ≈ 0.4 has been obtained [14,87].

Figure 5.2 shows the limiting forms of the scaling function g(x) for different
values of the homogeneity exponents (µ, α). The solid lines are fits to the
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Figure 5.2. The scaling function g(x) is shown with the homogeneity
exponents (µ, α) indicated in the figure. The solid lines are fits to the
function Eq. (5.2). For x > 1 the scaling function becomes independent of
the input parameters of the model.

function Eq. (5.2). The scaling function has a distinctive behavior for x < 1
depending on both the µ and α exponents. For x > 1, however, the scaling
function becomes independent of the homogeneity exponents, in addition to
the parameters R and κ. Note that in Publication I it was anticipated that
with deposition the value of δ should be smaller than without the flux. The
exponent δ was ascribed to the value δ = 2 + µ in the case of aggregation
with fragmentation [47] which should read δ = 1 + µ. A more reasonable
value δ = 1 + µ+α has been derived [48] which depends both homogeneity
exponents, in agreement with Eq. (A.6).

To supplement Publication I we give some new results, including analytical
predictions for the exponents β = 2/(1 + µ), γ = β/2, and δ = 1 + µ − α
derived in Appendix A. The exponents β and γ reported in Publication I
were afterwards found to deviate from the analytical predictions. However,
the measured values for the exponents β and γ are consistent with Eq. (A.4).
Both analytical and numerical values of β and γ increase as µ decreases,
independently of α. The measured values for the exponent δ given in Table
5.1 and Eq. (A.6) are in good agreement, both depending on µ and α.
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Figure 5.3. The numerical integration of Eq. (5.4) is shown for the case
(µ, α) = (2, 0). The mean size is scaled with s̄ ∼ θy where y = 1/4 with
these choices of the homogeneity exponents. The inset shows how the scaling
exponent behaves as a function of coverage, starting from β = 2/3 and
approaching y = 1/4. The units are arbitrary.

Deviations in β and γ can be attributed to the limited parameter range.
Measuring the exponents roughly within a decade produces uncertainties
to the values. This is confirmed by simulations using the revised PCM [1].
With the revised PCM much better averages and many orders of magnitude
in parameters can be studied within a reasonable computation time. The
measurements of β and γ with the revised method give the exponent values
close to the analytical predictions. This is also confirmed by the numer-
ical integration of the differential equation for the mean island size. It is
obtained from the generalized Smoluchowski equation by multiplying Eq.
(5.1) with s2 and summing over s. This gives the equation for the second
moment M2 ≡

∑
s s

2ns. The equation for s̄ follows from the definition since
ds̄/dt = (dM2/dt− Φs̄)/θ, leading eventually to

d(θs̄)

dθ
= aRθ2−λ(θs̄)λ − bκθ−α−1(θs̄)α+2 + 1, (5.4)

where a and b are constants depending on the specific forms of the reaction
kernels. The result of the integration in the case (−λ, α) = (2, 0) is shown in
Fig. (5.3). The scaling assumption implies that at later times s̄ ∼ θy. Thus,
by plotting s̄θ−y one obtains a straight line at later times, and a power law
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Figure 5.4. Scaled size distributions from IBAD experiments [8] with 400
eV (M) and 4 keV (2) Ar+ ion energies are compared with vapor deposition
(©) [8], and the PCM results for κ = 0 with µ = 2 (∗), and for κ = 10−5

with (µ, α) = (1, 0) (+). The solid line is the scaling function for the latter
case.

s̄ ∼ θβ−y at the onset. The inset shows the behavior of the scaling exponent
of s̄ in the semi-logarithmic scale. This is calculated through the logarithmic
derivative d log s̄/d log θ. As can be seen from the figure, the exponent starts
from the initial value β ≈ 0.65 and approaches β ≈ 0.25 in the final stage,
in good agreement with the analytical values β = 2/3 and β = y = 1/4,
respectively. Note that initially the regime of constant β is small, another
possible origin for the deviations in the measured values.

We performed most of the simulations using both MF and NN aggregation
and fragmentation rules (see Section 4.2). Using these different rules makes
it possible to check the effect of spatial fluctuations [76]. It was found that
only for the smallest fragmentation rates κ < 10−7 were there deviations in
the scaled size distributions, and for κ ≥ 10−6 all differences between MF
and NN rules vanished. These findings were also checked by numerically in-
tegrating the rate equations in some representative cases and by performing
independent MC simulations with a few parameter values. In all cases the
data collapsed into the single curve, independent of the method. This sug-
gests that spatial fluctuations have no effect whatsoever in aggregation with
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fragmentation and deposition for the spatial dimensions d ≥ 2. This implies
that the upper critical dimension dc < 2, i.e. in d > dc spatial fluctuations
are not important, in accordance with aggregation and fragmentation [44].
In contrast, in aggregation dc is a model dependent quantity given by dc = 2
for the aggregation kernel used here [37,88].

Finally we compare the PCM results with IBAD experiments. IBAD is
a deposition technique where energetic ions are used during deposition to
improve quality of growing layers. Using IBAD one can prevent formation
of three-dimensional surface structures such that two-dimensional layer-by-
layer growth prevails leading to improved smoothness of a surface [89]. Dur-
ing IBAD island growth is different from growth without ion bombardment.
For example, the mean island size is smaller and the size distributions are
broader than in thermal deposition [89] due to ion-enhanced adatom and
island mobilities and island dissociation [10]. Fig. 5.4 shows a compari-
son between the scaled size distributions obtained from the PCM simula-
tions [31, 90] and IBAD experiments [8]. For aggregation with deposition
the size distribution function is highly peaked around the mean value and
clearly differs from the experimental curve. However, the size distribution
function for aggregation with fragmentation with the homogeneity expo-
nents (µ, α) = (1, 0) has qualitatively similar form to experimental results
for ion bombardment. Only for large argument values there are deviations.
These deviations might indicate coalescence of large islands during experi-
ments which is not taken into account in PCM.

The results discussed above of island growth show that including fragmen-
tation does change scaling of the size distributions and the mean island size.
Moreover, the results clearly reveal that MF treatment is adequate and cor-
relations do not play any role during growth when island fragmentation is
included.

5.2 Bales-Zangwill instability in radial ge-
ometry

It is of interest to study the BZ instability in radial geometry, in particular
in the case of circular islands and a crystalline cone. The cone consists
of a stack of concentric islands acting as a prototype for a small circular
nanostructure. Decay and bunching of such structures have been recently
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Figure 5.5. The growth rate ω(q) as a function of the wave number q =
n/R in the one-sided model. The radius of the step increases in the direction
of the arrow. The stable regime corresponds to q for which ω(q) < 0. All
steps with R < Rc are stable against meandering.

studied in detail [91] but only in the case of symmetric attachment from up-
per and lower terraces. Recently, experimental evidence of the meandering
instability in radial geometry on Si(111) surfaces has been found [92].

The linear stability analysis of the BZ instability in radial geometry is re-
ported in Publication II. The functional form of the growth rate ω of the
perturbation in the most general case turns out to be complicated. In the
following the results of the two cases are presented, viz. k+ →∞, k− → 0
(one-sided model), and k+ 6= k−, both non-zero and finite (asymmetric
model). It turns out that also in radial geometry the step edges can exhibit
instability of diffusional origin in analogy to the BZ instability on a stepped
surface. The details of the calculation of the growth rate of the instability
are outlined in Appendix B.

Consider first the one-sided model. In Fig. 5.5 the growth rate in this
case given by Eq. (B.3) is plotted against the wave number q = n/R with
various values of the radius R. It turns out that ω has a limiting form as
R increases which is equivalent to decreasing curvature. From the figure,
there exists a radius Rc such that all steps with R < Rc are stable for all
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Figure 5.6. The critical wave number qc is shown as a function of the
capillary length ξs for the one-sided model. The circles are numerical values
from Eq. (B.3), the upper curve is the BZ result, and the lower curve is
Eq. (5.6) for xsqc � 1. The inset displays the case L� xs. The corrected
results follow rather well the full expression whereas the BZ curves deviate
for large values of ξs.

q and steps with R > Rc are unstable for perturbations q < qc, where qc
is the critical wave number defined through ω(qc) = 0. The critical wave
number depends on curvature such that qc decreases with increasing κ. This
means that the corresponding critical wavelength of instability changes to
larger wavelengths. This is reasonable since the whole instability is due to
competition between the line tension of the step edge and diffusional driving
field from the terrace. For large curvatures the step edge is highly curved
and small perturbations are smeared out by the line tension. For small
curvatures the line tension does not have a significant effect and unstable
growth with a band of wave numbers is possible.

For small curvatures it is possible to give analytical expressions for the
growth rate, the critical radius, and the critical wave number in a few limit-
ing cases. The small curvature is given by the limit n,R→∞ such that the
ratio q = n/R remains constant. The growth rate has the limiting form [93]:

ω(q)

Ω∆Φ
=
ωBZ(q)

Ω∆Φ
+
xs
2R

Σq, (5.5)
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where ωBZ is the BZ expression [19], and

Σq =− [2 + L2q2] tanh(L) + [L2q2 + Λ−2
q ] tanh2(ΛqL) tanh(L)

+
{
xsLq

2Λ−2
q + Λ−1

q [L2q2 + Λ−2
q ] tanh(ΛqL)

+ tanh(L)− 2ξs} / cosh(ΛqL) cosh(L)

+ 2ξs + ξsx
2
sL

2q4 − ξsxsq2[L2q2 + Λ−2
q ] tanh2(ΛqL),

where Λq =
√

1 + (xsq)2, L is the terrace width, and all function arguments
have been scaled with xs. Using this form one can determine the critical
wave number in the limiting cases. For L� xs we have [93]:

xsqc =


√

1
ξs
− xs

R
(2− ξ−1

s ), xsqc � 1;√
4
3
(1− 2ξs)− 2xs

R
, xsqc � 1.

(5.6a)

For L� xs (and L2q2
c � 1) we have [93]:

xsqc =

√
L

2xsξs
− 1− L

R
. (5.6b)

As R→∞ the results approach the BZ expressions [see Eqs. (3.8)]. Using
these expressions one can define the critical radius Rc such that steps with
R < Rc are stable. In the long-wavelength limit qc ≈ 0 one obtains:

Rc =

{
3xs

2(1−2ξs)
, L� xs (xsqc � 1);

2ξsL
L−2ξs

, L� xs (L2q2
c � 1).

In radial geometry instability is suppressed by curvature and the step edges
smaller than the critical radius Rc are always stable against meandering. As
can be seen above, Rc depends on the microscopic parameters in the system,
e.g. diffusion coefficient, driving force, and the line tension of the edge.

In Fig. 5.6 the asymptotic results for qc are compared with the BZ expres-
sion as a function of the capillary length in the case L� xs, xsqc � 1. The
results with 1/R corrections follow the full expression while the BZ results
have deviations for large values of ξs. As ξs increases qc approaches zero
and for large enough values of ξs the step edge is always stable. In the inset
the case L� xs is shown which has a similar behavior.

The complete expression for the growth rate with an arbitrary phase differ-
ence between adjacent steps in the asymmetric case is rather complicated.
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Figure 5.7. The growth rate ω as a function of the wave number for
different values of the sticking coefficients k+ (from below) and k− (from
above). If k− ≤ k+ the steps are always stable. The inset displays the effect
of the phase difference of the perturbations between adjacent steps.

However, numerically it behaves in a similar way as the one-sided case. In
Fig. 5.7 the numerical values of the general expression for ω are shown
in the asymmetric model. It is found that when the sticking coefficients
approach each other the edge becomes stable against meandering. This
implies that the one-sided model is the most unstable one as in the case
of rectangular steps [19]. The phase-difference φ of the perturbations be-
tween the adjacent step edges introduces one degree of freedom. The plotted
growth rates are shown in the inset of Fig. 5.7. The results show that the
in-phase mode where adjacent steps have perturbations in the same phase
is the most unstable growth mode. This is also the case in the rectangular
geometry [94].

In radial geometry the sizes of unstable circular steps turned out to be
large. It also seems that the time scale for the evolution of the meandering
instability is rather large compared with the advancement of the steps in
radial geometry being of the order of seconds [92]. Thus island morphology
is rather stable, in particular on vicinal surfaces, in the time and length
scales of interest.
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Figure 5.8. Snapshots of step profiles at T = 240 K with Φ = 6 × 10−3

ML/s with close-packed step edges in (a) and (b), and open step edges in
(c). In the last case KESE stabilizes the step edge. Coverage is θ = 1.0 ML
in (a), θ = 5.0 in (b), and θ = 4.0 in (c). Horizontal and vertical scales are
given in the units of the lattice constant.

5.3 Kink Ehrlich-Schwoebel effect

Next we consider the meandering instability of step edges caused by the
kink Ehrlich-Schwoebel effect (KESE) [20]. The wavelength selection of
the meandering and an invariant meander shape are discussed. The results
demonstrate the emergence of a new length scale and the importance of
step instabilities during growth.

5.3.1 Wavelength selection

The BZ instability is basically due to asymmetric mass currents onto the
step edge from the upper and lower terraces. This asymmetry has in many
cases its origin in the ES barrier at the step edge. Recently it has been
proposed that an analogous situation may arise also in one dimension where
the barrier is denoted as the kink ES barrier [20]. This barrier suppresses
adatoms for going around the kink sites at the step edge. The corresponding
kink ES effect (KESE) leads to growth of an instability at the step edge
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Figure 5.9. The spatial correlation function of the step profiles C(x) is
shown along the close-packed direction for coverages θ = 0.1, 1.0, and 2.0
ML at T = 270 K and Φ = 6 × 10−3 ML/s. The arrow denotes the wave-
length obtained by calculating the average separation of the meanders. The
inset shows the corresponding Fourier modes of the squared step profiles.

with a dynamically selected wavelength [20]. In following the results of
Monte Carlo simulations using the BKL algorithm explained in Section 4.1
are presented. These results with the simulation details are reported in
Publication III.

Fig. 5.8 displays snapshots of the step profiles for a few coverages. The
formation of structures is evident. At the onset the unstable patterns de-
velop independently at the adjacent steps and begin to phase-lock at the
largest coverages studied. However, the formation of unstable patterns hap-
pens only at the close-packed steps. For the open step edges there are no
evidence of periodic structures as shown in Fig 5.8 (c). This is in con-
trast to recent experiments where unstable patterns have been observed
during growth of vicinal Cu surfaces with both close-packed and open step
edges [63]. Qualitatively, KESE should stabilize the open step edges since
clearly the particle currents at the edge are towards the step. This implies
that protrusions at the open edge are only small fluctuations around the
average position. Thus the origin of the meandering instability at open
step edges remains an open question. A possible explanation could be that
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Figure 5.10. Temperature dependence of the meander wavelength λ is
shown in an Arrhenius plot at θ = 2.0 ML with Φ = 6 × 10−3 ML/s
at temperatures T = 240 − 310 K. The solid line is the least squares fit
to the data points with a slope given in the figure. The inset shows the
flux dependence of λ on a log-log scale at θ = 2.0 ML, T = 300 K with
Φ = 3 × 10−3 − 1.0 ML/s. The solid line is the prediction for λ based on
the dimer nucleation length.

impurities (S on Cu surfaces) attach irreversibly to open step edges and
act as a pinning centers for growing fluctuations. Another cause could be
strain effects at open steps which would influence the energy barriers and
the relative importance of the microscopic processes at the open edges.

To quantify the unstable wavelength one can extract the step edge profiles
and count the number of wave crests. Another method is to use a correlation
function of the step profiles. If the profiles have any periodicity the spatial
correlation function should have it, too. The step profile correlation function
is defined as:

C(x) = 〈ζ(x+ x0)ζ(x0)〉, (5.7)

where ζ(x) = h(x)− h̄, h(x) is the step profile, and h̄ is the average profile.
The brackets denote averages over noise and all steps in the system. The
correlation function is shown in Fig. 5.9 at different coverages. It can
be seen that C(x) is rather independent of coverage indicating that the

40



5.3. Kink Ehrlich-Schwoebel effect

structures saturate at the early stage of growth. The periodic structure is
revealed through the periodicity of C(x). The arrow denotes the value of
the wavelength measured by counting the number of unstable structures at
the edge. In the inset the Fourier transform of the squared step profiles is
shown. There are many different Fourier modes contributing to the profile
shape, the dominant one close to 2π/λ. The myriad of Fourier modes is due
to irregular shape and front-back asymmetry of the step profiles. Only for
a perfect periodic sinusoidal shape the Fourier spectra would have a single
sharp peak.

The length scale extracted from the correlation function data can be com-
pared with the analytical prediction for the wavelength of unstable struc-
tures. Assuming that dimers are stable at the step edge leads to the
form [73,95]:

λ ≈ 1

2

(
12Ds

Φs

)1/4

,

where Ds ∝ exp(−Ed/kBT ) is the diffusion coefficient along the straight
edge, Ed is the corresponding diffusion barrier, and Φs = ΦL is the flux
onto the edge. This form predicts that the temperature dependence of λ has
an effective barrier Eeff = Ed/4, and the flux dependence has the exponent
−1/4. The BZ prediction would give a larger barrier and Φ−1/2. In Fig.
5.10 the temperature dependence of λ is shown in an Arrhenius plot. The
effective barrier extracted from the data gives Eeff ≈ 75 meV, in agreement
with the predicted value Ed/4 = 65 meV based on the energy parameters
of the model. The inset shows the flux dependence plotted together with
the predicted curve on a log-log scale. The data follow rather well the
expected Φ−1/4 line. Only for the largest fluxes there are some deviations,
probably due to island nucleation on terraces. Fitting the power law to
the data points up to Φ = 0.1 ML/s gives Φ−0.23, in agreement with the
expected power-law. These results are in good agreement with the recent
experiments [63].

5.3.2 Shape of step profiles

The average shape of the unstable step patterns is also an interesting issue
since it can provide information on microscopic processes contributing to the
formation of instability. The results of Publication III had some evidence
of phase-locking of the growing unstable structures on step edges for large
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coverages. Previous MC simulations with the simplified SOS model have
shown that a triangular shape is expected for strong KESE but a rounded
shape should be obtained for weak KESE in the case of an isolated step
[20]. The simulation results reported in Publication III, however, are in
disagreement with that conclusion. For strong KESE it was found that at
the onset of growth the profiles have a triangular shape which changes to
more rounded form as coverage increases [96]. In the following the profile
shapes are discussed based on Publication IV.

Fig. 5.11 shows the scaled average profile shapes calculated at θ = 0.2, 1.0,
and 3.0 ML at T = 300 K with Φ = 8× 10−2 ML/s. The average shape has
been obtained from the complete profiles by identifying the meanders ζ(x, θ)
(see Fig. 5.8), averaging over them, and scaling the average meander by the
width w defined as w2(θ) = 〈ζ(x, θ)2〉. As coverage increases the scaled
average profile approaches a limiting shape which is independent of θ. The
shape also seems to become more rounded as θ increases. The inset shows
the same profiles without scaling with the width.

Quantitatively, the approach towards an invariant shape can be studied
by considering the nth lateral moments of the profiles. The moments are
defined through

Mn(θ) = 〈ζ(x, θ)xn〉 . (5.8)

For example, M2 is the area of the parabola weighted with the profile. In
Fig. 5.12 (a) the even moments up to n = 10 are shown as a function
of coverage on a semi-logarithmic scale. It can be seen that the moments
saturate around θ = 1.0 ML indicating that the profile shape also saturates
at the same coverage. This is interesting since the width of the profiles does
not show any sign of saturation up to θ = 10.0 ML. Moreover, w ∝ θ0.3

which is in contrast to numerical integration of the continuum step equations
where w ∝ θ1/2 has been found [61]. In addition, recent SOS simulations
indicate that w ∝ θ in the case of the BZ instability and saturation of w in
the case of KESE [66]. However, a small coverage regime in our simulations
cannot be used to conclusively determine the value of the width exponent
of the profiles. If anything, there might be a transient regime up to tens of
monolayers before the power-law or saturation regime can be reached.

The results indicate that the average meander shape obtained from the
simulations and the corresponding lateral moments are rather insensitive to
the parameters of the system, viz. temperature and flux [97]. This implies
that the invariant profile shape is independent of the microscopic diffusion
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Figure 5.11. The scaled average meander profile ζ(x)/w is shown at T =
300 K for Φ = 8 × 10−2 ML/s at θ = 0.2 ML (3), θ = 1.0 ML (©), and
θ = 3.0 ML (2). The inset shows the average meanders without scaling.
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Figure 5.12. (a) The even lateral moments Mn (from n = 2 up to n = 10
from top to bottom) are displayed as a function of coverage on a semi-
logarithmic scale. (b) The width w of the step profiles as a function of
coverage behaves as w ∝ θ0.3 up to θ = 5.0 ML.
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Figure 5.13. The average pattern shape is shown at T = 300 K, θ = 8.0
ML with Φ = 6 × 10−2 ML/s (2). The solid line is the profile obtained
from the integration of the stationary continuum equation. The inset shows
differences in the profiles ∆ = [ζall − ζi]/ζall, where ζall is the profile with
all currents included, and ζi (i = k, e, SB) denotes the current where only
a small contribution from Ji is included in the integration.

processes at the step edge. The invariance of the profiles can be explained
by the geometric constraints in the phase-locking regime where the steps
advance at the same velocity at the same positions. This assumption can
be checked by comparing the simulation profiles with the profiles obtained
by the integration of the continuum step equations in the stationary limit.
The step edge obeys a dynamic equation [61,72,73]:

∂ζ

∂t
= −∂Jtot

∂x
,

where Jtot = Jk + Je + Jd + JSB, and the partial currents are given by
Eqs. (3.11)–(3.14). It should be noted that solving numerically the full dy-
namic equation is a non-trivial task even without the KESE current [61,74].
Therefore, we concentrate on a stationary regime where ∂tζ = 0. In this
limit one solves m(x) = (∂xζ)/

√
1 + (∂xζ)2 from the equation Jtot = 0.

When m(x) has been determined the meander profile ζ can be obtained
by numerically integrating ∂xζ = m(x)/

√
1−m(x)2. For boundary condi-

tions one uses m0 such that the integration is performed within the interval
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Figure 5.14. The partial mass currents Eqs. (3.11)–(3.14) are shown where
integrated profile is used as an input. Note that in (c) and (d) the currents
are multiplied with factors 10 and 100, respectively.

−m0 ≤ m(x) ≤ m0. The value m0 ≈ 0.97 is consistent with the slope of
the simulation profile.

In Fig. 5.13 the simulation profiles are compared with the solution to
the stationary continuum equation. In agreement with the simulations the
shapes are insensitive to the parameters T and Φ as long as they vary in sen-
sible limits. The inset shows the relative differences between the complete
solution and those solutions where one of the partial currents is artificially
made small.

The mass currents (3.11)–(3.14) are shown in Fig. 5.14 where the inte-
grated profile is used as an input. The partial currents Jk and Je have the
largest contribution close to the origin whereas Jd dominates close to end
points. The curves suggest that there is a delicate balance between the
mass currents, the Gibbs-Thomson current Je compensated by the sum of
other terms. It must be emphasized that the compensation is effective only
for the invariant shape. Since the currents are extremely sensitive to the
specific form of the average profile, one cannot make conclusions using for
example a square shape as an input.
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a) b)

c) d)

Figure 5.15. Snapshots of surface configurations are shown on fcc(1,1,25)
surface at T = 240 K, Φ = 0.1 ML/s, and coverages (a) 0.1 ML, (b) 0.3
ML, (c) 2.0ML, and (d) 10.0 ML. The solid lines are the single-valued step
profiles and the black squares denote the center-of-mass positions of terrace
islands. The axes range up to 250 in the horizontal and 125 in the vertical
directions in the units of the lattice constant.

5.4 Mixing island growth and kink Ehrlich-
Schwoebel effect

In any real growth problem there are usually both pre-existing steps and
islands on a surface. Complications arise from the fact that both island
growth and step flow have their own characteristic length scales. On stepped
surfaces where KESE is operative the characteristic scale develops on step
edges as periodic meanders form [20,63,66,96]. On flat surfaces the scale can
be associated to the average distance between growing islands [16,17]. One
expects a non-trivial behavior of these scales when islands form on a vicinal
surface since the lengths have different scaling behaviors as a function of
D/Φ. Publication V is an attempt to bridge the gap between these growth
modes using BKL simulations on vicinal surfaces [98].
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Figure 5.16. (a) The meander wavelength λ as a function of coverage at
T = 240 K for Φ = 0.05, 0.1, and 0.5 ML/s from top to bottom. (b) λ as
a function of coverage at T = 200, 220, and 240 K for Φ = 1.0 ML/s. (c)
λ (©) and the island separation (NL)−1 (4) as functions of coverage at
T = 240 K for Φ = 0.75 ML/s.

In Fig. 5.15 the snapshots of the fcc vicinal surface are shown in the case
where island formation on terraces take place. The parameters are T =
240 K, Φ = 0.5 ML/s, and the terrace width L = 12.5a, where a is the
lattice constant, at coverages (a) θ = 0.1 ML, (b) θ = 0.3 ML, (c) θ = 2.0
ML, and (d) θ = 10.0 ML. From the figure it can be seen that at small
coverages steps meander and islands nucleate rather independently whereas
at large coverages islands and steps begin to coalesce leading to complicated
interplay between two growth modes. Islands attach to step edges due to
coalescence changing step morphology to complicated step profiles. The
step edge locally advances abruptly ahead if an island attaching to the
edge is large. These protrusions relax rather quickly such that the step
profiles attain the single-valued shape. For the highest fluxes, however, the
relaxation is not fast enough and vacancy islands are nucleated on terraces.

The changing and coupling of length scales are demonstrated in Fig. 5.16.
In Fig. 5.16 (a) it is shown how the meander wavelength λ behaves as a
function of coverage for fluxes Φ = 0.05, 0.1, and 0.5 ML/s (from top to bot-
tom). In all cases λ gradually decreases until it reaches a saturation value
depending on the flux. The approach to the saturation value depends on
the flux, too, such that for small fluxes the saturation takes place at larger
coverages. When the flux increases or temperature decreases one observes
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Figure 5.17. The scaled effective island density L2Neff is shown as a func-
tion of x = θΦ/Φc, where Φc = D/L6 for various values of L and θ ≤ 0.3
ML. The scaling of Neff implies that Neff ∝ xγ, where the value of the scaling
exponent γ depends on the regime.

a saturation regime. This is shown in Fig. 5.16 (b) where λ is plotted at
temperatures T = 200, 220, and 240 K for Φ = 1.0 ML/s. In all cases
the wavelength oscillates around the common mean value. This is proba-
bly due to complicated step edge profiles which are no longer single-valued
curves. This can lead to an erroneous determination of the exact value of λ
through the correlation function. However, the oscillations might indicate
alternating step-flow and island formation. Oscillations of reflection high
energy electron diffraction (RHEED) have been observed in layer-by-layer
growth originating from oscillations in step densities [11]. For a complete
layer one has minimum number of steps and minimum of RHEED intensity
whereas maxima are obtained when the number of islands on terraces has
the maximum value.

For small terraces island nucleation is dominated by the steps since many
adatoms attach to step edges instead of nucleating new terrace islands.
Quantitatively, one can use arguments of Refs. [27,72] to derive the scaling
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form for N on a vicinal surface. The island density becomes [98]:

L2Neff ∼
{

f, f � 1;
f 1/3, f � 1,

(5.9)

where f = θΦ/Φc, and the two regimes correspond to small and large ter-
races, respectively. Details can be found in Publication V. Fig. 5.17 displays
the scaled island density in the submonolayer regime. As can be seen from
the figure, at small argument values step-dominated scaling is valid and
for large x scaling for singular surface applies. This confirms that in the
submonolayer regime island separation and step-flow are independent.
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6

Summary and discussion

This thesis consists of studies related to pattern formation during surface
growth. The aim was to bridge the gap between traditional approaches
where island growth and step-flow are treated as separate growth modes.
Surface growth by molecular beam epitaxy (MBE) is rather limited in pa-
rameter ranges for smooth layer-by-layer growth and other techniques must
be utilize to improve the quality of growing layers, e.g., for large external
fluxes. The other methods, however, induce new processes to the simple
MBE picture such as island mobility and fragmentation, and consequently,
new scaling relations and length scales. Towards this end, we concentrated
on some important aspects of surface growth, namely island growth with
aggregation, fragmentation, and deposition, stability of circular islands, me-
andering instability during step-flow, and coupling between island formation
and step meandering.

In island growth, motivated by the ion-beam assisted deposition experi-
ments, aggregation with fragmentation and deposition were examined. The
scaling forms for the size distributions and the mean island size were pro-
posed and their validity confirmed with the simulations using the particle
coalescence method (PCM). Correlations between island separations and
sizes were shown to disappear due to island fragmentation. Additional
results supplementing the published ones were provided, in particular, an-
alytical estimates for the scaling exponents and the new improved version
of PCM. By numerical integration the analytical values for the scaling ex-
ponents of the mean island size were confirmed.

Stability of circular steps was analytically studied in the spirit of the Bales-
Zangwill (BZ) instability. Correction terms to the BZ results were derived
in the limit of the large step radius, such as the critical values for the wave
number of the unstable growth modes. A criterion for the critical step
radius was derived in the limit of long wavelengths. The results extend
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the BZ findings from rectangular to radial geometry and demonstrate that
rather large length and time scales are needed to observe the meandering
instability in radial geometry.

On vicinal surfaces stability of steps was examined with Monte Carlo sim-
ulations. At close-packed step edges meandering is caused by the kink
Ehrlich-Schwoebel effect instead of the BZ mechanism. The wavelength se-
lection and its scaling with respect to the deposition flux and temperature
were demonstrated, in agreement with recent experiments. The shape of
the average meander profile extracted from the simulation data attain an
invariant shape. This was compared with the integration of the continuum
step equation in the stationary limit. Both the continuum and simulation
profiles were insensitive to the model parameters.

Finally, simulations on vicinal surfaces were performed in conditions where
islands nucleate on terraces and step edges exhibit meandering instability.
In the submonolayer regime these two growth modes were found to be in-
dependent. After islands begin to coalesce with the step edges the coupling
between the island separation and step meandering emerges. The mixing
length scales were demonstrated to lead to an interesting growth mode with
a new length scale different from the original ones.

The results are of importance in constructing more realistic models of sur-
face growth. Several issues remain unresolved, though. It is plausible that
only single atoms can detach from islands, a realistic situation in island
growth. This leads to different homogeneity properties of the fragmenta-
tion kernel and possibly has consequences on scaling of the size distributions
and the mean island size. In step-flow growth, the origin of the observed
value of the exponent for the step profile width remains a puzzle as well as
meandering at open step edges. Also the scaling properties of the new length
scale in the case of coupling between island growth and step-flow deserves a
closer study. It seems likely that a full dynamic information of step-flow can
be probably obtained only through the continuum modeling. A reasonable
attempt would be to take nucleation into account in rate equations in two
dimensions in a realistic way. Another promising candidate could be based
on a phase-field approach [99]. Work in these directions is in progress.
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Appendix A

Derivation of the scaling
exponents

Here the scaling exponents for the mean island size and the size distribution
function are derived followed by the scaling function for the mean size. To
determine the scaling exponents, take the continuum limit s, i, s̄ → ∞,
s/s̄ = const. in Eq. (5.1), insert the scaling ansatz Eq. (2.6), and assume
that the integrals converge at both limits. This gives

1

s̄2
f(x)− θ ˙̄s

s̄3
[2f(x)− xf ′(x)] =

1

2
θ2s̄λ−3RG1(x)− θs̄α−1κG2(x), (A.1)

where ˙̄s is the derivative with respect to θ, f ′(x) = df/dx, x = s/s̄,
R = K0/Φ, and κ = F0/Φ. Note that the deposition term vanishes in
the continuum limit, and the only effect of deposition is to increase θ. The
functions G1,2(x) are given by

G1(x) =
1

2

∫ x

0

dyK(y, x− y)f(y)f(x− y)− f(x)

∫ ∞
0

dyK(x, y)f(y);

G2(x) =
1

2

∫ x

0

dyF (y, x− y)f(x)−
∫ ∞

0

dyF (x, y)f(x+ y).

(A.2)

There are two limits we are interested in. Physically, at the onset of growth
the fragmentation term is negligible, and we are left with the expression

s̄f(x)− 2θ ˙̄sf(x)− θ ˙̄sxf ′(x) = θ2s̄λ
R
2
G1(x). (A.3)

The only way that the coverage and x dependence can be separated is that
s̄ follows a power law. This implies that s̄ = θ2 Rs̄λ, from which it follows
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that s̄ ∼ Rγθβ, with the scaling exponents

γ =
1

2
β;

β =
2

1− λ
.

(A.4)

These are in contrast to pure aggregation where β = z = 1/(1 − λ), and
to aggregation with fragmentation where β = y. The exponent γ is not
defined in either of these cases since Φ = 0. In irreversible growth where
islands grow only by attachment of adatoms during growth one has β = 1
and γ = 2/3 [17] (β = 2/3 in point-island approximation [16]).

The scaling exponent δ for the size distribution function follows through the
x dependence of Eq. (A.1): G1(x) = G2(x). We insert Eq. (5.2) into the
relation between G1,2(x) with f(x) = x−1g(x) which gives

G1(x) = C1e−x xλ+2δ−1;

G2(x) = C2e−x xδ+α,
(A.5)

where C1 and C2 are constants depending on the explicit form of the reaction
kernels. Equating the powers of x of these expressions gives

δ = −λ+ α + 1. (A.6)

The same result is found also in aggregation with fragmentation [47].

At later times fragmentation becomes important and one presumably has
a quasi-stationary state where only θ increases. Thus the time derivative
of the size distribution vanishes [left hand side of Eq. (A.1)] and we get
similar to fragmentation that s̄ ∼ κ−yθy with the scaling exponent y =
1/(−λ+α+ 2) [Eq. (2.16)]. By matching the initial and late time relations
one has at the cross-over Rγθβc ≈ κ−yθyc , i.e. θc ≈ R−γ/ωκ−y/ω, where
ω = β − y. Using this value for the cross-over coverage one has

s̄ ∼
(
κ

θc

)−y
ΘyΨ(Θ), (A.7)

where Θ = θ/θc, and the scaling function Ψ(Θ) behaves as

Ψ(Θ) ∼

{
Θω, Θ� 1;

ψ0 Θ� 1,
(A.8)

where ψ0 is a constant.
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Growth rate in radial
geometry

In radial geometry the Helmholtz equation (3.2) and the boundary condi-
tions (3.3)–(3.5) keep their forms. The solution at the terrace bounded by
the perfect circular steps at R and R+L becomes [57] u0(r) = A0I0(r/xs)+
B0K0(r/xs), where R ≤ r ≤ R+L is the distance from the origin, and I0(x)
and K0(x) are the modified Bessel functions of order zero. The coefficients
A0 and B0 determined by the boundary conditions are A0 = −K ′0(R +
L) [Γ/R− τ∆Φ] /C0;B0 = I ′0(R + L) [Γ/R− τ∆Φ] /C0;C0 = K0(R)I ′0(R +
L)−K ′0(R + L)I0(R), where the prime indicates the derivative and all ar-
guments of the modified Bessel functions have been scaled with xs.

A linear stability analysis in radial geometry is performed by making a
time-dependent perturbation at both steps which bound the terrace. The
perturbation is given by:

r̃j(θ) = Rj + ε exp(inθ + ωt), (B.1)

where Rj is the radius of the jth terrace, ε is a small parameter, |n| ≥ 1
denotes the number of fluctuations at the step, θ is an angle, and ω is the
growth rate. Consider the terrace between the steps at R and R + L. The
solution to first order in ε is:

u(r, θ) = u0(r) + ε [AnIn(r/xs) +BnKn(r/xs)] exp(inθ + ωt), (B.2)

where In(x) and Kn(x) are the modified Bessel functions of order n. The
coefficients An and Bn are determined by the boundary conditions.

Consider for example the case where k+ →∞ and k− → 0, corresponding to
instantaneous attachment from the lower terrace and an infinite ES barrier
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in the upper terrace. In this limit the boundary conditions for u(r) simplify:

u(r) |+ = Γκ− τ∆Φ;

∇u(r) · n |− = 0;

V = V+ + V− = D∇u(r) · n |+ = V0 + ωε exp[inθ + ωt],

where the curvature is given by [100] κ(r) = 1
r
− ε

r2 (1 − n2) exp[inθ + ωt],
when expanded to the first order in ε. The boundary conditions lead to the
matrix equation for the coefficients: I ′n(R + L) K ′n(R + L) x13

In(R) Kn(R) x23

I ′n(R) K ′n(R) x33

 An
Bn

ε

 = 0,

where the last column is given by

x13 = B0 [K ′′0 (R + L)I ′0(R + L)−K ′0(R + L)I ′′0 (R + L)] /[xsI
′
0(R + L)];

x23 = B0 [K ′0(R)I ′0(R + L)−K ′0(R + L)I ′0(R)] /[xsI
′
0(R + L)];

x33 = x13 − ω
√

Ω2τ/D,

where all arguments have been scaled with xs. The matrix equation has
non-trivial solutions [i.e. solutions other than (An, Bn, ε) = (0, 0, 0)] if the
determinant of the matrix is zero. After some algebra one ends up with the
expression for the growth rate:

ω(n)

Ω∆Φ
=
b1
n + b2

n + b3
n

an
+ cn

ξsx
2
s

R2
(1− n2), (B.3)

where ξs = Γ/(xsτ∆Φ), and the coefficients are given by

an = [Î ′nKn − InK̂ ′n][Î1K0 + I0K̂1];

b1
n = [Î ′nKn − InK̂ ′n][I ′1K̂1 − Î1K

′
n];

b2
n = [I ′nK̂

′
n − Î ′nK ′n][I1K̂1 − Î1Kn];

b3
n = [I ′nKn − I ′nKn][Î ′1K̂1 − Î1K̂

′
n];

cn = [Î ′nKn − InK̂ ′n][Î ′nKn − InK̂ ′n],

where In = In(R), În = In(R + L), and similarly for Kn. If ω > 0 the step
edge is linearly unstable against meandering, otherwise it is stable. Using
asymptotic forms of the modified Bessel functions for large n Eq. (B.3)
reduces back to the BZ expression in the limit n,R → ∞, where q = n/R
remains constant.
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[14] P. Jensen, A.-L. Barábasi, H. Larralde, S. Havlin, and H.E. Stanley,
Phys. Rev. B 50, 15316 (1994).
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