
Jukka Kommeri

System management in Server
Based Computing with

virtualization

Helsinki University of Technology
Department of Electrical and Communications Engineering
Networking Laboratory

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80700989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

HELSINKI UNIVERSITY ABSTRACT OF THE
OF TECHNOLOGY MASTER’S THESIS
Author: Jukka Kommeri
Title: System management in Server Based Computing with virtualization
Date: 2nd October, 2008 Number of pages: 51
Department: Electrical and Communications engineering
Professorship: S-38
Supervisor: Professor Jörg Ott
Instructor: Tapio Niemi, PhD, Helsinki Institute of Physics

The purpose of this thesis is to study the use of virtualization in server- based com-
puting services. The results of this study were used to produce a prototype for the
Finnish National Technology Agency (TEKES) funded NETGATE 2 research project.
The prototype makes the installation of remote machines automatic and provides a
way to distribute centrally managed services.

The installation and configuration of different services need a lot of work and knowl-
edge. Many times this is repetitive as the services need to be installed in several
locations and repeatedly. In a large organization this forms a significant expense.
On the other hand small organizations cannot always afford an administrator and
the administrating work falls to the person most capable. This results in insecure
and unreliable installations. For these companies it would be beneficial to have the
services ready to use without any expertise in the matter.

We solved the above problem by creating a system to distribute centrally managed
services. This was done by enclosing generic services with their operating systems into
transportable system images. These images can then be run on top of a virtualization
platform as virtual machines. Images can be centrally created and maintained and
then reused in various locations. Virtualization provides the images with a standard
platform on which they can be placed.

The prototype uses the Xen virtualization and the Debian package management sys-
tem to manage a collection of virtual machine images and distribute them according
to the needs of the remote machines. The system gives the tools for automated
deployment of the base operating system and virtualization tools over Internet. It
also contains the tools for automated updates. In addition the system decreases the
amount of administrative work and removes the need for expertise from the remote
location.

Our prototype makes installation and management of large systems possible with less
work than conventional systems. The system has been tested in several locations
such the CERN library. The Debian package management system has proven to be
an easy way to start up virtualized services and Xen has been good choice for the
virtualization.

Keywords: SBC, virtualization, Xen, LTSP

iii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ
Tekijä: Jukka Kommeri
Tyon nimi: Palvelun hallinta palvelin keskeisessä ympäristössä

käyttäen virtualisointia
Päivämäärä: 2. lokakuuta 2008 Sivuja: 51
Osasto: Sähkö ja tietoliikennetekniikan osasto
Professuuri: S-38
Työn valvoja: Professori Jörg Ott
Työn ohjaaja: Tapio Niemi, FT, Helsinki Institute of Physics

Tämän diplomityön tarkoitus on tutkia virtualisoinnin käyttöä palvelin-pohjaisen
laskennan palveluissa. Tutkimuksen tuloksia hyödynnettiin luotaessa prototyyp-
piä TEKES-rahoitteiseen NETGATE-2 tutkimusprojektiin. Prototyyppi automati-
soi etäkoneiden asentamista ja mahdollistaa keskitetysti ylläpidettyjen palvelujen
jakelun.

Erilaisten palveluiden asentaminen ja konfigurointi edellyttää paljon työtä ja
tietämystä. Usein tämä työ on toisteista, kun samaa palvelua asennetaan useaan
kohteeseen ja useaan otteeseen. Isossa organisaatiossa toisteisuudesta voi syntyä
suurikin kustannuserä. Pienemmissä organisaatioissa eivät resurssit puolestaan
aina riitä omaan ylläpitoon tai työtä tekemään valitulla ei välttämättä ole
sopivaa koulutusta. Tästä on todennäköisesti seurauksena turvaton ja epäluotettava
järjestelmä. Molemmissa tapauksissa olisi hyödyllistä voida käyttää keskitettyä
palvelua joko omalta tai ulkopuoliselta ylläpidolta.

Ratkaisimme ongelman kehittämällä järjestelmän, joka jakaa keskitetysti hallittu-
ja palveluita. Tämä on toteutettu sulkemalla palvelut ja niiden käyttöjärjestelmät
siirrettäviin järjestelmälevykuviin. Levykuvia voidaan ajaa virtualisointi-alustan
päällä virtuaalikoneina. Keskitetysti luotuja ja ylläpidettyjä levykuvia voidaan
uudelleen käyttää monessa kohteessa. Virtualisoinnilla tarjotaan levykuvissa oleville
käyttöjärjestelmille vakio-alusta, jolla toimia ja näin taata toimivuus.

Prototyyppi käyttää Xen-virtualisointia ja Debianin pakettienhallintajärjestelmää
virtuaalikonekokoelman hallintaan ja jakamiseen etäkoneisiin. Järjestelmä mah-
dollistaa peruskäyttöjärjestelmän, virtualisointityökalujen ja automatisoidun
päivtysjärjestelmän etäasennuksen.

Prototyyppimme tekee suurten järjestelmien asentamisen ja hallinnan kevyemmäksi
kuin perinteiset menetelmät. Järjestelmää on testattu useassa kohteessa kuten
CERN:in kirjastossa. Debianin paketinhallintajärjestelmä on osoittautunut helpok-
si tavaksi käynnistää virtualisoituja palveluita ja Xen on puolestaan ollut tehokas
virtualisointialusta.

Avainsanat: SBC, virtualisointi, xen, LTSP

Acknowledgements

This thesis was done for the Helsinki Institute of Physics Technology Program at
Cern in Switzerland.

I would like to thank the Helsinki Institute of Physics and my boss MSc Miika
Tuisku for making my stay in the scenic region of Switzerland possible. Also I
would like to thank my instructor PhD Tapio Niemi, who kicked me forward and
coloured many versions of my thesis. Thanks also to my Professor Jörg Ott for
supervising my thesis and giving valuable comments.

Finally, I would like to thank my family for all encouragement and support given
during my studies.

CERN Geneva, 2nd October, 2008

Jukka Kommeri

iv

Table of Contents

Contents vi

List of Figures vii

List of Tables viii

Abbreviations ix

Abbreviations ix

1 Introduction 1

2 Problem Definition 4
2.1 Netgate 2 . 4
2.2 Research Problem . 5
2.3 CERN Library Use-case . 6

3 Server-Based Computing 7
3.1 Thin Client Protocols . 8

3.1.1 ICA - Independent Computing Architecture 9
3.1.2 RDP - Remote Desktop Protocol 9
3.1.3 VNC - Virtual Network Computing 10
3.1.4 X Window System . 10
3.1.5 NX - New X . 11

3.2 Linux Terminal Server Project - LTSP 12
3.3 Summary . 13

4 Virtualization and System Management 14
4.1 Overview . 15
4.2 Benefits . 16
4.3 Methodology . 16

4.3.1 Paravirtualization . 17
4.3.2 Software Virtualization . 18

v

4.3.3 Hardware Support . 18
4.4 Xen . 19
4.5 VMware . 20
4.6 KVM - Kernel Virtual Machine 20
4.7 Linux VServer . 22
4.8 System Management . 22

4.8.1 Planetlab . 22
4.8.2 Smart Domains . 24

4.9 Summary . 25

5 Solution 26
5.1 Debian Package Management System 27
5.2 SBC Service . 29
5.3 System Components . 30

5.3.1 Client Installation Media 30
5.3.2 Image Server . 31
5.3.3 Image . 31
5.3.4 Configuration Server . 32
5.3.5 Package Manager . 32

5.4 Operation of the System . 33
5.5 CERN Library Pilot . 34

6 Evaluation 37
6.1 Key Features of Prototype . 37
6.2 Usability . 38
6.3 Performance . 38

6.3.1 Distribution of Services . 38
6.3.2 Security and Reliability 41
6.3.3 Virtualization . 42

6.4 Distributing Virtualized SBC . 43
6.5 CERN Library Use-case . 44

6.5.1 Performance . 44
6.5.2 Terminal Devices . 46
6.5.3 Open Source . 47

6.6 Discussion . 47

7 Conclusions 49

A Remote management system setup manual 52

B CERN library thin client system 63

Bibliography 67

vi

List of Figures

1.1 Server-based computing . 1

3.1 Thin client and server roles . 8
3.2 Simple X window system architecture 11
3.3 NX architecture (Courtesy of [36]) 12

4.1 Traditional virtualization architecture 15
4.2 x86 ring model (Courtesy of [2]) 17
4.3 Xen hypervisor architecture (Courtesy of [28]) 20
4.4 Kernel Virtual Machine architecture (Courtesy of [22]) 21
4.5 Node management interface with the overall picture of node dis-

tribution . 23

5.1 Distribution system overview . 27
5.2 Virtualized SBC environment . 30
5.3 Workflow of the system . 34
5.4 CERN library pilot . 35

6.1 Network traffic between the thin client and the server in Bytes/sec-
ond using X Window system . 42

6.2 Thin client used in CERN library (Courtesy of Gadget Computer) 46

7.1 Future vision of server-based computing 50

B.1 The network of thin client system 64

vii

List of Tables

6.1 SCP transfer speeds to VMs in MB/s 39
6.2 Local transfer speeds in VMs in MB/s 40
6.3 Workstation (WS) set up times 45

viii

Abbreviations

ABI Application Binary Interface

APT Advanced Packaging Tool

CERN l’Organisation EuropÃ c©enne pour la Recherche NuclÃ c©aire

FS File System

GDI Graphics Device Interface

GUI Graphical User Interface

HIP Helsinki Institute of Physics

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HW Hardware

ICA Independent Computing Architecture

KVM Kernel Virtual Machine

LAN Local Area Network

LTSP Linux Terminal Server Project

MyPLC My Planet Lab Central

Netgate Network Identity, Grid Service Access and Telecom enabled provision

NX New X

OS Operating System

PC Personal Computer

PDA Personal Digital Assistant

PXE Preboot Execution Environment

RFB Remote Frame Buffer

ix

RDP Remote Desktop Protocol

RMI Remote Method Invocation

SBC Server-Based Computing

SCP Secure Copy

SSH Secure Shell

TEKES Teknologian kehittämiskeskus (Finnish Technology Agency)

TLS Transport Layer Security

USB Universal Serial Bus

VMM Virtual Machine Monitor

VNC Virtual Network Computing

WAN Wide Area Network

WS Workstation

x

Chapter 1

Introduction

Server-based computing (SBC) is an architecture where all the applications are

installed, managed and executed on the server [5]. The computers of the users are

considered as thin clients that exchange keyboard, mouse and screen information

with the server. In pure SBC no actual programs are executed on the client

machine. In the simplest case the client machine only runs the software required

to transmit the user input and display the graphics.

Figure 1.1: Server-based computing

1

CHAPTER 1. INTRODUCTION 2

SBC itself has been around for many decades [44]. It has been a good solution

for many cases but not a complete solution due to its dependency on network

speed and computing power on the server side. Today the computing power is

quite cheap and the networks are getting faster. Now SBC can be considered as

an actual alternative for the personal computer (PC).

SBC systems are easier to administer than PC-based systems because everything

is on one machine, the server [33]. Adding new terminals requires no installation

work as the client side devices are stateless. The hardware requirements for client

side devices are minimal. Basically old PCs with network cards are enough. The

centralization also increases the overall security since only administrators are

allowed to configure the system and install new components.

There are several cases where big companies have adopted SBC technology. For

example, in 2005 the Finnish Weather Forecasting Institute, Ilmatieteen laitos,

announced to replace half of its desktops with thin clients. The University of

Tampere has been using SBC for many years. There are several commercial

SBC solutions such as the Sun Microsystems’ Sun Ray [6], HP’s server-based

computing solution [20] and a newcomer, Panologic 1, as well as non commercial

ones such as LTSP 2, K12LTSP 3. According to Gartner’s studies [25] the thin

client market has increased 38% in the year 2006 which is according to them the

highest since the year 2000.

One problem is that one SBC server can only serve a limited number of users

and its setup requires a lot of knowledge. In a big organization more than one

server is needed. The bigger the organization is, the more work is required to

maintain the servers. To make it easier to handle multiple servers and reduce the

end point administration, a central service distributor is needed: The server for

servers that can be used to set up the SBC system in geographically dispersed

sites and make the administration work more scalable.

This thesis studies the use of virtualization and remote installation systems to

distribute and manage services like SBC on remote machines. Virtualization

provides a standard abstraction on top of which different services can be installed.

With virtualization it is possible to put the same service on top of different

1http://www.panologic.com
2http://www.ltsp.org
3http://www.K12LTSP.org

CHAPTER 1. INTRODUCTION 3

physical hardware and replicate to various locations.

The thesis is structured as follows: In Chapter 2 we will look into different SBC

technologies and define what SBC is and go through different implementations.

After that, some virtualization and distributed system management technologies

will be covered. Following these related work chapters, the actual solution and

prototype will be explained in Chapter 5. Its properties will be further analyzed

in the following evaluation chapter. Finally, we will summarize the thesis with

the conclusion chapter.

Chapter 2

Problem Definition

In this chapter we take a look at the Netgate 2 project and the research problem

of this thesis. The study was conducted at the Helsinki Institute of Physics (HIP)

technology program premises at CERN. A working pilot of the Netgate 2 project

is based on the solution of this thesis.

2.1 Netgate 2

Netgate 2 1 is a research project funded by the Finnish National Technology

Agency (TEKES) and Finnish industrial partners. The project is carried out

and coordinated by Helsinki Institute of Physics in cooperation with Technology

Business Research Center of Lappeenranta Technical University and the Depart-

ment of Computer Sciences of the University of Tampere.

The purpose of the project is to study grid technologies and find ways for their

adoption in Finnish industry. The project has three focus areas: security, server-

based computing, and grid business research. This thesis is a part of NETGATE

2 and concentrates on the server-based computing.

The server-based computing part of the project studies how to simplify the instal-

lation and management of remote systems: Making it possible for a nontechnical

person to set up complicated services in his premises and also relieve him from

the administration. This decreases the overall administration costs and increases

1http://tek.hip.fi/opencms/opencms/projects/finnish/index.html#netgate-II

4

CHAPTER 2. PROBLEM DEFINITION 5

the quality of administration for the end systems, i.e. ,the new installations are

more robust and secure.

2.2 Research Problem

Installing servers and services assume a lot of understanding on the subject. In

many cases the administrator is not fully qualified to do the installation but is

selected for the task since he has the best knowledge about the subject [42]. This

can lead to unstable and insecure systems. To be sure that the system works

reliably it needs to be installed and administered by professionals. A problem is

that the usage of professionals or having your own administration is expensive.

A out of the box solution is needed to make the services available in working

environments that lack the required skills:

• A solution that makes the outsourcing of administration possible.

• A solution that makes possible the distribution of services such as SBC,

firewalls, web servers, file servers, etc.

• These services would be configured and tested by professionals before in-

troduction.

Tested services can be reused in several locations reducing the total amount of

administration work. Clients can pick the set of services that they need for

their environment and then just start their servers. The servers download all the

required services from the central repository and launch them automatically.

The objective of this thesis is to study the SBC technologies and create a system

that makes the distribution of SBC services less exhausting for the administration.

We study the use of virtualization and automated installation for this problem

and implement a prototype system that address the problem using only open

source components. The suitability of this prototype will be tested at the CERN

library.

CHAPTER 2. PROBLEM DEFINITION 6

2.3 CERN Library Use-case

CERN is the world’s largest particle physics laboratory 1. It is situated on the

border of France and Switzerland just next to Geneva. It employs nearly 3000

employees and hosts some 6500 visiting scientists yearly. The mission of the

CERN library is to acquire and manage information resources in all fields of

relevance to the organization and make them easily accessible.

The CERN library provides its users with public terminals. These machines are

mainly used to browse the Internet or to write documents. Currently desktop

computers are used. They have Windows XP installed and connect to the CERN

Windows domain. The installation of one of these machines takes about an hour

and requires the involvement of the librarians. From the authors experience this

procedure has to be repeated regularly, otherwise the machines become slower.

Maintaining computers is not part of the core knowledge of the librarians and it

interferes with their normal responsibilities.

The library is a good place to pilot the solution of this thesis. Replacing public

terminals of the CERN library with a thin client system has many benefits. Thin

clients are silent and easy to maintain. Thin clients do not need any installation

as they work out of the box. They just need to be put into their place, connected

to network and powered on. It takes about a minute for a thin client to boot and

after that it is ready to be used. The installation of the server takes more time

but with our system it can also be done automatically. All system components

are open source, which gives us freedom to make more customized solutions that

fit better to the actual need.

Thin clients and remotely managed server almost completely relieve the librarians

from the administration of their public terminals. New thin clients can be added

just by appending them to the same network as the others and by powering

them up. Thin clients have a much longer life span than normal PCs, which in

part reduces the administration work. The replacement of the desktop PCs with

completely silent thin clients makes the library sound like a library.

1http://public.web.cern.ch/public

Chapter 3

Server-Based Computing

Local area networks (LAN) and wide area networks (WAN) make it possible to

centralize services. Instead of having all files and programs on local computers,

as in the era of single user personal computers (PC), they can now be located on

central servers and made reachable by others.

Centralization is not only limited to storage services but it can also be used to run

programs. Due to the development of the networks and the exponential growth

of processing power, the servers can now serve an increasing number of client

applications. The benefits of this transition from local execution to centralized

one is decreased administration work and increased system security. The same

data can be accessed from several locations which gives more freedom for choosing

the place to work at and does not make the loss of personal machine so critical.

The server-based computing system resembles the old mainframe systems that

were used in the early times of computers. The difference being that now the

servers are a lot smaller and offer users more usable user interfaces [37]. The idea

behind server-based computing is to move computation from PCs to centralized

computing resources. The only things, the PC does, are:

• Maintain connection to the server.

• Display graphics.

• Transmit information from peripherals such as keyboard, mouse or USB

device.

Thin client [5] is the client side device in the server-based computing. Almost

7

CHAPTER 3. SERVER-BASED COMPUTING 8

Figure 3.1: Thin client and server roles

any PC can be used as a thin client. The requirements for thin clients are low

since most or all of the computation is done elsewhere. Thin clients do not need

hard drives, powerful processors or powerful graphics cards. Having less power-

ful components means less energy consumption and less heat production. The

ecological footprint of the thin client in the SBC system is about half compared

to that of the PC[4]. The life cycle of the old and obsolete PC can be extended

using it as the thin client. The requirements for a thin client vary on how much

of the software is executed on remote servers [17]. In pure SBC all the programs

are run on the remote server. It is also possible to enhance the user experience

by running some of the programs on the client side.

3.1 Thin Client Protocols

There are several commercial products and open source projects that implement

server-based computing. Most of them have their own protocols for transmit-

ting information with optimized algorithms to meet the requirements of different

networks and purposes.

Thin client protocols balance between the load on the network and the load on

the end point machines: Usage of higher level graphics decreases the need to

transmit data over the network but it requires more computation to form the

image from the high level graphic primitive commands. The usage of raw pixel

CHAPTER 3. SERVER-BASED COMPUTING 9

encoding causes more network traffic but reduces the computation on the client

side. The need to support the higher level graphics instead makes the client side

more difficult to implement. Some protocols also adapt to the network traffic by

sending updates less frequently, using caches, and compression [52, 26]. There

has been a lot of development in the field of thin client protocols. Every new

version brings performance improvements and features. This and the proprietary

nature of some protocols make the comparison of the protocols difficult without

empirical studies. In the following sub-sections we will introduce a few popular

protocols that are used to provide server based computing.

3.1.1 ICA - Independent Computing Architecture

The independent computing architecture (ICA) [23] is a proprietary protocol

owned by Citrix. Citrix is one of SBC pioneers and offers multiple commercial

solutions for both Windows and UNIX platforms. The SBC of Citrix is based

on the ICA protocol though they also offer web-based solutions [39]. ICA is a

lightweight protocol that can be used in low bandwidth networks such as modem

connections. It can be used to share both Windows and Unix-based operating

systems. A low level of network traffic is achieved by using higher level graphics

primitives and compression of network traffic. ICA also allows the client to cache

bitmaps which decreases the network traffic even more [52].

3.1.2 RDP - Remote Desktop Protocol

The remote desktop protocol (RDP) [3] is a proprietary protocol owned by Mi-

crosoft. RDP is an extension to the ITU-T T.120 application sharing protocol

family. It is used to connect to Windows Terminal Services running on Windows

Servers. RDP sessions can be configured to meet various needs. It supports

different levels of encryption. The traffic between the client and server can be

secured with the transport layer security (TLS) [32] and compression is also sup-

ported. RDP uses higher level graphics. The server sends clients rendering data

that the client uses to make API calls to the graphics device interface (GDI).

RDP also supports roaming disconnect which means that the session stays alive

though the connection dies [31].

CHAPTER 3. SERVER-BASED COMPUTING 10

RDP clients are made for Windows platforms. There are also open source RDP

clients such as Rdesktop 1 and open source RDP servers such as Xrdp 2.

3.1.3 VNC - Virtual Network Computing

VNC is an open source thin client protocol. It is based on the remote frame

buffer (RFB). RFB is a thin client protocol that works on the frame buffer level

making it applicable to all windowing systems and applications. VNC clients

are stateless, which makes them tolerant to network disruptions. Both VNC and

RFB have originally been developed at Olivetti & Oracle Research Laboratory

[38]. VNC represents the 2D graphics and raw graphics end of the protocols.

Clients retrieve pixel information from the server. This makes the clients easier

to implement and they do not need a heavy system such as the X Window

System to work. Therefore, VNC can be used in many light devices such as

mobile phones and personal digital assistants [52]. The original VNC protocol

did not support compression or encryption but they have been added to some

derived products such as TightVNC 3. Compression decreases the latencies of

VNC in low bandwidth networks [24].

3.1.4 X Window System

The X Window System [34, 43] is the base for graphical user interfaces (GUI)

in many Unix compatible operating systems. It implements the client server

model. Applications are clients that connect to the server that handles input

from keyboard and mouse and output to monitor. Clients can be on the same

computer as the server or on a remote one. Both client and server use X protocol

for their communication.

Figure 3.2 illustrates how the X server, that runs on a workstation, is connected

to two X clients, that are on two separate remote machines, and also to two local

X clients.

The X window system is designed for local area networks. Though it uses high

1http://www.rdesktop.org
2http://xrdp.sourceforge.net
3http://www.tightvnc.com

CHAPTER 3. SERVER-BASED COMPUTING 11

Figure 3.2: Simple X window system architecture

level graphics, it sends updates more frequently than others and does not use any

compression, which makes it one of the heaviest protocol on the network. These

properties also make it the best quality protocol [52].

3.1.5 NX - New X

New X (NX) [36] is a protocol that enhances the basic X Window System making

it more usable in wide area networks. It acts as a buffer between the client and

the server of the X Window System. It can store the session information on

the remote machine making the X Window System more resilient to network

errors. NX provides an encrypted and compressed link between the client and

the server machines. The protocol can also be adjusted to meet different network

connections by suppressing the updates of the X Window System. Figure 3.3

illustrates the architecture of the NX protocol.

CHAPTER 3. SERVER-BASED COMPUTING 12

Figure 3.3: NX architecture (Courtesy of [36])

3.2 Linux Terminal Server Project - LTSP

The Linux Terminal Server Project was founded in 1999 and has since then

been included in various Linux distributions. It has also been the base for the

foundation of a new Linux distributions such as K12LTSP 4. At the time of

writing of this thesis LTSP is in version 5.0 with the codename MueKow 5. LTSP

is an open source project that combines many other open source projects into

a comprehensive SBC solution. It offers various ways to connect thin and fat

clients to the Linux server from different networks. The main usage of LTSP is

to connect thin clients in the local area network to the central server using the

X Window system.

In LTSP, one does not need to install any operating systems to the workstations.

They are booted with small Linux that is loaded either by PXE boot or from local

media such as floppy, CD-Rom or USB stick. No hard disks are used at the client

side, which makes it possible to boot a desktop machine with an operating system

as a thin client without any harm to the existing system. All tools required for

managing the thin client and its graphical sessions are loaded from a network

drive using the network file system (NFS) or the network block device (NBD).

4www.k12ltsp.org
5wiki.ltsp.org/twiki/bin/view/Ltsp/MueKow

CHAPTER 3. SERVER-BASED COMPUTING 13

The thin client only runs X server and connects to a session manager on the

server in the LAN [30].

3.3 Summary

Server-based computing is an architecture in which most of the programs and per-

sonal files are executed and stored centrally. Centralization makes the resources

accessible from various locations and with different devices providing users with

flexibility.

The server and client communicate using a middleware. The middleware passes

the input of the user to the server and the graphical output of the server back to

the client. Most of today’s thin client middleware offer the same functionality.

The choice of a protocol depends much on the use case: Is it going to be used in

the local area network or over the Internet and is the end device a computer or

a mobile phone. The X Window system offers good quality for free but exhausts

the network. ICA and RDP are proprietary protocols that are made to work well

on low bandwidth networks. VNC is the easiest one to implement and it can be

made to work on a very simple devices such as the mobile phone but it does not

offer very good quality.

Chapter 4

Virtualization and System

Management

In this chapter we take a look at virtualization: What it is and why its usage

would be beneficial. After the overview, we introduce a few remote management

systems that employ virtualization.

Virtualization is a widely used term. Basically, it refers to the abstraction of

physical and other resources. Virtualization offers standard interfaces for appli-

cations and operating systems and removes their dependency on the underlying

hardware or software layer. Hardware resources can be multiplexed between sev-

eral operating systems and made to look like something else using virtualization.

It is possible to virtualize complete machines or just parts of the machine.

A good example of virtualization is the Java programming language. Java code

is compiled against the Java environment and runs on top of the Java virtual

machine. The Java virtual machine always looks the same for the code indepen-

dent of the hardware. This makes it possible to execute the same code on top of

many different hardware architectures.

In this chapter we concentrate on the virtualization techniques that are common

with the x86 architecture. To be more precise we concentrate on the platform

virtualization: Techniques that make it possible to run several operating systems

on top of one set of hardware.

14

CHAPTER 4. VIRTUALIZATION AND SYSTEM MANAGEMENT 15

4.1 Overview

Virtualization techniques have been around for many decades. They were intro-

duced in the era of mainframes. Then, the virtualization was used to multiplex

the scarce resources among multiple applications. Nowadays one use of virtual-

ization is to decrease the proliferation of server machines and to improve their

cost efficiency. Not only does it reduce the requirement for hardware but it also

reduces running costs such as electricity and space [41].

Figure 4.1: Traditional virtualization architecture

With virtualization, it is possible to divide the physical hardware among several

virtual machines (VM). These VMs are controlled by a virtual machine moni-

tor (VMM). VMM is the abstraction layer that hides the hardware below and

provides a generic interface for the virtual machines. Figure 4.1 illustrates the

virtualization architecture. Applications and operating systems run as they were

run on the physical hardware. VMs are isolated from each other by VMM so that

they cannot affect each other [40].

VMM can reside either on top of an running operating system or directly on top

of hardware. Running VMM on top of an operating system introduces a lot of

overhead but also makes setting up of a testing environment easier.

CHAPTER 4. VIRTUALIZATION AND SYSTEM MANAGEMENT 16

4.2 Benefits

Virtualization allows us to enclose applications to their own environments. Hav-

ing applications on separate machines increases the overall security of the system.

The more applications or services there are on one machine, the more insecure the

machine becomes. If one service is compromised then the others are as well. For

example an intruder may use a security hole in one service to gain administrative

privileges on that machine. Placing applications into their own virtual machines

creates a protective barrier between them [51].

To have better fault tolerance, the applications should be distributed among

several either physical or virtual machines. Having multiple applications on the

same machine increases the risk of them affecting each other. One crashing or

updating may interfere the others. These interferences can lead to unnecessary

service down times.

The need for fault tolerance and inexpensive hardware has led to the proliferation

of hardware. Most of them running idle 90% of the time. Virtualization provides

a more cost efficient solution. Instead of having several idle physical machines

one can have a few better utilized machines populated with virtual machines [41].

The encapsulation of operating systems and applications into virtual machines

makes them also more movable. It eases the set up and migrations of services

into new locations. One only needs to install the virtual machine monitor on

the new machines and then copy existing virtual machines on top of it. This

cuts down the installation times and provides a way to run several versions of

the same software in parallel. With virtualization it is possible to set up testing,

development and production versions of the same system on one machine.

4.3 Methodology

The x86 architecture is not designed to support virtualization. This is due to the

privilege levels of the instructions of the processor. Figure 4.3 illustrates the ring

structure of the x86 architecture. The level 0 also known as kernel mode is able

to execute all instructions and level 3, guest mode, a subset of this. The right to

execute certain instructions depends on which level the instruction was executed

CHAPTER 4. VIRTUALIZATION AND SYSTEM MANAGEMENT 17

[13].

Figure 4.2: x86 ring model (Courtesy of [2])

Normally operating systems operate at the level 0 and applications at the level

3. In virtualized environment the virtual machine monitor works at the level 0

and guest operating systems at higher level. Without any virtualization support

the virtual machine running on the higher level fails to execute any privileged

instruction [47].

There are a few solutions to the deficiencies of the x86 architecture. Here we

introduce three main categories which are used in most of the current virtualiza-

tion solutions: 1) Paravirtualization, 2) Software virtualization, and 3) Hardware

virtualization.

4.3.1 Paravirtualization

The architecture used with paravirtualization was originally developed by IBM

and utilized in the VM operating system[14] 1. The term paravirtualization was

introduced at 2001 [50] by the Denali group 2. Since then paravirtualization has

gained much popularity and is now used by leading virtualization developers such

as Xensource and VMWare.

1http://www.vm.ibm.com/
2http://denali.cs.washington.edu/

CHAPTER 4. VIRTUALIZATION AND SYSTEM MANAGEMENT 18

There are many different implementations of the paravirtualization technique but

the main idea remains the same. Paravirtualization provides the guest operating

system a hardware abstraction that is similar but not an exact copy of the under-

lying hardware. The use of paravirtualization requires modifications to the guest

operating systems. These modifications reduce the complexity of the virtual ma-

chine monitor and enhance its performance. The original machine instructions

are either modified or excluded. Privileged commands are made to communicate

with virtual machine monitor [51].

A problem with paravirtualization is that the owners of proprietary operating

systems might not be willing to modify their OSs. Some OS instructions need to

be modified for the virtual machine to able to operate on the lower privilege level

[19]. The patching of any existing operating system requires a lot of knowledge

and work. This complicates the selection of the OS flavor and makes the other

virtualization methods more viable [49].

4.3.2 Software Virtualization

Software virtualization contains a set of virtualization techniques that are used

to provide full virtualization [40]. Full virtualization means that there is no need

to change the operating system above. Names of the techniques vary depending

on the level they are used at.

Binary translation is one form of software virtualization and it is used to emulate

machine instructions. Instructions that are executed by the operating system of

the virtual machine are translated from the source instruction set to the target

instruction set [46]. This form of virtualization does not require any changes

to the virtual operating system. It is a form of virtualization where the VMM

reforms VM’s commands for the underlying hardware. The translation of the

commands naturally introduces some overhead but can it also optimize and gain

performance boost with some instructions [8].

4.3.3 Hardware Support

Due to the rise of interest in the virtualization, processor manufacturers have

included virtualization support in their products. Intel VT Vanderpool/Virtual

CHAPTER 4. VIRTUALIZATION AND SYSTEM MANAGEMENT 19

Technology [47] has separate support for 32-bit and 64-bit architectures. VT-x

for the 32-bit IA-32 architecture and VT-i for the 64-bit Itanium architecture.

AMD’s Pacifica chip [53] includes AMD-V virtualization support .

Both Intel and AMD versions of hardware support try to solve the problems of

the x86 architecture, described above, by adding a separate mode for the guest

OS. In this mode the guest OS is able to run on the ring level 0 and execute

privileged commands in a normal way [47, 53].

4.4 Xen

Xen started as an open source project at the University of Cambridge. Later it

was productized by Xensource 3. Now there are both commercial and open source

versions 4 of the project. Xen has been included into various Linux distributions

such as Ubuntu, Suse, and Red Hat. Xen VMM has also been included into the

Linux kernel. Xen comes with a vast set of tools from the creation of the virtual

machines to the live remote migration.

Xen uses paravirtualization as its virtualization technique. Its VMM is called

the hypervisor. The architectural structure of the Xen hypervisor is illustrated

in Figure 4.3. The idea behind the Xen hypervisor has been to keep it as small

as possible. Much of the management and control features have been moved to

the privileged guest domain called domain0 [29].

Domain0 is brought up at boot time and it is able see all the hardware. It con-

tains hardware device drivers and has tools to manage guest operating systems,

so called virtual machines. Guest operating systems are given an abstraction

of the device drivers, the front end pieces. Front-end pieces communicate with

their corresponding back-end drivers that are int the domain0. Moving the de-

vice drivers from the VMM to the dom0 lightens the hypervisor and also gives

protection against faulty drivers [9, 29].

Though Xen requires modifications to the guest operating system, no changes

are needed to the application binary interface (ABI). This makes it possible to

run the guest applications unmodified[9].

3http://www.xensource.com
4http://www.xen.org

CHAPTER 4. VIRTUALIZATION AND SYSTEM MANAGEMENT 20

Figure 4.3: Xen hypervisor architecture (Courtesy of [28])

4.5 VMware

VMWare is one of the biggest virtualization solution providers. It offers a wide

range of virtualization products from desktops to servers. Desktop virtualization

products such as Workstation are used on top of an existing operating system as

a normal application [45]. Server virtualization, such as VMware ESX, works on

top of the bare hardware 5.

Most of the products of VMWare are proprietary but it also offers some open

source products. VMWare uses mainly binary translation in its products but

also supports paravirtualization [7].

4.6 KVM - Kernel Virtual Machine

Kernel Virtual Machine (KVM) is a newcomer in the virtualization domain [35].

It exploits the recent hardware virtualization enhancements in processors, which

5http://www.vmware.com/products/esxi/

CHAPTER 4. VIRTUALIZATION AND SYSTEM MANAGEMENT 21

were described in Subsection 4.3.3. It has been included in the Linux kernel 6

since the version 2.6.20.

Figure 4.4: Kernel Virtual Machine architecture (Courtesy of [22])

Figure 4.4 illustrates the architecture of KVM. The Linux kernel is turned into

a virtual machine monitor by adding a KVM module into it. Virtual machines

are processes on top of the host operating system. This means that KVM uses

the scheduling and the memory management properties of the vastly developed

Linux kernel.

The KVM module enables near machine speed virtualization of the processor and

the virtualization of memory inside kernel. I/O devices of the guest operating

system are handled with a user space emulation tool QEMU 7. QEMU emulates

the I/O for guest operating systems and provides virtualization of I/O devices.

Two main disadvantages of this otherwise simple and powerful virtualization

technique, are the emulation of I/O devices in user space and the need for special

hardware. Especially the emulation of I/O slows down otherwise fast hardware

virtualization [22].

6http://www.kernel.org
7http://bellard.org/qemu/qemu-doc.html

CHAPTER 4. VIRTUALIZATION AND SYSTEM MANAGEMENT 22

4.7 Linux VServer

Linux VServer 8 is another virtualization technique that takes advantage of prop-

erties built into the Linux kernel. Virtual machines are run in the user space as

normal programs and they share the operating Linux kernel with the underlying

operating system and other virtual servers. All processes of virtual machines are

controlled by the same kernel.

Vserver virtual machines contain their own root and security context. This means

that the virtual machines are unaware of other virtual servers or the underlying

operating system. Though the file system of the VM is a part of the file system

of the underlying operating system, the VM has no way of accessing or seeing

anything beyond its file system. Separate security context means that the virtual

machines only see their own processes [15].

4.8 System Management

Virtualization is used by remote installation and management systems to provide

tools for resource abstraction and multiplexing. The two following subsections

show how the virtualiation is used for the management of remote resources and

how it provides a standard interface for services.

4.8.1 Planetlab

Planetlab is an overlay network of computers. In the early 2008, the Planetlab

network consisted of more than 800 computing nodes in over 400 geographically

separated sites 9 in every continent. This range of distribution provides an ex-

cellent testbed for the network or distributed computing research.

To become a member of the Planetlab network one must donate computing nodes

to the network. Figure 4.5 illustrates how the Planetlab network scatters around

the world to cover all the continents. Dots on the map represent computing nodes

of the members of the network.

8http://linux-vserver.org/
9www.planet-lab.org

CHAPTER 4. VIRTUALIZATION AND SYSTEM MANAGEMENT 23

Figure 4.5: Node management interface with the overall picture of node distri-
bution

Planetlab has several projects that are called slices. In practice slices are sets of

virtual resources. One node can contain several slices. A slice on a node means

that the owner of the slice has an active virtual machine running on that node.

A slice can have an arbitrary amount of computing nodes from anywhere in the

world. The virtualization on the node machines is implemented with the Vserver

virtualization technique.

The management of slices and nodes is centralized. They are created via the

Planetlab central server putting the final control in the hands of Planetlab admin-

istration [12]. The centralized control also means that the management actions

are initiated by the central server.

The Planetlab provides users with processing power from machines that are ge-

ographically dispersed. These virtual machines contain basic operating system

tools. Additional software has to be installed by the user. The Planetlab com-

CHAPTER 4. VIRTUALIZATION AND SYSTEM MANAGEMENT 24

munity provides some tools for the management of software on the slices 10.

My Planetlab Central - MyPLC

My Planetlab Central (MyPLC) is the software used in Planetlab. With MyPLC

is is possible to set up an own overlay network. The code of the MyPLC code is

freely usable, allowing people to make their own versions of the Planetlab software

[1].

4.8.2 Smart Domains

Smart Domains is a virtual machine resource management infrastructure. It is

designed to set up distributed environments for running batch GRID jobs and

conducting system tests. Smart Domains builds on the Smartfrog framework and

Xen virtualization. Smartfrog provides a way to configure, deploy, monitor, and

manage large distributed environments [18].

Smartfrog is a Java-based software made by HP labs 11. Smartfrog provides:

• A rich description language for describing resources and their interoperabil-

ity.

• A deployment engine for delivering configurations and software to the peer

to peer network of Smartfrog nodes.

Smartfrog uses Java remote machines invocation (RMI) for communication be-

tween peer to peer nodes. RMI makes Smartfrog less applicable in large scale

networks as firewalls usually block RMI traffic [16].

In Smart Domains, the management of virtual resources is done by submitting

resource descriptions to the network. All work is automated from the creation to

the destruction of resources by the framework.

10https://www.planet-lab.org/tools
11http://www.hpl.hp.com/

CHAPTER 4. VIRTUALIZATION AND SYSTEM MANAGEMENT 25

4.9 Summary

There are many virtualization solutions for platform virtualization. They all have

their applications and their suitability depends much on the requirements. The

requirements can vary from the setting up testing environments on a PC to the

consolidation of a room full of servers.

Picking a suitable virtualization solution depends on many things such as cost,

easiness of adaptation, efficiency, technical limitations, and security. Proprietary

virtualization solutions are made easy to use and they offer good support. Open

source products require more knowledge to set up but they are free and customiz-

able. User space virtualization solutions such as KVM and VServer offer powerful

virtualization solutions that are easy set up but depend on the functioning of the

shared kernel. Paravirtualization and binary translation are both used to provide

a foundation for virtual machines with complete operating systems. These VMs

have normal access to I/O devices with unnoticeable overhead but setting them

up is more difficult and every virtual machine introduce overhead in the use of

memory.

Chapter 5

Solution

The goal of the thesis is to make a system to set up and replicate SBC services at

geographically distributed locations. This can be achieved by using virtualization.

Virtualization offers several benefits. For example virtualized services can be

easily moved to different locations and started on top of the abstraction provided

by virtualization.

We have developed a system that distributes services inside virtual machines.

All the installations using our system have the same base operating system and

virtual machine monitor. These machines are then complemented with virtual

machines that contain the actual services such as web-server, print server etc.

This is visualized in Figure 5.1.

Virtualization offers a way to enclose services into their own specific and op-

timized environments. Having services in separate virtual machines makes the

system structure more modular and manageable. One server can be used to host

several virtual machines. Enclosed and separated the services do not disturb each

other and updating one does not cause the others to suffer any disturbances. Sep-

aration also adds a layer of security between different services, which means that

compromising one service leaves others intact.

We use Ubuntu 1 as the operating system. Both virtual machines and the virtu-

alization platform use Ubuntu. All software can be found in Ubuntu Edgy and

subsequent distributions, which means that all used components are open source.

1www.ubuntu.com

26

CHAPTER 5. SOLUTION 27

Figure 5.1: Distribution system overview

Since we have mostly used existing software, there is little code to upkeep.

As our virtualization platform we have chosen Xen and paravirtualization. Xen is

open source and it has improved quite a lot in the past few years. The paravirtu-

alization of Xen offers good performance with little overhead. Paravirtualization

does not use any emulation so its performance does not decrease in I/O intensive

use. Xen also supports hardware virtualization but does not require it, which

makes it suitable for heterogeneous set of machines.

5.1 Debian Package Management System

The Debian package manager is a powerful software management system and

the foundation of many Debian-2based operating systems [10]. It can be used

to install, remove, and upgrade software. Managed software, either in binary

2www.debian.org

CHAPTER 5. SOLUTION 28

or source form, is stored and distributed as compressed packages. The package

manager can use both external or local package sources.

The Debian package management system can be divided into three main building

blocks. The first one is a package library also called a repository, which contains

the software packages with different versions of them. The second component is

the package in which the software is enclosed. The third part contains the client

side package management tools. They are used to install, remove and update

software on the client.

The repository is actually just a collection of files in a predefined directory struc-

ture. Normally, the structure is a tree where the distributions are at root level

and categories such as main, non-free, and contrib as their subdirectories and be-

low them separate folders for different architectures. In every leaf directory there

are special files such as Packages.gz and Sources.gz depending on the contents

of the directory. Sources.gz is used with source packages and Packages.gz with

binary packages. These files contain the metadata of packages.

The repository can reside on a local media such CD-ROM and DVD or on a sepa-

rate file server, which can be accessed with well known protocols such as FTP and

HTTP. Distributions such as Debian or Ubuntu have repositories, which contain

thousands of packages. Packages are categorized into different distribution re-

leases by their readiness and compatibility. Distributions evolve and go through

three phases of development from unstable to testing and from testing to stable.

To protect users, repositories and their packages can be signed with a private key.

These signed repositories and packages can then be verified with the public key

by the user.

The package is the container for software. Besides storing the actual files for the

software it also includes metadata and possibly installation and removal scripts.

Packages can contain either pre-compiled binaries or source code. Metadata con-

sists of information such as a version number, package name, author name, pack-

ages dependencies, etc. Package dependencies determine what other packages are

required for the software in the package to work properly.

The Debian package management system has many tools for software installation,

removal and upgrading. All the tools are build on top of the dpkg3 (Debian

3http://en.wikipedia.org/wiki/Dpkg

CHAPTER 5. SOLUTION 29

GNU/Linux Package Manager) tool. Dpkg is a powerful package management

tool but it lacks the ability to handle dependencies. APT (advanced package

tool) or its successor, the Aptitude4, can handle these better. APT and Aptitude

can be configured to use multiple repositories with the source.list configuration

file.

Package management operations are client-initiated. First, the client fetches all

Packages.gz files from the repositories. Then, the metadata from these files are

used to build package database on the client. When installing a new package,

this database is searched for information on the installation candidate. If the

package exists in the database, the actual package is fetched from the repository

and installed.

5.2 SBC Service

In our system SBC services are installed into virtual machines. In this SBC

system we have separated access and application server to their own virtual ma-

chines. The access server is responsible for setting up thin clients. It contains

the LTSP environment described in Section 3.2. The application server has all

applications and the desktop environment to which the thin clients connect to

when they are set up. It is installed with the Gnome 5 desktop environment and

some common office tools.

Figure 5.2 illustrates our virtualized SBC system. We have one physical machine

that runs several virtual machines. There can be several versions of the same

service running in parallel, which makes version updates as convenient as possible.

In the figure the physical machine also works as a firewall. Virtual machines are

constrained to their own LAN and they have the physical machine as the gateway.

Depending on the hardware of the physical machine, the virtual LAN may also

be connected to another physical LAN via other network card, making it possible

to have the thin clients in their own network.

4http://wiki.debian.org/Aptitude
5www.gnome.org

CHAPTER 5. SOLUTION 30

Figure 5.2: Virtualized SBC environment

5.3 System Components

In this section, we explain the components that comprise the automated in-

stallation and management system. The complete installation documentation is

included in the appendix A.

5.3.1 Client Installation Media

The client installation medium is used to install remote machines with a base in-

stallation. The base installation contains a basic operating system, virtualization

tools, and remote management tools. Booting a machine with the installation

medium loads the Linux operating system that handles the installation of the

client server. The installation will set up Ubuntu Feisty OS with the Xen vir-

tual machine monitor. The installation is automated using the Debian Installer

preseed files.

The preseed file contains the answers to the questions that Debian Installer nor-

mally asks on console. All configuration information on installing the machine

CHAPTER 5. SOLUTION 31

and getting installation packages etc. are included in the preseed file. A version

of the preseed file, which is used in the NETGATE-2 project, can be found in the

appendix A. Preseed files are stored and managed on the central server. Cen-

trally located preseed files are easy to update and make the actual installation

media more generic.

5.3.2 Image Server

The image server is basically a Debian/Ubuntu package repository, i.e., a file

server that can be accessed with HTTP. It is used to store Debian packages. The

repository contains both the actual packages and the metadata of the packages

in a predefined tree directory structure. The metadata is used by Debian and

Ubuntu installation tools, the apt-tools, to install and manage packages and their

dependencies [21].

The repository itself is created and managed with an open source tool called

Reprepro 1. Reprepro manages the versioning of packages and it also signs every

package when it is added to the repository. The public key of the repository, that

is used to verify the packages, is retrieved during the base installation due the

configurations in the preseed file.

5.3.3 Image

Virtual machines are distributed by using image files. One image contains a file

system with a complete operating system root directory. Images are compressed

into Debian packages, which significantly reduces the size of the image. A 4GB

virtual machine image can compress to 270MB since the empty space in the image

is completely compressed. The effectiveness of the compression makes the VM

images more movable in the network.

Every VM has its own Debian package. Usage of Debian packages makes it easy

to manage the files, that are required by the VM, and easy to script functionality

for the installation process. Installation using Debian packages automatically

sets up the required files to the file system of the client machine. Shell scripts

are used to prepare the environment for VM and eventually to start the VM.

1http://mirrorer.alioth.debian.org/

CHAPTER 5. SOLUTION 32

Separate scripts are made for stopping the VM and removing all the additions

made by the installation scripts.

The tool for creating the installation packages is dpkg. Dpkg is given as parameter

a directory that contains all files needed by the virtual machine in a predefined

tree structure. When installing the image, all the files in it are placed on the root

of the target machine according to the predefined tree structure. One exception

is a special control folder which is in the root of the tree. This folder contains

all the scripts and metadata of the image and is only used by the installation an

removal tools such as the apt and the aptitude.

5.3.4 Configuration Server

The configuration server stores the installation package lists of the clients. Lists

are distributed in pull fashion using the Rsync program 6. Rsync is a remote

transfer program that keeps track of changes in files and eliminates all unnecessary

transfers. The clients periodically synchronize their lists with the configuration

server.

Usage of pull strategy was chosen to enhance the overall security of the system.

The more incoming ports are open the more insecure the system becomes [48].

Now the traffic is generated from inside and no extra holes are made to the firewall

for the incoming traffic.

5.3.5 Package Manager

Package manager is an installation package management tool. It is installed as

part of the base installation. The package manager retrieves package lists from

the configuration server and updates the software of the machine accordingly. It

uses Rsync and SSH to communicate with the server. List are retrieved on a

daily basis and also at boot time.

After retrieving the lists the package manager calls pkgsync 7, which is a pack-

age management tool of the operating system. Pkgsync synchronizes packages

6http://samba.anu.edu.au/rsync/
7http://manpages.ubuntu.com/manpages/feisty/en/man8/pkgsync.html

CHAPTER 5. SOLUTION 33

according to the list. Every package mentioned in the list is installed and miss-

ing packages are removed. For example, if a software package that was on the

previous list is not on the current list, it is removed from the machine. Also if

there are updates to the packages currently installed, they are applied.

5.4 Operation of the System

The work flow of the system in short is as illustrated in Figure 5.3:

1. The client machine installation is started using a generic installation medium.

2. Installation parameters are retrieved from a configuration server.

3. Installation packages are downloaded from a repository and installed.

4. The Package manager is started and a package list is retrieved from the

configuration server.

5. Virtual machine installation packages are retrieved from the repository and

installed according to the list.

6. Go back to step 4.

The client machines are installed using a remote installation service. The user is

given a USB-stick or CD-ROM or any other medium, that can be used to boot

computers from. This medium is used for the installation of the client server.

All the user has to do is inserting the media into his computer and power up

the computer. It will then start the installation, which runs automatically and

will install the client machine with a base operating system and virtualization

environment. In the current prototype, the system still asks a few questions but

the goal is to make it completely automatic.

After the installation, the client computer retrieves a list of installation packages

from the configuration server. The retrieval of the list is done periodically and

this is the way the software contents are managed on the client server.

The list of installation packages is used to update the package collection of the

client. If the list introduces new packages to the client package collection they will

be downloaded from the repository. All packages that were installed on the client

and are not on the new list will be removed. The list can contain packages from

CHAPTER 5. SOLUTION 34

Figure 5.3: Workflow of the system

the repository of the base operating system and from our own virtual machine

repository.

Package lists contain all software packages needed by the base installation. The

lists also includes some additional packages that contain virtual machines des-

tined for the machine. Installation of these packages causes the client server to

launch new virtual machines and the removal of these packages causes the virtual

machines to shutdown and remove all related files.

5.5 CERN Library Pilot

The CERN library needed an easily maintainable and silent system that fits

their needs. The system described in this chapter is used to deliver a custom-

built server-based computing system to the library. Updates to the systems are

CHAPTER 5. SOLUTION 35

automatic and the remotely managed. Figure 5.4 illustrates the architecture of

the CERN library pilot.

Figure 5.4: CERN library pilot

One of the old desktop PCs was chosen to be the server for the sbc environment

of the library. The server was installed using our systems. The library also

obtained some economical, diskless and power wise limited computers 8, which

would nowadays be considered useless for anything else. But as thin clients they

work well enough.

The server hosts two virtual machines. One handling thin clients and one to

provide desktops and applications for the thin clients. The VM that handles the

thin client has the Ubuntu Feisty operating system and the LTSP environment is

called access server. The other server, called application server, is also installed

with Ubuntu Feisty on top of which we have installed the Xfce4 9 desktop en-

vironment with all the required library software. For both virtual machines the

applications were chosen carefully to minimize total system load. Communica-

tion between thin clients and the application server is done using the X window

8http://www.icoptech.com/products_detail.asp?ProductID=271
9http://www.xfce.org/

CHAPTER 5. SOLUTION 36

system, which is by default very insecure. To provide users with a trustworthy

environment the communication was encrypted using secure shell (SSH) tunnels.

To be able to place the thin clients more freely, the clients were connected to the

server using wireless bridges. Wireless bridges makes the installation of cables

simpler as now there is now need for an cable network between the server and

clients. Clients can be connected to the server wirelessly. Figure 5.4 illustrates

how we have connected a small Ethernet network of thin clients to a server using

wireless connection. The thin clients and the server are in the same local area

network as though they were connected with a wire. Having wireless connections

between the server and client also introduces security problems which are now

dealt with SSH encryption.

Chapter 6

Evaluation

In this chapter, we evaluate the solution described in the previous chapter. The

technologies chosen for the solution are compared to other corresponding tech-

nologies. We will also analyze how well the solution implements the requirements

set in the problem definition. Finally we will have a look at the benefits and chal-

lenges of our pilot project in the CERN library.

6.1 Key Features of Prototype

The solution introduced in this thesis solves the problem of distributing server-

based computing services to geographically dispersed locations. Organizations

with no specialized administration was considered as the main target group.

The problem was tackled by completely automating the system installation and

management process. This was planned to achieve with a network installation

system and with the virtualization of services.

In our solution the services are tested and packaged centrally. In this way, we are

able to make the installations more reliable for the end user. This makes the end

product more robust and secure as it would be if made by a person that started

from scratch. Centralization also adds scalability as the same services can be

used many times. The virtualization layer is used to add security and to make

the setting up and removing of services more reliable. Virtualization provides

services a standard foundation to be placed on.

37

CHAPTER 6. EVALUATION 38

6.2 Usability

All administrative tasks, such as the creation of virtual machines and configura-

tion of client package collections, are handled centrally. The end user has almost

no responsibilities and relies on the central administration. This arrangement fits

well for the category of people to whom the system was designed for, though the

setting does not restrict more experienced users to do their own modifications.

Clients have rights to modify their system but the changes are not applied to the

installation images on the central server, which makes the changes temporary.

This can be seen as a good feature as all possible damages that the client does

can be unmade and the central administration has the final word.

The installation of the end system is automated using the old and matured De-

bian Installer. Answers to the questions the installer normally would ask are

pre-answered by a preseed configuration file. This removes the need for any

involvement in the installation process from the end user. After the user has

put the installation medium into the machine and switched on the machine, the

installation system should be able to do the rest.

6.3 Performance

The system relies heavily on high speed network connections, since the instal-

lation media and configurations files are located on remote servers. The client

installation medium introduced in Section 5.3.1 only launches an installer that

retrieves the installation media from remote repositories. It is possible to have

a local repositories for images but their management would be more complex.

Having a centralized server makes the management more scalable because the

same configurations and images can be reused in multiple locations.

6.3.1 Distribution of Services

The virtual machines are distributed using image files. These files contain com-

plete Linux root file systems (FS). The actual size of the image of one FS does

not matter so much as the empty space compresses more than thousand-fold.

CHAPTER 6. EVALUATION 39

This makes the FS size indifferent and the transfer of the virtual machines with

large file systems feasible.

There are several ways to provide the virtual machine FS [11]. One can use

physical partitions, logical volume manager volumes (LVM), network file systems,

or file backed disks such as loopback devices. In our solution we have chosen to

use loopback devices as they can be prepared completely at the server side and

easily set up at the client side.

The loopback device introduces some overhead because it is a file system on

top of another file system. The relevance of this overhead is not significant and

loopback devices perform relatively well. In our tests we noticed that loopback

disk images perform at the application level as well as, or even better, than the

actual physical disks.

Table 6.1: SCP transfer speeds to VMs in MB/s

SCP to asynchronous disks

Physical disk partition Image

Big file write Small files write Big file write Small files write

No load 5.91 0.21 11.91 0.21

Load 0.63 0.09 7.30 0.17

Big file read Small files read Big file read Small files read

No load 28.09 0.22 27.47 0.22

Load 4.63 0.10 4.45 0.08

SCP to synchronous disks

Physical disk partition Image

Big file write Small files write Big file write Small files write

No load 5.64 0.20 13.06 0.20

Load 1.14 0.17 8.67 0.19

Big file read Small files read Big file read Small files read

No load 23.51 0.22 26.27 0.22

Load 6.86 0.15 5.49 0.13

CHAPTER 6. EVALUATION 40

Tables 6.1 and 6.2 illustrate the transfer speeds gathered from our test environ-

ment. Environment had two almost identical virtual machine except that one

had its FS on physical partition and the other on a loopback device image.

Table 6.2: Local transfer speeds in VMs in MB/s

Local transfers with asynchronous disks

Physical disk partition Image

CP (MB/s) DD (MB/s) CP (MB/s) DD (MB/s)

No Load:

Big file 23.73 23.33 17.56 16.60

Small files 0.88 1.48 0.89 1.44

Load:

Big file 5.11 6.09 5.02 4.59

Small files 0.18 1.30 0.17 1.22

Local transfers with synchronous disks

Physical disk partition Image

CP (MB/s) DD (MB/s) CP (MB/s) DD (MB/s)

No Load:

Big file 2.39 0.43 6.76 1.93

Small files 0.39 1.50 0.43 1.44

Load:

Big file 0.55 0.09 2.16 0.86

Small files 0.13 1.40 0.15 1.27

Table 6.2 illustrates the transfer speeds of cp and dd commands inside the virtual

machines and inside one FS. Table 6.1 illustrates the read and write transfer

speeds between a virtual machine and another server in the same local area

network. The small files set were the same in all tests and consisted of 3890 files

with average size of 7.9kB. Big files were different in the two cases, 1GB file was

used in the scp tests and 500MB in the local tests. The tests were performed

with default settings and no block size optimization was used with dd.

CHAPTER 6. EVALUATION 41

Both transfer speed tests were performed both with and without load in the

domain0. The load was generated by running in parallel simple programs that

stress the processor and also by having several parallel data transfers locally

and over network. Also, the significance of the caching of FS was tested having

separate tests for synchronous and asynchronous modes.

Our testing showed that loopback devices perform relatively well. Loop back

device FS images do not depend on any other software as the LVM and the NFS

do. Setting up and removing the image on the client side is quite simple. These

features make image files suitable for the remote installation system.

6.3.2 Security and Reliability

The most important advantage of image files is their transportability, which

makes the preparation and delivery of services more robust. The images can

be prepared and tested thoroughly by professionals and then moved to remote

locations for usage. Virtualization provides an interface for these prepared im-

ages and removes the need to do any installation or configuration operations at

the remote site.

Centralized management also makes the services more secure as the work will be

done by professionals with accumulated experience on the subject. The network

of clients gather data that the centralized administration can then use to enhance

services. This is a security issue as it is important that the programs are well

configured and up to date.

Virtual machines are distributed using repositories. It is possible to eavesdrop

the traffic between the client and server and taint the contents. This is why the

packets in the repository are signed with the private key of the repository making

it possible for the client to check the integrity of received packages.

The public key of the repository is fetched by the automated installation via

HTTP making it insecure. It would be possible to use HTTPS for this but

it would require the use of certificates to make the server trustworthy for the

client. Having certificates in the installation media makes it less generic as the

certificates need to be replaced regularly and also it is not, to our knowledge,

supported by the Debian package management system.

CHAPTER 6. EVALUATION 42

6.3.3 Virtualization

Our system uses virtualization to host virtual machines. With virtualization

it is possible to multiplex the resources of one machine among several virtual

machines. This makes it possible to set up several services in one machine without

affecting the others. Having services in their own machines creates a new layer of

security as there is no actual link between machines except probably a network

connection. Virtualization provides this security and reduces the need to purchase

several physical machines and at the same time makes the use of existing resources

more efficient.

Transforming several physical machines into virtualized ones and running them

in one physical machine makes them more manageable. All virtualized machines

can be turned on and off from one place. If virtualized machine seizes up it can be

rebooted using the dom0. Virtualization and the consolidations make the physical

host machine the single point of failure. This should be taken into consideration

with better hardware or with the duplication of the hardware. Though this is

the case with critical services even without virtualization.

Figure 6.1: Network traffic between the thin client and the server in Bytes/second
using X Window system

Among several different virtualization solutions, we chose to use the Xen project.

Xen uses paravirtualization that offers us high performance in an open source

package. With paravirtualization we get fast I/O performance which is not re-

duced by the emulation like most other virtualization solutions. Virtual machines

do not run in the kernel space so the virtualization platform is quite well pro-

tected. These features make Xen a good virtualization product for our use as

the SBC environment with the thin client communication produce a lot of I/O

load. Figure 6.1 illustrates the traffic of one thin client in 100 MB/s local area

CHAPTER 6. EVALUATION 43

network. During the traffic capture time the thin client was used to browse the

Internet and write a small document. As it can be seen, the amount of traffic

one thin client produces is significant even when being idle.

The Xen project offers a multitude of tools for the management of virtual ma-

chines and pools of servers. VMWare has corresponding virtualization products

but its licensing and proprietary nature makes it less appealing for our use as the

plan is to use open source components. The tools provided by the Xen project

can be better reused in the future development and the recent activity in the

project promise more enhancements in the future.

Xen has also a support for hardware virtualization and thereby it can run non

Linux operating systems such as Windows. Though, then it has to rely on emu-

lation and suffers performance losses. As all the services needed in this project

can be found in Linux distributions we have no need for hardware virtualization

support. However it is good to have this possibility open for future development.

6.4 Distributing Virtualized SBC

So far the discussion in this chapter has been mostly about generic services. Now

we will take a look at how the system serves server-based computing. SBC, as

described in Chapter 3, is a system where all the applications, processing and

storage space are centralized. It can be used to offer applications, operating sys-

tems, and access to devices all of which can be accessed via thin client protocols.

In our prototype the access service and the application service are separated

into their own virtual machines. These virtual machines can easily be deployed

anywhere with the virtualization environment.

In our basic set up we only have two virtual machines. One offers a booting

media for thin clients in the LAN and the other provides a desktop environment

with applications. Once these systems have been configured and tested in our

environment they can be reused in other sites as well. The virtual machine

repository and Debian packages have proven to be a very reliable way to automate

the installation of virtual machines.

SBC comprises of different server oriented services. There are services such as

CHAPTER 6. EVALUATION 44

printing server, file server, proxy server, firewall etc. All these can be made into

a virtual machine and served as module to the clients. Not all SBC services are

generic and require a lot of configurations on site. Still these can be prepared

well before hand so that the actual installation and configuration effort on site

would stay minimal.

6.5 CERN Library Use-case

The CERN library is used as a test environment for our solution. The idea is

that the system relieves the librarians from their IT administrative tasks and

provides a usable and secure system for the visitors of the library. In this sec-

tion our solution is compared against the existing alternative, the MS Windows

workstations.

The CERN library is an easy case as it has no need to integrate existing services

with ours. It only needs a terminal service for their customers. This system

should provide the users with basic office tools and access to the Internet. The

network connection of the CERN library is ideal: It has very little restrictions

and offers 100MB/s bandwidth. This makes the installation and updates fast

and also makes the server more usable as a gateway for thin clients.

6.5.1 Performance

We tested our implementation by comparing it with the CERN Windows installa-

tion system. While the installation of one workstation from the CERN Windows

domain takes about 2.5 hours, the installation of one Xen server with virtual

machines required by the thin client system takes about 50 minutes. The set up

time of one thin client is about 5 minutes, which is the time it takes to set up

the hardware. Table 6.3 contains some values gathered from our tests performed

in our environment. The values shown are not absolute values but suggestive

results of our simple testing from which one can see the time savings achieved.

CHAPTER 6. EVALUATION 45

Table 6.3: Workstation (WS) set up times

SBC Windows

Time components:

HW installation / PC 5 min 5 min

Base system 10 min 45 min

Virtual machine 15 min -

Office capability 35 min 1 h 35 min

Total time:

Installing 1st WS 50 min 2 h 25 min

Setting up a new WS 5 min 2 h 25 min

Reinstalling services 15-40 min -

Table 6.3 illustrates some key installation times. First there is the time compo-

nent division. The total times consists of these components. In both SBC and

Window workstation case the actual hardware installation time is considered the

same as in both cases the same components such as wiring needs to be put into

place. The Windows side has two time components: the first one is the minimum

time it is needed to be able to use Windows. The office capability portion is the

time that it takes to set up the additional software needed to perform basic office

tasks. The latter part is done in the background so that the workstation can be

used, but the background installation takes most of the capacity. In the SBC

case the time needed to install the first terminal comes from the installation of

the hardware of both the server and the thin client and the installation of the

server virtualization platform with two virtual machines. The thin client itself

does not require any additional installation than the placement of the hardware.

The difference in the initial set up times of these two systems is not that crucial

as several Windows terminals can be installed in parallel. The time saving in

the SBC system comes from the upgrades and reinstallations. Both systems

require updates from time to time. Some installations like security patches can be

automated but sometimes there might be need to make complete re-installations.

With thin client system only the server needs updating as with Windows every

machine needs to be reinstalled. With our system it is enough to just update

CHAPTER 6. EVALUATION 46

the virtual machine serving the thin clients. This can be done remotely so that

almost no downtime occurs.

6.5.2 Terminal Devices

Windows requires much more powerful terminals i.e. workstations than the SBC.

Usually they also have a lot of wearing parts such as hard drives, fans etc. These

parts have limited life span and need replacing in a few years. At some point

these parts become unavailable, which forces the renewal of the whole worksta-

tion. Thin client can be just about any machine with a supported architecture.

The machines used as thin clients have not been powerfull enough to work as a

windows workstations for many years. These machines are made, with todays

technology, very small and without any wearable parts.

Figure 6.2: Thin client used in CERN library (Courtesy of Gadget Computer)

Machines without any wearing parts have longer life span. The need to replace old

terminals with newer ones comes seldom. Having no fans or disks also means that

there are no noise producing parts in the machine. Windows with all necessary

office applications needs a top of the line machine even to work. These machines

produce a lot of heat, which means they need cooling. If the number of terminals

or workstations were bigger then also the energy consumption would be an issue.

CHAPTER 6. EVALUATION 47

The thin clients consume one tenth of that of the normal workstation [27] making

the SBC .

6.5.3 Open Source

Windows workstations offer little or no chances to modify the system to better

suit the needs. With open source we have combined a system of only the required

components and modified them to work in this special case and with the low end

hardware. This way the system will not become bloated and too heavy to use.

Also, it is easier to make the modifications that are requested. For example

now the librarians have the possibility to modify the desktop appearance, of all

terminals in a simple manner.

6.6 Discussion

The system is easy to build since it uses common tools from the Linux distribu-

tions. These tools have been around for many years and have had the time to

mature. Though the installation media and software from the Ubuntu distribu-

tions tend to work quite reliably, it is not 100% reliable. There is always room

for a human error when the security updates are released. Currently our system

relies on the functioning of the distributions repositories but can be made the

way that we have control over distribution updates. Having this kind of service

of course adds more work and complexity to the management.

The same installation media can be used to set up a cluster of servers. These

servers can contain auxiliary services for load balancing. With the virtualization

one can have all kinds of different services on one physical machine. Clusters

could be built the way that they can balance load of the services between servers.

Xen offers tools for live migration of virtual machines. One could even retrieve

the virtual machine by setting up a repository service. This would make the

launch of a new service in the fast LAN even faster.

The images provided by our system can be customized for special needs but

that makes them less generic and suitable for others needs. Images that are

more generic can be applied easily to several locations. For some services this is

CHAPTER 6. EVALUATION 48

suitable. Our library thin client system for once. There they have no need for

authentication or dedicated user accounts.

To get most out of the network installation and centrally prepared services, the

services should be less user specific. The more customization there is in one

service the less applicable it is in other places. Though, the installation system

can be used to lighten the installation of services to some extend leaving the final

customization for the local administration.

With images it is also quite easy to provide the client with encrypted file systems.

This would restrict the local administrators of dom0 from accessing the image

and its contents. Encryption could also be used to add security to the transfer

of images from the server to the client as it makes the packages useless for inter-

cepting parties. Though the traffic can also be secured using TLS, it makes the

installation process more complicated.

Usage of centralized management of the images can be reasoned in many ways.

One is that in a centralized system the know-how will grow in one place and

mistakes wont be repeated in other places. This way the mistakes done in the

early stages of the service lifetime can most likely be avoided.

Although it is quite handy to have the installation and management service cen-

tralized there is always the question of who will actually perform it and what is

the price. As that subject is out of the scope of thesis it will not get any more

attention here.

Chapter 7

Conclusions

In this thesis the server-based computing, virtualization, and techniques of service

distribution were studied. The research was done as part of the Netgate 2 research

project. As a result a system that automates the installation and maintenance

of remote servers with virtualized services was produced. The system has been

tested in several locations such as the CERN library.

The prototype uses virtualization to create small modular service packages that

can be distributed among geographically dispersed locations. The system makes

the setup and replication of distributed and complex services possible. The in-

stallation of a new remote machine has been made as easy as possible.

With virtualization one can package services into virtual machines and combine

these into modular and secure systems. Most of the applications used in the

prototype are in several Linux distributions. This includes also the Xen par-

avirtualization, which makes it a good solution as the virtualization platform.

Paravirtualization induces less overhead than other virtualization solutions since

it does not emulate or translate machine instructions. The Debian package man-

agement system was chosen for the distribution of virtualized services because it

is a mature system and has proven to be functional. It offers all the necessary

tools to distribute and manage virtual machines.

While writing this thesis, many possible applications for server-based computing

have arisen. There are applications like language labs, office environments, tele

working etc. One thing in common to all of them is centralization of resources

and simplification of end devices. Figure 7.1 illustrates a visionary arrangement

49

CHAPTER 7. CONCLUSIONS 50

Figure 7.1: Future vision of server-based computing

where different resources both local and remote are accessible through one point of

access and from several locations and devices. These resources can be connected

to each other in a many ways but the client only has to know how to communicate

CHAPTER 7. CONCLUSIONS 51

with the access point.

The applicability of SBC has earlier been restricted by weak network infrastruc-

ture and expensiveness of server hardware. Today networks are fast and diverse

and processing power inexpensive. Now the facilities for SBC are there and it is

gaining momentum.

Appendix A

Remote management system

setup manual

Here is a short description on how to set up different parts of the remote man-
agement system. It contains the instructions for setting up both the client side
and the server side tools. The instructions are meant for a linux administrator
and might not be suitable for an unexperienced user.

1. Repository

2. Automatic installation

3. Virtual machine images

4. Virtual machine Debian packages

5. packagemanager.deb

6. dom0config.deb

1. Repository

Install the following packets. We used Ubuntu Feisty distribution.
Required packages: apache2, gnupg, reprepro

The repository is basically a collection files that are accessible via file server. It
can work on top of a ftp server or a HTTP server. In our system we have used
Apache HTTP server. The repository is build into a subfolder of the web server’s
root. The configuration file of the repository is by default in conf directory

52

APPENDIX A. REMOTE MANAGEMENT SYSTEM SETUP MANUAL 53

(/var/www/yourdir/conf) and is called distributions.conf. Below is our example
of it.

distributions.conf:
Origin: Hiptek repository Label: Hiptek repository Suite: feisty Codename: hiptek Version: 3.0 Architectures:

i386 amd64 ia64 Components: main Description: Hiptek repository for netgate purposes SignWith: yes

After configuring the repository we will make the signing keys for the repository.
For that we use Gnupg (GNU Privacy Guard). Keys will be generated into the
home folder of the user if not set otherwise.

gpg –gen-key

This command creates both private and public key. The private key is used by
Reprepro to sign packages and the public key by apt-tools on the client side.

Adding, removing and updating packages in the repository is done with Reprepro.

reprepro includedeb hiptek package.deb - adds and updates package.deb
reprepro remove hiptek package.deb - removes package.deb

2. Automatic installation

Automatic installation is done with the Debian installer. Remote machine is
started with a media containing a generic kernel and the installation software.
We used both usb-stick and cd-rom. Usb-stick is created using syslinux and the
cd-rom using isolinux. Usb-stick creation tools and St.Petersburg’s special master
boot record (MBR) that can be found from the repository. They are contained
insidebootingtools.tar.gz, which can be found from the root of the repository, and
inside dom0config package.

Installation tool is configured to boot with predifined parameters that lessen the
involvement from the installer. Following example is from the syslinux.cfg used
in our installation media.

Kernel boot parameters:

ke rne l l i nux append
preseed / u r l=http :// wik i . hip . f i /ubuntu/ f e i s t y−ask−disk−preseed . txt l o c a l e=en US
bootkbd=se conso le−setup / layoutcode=se conso le−setup / var iantcode=nodeadkeys
ne t c f g / get hostname=ubuntu−xen−s e r v e r auto=true p r i o r i t y=c r i t i c a l
base− i n s t a l l e r / ke rne l / l i nux / extra−packages−2.6=
pkgse l / i n s t a l l −pattern=˜t ˆubuntu−standard$ pkgse l / language−pack−pat t e rns=
pkgse l / i n s t a l l −language−support=f a l s e acp i=o f f noapic vga=normal
i n i t r d=i n i t r d . gz r amd i sk s i z e =14332 root=/dev/ rd /0 rw −

This fetches a preseed file from our server. The preseed tries to answer to as
many questions as possible so that user would not have to. Preseed files are very
configurable and allow scripting. Preseed defines for example how the hardware

APPENDIX A. REMOTE MANAGEMENT SYSTEM SETUP MANUAL 54

should be configured. It tells the installation from where it should download all
the becessary installation medias. There you can also define your your own repos-
itory that contains your virtual machines. You musta also define location for the
repository’s public key, so that the installation can fetch it. If you need to install
some extra software on top of the base installation you can set it in the preseed.
We have included the following: ssh, openvpn, dom0config, ubuntu-xen-server,
rsync, packagemanager, mtools and syslinux. Dom0config and packagemanager
are home made packages. Dom0config sets up the default network configurations
and packagemanager starts the automatic updates. These two packages are de-
scibed in more detail later.

Preseed:

Loca l i z a t i on
d−i debian− i n s t a l l e r / l o c a l e s t r i n g en US
d−i conso le−keymaps−at /keymap s e l e c t se

##
Network con f i g

d−i n e t c f g / c h o o s e i n t e r f a c e s e l e c t auto
d−i n e t c f g / use dhcp boolean true
d−i n e t c f g / get hostname s t r i n g no−dhcp−hostname
d−i n e t c f g / get domain s t r i n g no−dhcp−domain
d−i n e t c f g / w i r e l e s s wep s t r i n g

##
Mirror s i t e s e t t i n g s

d−i mirror / country s t r i n g FI
d−i mirror / http /hostname s t r i n g f tp :// f tp . funet . f i /pub/ mir ro r s / a r ch ive . ubuntu . com/
d−i mirror / http / d i r e c t o r y s t r i n g /
d−i mirror / s u i t e s e l e c t f e i s t y
d−i mirror / http /proxy s t r i n g

##
Par t i t i o n i n g

d−i partman−auto/method s t r i n g r e gu l a r
d−i partman−auto/ choo s e r e c i p e s e l e c t Al l f i l e s in one p a r t i t i o n (recommended f o r new use r s)
d−i partman/ con f i rm wr i t e n ew l abe l boolean true
d−i partman/ choo s e p a r t i t i o n s e l e c t F in i sh p a r t i t i o n i n g and wr i t e changes to d i sk
d−i partman/ conf i rm boolean true

##
Boot l oade r i n s t a l l a t i o n .

d−i grub− i n s t a l l e r / on ly deb ian boolean true
d−i grub− i n s t a l l e r / w i th o the r o s boolean true
d−i grub− i n s t a l l e r /bootdev s t r i n g (hd0 , 0)

##
Package s e l e c t i o n

ta s k s e l t a s k s e l / f i r s t mu l t i s e l e c t standard
d−i pkgse l / in c lude s t r i n g ssh openvpn dom0config ubuntu−xen−s e r v e r

rsync packagemanager mtools s y s l i nux

APPENDIX A. REMOTE MANAGEMENT SYSTEM SETUP MANUAL 55

##
Fin i sh ing up the f i r s t s tage i n s t a l l .

Avoid that l a s t message about the i n s t a l l be ing complete .
d−i p r eba s e con f i g / r e b o o t i n p r o g r e s s note

Clock

d−i c lock−setup /utc boolean true
d−i time/zone s t r i n g Europe/ He l s i nk i

##
Apt Setup

d−i apt−setup /non−f r e e boolean true
d−i apt−setup / cont r ib boolean true

Addi t iona l r e p o s i t o r i e s , l o c a l [0−9] a v a i l a b l e
d−i apt−setup / l o c a l 0 / r epo s i t o r y s t r i n g http :// wik i . hip . f i /ubuntu hiptek main
d−i apt−setup / l o c a l 0 /comment s t r i n g Hiptek v i r t u a l machines
d−i apt−setup / l o c a l 0 /key s t r i n g http :// wik i . hip . f i /ubuntu/aptpubkey
d−i debian− i n s t a l l e r / a l l ow unauthent i ca t ed s t r i n g t rue

##
Account setup

d−i passwd/ root−l o g i n boolean true
d−i passwd/make−user boolean true
d−i passwd/ root−password password qwert0
d−i passwd/ root−password−again password qwert0

#passwd passwd/make−user boolean true
d−i passwd/user−fu l lname s t r i n g Admin account
d−i passwd/username s t r i n g mainta iner
d−i passwd/user−password password i n s e cu r e
d−i passwd/user−password−again password i n s e cu r e

##
end s c r i p t s

This command i s run j u s t be f o r e the i n s t a l l f i n i s h e s , but when there i s
s t i l l a usab le / t a r g e t d i r e c t o r y .
d−i p reseed / late command s t r i n g wget http :// wik i . hip . f i /ubuntu/ f e i s t y−l a t e−preseed−cmd
−O / ta rg e t / root / l a t e−preseed−cmd ; chmod +x / ta rg e t / root / la t e−preseed−cmd ;
/ t a r g e t / root / l a t e−preseed−cmd ; echo ” l a t e preseed command run” > / ta r g e t / root / he l l omessage

This command i s run a f t e r base−c on f i g i s done , j u s t be f o r e the l o g i n :
prompt . This i s a good way to i n s t a l l a s e t o f packages you want , or to
tweak the c on f i g u r a t i on o f the system .
d−i base−c on f i g / late command s t r i n g wget http :// wik i . hip . f i /ubuntu/ f e i s t y−l a t e−base−con f i g−cmd
−O / root / l a t e−base−con f i g−cmd ; chmod +x / root / la t e−base−con f i g−cmd ;

/ root / l a t e−base−con f i g−cmd ; echo ” l a t e base−c on f i g command run” >> / root / he l l omessage

3. Virtual machine images

To launch a virtual machine you need to have a virtual machine image, Xen
compatible kernel/initrd and virtual machine configuration file.

There are several ways of creating virtual machines images for Xen and two
different types of images. Images used with hardware virtualization are different

APPENDIX A. REMOTE MANAGEMENT SYSTEM SETUP MANUAL 56

from the normal filesystem images. In our system we have only used normal
filesystem images as they work with larger machine base.

The two ways we have used are 1.) Xen-tools 2.) Debootstrap by hand or
copy existing root to a image. Xen-tools actually do all that is done with the
second way with one command. Before running that command one should first
configure the /etc/xen-tools/xen-tools.conf so that your default values will be
of your design. Commandline parameters override the default values set in the
xen-tools.conf.

xen-tools.conf:

d i r = /opt/xen
debootst rap = 1
s i z e = 5Gb # Disk image s i z e .
memory = 256Mb # Memory s i z e
swap = 512Mb # Swap s i z e
f s = ext3 # use the EXT3 f i l e s y s t em f o r the d i sk image .
d i s t = f e i s t y # Defau l t d i s t r i b u t i o n to i n s t a l l .
image = f u l l # Spec i f y spar s e vs . f u l l d i sk images .
gateway = 192 . 168 . 147 . 0
netmask = 255 . 255 . 255 . 0
passwd = 1
ke rne l = /boot/vmlinuz
i n i t r d = /boot/ i n i t r d . img
mirror = f tp :// mirror . switch . ch/ mirror /ubuntu/

xen-create-image –ip ip –debootstrap hostname

Ip can be static or dhcp and debootstrap can be replaced with rpmstrap depend-
ing on your distribution.

The following example does the same as the xen-create-image except that one
must afterwords make the xen configuration file for the virtual machine.

1. dd if=/dev/zero of=empty.img bs=1024k count=1000

2. mkfs.ext3 empty.img

3. mkdir mnt ; mount -o loop empty.img mnt/

4. debootstrap –arch i386 feisty mnt/ ftp://mirror.switch.ch/mirror/ubuntu/

5. cp -dpR /lib*/modules/ mnt/lib*/modules/

6. umount mnt/

7. rmdir mnt

What this does is it creates an empty image file, initializes it with ext3 filesystem
and debootstraps feisty distribution into it.

Virtual machine specific configuration file:

APPENDIX A. REMOTE MANAGEMENT SYSTEM SETUP MANUAL 57

ke rne l = ’/ boot/vmlinuz ’
ramdisk = ’/ boot/ i n i t r d . img ’
memory = ’1024 ’
root = ’/ dev/ sda1 ro ’
d i sk = [’ f i l e : / opt/xen/domains/askoM−CH−1.3.0/ d i sk . img , sda1 ,w’ ,

’ f i l e : / opt/xen/domains/askoM−CH−1.3.0/ swap . img , sda2 ,w ’]
name = ’askoM ’
v i f = [’ ’]
on powero f f = ’ destroy ’
on reboot = ’ r e s t a r t ’

The default location for virtual machine configuration files is /etc/xen directory.
After you have created the virtual machine and the configuration file you can
start the virtual machine with “xm create” command.

xm create <configuration file>

4. Virtual machine Debian packages

Debian packages can be made with different tools but they are all based on dpkg,
which is the base of Debian package management system. Every file and folder in
the building directory of the package are packaged into one file and when installed
they are placed accordingly to the root of the client’s filesystem. A file X in folder
Y under building folder will be placed into /X/Y in the client machine’s root. So
the files should be placed so that the virtual machine configuration file is under
/etc/xen and the image under /opt/xen/domains/¡name of virtual machine¿.

As described earlier the virtual machine requires a working kernel and initrd.img,
virtual machine image file and a configuration file to start. In our system we use
the same kernel and initrd with every virtual machine. This makes the updating
and configuration more simple.

The less data there is to transfer the faster the virtual machines can be installed.
This is why we try to make as much at the client machine as possible. We use
destination machines modules and kernel and we also make the swap file at the
destination. This is done with scripts that are part of the debian package.

In addition to the virtual machine specific files there is also a control file directory
in the building directory root named DEBIAN. This folder is required by the
dpkg. In this folder we put configurations, version information and scripts. In
our packages we have included changelog, control, copyright configuration files
where the most important being the control file. We have also used two scripts,
postinst script is used to set up the virtual machine environment and prerm script
to clean up afterward.

postinst:

APPENDIX A. REMOTE MANAGEMENT SYSTEM SETUP MANUAL 58

#!/bin /sh −e

xm=‘/ usr /bin /which xm‘
xen conf=/etc /xen
vmType=askoM−CH
ve r s i on =1.3.0
vm=$vmType−$ve r s i on
image root=/opt/xen/domains

Phases :
1 .) Create r equ i r ed d i r e c t o r i e s
2 .) Extract images and c on f i g u r a t i o n s
3 .) Copy f i l e s to t h e i r l o c a t i o n s
#
Phases 1 ,2 ,3 done automat i ca l l y
#
4 .) Copy f i l e s to the image
5 .) Make swap space
6 .) Sta r t the v i r t u a l machine
#

c l e a r ()
{

/bin /umount /tmp/$vm
/bin / rmdir /tmp/$vm

}

che ckF i l e s ()
{

echo ”Checking v i r t u a l machine f i l e s ”
echo ” $image root , $ image root /$vm/ d i sk . img , / e t c /xen/$vm . c f g ”
i f [−d $image root −a −f $ image root /$vm/ d i sk . img −a −f / e t c /xen/$vm . c f g]

then echo ”OK”
e l s e

echo ” Fal se . Not a l l r e gu i r ed f i l e s were found”
e x i t 0

f i
}

4. Append system modules to v i r t u a l machines image
appendModules ()
{

echo ”Adding modules o f the running system to v i r t u a l machines image”
echo ” running ke rne l ” ‘uname −r ‘
i f (/ bin /mkdir /tmp/$vm)

then cont inue
e l s e

echo ”unable to make d i r e c t o r y /tmp/$vm!”
e x i t 0

f i
i f (/ bin /mount −o loop $image root /$vm/ d i sk . img /tmp/$vm)

then cont inue
e l s e

echo ”unable to mount $ image root /$vm/ d i sk . img to /tmp/$vm!”
/bin /umount /tmp/$vm
ex i t 0 ;

f i
i f (/ bin /mkdir /tmp/$vm/ l i b /modules / ‘uname −r ‘)

then cont inue
e l s e

echo ”unable to c r e a t e d i r e c t o r y /tmp/$vm/ l i b /modules /” ‘uname −r ‘ ” ! ”
c l e a r
e x i t 0

f i
i f (cp −r / l i b /modules / ‘uname −r ‘ /tmp/$vm/ l i b /modules /)

APPENDIX A. REMOTE MANAGEMENT SYSTEM SETUP MANUAL 59

then cont inue

e l s e
echo ”Unable to copy modules ! ”
c l e a r
e x i t 0

f i
i f (/ bin /umount /tmp/$vm)

then /bin / rmdir /tmp/$vm
e l s e

echo ”unable to umount temporary d i r e c t o r y ”
e x i t 0

f i
echo ”OK”

}
5. Make swap space
makeSwap ()
{

echo ”Creat ing swap space f o r $vm”

dd i f =/dev/ zero o f=$image root /$vm/swap . img bs=1M count=500

i f (mkswap $image root /$vm/swap . img)
then echo ”ok ! ”

e l s e
echo ” f a i l e d ! ”

f i
}
6. Star t v i r t u a l machine
startVM ()
{

echo ” S ta r t i ng v i r t u a l machine . . . ”

i f ($xm c r ea t e $vm . c f g)
then echo ”ok ! ”

e l s e
echo ” f a i l e d ! ”
echo ”You have xend i n s t a l l e d and running , r i g h t ?”

f i
}
######
#MAIN#
######
checkF i l e s
appendModules
makeSwap
startVM

prerm:

#!/bin /sh −e
1 .) Stop the running v i r t u a l machine
2 .) De lete the swap image
vmType=askoM
ve r s i on =1.3.0
serverName=askoM−CH
vm=$vmType−$ve r s i on
imageRoot=/opt/xen/domains

Stop running v i r t u a l machine
stopVM()
{

echo ”Stopping v i r t u a l machine $serverName”
i f (xm shutdown $serverName)

APPENDIX A. REMOTE MANAGEMENT SYSTEM SETUP MANUAL 60

then echo ”OK!”
e l s e

echo ” Fa i l ed ! Maybe i t was not running ?”
f i

}
Delete the swap image
delSwap ()
{

echo ” De le t ing v i r t u a l machines ($vm) swap image”
i f (rm $imageRoot/$vm/swap . img)

then echo ”OK!”
e l s e

echo ” Fa i l ed ! Check i f i t was l e f t behind (/ opt/xen/domains/$vm) . ”
f i

}
stopVM
delSwap

control:

Sec t i on : deve l
P r i o r i t y : op t i ona l
I n s t a l l e d−s i z e : 3300
Maintainer : Jukka Kommeri <kommeri@cern . ch>
Standards−Vers ion : 3 . 7 . 2 . 1
Package : askom−ch
Vers ion : 1 . 3 . 0
Arch i t e c tu r e : i 386
Desc r ip t i on : Light app l i c a t i o n s e r v e r VM image with x f ce4 desktop

After you have all the files in place, the creation of the Debian package is done
with the following command.

dpkg -b directory packagename.deb

5. packagemanager.deb

The package manager fetches periodically packagelists from a server and updates
machine’s package collection accordingly. For this, we have set up a Rsync server
which serves the packagelists. The server has a client specific account which is
only accessible with SSH+Rsync. The server side is protected with rssh and
client machines can only run rsync on the server. For it to work automatically,
we have included the servers public key to the package manager package.

#! /bin /sh

s l e e p 3
rsync −az −e ” ssh − i / root / . ssh / netgate − l netgate ”

netgate@wiki . hip . f i : / opt/ rsync / t e s t / / e t c /pkgsync/

i f [−s / e t c /pkgsync/musthave]
then echo ”Checking p a c k a l i s t s f o r updates ”

pkgsync
e l s e echo ”The f i l e / e t c /pkgsync/musthave f i l e s i z e i s ze ro . I t cannot be ! ”

f i

APPENDIX A. REMOTE MANAGEMENT SYSTEM SETUP MANUAL 61

The script that fetches the packagelists is placed in the /etc/cron.daily so that
by default it would be run around 4 am.

Server side has two configuration files. One for Rsync and one for Rssh. In
rsyncd.conf we define the modules that are shared. The modules must contain
at least the musthave file, which defines the packages of the client machine.
Rssh.conf is configured to restrict the use of the shell just to rsync and set the
file permissions.

/etc/rsyncd.conf:

uid = root
g id = root

max connec t i ons = 10
#motd f i l e = / etc / rsyncd / rsyncd . motd

[p a c k e t l i s t 1]
/ opt/ rsync / t e s t /
read only = yes

/etc/rssh.conf:

l o g f a c i l i t y = LOG USER
al l owrsync
umask = 022
user=netgate : 0 1 1 : 1 0 001 : # rsync , with no chroot

6. Dom0config.deb

The dom0config package configures the xen dom0 which is the priviliged xen
domain. It sets up the network and adds our own network configurations to
the Xen daemon configurations. /etc/xen/xend.conf is edited so that it uses
network-dummy script. Instead of running the default network script we use our
own network configurations.

iptables.conf:

:PREROUTING ACCEPT [2 2 : 2 9 2 2]
:POSTROUTING ACCEPT [2 : 1 5 6]
:OUTPUT ACCEPT [1 : 7 2]
−A PREROUTING − i xenbr0 −p udp −m udp −−dport 53 −j DNAT −−to−de s t i n a t i on 1 5 3 . 1 . 6 3 . 3 7 : 5 3
−A POSTROUTING −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −o eth0 −j MASQUERADE
COMMIT
∗ f i l t e r
: INPUT DROP [2 0 : 2 7 6 2]
:FORWARD DROP [0 : 0]
:OUTPUT ACCEPT [543 : 8 0 392]
−A INPUT −m sta t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT
−A INPUT − i l o −j ACCEPT
−A INPUT − i xenbr0 −j ACCEPT
−A INPUT −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p icmp −j ACCEPT
−A INPUT −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p udp −m udp −−dport 123 −j ACCEPT
−A INPUT −p tcp −m tcp −−dport 22 −j ACCEPT

APPENDIX A. REMOTE MANAGEMENT SYSTEM SETUP MANUAL 62

−A INPUT −p udp −m udp −−dport 1194 −j ACCEPT
−A INPUT −j LOG
−A FORWARD −m sta t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 20 :21 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 22 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p udp −m udp −−dport 53 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 80 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 110 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 119 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p udp −m udp −−dport 123 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 143 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 443 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p udp −m udp −−dport 443 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 465 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p udp −m udp −−dport 514 −j ACCEPT
−A FORWARD −s 1 93 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 631 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 636 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 902 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 993 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 995 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p udp −m udp −−dport 1194 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 3389 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 3690 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 8001 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 6666:6669 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 6000:6009 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 9100 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p tcp −m tcp −−dport 11371 −j ACCEPT
−A FORWARD −s 1 92 . 1 68 . 1 47 . 0 /255 . 2 55 . 2 55 . 0 −p udp −m udp −−dport 45000 −j ACCEPT
−A FORWARD −p udp −s 192 . 168 . 147 . 0/24 −d 192 .168 . 147 . 0/24 −−dport 69 −j ACCEPT
−A FORWARD −p udp −s 192 . 168 . 147 . 0/24 −d 192 .168 . 147 . 0/24 −−spor t 69 −j ACCEPT
−A FORWARD −p udp −s 192 . 168 . 147 . 0/24 −d 192 .168 . 147 . 0/24 −−dport 32765:32768 −j ACCEPT
−A FORWARD −p tcp −s 192 . 168 . 147 . 0/24 −d 192 .168 . 147 . 0/24 −−dport 32765:32768 −j ACCEPT
−A FORWARD −p udp −s 192 . 168 . 147 . 0/24 −d 192 .168 . 147 . 0/24 −−dport 2049 −j ACCEPT
−A FORWARD −p tcp −s 192 . 168 . 147 . 0/24 −d 192 .168 . 147 . 0/24 −−dport 2049 −j ACCEPT
−A FORWARD −p udp −s 192 . 168 . 147 . 0/24 −d 192 .168 . 147 . 0/24 −−dport 111 −j ACCEPT
−A FORWARD −p tcp −s 192 . 168 . 147 . 0/24 −d 192 .168 . 147 . 0/24 −−dport 111 −j ACCEPT
−A FORWARD −p tcp −m tcp −−dport 22 −j ACCEPT
−A FORWARD −p icmp −j ACCEPT
−A FORWARD −p udp −−spor t 68 −−dport 67 −j ACCEPT
−A FORWARD −p udp −−spor t 67 −−dport 68 −j ACCEPT
−A FORWARD − i xenbr0 −j ACCEPT
−A FORWARD −o xenbr0 −j ACCEPT
−A FORWARD −j LOG
COMMIT

Appendix B

CERN library thin client system

1. Introduction

2. Network

3. Servers

4. Thin clients

5. Customization

6. Software

1.Introduction

The thin client installation for CERN library operates with one server machine
that handles multiple thin clients. This server uses virtualization to ease the
management of updates and to increase overall security. The server hardware
runs three servers. One is the virtualization platform, the Xen dom0, and its
name is pcdsusi02.cern.ch. The two other machines are virtual and they are
called askoM and ltsp42.

All the machines both real and virtual get their software from Ubuntu Feisty
distribution. Thin clients can be placed around the library and connected to the
server using wireless bridges. These brigdes give more freedom to the placement
of the thin clients and remove the need for a network infrastructure.

2. Network

Pcdsusi02, the dom0, is the only machine visible to the CERN network. It is the
gateway and the firewall for the virtual machines. It uses CERN DHCP to set its
ip address. Pcdsusi02 is registered to the DNS of CERN. Virtual machines askoM,
ltsp42 and thin clients are in a private local area network and use pcdsusi02 to

63

APPENDIX B. CERN LIBRARY THIN CLIENT SYSTEM 64

access outside network. Network configuration of the system is illustrated in
Figure B.1. Virtual LAN in the figure illustrates the network inside pcdsusi02.

Figure B.1: The network of thin client system

To make the placement of thin clients more flexible, we have also added wireless
bridges to the private local area network. These bridges connect thin client clus-
ters to the servers.The bridges have their own IP addresses, which are 192.168.147.2,
192.168.147.3 and 192.168.147.4. Address 192.168.147.2 belongs to the root
bridge that has a wire connection to the server. The other bridges connect only
to the root bridge.

The address space of thin clients in the private LAN is limited to 192.168.147.100-
192.168.147.120 meaning that there can be max 21 thin clients behind one server.
This is also a reasonable limit of thin clients per one server.

3. Servers

Pcdsusi02.cern.ch is the host for the virtual servers. It uses Xen paravirtualization
to multiplex the hardware. The server is installed using a remote installation
system. This system installs basic Ubuntu Feisty with Xen. It also adds a
preconfigured firewall and launches a automatic management system, that keeps
the software and virtual machines up to date.

Virtual servers:

• ltsp42-192.168.147.11, is a Ubuntu Feisty with ltsp4.2 tools.

• askoM-192.168.147.12, is a Ubuntu Feisty with XFCE4 desktop environ-
ment and all the necessary office tools. This is the actual server that the
users are allowed to use and where the guest user accounts and home folders
reside.

4. Thin clients

APPENDIX B. CERN LIBRARY THIN CLIENT SYSTEM 65

Thin clients boot from the access server, ltsp42, and get all the needed software
from there via pxe/tftp and nfs. Once initialized the thin client connects to askoM
where the actual user session is run and all the user software is maintained and
executed. Connection between the thin client and server is maintained inside
a ssh-tunnel, which secures the the client session as it has to go through a less
secure wireless connection.

5. Customization

askoM has an admin user account. The personalized settings of this account
are used to initialize the home folders of the guest accounts used by the thin
clients. Guest users’ home folders are reinitialized once a day at 4 am. Admin-
istration can also force this operation with root account. The command for that
is /root/remakeHomeFolders.sh. After running this command the thin clients
should be booted. In addition the server will remake all the guest accounts when
rebooted and wipe out all related files.

To use the admin user account one must log in with the Xephyr program. This
program can be used to make remote x-connections to even lxplus. In tour case
it is used to connect to localhost ”Xephyr :3 -query localhost” and log in with
the ”guest” account. When logged in one can make changes to the desktop
configurations. These changes will be applied to other guest accounts when the
home folders are reinitialized.

6. Software

The thin client system uses only open source software. All the software is in-
stalled from the packages of the Ubuntu Feisty distribution. There are three
main software assemblies: Xen virtualization software, LTSP thin client man-
agent software and XFCE4 desktop environment. In addition there are some
scripts that automate the management of services in different servers.

Xen virtualization tools include the Xen hypervisor and its management tools.
These tools make it possible to create and destroy virtual machines. They also
include rich set of other management tools to for example. backup virtual ma-
chines or migrate them to other machines. LTSP software include several server
side components such as dhcp,tftpd,nfs server and ltsp’s own scripts for manag-
ing heterogenouos hardware pool. These services make it possible to boot thin
clients from the network.

XFCE4 is a light desktop environment for Linux machines. It is easily con-
figurable to meet different needs. In our case we have tried to configure the
environment to meet the basic library use. The menu of the desktop contain
software organized into intuitive categories. Software collection is limited to the
basic office tools which include Open Office, Firefox with flash, Acrobat reader
and some basic tools provided by the XFCE4 by default. In addition there are

APPENDIX B. CERN LIBRARY THIN CLIENT SYSTEM 66

some software for remote sessions such as rdesktop, ssh-client and Xephyr. Most
important software have a shortcut on the panel of the desktop.

Bibliography

[1] MyPLC User’s Guide.
http://www.planet-lab.org/doc/myplc.
Referenced 2.12.2007.

[2] Xen basics.
http://www.nodemaster.de/24-0-xen-basics.html.
Referenced 22.11.2007.

[3] Understanding the Remote Desktop Protocol (RDP), March 2007. Article ID
: 186607, Revision : 2.2.

[4] Environmental comparison of the relevance of pc and thin client desktop
equipment for the climate, 2008.

[5] Netvoyager plc . Server-based computing explained.
http://www.netvoyager.co.uk/general/sbce.html.
Referenced 21.8.2006, Last edited.

[6] Sun Microsystems . Sun ray server software 3.1 administrator’s guide for the
linux operating system.
http://docs.sun.com/app/docs/doc/819-2389.
Referenced 26.09.2006, Last edited 9.12.2005.

[7] VMWare . Technology preview for transparent paravirtualization.
http://www.vmware.com/interfaces/techpreview.html.
Referenced 16.5.2008.

[8] K. Adams and O. Agesen. A comparison of software and hardware techniques
for x86 virtualization. In ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming languages and operating
systems, pages 2–13, New York, NY, USA, 2006. ACM.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP
’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, USA, 2003. ACM.

67

[10] D. Blackman. Debian package management, part 1: A user’s guide. Linux
J., 2000(80es):12, 2000.

[11] P. Chaganti. Xen Virtualization, A practical handbook. Pact Publishing
Ltd., 2007.

[12] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman. Planetlab: an overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33(3):3–12, 2003.

[13] C. L. Coffing. An x86 protected mode virtual machine monitor for the mit
exokernel.
Referenced 21.1.2007.

[14] R. J. Creasy. The origin of the VM370 time-sharing system. IBM Journal
of Research & Development, September 1981.

[15] B. des Ligneris. Virtualization of linux-based computers: The linux-vserver
project. In HPCS ’05: Proceedings of the 19th International Symposium
on High Performance Computing Systems and Applications, pages 340–346,
Washington, DC, USA, 2005. IEEE Computer Society.

[16] P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau, P. Murray, and P. Toft.
Smartfrog: Configuration and automatic ignition of distributed applications.
Technical report, HP, 2003.

[17] S. Greenberg. What is thin client computing. For the Record, July 2000.

[18] X. Grehant, O. Pernet, S. Jarp, I. Demeure, and P. Toft. Xen management
with smartfrog.

[19] B. Havard. HPC Virtualization with Xen on Itanium. Master’s thesis, Nor-
wegian University of Science and Technology, July 2005.

[20] HP Development Company .
hewlett-packard server-based computing - solution overview.
http://activeanswers.compaq.com/ActiveAnswers/cache/

70284-0-0-0-121.html.
Referenced 26.09.2006, Last edited 21.8.2006.

[21] A. Isotton. Debian repository howto.
http://www.debian.org/doc/manuals/repository-howto/

repository-howto.

[22] M. T. Jones. Discover the linux kernel virtual machine.
http://www.ibm.com/developerworks/linux/library/l-linux-kvm/,
April 2007.

68

[23] J. Kanter. Understanding Thin-Client/Server Computing. Microsoft Press,
1998.

[24] K. V. Kaplinsky. Vnc tight encoder - data compression for vnc. In Pro-
ceedings of the 7th International Scientific and Practical Conference of Stu-
dents, Post-graduates and Young Scientists Modern Techniques and Tech-
nology MTT 2001. IEEE Standards, 2001.

[25] A. Kros and M. A. Margevicius. Thin-client shipments stage strongest
growth since 2000. Technical report, Gartner, June 2006.

[26] A. Lai and J. Nieh. Limits of wide-area thin-client computing. In SIG-
METRICS ’02: Proceedings of the 2002 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pages 228–
239, New York, NY, USA, 2002. ACM.

[27] E. Leader. Thin clients trump pcs on energy consumption.
http://www.environmentalleader.com/2008/03/26/thin-clients-trump-
pcs-on-energy-consumption/, 2008.

[28] J. Liu, W. Huang, B. Abali, and D. K. Panda. High performance vmm-
bypass i/o in virtual machines. In USENIX-ATC’06: Proceedings of the
Annual Technical Conference on USENIX’06 Annual Technical Conference,
pages 3–3, Berkeley, CA, USA, 2006. USENIX Association.

[29] J. N. Matthews, E. M. Dow, T. Deshane, W. Hu, J. Bongio, P. F.Wilbur, and
B. Johnson. Running Xen: A Hands-On Guide to the Art of Virtualization.
Prentice Hall, April 2008.

[30] J. McQuillan. LTSP - Linux Terminal Server Project - v4.1.
http://ltsp.mirrors.tds.net/pub/ltsp/docs/ltsp-4.1-en.html.
Revision 4.1.3-en.

[31] Microsoft. Remote Desktop Protocol (RDP) Features and Performance.
http://www.thinclient.net/technology/RDP_Features_and_

Performance.htm.

[32] Microsoft. Configuring authentication and encryption, January 2005.
http://technet2.microsoft.com/windowsserver/en/library/

a92d8eb9-f53d-4e86-ac9b-29fd6146977b1033.mspx?mfr=true.

[33] T. Niemi, M. Tuisku, and M. Kokkonen. A server-based computing system
based on open source software. referenced 28.9.2006, August 2006.

[34] A. Nye. X Protocol reference Manual for X11 Version 4, Release 6. OŔeilly
& Associates, inc, 1995.

[35] Qumranet. KVM - Kernel-based Virtualization Machine. http://www.

qumranet.com/files/white_papers/KVM_Whitepaper.pdf.

69

[36] S. Regis. Getting started with NX .
http://www.nomachine.com/documents/getting-started.php.
Referenced 7.5.2008, Last edited 1.8.2007.

[37] M. Revett, I. Boyd, and C. Stephens. Network computing: a tutorial review.
Electronics & Communications engineering journal, February 2001.

[38] T. Richardson. The rfb protocol. Technical report, RealVNC Ltd, 2007.

[39] R. Rodstein. Chapter 2: The citrix access gateway product line.
http://seoutsourcing.com/node/15.
Referenced 2.10.2008.

[40] R. Rose. Survey of system virtualization techniques. cite-
seer.ist.psu.edu/rose04survey.html, 2004.

[41] M. Rosenblum and T. Garfinkel. Virtual machine monitors: Current tech-
nology and future trends. Computer, 38(5):39–47, 2005.

[42] E. Salmio, R. Kivi, and M. Suvanen. Information society structures in edu-
cational institutions - results of the surveys 2004 and summary of the years
2004. Technical report, Ministry of Education, 2004.

[43] R. W. Scheifler and J. Gettys. The x window system. ACM Trans. Graph.,
5(2):79–109, 1986.

[44] R. S. Shuford. DEC Terminals. http://www.cs.utk.edu/ shuford/termi-
nal/dec.html.
Referenced 1.10.2008.

[45] J. Sugerman, G. Venkitachalam, and B. hong Lim. Virtualizing i/o devices
on vmware workstation’s hosted virtual machine monitor. In Proceedings of
the 2001 Annual Technical Conference. USENIX Association, 2001.

[46] A. Tijms. Binary translation: Classification of emulators. Technical report,
Leiden Institute of Advanced Computer Science, 2000.

[47] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith. Intel virtu-
alization technology. Computer, 38(5):48–56, 2005.

[48] J. Wack, K. Cutler, and J. Pole. Guidelines on firewalls and firewall policy.
Technical report, National Institute of Standards and Technology, 2002.

[49] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble. Rethinking the design
of virtual machine monitors. Computer, 38(5):57–62, 2005.

[50] A. Whitaker and S. D. Gribble. propos of machine virtualization.
http://denali.cs.washington.edu/pubs/distpubs/slides/retreat_

july_2001/VM_retreat_2.pdf.

70

[51] A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight virtual machines
for distributed and networked applications, 2002.

[52] S. J. Yang, J. Nieh, M. Selsky, and N. Tiwari. The performance of remote
display mechanisms for thin-client computing. In Proceedings of the General
Track: 2002 USENIX Annual Technical Conference, pages 131–146, Berke-
ley, CA, USA, 2002. USENIX Association.

[53] A. Zeichick. Processor-Based Virtualization, AMD64 Style, Part II.
http://developer.amd.com/article_print.jsp?id=15.
Referenced 3.11.2007, Last edited 30.6.2006.

71

