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A study is presented where an induction motor, whose rotor is not allowed to
rotate, is identified using system identification methods based on transient and
frequency response tests. Precise control of elevators powered with frequency
converter fed induction motors depends on the accuracy of the parameters used in
the motor controller, particularly when no external position or speed sensors are
used. When an elevator is modernized with a new control system, the old motor
cannot be identified with a regular locked rotor and no-load tests as the motor
is not allowed to rotate. However, the identification can be performed in such
conditions by analyzing the voltages and currents when the motor windings are
excited with such an AC or DC that does not produce torque. A step response
method is introduced for the DC excitation where the desired motor parameters
are obtained as a result when the measured data is processed with state variable
filters, and the produced linear system of equations is solved with a recursive least-
squares algorithm. The frequency response method presented uses both DC and
AC excitation. The method is based on finding the amplitude ratio and the phase
difference between the voltage and current phasors using the properties of the
Fourier series. This information is then used to calculate the inductance between
the motor terminals, from which the other motor parameters can be solved. Both
methods are tested with simulations and experiments. The final choice of the
proper identification method is found to be a compromise between the parameter
accuracy and measurement time.

Keywords: Elevator, induction motor, self-commissioning, parameter identifi-
cation, standstill, step response, frequency response, state variable
filtering, recursive least-squares




TEKNILLINEN KORKEAKOULU DIPLOMITYON

TIIVISTELMA
Tekijé: Juhamatti Nikander
Tyon nimi: Oikosulkumoottorin parametrien identifionti hissikéyton
modernisoinnissa
Paivamasra: 7.1.2009 Kieli: Englanti Sivumadra: 10468
Tiedekunta: Elektroniikan, tietoliikenteen ja automaation tiedekunta
Professuuri: Sahkokaytot Koodi: S-81

Valvoja: Prof. Jorma Luomi

Ohjaaja: Dipl.Ins. Lauri Stolt

Téassé tyossa tutkitaan, miten oikosulkumoottorin séhkoiset parametrit voidaan
identifioida askel- ja taajuusvastemenetelmien avulla pyorittdmétta roottoria.
Oikosulkumoottoria voimanldhteend kayttédvien hissien ohjaustarkkuus riippuu
pitkélti siitd, miten tarkasti taajuusmuuttajan momentti- ja nopeussadétijan
parametrit vastaavat todellisia varsinkin, jos hissin paikkaa tai nopeutta ei mi-
tata. Vanhojen hissien modernisoinnin yhteydessd ongelmaksi muodostuu se,
ettd olemassa olevaa moottoria ei voi identifioida perinteisilla oikosulku- ja
tyhjéakéayntikokeilla, koska moottoria ei voi pyorittdd kuormattomana. Sen si-
jaan identifiointi voidaan tehdd analysoimalla vaihejannitteitd ja -virtoja, joita
esiintyy, kun staattorikdédmityksiin syotetdén sellainen heréte, joka ei aiheuta
pyorivad sdhkomagneettista kenttdd eikéd siten vadntomomenttia. Esitettdvissé
askelvastemenetelméssd moottoria syotetddn tasavirtapulsseilla, jolloin halutut
parametrit saadaan, kun vaihejdnniteen ja -virran mittaukset prosessoidaan tila-
muuttujien suodatuksella ja saatu lineaarinen yhtaloryhmé ratkaistaan rekursii-
visella pienimmén neliGsumman algoritmilla. Toisessa, taajuusvasteeseen perustu-
vassa, menetelmassd moottoria sydtetddan yhté aikaa seké tasa- ettéd vaihtovirralla.
T&lloin moottorin parametrit voidaan ratkaista vaihejannitteen ja -virran vilisen
amplitudisuhteen ja vaihe-eron perusteella lasketun moottorin liittimistd nakyvéan
induktanssin taajuusriippuvuuden avulla. Molempia menetelmia on tutkittu seké
tietokonesimuloinneilla etté kokeellisilla menetelmilla. Tulosten perusteella havait-
tiin valitun menetelmén olevan kompromissi parametrien tarkkuuden ja testin
suoritusajan valilla.

Avainsanat: Hissikdytto, oikosulkumoottori, parametrien identifiointi, askel-
vaste, taajuusvaste, tilamuuttujien suodatus, rekursiivinen pienin
neliosumma
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B,

Pmo, Pznk:
Pout
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rotor and stator leakage inductances

total leakage inductance

amplitude and frequency modulation ratios
number of measurement points
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covariance matrix
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iron losses in rotor and stator

friction losses
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active three-phase input power
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mechanical output power

stray losses
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Qin reactive three-phase input power
Qn reactive power consumed in Ly,
Qs reactive power consumed in L,
Ry, Ry, R., resistances between two stator terminals a, b or ¢
Rp dynamic resistance
R., R.; effective stator resistance with and without inverter nonlinearity
Rp. core loss resistance
R; inverter resistance
R.. R, rotor and stator resistances
Rg transformed rotor resistance
Ry short-circuit stator resistance
Rsy, Rs A stator resistances in Y and A connected motors
S Laplace variable
S; apparent three-phase input power
Sin0s Sink no-load and short-circuit S;,
t time
ty period of f;
ta, tp, K transistor turn-off parameters
ter time duration of IGBT’s tail current
ta inverter dead-time
td.ons tdoff time delays in transistor base drive turn-on and turn-off
td,swon transistor switch-on delay time
T, electrical torque
Ty, friction torque
T, load torque
tm measurement time
tons toff transistor turn-on and turn-off times
tr, b5 rise and fall times
tow switching period
input vector
Ude voltage over filter capacitor
Uf, Ys filter input and output
U(s), Y(s) Laplace transformed u(t) and y(¢)
Uso, Ugg no-load and short-circuit stator voltages
Ug; stator voltage in phase @
UN),Y(\)  U(s) and Y(s) with A notation
Xup transformed magnetizing reactance
Xroy Xso rotor and stator leakage reactances
Xk short-circuit stator reactance
X, total leakage reactance
Y output vector
Zn transformed magnetizing impedance
Zs stator impedance
Zs0, Lk no-load and short-circuit stator impedances

o covariance matrix gain



Qy, 51

coefficients of ith terms in polynomials U(\) and Y ()
update coefficient vector

update coefficient of 7th parameter

angle between real axes of phase a and synchronous frame d
rotor angle

gear efficiency when power flows to the motor
gear efficiency when power flows to the load
parameter vector

1th model parameter

Lambda operator

forgetting factor

leakage factor

mechanical time constant

rotor and stator time constants

transient stator time constant

regression vector

regression matrix

angle ¢ in no-load and short-circuit conditions
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mechanical angular speed of the rotor

Space Vectors
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1 Introduction

Three-phase induction motors have been used widely in elevator applications for
decades thanks to the motor’s relatively simple structure, maintenance free operation
and ability to start directly from the supply network. However, such an on-line
starting consumes energy more than necessary, and the starts and stops become
jerky as the motor can only be controlled with switches and relays.

During the 1980s, analog motor control systems evolved, and frequency converters
became popular, enabling the use of drives with variable voltage and frequency,
which improved the stopping accuracy of the elevator car and reduced overall en-
ergy consumption. Ever since the microprocessors became available with reasonable
prices in the 1990s, the scope has been on controlling the motor more smoothly and
efficiently.

Recently, the first generation of elevators with drives using induction motors have
begun to reach the end of their lifespan increasing the market for elevator modern-
ization. The idea is to replace the old and excessively worn parts of the drive with
new high-performance and high-efficiency components while trying to keep the old
motor and gear in place to avoid increasing the costs too much.

However, the name-plates of the old, as well as the new, induction motors have
insufficient information, if any, to be used with modern control methods. In addition,
the motors used in elevator installations are most likely to be supplied by various
manufacturers instead of being built by the one modernizing the elevator. In such
a case, a custom setup has to be carried out for the motor and drive electronics,
which is a very time-consuming task and can only be performed by very experienced
personnel. Therefore, there is a need for a drive capable of self-commissioning, i.e.
identifying the parameters of an unknown motor without user intervention.

Previously, induction motors have been identified by performing several tests during
which the rotor had to be kept locked mechanically or disconnected from the load,
i.e. with the DC test, locked rotor test and no-load test. These restrictions cause
problems in elevator modernization for several reasons. Although the rotor could
be locked mechanically with the motor brakes, there is no guarantee that the old
brakes will be able to hold the full pull-up torque produced in the locked rotor
test in addition to the torque caused by the load - the unbalanced elevator car and
counterweight. Of course, the torque could be produced into the direction opposite
to the one caused by the load, or the system could be balanced by adding weighs
either to the elevator car or to the counterweight. However, the system would still
have to be modified for the no-load test.

A better idea would be to remove the heavy flywheel from the motor shaft and
the mechanical coupling between the motor and the gear. However, the coupling
cannot be removed without removing the brake arms, and doing so would cause the
counterweight to fall freely. Thus, it would be first necessary to remove the ropes
from the traction sheave, a grooved pulley connected to the secondary wheel of the
gear, but the ropes, in turn, cannot be removed without lowering the counterweight



to the bumper and without locking the elevator car. Thus, there is no practical way
of achieving the no-load conditions in any reasonable time.

1.1 Objectives and Scope

The objective of this Master’s thesis is to find the most suitable identification method
for the electrical parameters of a typical induction motor used in elevator applica-
tions. The following restrictions must be obeyed:

e The rotor is not allowed to rotate nor produce torque.

e The motor is supplied with a frequency converter where the stator voltages
are not measured.

e The existing hardware must not be changed.

e The parameters should be accurate enough to be used in a modern speed
sensorless vector control.

Luckily, the electrical parameters can be identified without rotating the motor at all
if the stator windings are fed with an excitation that does not produce a rotating
electromagnetic field, i.e. if the motor is controlled as if two of the three stator phases
were connected to the frequency converter and the third one left connected, or as if
the two phases were connected in parallel, and the resulting equivalent winding in
series with the third one. With such an excitation, no torque is produced, and there
is no need to lock the rotor nor disconnect the load.

Unfortunately, this type of standstill identification is not a very easy task to do as
the identified system is far from being ideal due to the nonlinearities present in the
frequency converter and in the induction motor itself. For example, the frequency
converter’s output voltage depends nonlinearly on the motor’s phase currents be-
cause dead-time is added to the transistor switch-on delays. Moreover, the output
voltage depends on the forward voltage drops of the used power devices, particu-
larly when the output voltage is low. On the other hand, inductances formed by the
stator windings and the rest of the magnetic circuit depend on the direction and the
magnitude of the current due to hysteresis and saturation. Furthermore, the rotor
resistance and leakage inductance change with stator frequency due to the skin and
proximity effects. In addition, the iron losses dissipated in the motor core depend
on that frequency.

The studied identification methods are divided into step and frequency response
methods. In the former, the stator windings are supplied with either voltage or
current steps, and the resulting current or voltage is measured, after which the mea-
sured data is fitted to the one calculated from the motor model. The fitting becomes
possible if at least two measurements are gathered. In practice, the data is fitted
with linear regression, reducing the effects of noise and single wrong measurements.



As a result, a parameter vector is obtained, from which the motor parameters can
be calculated.

In the frequency response methods, the stator windings are supplied with sinusoidal
voltages of constant amplitudes and frequencies. Furthermore, a DC current is
used to set the correct level of magnetization and to reduce the effect of hysteresis.
The measurements are taken from the current response after the initial transients
have decayed. The idea is to calculate the amplitude ratio and phase difference
between the fundamental voltage and current phasors. This information is then
used to calculate the effective input inductance seen from the motor terminals at
the frequencies of interest, after which the other motor parameters can be calculated
from that inductance.

1.2 Structure

The contents of this thesis are organized in the following way. After this introduction,
the following two chapters, 2 and 3, introduce mathematical models for a simple
elevator, frequency converter and induction motor. In Chapter 4, motor control
based on space vector theory is briefly reviewed, after which controller detuning
effects are discussed.

The main subject of this thesis begins in Chapter 5 where the first section explains
information that can be derived from the motor name-plate, and the second section
discusses the problems that occur when winding resistances are measured with a
frequency converter. Then, the locked rotor and no-load tests are presented, followed
by a derivation of the model used in standstill identification. A literature review is
presented in the middle of the chapter, and the remaining parts show how the motor
is identified using the step and frequency response methods.

In the next two chapters, 6 and 7, different identification methods are studied with
computer simulations and experimental tests. Finally, the thesis is concluded in
Chapter 8.



2 Elevator Drive

The first section of this chapter describes a construction of a simple elevator and
introduces a mathematical model for the mechanical dynamics, after which the struc-
ture and behavior of the elevator power supply, a frequency converter, is explained.

2.1 Elevator Mechanics

A simple elevator consists of a shaft, car, counterweight, ropes, a number of traction
sheaves: pulleys with multiple grooves; bumpers, a motor and, possibly, a reduction
gear, and necessary safety equipment. The shaft has guide rails on the walls, along
which the car and the counterweight move vertically. Usually, the motor lies in
its own machine room at the top of the shaft. The motor shaft is connected to
the reduction gear or directly to the driving traction sheave, whose purpose, in
addition to transforming rotation to transversal motion, is to add more friction to
the ropes. The shaft, car and counterweight all have a number of deflector sheaves,
whose purpose is to pass the ropes, connecting the car and counterweight along
the sheaves, to a particular direction. With multiple ropes and deflector sheaves,
forces acting on individual ropes can be reduced. The amount of this reduction
is characterized by the roping factor. Any other roping than 1:1 causes the ropes
to move faster than the elevator car. Therefore, the roping as well acts as a gear.
The bumpers are placed at the bottom of the shaft, where they act as ultimate
boundaries, against which the car and the counterweight will be stopped if other
safety equipment fail to operate.

Dynamic Model

Modeling mechanical elevator dynamics is a very difficult task as the real elevator
system has a vast number of moving parts with unknown parameters. However, a
simple dynamic model can be built for simulation and model parameter verification
purposes. The considered system in Figure 2.1 consists of two moments of inertia
— one inertia J, for the motor shaft and the other J; for the rest of the moving
elevator parts — connected to each other with a reduction gear. Frictions in the
motor and gear, and the elevator are modeled with two viscous dampers B, and
By, respectively, and the oscillatory behavior, caused by the flexible ropes, with one
torsional spring constant K;. The gear is thought to be ideal, i.e. no backlash and
unity efficiency. As such, the equations of motion are

T AR OB (2.12)
B _ g [0a1) - ) (2b)
730 _ 70— o) - 1) (2.1¢)

dt
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Figure 2.1: The two-inertia model of a simple elevator.

where T,(t) is the electrical torque produced by the motor, 77(¢) the load torque
reflected back through the gears, T5(t) the torque at the the imaginary shaft and
T(t) the load torque caused by the elevator. The variables Q4 (t), Qs(t) and €;(¢) are
the angular speeds of the primary wheel, secondary wheel and the load, respectively.

Gears

A gear has a transmission ratio i,,.. defined as the inverse of the ratio of the applied
torque T} to the transmitted torque 75. This number is equal to the ratio of the
numbers of teeth in respective wheels

. T2 N2 T9
i _ _ _
mec — - -
T1 N1 ™

(2.2)

where N7 and Ny are the numbers of teeth and r; and ry the radii of the primary
and secondary wheels, respectively. The latter equality holds as the circumference
of a circle is directly proportional to its radius (I = 27r). As the circumferences of
the wheels travel equal distances in the same time, i.e. there is no slip (v; = vy),
there exists another expression for the transmission ratio

191_91_&

lmec = 5~ — = =
Vs Qy n27

(1917’1 = ?927“2) s (23)

where 9’s, {)’s and n’s are the angular displacements, angular speeds and rotational
speeds of the respective wheels.

From the law of conservation of energy, the gear efficiency 7,, can be calculated as

P-Pp P T T 1

P, P, T Th oimee

Nm P1 > PQ, (24)

where P, and P, are the gear input and output powers, respectively, i.e. the power
flows from the motor to the load. The power Py, represents gear losses. When power



flows from the load to the motor, the latter working as a generator, the efficiency 7,
is defined as
- B-P, P T Ty

-2 ~Jr_ = = e P < P 2.5
g P, P, T Ty L (2.5)

With the gear transmission ratio defined above, and noting that T} = T, and ; =
(2., the variables T}, Tz, €; and 5 can be removed from Equation (2.1) yielding a
state space form

(1) ~B.)J. —1/J. 0 O, (1) e 0 7y @
i(t) = |T.(t)| = | Ki/ipee 0 —Kifimee| |Te@)| + | 0O 0 {Te(t)
O(t) 0 dmee/ i —Bi/Jr | [ () 0 -1/t

= Ayxq(t) + Byuy(t). (2.6)

For control purposes, the actual use of this model is rather limited as it involves
measuring the torque and the angular speed of the primary shaft with an expensive
torque sensor and a tachometer. Therefore, the main purpose of this model is to
simulate the pulsating load torque caused by flexible ropes.

For better dynamics, the model could be extended with less simplified elevator dy-
namics containing two dynamic masses for modeling the inertia of the car, coun-
terweight and ropes and two viscous dampers and linear springs for modeling the
flexibility of the ropes and other two viscous dampers for the car and counterweight.
This less simplified model yields a fifth- to seventh-order model for the elevator dy-
namics and a third-order model for the motor dynamics. This thesis considers only
the motor part. For more detailed modeling of elevator mechanics, the interested
readers could refer to the Master’s thesis by Saloméki (2003) and its references.

2.2 Frequency Converter

A frequency converter is a power electronics device that converts power from a supply
network to a load with controllable amplitude and frequency. A schematic diagram
of one topology of frequency converters used in elevator drives is shown in Figure
2.2. It consists of a three-phase, six-pulse, full-bridge diode rectifier (1), a brake
chopper (2), a large filter capacitor (3) and a three-phase pulse-width-modulated
voltage-source inverter (4). Measurements are taken from the voltage over the filter
capacitor and from the currents of two output phases.

The first part rectifies the supply AC voltage into DC over the filter capacitor with
the voltage given on average by

3
Uge = =V2U, = 1.35- U, (2.7)

™

where U, is the supply network phase-to-phase voltage (Mohan et al., 2003). Due to
the finite interval needed by current commutation between the conducting diodes,
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Figure 2.2: A typical frequency converter.
the DC side voltage (2.7) is reduced by
3
AUdC = —wnLkIdc = anLk:]dc (28)
v

where w,, = 27 f, is the angular frequency of the supply and L; the short-circuit
inductance of the supply network at the frequency converter’s input terminals. The
current Iy, is the current on the DC side.

The brake chopper is used to avoid voltage increase in the filter capacitor by dissi-
pating the excess energy in the braking resistors when the power flows from the load
to the supply, i.e. when the motor is braking or acting as a generator, and when
the frequency converter is equipped with a diode-rectifier, which is not capable of
converting this energy back to the supply.

The purpose of the PWM inverter is to create voltages with controllable magnitude
and frequency. The inverter consists of three ’legs’, each having two pairs of tran-
sistors and diodes, the upper and lower ones. The transistors in each one of these
inverter-legs are controlled in a complementary fashion, i.e. one transistor conducts
at a time, to avoid short-circuiting the filter capacitor.

The instantaneous inverter output voltages with respect to the assumed three-phase
load neutral point are

2 1

Usa = guaN - 5 (ubN + U'CN) (293)
2 1

Ugh = gUbN 3 (tan + Uen) (2.9b)
2

Use = §ucN - § (uaN + ubN) (29C)

where u;y,i € {a,b,c}, are the amplitudes of the inverter output voltages with
respect to the negative DC-bus.

When pulse-width modulation based on suboscillation method is used, the aver-
age inverter output voltage and frequency are characterized by the amplitude and



frequency modulation ratios m, and my, respectively,

ﬂctrl My — fsw
ﬁtm’ / fl

where ., is the control signal used for modulating the duty ratio of the transis-
tors, and f; the fundamental frequency of the control signal and the desired output
voltage. The voltage t,,; is the amplitude of the carrier signal whose frequency fs.,
is also the transistor switching frequency.

Mg = (2.10)

The fundamental-frequency phase-to-neutral voltage has, on average, an amplitude

N Udc
Us = Mg 5

(2.11)

providing that the modulator operates in the linear region, i.e. m, < 1.0. According
to Holtz (1994), the voltage can be increased if third harmonics are added to the
control signals u.,;. For example, if 16.7% of third harmonic is added, Equation
(2.11) can be replaced with

A 2A mUdc
V3

~ 0.577 - maUye. (2.12)

Dead-time

In practice, the obtained output voltage is reduced due to the added transistor dead-
time (blanking time), during which none of the two transistors in one of the three
inverter-legs are conducting to avoid short-circuiting the filter capacitor. Thus, the
output voltage floats and is characterized by the magnitude and the direction of the
load current 7, and, therefore, on the load’s displacement power factor cos ¢, as well.

According to Ruff and Grotstollen (1996), the dead-time is defined as the difference
between the switch-on delay time ¢4 gy0n 0f the non-conducting transistor and the
turn-off time ¢, (7s) of the conducting one

td@s) = td,swon - toff(is)‘ (213)

If the current rise and fall times, ¢, and t¢, and the base drive turn-on and turn-off
delays, t4on and t4,4f, are taken into account, the definition becomes

td(is) - td,swon + td,on - td,off (Zs) - tf(zs) (214)

Figure 2.3 illustrates the case. The dead-time is chosen conservatively as it is difficult
to estimate the current tail time ¢, present in some transistor types, for example,
in insulated-gate bipolar transistors.

There exists several methods for compensating errors in the output voltage caused
by the dead-time varying from the simplest averaging methods to model-reference
adaptive control methods. One interesting method is the pulse-based dead-time
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Figure 2.3: Diode-IGBT current switching characteristics for one inverter-leg, ac-
cording to Martin (1996). T, refers to the upper and 7 to the lower transistor and
D, is the freewheeling diode of the upper transistor.

compensation, which has an ability to reconstruct the magnitude and phase of the
output voltage as if the dead-time was not generated at all (Leggate and Kerkman,
1997).

In addition to the nonlinear inverter voltage drop, the output voltage is reduced
by the voltage drops over the power transistors, the freewheeling diodes and the
motor cabling. Therefore, the output voltage differs from the commanded voltage,
which imposes problems in motor identification as the phase voltages are not directly
measured. Instead, the output voltages are estimated from the modulation index m,
and the measured DC filter capacitor voltage as in Equation (2.11). The following
articles provide a good starting point for a study of methods used for compensating
different inverter nonlinearities: (Blaabjerg and Pedersen, 1994), (Choi and Soul,
1994), (Munoz and Lipo, 1999) and (Urasaki et al., 2005).

Current Measurement

The situation is a bit easier for the motor currents as two of the three phase currents
are measured and the third one can be calculated as a linear combination of the first
two

isa(t) + isp(t) + ise(t) = 0. (2.15)

The phase currents are usually filtered in hardware before being measured. Thus,
the obtained currents are delayed versions of the real ones as can be observed from
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Figure 2.4: Vector diagram of the inverter output voltage and current. ug,., is the
commanded voltage and i, the measured current. The angles ppw s and @, are
exaggerated for clarity.

the vector diagram in Figure 2.4.

The magnitude and phase errors caused by the filter can easily be compensated in
software. For example, if the output current is filtered with a first-order low-pass
filter

Wo

Gy(jw) = ot

(2.16)

where wy is the filter bandwidth, the magnitude and phase of the filter output can
be obtained from

G (jw)| = ———= (2.17a)

©m = — arctan (i) . (2.17Db)
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3 Induction Motor Theory

In this chapter, the structure of the induction motor is explained followed by a
review of the equations characterizing its electrical and mechanical behavior.

3.1 Structure and Operating Principle

The induction motor consists of a round and hollow static part with a cylindrical
rotating part inside of it. The former is referred to as the stator and the latter
as the rotor. The stator core has slots inside of its inner surface and the rotor
inside of its outer surface. The stator slots of a three-phase motor contain three
sets of windings each separated by 120 electrical degrees, whereas the rotor slots
contain conducting bars enclosed by short-circuit rings at both ends. A motor with
a rotor circuit of this type is called a squirrel-cage induction motor. An alternative
configuration is the slip-ring induction motor, whose rotor winding is connected to
slip-rings at the motor shaft, from which it is possible to connect the rotor winding
to external resistors or to a frequency converter. The stator and rotor cores are
made of high-permeability materials to achieve small reluctances in the path of the
magnetic fluxes, which is needed to produce maximal magnetic flux with minimal
magnetizing current. The mutual inductance between the stator and rotor windings
is characterized by the width of the air gap — the smaller the gap, the greater the
inductance. On the other hand, the stator and rotor leakage inductances are mainly
determined by the shape of the respective windings and slots.

When the stator windings are fed with symmetric sinusoidal voltages whose angular
frequency is wy, the resulting currents create a rotating magnetic field in the magnetic
circuit formed by the stator and rotor cores and the air gap between them. The field
rotates at a geometrical angular frequency
w1

Q, ) (3.1)
where the parameter p is the number of pole pairs formed by the stator windings.
This rotating magnetic field induces electromotive forces (emf) in the closed rotor
circuit. The currents caused by these emfs produce a magnetic field opposing the
rotating stator field. Now, according to Lenz’s law, a force will act on a current-
carrying conductor placed in a magnetic field. Thus, the rotor bars will be pushed
by a tangential magnetic force, producing electrical torque with respect to the rotor
shaft. The rotor begins to rotate if the electrical torque is not balanced by an oppo-
site mechanical torque, which further means that the rotor will not rotate exactly
at the same, synchronous, angular speed (2, as the stator field does. Instead, the
rotor will start to rotate asynchronously with a mechanical angular speed

Wr W1 — Wy

Q=T 3.2
, p (3-2)
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Figure 3.1: Stator and synchronous coordinate axes.

where w, is the electrical angular speed of the rotor and ws the angular slip frequency.
More detailed explanation of the motor structure and operating principle can be
found in (Sadarangani, 2000) and (Krishnan, 2001).

3.2 Electrical Model

The induction motors considered in this thesis have three-phase stator windings.
Voltages, currents and flux linkages in such a three-phase system are compactly
described by space vectors, which were first proposed in 1959 by Kovacs and Racz
according to Holtz (1995). A general space vector is defined as a complex variable

2%(t) = xzo(t) +jzs(t) = % [xa(t) + 2By (t) + e 2B (t) (3.3)
where the quantities in the three phases are denoted by the subscripts a, b and c.
The space vector maps a three-phase system into a two-phase system with o and (3
coordinate axes as is illustrated in Figure 3.1. The stator reference frame is fixed to
the af axes. The other coordinate system used, in the soon to be introduced model
of induction motor, is the synchronous reference frame with d and ¢ coordinate axes.
The subscript d stands for direct and ¢ for quadrature. The synchronous reference
frame rotates with the angular frequency of the stator current. Transformation
between the two coordinate systems is defined as

a(t) = za(t) + jog(t) = 2’ (t) (3-4)
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where the transformation angle d; is defined as

5 = / ot (3.5)

The synchronous reference frame is used because all control signals that vary sinu-
soidally in the stator reference frame became constants. Consequently, such signals
can easily be controlled with regular proportional-integral (PI) controllers without
steady-state error.

As zero-sequence components cannot be described with space vectors, such compo-
nents have to be handled separately as the averages in the three phases

ro(t) = 3 [ralt) + wu(t) + .(0)] (3.6)

All variables defined in the stator reference frame are denoted by right superscripts s.
For the synchronous reference frame the superscripts are omitted. The superscripts
are also omitted if the motor does not rotate, in which case both reference frames
are equal.

T Equivalent Circuit

The induction motor resembles a transformer whose secondary winding is free to
move; therefore, it has almost same equivalent circuit, Figure 3.2, with only a slight
change caused by the rotor-emf jw,@j. The stator and rotor voltage equations for
the induction motor with a squirrel-cage rotor are

d S

d%s = u; — Ri (3.7a)
d%i 3 S R *S 3 7b
dt - .]w'f'yr - TZT‘ ( : )

where yz and yi are the stator and rotor flux linkages, R, and R, the stator and
rotor resistances, respectively. The flux linkages are defined as

Yo=Y, T Y, (3.82)
v =Y, Y, (3.8b)
V= Lyt (3.8¢)
v =L 350
Y = Lni, (3.8¢)

where yfn, yza and yia are the main flux linkage and the stator and rotor leakage
flux linkages, respectively. L,,, Ly, and L,, are the magnetizing inductance and the
stator and rotor leakage inductances, correspondingly. The magnetizing current %,
is the sum of the stator and rotor currents, ¢; and ¢;, if the core loss current i3,
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and resistance Rp. are neglected as they usually are, particularly if the motor is not
operated with field-weakening (Levi et al., 1996). All rotor variables are reduced to
the stator-side.

For control purposes, it is useful to take the stator current and the rotor flux linkage
as the state variables as most frequency converters have a closed-loop current control
whose current measurements can be used, and because the rotor flux linkage can be
estimated (Holtz, 1995). With this choice, Equations (3.7) become

L2\ dis L\ s (Br o Do
(LS— LT) E = U, — (RS+RTL_72") 1+ (Lr _Jwr) Lryr (39&)
dy’ Ly .o (R . s
R e L e

where the stator and rotor self-inductances, Ly, = L,, + Ly, and L, = L,, + L,,,
have been used.

Inverse-I' Equivalent Circuit

In the inverse-I' model of Figure 3.3, the rotor leakage inductance is transformed
to the stator side and combined with the stator leakage inductance to form a total
leakage inductance L,. This choice reduces the number of parameters by one, and
is thus more suitable for control purposes and motor identification as the individual
leakage inductances have little effect on motor control.

From Equations (3.9), the transformed rotor variables and parameters can be defined

s Lm S
L
iy =70 (3.11)
iy =18+ i (3.12)
L2
Ly = LT (3.13)
L,=1L,— Ly (3.14)
L.\’
Rp = (Lr) R, (3.15)

where Lj; and Rp are the transformed magnetizing inductance and rotor resistance,
respectively.

These new definitions change the stator and rotor flux linkages (3.8) to

U= (3.16a)
Y’ = Lot (3.16b)
VS = Lyisy, (3.16¢)

R
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and the voltage equations (3.7) to

déz > — Ryi? 3.17
dt = Ug — f1s2 ( . a“)
dol, 5

By substituting Equations (3.10)—(3.16) to the new voltage equations (3.17), the
state variable equations (3.9) transform to

LG% =uj — (Ry + Rg)i; + (f—; - jwr> v (3.18a)
% = Rpiy — (f—; — ij) Yo (3.18b)
In synchronous frame, the above equations are
Lg% =u, — (Rs + Rp + jw1 Lo )i, + (?—; — jwr> Yy (3.19a)
d(%—tR = Rpig — <f—§ —|—jw2) L (3.19b)

Steady State Inverse-I" Equivalent Circuit

In steady state, the differential operators in Figure 3.3 can be replaced with jw; if
sinusoidal input voltages and currents are being used. With some algebraic manip-
ulations, Equation (3.17) transforms to
U = Rl + jwi (Lo + Lar) I3 + jwr L Ly (3.20a)
jw1 Ly

I, = - r 3,200
ST TS Ryt Ly (3:20)

where a symmetric three-phase supply is assumed with 120-degree phase shift be-
tween respective voltages and currents. The phasor representation

Us = U = U, 20° (3.21a)
I = Led@i=e) = [/ — (3.21D)

is used for sinusoidal variables. Figure 3.4 shows the corresponding equivalent circuit
for the steady state conditions.

Equation (3.20) suggests an expression for the motor impedance

w1 Lywor, . L
ZzZRS—{_LQQ—i_le Lo+—M2
1+(UJ2T7«)

=R, + jwi L, 3.22
1+ (szr) Jwi ( )

where 7, is the rotor time constant L,;/Rg, and R, and L. the effective stator
resistance and inductance, respectively. From now on, the right superscript s is
omitted in complex phasors.
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Figure 3.2: Dynamic T equivalent circuit.
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Figure 3.3: Dynamic inverse-I" equivalent circuit.

o—p YY) -
lz Rs Jwi La \ { Is _;2
=0
Iy, Iy
s . w1
Us Rpe Jwi Ly —Rp
)

O

Figure 3.4: Steady state per-phase inverse-I" equivalent circuit.
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Electrical Power

The instantaneous apparent three-phase input power S;, (¢) taken from the frequency
converter or the supply network is defined as

Sinlt) = Sul(1) (£(0) "= Pnlt) + Q1) (323)

and the active and reactive input powers, P;,(t) and Q;,(t), as

Pi (t) = usa(t)isa(t) + usb(t)isb(t) + usc(t)isc(t) (324&)
= 2 (altisalt) + D) (1)) (3.24p)
Qun(t) = 7= [100) (1 ®) = () +1000) (10(0) = 1c(8)) 108)(100) = 0(0))
(3.24c)

_ g<usﬁ(t)iw(t) (i (1)), (3.24d)

In steady state, the three-phase power is constant

/ 3 . .
Sin = ‘ﬁm’ = Pz%@ + Q?n = 3Us[s = 5\/(“3& + u?,@)(lga + Z§ﬁ> (325&)

3

P, = 3Ulcos p; = 3 (usaiw + usﬁisﬁ> (3.25Db)
3

Qin = 3Usl sinp; = 5 (usgz'sa — usaisg> (3.25¢)

where the parameter ¢, is the angle between the fundamental-frequency stator volt-
age and current phasors.

3.3 Mechanical Model

The motor mechanics are given by the equation of motion

o, (1)
dt

Je = T.(t) = T(t) (3.26)

where the parameter .J, is the system’s moment of inertia reduced to the rotor shaft.

The variables, T,, and T}, are the electrical torque produced by the motor and the
torque caused by the load.

The electrical torque is defined as

T, = Sptm { (5"} = SpIm {U3i, } = Sp(naisg = ryisa). (3.27)

which, for the control purposes, is given in the synchronous frame.
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4 Motor Control

This chapter describes how the induction motor is controlled as a DC motor in the
vector control scheme based on indirect rotor field orientation. The knowledge of
this is necessary as it gives the means to understand how the motor behavior is
affected by the choice of incorrect controller parameters or by the deviations in the
actual motor parameters. Other possible control methods are, e.g., the slip speed
compensated U/ f-control, which is based on the steady state equations (Stolt, 2005);
or the direct torque control (DTC), which is based on the hysteresis control of the
stator flux linkage and the electrical torque (Harnefors, 2003).

The modern control system of an induction motor is based on previously introduced
complex-valued electrical and mechanical differential equations (3.18) or (3.19) and
(3.26). Those equations have to be separated into the real and imaginary parts so
that the motor can be controlled with a digital signal processor. The separation
reveals a nonlinear and strongly cross-coupled system of equations

Lo diffft) = usa(t) — (Rs + Rp)isa(t) + Low: (t)ise(?)
+ f—;@de(t) + W ()R (t) (4.1a)

L disaqt(t) = Uyq(t) — (Rs 4 Rp)isg(t) — Lows (t)isa(t)
T ) = () (410)
A Rt = T brat) + (1) (10
%;(t) = Rpisy(t) - f—szq(zﬁ) — wy(t)ra(t) (4.1d)
! dcﬁf 2 - 37p2¢Rd<t)z’sq<t> - %p?wm(t)z;du) — pTi(t), (4.1¢)

The couplings between the different complex-valued first-order subsystems can be
removed as each system has its own dynamics given by the time constants 7. =
L,/(Rs+ Rg), 7» = Ly /Rg and 7, = J/b for the stator current, rotor flux linkage
and mechanical dynamics, respectively. The bandwidths of the subsystem dynamics
are separated, stator current dynamics being the fastest and mechanical the slowest,
ie. 7. < 7, < 7. Therefore, each control loop can be designed independently.
Figure 4.1 illustrates such a cascaded control system.

The couplings between the components of the stator current and the stator angular
frequency in Equations 4.1a and 4.1b are easily removed by subtracting the cor-
responding products from the current controller’s output if only the total leakage
inductance is known

Usq(t) =ty (t) — Lowy ()isg(t) (4.2a)
Usg(t) = !, () + Lowy (t)isa(t) (4.2b)

59
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Figure 4.1: Cascaded motor control system.

uyy and ug, are the current controller’s outputs. This choice reduces the stator

current dynamics to

dig(t)

Lo—— = gy (t) — (Rs + RR)isa(t) + EwRd(t) + wr () YRy (1) (4.3a)
La&%p = U;q(t) - (Rs + RR)isq(t) + f_j¢Rq(t) - Wr(t>¢Rd(t)- (4-3b)

But there still exists bilinear nonlinearities between the electrical angular speed of
the rotor and the components of the rotor flux linkage. However, these couplings
can easily be removed by keeping the rotor flux linkage constant, or the term could
be removed completely if the speed were measured, and the value of the magnetizing
inductance were known.

4.1 Rotor Field Orientation

The rotor field orientation is the key in controlling the induction motor as a DC
motor. This orientation is obtained if the d-axis of the synchronous frame is fixed
into the direction of the rotor flux linkage

0, = arg Y7, (4.4)
Thus, the rotor flux linkage becomes real-valued
Y = Vrd + J¥rq = V- (4.5)

Such an orientation transforms the rotor flux linkage equations (4.1c¢) and (4.1d)
into

A — Ruduat) — 1l (4.62)
wn(t) = RRz;;((?) (4.6b)
which further reduce to
Yr = Lyisa (4.7a)
wn(t) = B2i ) (4.7b)

VR
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when the rotor flux linkage is kept constant. If the stator d-current and the angular
slip frequency are controlled as the equations above suggest, the system (4.1a)—(4.1e)
is simplified into a linear system resembling a DC-motor

£ (1) — (R + Raig(t) — 1) (482
T 3 int) — i), (4:8b)

It is observed that with proper rotor field orientation, the torque and speed can
simply be controlled with the stator g-voltage. Therefore, the control performance
depends on how accurately the magnitude and the direction of rotor flux linkage
can be estimated in Equation (4.4), which, on the other hand, depends on how
accurately the motor parameters are known.

4.2 Controller Detuning Effects

As was pointed out in the previous section, the drive performance depends on the
use of correct model parameters in the current, speed and position controllers. Un-
fortunately, the motor parameters change heavily during operation as the stator
and rotor resistances change with temperature whereas the leakage and magnetizing
inductances change with the magnitude and the direction of the stator current, i.e.
with the magnetic saturation and hysteresis of the iron core. Furthermore, the rotor
parameters change with frequency due to the skin and proximity effects in the rotor
bars. Moreover, the iron losses change with the stator frequency.

The total leakage inductance is one of the most important parameters in the in-
duction motor control as it is used to decouple the control system. A wrong value
in the current controller causes pulsations in the produced torque when either the
reference torque or rotor flux is changed.

On the other hand, the stator resistance is not that important in the RFO control
schemes, although, an incorrect value causes steady state error in the current re-
sponse, and thus in the torque and rotor flux as well. The U/f method, however,
is more sensitive to the stator resistance, particularly when operating with low fre-
quency. The exact knowledge of the stator resistance is needed also in RFO schemes
if the rotor speed is not measured but estimated. In general, the number and ac-
curacy of parameters required increases when the number of sensors is reduced as
more variables need to be estimated.

The most important parameters in the RFO based motor control are the ones used
in estimating the direction of the rotor flux. The second most important parameters
are the transformed rotor resistance and magnetizing inductance as the produced
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torque directly depends on them

T, (1) = Sptmisg(t) (1.9
Rp . .
QZ]R = Kg)zsq(t) = LMst- (49b)

This is particularly true if the drive is torque-controlled, i.e. the speed and posi-
tion are not controlled, in which case the slip frequency is held constant while the
torque and the rotor flux linkage are controlled. As the rotor resistance increases
with temperature, the electrical torque and rotor flux increase as well. As a con-
sequence, the magnetic saturation increases and more current is drawn from the
supply decreasing drive efficiency. On the other hand, if the torque reference is so
high that the resulting current causes magnetic saturation, the rotor flux decreases
and the produced torque becomes smaller than the reference. Hence, the torque
control becomes nonlinear with detuned operation, and more energy is consumed.

If the motor is speed-controlled, the actual torque matches the load torque in steady
state even though the controller parameters were incorrect thanks to the controller’s
integral action. However, with detuned operation, the rotor flux is set to a wrong
value causing the motor to draw more magnetization current than it would be nec-
essary. As a consequence, the maximum available torque is reduced, and the motor
runs warmer.

In addition, a speed-controlled motor is always in a detuned state due to the rotor-
bar skin effect unless compensated for such effect as the rotor resistance changes
every time the reference torque is changed (White and Hinton, 1995). Furthermore,
if iron losses are not modeled, there exists slight orientation error all the time,
particularly when the motor is run without load at rated speed, or if field weakening
is used (Levi et al., 1996). Models that include magnetic saturation are briefly
reviewed in (Slemon, 1989).
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5 Motor Identification Methods

In this chapter, different methods for identifying the induction motor parameters
are introduced. In literature, these methods have been categorized into off-line
identification and on-line estimation methods, respectively. Previously, the off-line
methods were performed with the locked rotor and no-load tests, but recently the
trend has been on identifying the motor at standstill without locking the rotor
mechanically. The on-line methods are then used to track the parameters for possible
variations.

Without any sophisticated identification methods, basic knowledge of the motor
parameters can be obtained from the motor name-plate. It usually contains at least
the nominal values of the following electrical and mechanical quantities: voltage,
current, frequency, rotor speed, output power and power factor, from which estimates
for the rotor time constant, magnetizing inductance and rotor resistance can be
calculated.

The inverse-I" equivalent circuit of the induction motor has four parameters that
need to be known with great accuracy if moderately precise vector control or slip
compensated scalar control is going to be used for motor control. Parameters needed
are the stator resistance Ry, the total leakage inductance L,, the transformed mag-
netizing inductance Lj; and the transformed rotor resistance Rg. Furthermore,
the iron loss resistance Rp. should be estimated in torque-driven systems to reduce
vibrations.

The following section introduces the motor name-plate, after which the problems in
measuring the stator resistance with a frequency converter are discussed. Section 5.3
explains the usual locked rotor and no-load tests, and the following section derives
the basic equations for the standstill identification. Then, a literature review is
presented in Section 5.5, after which the next three sections concentrate on studying
the different identification methods. The last section briefly introduces one useful
method for finding the motor’s magnetizing curve.

5.1 Motor Name-plate

According to IEC (1994), the AC motor name-plate contains some or all of the
following information

e Manufacturer’s name or mark

Manufacturer’s serial number or identification mark

Manufacturer’s machine code

Year of production

Rated mechanical output power P,y [W] (1 horse power = 745,7 W)



Rated phase-to-phase voltage Uy [V] at rated mechanical output power
Rated stator current Iy [A]

Rated stator frequency fin [Hz]

Rated speed ny [rpm]

Rated (displacement) power factor cos @y

Number of pole pairs p

Number of phases

Winding configuration (A or Y)

Pull-up torque [Nm] i.e. maximum torque at zero speed

Breakdown torque [Nm)] i.e. maximum torque available at rated speed
Torque at rated speed T,y [Nm]

Rotor shaft’s moment of inertia .J, [kgm®]

Degree of protection provided by enclosures (e.g. IP21)

Duty class (e.g. S1, 52, ...)

Insulation class (e.g. F)

Maximum permissible ambient temperature if other than 40°C
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From the name-plate values, the following nominal quantities can be calculated

Apparent three-phase input power
Sinn = V3UnIy [VA]

Active three-phase input power, see Figure 5.1,

PN = Sinn cos oy [W]

Reactive three-phase input power

Qv =\ (Sua)? = (Pox)? [Va]

Efficiency as a motor at nominal speed

(5.1)

(5.4)



Stator angular frequency
wiy = 27 fin [rad/s]

Mechanical angular speed of the rotor

1 min

Q.n =21y - [rad/s]

Number of pole pairs

Electrical angular speed of the rotor
wry = Py [rad/s]
Slip frequency
won = win — wyn [rad/s]

(Relative) slip

Wan f 2N
SN = —— = —
WiN f 1N
Torque at rated speed
P
Ty = -5 [Nm)
rN
Estimate for the nominal rotor flux linkage
~ U N
\I[RN ~ [Wb]
WiN
Estimate for the rotor resistance
~ psnU?
R= N0
winTen
Estimate for the rotor time constant
R 1
T, =——|s

=
winSn tan gy
Estimate for the nominal magnetizing inductance

Ly = Rp7, [H]
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(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

Very rough estimates for the stator resistance and the total leakage inductance

~

5 ~2 R[Q]

&~ =)

g

(0.05...0.10) - Ly [H]

(5.16a)
(5.16D)
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Figure 5.1: Vector diagram of motor power.

5.2 Stator Resistance Measurement

Measuring the DC resistance of a Y connected three-phase stator winding is a very
simple task to do with an appropriate bridge ohmmeter as the corresponding value
is just a half of the average R,, of the terminal resistances taken between each
combination of the stator phases, or three times that if the phases are connected in
A

~ 1/~ ~ ~
B = 3 (Ra,, + Rye + Rm) (5.17a)
Ry = % (5.17b)
~ ~ 3~

R&A = 3Rsy = QRS (5.17C)

However, things are not that simple if the object is to do the measurement with
a frequency converter as the inverter voltage drop is a nonlinear function of the
stator current due to the generation of the transistor dead-times, and because of
the voltage drops caused by the power devices. Figure 5.2 shows the commanded
voltage (2.11) of a typical frequency converter as a function of the stator current.

According to Ruff and Grotstollen (1996), the turn-off time of a transistor in one of
the inverter legs in Figure 2.2 can be modeled as

torr(is) =ty + tae” 2| (5.18)

and the corresponding inverter voltage drop as

t ] 13 swon —1 ta y
|Q1(ls>| - C;(ZS)Udc = d7—bUdc - _eK"ZS’Udc

sw tsw sSw

=Uep + Ueaeﬁh‘sy (519)

where the sum of U,, and U,, is the average of the forward voltage drops over the
transistors and the corresponding freewheeling diodes at zero current. The sum is
usually near 2.0 volts for the insulated gate bipolar transistors. ¢,(i,) is the total
dead-time from Equation (2.13) and ¢4, the switching period. t;, ¢, and k are the
characteristic parameters of the curve.
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Figure 5.2: The commanded stator voltage as a function of the stator current when
the motor is supplied with a frequency converter. The stator resistance is the slope
of the linear part.

This nonlinear inverter voltage drop acts as an added resistance R;(i,) between
the current controller’s output and the effective stator resistance R, introduced in
Equation (3.22)

gs,ref (ls) - Qz(ls) + U (520&)
Rei(i,) = Ri(i,) + Re (5.20b)

where the latter equation is obtained from the former by dividing both sides with
the stator current space vector, and taking the real part of the result.

It is observed that the stator resistance cannot be separated from the inverter voltage
drop without impractical stator phase voltage sensors. However, if the rotor is at
standstill and the stator winding is fed with a DC voltage letting the resulting stator
current approach infinity, the derivative of Equation (5.20a) with respect to the
stator current, i.e. the dynamic resistance Rp(i,), approaches the stator resistance
because the coefficient s is negative in Equation (5.19)

dug .. ¢(2,)
Rp(i,) = —2=r 5.21
p(i,) i, (5.21a)
- A,
R,=Rp(i,)| ~-=% (5.21D)

X ~ A
15 —00 Azs

Throughout this thesis, it is assumed that the stator windings of the studied motors
are wound with round, small-diameter, conductors, in which case the frequency
dependency of the stator resistance, caused by the skin and proximity effects, can
be omitted. However, such effects should be modeled if thicker conductors are used.
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The above effects caused by the eddy currents are studied in (Hanselman and Peake,
1995).

5.3 Locked Rotor and No-load Tests

This section briefly explains the use of the locked rotor and no-load tests in motor
identification. In addition, two equations capable of tracking variations in the iron
loss resistance and the transformed magnetizing inductance during operation are
introduced.

Locked Rotor Test

The locked rotor test is used to determine the rotor resistance and total leakage
inductance. This test is sometimes referred to as a short-circuit test as the motor
resembles a transformer whose secondary winding is short-circuited. To perform
this test, a three-phase active power meter and both voltage and current meters are
needed.

First, the rotor is blocked so it cannot rotate. Then, the machine’s stator windings
are supplied with sinusoidal voltages Uy, causing nominal current flow Iy. The
frequency of the sine wave is selected close to the motor’s nominal slip frequency
fon as the nominal stator frequency fi;y would cause increased rotor resistance due
to the skin effect. Furthermore, if a value corresponding to the nominal phase-to-
phase voltage Uy were applied, a very high current would flow in the stator windings
due to the low stator impedance potentially damaging the rotor-bars. In fact, it is
recommended that this test should not last more than 5 seconds at a time and that
the motor temperature should not exceed the rated temperature rise plus 40°C,
according to (IEEE, 1991, p. 8).

As the rotor is blocked, the parallel magnetizing branch, in the inverse-I" model of
the induction motor, is virtually short-circuited as the slip is unity. The input power
is mostly dissipated in the stator and rotor resistances.

From the active power, voltage and current measurements, it is possible to calculate
the absolute value for the short-circuit stator impedance and power factor

Us
Zgo =\ R2 + X2, = IN" (5.22a)

Pink . Pznk
Sink 3UsIn

(5.22D)

COS ) =

where Uy is the phase-to-neutral voltage, and P, and S;,, the three-phase ac-
tive and apparent input powers, respectively. These values can be further used to
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calculate the short-circuit stator resistance R, and reactance X,y

_ B
- 3I%

X = Y, 7y — Ry = Zasingy, = Xp = Xy + Xoo (5.23b)

where X, and X,, are the stator and rotor leakage reactances. Finally, the rotor
resistance and total leakage inductance are obtained

R = Zg.cospr, = Ry + R (5.23a)

Rp = Ry, — R, (5.24a)
~ X X,
L, =28 = ok (5.24b)

WaN B 27Tf2N.

No-load Test

The no-load test is used to determine the motor’s iron loss resistance Rp. and
the transformed magnetizing inductance L,;, which are in parallel in the inverse-I"
equivalent circuit
Zy = Uy _ JRFeXM (5.252)
1 Rpe +j X
Uy =Uy— (Rs +]X5) L (5.25b)

where U,, and I, are the voltage over and the current in the magnetizing branch,
and U, and I, the stator no-load voltage and current, respectively. In some books,
e.g. in (Vas, 1993), the effect of the stator resistance is omitted being lower than
that of the total leakage reactance

UM ~ UsO - XUISQ. (526)

The magnetizing branch is identified by first removing the load from the rotor shaft
and then feeding the stator windings with sinusoidal voltages having nominal fre-
quency fin. The voltage Uy is raised from zero to the value corresponding the nomi-
nal phase voltage Uy / /3, after which the voltage, current and the active three-phase
input power are measured.

The active no-load input power P,y is divided into the mechanical output power
P, and to the part heating the motor. The latter consists of several parts, two of
which are the resistive losses produced in the stator windings and in the rotor cage,
Poys and Pg,,,., respectively. Other parts include the iron losses of the stator and
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Table 5.1: Assumed Values for Stray-Load Loss (IEEE, 1991, p. 17).

Machine Stray-Load Loss
Rating Percent of Rated Output
1-125 hp 1.8%
126-500 hp 1.5%
501-2499 hp 1.2%
2500 hp and greater 0.9%

rotor cores, Ppes and Ppe,, and the losses caused by friction Py, and windage P,

PinO:PCus+PFes+PCur+PFer+Pfr+Pwi+Pout

= 3U40 10 cos ¢ (5.27a)

Pous = 314 R, (5.27b)

Peur = 313, Rp (5.27¢)
U2

Pres = 3L (5.27d)
RF@

In the above equation, cos ¢ is the no-load power factor similar to the one in (5.22b).
The rotor iron losses are usually either included in the stator iron losses or totally
omitted as those losses are rather difficult to measure.

In addition to the introduced power losses, there exist losses which do not belong
to any of the above groups. These losses are called stray losses Py, and they can
be measured correctly only by removing the rotor and subtracting the known losses
from the input power. Otherwise, the stray losses have to be estimated from the
known power losses with a rather difficult procedure described in (IEEE, 1991, p.
14). However, if the motor complies with the applicable IEC standards, the stray
losses can be approximated with the values given in Table 5.1.

The reactive three-phase input power ();,o consists of the reactive powers (), and
@y consumed in the total leakage inductance and the transformed magnetizing
inductance

Qino = Qo + Qunr = 3Ugpl sin g (5.28a)

= \[S20 — P2y = \/(8U.0L0)? - P2, (5.28D)

Qo‘ = 31520Xa = 3[52()W1NL0 (5280)
U2 U2

—3-M _g_ "M 5.28d

Qu X win Ly ( )

As there is no load, the rotor will rotate near the synchronous speed wyy, i.e. the
slip is almost zero (s = 0). Thus, the induced rotor currents are small and the
corresponding resistive losses can be neglected.
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From the active power, voltage and current measurements, and from Equations
(5.25)-(5.28), the iron loss resistance and the transformed magnetizing inductance
are obtained

U + [fii + (WlNEa)Q] 1% - %(Pmo—fzs + Qunowin L)

~ U?
Rpe= 32 =3 — (5.29a)
PFes Pm() - 31520Rs - Pout
~ U2, U+ [—’% + (WINEU)Z} 13— %(Pmoﬁs + Qinowin L)
Ly =3 =3 = . (5.29b)
wiNQ w1N(Qmo - 3152()W1NL0)

If the effect of the iron loss resistance is omitted, the magnetizing inductance can
also be approximated as

E USO T USO

(5.30)

- N .
win1so 27 finIso

If more precise results were wanted, the rotor should be connected to, e.g., a DC-
motor, as it is suggested in (Krishnan, 2001), and rotated at exact synchronous
speed to avoid errors caused by slip and the estimation of the mechanical losses in
Equation (5.29a).

5.4 Standstill Identification

In this section, the basic equations and conditions for standstill identification are
derived.

For identification purposes, the motor equations should contain only directly measur-
able variables such as the stator voltage and current. This is achieved by substituting
the flux linkage equations (3.8) to the stator voltage equations (3.7)

di(t) dis(t)

Ly dt - Qs<t) - Rsls(t> —Lp dt (5318“)
das(t dis(t
L lgh(j ) oL (8) + (n Ly — B) (1) — Lo chh(s ). (5.31b)

To avoid solving a complex-valued system, the above equations are extracted to real
and imaginary parts

dia(t) | iy (1)
L, T Usa(t) — Rsisa(t) — L i (5.32a)
L. dz’gt(t) — o L) — Ryiva(t) — wrLuins(t) — L dzsd"t(t) (5.32b)

d’isﬂ(t) o . dirﬁ(t)

LS < glt) = Raig(t) = Ln =2 (5.32¢)

i 5t it
L% (ft( ) o Lian(t) + nLnina (1) — Ryins(t) — L™ dﬂt( ), (5.32d)
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The next step is to Laplace transform Equations (5.32) considering the initial values
zero, after which those equations are solved for the components of the stator current

(] R e A

The transfer functions G (s) and G(s) are defined as

Clomms® + (e +7)s + 1] (s + 1) + (o) (0708 + 1)
o7, 7s8? + (1 + 75)s + 1]2 + (WTTT>2 (0758 + 1)2
WTTTTS(]- - U)S

G = . 5.34b
2(s) o7, 7s8% + (1 + T5)s + 1]2 + (u),«Tr)Q (0Tss + 1)2 ( )

(5.34a)

The parameters 75, 7, and o are the stator and rotor time constants and the leakage
factor defined as

L
=L 5.35
=R o (5.35)
L, Ly
L Zm 5.36
=R T R (5.36)
L? L
o=1 z z (5.37)

T L.L., L.+ Ly

When the motor is at standstill, w, = 0, the transfer function Gs(s) is zero and the
system dynamics are reduced to

7.5+ 1 Usa(s)
I, = . 5.38
() o1, Ts$? + (T +Ts)s+ 1 Ry (5.382)
s+ 1 Us
Lyg(s) = RS 5(5) (5.38D)

o1, 782+ (1 + 75)s + 1 . R,

from which it is observed that the motor parameters can be identified using either a-
or B-components. Furthemore, the stator and rotor reference frames become equal.
As a consequence, from now on the superscript s is omitted in the space vector
notation for convenience.

For real frequencies, the Laplace variable s in the transfer function (5.38) can be
replaced by jw. Then, a Bode diagram can be plotted for a particular motor by
varying the frequency of the input voltage and measuring the magnitude and phase
difference of the ratio of the current and voltage. The obtained frequency response
looks like the one in Figure 5.3, from which it can be observed that the motor
resembles a low-pass filter.

For standstill identification, there are two choices of excitation: Case 1, one of
the three phases is disconnected, i4(t) = 0, or Case 2, two phases are connected
together, ig(t) = i5.(t). Figure 5.4 shows both cases.
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Bode Diagram
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Figure 5.3: Simulated standstill frequency response of an ideal test motor with
parameters: R, =0.5 Q, R =0.7Q, L, = 7.3 mH, L), = 65.0 mH.

For the Case 1, the phase b is disconnected, i.e. the current in that phase is zero,

0= isa(t) + isb(t) + isc(t) (539&)
i(t) = 0 (5.39h)
- Zsc(t) = _'ésa(t) (5390)

and the current space vector becomes

L= [z@(t) — (a0 10455 (10t0) — z'sc(t>)]

1 2
= lsq(t) + j—=tsa(t) = —=1sq(t)£30°. 5.40
(t) +] 7 (t) 7 (t) (5.40)
For the Case 2, the phases b and ¢ are connected in parallel, i.e. the same current
flows in both phases,

0 = isa(t) + isp(t) + ise(t) = isa(t) + 2ise(t) (5.41a)

() = i (t) = —%isa(t) (5.41D)
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ise(t) c ise(t) c
Figure 5.4: The configuration of the stator windings in standstill identification.
Cases 1 and 2 are on the left and right, respectively. Although the connections are
made physically in the picture, the same can be done virtually with the inverter.

and the current space vector becomes
L0 =3 [isaw — 2 (olt) 4 )43 (1t - isc<t>)]
= 2 (a0l = ise®) ) = a0 (5.42)

As a consequence, the stator current space vector cannot rotate nor can the rotor.
Therefore, the identification can be performed at standstill even without locking the
rotor mechanically as no torque is produced (Barrero et al., 1999). Figure 5.5 shows
the simulated current waveforms in the Cases 1 and 2, respectively.

From Figure 5.4, it can be observed that it is possible to use 33% higher test voltage
in Case 1 than in Case 2 as the stator impedances are in series instead of being in
series/parellel. This is beneficial as the motor is usually fed with voltage-sensorless
pulse-width modulated inverter where the motor phase voltage 'measurement’ is
based on the applied reference voltage, modulation index and dead-time compensa-
tion as was seen in Section 2.2.

However, the identified magnetizing inductance is slightly higher with this type
of zero-torque excitation compared to the torque-producing three-phase case when
the same level of stator flux linkage is used. This phenomenon, which is more
pronounced as the magnetic circuit saturates, is caused by the fact that the a- and
(B-components of the stator flux linkage use partly common iron paths. According
to Klaes (1993), the identified values for the magnetizing inductance should be
approximately 11% higher with this type of excitation compared to the regular
three-phase case. Although an interesting point, for some reason, it has not been
discussed further in the reviewed literature.
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Figure 5.5: Simulated waveforms of sinusoidal stator currents in Cases 1 (top) and 2
(bottom). Phases a, b and ¢ are drawn with blue, green and red color, respectively.
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5.5 Literature Review on Standstill Identification Methods

System identification methods are divided into to time (TD) and frequency domain
(FD) methods (Johansson, 1993). When such methods are applied to motor identi-
fication, the motor’s stator windings are fed with either voltage or current pulses in
the former, and with sinusoidal waveforms of selected amplitudes and frequencies in
the latter.

The TD approaches are based on the motor’s differential equations (3.7) and the FDs
on the steady-state equations (3.20). Both methods are susceptible to nonlinearities
as the motor models, usually, omit inverter nonlinearities, rotor-bar skin effects, and
both saturation and hysteresis effects in the main flux linkage, and when such effects
are included, the models become very complex (Biinte and Grotstollen, 1993), (Ruff
and Grotstollen, 1996).

In motor identification, the first thing to do is to find correct parameters for the
stator windings so that the current controller can be set properly. There are nu-
merous ways to accomplish this task. For instance, Rasmussen et al. (1996) have
used an experimental tuning approach based on the well-known Ziegler-Nichols ul-
timate gain method described in several basic control theory books, for example in
(Hagglund and Astrém, 2006). After the current controller has been set, if wanted,
the motor parameters can be solved from the controller parameters. Others have
calculated controller parameters after first identifying the stator parameters.

Problems are caused by the nonlinear inverter voltage drop as it tend to increase
the resistance seen by the current controller. Most authors have used sufficiently
high input voltages and currents to avoid operating in the nonlinear region in Figure
5.2, which is straightforward when using TD methods. In FD methods, the same
effect is achieved when the motor is fed with DC, in addition to the AC. This type
of excitation is used, e.g., in (Bertoluzzo et al., 1997), (Seok et al., 1997), (Kwon
et al., 2008).

The biggest problem in standstill motor identification is finding the correct value
for the constantly varying rotor time constant. During the 1980s, many methods
appeared in literature. One common method was to feed the stator with a sinusoidal
current with the exact slip frequency, and to switch the stator current to the assumed
DC magnetizing current. If the slip frequency and the DC current were correct, no
transient could be observed in the stator voltage, and thus the correct rotor time
constant had been found for that particular magnetizing current (Wang et al., 1988).

The most common standstill TD methods are based on calculating the stator and
rotor time constants from the measured stator currents when the stator is supplied
with a DC voltage which is then switched either on or off as is done in (Ambrozi¢
et al., 1993), (Kwon et al., 1994), (Couto and de Aguiar, 1998). The simpler meth-
ods rely only on few measurements whereas the more sophisticated ones are based
on several measurements, which are fitted to the motor model by, for example, ei-
ther recursive least squares or maximum likelihood algorithms (Moon and Keyhani,
1993), (Barrero et al., 1999). This way the effect of wrong measurements and noise
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can be reduced in the parameter estimates.

The newest methods are based on arbitrary input signals with inverter nonlinearities
taken into account as in (Michalik, 1998), where optimal, pseudo-random binary
sequence signals have been used, or as in (Aiello et al., 2002), (Cirrincione et al.,
2002), (do Prado Junior et al., 2002). Many newer methods are based on solving the
motor parameters recursively from discretized motor models. Thus, the identified
parameters are affected by the chosen discretization method, the quality of the anti-
aliasing filters and the used sampling frequency. Furthermore, the discretized model
parameters are mapped to the real, continuous, parameters in a very nonlinear way.

In addition, the recursive curve fitting methods have trouble on converging to the
correct values if the input signals are not 'persistently exciting’ the system, i.e.
signals remain constant for too long periods, as is pointed out by Ljung and Soéder-
strom (1983) and Franklin et al. (1990). Such identifiability problems are avoided
in continuous-time identification methods reviewed in (Garnier et al., 2003) and
(Garnier and Young, 2004). These methods have been developed as early as in the
1950s, according to Johansson (1986), but not used in standstill motor identification
before 1985 (Minami et al., 1991). A decade ago, this method has been studied for
real-time parameter identification by Dell’Aquila et al. (1994). The continuous-time
identification methods are superior compared to the discrete-time methods as the
parameter estimates are not dependent on the chosen sampling frequency, and there
is no need to use anti-aliasing filters as is mentioned in (Johansson, 1993, p. 308).

The motor flux level is governed by the magnetizing current and the magnetizing
inductance. It has been shown by several authors that a constant value for the
magnetizing inductance is inadequate alone, and that there is a need to identify both
the static and dynamic magnetizing inductances if the motor is going to be operated
above the nominal speed with reduced flux, or if the motor’s magnetic circuit is
very nonlinear. Thus, many have tried to approximate the magnetizing current
and flux with different types of analytic functions. For example, Melkebeek and
Novotny (1983) have tried the simplest approach by approximating the magnetizing
inductance with two straight lines, Kerkman (1985) and Bertoluzzo et al. (2001) have
tried 3rd-, 5th- and Tth-order polynomials with seemingly good results whereas Ruff
and Grotstollen (1996) have used exponential functions. According to Ganji et al.
(1996), transcendental functions, i.e. arctan(z), tanh(x) ..., have also been tried, but
such functions should be avoided as those cannot be implemented easily in digital
signal processors. In general, the used functions should be continuous, smooth and
easily differentiable. As finding the magnetizing curve adds much more complexity
to the motor identification, it has often been omitted in industrial applications.
Instead of that, a simple table of fixed values with linear interpolation has been
used (Niiranen, 1999).

The amount of scientific articles on the motor identification is so vast at the moment,
easily more than 200, that the major problem in choosing the right methods has
been on finding the simplest ones as most of the studied papers are either too
complex for industrial applications or they are concerning parameter estimation in
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normal operation conditions with extended Kalman filters, model-reference adaptive
system (MRAS) methods, neural networks or other very difficult methods that are
not suitable for standstill identification. More on these and many other advanced
methods can be found in (Krishnan and Bharadwaj, 1991) and in a very thorough
literature review written by Toliyat et al. (2003).

According to the author’s opinion, the most suitable standstill identification schemes
encountered while reviewing the literature were written by Sukhapap and Sangwong-
wanich (2002) and Kwon et al. (2008). Those articles effectively summarize the
simplest methods used in the time and frequency domains. Furthermore, methods
with discrete-time motor models should be avoided.

In the forthcoming sections, the simplest time domain identification method based
on a voltage step response is reviewed in Section 5.6. The following Section 5.7 intro-
duces a continuous-time method called state variable filtering capable of identifying
any linear time-invariant system. The method is then applied to the induction mo-
tor’s electrical parameters. Section 5.8 reviews the simplest standstill identification
scheme based on frequency response, and Section 5.9 describes one way to identify
the magnetizing curve as a function of the magnetizing current.

5.6 Step Response Identification

In this section, it is shown how the motor parameters can be identified in time
domain. The idea is to excite the motor with a voltage step and to measure the
resulting current response. The measured data is then compared with the data
obtained from the corresponding model, from which the desired parameters can be
obtained with linear regression.

The mathematical model of the motor whose rotor is at standstill, i.e. the transfer
function from the stator voltage to the stator current (5.38a), was already derived
in Section 5.4. Here, the model needs only to be excited with a Laplace transformed

0
voltage step ——
s

User s +1
R, slor1es2+ (1. 4+ 7)s + 1]

(5.43)

after which the desired current response is obtained when the transfer function is
transformed back into the time domain

. Usey 1
Zsa(t) = R. {1 + 2—€

_TrtTetEy B i
(Ts — T, — é’) e 20mrTs | — (Ts -7+ f) e 207Ts .
(5.44)

The parameter £ is used to simplify notation

40T, T,
= (m+7)/1- Crert (5.45)
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The total leakage inductance is the easiest parameter to obtain as it can be solved
from the tangent of the current response (5.44) evaluated at origin

disa(t) _ Usa
dt L,
~ At

~ o Usa
JAV IS

(5.46)

The complicated equation of the stator current has to be simplified so that the
transformed magnetizing inductance and rotor resistance can be solved. Ambrozié¢
et al. (1993) suggest that the stator current could be approximated with a simpler
form

Usa T ——t

Isa(t) = 1— e TrtTs 5.47
®) R, < T, + Ts > (5.47)

where the square root in £ is replaced with the two first terms in the corresponding

Taylor series, and that the leakage factor is omitted. This approximation converges

if the term under the square root of £ fulfills the inequality

40T, Ts

1>

> m ~ao>0, ie. if 1, = 7. (5.48)

According to Ambrozi¢ et al. (1993), the expectable error is then in the range of
3% to 5% for motors with (0.09 < o < 0.15). In Figure 5.6, the simulated and
approximated stator current responses are plotted.

Now, the rotor parameters can be solved from a linear system of equations, which
is obtained by taking at least two measurement points from the stator voltage and
current at different instants of time, ¢; and to. For this purpose, Equation (5.47) has
to be transformed into a pseudo-linear form by rearranging it and taking natural
logarithms on both sides

Ry . s t
In|l-— —zsa(t)’ —ln|—2—| - : (5.49)
1% TT‘ + TS T’I’ + TS
The above first-order equation represents a straight line in space
y(t) =6y + 01t = [1 t] [ZO =¢'0 (5.50)
1_
where the function y(¢) and the parameters 6y and 6; are defined as
Ry
y(t) =In |1 — —i (%) (5.51a)
Ts (Lg + LM>RR
0y = In =In 5.51b
L (Ly + Ly)Re + LR, (5.51b)
1 RrR;
0, = — - _ R (5.51c)

T, + Ts (L, + Laf)Rg + Ly Ry
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Figure 5.6: Simulated stator current response to a step voltage excitation. The
simulated current is plotted with a dashed line (——) and the approximation with
a solid line (—). Motor time constants are 75 = 144.6 ms, 7, = 92.9 ms, and the
leakage factor is o ~ 0.10.

The measurements should be taken after the initial transient is over in the real
stator current (5.44), and stopped before the steady state is reached as Equation
(5.47) is not valid at the beginning. In fact, the ideal stator current (5.44) is neither
valid at the beginning as the initial transient has a high-frequency content causing
nonlinear increase in the rotor parameters due to the skin effect. Therefore, the
measurement should be started after, for example, three transient time constants 7.
have passed from the beginning, yielding that the initial transient is practically over
(1 — e~ 0.950). The measurement can be stopped when the current has reached,
for example, 93% of the steady state value corresponding to approximately four
rotor time constants 7, in Equation (5.47), i.e. (1 —0.5-¢e* ~ 0.932).

The parameters 6y and 6; can be solved from a matrix equation
1 ti] 6o y(tl)]
= 5.92
b ] = (552

m_ 1 [tgy(tl)—tly(b)} (5.53)

as

0]  to—t1 | ylt2) —y(th)

Finally, the transformed magnetizing inductance and rotor resistance can be solved

~ —~ efo

LM = — (LJ + Q_RS) (554&)
1

~ 1 ~ ~

Ra=1— <91L0 + eeORS) . (5.54b)
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Figure 5.7: State variable filtering of an unknown process.

In practice, more than two measurements points should be taken so that the obtained
parameters were not affected so much by noise or single wrong measurements.

5.7 Identification with State Variable Filtering

In the previous section, it was assumed that the stator resistance and the total
leakage inductance were known in advance. However, those can be identified at
the same time with the transformed rotor resistance and magnetizing inductance by
identifying the whole model (5.38) at once.

This goal can be achieved if the system is identified with a method called state vari-
able filtering (SVF). The method is capable of identifying any linear time-invariant
system. The basic principle is to find the system’s state variables by means of fil-
tering the inputs and outputs (Garnier and Young, 2004). Figure 5.7 illustrates the
case. The method uses continuous-time models. Thus, there is no need to discretize
the identified model as it, usually, has been the case in the reviewed literature, e.g. in
(Moon and Keyhani, 1993) and (Ruff and Grotstollen, 1996). This is advantageous
as the accuracy of the identified parameters is not affected by the chosen discretiza-
tion method. Moreover, time-discrete parameters have little or no physical meaning
at all whereas the continuous-time parameters are directly mapped to the physical
parameters. Furthermore, the SVF method does not need anti-aliasing filters, and
the method works with arbitrary input signals (Johansson, 1993).

The SVF method goes as follows:

1. The Laplace variable s in a system’s transfer function

Y (s) bis" M4+ by
G(s) = = 5.55
() U(s) s"+as"1+...+a, ( )
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is replaced by

1—A
TA

S =

(5.56)

where A is the new ’low-pass filter’ operator and 7 the low-pass filter time
constant, which should be smaller than, or equal to, the lowest time constant
of the identified system, i.e. the filter bandwidth should be higher than, or
equal to, that of the identified system.

2. The new system

YD) BN + ..+ B A2+ B
UN  apdm+ ...+ a2 +ad+ 1

(5.57)

is rearranged to the input-output model similar to autoregressive moving av-
erage

Y(A) = — a1 AY(A) — a XY (\) — ... — a, A"Y(N)
+ BIAU(N) + BoXN2U(A) + ...+ B A"U(N). (5.58)

3. The input-output model is transformed back to time domain with inverse
Laplace transformation

y(t) = —ar M) (t) — az [Ny] (1) — ... — an [\"y] (1)
+ 61 M () + Bo [NPu] (8) + ... + B [N"u] () (5.59)

where [\u] () and [Ny (t) are the ith-order low-pass filtered system inputs
and outputs, respectively.

4. Finally, the obtained input-output description (5.59) is solved, for example,
by means of a recursive least-squares algorithm described in Appendix A.

Applying the SVF to the Motor Model

The forthcoming application of the SVF method to the induction motor is essentially
a simplification of the method that is used for real-time identification in (Dell’ Aquila
et al., 1994), but here the method is applied to the case where the rotor is not allowed
to rotate.

First, the motor standstill model (5.38) is rearranged to the form (5.55)

b b
Ch(s) = o7 R, 0T, Ts R _ 1S + b2 (5.60)

ST e
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Then, (5.56) is substituted for s

Y()\) o (bQT — bl) ’7')\2 + blT/\ o ﬁg)\Q + ﬁl)\

A) = = =
G UXN) (Q—am+am )X+ (a7 —2)A+1  aaN+ar+1

(5.61)

which is solved for Y () and transformed back to the time domain

y(t) = —an [My] (1) — oz [Ny] (8) + B D] (8) + 5o [Nu] (8)

aq

= [l =) Paul() [Vl (@) %2 =¢"0.

1

fa

For convenience, the filtered inputs and outputs and the parameters are replaced
with a simpler notation similar to the one commonly used in linear regression

e

— [Ny] (¢ us(t Qs 2

il v R ) Yl A
[\u] (2) ua(t) o 04

As was mentioned before, the motor can be excited with a voltage having an arbi-
trary waveform. For simplicity, the windings are excited again with the same step
voltage that was used in Section 5.6. Both the estimated voltage and measured
current are gathered into vectors

Z:sa(tl) usa(tl)
Y — Z“‘ftZ) and U= us“:(tQ) . (5.63)
7;sa (tN) Usa (tN)

Discretized First-order Infinite Impulse Response Low-pass Filter

The filtered system inputs and outputs are obtained using a first-order infinite im-
pulse response (ITR) low-pass filters. The discretization can be performed in various
ways (Franklin et al., 1990). Hera, a zero-order hold and triangle-hold equivalents
are presented:

e The zero-order hold equivalent

yr(kh) = e " 7yp(kh — h) + (1 — e ™) us(kh — h) (5.64)

e The triangle-hold equivalent

h
——1+ eh/T) us(kh)

T

wpth) = =)+ 7 |

+ (1 —e M~ ﬁeh/f) ug(kh — h)] (5.65)

T

T
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where h is the inverse of the sampling frequency f,, which should be chosen higher
than the system bandwidth. However, too high a value causes numerical instabilities.

In practice, finite impulse response (FIR) filters may be preferred because such filters
are faster to execute in digital signal processors, and because IIR filters may cause
oscillations when implemented with fixed-point arithmetics (Niiranen, 1999). In
addition, FIR filters can be designed with completely linear phase response. Further
information on digital filters can be found in (Smith, 2003).

Recursive Identification

The parameter vector 0 is solved by means of recursive least-squares algorithm:

STEP 1. Choose the number of measurement points /N, and the proper values for

the filter time constant 7, forgetting factor u and the covariance matrix gain «, see
Appendix A.

STEP 2. Calculate the initial values for @ and P or initialize them as

0 0

[N ilo)
oo L0 o

0 0
a 0
0 «

STEP 3. Calculate the filtered inputs and outputs with, for example, (5.64).
STEP 4. Calculate the update coefficient

’Ylgxi . 912%;
1) = )| = 3 (V)
() Z;ul(NﬂLl)gz(N)JrM ga(N)

e(N+1)=y(N+1) = > ;(N)u;(N + 1),
61(N) +:1(N)6(N+1)
~ 02(N) + v2(N)e(N + 1)
O+ 1) = | (3 4 (V)N + 1)
(V) +7a(N)e( )
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STEP 6. Calculate the estimate for the covariance matrix

pii(N +1) pa(N+1) pis(N+1) pia(N+1)

P(N +1) = Ppou(N +1) poo(N+1) pa(N+1) pou(N+1)
o p31<N+ ].) p32<N+ ].) p33<N+ ].) p34<N+ ].)
par(N+1) pao(N+1) pis(N+1) pu(N+1)

STEP 7. Stop if no more measurements, else go back to STEP 3.

Parameter Mappings

After the parameter vector (5.62) has been identified, the desired motor parameters
are simply calculated from

~ T
L,=— 5.66a
3 (5.66a)
= 1+ oy + o
Ry=—-—-= 5.66b
B+ Be ( )
-~ 2 + o) — ﬂlﬁs ~
Ly = T— L, 5.66¢
M B+ Be ( )
J— iﬁQZMEU. (5.66d)
T

5.8 Frequency Response Identification

The time domain identification in the previous sections was based on feeding the
stator windings with voltage or current pulses, which, by the definition of the Fourier
transform, contain infinitely many frequencies with decaying amplitudes whereas the
standstill frequency response (SSFR) identification methods are based on sinusoidal
voltages and currents with constant amplitudes and frequencies. Thus, the system is
excited with only one frequency at a time, and therefore it is easier to avoid exciting
unwanted frequency dependent phenomenon.

The SSFR method has several advantages. For example, it is very accurate when
performed with correlation method of frequency response (CMFR), which has a
low computational burden and it gives good results even with poor signal-to-noise
ratios. In addition, constant disturbances, like measurement offsets, are completely
eliminated from the results.

On the other hand, identification takes more time with the SSFR method as it is
necessary to wait for a certain period of time after changing the input frequency
from one to another so that the initial transients have decayed enough. Further-
more, several periods have to be measured. Otherwise, the results are affected by
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measurement noise. Recently, SSFR methods have successfully been applied to in-
duction motors by Biinte and Grotstollen (1993), Sonnaillon et al. (2007) and Kwon
et al. (2008).

The basis of the SSFR identification can be deduced from the way the motor currents
divide between the stator and rotor circuits in steady-state conditions. When the
rotor is at standstill, the magnetizing and rotor currents are related to the stator
current by

1

Iy=——— 1, (5.67a)
1 -+ (wln)2

Ip=——Ar . (5.67b)
1 -+ (wln)2

The magnitude of the magnetizing current I,; approaches zero as the stator fre-
quency approaches infinity. Therefore, the AC current will entirely flow in the rotor.
On there hand, when the stator frequency approaches zero, the magnitude of the
rotor current [r approaches zero, which means that the AC current will entirely flow
in the stator circuit. Thus, the stator and rotor parameters can be solved form the
stator impedance (3.22) when both low and high frequencies are used.

The parameters, L,, Ly, and Rg, should be identified from the effective stator
inductance

Ly

Le(w)) = Ly + ——M
( 1) 1"‘(@017})2

(5.68)

as it is not affected by the stator resistance nor the nonlinear inverter resistance
R;(i,), introduced in Section 5.2. There is a problem however. As the motor is not
supplied with a symmetrical sinusoidal three-phase supply, the input power is not
constant because the amplitudes of the current and voltage space vectors pulsate
with the stator frequency. As a consequence, the information of the phase angle
vanishes every time a space vector becomes zero.

The inductance could be calculated recursively by solving a discretized version of
the stator voltage equation

disa(t)
dt

as is done in (Bertoluzzo et al., 1997) and (Aiello et al., 2002). However, solving the
resulting discrete autoregressive moving average has the same disadvantages that
were discussed in the beginning of Section 5.7.

Usa(t) = Reiga(t) + Lo

(5.69)

Fortunately, there is a better way. The effective stator inductance can be solved
from the reactive input power (3.25¢)

Lo(wy) = e . S(e1) (5.70)

lsa w1
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if only the phase difference ¢, between the fundamental-frequency voltage and cur-
rent phasors is known. This information is easily obtained using the correlation
method of frequency response presented next.

Correlation Method of Frequency Response

The correlation method of frequency response (CMFR) is the basic tool in discrete
Fourier transform as it has an ability to find the amplitude ratio and phase difference
between any two sinusoidal signals. The method is usually exploited in phase-locked
loops (PLL) and lock-in amplifiers (LIA) used in signal tracking applications. For
example, the motor identification method presented in (Sonnaillon et al., 2007) uses
this technique, although different name is used.

A simple derivation of the method is presented below for a general sampled system,
whose input and output signals, u(kh) and y(kh), are defined as

u(kh) = sin (w1kh) (5.71a)
y(kh) = gsin (w1kh + 1)
= 9. cos (w1kh) + ys sin (w1 kh) . (5.71b)

whereas the amplitudes, g, 9. and g, are
I =V (5.72a)
Je = ysin (1) (5.72b)
Js = gcos (1) - (5.72¢)

Now, the system gain K (w;) and phase difference ¢;(w;) can be obtained from

K(w) = |G(e™")

=Y N~

(5.73a)

c

©>|@>
N——

¢1(w1) = arctan ( (5.73b)

S
if only the coefficients ¢, and g, are known.

Basically, the output signal is separated into components having 90-degree phase
shifts between each other by multiplying the output signal with a cosine and sine
having the same frequency f; as the input signal. Then, both components are
integrated over a measuring interval ¢,, chosen as an integer multiple [ of the period

t1 of the input frequency
2
t =1t =122, 1e{1,2,...}. (5.74)
w1

During that time, N measurement points are taken from the output signal with a
sampling frequency f, = %

b
N:tmfs+1:7+1. (5.75)
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Figure 5.8: Measured signal in the correlation method of frequency response.

Figure 5.8 illustrates the sampling process. In discrete time, the integrals are re-
placed with the corresponding sums. As a consequence, the coefficients can be
calculated from

o V-1
e = v y(kh) cos (w1 kh) (5.76a)
k=0
o V-1
Us = v y(kh)sin (w kh) . (5.76Db)
k=0

More thorough derivation of the method can be found in (Franklin et al., 1990, p.
354).

SSFR Identification Process

The stator windings are fed with a combination of DC and AC currents
bsa(t) = Ije + V21, sin (wit) . (5.77)

The purpose of the DC component [, is to magnetize the motor in a desired oper-
ation point, and to minimize the nonlinear change in magnetization caused by the
magnetic hysteresis and saturation otherwise present when the motor is magnetized
with a sinusoidal current alone. Furthermore, the added DC component can be used

to excite the motor above the nonlinear inverter region if it is a problem, see Figure
5.2.

In the following, the DC component is chosen as the nominal magnetizing current
and the angular frequency of the sine wave as the nominal wiy. Now, the total
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leakage inductance can be solved from the effective stator inductance (5.70) as they
are approximately equal in this operation point

Ly ~ Lo(wiy). (5.78)

To identify the transformed magnetizing inductance L,; and rotor resistance Ry, the
motor has to be fed again with the above combination of DC and AC currents, but
this time the effective stator inductance must be measured with at least two different
stator frequencies. These two frequencies are chosen from the low-frequency end,
close to the nominal angular slip frequency wsy.

An estimate for the proper stator current that will cause the nominal magnetizing
current at low frequencies can be obtained from the displacement power factor

Iyn ~ Iysinpy = Iyy/1— (cosgoN)2 (5.79a)
Iry =~ Iy cos oy (5.79b)
where Iy and Iry are the magnetizing and rotor currents with nominal stator

current, respectively. Then, the correct stator current is obtained from Equation
(5.67a)

L(wy) = \/1+ (w1 7)*Inn (5.80)

where the rotor time constant is estimated from the motor name-plate (5.14).

After the measurements have been taken, the transformed magnetizing inductance
can be solved from a linear 2 x 2 system

1 ~
Ly — w72 =1 (5.81a)
Le(wa) - LO’
1 ~
—— Ly —wiTr =1 (5.81b)
Le(wb) - La

where w, and wy, are the different angular measurement frequencies. The transformed
rotor resistance is then easily solved from the estimate of the rotor time constant

~ L
Rp =2 (5.82)
T

5.9 Magnetizing Curve Identification

If the motor is going to be operated above the rated speed ny with reduced rotor
flux linkage, or if more torque is wanted with less current, or if the magnetic circuit
is too nonlinear, a constant value for the magnetizing inductance is inadequate for
good control performance. In such conditions, the saturation curve has to be known
for the rotor flux linkage or the magnetizing inductance. Such curves are depicted in
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Figures 5.9 and 5.10. Unfortunately, the task of finding these curves is the hardest
part in standstill identification as several tests have to be performed, and as the
process is complicated at low voltages by the inverter nonlinearity and magnetic
hysteresis, particularly when step response tests are used. Therefore, only a short
introduction to one method is presented below as a thorough discussion of the topic
is beyond the scope of this Master’s thesis.

The magnetizing inductance is divided into static and dynamic parts where the
former is defined as the slope of the straight line drawn from the origin to a particular
operating point in the curve of the rotor flux linkage versus the magnetizing current

|t
L(iy) = W (5.83)

whereas the latter is the slope of the tangent at that point

gl
Lp(iy) i (5.84a)
= Lys(iyy) + Sorllan) )y 1 (5.84D)

d [y

The problem is to find a smooth function that accurately estimates the static magne-
tizing inductance. For example, Ruff and Grotstollen (1996) have used an exponent
function

Dat(ing) = Loefa linl 4y ofe linel 4 p, (5.85)

where the parameters L, and L. are positive, and L;, K, and K, negative. As the
above equation is nonlinear with respect to the parameters, it cannot be solved with
linear regression, which means that a very time-consuming numerical optimization
should be used. Therefore, other simpler functions are preferred in literature.

Yet, single values for the static magnetizing inductance can still be solved rather
easily by combining the flux linkage equations (3.16), the stator voltage equation
(3.17a) and the nonlinear inverter resistance (5.20b). It follows that the rotor flux
linkage can be obtained from

t

Vra(t) = Vra(0) + / [usa7ref(t') — Rei(isa(t)) z’sa(t’)]dt’ — Lyisa(t) (5.86)

0

where the initial value 1g,(0) exists due to the magnetic hysteresis. Equation (3.16¢)
yields an expression for the magnetizing inductance

-~ . o Z/}Roz,i (t) o wRa,i@)
LM(Zsa,i) - T N -

ZMa,i(t) o0 Zsa,i(t>

where the last equality holds if the motor is fed with constant DC voltages, in which

case the steady-state stator current equals the steady-state magnetizing current.

ie{0,1,2,..} (5.87)

t—o00
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Figure 5.9: Rotor flux linkage as a function of the magnetizing current.

80
70
60
50
40
30

20

Magnetizing inductance IWVI(IM) [mH]

10

0 2 4 6 8 10 12 14 16 18 20
Magnetizing current IM [A]

Figure 5.10: Static magnetizing inductance as a function of the magnetizing current.

After those single values are solved for the magnetizing inductance, the real magne-
tizing curve can be approximated using linear interpolation between two consecutive
values.

More detailed information about the used method can be found in (Ruff and Grot-
stollen, 1996) and (Sukhapap and Sangwongwanich, 2002), and a comparison of
different types of functions that have been used for estimating the static magnetiz-
ing inductance in (Ganji et al., 1996). Methods based on SSFR can be found in
(Biinte and Grotstollen, 1993), (Sonnaillon et al., 2007).
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6 Simulation Results

An ideal induction motor without any nonlinearities was identified with both the
step and frequency response methods using simulated input-output data. The sim-
ulations were performed with MATLAB Simulink, which is a numerical computing
environment produced by Mathworks. The motor parameters are Zo = 7.3 mH,
Ry, =059 and Ly, = 65.0 mH and Rz = 0.7 ©, which yield the following time
constants: 7. = 6.1 ms, 7, = 144.6 ms and 7, = 92.9 ms. That is, the two poles of
the motor’s standstill transfer function (5.38) are located at 0.7 Hz and 27.2 Hz.

Step Response Test with SVF

In the first simulation, the motor was fed with a voltage pulse shown in Figure 6.1
using 'Case 1’-excitation, see Section 5.4. The pulse-duration was one second and it
had an amplitude of 10 volts. The simulated voltage and current vectors were then
processed by the state variable filtering method using the recursive identification
algorithm presented in Section 5.7.

The algorithm was run several times with different values for the low-pass filter
cut-off frequency fy and sampling frequency f,. Then, a second test was performed
similarly with an exception that bandwidth-limited white noise with 100 mA mean
and 100 mA standard deviation was added to the stator current to model measure-
ment noise and offset, see Figure 6.2. Results from both tests are presented in Table
6.1.

It is observed that the stator resistance is the only parameter that stays rather ac-
curate regardless of the chosen filter cut-off frequency or the sampling frequency.
Furthermore, it appears that the sampling frequency has least effect when the fil-
ter cut-off frequency is selected close to the lower pole. Moreover, it seems that
over-sampling tends to increase inductances, which is probably caused by increasing
numerical problems in the least-squares method, i.e. the input-output data does not
have enough variations. All in all, the chosen level of measurement noise and offset
has a very small effect on the estimated parameters. In general, the estimates are
not that much affected by the white noise no matter how high compared to high
levels of measurement offset.

There is also a fundamental problem in induction motor identification caused by
the fact that the two poles are so far from each other in the frequency domain,
which means that the lower pole, approximately corresponding to the L;; and Rpg,
should be identified with a lower filter cut-off frequency, and the higher pole, roughly
corresponding to the L,, with a higher cut-off frequency. Thus, in this case, the
values estimated with fy and fs near 30 Hz and 5 kHz, respectively, are likely to be
more correct for the L, than for the others, and vice versa when f; is near 1 Hz.
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Figure 6.1: Stator current response to a step voltage excitation. f, = 500 Hz.
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Figure 6.2: Stator current response to a step voltage excitation when measurement
noise and offset are modeled. f; = 500 Hz.



Table 6.1: Results from the first (-) and second (noise) step response test. fy is the

filter cut-off frequency and f, the sampling frequency.

17 | 17 | By ot | Re(0] | Ba ol | B [0)
fo fs - noise - noise - noise - noise
1.0 | 10.0 {81 9.1 |0.50 050|722 72.01]0.70 0.66
5.0 | 10.0 | &1 &1 |050 050721 72.6|0.70 0.69
30.0 | 10.0 |81 7.9 {050 0.50 | 71.5 71.2]0.70 0.71
50.0 | 10.0 | 8.0 7.8 [0.50 0.50 | 71.0 70.7|0.70 0.72
100.0 | 10.0 |79 7.3 | 0.50 0.50 | 69.9 62.6 | 0.71 0.88
500.0 | 10.0 [ 7.1 24 [ 050 0.53]62.1 42.0]0.76 9.23
1.0 5.0 | 7.7 9.0 | 0.50 0.50 | 68.3 68.0|0.70 0.65
5.0 5.0 | 7.7 7.7 1050 0.50 | 68.2 68.7|0.70 0.69
300 | 50 (76 7.5 ]0.50 050|671 674071 0.71
50.0 | 5.0 |75 7.3 050 050|662 654|071 0.73
100.0 | 5.0 |73 6.5 050 0.51|64.2 552|072 0.98
500.0 | 5.0 |62 24 |051 053|513 33.8|0.84 9.77
1.0 1.0 |76 9.0 | 050 0.50 652 64.7|0.70 0.64
5.0 1.0 |74 74 050 050|645 65.1|0.70 0.68
30.0 1.0 169 6.8 050 050598 59.7|0.73 0.74
50.0 | 1.0 | 6.7 6.3 050 0.50|56.4 539 |0.76 0.83
100.0 | 1.0 [6.2 49 051 0.52|49.1 39.1|0.85 1.40
500.0 | 1.0 |39 23 [053 053|166 125|191 7.63
1.0 05 |81 98050 0.50|64.3 63.6|0.69 0.62
5.0 05 |78 781050 0.50 (629 634|069 0.68
30.0 | 0.5 169 6.7 050 050|542 53.8]0.73 0.75
50.0 | 0.5 [6.5 59 050 050|486 455 ]0.76 0.86
100.0 | 0.5 |55 4.5 |051 052|373 294|087 1.41
5000 05 |18 14 (052 053] 95 6.8 |1.22 3.30
Real 7.3 0.5 65.0 0.7
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Frequency Response Test with CMFR

As a first SSFR test, it was studied how accurately the CMFR method finds the
total stator leakage inductance with and without measurement offset and noise when
the ratio of the sampling frequency and the stator frequency was varied from 2.5 to
80. The measurement noise was modeled again as a bandwidth-limited white noise
but this time a low signal-to-noise ratio, 5.1 dB, was used: standard deviation 2.23
A and mean 1.0 A. Furthermore, the measurement duration t,, was varied from one
to three periods of f; to see how the averaging improves accuracy. Test results are
presented in Table 6.2 and the input-output signals in Figure 6.3.

As was expected, the method found the correct value for the total stator leakage in-
ductance very accurately even in the presence of heavy measurement noise and huge
offset that would have ruined the estimate if the step response method were used.
In fact, due to the method’s characteristics, it is completely immune to measure-
ment offsets. It was also rather surprising how well the CMFR method performed
when only one period of test signals was measured in the noise-free case. Further-
more, the parameter accuracy was higher than expected even with very low sampling
frequencies.

As a second SSFR test, the motor was fed again with the 'Case 1’-excitation but
this time three different test frequencies were used at a time: 50.0, 1.0 and 0.5
Hz. Moreover, the offset and noise were both reduced to a more reasonable value:
100 mA. The simulated voltage and current vectors were sampled with a frequency
twenty times higher than that of the excitation, after which one period of test signals
was removed from the beginning of both vectors to be sure that the initial transients
were decayed enough. Then, both vectors were processed with the CMFR method
whose measurement time was varied as in the first test. Results are presented in
Table 6.3, and the signal waveform is plotted in the middle of Figure 6.3.

It is observed that the accuracy of the identified parameters is similar to those
obtained from the step response test as the identified system was linear. In addition,
the frequency response test took three to six times longer to complete than the
step response test. However, the SSFR method has superior accuracy even with
poor signal-to-noise ratios, and the identified parameters are less affected by the
nonlinearities.



95

(Al

. [¥] and current [

Stator voltage u

(Al

. [¥] and current e

Stator voltage u

(Al

Ex

[¥] and current i
S

Stator voltage u

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time [s]

Figure 6.3: Current response to sinusoidal voltage excitation with and without mea-
surement noise. Sampling frequency is 20 f; in the plots at the top and middle, and
80f; in the one at the bottom.
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Table 6.2: The effect of the chosen sampling frequency and test duration in the
CMFR method. Initial transients are removed. Test frequency is 50.0 Hz. Mea-
surement noise and offset are modeled as bandwidth-limited white noise with 1.0 A
mean and 2.23 A standard deviation. Signal-to-noise ratio is approximately 5.1 dB.

L, [mH]

- Offset + Noise

L/t 126 [3t | & |26 | 34
80 |74 |74 |74 85 | 74|78
40 |75 |74 |74 69 |6.7|7.3
20 | 77| 75|75 |11.8|6.4 |78
10 [ 81|78 |76| 90 |83|7.3
5 79|75 75] 85 | 55|41
25 | 75142176 ]| 6.7 |34]6.5
2 0.0 0.0]0.0| 0.0 |0.0]0.0

Real 7.3

Table 6.3: Results from the simulated standstill frequency response test. The effec-
tive stator inductance is measured at 50.0, 1.0 and 0.5 Hz. The level of noise and
offset are reduced to 100 mA. t,, is the time used measuring one frequency. ¥t,, is
the total test duration. Sampling frequency is fs = 20f;.

tm | Stw [8] | Lo [mH] | Ly [mH] | Rp [
th 6.04 7.9 63.5 0.71
2t 9.06 7.5 64.5 0.70
3ty | 12.08 7.5 64.7 0.69

Real 7.3 65.0 0.7
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7 Experimental Results

The studied identification methods were also investigated with experimental tests.
A typical elevator motor was identified using the equipment listed in Table 7.1. The
motor name-plate is given in Table 7.2.

The first parameter estimates were calculated from the name-plate, after which the
motor was identified with a basic locked rotor and no-load tests (LRNL). Subse-
quently, the identification was performed with the step response method (SR), the
state variable filtering method (SVF) and the frequency response method (FR) in-
troduced in Sections 5.6, 5.7 and 5.8, respectively. The CMFR method was not used
but the system gain and phase were measured with an oscilloscope.

In the SR and SVF tests, the motor was supplied with a DC power source, and
the stator voltages were measured with differential high-voltage probes whereas the
currents were measured with shunts. The measurements were recorded with a three-
phase power analyzer, and processed in MATLAB. Figure 7.1 shows what happens
to the current response when the magnetic circuit saturates, i.e. the slope of the
current increases. Table 7.3 presents the results from the SVF test. Due to the
magnetic hysteresis, the falling edge of the current response was not used in the
calculations as it would have caused erroneous results.

In the LRNL and FR tests, the motor was supplied with a frequency converter.
This time, the stator voltage and current measurements were fed through an analog
8th-order low-pass filter with a Butterworth response to extract the fundamental-
frequency component from the pulse-width modulated stator voltage, and to keep
both measurements equally delayed. Furthermore, in the FR test, the effect of
hysteresis was minimized using constant magnetization with a DC component as
was explained in Section 5.8.

From the results of Table 7.4, it is observed how the studied methods gave re-
sults that are rather close to each other, although the approaches were completely
different. However, it might be just a lucky coincidence that the name-plate approx-
imation was so accurate for this particular motor. The table also reveals how the
parameters obtained from the step response methods are affected by the rotor-bar
skin effect as the rotor resistances are almost two times higher than those from the
LRNL and FR tests. However, the SVF based SR method managed to identify
the transformed magnetizing inductance with almost the same accuracy as the FR
method. Furthermore, the tests with only few measurements, like the SR test in
this case, are very sensitive to measurement errors.
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Table 7.1: Test equipment.

e KONE proprietary frequency converter

e Delta Elektronika Power Supply SM 70-90
e LEM Norma 5000 Power Analyzer

e Tektronix TDS3014 Oscilloscope

e Kemo VBF 8 Dual Variable Filter

Table 7.2: The name-plate of the tested induction motor Elemol CTF 160M.30R.

Power

Rated voltage
Rated current
Power factor
Frequency
Rated speed
Rotor inertia

7.5 kW
340 V
23 A

0.8
50 Hz
950 rpm
0.19 kgm?

Table 7.3: Results from the experimental step response test.

fo [Hz] | fs [kHz] | Ly [mH] | B, [Q] | Ly [mH] | R [
1.0 5.0 94 | 048 | 65.1 0.87
5.0 5.0 8.0 048 | 66.8 0.89
30.0 5.0 7.3 048 | 655 0.94
1.0 1.0 04 | 048 | 65.1 0.87
5.0 1.0 8.0 048 | 66.1 0.89
30.0 1.0 7.1 048 | 611 0.97
1.0 0.5 0.7 | 048 | 646 0.85
5.0 0.5 8.1 048 | 64.9 0.87
30.0 0.5 7.1 048 | 56.4 1.00

Table 7.4: Experimental results from different identification tests.

Test method

Name-plate 6
LRNL 6
SR test 11
SVF 7.3

FR test 7.5

Motor parameters Notes
L, mH] | R, [Q] | Ly [mH] | Rp [2)]
0.7 62 0.7 Ry~ Rp, L, ~0.1Ly,
0.48 67 0.7 50 Hz, 2.5 Hz
0.48 54 1.2 2 points
0.48 66 0.9 | fo=1{1.0,30.0} Hz, 55V / 11.7 A
- 63 0.5 50, 2.5, 0.5 Hz
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Figure 7.1: 'Unsaturated’ (top) and saturated (middle) current responses to a step
voltage excitation produced with a DC power supply. The figure bottom shows the
data used in the SVF method to avoid hysteresis and saturation.
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8 Conclusions

The object of this master’s thesis was to find a method that could accurately identify
the electrical parameters of the mathematical model of the induction motor that is
powered with a frequency converter in a condition where the motor is not allowed
to rotate. The identification was found possible if the motor is excited with such
a three-phase voltage that does not produce torque. The desired parameters can
then be solved from the resulting voltages and currents with system identification
methods based on transient and frequency responses, respectively.

The identification process is complicated because neither the output voltage of the
pulse-width modulated inverter nor the rotor currents of the induction motor with
a squirrel-cage rotor can be measured. Thus, both variables have to be estimated
from the commanded stator voltage and the measured stator current. However,
the relationship between the two is nonlinear if the voltage drops caused by the
transistors and the freewheeling diodes, and the reduced pulse-width caused by the
dead-time are not compensated. Thus, if not taken into account, the aforementioned
nonlinearity will act as an additional series resistance that cannot be separated from
the motor’s stator resistance without impractical phase voltage sensors.

In the studied transient response method, the stator windings were fed with a step
voltage, whose magnitude was selected such that the resulting current did not cause
magnetic saturation. The measured current and the estimated voltage were pro-
cessed with a method called state variable filtering (SVF) that was applied to in-
duction motor at standstill, and the produced linear system of equations was solved
with recursive least-squares algorithm. The desired motor parameters were then
calculated from the obtained parameter vector.

On the other hand, the studied frequency response method was based on the com-
bination of DC and AC excitations. The DC component was used to set the desired
level of magnetization while the AC component and the corresponding voltage were
processed using the correlation method of frequency response. As a result, the
system gain and phase difference were obtained at selected frequencies. This in-
formation was then used in calculating the input inductance, from which the other
motor parameters were solved.

It was observed that the methods based on transient response were faster to conduct
than those based on frequency response as the latter methods require several sec-
onds, even minutes, to complete. However, the former methods produce incorrect
results when applied to systems whose parameters change with frequency as the
non-sinusoidal excitations used in such methods contain several frequencies. There-
fore, methods with such excitations should not be used when identifying induction
motors where the rotor resistance and leakage inductance change with frequency due
to the skin and proximity effects, or else the results have to be corrected for such
effects. According to author’s opinion, frequency response methods should be used
as then the obtained parameter accuracy is only restricted by the quality of the volt-
age estimation and current measurements. Moreover, more code has to be written
if transient response methods are going to be implemented as such methods usually
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require curve-fitting algorithms, e.g. recursive least-squares or maximum likelihood
ones.

Although the transient response methods are not recommended when identifying
the electrical parameters, they could be used to identify systems without frequency
dependencies. For example, the SVF method could be modified to track variations
in the mechanical parameters.

Furthermore, if the motor is going to be operated above the rated speed with reduced
rotor flux linkage, or if more torque is wanted with less current, the magnetization
curve should also be identified. The best method for this purpose is the frequency re-
sponse one as then the parameter accuracy is not affected by that of stator resistance
as it is the case with transient response methods.

If further investigations were conducted, it should be studied how the parameter
variations could be tracked when the motor heats up. For example, model-reference
adaptive system based estimators or the SVF method could be used for this purpose.
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Appendix A: Linear Regression

A system, whose output equation is, for example, an nth order polynomial,
y(t) = Oy + O1u(t) + ... + 0,u"(t) (A1)

can be written in a matrix form
yt)=1[1 ut) ... uv"@®)]|.|=¢"6. (A2)

The model parameters #; can be solved with linear regression. First, a data set
of N measurement points is gathered from the system input u(t = kh) and output
y(t = kh) with a sampling period h. Then, the measurements are put into an output
vector Y and a regressor matrix &

y(k1) ¢ (k1) Low(ky) ... u"(k)
v ?/(7@) 7 B — QOT‘(kQ) _ 1 U(k’2) - U”(/@) ' (A3)
y(N) GTN)|[1 uV) (V)
The measurements describe the original system with a matrix equation
Y =®0 +e (A4)
where the vector e’ = [e(k1) e(ks) --- e(N)] contains errors between the mea-

surements and the model.

The object is to find a parameter vector 0 describing the real system output as
closely as possible. This vector can be found by minimizing the square of errors

N

J(G):§Ze?:§eTe, e=Y-Y=Y—-®6 (A5)
=1

which can be done with the least-squares (LS) estimate
0= (®7®) 7Y = deTY. (A6)
As this involves calculating a time-consuming pseudo-inverse ® of an N x N matrix,

which might have bad numerical properties, it is better to use a recursive version of
the least-squares (RLS) estimate

6(0) = ®(0)""Y(0) or 8(0) =0, (ATa)

P(0) = (®"(0)®(0))  or P(0) = al,xn (ATb)
P(N)p(N + 1)

YW = NPV )eIN £ 1)+ (ATc)
O(N +1) = O(N) +~(N) <y(N +1) = pT(N + 1)6(]\/)) (A7d)
P(N+1)= % (I—~(N)e" (N +1))P(N +1) (ATe)
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where P is the covariance matrix and - the update coefficient. The coefficient «
is the covariance matrix gain. The coefficient u is called forgetting factor, and it is
used to weigh newer values more than the old ones. According to Johansson (1993),
the RLS estimate uses roughly N previous data points if the coefficient p is chosen
as

p=——-. (A8)

Usually the value is chosen between 0.95 and 0.995. If the value is chosen as unity,
the RLS method has no memory, and the obtained parameter vector is the same as
if it were calculated using the regular least-squares method.

The RLS method converges rapidly if there is some a priori knowledge about the
parameters 6 and the covariance matrix P, which means that an n x n system
0 = &Y should be solved in advance. However, such a process can be an enormous
task if the system has more than three parameters (n > 3) as it involves inverting
an n X n matrix, which is known to be slow and difficult to do even with proper
matrix libraries. In such a case, the parameter vector and the covariance matrix
can be initialized to zero, in which case the covariance matrix gain « should be
chosen large, i.e. @ € [10...10000]. Unfortunately, doing so might cause high initial
transients in the parameter estimates.

Even though the least-squares method is fast and accurate, it gives biased results if
colored noise enters the input and output signals. This error can be minimized with
trend elimination by removing the average from the input and output vectors

N
1
=U- Y A
U:=U Ni:1ul (A9a)
1 N

Other methods, which avoid biasing, are the instrumental variable method and the
maximum likelihood method. These methods are much more complex and harder
to use than the least-squares method. More on linear regression and recursive algo-
rithms can be found in (Ljung and Séderstrom, 1983), (Ljung, 1987), (Johansson,
1993) and (Ylén, 2008).
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