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Numerical simulations of electrical machines require good knowledge of the magnetic 

properties of the materials they are made of. The magnetic cores of these machines are made 

of electrical steel sheets, the magnetic properties of which are nonlinear and hysteretic. 

Moreover, the behavior of the magnetic flux density and the magnetic field strength of such 

materials depends on the form of the supply. 

    In the Laboratory of Electromechanics, there are several projects which aim to model 

correctly the behavior of the electrical steel sheet (hysteresis, stress-dependency, losses, etc.) 

when used in electrical machines. For this purpose, numerical models are developed and 

built in an in-house finite element program package. However, knowledge of the material 

properties and the parameters of loss models are necessary and needs to be measured. This 

work is proposed to measure the magnetization curves and specific losses of an electrical 

steel sheet. The measurements were carried out using a device specially designed for this 

purpose and adequate programs for field control. The measurements were conducted under 

rotating and alternating magnetic fields at different fundamental frequencies and amplitudes. 

The results of the measurements consisted of a large amount of data that has been analyzed, 

processed and presented in an appropriate manner. Moreover, the parameters of the loss 

models were estimated from the measurements through identification procedures that have 

been written and constructed in MATLAB software. The conclusions of this work provide 

the basis for a better understanding of the parameters needed to improve loss models.    

Keywords: Magnetic Properties, Electrical Steel Sheets, Hysteresis Losses, Rotational Field, 

Loss Modeling, Loss-Models Identification. 
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∧
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Chapter 1 
 

 

Introduction 
 

Electrical machines have been discovered in the 19th century and various magnetic 

materials have been used as the cores of these electromagnetic devices. The magnetic 

properties of the magnetic materials used have a strong impact on the performance of 

these devices, and should be carefully characterized. For evaluation and controlling the 

quality of magnetic materials, such as B (magnetic flux density)-H (magnetic field 

strength) curves and core losses, are measured under one-dimensional (1-D) alternating 

and/or two dimensional (2-D) rotating magnetic fluxes, according to the application 

requirement. It has been long known that the behavior of magnetic materials under a 

rotating flux (2-D) is quite different from that under an alternating flux (1-D). Therefore, 

the magnetic properties of the core materials under different rotational magnetizations 

should be investigated, understood, properly modeled, and employed in the design and 

performance analysis of electrical machines. 

    In typical rotating electrical machines, both alternating and rotating flux density vectors 

exist. The measurement techniques under alternating flux have become standardized and 

the alternating magnetic property data of magnetic materials is normally provided by the 

manufactures. However, the magnetic properties under the rotating flux are still lacking 

and have not been completely identified, and their measurement techniques and modeling 

approaches are still far from standardization. 

 

1.1    Magnetization and Ferromagnetic Properties 
 
A coil of wire, which has n turns around an iron rod of permeability µ, becomes a magnet 

when current I passes through that coil. This basic physical object will produce magnetic 

fields within the coil which are given the symbols (B, H). Magnetization as a result is a 

property of magnet materials that describes to what degree they are affected by magnetic 

fields, and also determines the magnetic field that the material itself creates 

(materialization). 
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Magnetization is defined as the amount of magnetic moment per unit volume, and in most 

materials, the moments are oriented almost at random which lead to weak magnetization 

and non-magnetic properties. In ferromagnetic materials such as iron, the moments 

readily align themselves along an applied field so inducing a large value of magnetization. 

Magnetization takes place not only in materials that have permanent magnetic moments 

but also occurs in any magnetisable material in a field which can induce a magnetic 

moment in its component atoms. 

The relations between the magnetic fields (B, H), and magnetization M can be described 

by the equation 

0 ( )B H Mµ= +  

where H and M have the same units, amperes/meter. 

And according to this equation we can say that, the B-field consists of two components, 

the first component which is presented by the externally imposed field 0( )Hµ , and the 

second component called the materialization )( 0Mµ , shows the creation of the results that 

occurred within the material due to the HB-fields. 

If the material does not respond to the external magnetic field by producing any 

magnetization, this means that the relative permeability of this material is unity 0( 1)µ = . 

    The most important class of the magnetic materials that can be used to produce a large 

magnetization is the ferromagnetic material class, including iron, nickel, and cobalt, 

which are all strongly ferromagnetic, have Curie temperatures of about 1040, 630 and 

1400 K respectively, and exhibit a strong magnetism to magnetic fields. Furthermore, 

they are able to retain their magnetic properties after the external field has been removed. 

The magnetization curve of the ferromagnetic materials and their behaviors within the 

field looks very different compared to other materials. The characteristics of these 

materials are all strongly dependent on the conditions of purity, heat treatment, hysteresis, 

B-field, and other factors. 

 

1.2    Power Losses in Electrical Machines 
 
The causes that might leads to the power losses in electrical machines are various, 

through several different mechanisms, for example, the resistance of the windings cause 

losses known as copper loss or winding loss which is increased with frequency and 

operates even when the current in the winding is not changing. Copper loss is the term 
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used to express the energy dissipated by resistance in the wire used to wind a coil 

(wrapped around an iron core). This wire is frequently made of copper whose resistivity 

is about 81.73 10−× ohmmeters. As well, one of the greatest losses occurring in electrical 

machines result from the losses in the iron core, which can be separated into two different 

mechanisms. The mechanism due to the magnetic friction in the core and its effect within 

the ferromagnetic material (iron) will cause a loss known as the hysteresis loss, and the 

second mechanism caused by the electric currents induced in the core which generate the 

eddy current loss. The hysteresis and eddy current losses are collectively known as iron 

loss or core loss, even if a ferrite core is used. Iron loss is a form of energy loss occurring 

in electrical machines due to a variety of mechanisms related to the fluctuation of the 

magnetic field, such as eddy currents and hysteresis. Most of the energy is released as 

heat, although some may appear as sound. Core losses do not include the losses due to 

resistance in the conductors of the windings, which is often termed copper loss. 

 

1.3    Understanding and Modeling of Rotational Core Losses 
 
In the past hundred years, a lot of work has been carried out by various researchers on the 

rotational core losses. Earlier effort focused on rotational hysteresis loss with a purely 

circular rotational magnetic field. Since the 1960s, total core losses of magnetic materials 

under both circularly and elliptically rotating magnetic field excitations of different 

frequencies have been studied. 

 

1.3.1    Rotational Hysteresis Loss 
 
The first quantitative investigation on the rotational hysteresis loss of hard steel and soft 

iron was conducted in 1896 by Baily. Figure 1.1 shows the results obtained under rotating 

and alternating magnetic fields. For a range of flux density up to about 70% of the 

saturation, the rotational hysteresis losses in both hard steel and soft iron are larger than 

the alternating hysteresis losses. However, when the flux density further increases, the 

rotational hysteresis loss drops quickly and vanishes when the flux density reaches the 

saturation value, while the alternating hysteresis loss continues to increase. This indicates 

that the mechanism of the rotational hysteresis loss is different from that of its alternating 

counterpart. 
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Figure 1.1: Hysteresis losses of soft iron and hard steel under   rotating 
and alternating magnetic fields obtained by Baily (1896). 

 

A qualitative explanation of the rotational core loss phenomenon was made based on the 

domain theory of ferromagnetism. According to this theory, magnetization below the 

knee of the B-H curve proceeds in steps, corresponding to the Barkhausen discontinuities, 

each step representing a reversal or sudden change in direction through o90 of the 

spontaneous saturation in a domain. In addition, there may be a parallel reversible process, 

involving no hysteresis loss. For any particular domain, a sudden change in direction may 

be expected when a certain value of the field acting on it in the final direction of its 

magnetization has been reached. The total change in energy involved in this 

discontinuous change is then dissipated as hysteresis loss, a function of the volume of the 

domain, the saturation magnetization, and the effective field strength.  

At the knee of the B-H curve, the field required to produce the discontinuous rotating has 

already been reached or exceeded for most of the domains contribute further to the total 

magnetization on a further large increase of magnetic field strength H, by a rotating of the 

spontaneous magnetization in the domains from the easy direction towards the direction 

of the applied field. There are some domains remaining, however, which are not acted 

upon until H has increased beyond its value at the knee. The contribution to the 

magnetization due to these domains is only that corresponding to their volume, but the 
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contribution to loss is high on account of the high value of H at that point at which the 

sudden change in direction of the magnetization occurs. The loss will, therefore, rise 

steeply with the increase of magnetization. 

Similar ideas may be applied to the portion of the loss curve near saturation. For a very 

high field, the spontaneous magnetization is always in the direction of the field, and as the 

field is rotated, it rotates smoothly and without the discontinuities which results in 

hysteresis loss. Hence, the hysteresis loss may then be zero. 

 

1.3.2    Methods for Measuring Rotational Core Loss 
 
Considerable progress has been achieved in terms of measuring techniques and systems 

for rotational core loss evaluation. There are four major methods for measuring the 

rotational core loss which can be described in the following sections (see Guo et al. 2008 

for more details). 

 

A.    Torque-Metric Method 
 
The torque-metric method is usually used in apparatus which use a disk or ring sample. 

The torque due to rotational core loss occurring in the sample is measured by using 

mechanical torque meters, or calculated from the variation of the sample angular speed. 

The advantages of this method are the direct reading of the torque corresponding to the 

rotational core loss from the torque meter, and the ability to measure the rotational core 

loss even with the highest levels of flux densities. The disadvantage is the difficulty of 

torque meter construction owing to the complicated mechanics.  

 

B.    Thermo-Metric Method 
 
In the thermometric method, the temperature of the sample is obtained by thermocouple, 

thermistors, or thermoviewers. The rotational core loss is proportional to the initial rate of 

the sample temperature rise if no cooling process is involved. The following formula 

shows the relation between the rotational loss and temperature of the sample  

r
dP C
dt
θ=      

where rP  is the specific rotational core loss in W/kg, C the specific heat of the sample 

material, θ  the temperature of the sample, and t the time instant. The method is very 



 13

adaptable and widely used in apparatus using various types of sample, such as square, 

disc, ring, and cross, with various types of rotating magnetic field. Moreover, the method 

is able to measure localized core losses at the T joints of a three-phase transformer core. 

The major disadvantages of this method are the difficulties of installation and the 

calibration of thermosensors, and isolation against the surrounding. It is, therefore, being 

more and more replaced by the field-metric technique. 

 

 C.    Field-Metric Method 
 
In the field-metric method, the rotational core loss is calculated from the measured 

magnetic field strength H at the sample surface and flux density B inside the sample. The 

method features high accuracy and great versatility. Moreover, the set of measured 

instantaneous H and B values can yield more desirable information, such as various loss 

contributions, the loci of the H and B vectors, and harmonics among others. the main 

disadvantages of this method are the difficulties of manufacture, calibration, and 

installation of the B and H  sensors, and the sensitivity to preamplifier phase angle errors. 

For the evaluation of rotational core loss, two formulas which are referred as the field 

metric-method type I and type II, respectively. Type I calculates the total specific core 

loss totalP  from the measured magnetic field strength H and magnetic flux density B 

components, by using the Poynting theorem as 

yx
total x y

m m0 0

d1 d 1 dd d
d d d

T T BB BP H t H H t
T t T t tρ ρ

⎛ ⎞⎛ ⎞= ⋅ = +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫  

where T is the time period of magnetization, mρ is the mass density of the sample, and Hx, 

Hy, Bx, and By, are the X and Y components of H and B, respectively. 

In the field-metric method type II, the torque per unit volume due to the rotational core 

loss in the sample is calculate by  

r 0 0 0sin =T H M H Mµ µ α µ ⊥= × =Η M  

where 0µ  is the magnetic permeability of the vacuum, M is the magnetization, α  is the 

angle between the H and M vectors, and M ⊥  is the component of M perpendicular to H. 
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D.    Watt-Metric Method 
 
The Watt-metric method differs from the field-metric method in that H is determined by 

the magnetization current, and this method is widely used in the Epstein frames or single 

sheet testers for alternating core loss measurements. Initially, H, B, and the core loss were 

measured by ammeters, voltmeters, and wattmeters, respectively. That is why this method 

is known as the watt-metric method. An outstanding advantage of this method is the 

simplicity of determining H. However, in apparatuses for rotational core loss 

measurement, this method can only be applied to the vertical yoke single sheet tester, 

because of the absence of air gaps between the sample and the yokes. The magnetic flux 

paths in the sample and the yoke system of the rotational core loss testers are not well 

defined compared to the alternating core loss testers. This causes an extreme systematic 

error in the magnetic field strength measurement by applying Ampere’s law. Since the 

flux density is not uniformly distributed in the sample, the magnetic flux density is 

measured in the center of the sample by coils wound through holes in the sample, or B 

tips. The accuracy of measurement strongly depends on the structure of the yoke and the 

shape of the sample, which define the path of the magnetic flux. 

 

1.3.3    Techniques for Measuring the Components of H and B 
 
Precise evaluation of the core loss measurement in electrical steel sheets depends on the 

measuring accuracy of the magnetic field strength on the surface of the sample and 

magnetic flux density inside the sample. Therefore, developing and improving the 

techniques for measuring such components, becomes a necessity. There are many 

methods and techniques that have been used for measuring the H and B components. The 

only methods with a close connection to the method which has been used in this thesis 

will be discussed. 

 

A.    Magnetization Current Method 
 
In this technique, the magnetic field strength H can be determined from the magnetization 

current i by applying Ampere’s law 

mH N i / l=  

where N is the number of turns of the excitation winding, and ml  is the mean length of the 

magnetic flux path. This method is widely used in apparatus for the alternating core loss 
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measurement, such as annular rings, Epstein frames, and single sheet testers, where the 

magnetic flux paths inside the sample can be well defined. However, the method is not 

accurate when used in rotational core loss testers, since the magnetic flux paths inside the 

sample are vague. 

 

B.    Sensing Coil Method 
 
The sensing coil is one of the methods that can be used for measuring the magnetic field 

strength component on the surface of the sample by a thin search coil placed on the 

surface, as shown in Figure 1.2. 

 
Figure 1.2: (a) 1-D H coil, (b) 2-D H coil, and (c) position of H coil. 

 

When the magnetic field is parallel to the surface, the magnetic field strength can be 

calculated by  

0

1
H

H

H V dt
Kµ

= ∫  

where HK  is the coil coefficient determined by calibration, and HV  is the terminal 

voltage of the H sensing coil. The method is commonly used in both alternating and 

rotational core loss testers, and can yield accurate results if the magnetic field on the 

sample surface is uniform. However, in square rotational core loss testers with horizontal 

yokes, the magnetic field varies significantly with the distance between the sample 

surface and the H coils, and in order to reduce the error, the sensing coils must be made 

extremely thin and installed as close to the sample surface as possible, which is often very 

difficult. Moreover, to reduce the error caused by the variation of the magnetic field with 

the distance above the sample surface, a two H coil arrangement, as shown in Figure 1.3, 

can be used  
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H coil #2

H coil #1

Sample

d1

d2

 
Figure1.3: Two H coil arrangement. 

 

and the magnetic field strength at the sample surface can be calculated as 

2 1 1 2

2 1

d H d HH
d d

−=
−

 

where 1H  and  2H  are the magnetic field strength measured by H coil #1 and H coil #2 

which are placed not far away from the sample, and 1d , 2d  are the distances of two H 

coils away from the sample surface.   

Concerning the magnetic flux density B in core loss testers, this also can be measured by 

using a sensing coil as shown in Figure 1.4.  

 

Sample with uniform B

Bx CoilBy Coil

(a)

Sample with non-uniform B

Bx CoilBy Coil

(b)  
Figure 1.4: B coil settings for sample with (a) uniform B, and (b) nonuniform B. 

 

When the magnetic  flux  density  is  uniformly  distributed  over  the  cross  section of a 

sample, the sensing  coil  can be wound around the whole sample, as illustrated in Figure 

1.4 (a). If the flux density is nonuniform over the cross section of a sample, the sensing 



 17

coil can be threaded through small holes at the position of interest, as shown in Figure 1.4 

(b). 

Besides the methods described above, the Hall Elements method can also be used for 

measuring the magnetic field strength at the surface sample, but because of the difficulty 

of installation, this method is not commonly used in rotational core loss testers, except the 

one using a rotating disk sample developed by Flanders in 1985. 

 

In addition, there is a method equivalent to a one-turn search coil called B tips, which is 

more suitable than B sensing coils for batch measurements. In practical measurement, 

high-quality preamplifiers are required, since the voltage signal obtained from the tip is 

very weak. The method is also very difficult to exclude stray fluxes through the air, which 

may become significant when the sample size is small. Therefore, the sensitivity of this 

method is lower than that of the B search coil. 

 

1.4    Motivation and Aim of the Work 
 
Data obtained from the test apparatus which has been used in this thesis for making 

alternating and rotational loss measurements could aid machine designers and provide 

useful information for the modelling of magnetic properties, such as core losses.  Such 

data may also help electrical sheet producers to improvement and develop low loss 

materials for use in rotating machine cores. Many researchers have studied rotational 

losses in electrical steel sheets over the years and a number of techniques for making 

measurements have been described in Chapter 3. However, at the present time, no 

international standard has been agreed for measuring the power losses under rotational 

field excitations. 

The aim of this work is to measure the magnetic properties of an electrical steel sheet 

under alternating and rotating flux with different fundamental frequencies and different 

values of flux density. Power losses under one and two-dimensions are then calculated in 

the electrical steel sheet by using these measurements. In addition, a loss model has been 

proposed with different parameters. The data obtained from the experimental work is 

being used to identify these parameters.   
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1.5    Outline of the Thesis 
 
An introduction to the work is presented in the first chapter, the methods and techniques 

used for measuring the magnetic properties of magnetic materials are briefly detailed. In 

Chapter Two, a literature study about loss calculations in electrical steel sheets is 

introduced, while the measurements of magnetic properties of these electrical steel sheets 

are shortly mentioned in Chapter Three. In Chapter Four, the measurement apparatus used 

in the experimental work for measuring the magnetic properties of an electrical steel sheet 

is presented and the results obtained from the experimental work are reported and 

discussed in the same chapter. The data obtained from the measurement device is used in 

Chapter Five to optimize the parameters of the dynamic loss-model by using the 

nonlinear least-squares method. A general discussion and conclusion of the work is stated 

in Chapter Six.  
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Chapter 2 
 

 

Literature Review on Iron-Loss Calculations  

 
This part of the thesis, attempts to places emphasis on the iron loss calculation methods 

used nowadays and reviews the published literature that has been made by many authors 

dealing with iron loss calculation methods in electrical machines and electrical steel 

sheets, associated with the distribution and computation of the magnetic field. 

The published literature has shown that there are two types of methods that can be used to 

calculate and evaluate the iron loss (core loss) in electrical machines and electrical steel 

sheets (Saitz 1997). 

The first method (experimental approach) that has to be used is connected to a 

simplified model of the core which deals with exclusion and omits the iron loss effects 

from the field calculation. After solving the magnetic field by means of the simplified 

model, the calculation of the iron loss can be evaluated by using the empirical or semi 

empirical formula, which concerns the rotating and alternating flux conditions in terms of 

magnetic flux density and magnetic field strength. 

 

The experimental method (simple models) gives only quantitative information and it does 

not allow separation of the iron loss into hysteresis, classical and excess losses. Therefore, 

in order to fully understand the sources of the core loss and the physical substance behind 

this loss, mathematical modeling and computation of the iron loss are required. 

The computational approach which includes all methods dealing with the magnetic field 

calculation considering the iron loss, is the second method that can be followed to 

calculate the iron loss precisely. This method can be combined with the magnetic field 

analysis and the inclusion of the iron loss effects through the computational process of the 

magnetic field is taken into account. 
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2.1    Iron Loss Calculations under Alternating Flux 
 
Typically, the variation of the flux density can be either alternating or rotating. Moreover, 

the alternating flux density can be purely sinusoidal or non-purely sinusoidal, and the 

non-sinusoidal flux density may (or may not) cause minor loops from the point of view of 

the hysteresis phenomenon. 

Rotational variation of the flux density in a similar way can be divided into purely 

rotational (circular) or non-purely rotational (elliptical), which can yet take any particular 

shape. In typical situations, it has been generally accepted for a long time that the average 

power loss in unit volume per cycle of any material consists of the sum of a 

hysteresis, hysP , and eddy-current (dynamic), dynP , contributions. 

total hys dynP P P= +  

The eddy-current loss, dynP , can be separated into classical loss, classP , and excess loss, excP , 

and by using these two contributions of the eddy-current loss and relating them to any 

predictive approach is the phenomenological concept of loss separation where the total 

power loss, totalP , at a given magnetizing frequency is expressed as 

total hys class excP P P P= + +  

Pry and Bean (1958) used a simple domain wall model to calculate the energy loss 

resulting from eddy currents in magnetic sheet materials. The eddy current losses have 

been calculated explicitly for the sinusoidal induction excitation. 

  According to the statistical loss theory based on the work of Bertotti (1988) and Fiorillo 

and Novikov (1990), in the case of a lamination of thickness d and in the range of 

magnetizing frequencies where the skin effect is negligible, the dynamic loss is equal to 

the classical loss, and the next expression holds only for low frequencies or low 

conductivities. 
2 2 2 2

dyn class max m 6P P ( d B f ) /π σ≡ =  

where maxB is the peak value of the flux density, d is the thickness of the lamination, σ  is 

the electrical conductivity of the material, and mf is the magnetizing frequency. It is 

important to note that the expression for the classical eddy-current loss neglects the 

reaction of eddy-currents on the distribution of magnetic field, i.e. the magnetic flux 

density is assumed to be uniform over the cross-sectional area of the lamination, and this 
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will be approximately correct only when the lamination is effectively thin. When the 

frequency increases or laminations are thick, errors in this situation may occur. This may 

explain the difference between the predicted and measured results investigated by Zhu et 

al. (1993), who found that the difference was higher under square wave than under sine 

wave voltage excitation. 

 

According to the statistical theory of eddy-current losses developed by many authors, the 

basic physical mechanism governing excess losses in soft materials is identified with the 

competition between the external magnetic field, applied uniformly in the sample, and 

highly inhomogeneous local counter fields due to eddy-currents and micro structural 

interactions (Bertotti 1988), and the expression of the excess losses can be written as     
1.5

exc 0 max m( )P C B f=  

where 0C  is the fitting parameter identified from the sinusoidal alternating single sheet 

loss measurements. One has to keep in mind that the discussion presented above is 

restricted (except the hysteresis loss) to the sinusoidal shape of the flux density waveform. 

The quasi-static hysteresis loss hysP  can either be obtained experimentally or estimated 

and among the hysteresis models available, the Preisach model appears to be the most 

practical model due to its easy parameter identification and considerable accuracy.   

 

Based on the previous discussion, it is obvious that the behavior of the total loss in unit 

volume per cycle, totalP  , under sinusoidal magnetization at the frequency mf , can be 

written as 

                       total hys class excP P P P= + +  

                                     5.1
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and it is clear from the expression of the total power losses that the eddy-current losses 

will dominate the total loss at high frequencies. 

 

As mentioned previously, one of the field excitations can be an alternating waveform, 

which can be either sinusoidal or nonsinusoidal. 

Methods proposed so far in the literature to predict magnetic losses under nonsinusoidal 

induction appear unable to give accurate results.   
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These models always assume that the dynamic loss under a generic flux induction can be 

directly expressed in terms of the effective value of the waveform derivative )d/d( tB . 

Practically, magnetic flux in electrical machines such as transformers and rotating 

machine cores is often a non-sinusoidal flux waveform, and leads to an overall iron loss 

figure different from the one expected under a sinusoidal situation. Correct predictions of 

power losses under nonsinusoidal (distorted) flux waveforms is , therefore, an important 

condition to machine design, especially when dealing with large apparatus where rigorous 

efficiency standards are required. From the hysteresis phenomenon point of view, this 

nonsinusoidal flux density variation can be such that it either causes minor loops or it 

does not. In cases where minor loops do not occur, the hysteresis loss, hysP , does not 

depend on the magnetic waveform, and it will be only related to the maximum value of 

the flux density, maxB . In such a case, the hysteresis loss, hysP , can be approximately 

calculated by using an empirical Steinmetz formula 

 nBfCP maxmhhys =  

where hC  and n are constants depending upon the material used. The Empirical 

Steinmetz formula is not valid in cases where the induction waveform causes minor loops, 

and alternative methods have to be used. 

 

Lavers et al. (1978) proposed a simple and practical method of correcting the hysteresis 

loss in a thin lamination for the effects of minor loops, and they suggest an empirical 

correction to the Steinmetz formula as follows 
nBfCKP maxmhhhys =  

where hK  is the hysteresis loss correction factor, which can be written as 
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the exact correlation gives values of k in the range 0.6 to 0.7, depending on the material 

being considered, and iB∆ , Ni ,...,2,1= , is the magnitude of the i’th flux reversal, and in 

any given half cycle, reversals of magnitude iB∆  occur either singly or in pairs. These 

flux reversals result in the so-called minor hysteresis loops.   

 



 23

Another method presented by Arkkio and Niemenmaa (1992) tackled the problem of the 

minor loop by introducing a weighting function ( )Bf , where B  is the absolute value of 

the flux density. The value of the weighting function was taken as half of the horizontal 

distance between the walls of the major hysteresis loop. Through their measurements, 

they found that the weighting function first increases with the flux density and then 

rapidly decreases to zero when the flux density reaches saturation. They used two simple 

weighting functions, the first weighting function is constant and the second grows linearly 

with the flux density up to 2.16 T. At higher flux densities both functions were equal to 

zero and when the flux density is zero, both functions were equal to the coercivity. The 

energy density wd  dissipated by the flux density change dB  was expressed by  

( ) BBfw dd =  

Arkkio and Niemenmaa obtained excellent results for no-load iron losses for both 

sinusoidally-excited and inverter-excited induction machines. Their iron loss model had 

two components, corresponding to eddy-current and hysteresis loss. Eddy-current losses 

were obtained by decomposing the flux in each element into its time-harmonic 

components, and then summing on a harmonic-by-harmonic and element-by-element 

basis. The flux density was calculated as the root of the square sum of orthogonally 

directed flux densities. The hysteresis loss was determined using either the same 

harmonic decomposition, or by a method based on an idealization of the shape of minor 

loops. 

 

Fiorillo and Novikov (1990) showed that it is possible to predict the power losses 

precisely in ferromagnetic laminations under nonsinusoidal magnetic flux by specifically 

considering the dependence of the hysteresis loss, hysP , the classical loss, classP , and the 

excess loss, excP , components on the derivative of the magnetic waveform, )d/d( tB . 

 

Through the generalization of experimental and theoretical results under sinusoidal 

excitation, they assumed that 
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The component, hysP , the hysteresis loss, is the area of the quasi-static hysteresis loop 

multiplied by the magnetizing frequency, and the component, dynP , the dynamic loss, is in 

turn assumed to be the sum of a classical contribution, classP , and an excess one, excP . In 

the limit of a perfectly homogeneous material there are no excess losses, and dynP  reduces 

to the rigorously computable classical loss classP . 

 

Fiorillo and Novikov (1990) worked on the case where no local minima appear in the 

induction waveform (absence of minor hysteresis loops). They assumed that the 

hysteresis loss, hysP , is independent of  the  particular wave shape and it is only related to 

the maximum value of the flux density, maxB , which is a condition that is met in the 

practical devices, and because of this their application was only concentrated on the role 

of dynamic loss, dynP . The expression of the induction as a Fourier expansion: 

m 1( ) = sin (2 )        ( = odd;  = 0)n nn
B t B n f t nπ ϕ ϕ+∑  

with 1B  the peak amplitude of the fundamental component, and the values for nB and nϕ  

are the amplitude and phase of the nth harmonic component, respectively. Standard 

calculations give the classical power loss per unit volume 
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where the instantaneous value class ( )P t , proportional to ( )2d dB / t , and this equation has 

generally been assumed in the literature to describe all of the dynamic losses 
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where k is a constant which has to be determined by the measurement of dynP  under 

sinusoidal flux density conditions. The excess power loss expressed by Fiorillo and 

Novikov (1990) can be written as 
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where the instantaneous value )(exc tP , proportional to 5.1d/d tB , the parameter 0C  is a 

fitting parameter identified from sinusoidal alternating single sheet loss measurements, 
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and T is the time period of the fundamental frequency component. Existing techniques for 

calculating iron losses based on a non-sinusoidal waveform typically resolve the flux 

density into a series of time-harmonic sinusoidal components. The total iron loss is then 

determined by simply adding the sinusoidal losses for each harmonic. This principle, 

however, is only valid for linear circuits and can lead to serious errors.  

 

Moses and Shirkoohi. (1985) showed that the total iron losses can be determined from the 

harmonic field components as follows 

2
total m

1
sinn n n

n
P f n B Hπ ϕ

∞

=

= ⋅ ⋅∑  

where nB  and nH  are the harmonic flux density and field strength respectively, and nϕ  is 

the phase angle between nB  and nH . 

 

Nakata et al. (1970) identified the importance of the phase angle of the flux density 

harmonic components in the occurrence of minor loops in the hysteresis loop and the 

influence of these loops on the iron losses. The authors also introduced waveform 

distortion factors to account for the harmonic phase angles and described their application 

to the prediction of non-sinusoidal iron losses. The objective of the nonsinusoidal iron 

loss measurements was, therefore, to assess the influence of the harmonic phase angle on 

the total iron losses and to develop an empirical method based upon the form factor for 

modeling the losses. 

 

Smith and Phipson (1991) used the variation of the form factor with the phase angle from 

the experimental measurements to define a distortion factor as follows 
2)1( FD ∆+=  

where FF −= 11.1∆ . The factor 1.11 represents the form factor for a pure sinewave and 

F is the form factor of the distorted flux density waveform. This can be expressed simply 

in terms of the harmonic flux density components. The distortion factor is then used to 

modify the amplitude of each flux density component as in the following expression 

nn BDB ˆˆ =∗  

where nB̂  is the amplitude of the actual harmonic flux density and ∗
nB̂  is the modified 

value. The prediction of the iron loss can be calculated by summing the sinusoidal iron 
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loss appropriate to each modified flux density component.  The authors showed that the 

modified method can predict the measured losses to an accuracy of approximately %5±  

and represents a significant improvement on the conventional approach. Subsequently, 

the method described above is used to predict the iron losses for a distorted flux density 

waveform containing many harmonic components at differing phase angles. 

  

Pry and Bean (1958) calculated the energy loss resulting from the eddy-currents in 

magnetic sheet materials by using a domain model. The domain model used was 

considered to be applicable for any induction up to saturation and for the frequency range 

up to that used in most electrical power applications. The eddy-current losses that have 

been calculated were for the case of sinusoidal induction excitation, and expressed in 

terms of the ratio of domain wall spacing to sheet thickness. There was good correlation 

between the results obtained and the measured values. 

 

Walker et al. (2007) investigated the variation of the iron losses due to the effects of the 

nonsinusoidal alternating flux in electrical machines. The authors demonstrated how the 

flux waveform in the core of an electrical machine can vary nonsinusoidally which 

complicates the calculation of the iron loss in the machine. They conducted a set of 

measurements using an Epstein square arrangement where different degrees of harmonic 

are injected into the flux waveform which varies in both magnitude and phase. This was 

set up and calibrated against a single sheet tester and it included full compensation. The 

measurements were put forward to illustrate the additional iron losses and by using a set 

of linear approximations, the iron loss was calculated from the solution of the finite 

element analysis of the machine. 

 

Mueller et al. (1995) have advanced a technique for calculating the iron losses in a cage 

induction motor using time-stepping finite-element analysis, which has given good 

correlation with measured iron losses under both no-load and full-load conditions. The 

model has been used to investigate the variation of iron loss with the load. It has been 

shown, both experimentally and theoretically, that the iron losses increase significantly 

from no-load to full-load. Theoretically, it has also been shown that this increase is due 

entirely to the increase in the harmonic fields caused by slotting. 
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2.2    Iron Loss Calculations under Rotating Flux 
 
It has been estimated that motor core losses in the United States accounted for 

approximately 45 billion kWh of the energy generated in 1985 (Werner and Jaffee 1991 ). 

These losses cost motor users approximately 3 billion dollars in that year alone. Iron 

losses in motors occur due to alternating, high frequency, and rotational fluxes. 

Alternating losses occur predominately along the outer periphery of machine stators and 

in machine teeth. High frequency losses occur in machine teeth and rotor surfaces. 

Rotational losses occur at the roots of stator teeth and all along the inner portions of the 

stator yoke. At a given induction level, rotational losses may be several times larger than 

alternating losses. To a lesser extent, rotational losses also occur in the rotors of induction 

motors due to the difference in rotational velocity between the rotor and the main 

magnetic flux. As a consequence, it has been estimated that over 50 % of the iron losses 

in an induction motor are caused by rotating magnetic flux conditions. 

Even though it has long been realized that a considerable amount of the total core loss in 

the stator core of a rotating electrical machine is caused by the rotating magnetic field, 

alternating core loss models were generally employed due to the lack of data and correct 

models for rotational core losses. 

The iron loss associated with the torque caused by the angle of lag between H and B is 

called the rotational power loss which is as important as the alternating loss. 

The total magnetic power losses are computed by using the Poynting vector theorem 

which can be written as 
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and similar to the case of the alternating core loss, the rotational core loss in an electrical 

steel sheet can also be separated into rotational hysteresis, eddy current, and excess losses. 

The rotational power loss occurs in the regions of electromagnetic devices such as 

rotating machines and transformers, where the direction of the flux density varies in the 

plane of the laminations. These regions in rotating machines are at the roots of stator teeth 

and all along the yoke of the stator. 

There are a number of different methods that have been proposed to improve the accuracy 

of the core loss estimation, but most of these methods require measurements on the 

motors and they cannot be applied if a prototype is not available. In other cases a great 

amount of data about the behavior of the magnetic material is needed. 
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Fiorillo (1991) discussed the quantitative connection between rotational and alternating 

hysteresis losses in isotropic polycrystalline magnetic laminations, with special emphasis 

placed on the magnetization process in the weak field domain. Such a model, however, is 

unable to correctly predict the experiments at medium and high flux densities. With 

circular B, the rotational eddy current loss is twice as much as the alternating eddy current 

loss. The rotational excess loss can be modeled using the same formula as for the 

alternating excess loss, but the coefficient of the rotational excess loss is generally a 

function of flux density, and eventually reduces to zero when the material is saturated and 

all domain walls disappear. 

 

An improved approach to iron losses prediction in rotating electrical machines was 

proposed by Bertotti et al (1991). The core losses in rotating electrical machines 

(induction motor) are estimated through direct use of the standard Epstein loss data of the 

employed magnetic laminations, without introducing empirical correction factors. The 

prediction was based on a numerical finite element approach to magnetic flux distribution, 

coupled with a physical model of losses in ferromagnetic laminations under generic flux 

excitation, which takes into account the specific role of the hysteresis, classical and 

excess loss components. In a more realistic approach, the role of harmonics and rotational 

fluxes must be accounted for, in association with the basic concept of loss separation.  

 

Based on the loss measurements under 50 Hz sinusoidal alternating flux and purely 

rotating flux, in non-oriented FeSi laminations which have been done by Fiorillo and 

Rietto (1990), Bertotti et al (1991) suggested a general relationship between alternating 

( alt
hysP ) and circular (purely rotational circ

hysP ) hysteresis loss components as a function of 

peak flux density ( maxB ). Under purely rotational flux, the relation was performed by the 

expression 
circ alt circ alt

hys hys hys hys hys hysr  rP P P / P= ⇒ =  

which found that hysr  is a monotonous decreasing function of induction. Their 

experiments showed that hysr  is fairly independent of the type of lamination and it is 

always lower than 1 when above approximately 1.5T.  In the case of elliptic flux density, 

the authors computed the hysteresis core loss under elliptical flux (purely elliptical or 
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distorted) ellipt
hysP  using a linear interpolation between the alternating and purely rotational 

loss, giving 
ellipt alt

hys hys hys1 c(r 1)P P⎡ ⎤= + −⎣ ⎦  

where c is the ratio of the minor to major axis of the ellipse min maj(c )B / B= . According to 

this ratio, hysteresis loss under the elliptical flux will be equal to the hysteresis loss under 

the purely rotating flux density ellipt circ
hys hys( )P P=  if c = 1, and it will be equal to the 

hysteresis loss under the purely alternating flux ellipt alt
hys hys( )P P=  if c = 0. The flux waveform 

distortion does not affect the hysteresis loss (provided there are no minor loops) which 

means that the equation above can be used for the calculation of  ellipt
hysP  even if the 

orthogonal components of the flux density B are non-sinusoidal.  

 

Zhu and Ramsden (1993) used the same linear interpolation to calculate the hysteresis 

core loss under elliptical flux density using another expression 
ellipt circ alt

hys hys hysc (1 c)P P P= + −  

where the alternating hysteresis loss alt
hysP can be calculated by using the law of Steinmetz 

alt
hys h m maj

nP C f B=  

and the hysteresis loss component under the circular flux circ
hysP  is obtained from the 

measurements, which has been modeled as well by Zhu et al. (1995). 

 

The work of Zhu et al. (1995) presented the measurement and modeling of core losses 

with various rotating flux density vectors in electrical steel sheets. The models were 

applied to the calculation of the core losses in the stator core of a permanent magnet 

motor at no load. The model presented by the authors was based on the similarity between 

the curve of the rotational hysteresis loss against the flux density B or magnetization M 

and the torque/slip curve of a single-phase induction machine, it is postulated that the 

specific rotational hysteresis loss per cycle in an electrical steel sheet can be expressed in 

terms of four parameters 1a  (in J/Kg), 2a , 3a  (non-dimensional), and sM  (saturation 

magnetization in T). The model was verified by fitting the curves of the rotational 

hysteresis loss for both grain oriented and non-oriented electrical steel sheets reported by 

the researchers Cecchitti et al. (1978) and measured by the authors, where an error 
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estimator assessed the accuracy of the model. With a circular flux, the authors also 

calculated the rotational eddy current loss in thin laminations, and similarly, the rotational 

excess loss was given.  

 

Zhu et al. (1994) have shown by the measurements that the linear interpolation between 

alternating and circular (purely rotational) hysteresis loss is a rough estimation. For better 

estimation they proposed a quadratic function in terms of the total rotational loss as a 

more accurate formula  
ellipt circ 2 alt

total total totalc (1-c)P P P= ⋅ + ⋅  

where ellipt
totalP  is the total loss under elliptical flux, circ

totalP  the total loss under purely 

rotational flux and alt
totalP  the total loss under alternating flux (sinusoidal or distorted). 

 

Zhu and Ramsden (1995) used the same equation above to calculate the total hysteresis 

loss under elliptical flux density. In essence, an arbitrary flux density waveform contains 

higher harmonics, which are neither circular nor strictly elliptical. For orthogonal 

components of the magnetic flux density, a series of elliptical harmonic flux density 

vectors will be obtained by using a Fourier series 
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with which the total hysteresis loss is then evaluated as a sum of the contributions from 

these harmonics. 

 

Atallah et al. (1992) predicted the core loss of two permanent magnet brushless dc motors 

of different types of laminations under different operating modes with the three-term 

model for alternating core losses proposed by Bertotti (1988) and Fiorillo and Novikov 

(1990), but the rotational effects were not included. Instead, the core loss was calculated 

from the loss deduced for each of the two equivalent orthogonal alternating flux density 

components. Unfortunately, the theoretical results were not compared with the 

measurements. 

 

Zhu et al. (1992) calculated the core loss of a permanent magnet motor using the finite 

element method and the three-term model. The loss terms for classical eddy current and 

excess losses were modified to include the rotational effects, but owing to the lack of 
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rotational hysteresis loss data of the material, the alternating hysteresis loss was 

calculated. The calculated results were about 20% lower than those measured at 1200 

rev/min. Zhu and Ramsden (1993) improved the model by including the rotational 

hysteresis loss, and the difference was reduced to 10% instead of 20% at 1200 rev/min.  

In this calculation, however, the hysteresis loss with an elliptical B was obtained by a 

linear interpolation between the rotational and alternating core losses. As was mentioned 

previously, this is a rough estimation. 

 

Findlay et al. (1994) discussed the measurement of the rotational core loss in electrical 

steel sheets, and calculated the loci of B in the stator core of a three phase induction 

motor using a 2D finite element package MagNet2D, but the total core loss in the motor 

was not calculated due to the lack of data for the rotational core loss in the steel sheet. 

 

In the switched reluctance motor (SRM), the flux waveforms are nonsinusoidal, and 

different parts of the magnetic circuit have different waveforms. Hayashi and Miller 

(1994) presented a new approach to taking into account these flux waveforms in the 

calculation of core losses. The relations between the fluxes of different parts of the 

magnetic circuits were given in the form of matrix equations, and eddy current losses for 

the complicated flux waveforms of the stator and rotor yokes were calculated. The 

matrices have shown the easiness of counting how many times the major and minor 

hysteresis loops occur at each pole and yoke segment. The approach proposed by the 

authors gives a systematic procedure for the core loss calculation. Although the approach 

is basically identical to a graphical approach, it has led to efficient mathematical 

calculations. The derived equations were simple and useful for the design of a switched 

reluctance motor. The need for accurate performance predictions for a switched 

reluctance (SR) motor has lead to the dynamic simulation, which is of interest to the 

investigation of the current waveforms, the voltage waveforms, the torque and the 

different losses of the motor. 

 

 

A dynamic simulation of the switched reluctance motors (SRMs) including iron losses 

was reported by Li and Jufer (1994). The dynamic simulation model described by the 

authors was dedicated solely to a high speed analysis of a massive rotor switched 

reluctance motor. In this case, the motor saturation was relatively low, but the iron losses 
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in the rotor were so important that the rotor eddy current effect must be considered. The 

model proposed by the authors takes into account not only the main parameters of the 

motor and the driver device, but also the iron losses effect in the rotor was considered. 

The simulation results have proved that the model with the consideration of the eddy 

currents effect is significantly better than the one which the eddy currents effect was 

neglected.  

 

Pasquale and Bertotti (1996) applied the dynamic Preisach model of hysteresis to the 

simulation of circuits coupled by soft magnetic cores. Hysteresis loops and secondary 

waveforms were measured and simulated in various conditions and frequencies. The 

dynamic Preisach model capabilities were extended to allow for the calculation of loaded 

secondary waveforms. Controlled primary current conditions were used to simulate the 

voltage and current response of the secondary circuit under different resistive loads with 

no free parameters. 

 

Materu and Krishnan (1988) studied core losses using the harmonic analysis of the flux 

density at different parts of the magnetic circuit. This method has the advantage that the 

losses contributed by each harmonic can be obtained by a look-up process from the core 

loss data in the form of the curves of core loss at different frequencies and flux densities. 

The method makes no attempt to separate the eddy current and hysteresis losses based on 

physical theory, and it presupposes that the core loss data is valid in the presence of 

arbitrary combinations of harmonics. 

 

The conventional approach to core loss prediction using the Fourier series of the space 

wave of the air gap flux density is not applicable for surface mounted permanent 

magnetic motors. Gordon and Liu (1990) proposed an alternate approach based on the 

concept that the eddy current losses are proportional to the square of the time rate of the 

change of flux density. Since the permanent magnet motors with surface-mounted 

magnets have no rotor windings and thus no rotor resistance loss, the authors focused 

only on the remaining loss component and prediction of the hysteresis and eddy current 

losses in the stator teeth and yoke. The results of the core losses prediction were 

compared to the losses measured on a 4-pole permanent magnet motor to confirm the 

applicability of their approach. 
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Amar and Kaczmarek (1995) proposed a simple, efficient, and general method for the 

estimation of the iron loss under any nonsinusoidal voltage without multiple zero 

crossings (without minor hysteresis loops). The method was based on the principle of the 

loss separation model, where the iron loss is decomposed into hysteresis, classical and 

excess loss components. The voltage waveform was identified by the form factor 

coefficient, making it easily accessible. The method proposed by the authors does not 

require any knowledge of the voltage harmonic spectrum. The case of three regimes, the 

rectangular pulse, the pulse width modulation (PWM), and the fundamental, plus the 

controlled third harmonic voltages, were treated and a satisfactory prediction of the iron 

loss was obtained. 

 

A method predicting the iron losses in magnetic laminations for various excitations, using 

a reduced number of parameters was done by Darwaz et al. (1994). A dynamical 

presentation model of the instantaneous magnetic flux has been presented under the 

assumption of losses separation. In order to enlarge the validity area of this behavioral   

technique, the authors have presented an improved model which takes into account at the 

same time, the eddy current and hysteresis effects. The experimental device was used to 

perform the validity tests, and comparison between the computed and experimental losses. 

The method applied to the prediction of the iron losses gives results showing good 

correlation with the experiment.  

 

Saari and Arkkio (1994) dealt with the calculation of losses in a high-speed asynchronous 

motor. The authors used a time-stepping, finite element method to calculate the electrical 

losses and semi-empirical equations to evaluate the friction losses (losses in air). The 

calculated losses were compared with the measured ones for a 60 kW, 100,000 rpm 

induction motor. The calculated electrical losses were compatible with the measured ones. 

The difference between the measured and calculated air friction losses increased with the 

rotational speed, and the error was about 20% at a speed of 100,000 rpm. 

 

An improved method for predicting iron losses in brushless permanent magnet dc drives 

was reported by Atallah et al. (1992). The procedure has been developed to predict the 

stator iron loss in a brushless dc motor operating under any specified load condition. 

Finite element analysis was employed to obtain a series of instantaneous magnetostatic 

field distributions within a motor. The iron loss was computed from the temporal and 
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spatial variation of the flux density distribution. The method showed that the operating 

condition can have a significant effect on the level and distribution of iron losses. The 

method can also be applied to other types of machine and drive formats. 

 

From the flux density waveforms, the associated harmonics and flux density reversals 

were analyzed, and the corresponding impact on the hysteresis and eddy current losses 

was computed using a well known method first introduced by Lavers et al. (1979), in 

conjunction with the Epstein core losses curves of the laminations. The authors stated that, 

even under the present sinusoidal excitation conditions, the harmonic contents in the 

radial and tangential flux density waveforms in the motor core have a direct effect on the 

magnitude of the core loss. The losses computed from the distorted flux density 

waveforms were compared with conventionally computed core losses obtained using only 

the fundamental components of the flux density waveforms. It was reported that the 

hysteresis core loss for the distorted flux density waveforms increased by about 25% from 

the loss obtained using the conventional method, while the eddy current loss for the 

distorted waveforms was 125% higher than the eddy current loss calculated by the 

conventional method. Therefore, harmonic effects should be taken into consideration in 

computing core losses of such machines, even for sinusoidal voltage excitation. 

 

Akbaba and Fakhro (1992) calculated the iron loss from the field distribution in 

reluctance augmented shaded-pole motors using the finite element method. No-load and 

loaded cases were considered separately. The effect of the shading coil on the spatial 

distribution of the air-gap flux density was examined and it was found that the 

demagnetizing effect of the shading rings helps towards more uniform distribution of the 

air-gap flux. The correct paths of various flux linkages and saturating locations were 

identified. The authors solved a non-linear Poisson’s equation using the finite element 

method in order to obtain the magnetic field distribution in the machine. The iron losses 

were calculated using the flux density distribution obtained over the cross section of the 

machine. The comparisons between the calculated and measured results were in good 

agreement. 

 

Zuh et al. (1992) used the finite element method to calculate the core losses in complex 

geometries of a permanent magnet motor with nonsinusoidal, rotational fields. 

Techniques were developed for determining flux density waveforms from finite element 
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calculations, and their use in predicting core losses using a combination of frequency and 

time domain methods. The improved model for alternating core losses in electrical steel 

sheets under both sinusoidal and nonsinusoidal flux density waveforms was studied. The 

core loss model was applied to a permanent magnet motor, taking into account only the 

rotational effects on the eddy current and excess losses. The comparison of the calculated 

and measured core losses was very close. Under sinusoidal and nonsinusoidal excitation, 

the authors found that the calculated and the measured core losses were closely correlated. 

Regarding the losses under the rotating field, the authors stated that the calculated loss 

was approximately 20% less than the measured loss and the difference between the 

calculated and measured loss was attributed to rotational hysteresis. 

  

In rotational electrical machines, core losses are caused not only by alternating magnetic 

fields but also by rotational magnetic fields and it is important to be modelled correctly in 

an optimum design. Based on this fact, Zhu and Ramsden (1993) investigated the iron 

loss in electrical machines considering the rotational hysteresis loss. The authors 

constructed a single sheet core loss tester to measure the core losses of electrical steel 

sheets with an arbitrary flux density B and a novel sandwich arrangement of the magnetic 

field intensity H sensing coils was proposed to improve the accuracy of the rotational 

magnetic field measurement in a single sheet square specimen core loss measuring system. 

The losses were calculated from the measured magnetic field intensity and flux density.  

 

A new approach was presented to resolving the total loss into four portions depending on 

the rotational and the alternating components of the magnetic field and flux density. 

Using this combined data and calculated flux density vector trajectories (FEM), the 

authors estimated the iron loss in a motor and only a rough estimation of the elliptical 

rotational hysteresis loss was used. When compared with the measurements, the 

differences between the measured and calculated core losses were now less than 10% at 

1200 rpm, since the rotational hysteresis was taken into account. The authors concluded 

that the remaining discrepancy might be attributed to the possible rotor surface loss 

caused by the tooth ripples and the eddy current loss in the stator case. 

 

Findlay et al. (1994) discussed rotational losses and how they are produced in the core 

materials of induction motors. The authors described a test procedure for determining the 

rotational losses in electrical steel sheets and a methodology for establishing the regions 



 36

where rotational losses occur, and the anticipated effects, and afterwards, they compared 

the results with standardized tests from an Epstein test procedure. They found that there 

was a significant difference in the loss results obtained for the rotational test versus the 

alternating current test and they stated that the rotational losses in electrical steel sheets 

were substantially larger than the alternating losses for the flux density investigated. In 

some regions, the alternating flux loss curves can be used with reasonable accuracy, in 

large areas of the machine, however, these values give losses that contain considerable 

errors. The authors also used the finite element method to investigate the magnetic flux 

density in the vicinity of a stator slot and the results of their preliminary investigation 

suggest the existence of regions of differing polarization. Particularly at the back of both 

the slot and tooth, an elliptical to nearly-circular polarization was found as was expected. 

 

Nee and Nipp (1994) described a method to calculate the harmonic iron losses and eddy-

current losses of inverter-fed induction motors. Particularly, a general method for the 

determination of hysteresis losses was presented. The authors described the principles of 

the iron loss evaluation in electrical machines and stated that the only rigorous way of 

determining this loss is the time-stepping of the system with the inverter and the motor. 

Moreover, the modeling of the iron should be taking the hysteresis and eddy-currents into 

account. However, this way of computing the iron loss takes much time and for this 

reason the authors calculated the magnetic field using FEM, where the magnetization 

curve was without hysteresis. The iron loss was then evaluated using a combination of the 

Jiles-Atherton hysteresis model, the Rayleigh theory and empirical expression. The 

calculated results were compared with the measurements carried out on the toroidal cores 

of laminated non-oriented standard silicon sheet steel. The major loop losses, minor loop 

losses and hysteresis losses of a flux with two superimposed frequencies were 

investigated. Then, the harmonic iron loss was also computed and measured on the PWM 

inverter-fed induction motor. The values calculated were found larger than the measured 

ones, which was attributed to the fact that the iron was not modeled correctly in the finite 

element analysis. 

 

Cecchetti et al. (1978) used a technique proposed first by Kelly (1957) to measure the 

rotational power losses as a function of frequency and magnetization in grain oriented and 

isotropic 3% SiFe. All loss measurements were performed on disks of 19 mm diameter 

and thickness 0.33 mm, under different magnetization conditions, up to almost complete 
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saturation. The comparison between the predicted and measured losses gave excellent 

correlation. 

 

Sanada et al. (2003) proposed a simple model to predict the iron loss in rotating machines 

considering the rotational variations of the flux vectors as well as the flux harmonic using 

the 2-D finite element method. The short-axis-to-long-axis rate of the flux vector 

trajectory ellipse at each harmonic frequency was utilized to calculate the additional iron 

loss due to the rotational field in the core of the rotating machine. By comparing the 

calculated results obtained by the conventional method and the proposed method with the 

experimental results, it has been verified that the precision of iron loss prediction on a 

rotating machine can be improved significantly. 

 

Since the iron loss accounts for a large percentage of the total energy loss, there is an 

increasing need to predict this loss with satisfactory precision in the stage of design or 

during analysis to realize higher efficiency and performance. The iron loss calculations 

carried out by numerous researchers is an important issue in both design and analysis of 

electrical machines, and because of their complicated structure, flux distribution, and 

rotational variation of this flux, the iron loss calculations of electrical machines still 

present substantial difficulties and the accuracy form of such losses is still not available. 
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Chapter 3 
 

 

Literature Review on Iron-Loss Measurements 

 

     The basic aim of this chapter is to give a general idea and survey of methods and 

techniques which have been recently used for core loss measurements of electrical steel 

sheets as a part of electrical machines, considering the measurement under alternating and 

rotating field excitations. Although quite a few rotational core loss measurements and 

domain structure observations have been carried out on different ferromagnetic materials 

by various researchers, the mechanisms of rotational core loss are still far from being 

fully understood. 

 

 

3.1    Power Loss Measurements under alternating Field Condition 
 
    For the measurement of iron losses in electrical steel sheets, and because of the obvious 

considerable simplifications, the iron loss is mostly measured in electrical steel sheets 

using special configurations. As with the measurement of the alternating iron loss, the 

iron loss is usually measured in electrical steel sheets using the Epstein test (IEC 1978) 

method. The Epstein test (IEC 1978) is the standard test for detecting the alternating 

magnetic properties of materials at power frequencies using the wattmeter-ammeter-

voltmeter method and Epstein test frame. This frame basically consists of a square iron 

core fabricated from strips of the lamination materials to be tested. The Epstein test can 

be approximately used for transformer design, but in rotating electrical machines, where a 

substantial portion of the iron core is magnetized under rotating flux condition, the 

Epstein test (IEC 1978) is, therefore, not enough to give reasonable results. Besides the 

Epstein tester, the single sheet tester (IEC 1992) and the ring method (IEC 1995) are 

widely used nowadays for the determination of the magnetic characteristics of materials 

under alternating field conditions. 
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3.2    Power Loss Measurements under Rotational Field Condition 
 
    The concept of rotational power loss and the general shape of the power characteristics 

were first discovered in the nineteenth century. Since then, a number of various 

approaches have been taken to study this phenomenon. Rotational power loss is important 

as it contributes up to 50% of the total core loss in rotating electrical machines. The 

rotational power loss also occurs in the T joints of three-phase transformers. Although the 

area subjected to rotational field is rather small, the increased losses may cause local 

overheating and consequently even destruction of such transformers. As for the 

measurement of the power loss under the condition of rotating flux and as was mentioned 

previously, a single sheet square specimen tester (single sheet tester) initiated by Brix et 

al (1982) appears to be the most favorable method, because of its flexibility to control the 

rotating magnetic flux pattern and the uniformity of the magnetic field in the sample, 

which results in high accuracy. The method is widely used by various researchers with 

many different modifications in order to determine the magnetic characteristics under 

rotating field conditions. The method is based on the measurement of the orthogonal 

components of the magnetic flux density and magnetic field strength Bx, By, Hx, and Hy. 

Using this method the rotational power loss is measured as the torque loss caused by the 

angle of lag between H and B. 

 

3.3    The Influence of PWM Inverter Supply on the Iron Loss 
 
    Many papers have been published recently on the issue of power loss measuring in 

electrical machines which have dealt with the measurements concerning the influence of 

the PWM inverter supply on the iron loss in electrical machines. 

 

Based on the measurements, Boglietti et al. (1993) presented a complete analysis of the 

motor losses due to the inverter supply. The authors started from the analysis of the 

results obtained through the standard tests (no-load, short-circuit and load). The standard 

tests have been performed on 7.5 kW standard induction motors using a sinusoidal supply, 

square wave and PWM inverter supplies. The energetic comparison with different supply 

sources has been made using as a reference the same voltage and current fundamental 

values. To obtain the iron loss, the authors used the results of the no-load test. The no-
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load loss minus the stator and copper losses gives the sum of the iron loss and mechanical 

loss. Since the mechanical loss could be approximately considered as constant, the sum 

expressed the behavior of the iron loss. The authors stated that the worst supply condition 

was represented by the PWM source from the energetic point of view. Three years after 

the publication of this work, the same authors continued their previous studies of the 

effects of the inverter characteristics on the iron loss increment in induction motors fed by 

pulse width modulation controlled converters. Laboratory tests based on no-load input 

power measurement were carried out and in order to avoid the influence of mechanical 

losses and rotor copper losses, difficult to be measured or computed, a special test bench 

with an unconventional test device was constructed. The test bench consisted of a 

standard industrial induction motor with a slotless rotor instead of the standard one. 

Practically, the rotor has been constructed as a laminated cylinder with the same diameter 

of the standard one. Under these conditions the rotor was not able to start and to rotate by 

itself, but it had to be put into rotation at the synchronous speed by connecting the rotor to 

a DC motor, as shown in Figure 3.1.       

 

 

 
Figure 3.1: Proposed test rig. 

 

With the two machines connected together a no-load test was performed and the influence 

of the modulation index, modulation waveform, and switching frequency of the inverter 

on the iron loss was under investigation. From the obtained results the authors suggested 

the operation of the inverter with the highest allowed modulation index. In this way the 

iron loss was reduced. They did not find the switching frequency as important as the 

modulation index from the core loss point of view. With the switching frequency increase, 
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a small diminishing of the iron loss was observed. However, the loss increase inside the 

power switches should also be taken into account. The modulation function waveform 

was not found to be an important factor on the iron loss increase. As mentioned above, 

the tests were carried out at no-load and the authors concluded that the result regarding 

the influence of the inverter characteristic on the iron loss could also be considered valid 

for a motor running under load condition. The reason for this generalization was that the 

only difference between no-load and load working conditions in an industrial induction 

motor, from the magnetic flux point of view, is the voltage drop on the stator impedance.  

 

In (1990) a setup was developed by Fiorillo and Novikov to measure the alternating 

magnetic power loss in laminations (single strips, toroids, Epstein frames) under 

controlled induction waveform in the frequency interval 1 Hz - 100 kHz by means of a 

relatively complicated experimental setup with many electronic devices controlled by a 

personal computer as shown in Figure 3.2. 

The basic elements of this setup were: 

(1) A personal computer, which coordinates all the relevant measuring operations. 

(2) A programmable 12 bit arbitrary function generator (Wavetek mod. 275).  

(3) A circuit for the supply of power to the primary winding and for induction 

waveform control. 

(4) A programmable transient recorder/data analyzer DATA 6000 (two channels, 9 bit, 

18 MHz sampling rate). 

In order to accomplish the waveform over a wide frequency range, the system was able to 

switch between two different circuits. Circuit b), which exploits negative feedback, was 

employed at a relatively low frequency (up to about 2 kHz). The programmed waveform 

B
•

provided by the generator was compared, by means of the differential low noise 

amplifier A2 (PAR mod. 113), to the signal induced on the secondary winding WB, which 

was suitably amplified, if necessary, through A4. The power amplifier A3 (KEPCO mod. 

72/5) provided in cascade the magnetizing current to the primary winding WH. To ensure 

a symmetrical applied field, the integrating chain A1, Rb, Cb was employed. It can be 

easily realized that, if the time constant RbCb is sufficiently large, any voltage offset 

arising on the resistor RH would be automatically compensated by the integrator. Circuit c) 

was preferentially used at high frequencies, where the pervious feedback system became 

prone to spurious. 
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Figure 3.2: (a) Block scheme of the loss and B-H loop measuring set up. The system switches 
between two different waveform control circuits, shown in detail in (b) (low frequencies) and 
(c) (high frequencies). 

 

In order to understand the principle work of the setup, an input voltage iV  is considered 

which can be expressed, if H nR R , as 

i g n 1 n H H 1 1 nV =V R /(R +R ) + i R R /(R +R )⋅ ⋅  

where gV  is the voltage provided by the function generator. If K is the combined gain of 

the amplifiers A2 (PAR mod. 113) and A3 (0-500 KHz power amplifier Khron-Hite mod. 

DCA-50), the authors obtained the voltage on the primary winding as 

p i o H HV =KV (R +R ) i− ⋅  

p g n 1 n H H 1 1 n o H HV =KV R (R +R )+Ki R R (R +R ) (R +R ) i/ / − ⋅  

Therefore, if the condition 

1 1 n o H HKR (R +R ) (R +R ) R/ /=  
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is satisfied, the voltage on the primary winding pV  will be proportional to the 

programmed voltage gV , independent of the actual value of the magnetizing current. To 

achieve this condition one regulates the amplifier gain K and the value of the resistor R1. 

The primary current drop on the calibrated resistor HR  and the signal on the secondary 

winding WB are sampled and processed by the DATA 6000 analyzer. A single 512 point 

period is stored, on both channels, up to about 30 kHz. It reduces to 180 point period at 

100 kHz. At very low frequencies the H and B signals have to be amplified before 

sampling. The authors used a couple of PAR mod. 113 amplifiers for such a purpose. 

Care was taken in this case to avoid spurious phase shifts between the two channels. 

Since the DATA 6000 can be internally programmed, peak induction and loss values can 

be displayed, upon arming of the input amplifiers, in a continuous way, thereby providing 

an effective averaging of the results. Finally, the hysteresis loop can be recorded, if 

desired, through data transfer to the PC, scaling and digital plotting. The results were 

discussed in association with a general theoretical approach, where the hysteresis, 

classical and excess losses were separately considered. A formulation of the total power 

loss was presented and showed an excellent agreement with the experiment. 

As mentioned previously, numerous papers have been published dealing with the 

influence of the inverter supply on the iron loss in electrical machines. This subject is 

largely investigated even in the magnetic materials using the Epstein frame. 

 

Experimentally, Boglietti et al. (1991) studied the energetic behavior of two samples of 

soft magnetic materials (wound cores) fed by inverters. The authors dealt with the 

increase of iron losses by explaining them due to non-conventional voltage supply. Six-

step and PWM inverter output voltages were selected as the excitation waveforms for the 

samples under test. This experimental setup has been used to measure the cores 

characteristic loops and the magnetic losses as shown in Figure 3.3. 

 

The voltage distortion in the secondary winding of the transformer T1 must not exceed the 

value limit accepted by the international standards. In order to check time by time the 

voltage quality, the following method has been proposed. Two voltmeters V1 and V2 have 

been installed in the secondary side of the step down transformer T1. In particular, V1 is a 

voltmeter to measure the rms voltage and V2 is a voltmeter to measure the average 

voltage. The ‘voltage from factor’ (VFF) can be defined by dividing the rms voltage by the 
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average one. The system shown in Figure 3.3 consists of a programmable function 

generator (F.G.) in order to supply a low power pure sinusoidal supply, power linear 

amplifier (A.M.), step down transformer (T1) in order to increase current of the core 

under test and improve the current measurements, RC filter in order to cut down the dc 

current components and to avoid unwanted T1 transformer saturations, digital scope (D.O.) 

in order to check the voltage waveform and the current peaks, digital multifunctionmeter 

(M.F.) which is a very flexible instrument and suitable for measurements in nonsinusoidal 

environment, and finally, a small adjustable resistance (RX) to limit the maximum core 

current during the hard saturation conditions. 

 
Figure 3.3: Measurement system setup. 

 

The wound cores structured as samples had two windings, the primary with N1 turns and 

the secondary with N2 turns, which were wound together in order to achieve the best 

coupling. The results were quite informative and quantify the iron loss increase with a 

non-sinusoidal supply when compared to the results obtained by the standard tests 

(sinusoidal supply and Epstein method). However, with PWM supply the iron loss 

increased considerably. The authors attributed this increment to the heavy eddy current 

increase inside the iron core linked to the very particular waveform of the PWM supply. 

Furthermore, the authors stated that the comparison with the results obtained by a 

sinusoidal supply gives useful indications to electromagnetic-device designers, in order to 

develop the derating factors that have to be used for different magnetic materials used in 

devices fed by static power sources. 

 

Kinnares et al. (1996) presented a novel measurement method for determining the extra 

harmonic loss in an induction machine fed from a PWM inverter. A significant 

improvement of this method over others is that the measurement is made whilst the 

machine is running normally or under any other defined operating condition.  
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The experimental setup for loss measurement is shown in Figure 3.4. The motor under 

test (7.5 kW induction motor of standard design) is fed from a commercial IGBT inverter 

that has been modified to accept PWM signals from a specially developed PWM 

generator. This PWM generator can produce all of the well-known PWM strategies with a 

user defined switching frequency as well as special PWM strategies that have been 

developed for loss measurement. For comparative tests, the system allows switching 

between the PWM strategies while the motor is running. The mechanical load on the test 

machine is provided by a DC dynamometer, which is controlled by using the classical 

Ward-Leonard Drive System. A field chopper on the Ward-Leonard machine allows the 

dynamometer armature current to be controlled in response to a torque demand input. A 

further slow integrating control loop operating on the actual shaft torque is used to trim 

the current demand. The harmonic power input to the machine is determined by 

measuring two line-to-line voltages and two line currents, which are fed into a 4 channel 

12-bit transient digitizer. The voltages are measured using potential dividers, LEM hall 

effect transducers are used for current measurement, and then the voltage and current data 

are fed into a PC for postprocessing. 
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Figure 3.4: Experimental system for harmonic loss measurement. 

 

To calculate the harmonic power input, a data record spanning an integer number of 

fundamental cycles is taken, and by taking the mean of the instantaneous voltage-current 

product, the total power input is calculated. The fundamental power for the same record 
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can be determined by using an FFT analysis to give the fundamental amplitude and phase 

information. The difference gives the total harmonic power input for a particular 

fundamental cycle. Alternatively, the power due to each harmonic can be calculated by 

using an FFT analysis to give the amplitude and phase information provided that the 

frequency components present have an integer number of cycles in the record length. 

From the loss measurement results, a loss factor can be defined which allows the loss on 

any PWM scheme to be predicted with a good degree of accuracy. Experimental results 

have been presented to confirm this. 

 

Since more and more electromagnetic devices are supplied by static converters, the 

classification and evaluation of the energetic performance of soft magnetic materials with 

a static supply are really becoming mandatory. However, the papers that have been 

published on this issue are difficult to cover in a single report. 

 

3.4  Methods for Measuring the Core Loss and Magnetic 
Properties of Magnetic Materials 

 

A review of methods and techniques which have been investigated and used by numerous 

researchers in order to measure the power loss in electrical steel sheets from the obtained 

magnetic properties Bx, By, Hx, and Hy, will be discussed and explained through the 

following paragraphs. 

 

Archenhold et al. (1960) measured the rotational hysteresis loss in grain-oriented silicon 

iron for various orientations and thicknesses with a rotating disk sample. The 

experimental results were discussed in terms of the multidomains concepts and of the 

Stoner-Wohlfarth single particle, of which the rotational hysteresis behavior has been 

evaluated. 

 

Kaplan (1961) measured the core losses of grain-oriented and non- oriented silicon iron 

using cross samples under various flux conditions ranging from a pure alternating flux to 

a pure rotating flux. It was found that the grain-oriented iron was a lower loss material 

under all flux conditions, but this is not always true. Since a grain-oriented steel sheet has 

stronger anisotropy due to a texture which causes higher hysteresis loss, the rotational 

core loss in grain-oriented steel sheets can be higher than that in non-oriented steel sheets. 
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Strattant and Young (1962) studied the power frequency losses in a silicon iron alloy due 

to an elliptically rotating magnetic field with disk samples placed in the center of two 

perpendicular pairs of rectangular Helmholtz-type air-core coils, and predicted the losses 

approximately using a simple model without any physical basis. However, the model used 

only simulated core loss with elliptically rotating magnetic fields, while the basic physical 

phenomena were not described. 

 

Boon and Thompson (1965) measured the alternating and rotational core losses at 50 Hz 

under various flux densities for both a hot rolled and cold rolled 3% silicon iron in a 

square sample of 0.33 mm laminations, using an improved thermometric method, and 

found that the ratio of rotational loss to alternating loss at 50 Hz in four squares SiFe 

samples was about 2:1 over a wide range of flux densities except at high flux densities. 

 

Flanders (1967) developed a rotating sample magnetometer, which could be used for 

multiple purposes such as the measurements of magnetic moment and rotational 

hysteresis. The measurements were performed on a single-piece rotating sample. Sensing 

coils were used to detect the magnetization perpendicular to the applied magnetic field. 

The field metric method was used to evaluate the torque due to rotational hysteresis. To 

minimize the pickup error due to the variations in magnetic field or to coil motion relative 

to the magnetic field strength H, a setup of two coils connected in series was employed. 

The method gives better results than the torque magnetometer, since the effect of 

mechanical friction has been removed. 

 

Moses and Thomas (1973) measured the rotating magnetic flux and rotational core loss in 

silicon iron laminations with cross samples. The 2-D magnetic field was generated by the 

excitation windings wound on the cross sample. The rotational core loss was measured by 

the sensing coils (B-coils) wound through very small holes in the center of the cross, 

while the magnetic field strength was determined from the magnetization current. In their 

setup, there was no flux density feedback control. Therefore, in grain-oriented samples, 

the magnitude of flux density was not kept constant. 

 

Brix et al. (1982) built a fully computerized control and measurement system with cross 

samples of non-oriented steel sheets. In this system, both magnetic field strength H and 
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magnetic flux density B were obtained by the sensing coils, and the power loss was 

determined by the field-metric method (Poynting vector). However, the magnetic field in 

the center of the sample was not homogenous due to the shape of the sample, and the high 

values of the magnetic field in the center of the sample were difficult to reach. 

 

Sasaki et al. (1985) built a measuring system using a single Epstein strip. Sensing coils 

were used to measure the magnetic field strength and magnetic flux density, and the core 

loss was calculated by the field-metric method. This system is quite similar to those using 

cross samples. A large amount of research on rotational core loss with cross samples, has 

been conducted by many other researchers, for example, Basak and Moses (1978), who 

studied the sensitivity to mechanical stress of the rotational power loss in silicon iron with 

cross samples and flux density feedback. 

 

Brix et al. (1984) found that, the magnetic field was more uniform in a square sample 

than in a cross sample, and high values of magnetic field density can be reached in the 

center of the square sample. The authors developed a tester using square samples. This 

kind of tester system is known briefly as the square sample tester. In this system, B tips 

were exploited for detecting the magnetic flux density. 

 

Enokizono and Sievert (1989) developed a very flexible system consisting of a horizontal 

magnetic circuit with a square single sheet sample and adjustable air gaps, an analog 

electronic circuit for flux density feedback control, and a computer which performed 

function generation and data acquisition in rotational core loss measurement. The 

magnetic field strength was picked up by conventional surface H sensing coils. For the 

flux density measurement, B sensing coils threaded through small holes in the center of 

square sample were adopted by Enokizono (1991), while B tips were used by Sievert 

(1991), which is more convenient for batch measurements. This system can be used to 

examine the behavior of ferromagnetic materials under either rotational or alternating 

magnetic field. Measurements of the rotational core losses of various electrical steels 

under rotational field have been performed with this system. 

 

Zhu (1992) developed a system comprising a horizontal magnetic circuit with a square 

single sheet sample, feedback control system, and digital signal processing for the 

specification of flux density waveforms and data acquisition. Figure 3.5 illustrates the 



 49

schematic diagram of the whole testing system and the square sample tester. Guo et al. 

(2006) have used this tester and investigated the alternating and rotational magnetic 

properties of several magnetic materials, including the measurement, modeling, and 

application in analysis of rotating motors. 

 

 
Figure 3.5: Schematic illustration of (a) block diagram of the 2D magnetic testing system, (b) 
the square specimen SST, and (c) position of the sample between magnetizing poles. 
 

In conclusion, the computer-controlled square sample testing system is more 

advantageous than other types in the following aspects. 

• Since the magnetic fluxes in the two perpendicular directions are controlled by 

feedback, the generated magnetic field excitations of various complex magnetic 

flux patterns can be used to simulate the actual situation happening in electrical 

machines where the magnetic field is rotating with either constant or varying 

magnitude. 

• The measurement is carried out in the center of the sample where the field appears 

to be most uniform, which leads to more accurate results. 
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• More information can be obtained from the measured B and H waveforms which 

help in understanding the mechanisms of rotational core losses. 

• Preparation of the sample is much simpler. 

• The system can be conveniently incorporated into a system for domain structure 

observation, which is very important for understanding the mechanisms of 

rotational core losses. 

The major drawback of the system is that it is difficult to control the flux density 

waveforms on the X and Y axes to be sinusoidal when the sample is close to saturation. 

 

The Epstein frame has been used by Reyne et al. (1988) in order to obtain the 

experimental data from different samples of ferromagnetic materials. The principle of the 

Epstein frame used as shown in Figure 3.6 comprises 

• A sample with dimensions of (0.24 × 0.03 × 0.0005 m) placed between two 

horizontal parallel windings. 

• Two horizontal parallel windings, one used to provide the sample with a uniform 

excitation field as possible, and the other used to measure the field in the sample. 

• A pickup head with a piezzo-electric transducer used to measure the deformation 

at one end of the sample, which depends on the value of the flux density, while the 

other end is fixed. 

• A yoke made from ferromagnetic material. 

 

 
Figure 3.6: Principle of the Epstein frame used. 

 

However, one of the reasons why the Epstein device cannot be easily replaced by sheet 

testers is that, systematic errors arise due to the overlapping of the sheet pieces in the 

corner of the Epstein core. 
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Zhu and Ramsden (1993) introduced a novel sandwich arrangement of magnetic field 

sensing coils to improve the precision of two-dimensional magnetic filed measurement in 

a single sheet tester. The authors calculated the total losses from the measured magnetic 

field intensity and flux density. Furthermore, the total loss was divided into four portions 

by resolving the magnetic field strength and flux density into rotational and alternating 

components. 

 

A single sheet tester for rotational loss was used by Morino et al. (1993) to measure the 

iron loss in grain-oriented silicon steel under the alternating flux in any particular 

direction. Moreover, the measurement and approximation of the magnetization 

characteristic in any particular direction were performed and discussed. One of the 

observed results of the iron loss measurement at 50 Hz showed that below 1 T, the iron 

loss curves in all other directions were located between the iron loss curves in the rolling 

and perpendicular directions. However, at values above 1 T, there were iron loss curves in 

some directions having values greater than those of the iron loss curve in the 

perpendicular direction. 

 

A new simplified rotational loss tester was presented by Enokizono and Tanabe (1997). 

The advantage of this tester is that, it can be applied to any sized sample sheet in the 

manufacturing process, since the properties can be measured by putting the sample 

between the sensors of the tester. The construction of the tester and the size and 

arrangement of the sensors are shown in Figure 3.7, (a) and (b) respectively. The part (a) 

shows two U-shaped yokes positioned in the x-and y-directions under the specimen. The 

sensors for measuring the magnetic properties of the electrical steel sheet were placed on 

and under the surface of the specimen at the inner part of the crossed yokes (Sensor-A) 

and at the upper surface (Sensor-B). Part (b) shows the exciting coils wound at each foot 

of the yokes (Coil-A) and at the straight-backed parts of the yokes (Coil-B). The 

specimen used for testing was a non-oriented silicon steel sheet (H50, 0.5 mm in 

thickness). 
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Figure 3.7: Schematic illustration of (a) the structure of the simplified loss tester, and (b) the 

size and arrangement of the sensors.  

 

The sensors are based on the field-metric method to measure x- and y-directional 

components of the magnetic field strength and flux density. The two H-coils are for 

measuring the field strength vector, and the two sets of the double-stylus probes are for 

the flux density vector. A spring was fixed inside of each needle in order to absorb the 

variations of the specimen. The Hx-coil was wound over a Bakelite plate, and the Hy-coil 

was wound around the Hx-coil. The B-coils were wound on the sheet through four 0.6 mm 

holes in x- and y- directions and the width between the holes in each direction was 24 mm. 

The flux density measured with each sensor was compared to that of the B-coil. The basic 

characteristics of the loss measurements were investigated and compared with those of 

the conventional accurate apparatus. The results obtained from the measurements, 

however, have shown some problems in accuracy. The authors attributed these problems 

to the yoke construction. 

 

Since the rotational power loss can be measured as the torque loss generated from the 

angle of lag between the H-vector and the B-vector caused by the rotating field. Findlay 

et al. (1994) used a method similar to one used by Enokizono et al. (1990). The basic 

features of this method are shown in Figure 3.8, (a) and (b). A Keithley arbitrary 

waveform generator was used to create two quadrature sinusoidal voltages. These are fed 

to a power amplifier, which energizes two pairs of coils on a yoke. A rotating magnetic 

field is induced in an 8 cm square sample, which has search coils wound through two sets 
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of holes. Two tangential field strength-sensing coils are orthogonally wound on a 2 cm 

square form. The sample sits centered on these double H coils. Signals proportional to Bx, 

By, dHx/dt, and dHy/dt are fed into a Keithley DAS16F analog to digital conversion board 

for processing. A personal computer is used for data storage, signal processing, and the 

calculation of the rotational losses.  

 
Figure 3.8: Schematic illustration of (a) test apparatus, sample and sensing coils, and (b) the 
Data Acquisition and quadrature voltage generation. 
 

 

The loss curves obtained by the authors have shown that, the rotational losses are much 

larger than the alternating losses in the rolling and transverse directions of the steel. The 

results were compared to standardized tests from an Epstein test procedure. The 

comparison shows a significant difference in the loss results obtained for the rotational 

test versus the alternating current test. 

 

The field metric technique was employed by Zurek and Meydan (2006) for measuring the 

rotational power loss, whose value was calculated from the orthogonal components of B 

and H by using the conventional equation. The samples were cut as discs 80 mm in 

diameter and were placed in a round magnetizing yoke, whose internal diameter was 84 

mm, thus leaving a 2-mm air gap between the sample and the yoke for better 

homogeneity of the magnetization. The form factors of the orthogonal components of 

dB/dt and dH/dt and the radii of B and H loci were controlled to be within 2.0% of the 

desired values. The B components were measured by means of 20-mm-wide search coils 
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threaded through 0.3-mm holes drilled in the center of the sample. The H components 

were measured by means of 20-mm-wide H coils positioned immediately at the surface of 

the sample. The voltages from all the sensors were detected through a 16-bit data 

acquisition card. A digital feedback algorithm was used in the measuring program written 

in LabVIEW. The rotational power loss and loci of the B and H vectors have been 

measured for three types of electrical steels (fully processed nonoriented-No, 

conventional grain oriented-CGO, and high permeability grain oriented-HPGO) over a B 

range from 0.5 to 2.0 T or over a range of H from 50 to 20 kA/m, at 10, 50, and 250 Hz. 

However, the results that have been reported were only that measured at 50 Hz. The 

authors concluded that, for anisotropic materials, the losses under controlled H can be 

higher by nearly six times when compared to the standardized method of measured losses, 

by which the soft magnetic materials are categorized. The B and H values have very 

similar properties in the frequency range from 10 to 250 Hz. 

 

Mori et al. (2005) developed a new method of two-dimensional magnetic measurement to 

measure the rotational losses in an electrical steel sheet. In this method, square samples 

were used for measuring the rotational power losses at a high magnetic flux density. The 

magnetic properties of the B-H loops and the losses were measured at 50 Hz. The 

magnetic field was subjected in both directions; clockwise and anticlockwise. When the 

magnetic flux density increased up to 1.7 T, the losses in the clockwise direction were 

increased, while reduced in the anticlockwise direction. However, the relationship 

between B and H vectors was not accurate. 

 

    Concerning the 3-D magnetic property, in some electromagnetic devices such as a claw 

pole/transverse flux motor, the local flux density locus may follow an irregular loop in 3-

D space when the rotor rotates (Guo 2003 and Guo et al. 2005). In fact, even under 1-D 

alternating or 2-D rotating magnetic excitation, a magnetic material shows a 3-D 

magnetic property due to the rotation of the magnetic domains (Zhu et al. 2003). 

Zhong and Zhu (2001) developed 3-D magnetic testing system to investigate the 3-D 

magnetic properties of magnetic materials. By controlling the magnetic excitation in three 

axes, this tester is able to generate different magnetic flux patterns, such as alternating in 

any given orientation and rotating in two and three dimensions. 
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Chapter 4 
 

 

Experimental Work 
 

To determine the B-H relationships and total power loss in two dimensions in an electrical 

steel sheet, the flux density inside the sample and the surface field strength should be 

measured accurately. 

    In this part of the work, the method that has been used in this thesis for measuring the 

magnetic properties and power losses in an electrical steel sheet will be described. The 

method consists of a measuring device, a Labview FPGA module and data acquisition 

card (PCI-7831R) to collect the magnetic flux density and magnetic field strength 

components and display them through a personal computer for analyzing and processing. 

 

4.1    Measurement Apparatus of Dynamic Hysteresis Loops 
 
Several methods have been proposed for the measurement of the dynamic hysteresis 

loops in an electrical steel sheet. Among these, the method based on the measurement of 

the field quantities Bx, By, Hx and Hy appears to be the most convenient, as far as the 

preparation of the test specimen is concerned (Enokizono et al. 1989). 

 

The measurement of the B-H loops under alternating and rotational flux excitations was 

carried out using a vertical yoke setup. The setup consisted of two pairs of double U-

shaped yokes as shown in Figure 4.1. Each yoke was built of 520 thin electrical steel 

sheets with a thickness of 0.2 mm and wound with 400 turns of exciting coils. The 

arrangement of the exciting coils made it possible to apply a high flux density through the 

yokes to the sample sheet (see Katarzyna et al. 2008 for more details).  

 

A programmable Elgar (SW5250A) power amplifier was used to create arbitrary 

waveforms. These were fed to the yoke device in order to energize the exciting coils 

wound on the yokes. The field sensing measurement system is depicted in Figure 4.4. 
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Figure 4.1:  Apparatus for 2-D measurements with vertical yokes. 
 

 

Alternating and rotating magnetic fields were induced in an area of over 400 mm2, a 

cross-shaped sample which is illustrated in Figure 4.2 with its dimensions included. The 

sample investigated consisted of  

 

1. Flux density search coils (B-coils) wound through two sets of very small 

holes drilled in the center area of the sample. Each axis has two holes, and 

each hole is located at a distance of 10 mm from the sample center.  

2. Two  tangential  field-strength  sensing  coils (H-coils) wound orthogonally 

on a 2 cm square form as shown in Figure 4.3, and this form is affixed on 

the under surface of the sample. 
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Figure 4.2: Dimensions of the cross-shaped sample and position of B-coils. 
 

 
Figure 4.3: 2-D H sensing coils. 

 

  

The sample was inserted between the two pairs of double U-shaped yokes in a centralized 

position. The B-coils were used for measuring the flux density components, Bx and By 

inside the sample, and the H-coils were used for measuring the magnetic field strength 

components, Hx and Hy on the surface of the sample. 

The signals of B and H were acquired using a data acquisition card (PCI-7831R) and a 

Labview FPGA module (see Alkar 2007 for more details). A personal computer was used 

for data storage, signal processing, and calculation of the losses through subroutines 

written in MATLAB software. 
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Figure 4.4: Data acquisition and field sensing system. 
 

 

The power losses were investigated under a range of fundamental frequencies (10 Hz 

to1 kHz) applied for alternating and rotating field excitations and various peaks of flux 

density. The total power losses measured, mP , in an electrical steel sheet were determined 

by using the Poynting vector theorem as 

 

                 m
0 0

d1 d 1 dd d
d d d

T T
yx

x y

BBP t H H t.
T t T t tρ ρ

⎛ ⎞
= ⋅ = ⋅ + ⋅⎜ ⎟

⎝ ⎠
∫ ∫

BH         W/kg                   (4.1) 

 

where 

ρ       is the mass density of the material (kg/m3), 

T       is the period of magnetization (s), 

Hx     is the magnetic field strength in the x direction (A/m), 

Hy     is the magnetic field strength in the y direction (A/m), 

Bx     is the sample flux density in the x direction (T), and 

By     is the sample flux density in the y direction (T). 
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4.2    Measurement Results 
 
The magnetic properties of the B-H loops and the corresponding losses were measured 

under several values of fundamental frequencies and peak flux densities. The field of 

10 Hz to 1 kHz was applied with three types of field conditions by using the voltage 

model power amplifier, Elgar SW5250A as a power source. Each frequency was changed 

in the range from 0.2 T to the saturation value 1.8 T, when wherever this was possible. 

The data acquisition card (PCI-7831R) was used for acquisition of the signals Bx, By, Hx, 

and Hy. The data received was analyzed and used to plot the magnetic flux density vector 

vs. the magnetic field strength vector which are known as B-H loops or hysteresis loops. 

In addition, some of the other properties that were measured will be illustrated such as the 

waveforms corresponding to the B-H loops under the alternating field and loci of both, 

the flux density and magnetic field strength vectors in the case of rotational field 

excitation. 

 

4.2.1    Alternating Field 
 
Figure 4.5 shows the hysteresis loops under an alternating field condition in the transverse 

direction (Hy, By) that were saturated approximately with the same magnetic flux density 

(1.6 T). The frequencies of these loops were 10 Hz, 50 Hz, 200 Hz and 500 Hz 

respectively as detailed in the figure, while Figure 4.6 illustrates the waveforms 

corresponding to these B and H vectors for each frequency which are also known as the 

instantaneous values of the magnetic flux density and magnetic field strength. It has been 

shown that, for high frequencies such as 800 Hz and 1 kHz, the possibility of reaching a 

maximum peak of flux density becomes difficult and the shapes of the B-H loops became 

wider with the increase of the exciting frequency, while the value of the flux density was 

saturated. 
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Figure 4.5: The dynamic hysteresis loops at saturated flux density (1.6 T) which have 
been measured in the transverse direction of the electrical steel sheet under different 
fundamental frequencies as shown in the figure. 
 

 

 

 

 

 

 

 

 

 

 

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

H, [A/m]

B,
 [T

]

10Hz

50Hz

200Hz

500Hz



 61

0 0.02 0.04 0.06 0.08 0.1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, [s]

B
y , 

[T
]

10 Hz

0 0.02 0.04 0.06 0.08 0.1
-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

Time, [s]

H
y , 

[T
]

10 Hz

0 0.005 0.01 0.015 0.02
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, [s]

B
y , 

[T
]

50 Hz

0 0.005 0.01 0.015 0.02
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

Time, [s]

H
y , 

[T
]

50 Hz

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10-3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, [s]

B
y , 

[T
]

200 Hz

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10-3

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

Time, [s]

H
y , 

[T
]

200 Hz

0 0.5 1 1.5 2

x 10
-3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, [s]

B
y , 

[T
]

500 Hz

0 0.5 1 1.5 2

x 10
-3

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Time, [s]

H
y , 

[T
]

500 Hz

 
Figure 4.6: The instantaneous values of magnetic flux density and magnetic field 
strength for each loop illustrated in Figure 4.5. 
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On the other hand, Figure 4.7 shows the behavior of the dynamic loops under 100 Hz, an 

alternating field in the transverse direction and the effect of increasing the flux density on 

these loops when the frequency remained constant. Figure 4.8 illustrates the instantaneous 

values of the B and H vectors for the loops of 0.2 T, 0.6 T, 1.0 T and 1.4 T respectively. 

 

 

Figure 4.7: Hysteresis loops in electrical steel sheet during the increasing of the flux 
density in the transverse direction of the sample, under 100 Hz. 
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Figure 4.8: The instantaneous values of the vectors B and H under fundamental 
frequency 100 Hz and different peaks of flux density as shown in the figure.  
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4.2.2    Rotating Field 
 
Concerning the behavior of the dynamic hysteresis loops when the field applied on the 

electrical steel sheet is rotational, the curves illustrated in Figure 4.9 show these 

hysteresis loops under rotational field conditions in the rolling and transverse directions 

that were saturated with the magnetic flux density which was obtained under different 

excitations of the fundamental frequencies. The frequencies of these saturated fluxes were 

10 Hz, 50 Hz 500 Hz and 1 kHz respectively, as shown and detailed in the figure.  

 

The data illustrated in Figure 4.10 shows the loci of the magnetic flux density (Bx, By) and 

the magnetic field strength (Hx, Hy) of the loops presented in Figure 4.9. The loci of the B 

and H vectors were presented in the x and y-direction.  

 

Figures 4.11 and 4.12 show the instantaneous values of the magnetic flux density and 

magnetic field strength respectively in rolling and transverse directions which 

corresponds to the dynamic hysteresis loops shown in Figure 4.9.  
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Figure 4.9: The saturated hysteresis loops in the rolling and transverse directions of a 
sample under a rotational field and different fundamentals of exciting frequencies. 
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Figure 4.10: Loci of magnetic flux density and magnetic field strength in x and y-
direction of the loops illustrated in Figure 4.9. 

 



 67

0 0.02 0.04 0.06 0.08 0.1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, [s]

B
x , 

[T
]

10 Hz

0 0.02 0.04 0.06 0.08 0.1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, [s]

B
y , 

[T
]

10 Hz

0 0.005 0.01 0.015 0.02
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, [s]

B
x , 

[T
]

50 Hz

0 0.005 0.01 0.015 0.02
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, [s]

B
y , 

[T
]

50 Hz

0 0.5 1 1.5 2

x 10
-3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, [s]

B
x , 

[T
]

500 Hz

0 0.5 1 1.5 2

x 10
-3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, [s]

B
y , 

[T
]

500 Hz

0 0.2 0.4 0.6 0.8 1

x 10
-3

-1.5

-1

-0.5

0

0.5

1

1.5

Time, [s]

B
x , 

[T
]

1000 Hz

0 0.2 0.4 0.6 0.8 1

x 10
-3

-1.5

-1

-0.5

0

0.5

1

1.5

Time, [s]

B
y , 

[T
]

1000 Hz

 
Figures 4.11: The instantaneous values of the magnetic flux density in rolling and 
transverse directions of the hysteresis loops illustrated in Figure 4.9.  
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Figures 4.12: The instantaneous values of the magnetic field strength in rolling and 
transverse directions of the hysteresis loops illustrated in Figure 4.9.  
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The behavior of the dynamic loops due to the rotational field applied on an electrical steel 

sheet under 50 Hz is shown in Figure 4.13. The B-H loops in the x and y-direction 

illustrated in this figure are dissimilar. The difference could be attributed to the anisotropy 

of the material used and the magnetic properties of this material were measured without 

using a control system. In addition, it is likely that the B-H coils and search coil holes 

could have a larger effect on this issue. The figure shows the effect of increasing the flux 

density on the B-H loops in the case of a rotational field and when the frequency 

remained constant. 

The loops depicted in Figure 4.13 were chosen for four different peaks of flux density in 

the x and y-direction as shown and detailed in each curve illustrated in the figure. 

Furthermore, Figure 4.14 presents the loci of the magnetic flux density and magnetic field 

strength of these loops in two-dimensions, while Figures 4.15 and 4.16 show the 

instantaneous values of the magnetic flux density and magnetic field strength respectively 

in two-dimensional form for each loop illustrated in Figure 4.13. 
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Figure 4.13: The hysteresis loops of electrical steel sheet under rotational field condition, 
50 Hz, and different peaks of flux densities. 
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Figure 4.14: The loci of magnetic flux density and magnetic field strength in x and y-
direction of the loops illustrated in Figure 4.13. 
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Figures 4.15: The instantaneous values of the magnetic flux density in two-dimensional 
form for each loop illustrated in Figure 4.13. 
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Figures 4.16: The instantaneous values of the magnetic field strength in two-
dimensional form for each loop illustrated in Figure 4.13. 
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4.3    Power Losses Measured in Electrical Steel Sheet  
 
Data obtained from the measurement of the magnetic properties under alternating and 

rotating field excitations were used to calculate the power losses in an electrical steel 

sheet by using the formula illustrated in Equation (4.1).  

 

    A huge amount of data has been received from the measurement device through the 

data acquisition card and stored in a personal computer as text files, each file consisting 

of five columns containing the time of the magnetization (t), the magnetic flux density 

components (Bx, By), and the magnetic field strength components (Hx, Hy). 

Loss calculations were estimated under two types of field conditions, different types of 

fundamental frequencies, and different peaks of flux density. The frequencies used for 

such calculations were between 10 Hz as a minimum fundamental frequency and 1 kHz 

which was the maximum frequency. The maximum peak of flux density (saturated value) 

was recorded from the measurements that fluctuated between 1.2 T and 1.8 T under an 

alternating and rotating fields. However, at high frequencies (1 kHz) in our measurements, 

the maximum peak of flux density reached was about 1.2 T under an alternating field and 

1.6 T under a rotating field. 

 

The loss due to the rotational flux is called the rotational power loss. It is higher than that 

caused by the alternating flux and it increases with an increase of the magnetic flux 

density. The figures illustrated below show that the power losses measured in an electrical 

steel sheet under a rotational field were substantially larger than those obtained under an 

alternating field for the flux densities and fundamental frequencies investigated. 

 

Figure 4.17, (a) and (b), shows the performance of the losses measured in an electrical 

steel sheet under an alternating field, applied in the transverse direction of the sample. 

The losses were measured under different peaks of flux density and different excitations 

of fundamental frequencies. The curves illustrated in part (a) show the losses obtained 

under frequencies of 10 Hz to 50 Hz, while the curves presented in part (b) show the 

losses behavior when the frequency is 100 Hz and above. The two parts of the figure 

show the power losses in the sample up to the peak flux density of 1.6 T. 
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Figure 4.17: Alternating power losses in (W/kg) vs. increasing flux density (0.2 T - 1.6T) for 
different fundamental frequencies on cross-sample, (a) frequencies 10 Hz-50 Hz, and (b) 
frequencies 100 Hz - 1000 Hz. 
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If an electrical steel sheet is placed in a magnetic field rotating in the plane of the sheet 

one finds different magnetic behavior than the case of a field changing its magnitude with 

time, but keeping its direction constant. Losses due to rotational field excitation vs. an 

increasing flux density under different rotational frequencies are illustrated in Figure 4.18, 

(a) and (b). The curves illustrated in part (a) show the rotational losses obtained under 

frequencies of 10 Hz to 100 Hz, and the curves presented in part (b) show the rotational 

losses measured for other different rotational fundamental frequencies. Every loss value 

increases with increasing magnetic flux density. The loss curves show the maximum peak 

for the sample.  

 

     Under a rotating flux condition, the magnetic material will exhibit rotational hysteresis 

losses and eddy current losses. The hysteresis losses under a rotational flux condition are 

very different from those obtained due to an alternating flux. The data illustrated in 

Figures 4.17 and 4.18 showed that the rotational power losses were much larger than the 

losses resulting under an alternating field condition in the transverse direction of the 

sample and both losses increase when both the flux density and frequency increases.  

 

As the sample becomes saturated under only a purely circular field, a peak loss is reached, 

and the loss value quickly drops to zero. However, this case was excluded from our work 

because the magnetic properties of the sample were measured without using a control 

system and the field applied to the sample in the case of rotational excitation was not 

purely circular. 
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Figure 4.18: Rotational power losses in (W/kg) vs. increasing flux density (0.2 T - 1.6 T) for 
different rotational fundamental frequencies on cross-sample, (a) frequencies 10 Hz - 100 Hz, 
and (b) frequencies 200 Hz - 1000 Hz. 
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Chapter 5 
 

Parameter Estimation of Dynamic Loss-Model with 
Nonlinear Least-Square Method 
 

In this part of the work, an explanation of the method capable of optimizing 

parameters of a comprehensive dynamic loss-model (Belahcen 2008) of electrical steel 

will briefly be introduced. The method is based on the minimization of the deviation of 

the simulated trajectory of the model from a known behavior which is here the total 

power loss measured, mP . The method allows the identification of parameters from 

measurements obtained from the field tester to improve the dynamic behavior of the loss-

model.  

 

5.1    Dynamic Loss-Model of Electrical Steel 
 

For both alternating and rotational core loss modeling, and based on the empirical 

three-term formula used to separate the core losses, a dynamic loss-model has been 

proposed (Belahcen 2008). The goal of this work is to optimize the parameters of this 

model consisting of four terms, classical eddy-current, alternating and rotational 

hysteresis and excess losses. The model has been used to compute the iron losses in a 37 

kW induction machine fed from a sinusoidal and frequency converter voltage supply 

(Belahcen 2008). The model is investigated under different magnetization frequencies of 

the fundamental flux density waveform ranging in the intervals (10 Hz 1000 Hz)f≤ ≤ . 

The four-term equations of the model are illustrated in the following subsections. 

 

5.1.1    Classical Eddy-Current Losses 
 
       For an infinitesimal variation of the magnetic flux density vector ∂B , the classical 

eddy-current energy dissipation is modeled as 

c cw k
t

∂∂ = ∂
∂
B B                                         (5.1) 

where ck  is the classical eddy-current loss coefficient that depends on the thickness and 

conductivity of the material.    
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5.1.2    Hysteresis, Excess and Rotational Losses 
 
For an infinitesimal variation of the amplitude of the flux density vector ∂ B , the 

proposed models for the excess and hysteresis energy dissipation are shown in Equations 

(5.2) and (5.3), respectively 

                         
0 5.

w k
t

⎛ ⎞∂
∂ = ∂⎜ ⎟⎜ ⎟∂⎝ ⎠

e e
B

B                            (5.2) 

s
h h r

2

1

1 (1 )
s

Bw k k
b

B

θ
−

∂ = ∂ + ∂
+ −

B

B B B
B

                    (5.3) 

where θ  is the phase angle of the flux density vector, θ∂  is an infinitesimal variation of 

this angle and ek  is the excess loss coefficient while hk  and rk  are respectively the 

hysteresis and rotational loss coefficients. sB  is the saturation flux density which is here 

fixed to be 2.0 T and b is a constant parameter related to the texture and grain size of the 

material.  

By integrating the Equations (1.5), (2.5), and (3.5) over one cycle of the fundamental 

frequency, the losses Pc , Pe  and hP   in watts per kilogram are respectively given as 

 
2

c
c

0

d
TkP t

T tρ
⎛ ∂ ⎞= ⎜ ⎟∂⎝ ⎠∫

B                                                                         (5.4) 

1 5

e
e

0

d
.TkP t

T tρ
⎛ ⎞∂

= ⎜ ⎟⎜ ⎟∂⎝ ⎠
∫

B
                                                                     (5.5) 

h r s
h

20 0

s

1
d d

1 (1 )

T Tk k BP t t
T t T tb

B

θ
ρ ρ

−
∂ ∂

= +
∂ ∂+ −

∫ ∫

B
B

B B
B

                  (5.6) 

The total loss, tP  in watt per kilogram dissipated in the electrical steel sheet can then be 

determined as the sum of the classical eddy-current, cP  excess, eP , and hysteresis, hP , 

losses 

                       t c e hP P P P= + +   .                                                      (5.7) 
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Based on a large amount of experimental results on the electrical steel sheet sample under 

alternating and rotating flux excitations with various flux density magnitudes and 

frequencies, the five parameters of the dynamic loss-model kc , ek , hk , rk  and b can be 

optimized using the curve-fitting technique or so called nonlinear least-squares criterion. 

The curve fitting is executed based on the initial parameters of the loss-model and 

measured data. 

 

5.2    The Method of Least-Squares 
 
In order to optimize the parameters of the loss-model, the curve fitting process matches 

the curve obtained from the total power loss predicted by using the loss-model, tP , to the 

curve obtained from the total power loss measured, mP . Nevertheless, for a given set of 

data, the fitting curve of a given type is generally not unique. Thus, a curve with a 

minimal deviation from all data points is desired. This best-fitting curve can be obtained 

by the method of least squares. 

   The method of least squares assumes that the best-fit curve of a given type is the curve 

that has the minimal sum of the deviations squared (least square error). 

 

Suppose that the data points are t1 m1 t2 m2 tn mn( , ), ( , ), ..., ( , )P P P P P P  where t1 t 2 tnP , P , ..., P  are 

predicted by using the loss-model and m1 m2 mnP , P , ..., P  are the observed measurements. 

The fitting curve t( )f P  has the deviation (error) d from each data point, i.e., 

1 m1 t1 2 m2 t 2 1 mn tn( ), ( ), ..., ( )d P f P d P f P d P f P= − = − = − . The best fitting curve and the 

differences between the model predictions and the observed values are combined in the 

following least-squares function 

[ ]
n n

22 2 2 2
1 2 n i mi ti

i 1 i 1

( ) a minimumd d ... d d P f P
= =

Π = + + + = = − =∑ ∑ .     (5.8) 

A routine for the loss-model identification has been written in MATLAB software and is 

given in Appendix A. 

 

5.3    Results of Parameter Fitting 
 
The parameters of the dynamic loss-model are determined by the nonlinear least-squares 

method. The block scheme of the parameter identification can be seen in Figure 5.1, 
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where the measured experimental data, (    )x y x yB , B , H , H  and initial parameters, 

[ ]0 c0 e0 h0 r0 0    x k , k , k , k , b=  are given. The dynamic loss-model generates total power loss 

curves based on measured data and the initial parameters. The comparison between the 

experimental and modeled total losses provides an error d. Depending on this error, the 

nonlinear least-squares method modifies the input parameters of the loss-model. The 

cycle runs until the error gets small enough. The program of the identification has been 

written in MATLAB software and is given in Appendix A. The speed of convergence of 

this program was substantially dependent on the initial parameters given in Table 5.1. In 

general, the efficiency of the parameter identification program depends on the quality of 

the measured data and initial values.     

 

 

m tP P−

 
 

Figure 5.1: The block scheme of the loss-model identification. 

 

Table 5.1 shows the physical properties of the loss-model parameters as the first column 

while the initial values can be seen in the second column of the table. The third column 

contains the result of the identification. 
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Table 5.1: Physical properties of loss-model parameters and initial test of the loss-model 

identification. 
Parameter Physical property Initial parameters Fitted parameters 

kc  Classical eddy-current loss coefficient 51 3112 10. −×  142 34 10. −×  

ek  Excess loss coefficient 52 9525 10. −×  43 56 10. −×  

hk  Hysteresis loss coefficient 0 0214.  0 00974.  

rk  Rotational loss coefficient 0 055.  0 00337.  

b 
Coefficient related to the texture and grain 

size of the material 
16 0.  16 36.  

 

Figure 5.2 show the results of the parameter fitting, where the measured curves are 

denoted by, ‘o’, and the fitted curves are denoted by, ‘ ’. The figure illustrates the fitting 

results considering the complete set of data obtained from the measurements.  

 
Figure 5.2: Results of parameter identification of loss-model at different 
magnetization frequencies of the fundamental flux density waveform ranging in the 
intervals (10 Hz 1000 Hz)f≤ ≤ . 
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The data obtained from the experimental work under alternating and rotating flux 

excitation was huge, and the parameter identification program was executed by taken into 

consideration the whole of these data sets as shown in Figure 5.2. However, the deviation 

between the model and the observed measurements cannot be clearly seen in a single 

figure. 

In order to show greater details, a series of close ups of the sections of the figure are 

given in Figure 5.3 and Figure 5.4. These smaller figures clarify the results obtained from 

fitting the predicted losses to the measured losses.    

The curves illustrated in Figure 5.3 and Figure 5.4 show that, the accuracy of the fitting at 

lower frequencies is worse than in the case of higher frequencies, and at 50 Hz it is much 

better. 
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Figure 5.3: ‘Zoom in’ of the curves illustrated in Figure 5.2 and fitting results at each 
side of the fundamental frequencies 10 Hz, 20 Hz, 30 Hz, 50 Hz, 100 Hz and 200 Hz. 
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Figure 5.4: ‘Zoom in’ of the curves illustrated in Figure 5.2 and fitting results at each 
side of the fundamental frequencies 500 Hz, 600 Hz, 800 Hz and 1 kHz. 
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Chapter 6 
 

 

Conclusions 

 

6.1    Summary 

In this thesis, a method of measuring the magnetic properties of cross-shaped electrical 

steel sheet under both alternating and rotating flux conditions using vertical yoke and search 

coils was presented. The magnetic field strength components were measured by using two 

tangential field-strength sensing coils. The flux density was measured using a voltage 

induced in 2-turns search coils threaded through 1 mm diameter holes drilled through the 

sheet and the power losses were calculated and plotted in different conditions of excitation by 

using a program written in MATLAB software.  

    The results obtained from the measuring device showed that the effects of increasing 

magnetic flux density and frequency on the dynamic hysteresis loops will in turn affect the 

total power losses in the electrical steel sheet. Behavior of the B-H loops was investigated 

under a range of flux densities from 0.2 T to 1.8 T which is the maximum value of flux 

density that has been reached. This maximum value was easy to reach under the alternating 

and rotating fields for the fundamental frequencies 10 Hz to 600 Hz. However, this peak 

becomes difficult to reach at high frequencies. 

    The loci of the magnetic field strength, the loci of the magnetic flux density, and the B-H 

loops presented in the rolling direction of the sample were different from those obtained in 

the transverse direction of the sample when the field applied was rotational. The likely reason 

that could cause this variation is the anisotropy of the material. 

The method used has the advantage that the sample can be very easily placed into and 

removed from the measuring device as well as the fact that the installation of the B-coils and 

H-coils in the sample was not difficult. Furthermore, a desired rotating flux within the 
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measurement region at the sample center was generated easily except for those at high 

frequencies. The results showed that the method presented in this thesis was useful in 

measuring the magnetic properties of an electrical steel sheet. However, some problems 

appeared concerning the accuracy of the measurements under a rotating flux. Still the 

possibility to solve these problems remains in optimizing the yoke constructions as well as 

the control system and sensing coils. 

Losses in the sample due to the rotating flux and different conditions of excitation were 

measured and compared with the losses under the same conditions of excitation but due to an 

alternating flux. The results showed that rotational losses were larger than those caused by 

the alternating flux. 

Finally, the data obtained from the experimental work was used to estimate the 

parameters of a comprehensive dynamic loss-model by using the least-squares criterion. 

Identification procedures which have been constructed in MATLAB software are given in 

Appendix A. The quality of the method was greatly dependent on the quality of the model 

proposed as well as the measurements obtained from the experimental work. 

 

6.2    Recommendations for Further Work  

In order to further understand the mechanism of rotational core losses, considerable work for 

measurement experiment and theoretical modeling needs to be developed and improved, in 

the following ways: 

 

1. Improvement of rotational core loss measuring techniques, including improved design 

of the tester with optimum magnetic field sensors (B-H coils) for more accurate 

measurement of the B-H relationship. 

2. Development of a control system for controlling the locus of the rotating flux density 

vector when the specimen becomes saturated. 

3. Development of a new modeling and measurement method for rotational core losses, 

including the calculation of the hysteresis and eddy-current as well as anomalous core 

losses. 

4. Further understanding of the mechanisms of rotational hysteresis loss, including 

vector hysteresis modeling and experimental verification of the theory. 
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Appendix A  
 
 
The M-Files which have been constructed in MATLAB for 
parameter identification of the loss-models with 
Nonlinear Least-Square Method 
 
 
M-File 1:   The main fitting program for obtaining the parameters of the core 
loss model. 
 
close all
clear all
ptype=1; %W/kg.
%ptype=2; %W/m3.
sample=1; %which material sample to be fitted!
psort=0; %for sorting the measured loss in advance.
[BxBy,Ptm,dt,T,ro,kk]=dataindex(sample,ptype,psort); %total power loss
measured(conventional equation).
input=[dt; T ; BxBy']; %the flux density waveforms Bx,By.
f=1./T;
[initialpar, lb,ub]=initialConditions(ptype,ro);
[newParameters,error] =
lsqcurvefit(@MyIronPowerLoss,initialpar,input,Ptm,lb,ub);
Kc_o=newParameters(1);
Ke_o=newParameters(2);
Kh_o=newParameters(3);
Kr_o=newParameters(4);
Kb_o=newParameters(5); %Kb=b.
%using the new parameters to get new output values.
Pt=MyIronPowerLoss(newParameters,input); % prediction of the model which
will fitt to Ptm.
%sortbym=1; %sorting the powers according the measured loss after
fitting.
sortbym=0; %sorting the powers according the calculated loss after
fitting.
if(sortbym==1)
Ptm_s=sort(Ptm);
for i=1:length(Ptm)
inds(i)=find(Ptm==Ptm_s(i));
Pt_s(i)=Pt(inds(i));
f_s(i)=f(inds(i));
end
else
Pt_s=sort(Pt);
for i=1:length(Pt)
inds(i)=find(Pt==Pt_s(i));
Ptm_s(i)=Ptm(inds(i));
f_s(i)=f(inds(i));
end
end
index=kk:length(Ptm)+kk-1;
plotfit(index,ptype,psort,Ptm,Ptm_s,Pt,Pt_s);
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M-File 2:   The initial parameters of the core loss-model. 
 
function [initialpar, lb,ub]=initialConditions(ptype,ro)
switch ptype
case 1 %W/kg.
Kc=1.3112e-5;
Ke=2.9525e-5;
Kh=0.0214;
Kr=0.055;
b=16.0;
initialpar=[Kc Ke Kh Kr b];
lb = [0 0 0 0]; %define the lower bound.
ub =[20 20 20 30]; %define the upper bound.
case 2 %W/m3.
Kc=1.3112e-5;
Ke=2.9525e-5;
Kh=0.0214;
Kr=0.055;
b=16.0;
initialpar=ro*[Kc Ke Kh Kr b];
lb = ro*[0 0 0 0]; %define the lower bound.
ub = ro*[20 20 20 30]; %define the upper bound.
end

 
M-File 3:   Routines of the core loss-model. 
 
function pt= MyIronPowerLoss (param,input) % corelossmodel
Kc = param(1);
Ke = param(2);
Kh = param(3);
Kr = param(4);
b = param(5); %b=Kb
ww=size(input);
[f1 f2]=find(input);
m=ww(2);
m1=max(f1)/2-(ww(1)-max(f1))/2+1;
for j=1:m
dt=input(1,j);
T=input(2,j);
f=1./T;
NTPER=T/dt;
Bx=input(3:m1,j)';
By=input(ww(1)/2+2:max(f1),j)';

%Eddy Current Model.
dBx=numder(Bx);
dBy=numder(By);
dBxdt=dBx/dt;
dBydt=dBy/dt;
dB=dBx+dBy;
IdBI=sqrt(dBx.^2+dBy.^2);
IdBIdt=IdBI/dt;
dBdt=dBxdt+dBydt;
IdBdtI=sqrt(dBxdt.^2+dBydt.^2);
dpc=Kc.*IdBdtI.^2;
pc=numint(dpc)/NTPER;

%Excess Loss Model
IBI=sqrt(Bx.^2+By.^2);
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dIBI=numder(IBI);
dIBIdt=dIBI/dt;
IdIBIdtI=abs(dIBIdt);
dpe=Ke.*IdBdtI.^1.5;
pe=numint(dpe)/NTPER;

%Hysteresis Loss Model
Bs=2.0;
Theta=atan2(By,Bx);
for i=1:length(Theta)

if Theta(i)<0
Theta(i)=Theta(i)+2*pi;

end
end

dTheta=numder(Theta);
IdThetaI=abs(dTheta);
IdThetaIdt=IdThetaI./dt;
dph=Kh.*IBI.*IdBdtI+Kr.*((1-IBI./Bs)./(1+b.*(1-
IBI./Bs).^2)).*IBI.*IdThetaIdt;
ph=numint(dph)/NTPER;
pt(j)=ph+pe+pc; %w/kg
end
return

 
 
 
 
M-File 4:   Numerical derivative. 
 
function dy= numder(y)
nn=length(y);
dy(1)=y(2)-y(1);
dy(nn)=y(nn)-y(nn-1);
for i=2:nn-1

dy(i)=((y(i)-y(i-1))+(y(i+1)-y(i)))/2;
end

return

 
 
 
 
M-File 5:   Numerical integration. 
 
function p=numint(dp)
p=0;
for i=2:length(dp)

p=p+0.5*(dp(i)+dp(i-1));
end
return
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M-File 6:   loading the data obtained from the experimental work. 
 
function [BxBy,Ptm,dt1,T1,ro,k]=dataindex(sample,ptype,psort)
BHG=zeros(500,5000,5);
switch (sample)

case 1
ro=7600;

%10Hz.

%Measurements due to alternating flux in x direction.
x=load('data/sampleG/F10Bx0.21By0.017.txt');BHG(1,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.42By0.016.txt');BHG(2,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.61By0.033.txt');BHG(3,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.81By0.042.txt');BHG(4,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.99By0.051.txt');BHG(5,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx1.2By0.12.txt'); BHG(6,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx1.5By0.31.txt'); BHG(7,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx1.6By0.57.txt'); BHG(8,1:length(x),1:5)=x;

%Measurements due to alternating flux in y direction.
x=load('data/sampleG/F10Bx0.017By0.22.txt'); BHG(9,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.0026By0.44.txt');BHG(10,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.024By0.66.txt'); BHG(11,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.026By0.88.txt'); BHG(12,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.025By1.txt'); BHG(13,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.039By1.2.txt'); BHG(14,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.1By1.4.txt'); BHG(15,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.23By1.6.txt'); BHG(16,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.4By1.7.txt'); BHG(17,1:length(x),1:5)=x;

%Measurements due to rotating flux.
x=load('data/sampleG/F10Bx0.2By0.19.txt'); BHG(18,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.42By0.4.txt'); BHG(19,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.63By0.63.txt');BHG(20,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.81By0.89.txt');BHG(21,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx0.95By1.1.txt'); BHG(22,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx1.2By1.3.txt'); BHG(23,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx1.5By1.5.txt'); BHG(24,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx1.6By1.6.txt'); BHG(25,1:length(x),1:5)=x;
x=load('data/sampleG/F10Bx1.8By1.8.txt'); BHG(26,1:length(x),1:5)=x;
.
.
.
%1000 Hz.

%for another sample.
case 2

ro=7600;

end
m =max(find(BHG(:,1,1)));
k =min(find(BHG(:,1,1)));
jj=0;
for j=k:m

jj=jj+1;
jd=max(find(BHG(j,:,1)));
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t(jj,:)=BHG(j,:,1);
Bx(jj,:)=BHG(j,:,2);
By(jj,:)=BHG(j,:,3);
Hx(jj,:)=BHG(j,:,4);
Hy(jj,:)=BHG(j,:,5);
BxBy(jj,:)=[Bx(jj,:) By(jj,:)];
[k1 k2]=find(t(jj,:));
T(jj)=t(jj,max(k2))-t(jj,1);
f(jj)=1/T(jj);
dt(jj)=t(jj,5)-t(jj,4);

tloss(jj)=0;

for i=2:length(Bx(jj,1:jd))
tloss(jj)=tloss(jj)+0.5*(Hx(jj,i)+Hx(jj,i-1))*(Bx(jj,i)-Bx(jj,i-

1))+...
0.5*(Hy(jj,i)+Hy(jj,i-1))*(By(jj,i)-By(jj,i-1));

end

switch ptype
case 1

Ptm(jj)= abs(tloss(jj)/(ro*T(jj))); %total losses in W/kg

case 2
Ptm(jj)= abs(tloss(jj)/T(jj)); %total losses in W/m3

end

end

if(psort==1)
Ptm_s=sort(Ptm);
for i=1:length(Ptm)
inds(i)=find(Ptm==Ptm_s(i));
Bx1(i,:)=Bx(inds(i),:);
By1(i,:)=By(inds(i),:);

BxBy(i,:)=[Bx1(i,:) By1(i,:)];
T1(i)=T(inds(i));
f1(i)=f(inds(i));
dt1(i)=dt(inds(i));
end
for i=1:length(Ptm)
Ptm(i)=Ptm_s(i);
end
else
T1=T;
f1=f;
dt1=dt;

end

end
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M-File 7:   Plotting of the fitting results. 
 
function plotfit(index,ptype,psort,Ptm,Ptm_s,Pt,Pt_s);

figure(1),
a1=plot(index,Ptm,'-o');
xlabel('Data index','FontSize',12,'FontName','Times')
if(ptype==1)
ylabel('Total power loss, W/kg','FontSize',12,'FontName','Times')
else
ylabel('Total power loss, W/m^3','FontSize',12,'FontName','Times')
end
legend('Experimental')
hold on
a2=plot(index,Pt,'-sr');
legend([a1,a2],'Measured','Fitted')
if(psort==0)
figure(2),
a1=plot(index,Ptm_s,'-o');
xlabel('Data index','FontSize',12,'FontName','Times')
if(ptype==1)
ylabel('Total power loss, W/kg','FontSize',12,'FontName','Times')
else
ylabel('Total power loss, W/m^3','FontSize',12,'FontName','Times')
end
legend('Experimental')
hold on
a2=plot(index,Pt_s,'-sr');
legend([a1,a2],'Measured','Fitted')
end

  


