HELSINKI UNIVERSITY OF TECHNOLOGY

Faculty of Electronics, Communications and Automation

Ari Kerinen

Host Identity Protocol-based Network Address

Translator Traversal in Peer-to-Peer Environments

Master’s Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Technology.

Espoo, September 8, 2008

Supervisor: Professor Jorg Ott

Instructor: Jani Hautakorpi

HELSINKI UNIVERSITY ABSTRACT OF THE

OF TECHNOLOGY MASTER’S THESIS
Author: Ari Kerédnen
Name of the thesis: Host Identity Protocol-based Network Address Translator
Traversal in Peer-to-Peer Environments
Date: September 8, 2008 Number of pages: 79 + 5
Faculty: Electronics, Communications and Automation
Professorship: S-38
Supervisor: Prof. Jorg Ott
Instructor: Jani Hautakorpi, M.Sc.

Network Address Translators (NATSs) cause problems when peer-to-peer (P2P) connections
are created between hosts. Also the Host Identity Protocol (HIP) has problems traversing
NATs but, with suitable extensions, it can be used as a generic NAT traversal solution. The
Interactive Connectivity Establishment (ICE) is a robust NAT traversal mechanism that can
enable connectivity in various NAT scenarios. The goal of this thesis is to enable HIP-based
NAT traversal using ICE and to evaluate the applicability of the approach by implementation

and measurements.

We implemented an ICE prototype and tested it with different types of NATs. We used a
network where two hosts were in different subnets and run ICE connectivity checks between
them. The amount of messages and bytes sent during the process, and also how long the process
took, was measured and analyzed. Based on the measurements, we calculated the overhead of
using HIP with ICE for NAT traversal.

ICE was able to create a connection in all the scenarios, but sometimes using more messages
and longer time than expected or necessary. We found reasons why too many messages are
exchanged and presented solutions on how some of these redundant messages could be avoided.
We also found out that while 4-5 connectivity check messages are enough in many scenarios,
NATs with specific address mapping behavior can easily double the amount of needed checks.
Still, the generated traffic bitrate is modest, and using shorter timeout values than what the ICE
specification suggests can have a significant positive impact on performance. By using HIP
with ICE, P2P programs can get an efficient NAT traversal solution that additionally supports
security, mobility and multihoming.

Keywords: NAT, HIP, ICE, NAT traversal

TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA

Tekija Ari Kerédnen

Tyon nimi: Koneen identiteetti protokolla -pohjainen

osoitteenmuuntajien ldpiisy vertaisympiristoissa

Paivamaira: 8.9.2008 Sivuja: 79+ 5
Tiedekunta: Elektroniikka, tietoliikenne ja automaatio
Professuuri: S-38

Tyon valvoja: Prof. Jorg Ott

Tyon ohjaaja: DI Jani Hautakorpi

Osoitteenmuuntajat aiheuttavat ongelmia vertaisverkkojen yhteyksien luomiselle. My0s
koneen identiteetti protokolla (HIP) kérsii osoitteenmuuntajien aiheuttamista ongelmista, mutta
sopivilla laajennuksilla sitd voidaan kayttdd yleisend osoitteenmuuntajien lapdaisymenetelméana.
Interaktiivinen yhteyden luominen (ICE) on tehokas osoitteenmuuntajien ldpdisymenetelmi,
joka toimii monissa erilaisissa tilanteissa. Tamin diplomityon tavoitteena on mahdollistaa HIP-
pohjainen osoitteenmuuntajien lipdisy kdyttdmalld ICE-menetelméd, ja arvioida menetelmén

toimivuutta implementoinnin ja mittausten avulla.

Implementoimme ICE-prototyypin ja testasimme sitd eri tyyppisten osoitteenmuuntajien
kanssa. Kéytimme mittauksissa verkkoa, jossa kaksi isdntikonetta olivat eri aliverkoissa, ja
suoritimme ICE-yhteystestejd ndiden koneiden vililla. Mittasimme testeisséd lahetettyjen vi-
estien ja tavujen maérén sekd kiytetyn ajan. Mittaustulosten perusteella laskimme myds arvion

ICE:n ja HIP:in aiheuttamalle ylim#irdisten viestien ja ajankdyton miérille.

ICE onnistui luomaan yhteyden kaikissa testaamissamme tilanteissa, mutta kaytti vililld en-
emmin viestejd ja aikaa kuin olisi tarpeen. Selvitimme tydssi syyt yliméirdisille viesteille ja
esitimme keinoja viestien médrin vihentimiselle. Saimme myds selville, ettd suuressa osassa
tilanteista 4-5 yhteystestiviestid riittdd yhteyden luomiseksi, mutta tietynlaista osoitteenmuun-
nosta kiyttavit osoitteenmuuntajat voivat helposti tuplata viestien méérdn. Joka tapauksessa,
yhteystestien luomat liikkenneméiérét ovat vihdisiid, ja kiyttamilld lyhyempid ajastinaikoja kuin
mitd ICE spesifikaatio ehdottaa, voidaan ICE:n tehokkuutta kasvattaa merkittavisti. Kayt-
tamalld HIP:id ICE:n kanssa vertaisverkko-ohjelmat voivat saada kdyttoonsa tehokkaan osoit-
teenmuuntajien lapdisymenetelmén, joka tukee myos yhteyden turvaominaisuuksia, mobiliteet-

tia, seki useita yhtédaikaisia verkkoliitdntoja.

Avainsanat: NAT, HIP, ICE, osoitteenmuuntajien ldpéisy

il

Acknowledgments

This Master’s thesis has been done at Ericsson Research Finland, NomadicLab, for the

Decentralized Inter-Service Communications (DECICOM) project.

Professor Jorg Ott has supervised my thesis and I want to thank him for all the valuable
comments, inspirational ideas and well working communication. It has been, again, a joy

to work with you.

I wish to thank my thesis instructor Jani Hautakorpi for the guidance and feedback during
this process, for helping to keep the scope and time frame of the thesis manageable, and for
all the interesting and enjoyable discussion on (and often off) topic.

I would also like to thank my other colleagues at the NomadicLab; especially Jan Mélen for
helping with the Host Identity Protocol and clarifying numerous unexpected things ranging
from kernel behavior to exotic features of C, Martti Kuparinen for helping setting up the
prototyping network, Jukka Ylitalo and Kristian Slavov for generously helping me numer-
ous times, and Gonzalo Camarillo for providing the resources for this work and managing
a section where it has been fun to do research.

Finally, I want to express my deepest gratitude to Tanja, to my friends, and especially to my

parents for all the support throughout my studies.

Otaniemi, September 8, 2008

Ari Kerdnen

1ii

Contents

Abbreviations

List of Figures

List of Tables

1 Introduction

1.1 Goal and Scope of the Thesis

1.2 Structure of the Thesis e

2 Background

2.1 Network Address Translation

2.1.1
2.1.2
2.13
214
2.15
2.1.6

Basic Network Address Translator
Network Address and Port Translator
Address Unbinding,
Benefits of Network Address Translation
Problems Caused by Network Address Translation

Ambiguity of Topology Caused by NATs

2.2 NAT Classification o i i i it

221
222
223
224

Mapping Behavior
Filtering Behavior
Port Assignment Behavior oo

Hairpinning Behavior L.

Y

ix

xi

xii

3

2.2.5 Mapping Refreshment L. 16

2.2.6 Different Types of NATs in the Internet 16
23 NAT Traversal 17
2.3.1 UDPHolePunching 17
232 STUN . . .o e 18
233 TURN. . . . e 20
2.4 Interactive Connectivity Establishment 22
24.1 BasicOperation. v 22
242 AdvancedFeatures 24
2.5 Peer-to-Peer Session Initiation Protocol 27
2.6 HostIdentity Protocol 28
2.6.1 Mobility, Multihoming and Security 29
2.6.2 Creatinga HIP Connection 29
2.6.3 Proposed NAT Traversal Solutions 31
27 Summary e e e e 32
NAT Traversal Using HIP with ICE 33
3.1 Needfor NAT traversal 33
3.1.1 Benefits and Drawbacks of Using HIP 34
3.2 Integrating ICEintoHIP 34
3.22.1 UDPEncapsulation. 35
3.2.2 HIPSignalingPath 35
3.23 ICE ConnectivityChecks 37
3.3 Implementation Architecture 37
34 ImplementingICE 39
3.4.1 Differences From the Specification 39
3.4.2 Sending Checks From Different Interfaces 40
3.4.3 Stopping the Connectivity Checks 40
3.5 Summary e e e 42

4 Measurements and Evaluation 43

4.1 Theoretical NAT Traversal UsingICE 43
4.1.1 Impact of Mapping and Filtering Behavior 43

4.1.2 Multiple Layersof NATs 45

4.2 Prototyping Environment 46
4.3 Observations on NAT Behavior 47
44 MeasurementResults Lo oL Lo 49
441 SelectedPath 50

442 Numberof Messages 51

443 TrafficVolume 54

444 Check Durations 55

4.4.5 Two Hosts in the Same Subnet 57

4.5 Measurement Analysiso 57
4.5.1 Numberof Messages 58

4.5.2 TrafficVolume 61

453 Check Durations 64

454 Two Hosts in the Same Subnet 65

455 QuickMode e 66

4.5.6 Generality of the Measurement Results 67

4.6 SUMMATYt ot e e e e e e e e 68
5 Discussion 69
5.1 HIP as a NAT Traversal Solution for P2PSIP 69
5.1.1 Using P2PSIP Overlay with HIP 69

5.1.2 Costof HIP-ICEin P2PSIP 71

52 FutureWorko 74
5.2.1 EnhancingICE 74

5.2.2 Further Evaluationof ICE 76

5.3 Summary e 77

vi

Conclusions

Linux NAT configuration

Linux NAT behavior

Results of the Quick Mode

Capture of a HIP Base Exchange

vii

78

86

87

88

90

Abbreviations

ALG
API
BEET
DES
DoS
ESP
GSM
GPRS
HIP
HMAC
ICE
ICMP
ICV
IETF
IKE
1P
IPsec
v
ITU
LAN
MTU
NAPT
NAT
P2P
PSTN

Application Layer Gateway

Application Programming Interface
Bound End-to-End Tunnel

Data Encryption Standard

Denial of Service

Encapsulating Security Payload

Global System for Mobile communications
General Packet Radio Service

Host Identity Protocol

Hash Message Authentication Code
Interactive Connectivity Establishment
Internet Control Message Protocol
Integrity Check Value

Internet Engineering Task Force

Internet Key Exchange

Internet Protocol

IP Security

Intialization Vector

International Telecommunication Union
Local Area Network

Maximum Transmission Unit

Network Address and Port Translation / Translator
Network Address Translation / Translator
Peer-to-Peer

Public Switched Telephone Network

viii

RFC
RTO
RTP
RTPC
RTT
RVS
SDP
SHA-1
SIMA
SIP
STUN
TCP
TLS
TLV
TURN
UA
UDP
VPN
WLAN

Request for Comments
Retransmission TimeOut
Real-time Transport Protocol

RTP Control Protocol

Round-Trip Time

RendezVous Server

Session Description Protocol
Secure Hash Algorithm 1
Simultaneous Multi Access
Session Initiation Protocol

Session Traversal Utilities for NAT
Transmission Control Protocol
Transport Layer Security

Type Length Value

Traversal Using Relays around NAT
(SIP) User Agent

User Datagram Protocol

Virtual Private Network

Wireless LAN

X

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
32
33

Example NAT scenarios in the Internet 5
Basic NAT with outbound connection 6
Basic NAT withreturn traffic 6
Basic NAT with two simultaneous outbound connections 7
NAPT with two simultaneous outbound connections 8
NAPT with two simultaneous sessions with incoming packets. 8
NAT scenario with multiple layers of NATs 11
Example of endpoint-independent mapping 12
Example of address-dependent mapping 13
Example of address and port-dependent mapping 13
NAT hairpinning behavior 0. 15
STUN binding requestexample 20
Example TURN deployment 21
ICE connectivity checks in a simple NAT scenario 24
P2PSIP reference architecture 28
TCP/IP stack with HIP 30
The HIP base exchange 30
UDP encapsulated HIP control packet 35
HIP base exchange viaaHIPRelay 36
ICE library architecture 38

4.1
4.2
43
4.4
45
4.6
47
4.8
4.9
4.10
4.11

5.1

C.1
C2
C3
Cc4
C5
C.6
C.7
C.8

NAT scenario with two hosts behind multiple layers of NATs
Prototyping environment’s network topology

Failing connectivity checks between two hosts behind Linux NATs

Average number of messages sent during the ICE connectivity checks

Number of messages sent in non-NATed scenarios
First successful test’stime
Time when all checksaredone
First successful test’s time in non-NATed scenarios
Time when all checks are done in non-NATed scenarios
Situation resulting in an extra connectivity check

ICE connectivity check request message structure

Encapsulation of data in HIP initiated connections

Average sent messages in the quickmode L.
Number of messages sent in the quick mode in non-NATed scenarios
Average sent bytes in the quick mode
Sent bytes in the quick mode in non-NATed scenarios
First successful test’s time in the quickmode

Time when all checks are done in the quick mode

First successful test’s time in the quick mode in non-NATed scenarios

Time when checks are done in the quick mode in non-NATed scenarios . . .

X1

72

88
88
89
89
89
&9
&9
89

List of Tables

4.1 NAT scenario notations o v vt v v it 50
4.2 Selected path in different NAT scenarios 51
4.3 Amount of bytes sent during the ICE connectivity checks 54
4.4 Amount of bytes sent in non-NATed scenarios 55

Xii

Chapter 1

Introduction

When the Internet and the Internet Protocol (IP) version 4 [42] were devised in the late
1970’s and early 1980’s, an address space with 32 bits, resulting in more than 4 billion ad-
dresses, was assumed to be enough for giving all the hosts in the Internet a unique, globally
routable address. This seemed more than enough at the time since the amount of computers
was still quite limited and the Internet, or actually its predecessor ARPANET, was mainly
used by universities and the military in the United States.

However, with the exponential growth of the Internet, already in the early 1990’s it was
becoming clear that there would not be enough IP addresses for all hosts that people would
like to connect to the Internet. Since then, the problem has just become more severe because
many homes today do not only have a personal computer that is used to connect to the
Internet, but there may be multiple devices, such as laptops, game consoles, and cellular
phones, that can be used to access the Internet, too. To fight the address depletion, work for
a new version of the IP (version 6) with a larger address space was started, but also short
term solutions were created. One of these solutions was Network Address Translation. [14]

With address translation, a private network can use certain blocks of IP addresses with-
out consuming globally routable addresses. A device called Network Address Translator
(NAT) is used to enable the hosts within a private network to communicate with hosts in the
global Internet. To be able to conserve addresses, a NAT has only a small amount of public
addresses to assign to the hosts in the private network it serves. For this reason, all the hosts
in the private network may not be able to have a constant, globally routable (also known as
public) address. Still, to be able to communicate with another host across the Internet, such
an address is needed. NATs can provide addresses for the hosts behind them, but normally
they do so only when a host in the NATed network initiates the connection. NATs were not
an issue some years ago when majority of the Internet traffic was client-server based since

dedicated servers are not usually behind a NAT. With the advent of peer-to-peer (P2P) mul-

CHAPTER 1. INTRODUCTION 2

timedia communication and file sharing programs, the focus is shifting from client-server
to P2P communication. Since a peer, often working on a host that is in a private home or
corporate network, is more likely to be behind a NAT, contacting it may no longer be trivial.

One example of a P2P communication system where NATs cause problems is the P2P
Session Initiation Protocol (P2PSIP) [6]. In P2PSIP networks, the infrastructure is spread
among the hosts (peers) participating in the network. Peers form an overlay network, a net-
work on top of the IP network, and run together a distributed database algorithm using the
overlay. The distributed infrastructure provides means for publishing e.g., contact informa-
tion and querying it from the overlay. To be able to participate in the overlay, peers need
to make connections to other peers in the network. Before such connections can be made
between peers in different public and private networks, peers that are behind a NAT need
to obtain a public address and make sure that the other peers can contact it. In addition to
participating in the overlay, when the peers want to communicate directly with each other,
they need to work their way through the NATSs in between them.

For solving the connectivity problems that NATs cause, several different workarounds
have been created and they are commonly called NAT traversal solutions. Many P2P appli-
cations have developed their own NAT traversal mechanisms for solving the problems but
they usually work only in some NAT scenarios, may need relaying of all the traffic through
a separate relay that all communicating hosts can connect to, or require manual configura-
tion of the NAT from the user. Since the problem is so widespread, it would make sense to
solve the issue in a lower layer in the protocol stack.

The Host Identity Protocol (HIP) provides an architecture [32] and a set of protocols
[34, 26, 35] for creating secure connections that support mobility and multihoming between
hosts. HIP is designed in a way that applications using the transport protocols provided by
the operating system do not necessarily need to be even aware of it. If HIP is able to create
a connection through the NATs between the peers, any application can use that path. This
way, HIP can potentially decrease, or even completely remove, the need for application
specific NAT traversal solutions and alleviate the problems that NATSs pose to peer-to-peer

applications desiring to communicate in the Internet.

1.1 Goal and Scope of the Thesis

Currently HIP has only limited NAT traversal capabilities [60]. The goal of this thesis is
to extend these capabilities so that HIP can be used successfully in different NAT scenarios
and to evaluate the solution’s effectiveness by implementation and measurements. For this
purpose, necessary extensions for HIP are presented and a suitable NAT traversal library

is implemented. The performance of the library is evaluated and the applicability of the

CHAPTER 1. INTRODUCTION 3

approach to peer-to-peer environments is discussed. The main performance metrics that we
are interested are: is our solution able to create an optimal path between two hosts, how
long does this process take, and how much overhead in terms of sent messages and bytes
does this require?

This thesis is focused on solving NAT traversal problems, so even if the same methods
can be used to traverse also other types of middleboxes, such as stateful firewalls, generic
middlebox traversal is out of the scope. Specifically, we focus on the traversal of legacy
NATs which do not support HIP specific NAT traversal solutions. Also, the main focus of
the implementation and evaluation is on the NAT traversal library and its integration to a

HIP implementation is left for future work.

1.2 Structure of the Thesis

In this chapter we briefly introduced the problem area and defined the goal and scope of the
thesis. Chapter 2 offers an overview of the background of the work and introduces related
work. Chapter 3 presents the implemented NAT traversal solution prototype, implemen-
tation experiences, and how the implementation can work together with HIP. In Chapter
4 we present results of the measurements we performed on the prototype and analyze the
results evaluating how well the prototype works in different scenarios. Chapter 5 contains
discussion on using HIP with ICE as a NAT traversal solution for P2PSIP based on the re-
sults from the previous section and also introducing new ideas for improving ICE. Finally,

in Chapter 6, we summarize our results and draw final conclusions from the work.

Chapter 2
Background

In this chapter we present relevant background and context for this thesis. We first introduce
the concept of Network Address Translation and discuss some of the benefits and problems
of it. Then, we present different NAT types and a way of classifying them by their behavior.
Following sections introduce NAT traversal and different ways to do it. Some of the most
relevant NAT traversal methods for this thesis are discussed in more detail. Finally, Host
Identity Protocol and Peer-to-Peer Session Initiation Protocol are briefly introduced before
summarizing the background of this work.

2.1 Network Address Translation

The networks connected to the Internet have different address realms. Within each realm a
host has a unique address which can be used to route IP packets to it. In Network Address
Translation, IP addresses are mapped from one address realm to another by changing the
addresses of the packets passing by the realm border so that the addresses are valid within
the address realm where they are routed into. [57]

The most common reason for performing address translation is the use of private range
addresses [44] in a stub network. A NAT that resides on the border of the networks can
assign public addresses for the hosts that need them, so they are able to communicate with
other hosts having a public address.

The assignment and change of addresses performed by the NAT's is meant to be transpar-
ent for the end hosts. For a host communicating with another host behind a NAT, the traffic
seems to be coming from, and can be sent to, the address of the NAT. However, the host
behind the NAT sees that the traffic was destined to it’s private range address and can also

use that as the source address.

CHAPTER 2. BACKGROUND 5

In addition to the transparent routing and address assignment, a NAT should also change
the contents of the Internet Control Message Protocol (ICMP) error messages that contain
host addresses in their payload.

A host may end up behind a NAT for many reasons. Today, a common reason is that a
host is in a home network that has only a single IP address provided by the Internet Service
Provider (ISP). An example of this is the laptop and PC 2 in Figure 2.1. There can be also
multiple layers of NATs as for the PC 3 in the same figure. Similarly, a mobile device
connected to the Internet using a cellular network may have to connect through a NAT that
is in the mobile provider’s network. If any of these hosts want to communicate with the
World Wide Web (WWW) server or PC 1, they need to obtain a public address on the NAT.
Also, if PC 1 would like to connect to any of the devices behind a NAT, it would need to
use an address that the NAT with a public address has assigned for the host. [15]

&

Figure 2.1: Example NAT scenarios in the Internet

There exists several different types of NATS, but we focus on the traditional NATSs [55]
which are the basic NAT and the Network Address and Port Translator (NAPT). These two
types make up the vast majority of the deployed NATsS in the Internet with NAPT being the
most common one. Both of them are referred to as NAT unless there is a need to make a
distinction between them.

Both type of NAT's work in three phases. First, they need to assign addresses for the hosts
in the private network they are serving. This can be done either in a static or dynamic way

and is called address binding. In static assignment, the binding is pre-configured and stays

CHAPTER 2. BACKGROUND 6

the same for the lifetime of the NAT operation or when it is changed by configuration. Dy-
namic binding happens when an outbound session is started by a host in the private network:
when the NAT detects a new session, it chooses one of its currently free public addresses
to be used for all packets belonging to this session. During the address lookup and transla-
tion phase, outgoing packets belonging to the same session will have their source address
changed so that they appear to originate from the NAT, and incoming packets’ destination
address is changed so that they are properly routed to the originator of the session. Finally,
if the session that created a dynamic binding is ended, the binding may be terminated to

free the public address for re-use.

2.1.1 Basic Network Address Translator

A basic NAT has a block of public IP addresses that it can assign for the hosts in the private
network. When a new IP packet is sent by a host (IP address 10.1.0.2 in Figure 2.2) in the
private network to a host in the public network (address 138.76.29.7), the NAT takes one of
the IP addresses reserved for NATing (198.76.28.1) and binds that for the host in the private
network. Now, for the remote host, the connection looks like it’s coming from the address
of the NAT.

src: 10.1.0.2 src: 198.76.28.1
dst: 138.76.29.7 dst: 138.76.29.7
» NAT >
private network public network

Figure 2.2: Basic NAT with outbound connection

When the remote host sends a packet back to the public address the NAT made the bind-
ing for, the NAT translates the destination address of the packet to point to the host in the
private address as shown in Figure 2.3. For the host in the private network the source ad-
dress of the packet is still the same where it sent the packet to in the first stage but the

destination address is its private range address.

src: 138.76.29.7 src: 138.76.29.7
dst: 10.1.0.2 dst: 198.76.28.1
<« NAT |«
private network public network

Figure 2.3: Basic NAT with return traffic

CHAPTER 2. BACKGROUND 7

If another host in the private network wants to communicate with a host in the pub-
lic network at same time, the NAT has to allocate another public IP address (in this case
198.76.28.2) for it as shown in Figure 2.4. Because each host initiating connections outside
of the private network gets a unique public address, if all the hosts in the private network

create such connections at the same time, basic NAT does not save IP addresses.

session 1 session 1

src: 10.1.0.2 src: 198.76.28.1

dst: 138.76.29.7 dst: 138.76.29.7
> NAT

session 2 session 2

src: 10.1.0.3 src: 198.76.28.2

dst: 138.76.29.9 dst: 138.76.29.9
private network public network

Figure 2.4: Basic NAT with two simultaneous outbound connections

2.1.2 Network Address and Port Translator

A NAPT works in a similar way as the basic NAT, but instead of using just IP addresses,
it also uses transport layer, e.g., Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP), ports to multiplex connections to a single public IP address. This way the
NAPT needs just one public IP address for serving multiple hosts in the private network.
A combination of an IP address and a transport layer port is called a transport address. In
Figure 2.5 two host from addresses 10.1.0.2 and 10.1.0.3 want to start TCP connections
using a local port 2000 to web servers (port 80) in addresses 138.76.29.7 and 138.76.29.9.
In this example, the NAPT uses only a single public IP address, 198.76.28.1, for both
of the sessions, but reserves the port 3000 for the first session and the port 3001 for the
second session.

With incoming packets the NAPT translates the port numbers in addition to the addresses
as shown in Figure 2.6. The incoming packet to port 3000 belongs to the first session and
is translated to address 10.1.0.2 and port 2000, on the other hand, the packet to port 3001
belongs to the second session and is translated to address 10.1.0.3 and port 2000.

Because ICMP messages do not use any transport layer, a NAPT that allows ICMP
queries from private network to public side must multiplex them by the query identifiers.
When a response to a query arrives to the NAT, it checks if a query with that identifier was

recently sent by a host in the private network and send the response to that host’s IP address.

CHAPTER 2. BACKGROUND 8

session 1 session 1

src: 10.1.0.2:2000 src: 198.76.28.1:3000
dst: 138.76.29.7:80 dst: 138.76.29.7:80
session 2 session 2

src: 10.1.0.3:2000 src: 198.76.28.1:3001
dst: 138.76.29.9:80 dst: 138.76.29.9:80
private network public network

Figure 2.5: NAPT with two simultaneous outbound connections

session 1 session 1

src: 138.76.29.7:80 src: 138.76.29.7:80
dst: 10.1.0.2:2000 dst: 198.76.28.1:3000
session 2 session 2

src: 138.76.29.9:80 src: 138.76.29.9:80
dst: 10.1.0.3:2000 dst: 198.76.28.1:3001
private network public network

Figure 2.6: NAPT with two simultaneous sessions with incoming packets

2.1.3 Address Unbinding

To be able to re-use the public addresses, a NAT has to remove the binding when a con-
nection is no longer in use. A NAPT can observe the TCP packets it translates, and after a
connection tear down or reset, it can remove the binding. TCP has special flags in all the
packets that tell if a packet is starting a new connection or ending an existing one. However,
plain IP (in case of basic NAT) and UDP do not have such a connection setup and tear down
phases, so NATs have no easy way of knowing when it is safe to remove the binding. A NAT
could keep the binding alive as long as it has free resources left, but often a timer is used and
if there is no traffic on the path for certain amount of time, the binding is discarded. Also,
a TCP connection may end without proper connection tear down packets if one or both of
the hosts, e.g., lose connection or reboot. Because of this, NATs also needs to remove TCP
connections that have been idle for a long time. However, the time a TCP connection can
be idle without losing the NAT state is often much longer than for UDP. [2, 16]

CHAPTER 2. BACKGROUND 9

2.1.4 Benefits of Network Address Translation

The ability to conserve IP addresses is a clear benefit especially for the NAPT type of NATsS,
however, NATs provide also other benefits such as avoiding network renumbering, hiding
network topology, and some level of security.

By using private address range addresses for the hosts, a network can hide topology
changes outside of its domain because they will affect only the NAT’s address. This makes,
e.g., changing ISP easier, since normally the address block that was given by the previous
ISP is not likely available from the other ISP due to IPv4 address assignment guidelines.
The topology hiding also works the other way around since all the traffic from the network
behind a NAT seems to originate from the NAT device. Because the hosts in the public
network do not know the real address of the host initiating the connection, NATs can be
seen to increase users’ anonymity. In addition, because a NAT blocks inbound connections
unless they are allowed by a static mapping, it works in a similar way as a stateful packet
filtering firewall. Nevertheless, since NATs are made for address translation rather than
packet filtering, relaying on such a behavior is not recommendable. For example, NAT
bindings can change dynamically over time and a new outbound session may allow inbound

connections to a neighboring host. [18, 14]

2.1.5 Problems Caused by Network Address Translation

Using NATSs in the network is by no means free of problems and this was already mentioned
by the authors of the first Request For Comments (RFC) defining NAT [14]. Egevang and
Francis note especially that NATs break certain applications and that the appropriateness
of NATSs as a solution, even as short term, to the problem of address depletion should be
determined by implementation and experimentation.

First of all, NATs break the Internet end-to-end model by introducing critical state in the
network: if a NAT device fails, all the connections that were using it will fail too because,
even if the NAT is replaced, the mappings it used for the connections are gone. Adding
redundant NATSs and replicating the state information between them can help to some extent,
but it also creates new problems with communicating the state information. [18]

Another problem is that hosts will not have a consistent view on their address. A host in
the private network thinks it is using the private range address whereas hosts communicating
with it through the public network see the public address given by the NAT. Problems arise
if the host communicates the private range address in an application layer protocol message.
If the private address is communicated to other hosts outside of the private network, the
address will not be routable or may even be routed to a wrong host in the other host’s
network. Examples of protocols that carry addresses in application layer messages are the
File Transfer Protocol (FTP) [43] and the Session Initiation Protocol (SIP) [51].

CHAPTER 2. BACKGROUND 10

The problem with application layer communicating private range addresses can be solved
to some extent with an Application Layer Gateway (ALG) working together with the NAT
[20]. The ALG can inspect the application layer messages and change occurrences of the
private range address with the address that the NAT uses for the session. For this to work
reliably, the ALG needs to know the details of the upper layer protocol and therefore ALGs
will likely not work with less known protocols or protocols that were created after the ALG
was programmed. A generic ALG can try to blindly scan any occurrences of the private
range IP addresses, but this can lead to even more problems [49].

Some NATsS are also known to perform badly with fragmented IP packets. Fragmentation
may occur in the network if the Maximum Transmission Unit (MTU) of an on-path link is
smaller than the size of the IP packet sent to that link. If a fragment arriving at a NAT does
not have a complete TCP or UDP header, the NAT can not make the address translation and
may choose to simply drop it [10]. Even if a NAT tries to assemble the fragments into a full
IP packet, it may choose to ignore fragments coming out-of-order and fail assembling them.
Also, fragmentation may even corrupt unrelated sessions: two hosts behind the same NAT
may send data to the same host in the public network and both can have packets fragmented
which happen to use the same fragmentation identifier. Because fragments after the first
segment do not have the TCP/UDP port information, the target host sees just fragments
with the same fragmentation identifier coming from the same (NAT’s) host address and
cannot determine to which session the fragments belong to. [55]

A whole different set of problems is introduced by NATs to IPsec connections. For
example, if the IP addresses of the packets are secured against tampering with an IPsec
Authentication Header, a NAT that changes the addresses results in packets being dropped
as invalid by the receiver. Also, IPsec Encapsulating Security Payload (ESP) will not pass
NATsS properly since the TCP/UDP headers are encrypted and NAT's need to change at least
the header checksums due to change in the IP address. Since many NATSs require transport
layer identifiers for multiplexing the traffic, plain ESP over IP will not pass such NATSs but
it must be run over a transport protocol. In addition, even if ESP is run over a transport
protocol, since it encrypts the contents, ALGs can not fix any private range addresses that
are used by the application layer protocols. Also other protocols that secure connections,
such as Transport Layer Security (TLS) [13], suffer from the same problems. [1]

Yet, maybe the biggest problem with NATSs in peer-to-peer environments is that they of-
ten block incoming connection attempts altogether. As described in the previous sections,
a NAT can only forward data to a host in the private network if it has an active mapping
between the public and the private address (possibly including the transport layer identi-
fiers). Even if there is a mapping for a public address to an address in the private network,
the public address may be valid for only some hosts in the public network, or even only for

CHAPTER 2. BACKGROUND 11

some transport layer ports. Whether an incoming packet is accepted or not in such a case
depends on the behavior of the individual NAT. Unfortunately, a recommended behavior
has not been standardized until recently [2], so there exists a lot of legacy NATs whose
behavior can be unexpected, and often bad, for peer-to-peer traffic. [56]

Once IPv6 is widely deployed, there is no longer such a need to conserve addresses,
but some of the features of NATS, or even IPv6 NATs, are likely to persist in the Internet.
For example, for an IPv4 capable node to be able to communicate with IPv6 nodes, some
address translation will be needed, and a NAT performing IPv6-IPv4 translation can be a
solution for this [9]. Also, because of the benefits presented in Section 2.1.4, some networks
may choose to use NATSs even if they are not necessarily needed. However, there are also
ways to perform many of these features without a NAT in an IPv6 networks and they are
described in [11].

2.1.6 Ambiguity of Topology Caused by NAT's

In addition to the problems described in the previous section, NATs can also cause ambi-
guity in the network topology. As shown in Figure 2.1, there may be multiple layers of
NAT's between the hosts. Even though we have referred to the other side of the NAT as the
private and the other as the public side, the public side may not necessarily be the same for
all hosts. Also, even if a host uses the same source address, it may appear to be at different

addresses depending on the receiver of the data. Example of this is shown in Figure 2.7.

|
(D

NAT2 Host C

Figure 2.7: NAT scenario with multiple layers of NAT's

In the figure, for host B, host A seems to come from the address of NAT1, which is in the
private network for host B. Yet, for host C, both A and B appear be at the address of NAT2
[10]. Still, for the sake of simplicity, we continue to refer to the side of the NAT where the

inbound connections are coming from, as the public side.

CHAPTER 2. BACKGROUND 12

2.2 NAT Classification

The operation of traditional NATs seems quite straightforward: once there is an address
(and possibly a transport layer port) reserved on the NAT’s public side, the hosts on the
public side can use that binding for sending data back to the host in the private network.
However, NAT implementations differ in the way how other remote hosts than those to
which the connection was initially made to, are able to use the binding. Also, there are
differences on how NATs handle simultaneous connections started from the same private
address and port but destined to a different remote host. These differences can be described
with NAT mapping, filtering, and port assignment behavior which are defined in [2] and

summarized in the following sections.

2.2.1 Mapping Behavior

The first outgoing packet through a NAT from a private address and port makes the NAT
assign a public address and port that the traffic to the other direction can use by creating a
mapping between the internal IP:port and external IP:port tuple. Depending on the mapping
behavior of the NAT, this same mapping may or may not be used by other simultaneous
sessions.

In case of endpoint-independent mapping, as long as the source address and port of the
host in the internal side of the NAT do not change, the same external tuple will be used
for all outbound connections, regardless of the destination address or port. An example
of this is shown in Figure 2.8. Here, both sessions have the same source address and port
(10.1.0.2:2000) but different destinations. The NAT uses the same external address and port
(198.76.28.1:3000) for both of the connections.

session 1
session 1 src: 198.76.28.1:3000
src: 10.1.0.2:2000 dst: 138.76.29.7:80
dst: 138.76.29.7:80

NAT

session 2
src: 10.1.0.2:2000 session 2
dst: 138.76.29.9:80 src: 198.76.28.1:3000

dst: 138.76.29.9:80
private network public network

Figure 2.8: Example of endpoint-independent mapping

CHAPTER 2. BACKGROUND 13

If the mapping behavior is address-dependent, the two sessions in the previous example
will have a different external port given by the NAT. In Figure 2.9, the source and desti-
nation addresses and ports of the endpoints are the same as before, but the NAT uses port
3001 instead of 3000 for the second session. If the NAT has a pool of public IP addresses
(in case of basic NAT), it may even give the second session a different public address. If the
destination address of the second session would have been the same as for the first session,

the NAT would have re-used the first session’s mapping.

session 1
session 1 src: 198.76.28.1:3000
src: 10.1.0.2:2000 dst: 138.76.29.7:80
dst: 138.76.29.7:80

NAT

session 2
src: 10.1.0.2:2000 session 2
dst: 138.76.29.9:80 src: 198.76.28.1:3001

dst: 138.76.29.9:80
private network public network

Figure 2.9: Example of address-dependent mapping

An even more fine grained version of mapping is the address and port-dependent map-
ping. Here, even if the destination address of the second session is the same as for the first
session, but the destination port is different, the NAT will create a new mapping for the ses-
sion. In Figure 2.10, the first session remains the same as in the previous examples, but the
second session is now destined to the same host. However, since the NAT is now address
and port-dependent, it maps it to a new port (3001) on the public side. Both previous types

of mapping behavior would have re-used the first session’s mapping.

session 1
session 1 src: 198.76.28.1:3000
src: 10.1.0.2:2000 dst: 138.76.29.7:80

dst: 138.76.29.7:80
»| NAT
session 2

src: 10.1.0.2:2000 session 2
dst: 138.76.29.7:8080 src: 198.76.28.1:3001

dst: 138.76.29.7:8080

private network public network

Figure 2.10: Example of address and port-dependent mapping

CHAPTER 2. BACKGROUND 14

Out of these three, the endpoint-independent mapping behavior is recommended by [2]
since it is the best for many of the NAT traversal techniques. Also, in case the NAT has
a pool of public IP addresses, it should assign the same address for sessions originating
from the same host in the private network. Otherwise protocols that assume all connections

coming from a single host to be using the same source address will fail.

2.2.2 Filtering Behavior

The way how NATSs create mappings does not necessarily correlate on how they allow
incoming packets from different remote hosts through those mappings. Instead, this is
decided by the NATs filtering behavior.

Once a mapping is created on the NAT by a host in the private network sending an
outbound packet through it, a NAT that performs endpoint-independent filtering allows any
host on the external side of the NAT to use the same mapping, i.e., public address and port
on the NAT, for sending packets back to the host in the private network.

Address-dependent filtering is a more strict filtering behavior where a mapping can only
be used by hosts in the public network that have received packet(s) from the host in the
private network using that mapping. So, even if a mapping on the NAT exists, the NAT will
drop all incoming packets that are coming from an unknown address. The host in the private
network must first send a packet to that address using the same source port (and therefore
the same NAT mapping) that initially created the mapping. The destination and source port
of the remote host does not matter, so the remote host can send traffic back from any port
as long as the return traffic uses the same mapping on the NAT.

The most strict filtering behavior, address and port-dependent filtering, behaves similarly
to the address-dependent filtering, but now also the port of the remote host counts. That
is, the remote host must send data back from the same port where the host in the private
network has previously sent data to.

Endpoint-independent filtering is the recommended way by [2] to maximize application

transparency and allow NAT traversal without the need for a relay.

2.2.3 Port Assignment Behavior

A NAT may assign arbitrary ports for sessions from its reserve of free ports, or it may make
the decision based on the port the host in the private network used as the source port. A
port preserving NAT tries to use the same port in the public side as the host in the private
side selected. If the port is already used by a different host and session, the NAT may select
a different IP address (if it has more than one) for the new session, use a different port for

the new session, remove the old session, or even use the same port for both of the sessions.

CHAPTER 2. BACKGROUND 15

Especially the last option, called port overloading, can lead to unexpected behavior and [2]
recommends that is must not be used.

In addition to the port number, also the port number parity can be preserved by NATS.
A NAT using port parity preservation maps even internal ports to even external ports and
odd ports to odd ports. For example, specification of Real Time Protocol (RTP) and its
control protocol, RTPC, encourage that RTP uses an even port number and RTPC an odd
port number [53]. For this reason, [2] recommends to use port parity preservation.

Since the RTP specification also recommends that the port number of RTPC would be
the next higher port, and that layered encoding application should use contiguous port num-
bers, a NAT employing port contiguity can attempt to preserve this assignment. This can
be done either by port preservation or by sequential assignment in which public port num-
bers are given in sequence with hope that the connections are started in the order from
smallest port number to largest. Because some ports may be already be preserved, and
therefore unavailable for port preservation leading to non-deterministic behavior, and how
well sequential assignment works depends on the behavior of the application, [2] makes no

recommendations on this behavior.

2.2.4 Hairpinning Behavior

If a NAT supports hairpinning, two hosts behind the same NAT can communicate with
each other using the external address the NAT has assigned for either one of them. This is
illustrated in Figure 2.11 where host B has created a NAT binding for private address B:b
and public address Bn:bn by sending a packet from B:b to any address on the public side
of the NAT. Host A then sends a packet to host B’s public address, which is routed to the
NAT that works as a gateway for the network. The NAT should, if it supports hairpinning,
create a binding with a public address (An:an) for host A and send the packet to host B so
that it appears to come for host A’s public address. [2] recommends that NATs support this

behavior.
src: A:a
t: Bn:
Host A dst: Bn:bn > An:an
NAT src: An:an
dst: Bn:bn
src: An:an
dst: B:b
Host B = Bn:bn

Figure 2.11: NAT hairpinning behavior

CHAPTER 2. BACKGROUND 16

2.2.5 Mapping Refreshment

Another important feature of a NAT is how long it waits before discarding the state for an
idle connection and how that mapping state can be refreshed.

The timer values for discarding the idle connections vary from implementation to another.
For UDP, a minimum of 2 minutes and a recommended value of 5 minutes are given by
[2]. For TCP, an established connections mapping should not be discarded before at least
2 hours and 4 minutes have passed since the last packet. However, especially for UDP,
much smaller values have been discovered in practice and for example [46] recommends
sending keepalive packets every 15 seconds unless there is data traffic. Also, with some
NAT implementations, even idle TCP connections may lose the NAT state after just a few
minutes [17].

The mapping state can be refreshed by sending packets that use the mapping through the
NAT, but NATs differ on whether inbound traffic coming from the external side of the NAT
can refresh the mapping state. Letting inbound traffic refresh the state allows a misbehaving
application or attacker keep the mapping alive and send packets to the host in the private
network. Also, doing this on many ports can potentially over time exhaust free ports on
the NAT. For this reason, many NATs may choose to let only outbound traffic refresh the
mapping state. [2]

2.2.6 Different Types of NATsS in the Internet

According to measurements performed on TCP by Guha et al. [17], in 2005, 70.1% of
the NATs had endpoint-independent mapping behavior and with 27.4% the behavior was
address and port-dependent'. For filtering, the most common behavior was address and
port-dependent (81.9%) with address-dependent (12.3%) and endpoint-independent (5.8%)
behaviors being much less common.

As the authors of [17] point out, the situation has likely changed since the publication
of the paper due to rapid replacement of NAT devices. The recommendations for NAT be-
havior for both UDP [2] and TCP [16] should make both endpoint-independent mapping
and filtering more common. Also the NAT vendors have incentives to adhere to the rec-
ommendations since the peer-to-peer applications work with higher probability and require

less configuration effort for the user.

'The paper presents 23.5% to have address and port-dependent behavior, but in addition, 3.9% of the NATs
created a new mapping for all new connections, working essentially like the previous type

CHAPTER 2. BACKGROUND 17

2.3 NAT Traversal

As described in Section 2.1.5, NATSs prevent hosts from the public side of the network to
connect hosts in the private network. To overcome this problem, several NAT traversal
techniques have been developed. Most of them work by creating an address binding to the
NAT so that the incoming connections can be forwarded to the right host. The binding
can be created explicitly using a middlebox signaling protocol or implicitly by making the
incoming traffic look like a reply to a request sent by the host in the private domain. Another
option is to tunnel the traffic through the NAT and use different addressing, than the one the
NAT provided, at the ends of the tunnel.

Middlebox signaling protocols such as UPnP [63], SOCKS [30] and MIDCOM [58]
perform NAT traversal by communicating with the network’s gateway that works as the
NAT. They can be used to request the NAT to open and forward certain ports to the hosts in
the private network. These methods require that the NAT supports the protocol, but they do
not require any support from the peer that wants to contact the host behind the NAT.

On the other hand, Teredo [21] can provide hosts an IPv6 address that is able to traverse
NATs using IPv4 and UDP encapsulation. Teredo first probes the type of the NAT that
serves the private network with help from a Teredo server, and if the NAT is suitable for
Teredo, peers can contact the host in the private network either directly or with help from
the Teredo server.

Different methods of UDP and TCP hole punching [15, 17, 4] also work without explicit
help from the NAT by creating a proper mapping on the NAT with normal UDP or TCP
packets. Session Traversal Utilities for NAT (STUN) is one protocol that can be used for
hole punching and learning the address NAT has given for the host.

One way to make the traffic look like client-server communication, and therefore work
through NATs, is to relay the traffic through a server in the public network. When the hosts
individually contact the relay, both of their NATs create the needed mapping and state for
the return traffic. Then, the relay can use the same NAT mapping for sending the traffic
coming from one host to the other. Traversal Using Relays around NAT (TURN) [48]
provides a protocol that can be used for relaying the traffic this way.

Finally, interactive Connectivity Establishment (ICE) uses STUN and TURN to provide
a complete NAT traversal solution. The NAT traversal methods that are most relevant for

this thesis are presented in the following sections.

2.3.1 UDP Hole Punching

Ford et al. presented a UDP hole punching method in [15]. In this method, hosts need to

connect a well-known rendezvous server which can relay messages between them. When

CHAPTER 2. BACKGROUND 18

a host contacts the rendezvous server, it tells the server the transport layer address it sends
the packet from. The server also registers the address where the host appears to come from
by checking the source address of the incoming packet. If these two addresses are not the
same, the host is behind a NAT.

When another host (host B) wants to create a connection to the first host (host A), it can
ask for the private and public address of host A from the rendezvous server. When the
server replies with this information, it can also tell A that B wants to contact it and tells
B’s private and public address to A. Now both hosts know each others’ private and public
address and can start sending UDP packets to both of them. If either one of the public or
private addresses is able to deliver the packet to the other host, the other host can reply to it
and hosts can use that address pair for further communication.

If both of the hosts are behind the same NAT, in the same subnet, the private address pair
will work. If the NAT supports hairpinning, as described in Section 2.2.4, also the public
address will work and hosts can choose to use either one of the paths. If the hosts are behind
different NATSs, the private addresses are either invalid or point to another (wrong) host in
the same network and do not produce a successful response. Instead, an outgoing packet
from host A to B creates a binding on the host A’s NAT. If the host B has not send its
own packet to host A’s NATed address, host B’s NAT will likely drop the packet. Instead,
when host B eventually sends its own message to host A’s NATed address, the host A’s NAT
already has a binding in place for the message, and it is delivered to host A.

Ford et al. state that as long as the NAT's are well-behaving, i.e., map outbound connec-
tions from the same source address to the same public transport address, either one of the
connection attempts on the public address eventually succeeds and they report a success
rate of 82% for this approach from their measurements.

Similar technique can be used for TCP hole punching but it works with a lower success
rate (64%). More advanced tricks can increase the probability for TCP hole punching, but
they require e.g., address spoofing for the rendezvous server and access to raw sockets for

the clients.

2.3.2 STUN

Session Traversal Utilities for NAT (STUN) is a protocol that can be used as a tool with
other protocols for NAT traversal. The base specification [49] defines a generic packet for-
mat which the other protocols using STUN for NAT traversal, called STUN usages, can use
and extend. With basic STUN a host can discover the binding that a NAT (if there is one
or more) has created for it and also keep that binding alive. In addition, two authentication

mechanisms: long-term and short-term, are defined.

CHAPTER 2. BACKGROUND 19

STUN works as a client-server protocol with two different types of transactions. In a
request-response transaction the client sends a request to the server and server sends back a
response. Also, either client or server can send indication messages to the other party, but
no response is generated for those.

All STUN messages start with a fixed, 20 byte header that contains a randomly selected
96 bits long transaction identifier used to correlate a response to a request. The header also
indicates the method and class of the transaction. Class can be either a request, success re-
sponse, failure response, or indication. The base specification defines only a single method:
Binding. This method can be used for discovering the binding a NAT has allocated for the
client (using the request/response class of messages) or keeping the binding alive (with the
indication class of messages).

An example of STUN operation is shown in Figure 2.12. First, the STUN client sends
a Binding Request to the STUN server. The client is in a private network and has the local
address 10.1.0.2 and the request is sent from the port 2000. The NAT creates a new binding
for the STUN client’s address and port and uses the address 198.76.28.1 and port 3000 on
the external side. When the STUN server receives the request, it sends back a response and
includes the address where the request seems to come from in the response (the MAPPED
attribute? in the figure). The NAT translates the destination address of the response packet
and forwards the response to the STUN client. The STUN client can now learn the address
the NAT used for it from the mapped address attribute. This address is called reflexive
transport address. To keep the binding alive, the STUN client can also send periodically
Binding Indication messages to the STUN server.

Some STUN usages require that the STUN messages are sent using the same address and
port as some other protocol, so the STUN messages need to be demultiplexed from them.
The STUN header has a fixed 32 bit long magic cookie value to help with demultiplexing.
Also, the first and last two bits of the STUN header’s first 32 bits are always zeroes. A
STUN message may also have a FINGERPRINT attribute, with a CRC-32 checksum over
the whole message, to make false positives less probable.

Because STUN messages can be sent over unreliable transport protocol, such as UDP,
there is a need for reliability mechanism. If there is no answer to a STUN request after
waiting a time of RTO (Retransmission TimeOut), the request is retransmitted. The RTO
is an estimate of the round-trip time (RTT), but the specification recommends a minimum
value of 500ms. For the next retransmission the time to wait is always doubled resulting
in exponential back-off. It is recommended that at maximum 7 retransmits are tried before
giving up. Since binding indications do not generate an answer, there is no similar reliability

mechanism for them.

’The real full name of the attribute is XOR-MAPPED-ADDRESS

CHAPTER 2. BACKGROUND 20

STUN
server

- A Binding Response
Binding Request MAPPED: 198.76.28.1:3000
src: 198.76.28.1:3000 dst: 198.76.28.1:3000

NAT

o Binding Response
Binding Request MAPPED: 198.76.28.1:3000
src: 10.1.0.2:2000 dst: 10.1.0.2:2000

STUN
client

Figure 2.12: STUN binding request example

2.3.3 TURN

STUN'’s extension, Traversal Using Relays around NAT (TURN) [48] defines how STUN
can be extended to provide data relaying functionality. If a host is behind a NAT whose map-
ping behavior is address or address and port-dependent (see Section 2.2.1 for definition),
the address that was given by the NAT for communicating with the STUN server does not
work with other hosts. To be reliably reachable by other hosts, a host behind such a NAT
can register itself to a TURN server in the public network which can provide a transport
layer address that is not behind a NAT. The TURN server can then forward all the traffic
that is received on that address to the client using the NAT mapping client created when it
first registered to the server. The address on the TURN server is called relayed transport
address. The client can also send data to the TURN server and the server forwards the data
from the relayed transport address to another host.

A typical deployment with a TURN server is shown in Figure 2.13. The TURN client
is separated from the TURN server by a NAT and the client is on the private side. The
client uses the transport address 10.1.0.2:2000 to communicate with the TURN server. The
NAT between the client and the server mapped this address to 192.0.2.1:7000 on the public
side. If the NAT’s mapping behavior is not endpoint-independent, only the TURN server
is able to use this mapping. The TURN server’s address 192.0.2.15:3478 can be used for
both sending commands to the TURN server and relaying data to other hosts. For the other
hosts, the data sent by the TURN client via the TURN server seems to come from the
address (192.0.2.15:9000) that the TURN server allocated for the client.

CHAPTER 2. BACKGROUND 21

TURN PEER A
Server Address ":
Client's Host 192.0.2.15:3478
Transport Address — T 192.168.100.2:16400
10.1.0.2:2000
TURN N TURN
. A PEER B
client server
T
192.0.2.210:18200
Client's Server-Reflexive Relayed
Transport Address Transport Address
192.0.2.1:7000 192.0.2.15:9000

Figure 2.13: Example TURN deployment

An address allocation at the TURN server is obtained using the Allocate request STUN
message. The client can ask in a request for certain transport protocol and lifetime for
the allocation. To a successful request, the server replies with an Allocate response that
contains the address the TURN server allocated, the server reflexive address of the client,
and the lifetime it chose for the allocation. However, before any peer can send data using
that allocation, a permission for that peer must be created. A client can create a permission
for a peer by sending any data to that peer via the TURN server.? After this, the peer can
send data back via the TURN server from the same address and using any source port.

There are two ways to exchange data between the TURN client and the peers using the
TURN server. The client can wrap the data it wants to send in a Data indication message
which also contains, in a STUN attribute, the destination transport address of the peer.
When the server receives the Data indication from the client, it extracts the data and sends
it to the address that was given by the client. When the server receives data back from a
peer, it can similarly wrap it in a Data indication and attach a STUN attribute with the sender
transport address to the message before sending it to the client. Because this approach can
substantially increase the overhead due to the STUN wrapping, the client can also reserve
a channel for communicating with a certain peer.

A channel is reserved using a ChannelBind request which contains the peer address where
a new channel should be bound to and an unallocated channel number. The server bounds
the channel number to the peer transport address and acknowledges the binding with a
ChannelBind response. Then, the client can send data to that peer via the TURN server
using ChannelData messages which contain just a simple 32 bit header before the actual
data. The ChannelData header contains a 16 bit channel identifier and 16 bit field with

3 An empty Data indication message to the TURN server is also enough to create the permission

CHAPTER 2. BACKGROUND 22

length of the data. The server strips off the ChannelData header and forwards the data to
the address where the channel was bound to. For the return traffic, the server inserts a
similar header for the peers that have such a channel assigned and sends the incoming data,
prefixed with a ChannelData header, to the client. A client can simultaneously communicate
with other peers using Data Indication messages and/or other channels. In both methods
the peer does not need to use any TURN encapsulation, or even be aware that TURN is
used, but only the data between the TURN server and TURN client is encapsulated in Data
Indication messages or TURN Channels.

An allocation expires when the lifetime that the server used in the Allocation response
has passed. To be able to use the allocation longer, the client must refresh the allocation
using Refresh requests. A client can also destroy an existing allocation by requesting a zero

lifetime for the allocation in the Refresh request.

2.4 Interactive Connectivity Establishment

Interactive Connectivity Establishment (ICE) [46] is a robust NAT traversal solution that
combines hole punching and relaying with a whole set of methodology and optimiza-
tions. It has been under work since 2003 [45] and will likely become an RFC during
2008. ICE is mainly specified as a NAT traversal solution for SIP-initiated sessions, but
it is also applicable to other session oriented protocols that need connectivity in networks
with NATs [47, 52].

2.4.1 Basic Operation

The main idea of ICE is quite simple: when a host wants to communicate with another
host, it gathers a set of transport addresses that it thinks it might be reachable from. These
address-port pairs, called candidates, are communicated to the other host using a signaling
protocol like SIP. When the other host is informed about the incoming connection attempt,
it also gathers a set of candidates, announces them to the first host and then both hosts try to
connect to each others’ candidates. When these connectivity checks succeed on some of the
candidate pairs, those pairs are marked as working. After the checks, the best working can-
didate pair is selected and further communication can use the path between those transport
addresses.

The local addresses and ports that are gathered can be from the physical network in-
terfaces (like Ethernet or WLAN) or, e.g., virtual interfaces (like Virtual Private Network
(VPN) tunnels). These local candidates are called host candidates. If some of the host’s
network interfaces are behind a NAT, hosts on the other side of the NAT see the NAT’s

address when communicating with the host. ICE uses STUN to determine addresses and

CHAPTER 2. BACKGROUND 23

ports the hosts in the globally routable Internet see. This is done by sending binding request
messages from the hosts candidates to a STUN server that is known to be on the other side
of the NATS (if there are any), asking for the address it sees the request is coming from. The
STUN server can reply using the same path and the requesting node learns the addresses
and ports the NATs allocated to it. Candidates that are learned this way from an external
server are server reflexive candidates.

As described in Section 2.2, some NATs do not allow a reply to come from a different
address and/or port than where the request was sent to. If the host that is doing the address
gathering is behind such a NAT, only the STUN server can use the discovered return path
and packets from all other source addresses (and ports) are dropped. Therefore, in some
cases, a relay is needed. For this purpose, TURN can be used to obtain relayed addresses
from a TURN server. If the TURN server is reachable from both of the hosts, they can com-
municate using it even if the NAT's prevent direct communication. These relayed candidates
that the TURN server provides are also announced to the other party for the connectivity
checks.

Before announcing the candidates, they are locally prioritized. The prioritization algo-
rithm works in a way that similar candidates get similar priorities and candidates containing
less hops, i.e., less NATs and/or relays, are preferred. Within those limits the hosts can sub-
stantially effect the priorities using, e.g., local policies. After prioritization, the candidates
are coded in a way that is suitable for the signaling protocol (e.g., using Session Descrip-
tion Protocol [19] attributes in case of SIP) and they are sent to the other host. When both
hosts have exchanged their prioritized candidates, the priorities of the local candidates are
combined with the priorities of the remote candidates and a checklist is formed with higher
priority candidate pairs on top of the list.

Connectivity checks are done sequentially in the order the candidate pairs are in the
checklist. In addition, if a check is received on some candidate pair that is not validated yet,
a check for that pair is scheduled to happen before other candidate pairs in the checklist.
This is called a triggered check and it is done to speed up the connectivity check process.
If more than one such check is received on different candidate pairs before the triggered
checks are sent, they are stored in the triggered check queue which is processed before the
normal checklist.

During the connectivity checks STUN messages are sent between the candidates, and
if a request-response exchange succeeds for some pair, a working candidate pair has been
found. If hosts are behind NATSs that do address-dependent filtering, the first request is
likely dropped by the peer’s NAT as depicted in Figure 2.14. However, since the other host
is performing the same check roughly at the same time, the request sent by it looks to the
NAT like a response to the request the first host sent. In this case, unless the NATs have

CHAPTER 2. BACKGROUND 24

address-dependent mapping behavior, the NATSs on the path have a binding ready for it and
the second request is delivered [20, 15]. This delivered request causes a triggered check to
be performed by the host that received the request and if the triggered check succeeds, a
working path has been created and is ready for use. If the NATs do not allow creating such
direct paths, the relayed candidates are used as the last resort. It is possible that multiple
working paths are discovered during the connectivity tests but only the one with the highest

priority is selected for use.

host A NAT A NAT B host B

binding request :
binding request

< 1
[T~ 1
binding response '

T S
triggered binding request !
binding response '
P r
<]
]
]

Figure 2.14: ICE connectivity checks in a simple NAT scenario

After an operational path is selected, it must also be kept alive. As mentioned in Section
2.1.3, a NAT may remove the binding if it is not used for a while. Normal data traffic is
enough to keep the path alive, but if there is no data traffic for a while, keepalive traffic
must be sent instead. ICE recommends using STUN Binding Indication messages for this
purpose. Both hosts must send either data or periodic keepalives to each other since, as
discussed in Section 2.2.5, due to security reasons, inbound traffic may not be enough to

refresh the binding.

2.4.2 Advanced Features

While the basic operation of ICE is fairly simple, there are some nuances and optimizations
in its operation that make it a bit more complex. Some of these more advanced features are

introduced below.

Transaction Pacing and Retransmission Timers

The STUN and TURN transactions that ICE performs during the gathering and connectivity
check phases are not started as fast as possible, but the request messages are sent only once

every T, milliseconds. The value for 7}, is calculated in a way that the checks consume

CHAPTER 2. BACKGROUND 25

roughly the same bandwidth that the RTP traffic ICE is making a path for would take. If
ICE is used for setting up a path for non-RTP traffic, there is usually no way to know the
bandwidth that will be used beforehand, so the draft mandates using a more conservative
minimum value of 500ms for 7.

The RTO value, i.e., the time to wait for an answer to a STUN request before sending
the request again, for connectivity checks also relates to the 7,. For RTP sessions it is
MAX(100ms, T, x P) where P is the number of candidate pairs which will be tested
in the connectivity check phase. A similar formula is used for non-RTP sessions but the

minimum value in that case is 500ms.

Candidate Pair States and Triggered Checks

ICE candidate pairs that wait for their turn to start the connectivity check are in the WAIT-
ING state. When the connectivity check process starts, a check on the highest priority
candidate pair in the WAITING state is sent and that pair is moved to the IN-PROGRESS
state. A successful check moves the pair to the SUCCEEDED state whereas a failed check
changes the state to FAILED.

If a check is received any time on a pair that is not already in the SUCCEEDED state,
a triggered check to the other direction is scheduled for that pair into the triggered check
queue. If the state of the pair was IN-PROGRESS, the current check transaction is cancelled
and a new check is started. Otherwise the pair moves to the IN-PROGRESS state when the
triggered check is performed. When it’s time for the next check, if there are no checks in

the triggered check queue, a check on the next highest pair in the WAITING state is started.

Creating Multiple Paths

ICE can be used to create simultaneously multiple paths for different media streams. A
media stream is a single media instance that can be, e.g., an audio or a video stream [50].
A single stream may require multiple transport layer ports, called components. 1CE uses
information across different components to perform the tests faster.

In case of multiple components, all the candidate pairs are initially in a FROZEN state.
ICE starts checks only on pairs that have unique foundations. Two candidates have the same
foundation if they have the same type (e.g., server reflexive), they have the same local IP
address, transport protocol, and the same STUN or TURN server was used at the gathering
phase. Two candidate pairs with identical foundations have matching foundations for local
and remote candidates. Because the network characteristic are likely similar for candidate
pairs with matching foundations, a check on one of such pairs is also likely indicative for

the other pairs. Thus, testing first only unique foundations can speed up the process.

CHAPTER 2. BACKGROUND 26

Nominating the Candidates

There are two different ways for selecting the path that is used for the data traffic: aggres-
sive and regular nomination. In the regular nomination, the controlling ICE endpoint de-
cides when the connectivity checks should be stopped and sends a new connectivity check
with a special flag on the highest priority candidate pair that has performed a successful
connectivity check. When the peer receives the check and detects the flag, it nominates that
pair for use. If the reply for the request arrives at the controlling host, it also nominates that
candidate pair as the one to use for data traffic and the traffic is free to flow between the
hosts. In case of aggressive nomination, the controlling host inserts the flag on every con-
nectivity check binding request and when the first check succeeds, the associated candidate
pair is automatically selected for use.

The aggressive approach can speed up the selection process, but it can also result in sub-
optimal path if the first successful check was not on the optimal path. Also, aggressive
nomination may lead to a situation where more than one path is nominated and a higher
priority pair replaces a lower priority pair as the pair to be selected for data traffic.

When a pair is successfully nominated, or if ICE was used to create more than one path
and every path has a nominated pair, the ICE process is stopped. If the regular nomination
is used, the controlling peer needs to decide when to nominate the best pair that is found so
far. The ICE specification does not recommend any algorithm for this, but it is a matter of

local optimization.

Discovering Peer Reflexive Candidates

When an ICE endpoint starts a connectivity test, it acts as a STUN client. It sends a STUN
binding request from the local candidate towards the remote candidate, i.e., to the peer. All
binding requests must contain a priority attribute. The attribute contains a value that is
calculated in a similar way as the priority of the local candidates, but the type preference
that is used in the calculation is peer reflexive. If the NAT, that is between the sender of
the binding request and the public Internet, does not have endpoint-independent mapping
behavior, it will create a different mapping for this binding request and allocate a different
port than what was used for the binding request towards the STUN server. If the other host is
not behind a NAT, or the NAT does not do port-dependent filtering, this connectivity check
is delivered to the peer. Because the peer is aware of only the address and port that was
seen by the STUN server during the address gathering and signaled to it in the answer/offer,
the connectivity check comes from an unknown address. This address then presents a new
peer reflexive remote candidate for the peer. The priority that was delivered with the binding

request attribute is used as the priority of the candidate and the new candidate is added to the

CHAPTER 2. BACKGROUND 27

list of known remote candidates; however, it is not paired with all local candidates. Instead,
just one candidate pair is constructed by the peer from the local candidate which received
the request and from the newly discovered peer reflexive candidate. The new candidate pair
is added to the triggered check queue to wait for connectivity checks to the other direction.

The peer also answers to the binding request normally with a binding response that con-
tains the peer reflexive address in the mapped address attribute. When the host that initiated
the connectivity test receives the response, it checks the mapped address attribute and no-
tices that it is an address that was not known to it before, and presents a new peer reflexive
local candidate. The type of the candidate is, of course, peer reflexive, but the priority is
the one that was used in the binding request’s priority attribute. This way, both hosts can

discover the new candidate pair and use the same priority for the new candidate.

2.5 Peer-to-Peer Session Initiation Protocol

Protocols which are used for building multimedia communication systems need to discover
the locations of the hosts where the users who need to be contacted are. The Session Ini-
tiation Protocol (SIP) [51] solves this problem with centralized servers where a user can
register his current location and which other users can then use to forward their session
initiation requests to the right host. An alternative approach is to use a peer-to-peer over-
lay network for storing and retrieving this contact information and forwarding the session
initiation requests in a distributed manner. The overlay network is formed by creating con-
nections between the peers on top of the IP network. Instead of relying on centralized
servers, the peers in the overlay collectively provide the required service with a distributed
database algorithm. An example of this approach is the Peer-to-Peer Session Initiation
Protocol (P2PSIP) which is currently being defined by the P2PSIP working group in the
Internet Engineering Task Force (IETF). [6]

Figure 2.15 shows an example of a P2PSIP overlay. The dashed lines are the overlay
connections between the peers. The topology of the network can be e.g., a ring or a mesh.
In the figure there are 3 peers, titled UA peer, which are paired with a SIP User Agent (UA).
They all participate in the overlay by storing the data and answering to queries but they can
also use the overlay by themselves to query for registrations and start sessions.

The node proxy peer is coupled with a SIP proxy, the redirector peer contains a SIP
redirector and the gateway peer serves as a gateway towards the Public Switched Telephone
Network (PSTN). These three peers work as adapters between the P2PSIP overlay and
other networks or devices. For example, the proxy and redirector peers accept standard SIP
requests and use the overlay for resolving the needed next-hop. The plain SIP UA at the
bottom of the picture does not participate in the overlay and it does not need to understand

CHAPTER 2. BACKGROUND 28

P2PSIP overlay

ory -
| P2PSIP
Iclient protocol

UA client

Proxy peer

Figure 2.15: P2PSIP reference architecture

the protocol in the P2PSIP network, i.e., the peer protocol, but it can interwork with the
overlay using the proxy and redirector peers.

The UA client on the right hand side of the picture, connected with a dotted line, under-
stands only a subset of the peer protocol but can still perform some of the operations but
may not participate in the network as fully as the other peers*.

The two UA peers on the left hand side are both behind NATS in different address realms
but they still work as fully featured peers. This kind of a distributed system which may have
some of the nodes behind NATs needs a NAT traversal solutions such as the ones described

in the previous sections.

2.6 Host Identity Protocol

The current TCP/IP model uses the IP address both as the locator and identifier for the
hosts: the IP address is needed to route and forward the packets to the right destination in
the network, but the address also names the host’s networking interface. This dual role of IP
addresses presents problems especially for mobile and multi-homed hosts. These problems
and a solution to them, called Host Identity Protocol (HIP), are presented in [38, 32, 34].

“The role of the P2PSIP client is still under discussion at the P2PSIP working group

CHAPTER 2. BACKGROUND 29

2.6.1 Mobility, Multihoming and Security

A mobile host may change its point of attachment in the network while being used for net-
work communications. A multi-homed host has multiple network interfaces, with different
IP addresses, that it can use either simultaneously or one at a time. Also, even a stationary
host with single network interface may end up using different IP addresses due to dynamic
configuration. In all of these cases, the IP address of the host will change even though the
host that is connected to the network remains the same. Traditionally, transport layer con-
nections are bound to an IP address of the host, and if the address changes, the connection
does not survive. Therefore, dynamically changing IP addresses are a problem for the hosts.

Even if the transport layer connections survived from a change of IP address, there are
security problems with multihoming and mobility. Since there must be a way to change
the IP address where the traffic is delivered, a malicious host can try to pretend to be the
rightful owner of the traffic and divert the traffic to itself for inspection or for performing
a man-in-the-middle attack. Similarly, an attacker can try divert the traffic to a victim host
which will receive unsolicited traffic resulting in Denial-of-Service (DoS) attack.

The Host Identity Protocol aims to solve these problems by inserting a new host identity
layer and namespace between the transport and internetworking layers of the IP stack as
depicted in Figure 2.16. Instead of using the IP address as the identifier for the host, with
HIP, the identifier is the public key of an asymmetric cryptographic key pair. Also, instead
of binding connections to the IP address, transport layer protocols can now bind to a pre-
sentation of the host identifier: Host Identity Tag (HIT). The host identifier can remain the
same regardless of the IP address that is currently used for it. Because the binding between
the host identity and the IP address is not fixed, the IP address can change without breaking
the transport layer connections.

With this solution, mobility and multi-homing can be handled in a more natural way since
multiple IP address can be bound to a host identifier and the underlying IP address can be
changed dynamically. Also, because the host identifier is an asymmetric cryptographic key,
the host can prove that it is allowed to use the identifier with the private key. This solves

the problem with malicious hosts trying to change the destination of the traffic.

2.6.2 Creating a HIP Connection

A HIP session starts with a four-way handshake, called the HIP base exchange, depicted in
Figure 2.17. The endpoint initiating a connection is called the Initiator and the other party
the Responder. First, the Initiator sends a simple connection initiation packet, I1, to the Re-
sponder that contains only the HITs of the hosts. The Responder replies with an R1 packet

that contains the Responder’s public key and a cryptographic puzzle the Initiator must solve

CHAPTER 2. BACKGROUND 30

Transport layer <HI, port> pairs
P y P P Initiator Responder
A
Y.
11: trigger exchange
Host identity layer Host identifiers *)
A R1: puzzle, D-H, key, signature
4 £
Internetworking layer IP addresses 12: solution, D-H, key, signature
A
v R2: signature
. &
Link (network) layer Link layer
addresses
Figure 2.16: TCP/IP stack with HIP Figure 2.17: The HIP base exchange

before the Responder accepts the connection. No connection state at the Responder is cre-
ated at this stage. This helps protecting the Responder from resource depletion DoS attacks
since the Initiator has to perform more processing than the Responder before the Responder
has to create any local state for the connection. When the Initiator has solved the puzzle, it
sends the solution and its own public key to the Responder in an 12 packet. Both R1 and
12 are cryptographically signed and the signature is added to the packets. Using the public
keys and signatures in R1 and 12, both of the hosts can verify the identity of the peer, i.e.,
they can check that peer has a private key that matches to the public key. The Responder
verifies the puzzle solution and if it wishes to accept the connection, it replies with a signed
R2 packet.

The 12 and R2 packets contain also Diffie-Hellman key exchange parameters (denoted
with D-H in Figure 2.17) which allow the hosts to derive cryptographic keys to set up a
secured connection between them. IP security (IPsec) using ESP is defined for HIP in [26]
and future specifications can define other methods for securing the connections.

If a host is mobile, its IP address may change so often that it is not feasible to make it
known by conventional means such as using DNS [36]. For this kind of situations, a host
may use a Rendezvous Server (RVS) [29]. The host registers its current location with the
RVS and tells the initiators to send the I1 packets to the RVS (e.g., by registering the RVS’s
IP address in the DNS). When the RVS receives an I1 packet, it makes a lookup on the HIT
in the I1 and if there is a registered host for that HIT, forwards the I1 to the registered hosts.
The RVS also includes the Initiator’s address (where the 11 was received from) to the I1.
When the Responder receives the 11, it can respond directly to the Initiator’s address and

the base exchange proceeds between the hosts without the RVS.

CHAPTER 2. BACKGROUND 31

The HIT, where the connections are bound to, looks like an IPv6 address and is therefore
compatible with the standard socket Application Programming Interface (API). This allows
legacy programs that are not HIP-aware to use HIP to some extent transparently: when a
host initiates a connection to a HIT of the other host, the HIP implementation can intercept
this connection setup, run the HIP base exchange between the hosts, and hand over a socket
to the application. All the traffic that is exchanged using that socket is then IPsec secured
and supports mobility and multihoming.

Since HIP works below the transport layer protocols, it is normally run directly on top
of IP. It can be used either as an extension header of IPv6 or as payload of IPv4. Also
the IPsec ESP tunnel that is setup using HIP is transported on top of plain IP. Both HIP
and ESP have therefore problems traversing NATs and other middleboxes and need NAT

traversal mechanisms to cope with the problems. [60]

2.6.3 Proposed NAT Traversal Solutions

HIP NAT traversal can be made efficient and secure with a NAT that is HIP-aware [64].
Unfortunately, the legacy NATS that are currently deployed in the Internet do not support
such features and need other ways for NAT traversal.

Ideas for legacy NAT traversal were proposed already at 2003 by R. Moskowitz et al. in
[33]. This early version of the HIP specification used UDP encapsulation of HIP packets
in IPv4 environments. NAT traversal mechanisms for HIP were further investigated by M.
Stiemerling and J. Quittek in [59].

L. Silvennoinen explored and implemented in his thesis [54] a UDP hole punching mech-
anism (discussed in Section 2.3.1) for HIP NAT traversal. In this proposal, HIP control
packets and ESP are both encapsulated in UDP. Endpoints use an external way (such as
STUN) to detect whether they are behind a NAT, and if only the Initiator is behind a NAT,
the simple UDP encapsulation is enough. However, if the Responder, or both of the hosts,
are behind a NAT, an extended Rendezvous Server is used as the rendezvous service needed
by the UDP hole punching. As noted in Section 2.3.1, this approach is able to traverse NATs
as long as their mapping behavior is endpoint-independent.

ICE-based connectivity checks for HIP were proposed in [62] while concurrently dis-
cussed early (00 and O1) versions of [28] used simpler hole punching mechanisms. Ideas
from the previous drafts evolved in to the current (04) version of [28] which suggests using

ICE for solving the NAT traversal problem.

CHAPTER 2. BACKGROUND 32

2.7 Summary

Network Address Translators allow connecting networks using private range addresses to
other networks by transparently changing the addresses of the packets that cross the net-
work border. Different types of NATS exist and they can be classified by their filtering and
mapping behavior. NATs help, among other things, with IPv4 address depletion but they
also create problems especially for peer-to-peer connections.

Various NAT traversal mechanisms have been developed to solve these problems. ICE is
a robust NAT traversal solution that uses UDP hole punching and STUN/TURN protocols
for creating optimal paths between hosts in NATed environments. Basically ICE performs
UDP hole punching by probing for connectivity on all different paths between the hosts,
but this simple approach is enhanced with a set of optimizations.

Peer-to-peer SIP uses a distributed P2P network architecture for communication and is
an example of a P2P application that needs a NAT traversal solution. The Host Identity
Protocol solves various problems with host mobility, multihoming, and security by intro-
ducing a new host identity namespace and a layer to the TCP/IP stack. HIP has problems
with legacy NATs and different NAT traversal solutions have been proposed for it. In the
next chapter we present a design and implementation for HIP NAT traversal and in the later
chapters we discuss how it can be used for enabling NAT traversal for P2PSIP.

Chapter 3

NAT Traversal Using HIP with ICE

In this chapter, we first briefly discuss the need for NAT traversal and present some of the
benefits and drawbacks of HIP-based NAT traversal. For solving the NAT traversal problem
using HIP, an ICE library was created that could be integrated into a HIP implementation.
The following sections discuss how ICE can interwork with HIP and describe the archi-
tecture of the library. Also design decision and some implementation experiences from

implementing the ICE library are presented.

3.1 Need for NAT traversal

As mentioned in Section 2.1.2, NATs commonly multiplex connections using the transport
layer identifiers. If the packets do not contain a transport protocol that is known to the
NAT, such as UDP or TCP, they simply drop the them. This alone is enough to block
HIP connections that are normally run on top of IP. Besides, HIP should work for both
client-server and peer-to-peer connections, so the problems with connecting a host behind
a NAT also apply to HIP. Therefore, HIP needs a NAT traversal solution before it can be
successfully used in the Internet.

NAT traversal can be performed in many ways and also at different layers of the proto-
col stack. Because, today, NATs are so widespread, many applications that need to create
peer-to-peer connections must deal with NAT traversal. For example, the Internet tele-
phony program Skype is well known for its capabilities for creating connections even in
environments with NATSs and firewalls [3]. Also, peer-to-peer file sharing programs, such
as BitTorrent client BitLord [5], have developed their own NAT traversal techniques.

Instead of developing NAT traversal mechanisms for each protocol or application sepa-
rately, all applications could benefit from a lower layer solution. The IPsec tunnel created

with HIP looks like a normal IP-based path to the application layer and the applications can

33

CHAPTER 3. NAT TRAVERSAL USING HIP WITH ICE 34

run any protocol on top of it. With a proper NAT traversal solution, HIP is able to create
an IPsec tunnel between two HIP-enabled hosts, through the NATs. This way, there is no
need for protocol specific NAT traversal but any protocol can be run on top of HIP without

worrying about NATS.

3.1.1 Benefits and Drawbacks of Using HIP

Many applications also need more than one concurrent connection between the hosts. For
example, a signaling part of the protocol may use different ports than the actual data. The
data may also need more than one UDP/TCP port: e.g., audio and video can be transmitted
using different ports. Because all upper layer connections between two hosts can be mul-
tiplexed into a single UDP encapsulated IPsec connection, the NAT traversal must be done
only once between the hosts and all subsequent connections can use the same path.

The downside of this is that a NAT or a firewall in a gateway can no longer protect the
host based on TCP/UDP port numbers because all the traffic appears to use the same port.
However, even without NAT traversal a HIP host will need to use a firewall at the host
since a firewall at the gateway does not know what is transferred in the encrypted ESP
connection.

As noted in Section 2.6, HIP can handle host mobility and multihoming securely and
efficiently, which can be especially useful for P2PSIP. A personal communication device
that uses P2PSIP, whether it is e.g., a mobile phone or a laptop computer, is likely to be
carried around with the user. When the user moves, the terminal may switch to a different
network and get a new IP address. A connection that does not support mobility would
break, but HIP is able to restore connectivity without breaking upper layer connections.
Also, both laptops and mobile phones have today often more than one network interface:
laptop computers have commonly both Ethernet and WLAN interfaces and many high-
end mobile phones have a WLAN interface in addition to the cellular interface. HIP’s
multihoming support can utilize multiple interfaces and switch from an interface to another

without disturbing the upper layer connections.

3.2 Integrating ICE into HIP

We chose to use ICE as the NAT traversal mechanism for HIP since it provides a robust
mechanism that should work in various different NAT scenarios. Also, in the HIP working
group, there was a rough consensus that ICE, or some ICE like mechanism, would be the
best way to implement the NAT traversal for HIP.

'A firewall that knows the public-private key pair of the host would actually be able to decrypt the ESP
connection and protect the host, but this is outside of the scope of this thesis

CHAPTER 3. NAT TRAVERSAL USING HIP WITH ICE 35

For defining the protocol extensions and how ICE should fit into the picture, a design
team was formed in the IETF HIP working group. The output of the design team was a
HIP NAT traversal specification draft called Basic HIP Extensions for Traversal of Network
Address Translators [28]. The draft defines how HIP control and data packets can be en-
capsulated in UDP, how the signaling path needed by ICE can be set up using HIP and used
for conveying the ICE offer and answer, and how the path created by ICE can be used for
data traffic and kept alive with keepalive signaling. The following sections discuss these

issues in more detail.

3.2.1 UDP Encapsulation

Since NATSs do not often allow any other protocol than UDP or TCP pass them, plain HIP
over IP cannot usually be used if there are NATs between the hosts. The need for UDP
encapsulation of HIP control messages and ESP data traffic is mentioned in RFC 5207
[60], and defined for ESP at RFC 3948 [22]. The HIP NAT traversal draft defines similar
UDP encapsulation for HIP control packets as [22] uses for Internet Key Exchange (IKE)
protocol: the standard UDP header is followed by a marker with 32 bits of zeroes, as shown
in Figure 3.1, to distinguish HIP control packets from UDP encapsulated ESP packets.

I0 15I 31|

Source port Destination port

Length Checksum

32 bits of zeroes

HIP Header and Parameters

Figure 3.1: UDP encapsulated HIP control packet

3.2.2 HIP Signaling Path

The signaling path needed by ICE for exchanging the candidate pairs is created using a HIP
Relay. A HIP-enabled host can register to the HIP Relay using the registration extensions
defined in [28]. Basically, at registration, a UDP encapsulated HIP base exchange, shown
in Figure 3.2, is performed with the relay and the relay announces its capability of working
as a HIP Relay in a registration information parameter contained in R1. The Initiator then

requests for relaying service in 12 and if the relay accepts the request, it acknowledges the

CHAPTER 3. NAT TRAVERSAL USING HIP WITH ICE 36

request with a registration response in R2. The R2 message also includes a REG_FROM
parameter that contains the address where the Initiator appears to send packets from; this
address can be used as the server reflexive candidate for the address where the base ex-

change was started from.

Initiator Relay Responder

11 (RELAY_FROM)

R1 (RELAY_TO, NAT_TFM)

R1 (RELAY_TO, NAT_TFM)

12 (LOCATOR, NAT_TFM) 12 (LOCATOR, RELAY_FROM,
NAT_TFM)

R2 (LOCATOR, RELAY_TO)

R2 (LOCATOR, RELAY_TO)

Figure 3.2: HIP base exchange via a HIP Relay

If the registration succeeded, all well formed I1 packets sent to the registered host’s,
i.e., Responder’s, HIT (and to the relay’s IP address) are forwarded to the Responder. The
relay’s behavior with I1 is similar to one with HIP RVS, but whereas an RVS forwards only
the I1 packet, a HIP Relay can also forward the rest of the base exchange. This is needed
because a NAT with endpoint-dependent filtering behavior will not let through an incoming
packet (R1) from a different address than where a packet (the I1 in this case) has been sent
recently. To be able to receive the incoming connection attempts, the Responder must keep
the NAT bindings on the way to the HIP Relay alive by sending periodic keepalive HIP
notify messages to the relay.

When an Initiator sends I1 trough the relay to the Responder, the relay adds a RELAY__
FROM parameter to I1 before sending it to the Responder. This parameter tells the Respon-
der where a response should be sent to. The Responder then responses through the relay
with an R1 message. The R1 message contains the address from the RELAY_FROM param-
eter in a RELAY_ TO parameter which the relay uses for forwarding R1 to the right address
without needing to remember where the I1 message came from. R1 also includes a NAT
transformation negotiation parameter (NAT_TFM) which contains a list of NAT traversal
modes supported by the Responder. Currently, only one mode with ICE-based connectivity
checks and UDP encapsulated control and data traffic is defined.

If the Responder does not wish to use a HIP Relay and do the ICE connectivity checks,
but wants to use just UDP encapsulation for the HIP control and data traffic, it can omit the

NAT transformation parameter from R1. When the Initiator does not find a NAT transform

CHAPTER 3. NAT TRAVERSAL USING HIP WITH ICE 37

and RELAY_TO parameters in R1, it can continue the base exchange and exchange data
traffic as it would normally do but just use UDP encapsulation.

It is also possible for the Initiator to try a concurrent base exchange without UDP encap-
sulation, i.e., plain HIP over IP. If the Initiator receives a valid, non-encapsulated R1 for
the 11 message it sent without the UDP encapsulation, the UDP encapsulated version of the
base exchange is ended and the non-encapsulated base exchange is finished. Because, in
this case, the HIP control packets did not need UDP encapsulation, also ESP traffic with-
out UDP encapsulation should work between the hosts and normal HIP procedures without
NAT traversal can be followed.

If the hosts selected a NAT transform with ICE connectivity checks during the base ex-
change, they exchange ICE candidates in 12 and R2 using LOCATOR HIP parameters. The
candidates can be gathered any time before the connectivity checks, but must obviously be
gathered by latest before 12 and R2 are exchanged if ICE is used.

3.2.3 ICE Connectivity Checks

After a successful base exchange, in which the Initiator and the Responder agreed to use
ICE for the connectivity checks, the checks can be started. The checks are performed as
described in Section 2.4 but what is specific to HIP is that only a single media stream
and component are tested, so, for example, frozen candidates part of the ICE algorithm or
candidate foundations are not needed. The HITs of the Initiator and Responder are used
as username fragments for the connectivity checks and both hosts derive STUN password
from their keying material in a similar way as they do for the HIP and IPsec ESP keys.

After ICE connectivity checks are finished, the best working path is selected and ready
for use for UDP encapsulated ESP. However, if the path is idle longer than 15 seconds,
keepalives are needed to keep the NAT binding alive. ICE with HIP uses normal STUN
binding indications on the data path for this purpose. If the hosts did not agree to use the
ICE connectivity checks, HIP NOTIFY messages are used instead.

3.3 Implementation Architecture

An implementation of ICE is needed for the ICE candidate gathering and connectivity check
phases that were discussed in the previous sections. For this purpose, we implemented an
ICE library for the Linux platform with the C programming language. The library consists
of 7 modules and roughly 6000 lines of code.

The library’s division into modules is depicted in Figure 3.3. The socket IO functionality
needed to send and receive STUN messages efficiently is implemented in the ICE_IO mod-

ule. It also contains utility functions for comparing and copying socket address structures

CHAPTER 3. NAT TRAVERSAL USING HIP WITH ICE 38

independently of the IP address family. The ICE_TIMER and ICE_TIMER_IO modules
implement timer and event multiplexing. Other modules can register callbacks to be ex-
ecuted when either a socket receives data or a certain amount of time is passed using the
functionality provided by the timer modules. If the program where the ICE library is inte-
grated (such as the HIP implementation) already has its own event multiplexing function-
ality, only the ICE_TIMER_IO module has to be changed to make it possible to multiplex

ICE events with other events provided by the program without using multiple threads.

ICE
TURN

STUN_MSG

STUN

ICE_TIMER ICE_TIMER_IO ICE_IO

Figure 3.3: ICE library architecture

The STUN_MSG module implements STUN message parsing and construction. It pro-
vides functionality for creating STUN messages, adding Type-Length-Value tuples (TLVs)
and also parsing the TLVs that are defined in the STUN draft [49]. The STUN module
contains the application logic for handling incoming STUN messages and also for sending
STUN messages. It provides a set of callback structures that higher level modules can use
for setting up STUN usage specific behavior for different types of STUN messages and
application data.

The TURN module contains an implementation of a TURN client that can create an
allocation on the TURN server, send data using binding indication messages, and keep the
allocation alive by refreshing it. It uses the STUN and STUN_MSG modules for creating
the STUN messages and transactions.

The ICE module uses the TURN, STUN and STUN_MSG modules for all processing
phases and provides all the rest of the logic that is needed for candidate gathering and
connectivity checks. This module also acts as the main interface for using the ICE library.
For the candidate gathering phase ICE needs to perform low-level socket actions, such as

binding to certain interfaces. For this purpose is also uses the ICE_IO module directly.

CHAPTER 3. NAT TRAVERSAL USING HIP WITH ICE 39

3.4 Implementing ICE

While the ICE specification was used as a guideline for the implementation, the goal of the
implementation was not to have all the features of the specification, but rather the minimal
set that would work in all NAT scenarios and interoperate with other implementations. The
next subsection presents some of the differences from the specification. Also, implemen-
tation efforts revealed some features from both the Linux platform and ICE specification
that were not immediately clear and deserve a few words of discussion in the following

subsections.

3.4.1 Differences From the Specification

Some features of the ICE draft [46] were not implemented in the prototype. Many of those
features are specific to SIP and therefore not needed for HIP NAT traversal. Some features
could be useful, but would add a fair deal of complexity without much observed benefits,
so they were left for future work. The goal was to make an implementation that would
reasonably interoperate with any implementation conforming to the specification but still
avoid excessive implementation effort. The SIP specific features left out of the prototype

include:

o Everything related to the SDP offer/answer exchange; HIP does not use SDP, but HIP

parameters, for encoding the offer and answer.

e Subsequent offer/answer exchange; there is no need to send the selected candidates
through HIP signaling path.

o ICE-CONTROLLED attribute and role conflict repair; unlike with SIP, there can be

no role conflicts with HIP: the Initiator is always the one in control.

Other features that were not implemented include:

e Frozen candidates, foundations and multiple checklists; HIP uses only one connec-
tion (one ICE component and stream) so there are no candidates to freeze nor is there

a need for using foundations or multiple checklists.

e Transaction pacing calculation based on RTP features; since we are not setting up an

RTP stream, we use only the formula for the non-RTP traffic.

e Triggered check queue; only the normal connectivity checks are paced and the trig-

gered checks are sent immediately.

CHAPTER 3. NAT TRAVERSAL USING HIP WITH ICE 40

Only one of these features that is likely to have an impact on the ICE performance is the
lack of the triggered check queue. Since now a triggered check is sent immediately after
sending a response, our implementation is a bit more aggressive at sending the checks. One
of the reasons why the checks should be paced is that some NATSs are not able to create
bindings very fast [46]. However, in case of triggered checks, there is already an existing
binding which was used by the response message so this not that big problem.

In addition, our ICE implementation does not share STUN and TURN sockets, but uses
a separate TURN socket for the relayed traffic. This made the implementation easier but
requires an additional binding request that is made to the TURN or STUN server because
the TURN socket’s local address is different from the STUN socket’s address. This will
likely be fixed in the future versions and it does not affect the performance analysis section

since we concentrate only on the connectivity check phase.

3.4.2 Sending Checks From Different Interfaces

A feature that was implemented in the prototype, and required some research and more
tricks than expected, was sending the checks from a host that is multihomed.

A multihomed host has multiple IP addresses that are from multiple network interfaces.
The connectivity checks should be sent from different interfaces so that different paths are
really tested. Unfortunately, at least on Linux, it is not enough to bind a socket to a certain IP
address to assure that a message sent from the socket use the related interface too. Instead,
the kernel decides, based on the destination address and regardless of the address where
the socket was bound to, which interface to use for outbound packets. To fix this, the
proper interface must be set using the socket option SO_BINDTODEVICE. Unfortunately
this requires administrator (root) rights for the program.

Our ICE implementation warns the user if it can not set the proper interface but still
proceeds normally. However, in this case, if the host has an interface to a private network
and another one to a public network, even paths from the private network’s interface appear
to work to the public network because the kernel uses the public network’s interface for the
connectivity checks towards a host with a public range IP address. Therefore, without root

rights, the ICE library does not work reliably on multihomed hosts.

3.4.3 Stopping the Connectivity Checks

As mentioned in Section 2.4.2, the decision when to stop the connectivity checks is a matter
of local optimization. Even though this issue received only little attention in the specifica-
tion, it turned out to be crucial to the performance of ICE. If we use the simplest possible

scheme and just wait for all the checks to finish (the non-working candidate pairs use up

CHAPTER 3. NAT TRAVERSAL USING HIP WITH ICE 41

to 6 retransmits), the procedure takes typically up to 40 seconds to finish. For example, if
both hosts are in different private subnets, the highest priority pair, private to private ad-
dress, does not ever work. Then, we use multiple attempts and exponential back-off for the
retransmit timer as discussed in Section 2.3.2. Obviously, this time is too much for many
applications and there is hardly any benefit for trying that long — especially if we have
some less optimal working path before that.

We chose to use a simple check stopping algorithm with two different timeouts: a hard
deadline that is the maximum time the checks will ever be running, and a soft deadline after
which we stop the checks if we already have a path that does not use relays, i.e., is “good
enough”. If the checks on the highest priority candidate pair succeed, no further checks are
necessary and that pair is nominated for use.

The hard deadline was set to 10 seconds, since even with a relatively long Round Trip
Time (RTT) and some packet loss there is a good chance for finding a path, if such exists,
during that time. Unless there are more than 10 candidate pairs, 10 seconds is enough for
giving every candidate pair a chance for a retransmit even with a 500ms connectivity check
pacing. Also, in case of interpersonal communication, the person who is trying to start
communication is not likely to wait much more than 10 seconds for a path but will rather
get a notification that there is no connectivity. However, this assumption can be wrong if
the RTT is in the order of seconds, or even longer than our hard deadline. Such a situation
can happen e.g., with connections created using a mobile phone network. In this case, a
longer hard deadline may be necessary.

The soft deadline was set to 2 seconds. If both hosts are in different subnets and behind
different NATs, the highest priority candidate pair will always fail. Therefore, it makes
sense to accept server reflexive candidate fairly quickly. Checks within the same subnet
would validate fast, if ever, because packet loss is not very likely in that case. The downside
of accepting a server reflexive path fast is that we may end up using unnecessarily a NAT
hairpinning path if a server reflexive candidate is validated before the host candidate and
there is no working host candidate before the soft deadline.

The 2 second deadline is also in line with International Telecommunication Union (ITU)
recommendation [24] for post-selection delay on local connections. The recommendation
is (less than) 3 seconds under normal load, so ending the checks after 2 seconds gives the
preceding and subsequent signaling, such as ICE candidate exchange and SIP negotiation,
still one second to finish.

Basically, the soft deadline could be set even to a lower value, e.g., to 1 second or less,
if connecting to a host in the same subnet is not likely or using the very best path is not
crucial. Having a very low (or zero) value for the soft deadline approximates aggressive
nomination of ICE with extra connectivity check for nominating the first working path.

CHAPTER 3. NAT TRAVERSAL USING HIP WITH ICE 42

This algorithm could be further optimized by checking that if there is no chance for a
connectivity check to succeed before a deadline is passed, we would act as if the deadline
had passed already. This kind of situation can occur if none of the pairs is in progress state

and the time when the next pair moves to progress state is after a deadline.

3.5 Summary

HIP needs a NAT traversal solution, but such a solution will also benefit all upper layer
protocols that use HIP for initiating connections. NAT traversal with HIP has many ben-
efits compared to protocol specific solutions, but it can also make protecting hosts with a
middlebox on the network border harder.

For NAT traversal, HIP control and data packets are encapsulated in UDP and the HIP
base exchange is done through a HIP Relay. ICE can be used with HIP by exchanging the
ICE candidates in the HIP base exchange and running connectivity checks after the base
exchange. HIP’s NAT traversal extensions can also be used for negotiating what kind of
NAT traversal mechanism is used.

Our ICE library implementation consists of 7 modules which implement STUN, TURN
and ICE functionality and also provide socket and timer multiplexing services. The imple-
mentation differs for some parts from the ICE specification since it does not contain, e.g.,
SIP specific functionality. For deciding when to stop the connectivity checks, our imple-
mentation uses two different deadlines: if a sufficiently good path is found after 2 seconds,
the checks are stopped, but otherwise they continue until 10 seconds have passed.

The next chapter takes our implementation into use and presents how well it works in

different NAT traversal scenarios.

Chapter 4

Measurements and Evaluation

In this chapter we first discuss how the NAT traversal using the ICE methodology should
work in theory. We also introduce the prototyping environment that was used for testing
the ICE library presented in the previous chapter. Then, we share some experiences on how
some NAT implementations work in practice. Finally, we present our measurement data
from the tests and based on the data analyze the ICE connectivity check process in different

NAT traversal scenarios.

4.1 Theoretical NAT Traversal Using ICE

ICE should be able to traverse any combinations of NATS as long as either one of the hosts
has a TURN relay that both communicating parties can connect to. However, use of relay
servers is undesirable and hence it is important that ICE is able to traverse NATSs in most of
the scenarios without using a TURN relay. In this section we discuss what kind of scenarios

should, in theory, work without relaying.

4.1.1 Impact of Mapping and Filtering Behavior

If only one of the hosts is behind a NAT, or even multiple tiers of NATs, the type of the
NATSs does not matter, because the connectivity checks from the NATed host to the non-
NATed host behave like client-server communication which works with all the NAT types.
However, if both of the hosts are behind a NAT, the type of the NATs counts.

If all the NAT's have endpoint-independent mapping and filtering behavior, the mappings,
that are created when the hosts query for the server reflexive address from the STUN server,
accept also any packets sent by the other host. Then, already the first connectivity check sent

to a server reflexive address passes all the NATs and confirms a working path. Nevertheless,

43

CHAPTER 4. MEASUREMENTS AND EVALUATION 44

if there is at least one NAT between the two hosts whose filtering behavior is address, or
address and port-dependent, the connectivity checks to that direction are initially dropped.

For the address-dependent filtering behavior, it is enough that the host(s) behind a NAT
send packet to any port of the peer, whereas the address and port-dependent filtering requires
that a connectivity check is sent on the same port where the peer originates (or seems to
originate, if it is behind a NAT) his checks. If the mapping behavior of all the NATs is
endpoint-independent, the connectivity checks towards a peer seem to originate from the
same transport address that the STUN server saw the binding request coming from. This
address was sent to the peer during the candidate exchange, and the peer should be sending
checks to that address. Therefore, the peer’s NAT should have a ready binding for a check
that comes from the same address and is destined to peer’s server reflexive address. For this
reason, ICE works even with the strictest address and port-dependent filtering behavior.

Nevertheless, if any of the NATs have address or address and port-dependent mapping
behavior, the peer’s NAT’s filtering behavior dictates whether a route without a relay is
possible. If on the way to the public network, a NAT has an address or address and port-
dependent mapping behavior, a check sent to the peer’s address gets a different port on the
NAT than what the STUN server saw. If the host A is behind such a NAT, and the peer, host
B, has only endpoint-independent filtering NATSs, the check is delivered to host B and it
discovers a new peer reflexive address as described in Section 2.4.2. However, if any of the
NATs in front of the host B have address or address and port-dependent filtering behavior,
such a check is dropped. When the host B sends a check towards host A’s server reflexive
address, it creates filtering rules on the NATs that allow the next check by host A to pass
if the filtering behavior is only address-dependent. If the behavior is also port-dependent,
proper rule is never created and only a route through a relay works.

Also, if both of the hosts happen to have an address or address and port-dependent map-
ping NAT on the way towards the public network, they cannot discover the mapping the
NAT creates for them towards the peer, unless they can use a STUN server that is on the
same address as the peer’s NAT. Even in this case, if any of the NATs towards the STUN
server have port-dependent mapping behavior, the mapping will be different for the con-
nectivity checks that are not sent to the STUN server’s port.

To summarize, ICE methodology is able to create a working, direct path without a TURN
server as long as there are no address (and port) dependent mapping NATS, or if one of the
hosts is behind such a NAT, the other host must not have a NAT that has address and port-
dependent filtering behavior.

If a host is multihomed, it may have more than one path to the peer. Because ICE tries all
the different paths, the path that has the best NAT behavior counts. In other words, if any of
the interfaces is free of NATS, or the NATs have endpoint-independent mapping behavior,
no relay is needed regardless of the type of the NAT's the peer has.

CHAPTER 4. MEASUREMENTS AND EVALUATION 45

4.1.2 Multiple Layers of NATSs

If hosts are behind more than one layer of NATS, things can get bit more complicated. As
noted in the previous section, in case of more than one NAT, the NAT that has the strictest
filtering behavior, or worst (i.e., not endpoint-independent) mapping behavior, dictates how
well the NAT traversal works. However, multiple layers of NAT's can also cause other types
of problems.

As shown in Section 2.1.6 and Figure 2.7, the shortest path between hosts in different
subnets is not necessarily through a public network. Still, since host B’s private address is
routable from the NAT host A is behind, ICE is able open and use the best path between the
hosts. Yet, if we develop this scenario further and also place host B behind another NAT,
as depicted in Figure 4.1, its private address is in different subnet than where the host A’s
NAT is, so it is no longer routable from the NAT1. If the STUN server is on the host C (or
in the same public network), the binding both hosts learn is on NAT?2.

Host Cc

< %

HostA Host B

Figure 4.1: NAT scenario with two hosts behind multiple layers of NATS

If the last NAT (NAT?2 in the figure) before the public network does not support hairpin-
ning, it will not forward the traffic back between the hosts even if they had created proper
bindings on all the NAT's and all the NATs had P2P-friendly endpoint-independent filtering
and mapping behavior.

A scenario like in Figure 4.1 can happen e.g., if an ISP uses a NAT to serve a group of
home subscribers. If the home subscribers want to set up their own LANS, they may use a
router with NAT functionality and all the hosts in the home LAN end up behind a second
layer of NATs. For this reason, it is important that if ISPs deploy NATs in their network,
those NAT's must support hairpinning. Otherwise customers within that ISP that are using

their own LANSs can not communicate without the help of a relay.

CHAPTER 4. MEASUREMENTS AND EVALUATION 46

Because the base problem is that the only routable address both hosts in the home LANs
know of each other is on the NAT2, a way for hosts to learn addresses their own NATS have
given them would also help. A STUN server deployed in the “private” network served by
NAT?2 could tell the hosts those bindings, but discovering such a server is problematic. A
STUN server in the public, globally routable network may be pre-configured to an appli-
cation since it is likely to be available from most of the private networks, but that is no
longer the case with a STUN server in a private network. Also, it is not enough to use
any STUN server, but the server has to be in the right place in the network topology. As a
remedy to the problem, the DNS discovery mechanism suggested by [49] could perhaps be
extended to provide not only STUN servers in the public Internet, but also servers located
in ISP-NATed networks.

4.2 Prototyping Environment

To test how ICE works in practice, and to see whether the behavior matches the theoretical
behavior discussed in the previous section, we created a prototyping network whose topol-
ogy we could change easily and into which we could insert different types of NATs. The
ICE prototype was tested in an environment consisting of 7 virtual Linux computers, with
kernel version 2.6.18, running on VMware virtualization software. The network topology

of the environment is depicted in Figure 4.2.

Internet

O

?—relay
.190

193.234.218.x

1
p-nat2

“:| =7 .183
L
p-ua4 10.3.0.x
.188
|
|
p-ua3

.187

Figure 4.2: Prototyping environment’s network topology

Two of the computers (p-natl and p-nat2) were used as NAT's with the standard iptables

[25] masquerading function. The version that was in use in the prototype environment

CHAPTER 4. MEASUREMENTS AND EVALUATION 47

was 1.3.6, found in the Ubuntu Linux distribution. The iptables configuration is shown in
Appendix A. For some tests we changed one or two of the Linux NATs to DLink DIR-635
wireless N! routers. This model was chosen because it can be configured to use different
types of NAT filtering schemes: endpoint-independent, address restricted, and port and
address restricted. These schemes are in line with RFC4787’s [2] filtering behaviors. The
DLink router has endpoint-independent mapping behavior.

The host p-ua4 worked as the STUN/TURN server running the PJSIP project’s TURN
server [41] version 0.8.0. The PJSIP project’s server was used to reduce implementation
effort but also to test interoperability of the prototype implementation.

For signaling the address candidates to each other the hosts use a simple, TCP-based,
relay program at the host p-relay. The TCP relay therefore performs the same function
that a HIP Relay would do. When a test is started, both hosts gather address candidates
and connect to the TCP relay. The Initiator sends its own address candidates through the
relay, and after the Responder has received the candidates, it sends its own candidates to the
Initiator. Then, both endpoints start the connectivity checks.

The majority of the tests were run between the hosts p-ual and p-ua3. For the tests where
the hosts were not behind a NAT, either p-ual, p-ua3, or both, were connected to the public
network by disabling the interface to the private network and enabling another interface to
the public network. The host p-ual was always the Initiator of the connection, and therefore
the controlling endpoint for the ICE checks. For the tests where both of the hosts were in
the same subnet, the tests were run between the hosts p-ual and p-ua2.

For measurement purposes, we ran tcpdump [61] network traffic monitoring program on
both of the hosts performing the connectivity tests. Also, we stored all the debug prints of
the ICE library for later analysis. The tcpdump data was used for counting the number of

connectivity check messages and the amount of sent bytes.

4.3 Observations on NAT Behavior

Even though NAT behavior is today standardized in [2], some of the NAT implementations
do not follow the recommendations or do not always even fit into the defined categories.
From the tests we discovered that the Linux iptables NAT implementation has normally
endpoint-independent mapping and address and port-dependent filtering behavior. That is,
packets from the same private host’s source address and port will use the same public bind-
ing regardless of the destination address, but traffic is allowed back only from the addresses
and ports where it was originally sent to. However, it seems that if a Linux NAT receives a

packet to the public address it has reserved for a binding, from an address on the public side,

"Hardware version B1, firmware version 2.21EU

CHAPTER 4. MEASUREMENTS AND EVALUATION 48

where there has been no packets sent so far using that binding, the outbound packets to that
public address will not use the same mapping but will create a new mapping, and therefore
come from a different port on the NAT. This is demonstrated in a tcpdump capture of the
beginning of the connectivity checks in Appendix B.

The mapping behavior of the Linux NATs makes ICE NAT traversal harder. The first
connectivity check (sent by peer A, F,, in Figure 4.3) made to the server reflexive address
is always dropped. A check sent by the other peer, P, could pass both NATS since the
dropped check created necessary bindings in the P, side. However, if P, also has a similar
Linux NAT, the source port, at the NAT, of the connectivity check sent by P, is now changed
(from b1 to b2 in the figure), as described above. Then, also this connectivity check is
dropped due to the endpoint-dependent filtering policy of NAT A (only check from port b1
would have passed). Because of this behavior, hosts need to fall back to using a relay even

if the mapping behavior of the NATS is not (normally) address-dependent.

peer A NAT A STUN server NAT B peer B

src: A:al
~

src: B:bl

src: A:al, dst: B:bl

N

: ' % src: B:b2, dst: Aial
1]
L]

Figure 4.3: Failing connectivity checks between two hosts behind Linux NAT's

Even if only one of the two NATs was a Linux (or similar) NAT as described above,
depending on the timing of the checks, problems may emerge. In one possible scenario, P,
is still behind a Linux box, NAT,, but P, is behind another box, NAT}, that does endpoint-
independent mapping, but endpoint and port-dependent filtering”. If P, sends a check to
the server reflexive address of P, it creates a proper binding to NAT, and the following
check sent by P, will use that binding and will reach P, successfully. However, if a check
sent by P, happens to reach NAT, before P, has sent its first check, the mapping will be
again different. Since NAT}, does port-dependent filtering, it will not allow a check coming
from a different port to pass but will simply drop it. Even if the checks are repeated multiple
times by retransmits, all of them are dropped.

This problem does not occur if the peer behind the badly behaving NAT is the one who
sends the checks first, or the RTT between the peers is long enough and they start the checks

2As noted in Section 2.2.6, this is a really common NAT type

CHAPTER 4. MEASUREMENTS AND EVALUATION 49

simultaneously so that the checks go pass each other in the network. Yet, since there are no
guarantees that the endpoints start the checks exactly at the same time, sometimes the best
path is created and sometimes not. A solution to this problem would be to delay the checks
from the P, side, so that the proper bindings were created on NAT, before the checks from
P, reach it. However, there is usually no way of knowing which one of the peers, if either
one, is behind such a NAT. Both hosts could also double the amount of local candidates
and always delay the checks for the other candidate, but this would multiply the amount
of checks causing a lot of redundant traffic and increase the connection setup delay caused
by the connectivity checks. Perhaps a better way to solve this would be to first run the
normal ICE procedure, and if it seems that the best route is through a relay, a host could use
the secondary candidates and checks between them as a second-to-last resort. This would
require a change to the ICE protocol but it could increase the un-relayed success ratio a bit.
The amount of increase in success ratio would depend on the amount of Linux-like NATs
in the wild.

The behavior of the NAT in the D-Link Wireless router was more consistent and in line
with [2] than the behavior of the Linux NATs. This was not surprising since that router
model was chosen exactly for the reason that it had implementations of the different filtering

schemes defined in [2].

4.4 Measurement Results

To asses how well the ICE methodology and our library works, we run a set of tests with it
in different NAT settings. The prototype was also used with two different timer values to
see how that affects the performance of the library.

We used 25 different NAT scenarios in our prototyping environment that was presented
in Section 4.2. From all the scenarios we measured how long the whole process took and
the amount of messages and bytes that was exchanged. The tests were repeated 5 times for
each scenario to also survey variance in behavior. One of our goals was to get real numeric
data from the ICE process and thus we give detailed descriptions of different results.

First, only one of the hosts was behind a NAT and we used four different NAT types.
One NAT type was the Linux NAT and the rest were DLink routers with different filter-
ing behaviors: endpoint-independent, address-dependent, and address and port-dependent.
Then, we put both hosts behind a NAT in different subnets and varied the NAT type as in
the previous test. Finally, we also tested how the prototype works if neither one of the hosts
is behind a NAT. The notations used for different NAT types are summarized in Table 4.1.
When both the Initiator’s and Responder’s NAT type is expressed, they are separated with
a hyphen, and the Initiator’s NAT type comes first.

CHAPTER 4. MEASUREMENTS AND EVALUATION 50

Table 4.1: NAT scenario notations

Notation | Meaning
L Linux NAT
EI Endpoint-Independent filtering NAT
AD Address-Dependent filtering NAT
PD Address and Port-Dependent filtering NAT
N No NAT

Quick Mode

As noted in Section 2.4.2, the ICE draft requires that the connectivity checks for non-RTP
traffic are not sent faster than once every 500ms. However, to experiment with the timer
values, we used also a lower value and call this version the quick mode. In the quick mode,
the check pacing (1) is set to 100ms, so the connectivity checks are started 5 times faster
than allowed by the ICE draft. Also, the soft deadline was changed to 1 second and the
hard deadline to 5 seconds to better fit to the new check pacing. Because of the new T,
also the RTO changed since it relates to T}, as described in Section 2.4.2. Essentially, all
RTO values were five times smaller, but at least 500ms. Besides these new timer values, the

implementation and stopping criteria were identical to the normal version.

4.4.1 Selected Path

Table 4.2 presents the paths that were chosen by ICE in different scenarios. The results
were similar for both the normal and quick mode and they are combined in the table. The
first column of the table presents the type of the p-natl (Initiator’s NAT) and the first row
contains the type of the p-nat2 (Responder’s NAT). The middle section of the table presents
the type of the candidate for both the Initiator and Responder that was nominated for use.
The candidates can be host (H), server reflexive (S), peer reflexive (P), or relayed (R).
For example, a path from the Initiator’s host candidate to the Responder’s server reflexive
candidate is marked as H - S. If different tests of the same scenario resulted in different
candidate, both of the candidate types are given, separated with a slash.

As can be seen from the table, in the scenarios where only one the hosts is behind a NAT,
the host that does not have a NAT ends up using the host candidate and the other one a
server reflexive candidate. Also, if there are no NATs between the hosts, the selected path
is directly between the host candidates. In majority of the scenarios where both hosts were
behind a NAT, both were able to use either the server reflexive or a peer reflexive candidate.

However, if there was a Linux NAT and some other kind of NAT between the hosts, there

CHAPTER 4. MEASUREMENTS AND EVALUATION 51

Table 4.2: Selected path in different NAT scenarios

NATtypes | N | EI | AD | PD | L |
N H-H| H-S | H-S | H-S | H-S
EI S-H| S-S | S-S | S-S | sS-sP
AD S-H| S-S | S-S | S-S [s-sp
PD S-H| S-S | S-S | S-S [S-SR
L S-H|PS-S|P/S-S|[SR-S| S-R

is some variation in the eventually selected path’s type: depending on the test run, either
server or peer-reflexive candidate was used for the host behind the Linux NAT.

In the scenarios EI-L and AD-L, the Initiator behind the EI NAT got once, both in the
normal and in the quick mode, a peer reflexive address for the peer. Likewise, when the
Initiator was behind a PD NAT, twice in the normal mode and once in the quick mode, the
hosts ended up using a relay.

The same kind of variation in the selected path was happening in the NAT scenarios
where the Initiator was behind the Linux NAT. Here, the Initiator used a peer reflexive
candidate 3 times in normal mode and once in the quick mode for both EI and AD NATs.
The PD NAT resulted in use of a relay 3 times in the normal mode and twice in the quick

mode. When both hosts were behind a Linux NAT, the Responder’s relay was always used.

4.4.2 Number of Messages

Different NAT scenarios required a different number of ICE connectivity check messages
before the prototype was able to nominate a candidate pair and stop the ICE process. Also,
there was some variation in the number of messages that was needed when the test was
repeated multiple times using the same NAT setting. Figure 4.4 depicts the average number
of messages sent during the ICE connectivity checks in scenarios where both of the hosts
were behind a NAT. The x-axis contains the type of the NAT scenario where the Initiator’s
NAT type is before the hyphen and the Responder’s NAT type is after the hyphen. On
the y-axis, there is the average amount of messages that was sent by either the Initiator
or the Responder. These figures do not include the candidate gathering phase but only
the connectivity checks, including final the nomination message exchange. None of the
scenarios had retransmissions of any of the messages.

In all the scenarios where both hosts were behind different NATSs, after the gathering
phase, both hosts announced 3 candidates to each other: host, server reflexive and relayed.

When these are paired, they result in 9 candidate pairs. Then, because a host cannot really

CHAPTER 4. MEASUREMENTS AND EVALUATION 52

16 T

Initiator - mm—
15 Responder mm=m |

Message count

T T N Y S T S TR M |

O P N WbH OO N 0 O©

@@@ovovovovAo R G, g G0
© AR ‘O<<°<>o‘
NATscenano

Figure 4.4: Average number of messages sent during the ICE connectivity checks

send anything from its server reflexive address, but the checks are in reality always sent
from the host address, some of the candidate pairs are redundant and were removed from
the list. The removed pairs are selected by finding candidate pairs whose remote candidate
is the same but other pair has a host and the other pair a server reflexive local candidate.
The server reflexive candidate is replaced by the host candidate and the lower priority pair
of these two is removed. This process, called pruning [46], causes 3 candidate pairs (S-H,
S-S, S-R) to be removed from both checklists, resulting in checklists where there were 6
candidate pairs for both of the hosts.

In the scenarios where only one of the hosts was behind a NAT, the hosts ended up with
different size checklists. Because the host without a NAT had only 2 candidates (host and
relayed) the host with a NAT had 4 entries in the checklist: from its host and relayed address
to the host and relayed address of the peer. On the other hand, the host without a NAT paired
the two candidates with host, server reflexive and relayed candidate of the peer resulting in
6 pairs. If neither one of the hosts had a NAT, there were no server reflexive candidates to
prune and both had 4 entries in the checklists.

The scenario where both of the hosts are behind a NAT that has endpoint-independent
filtering behavior needed constantly only 4 messages sent by both of the hosts. The other
scenarios, where the filtering behavior of the NATs was more strict, needed sometimes
one more message sent by either the Responder or the Initiator before a working path was
created. An exception to this was the AD-EI scenario which, like the EI-EI scenario, needed
in all the tests only 4 messages by both of the hosts. The scenarios where also the mapping

behavior changed, i.e., the Linux NAT scenarios, resulted in more messages, especially if

CHAPTER 4. MEASUREMENTS AND EVALUATION 53

the other host was behind a Linux NAT and the other either behind another Linux NAT or
a NAT whose filtering behavior is port-dependent. On average, the PD-L scenario required
7 messages from the Initiator and 8 messages from the Responder, whereas L-PD scenario
required 10 messages from both. The L-L scenario required on average 13 messages from
the Initiator and 14 from the Responder.

Figure 4.5 contains the message count statistics for the scenarios where either only one or
neither one of the hosts was behind a NAT. Unlike in the scenarios with NAT's, the amount

of messages was the same in all the test runs, so the values are not averages.

16 T T
Initiator mm——
15 Responder ===
14
13
12

11

=
o

Message count

N S |

O P N WhH O O N © ©

%, e K ke k&, b G

NAT scenario

Figure 4.5: Number of messages sent in non-NATed scenarios

If neither one of the hosts was behind a NAT, both of the hosts ended up sending 5
connectivity check messages to each other. In all the other scenarios the Initiator of the
connection sent 3 messages, but when the Responder was behind a NAT, it sent 3 messages,
and when the Responder was not behind a NAT, it sent 5 messages during the connectivity
check phase.

When the quick mode was used, the trend in the amount of messages was fairly similar
to the normal mode, but instead using 4-5 messages, the average message counts were
5-6 in most of the scenarios with both hosts behind NATs. The PD-L scenario had the
same average amount of messages as in the normal mode, whereas L-PD scenario used on
average one more message from the Initiator and the Responder. The L-L scenario used
on average 2 more messages from the Initiator and 4 more messages from the responder
compared to the normal mode. If both of the hosts were in NAT free environment the quick
mode used, like the normal mode, 5 messages from both of the hosts. If only one host was

behind a NAT, the host without a NAT had to always send 5 messages whereas 3 messages

CHAPTER 4. MEASUREMENTS AND EVALUATION 54

for the Responder and 4 messages for the Initiator was enough. The figures from the quick
mode are shown in Appendix C.

4.4.3 Traffic Volume

Table 4.3 shows the average, minimum and maximum amount of bytes sent during the ICE
connectivity checks in different scenarios, rounded to integer precision. The byte counts are
almost directly proportional to the amount of messages sent during the connectivity checks,
since a normal binding request is always 144 bytes and a response is 148 bytes. Also the

last binding request message, which nominates the best pair, is 148 bytes.

Table 4.3: Amount of bytes sent during the ICE connectivity checks

’ Scenario ‘ ‘ Initiator ‘ min ‘ max ‘ ‘ Responder ‘ min ‘ max ‘
EI-EI 584 584 584 584 584 584
EI-AD 670 584 728 584 584 584
EI-PD 728 728 728 584 584 584
EI-L 642 584 728 584 584 584
AD-EI 584 584 584 584 584 584
AD-AD 642 584 728 670 584 728
AD-PD 642 584 728 670 584 728
AD-L 613 584 728 699 584 728
PD-EI 584 584 584 642 584 728
PD-AD 728 728 728 584 584 584
PD-PD 699 584 728 613 584 728
PD-L 1096 584 1988 1314 728 2264
L-EI 584 584 584 670 584 728
L-AD 671 584 876 729 584 876
L-PD 1592 728 2216 1606 584 2348

L-L 1994 1808 | 2184 || 2215 2084 | 2412

The smallest amount of bytes was sent in the scenarios where both the Initiator and the
Responder had to send only 4 messages. These scenarios resulted in 584 bytes sent by both
of the hosts. On average, the highest amount of bytes was sent in the scenario with only
Linux NATs: 1994 bytes for the Initiator and 2215 bytes for the Responder. However, the
highest single amount of bytes sent for the Initiator was in the L-PD scenario with 2216
bytes, whereas for the Responder it was in the L-L scenario with 2412 bytes. If we do not
take the Linux scenarios into account, the amount of bytes sent by either one of the hosts
was always between 584 and 728 bytes.

Table 4.4 shows the amount of bytes sent in scenarios where both hosts were not behind
a NAT. Because there was no variation in the amount of messages sent in these scenarios,

the values are exact rather than averages.

CHAPTER 4. MEASUREMENTS AND EVALUATION 55

Table 4.4: Amount of bytes sent in non-NATed scenarios

’ Scenario H Initiator ‘ Responder ‘

N-N 732 732
N-EI 584 440
N-AD 584 440
N-PD 584 440
N-L 584 440
EI-N 588 728
AD-N 588 728
PD-N 588 728
L-N 588 728

Also in these scenarios the amount of traffic both endpoints generate during the connec-
tivity checks is between 584 and 728 bytes; except for one scenario. The highest amount of
traffic is generated in the scenario without the NATs: this scenario exceeds, with 732 bytes
sent by both of the hosts, even the highest amount of bytes in a scenario with two other than
Linux NATs.

In the quick mode, scenarios where both of the hosts were behind NATS, excluding the
PD-L, L-PD and L-L scenarios, the average amount of bytes sent was in the range of 728—
843 for the Initiator and 728—-872 for the Responder. The L-L scenario needed the most sent
bytes with average of 2384 for the Initiator and 2904 for the Responder. In the non-NATed
scenarios, the Initiator sent 728, 732 or 588 bytes and the Responder 440, 728 or 732 bytes
depending on the amount of sent messages.

The candidate gathering phase, which should be done with a single message to the TURN
server, required two messages in our implementation. If we disregard the redundant mes-
sage, the gathering message exchange required sending a 28 byte request and receiving a
92 byte answer message from the TURN server.

4.4.4 Check Durations

Figure 4.6 shows the time it took in different NAT scenarios from the start of the connectiv-
ity checks before the first connectivity check by the Initiator succeeded. In other words, if
aggressive nomination was used, this is the time it would take to nominate the first pair. The
average time is shown with the cross and the error bars show the minimum and maximum
times from the 5 test runs.

Almost in all the scenarios where both of the hosts are behind a NAT, it takes approxi-
mately 0.5 seconds before the first successful check is done. Only in three scenarios, where
there was an address and port-dependent filtering NAT with a Linux NAT, or two Linux

CHAPTER 4. MEASUREMENTS AND EVALUATION 56

25— 77— 7T 7T T 12

10

15

2 g
= [
1

4

05 fog® X l X% F "
S S S mmmn e it S S S mamnn e it
NN QQQ‘VOQAQQ(QQQ'YOQ"OQ< Sy X © S 0 ¢ Qé}Q‘VOQ’%Q(Q@/Q'VOQAOQ(Sy %y X

NAT scenario NAT scenario

Figure 4.6: First successful test’s time Figure 4.7: Time when all checks are done

NATsS, it took on average much longer than 0.5 seconds. With the PD NAT, the fastest
success was after 0.5 seconds, but in some test runs it took up to 2 seconds before the first
success. With two Linux NATs it took constantly 2 seconds before the first successful check
was done.

Figure 4.7 shows the total time the whole ICE connectivity check process took from the
start of the connectivity checks to the reception of a response to the nomination message.
Like in the previous figure, most of the scenarios resulted in same time, 2 seconds, whereas
the PD-L, L-PD scenarios experienced some variance with some of the test runs taking 2
seconds to complete while for some it took up to 10 seconds. The L-L scenario needed
always 10 seconds before the best pair was nominated.

As shown in Figure 4.8, in all the scenarios where only one of the hosts was behind a
NAT, the first successful check was done in average during the first two milliseconds. The
longest time was in the scenario where the other host was behind a Linux NAT with the
check taking 8ms. Essentially, in all these scenarios the first successful check was done
right after the start of the checks. However, in scenarios where the responder was behind
a NAT, the checks continued until 2 seconds (Figure 4.9), whereas in other scenarios the
checks were stopped right after nominating the first successful candidate pair.

The quick mode results were almost identical except that all the times were 1/5 of the
times in the normal mode. Only additional difference was that the final success times in the
L-AD and L-L scenarios had slightly more variance in the quick mode: in the normal mode
there was hardly any variance whereas in the quick mode L-AD scenario’s first success time

varied between 0.1 and 0.18 seconds and L-L scenario’s time between 0.3 and 0.5 seconds.

CHAPTER 4. MEASUREMENTS AND EVALUATION 57

0.008 T T T T T T T T 25

0.007

0.006

0.005

0.004

Time (s)
Time (s)

0.003

0.002

0.5

0.001

NAT scenario NAT scenario

Figure 4.8: First successful test’s time in Figure 4.9: Time when all checks are done

non-NATed scenarios in non-NATed scenarios

4.4.5 Two Hosts in the Same Subnet

We also run tests with two hosts in the same subnet. When the hosts had only one interface
to the subnet, the results were identical to the N-N scenario: both hosts had to send 5
messages (732 bytes) and the hosts-to-host candidate pair was nominated immediately.
However, when we changed the Initiator to be multihomed, i.e., enabled an interface
towards the public network at it, the results changed. Now, both sent 4 connectivity check
messages in the quick mode and the Initiator needed to always send 3 and the Responder 4
messages in the normal mode. Even if the message count was lower, finishing the checks

took always roughly 2 seconds in the normal and 1 second in the quick mode.

4.5 Measurement Analysis

The results of Table 4.2 show that ICE is able to find the best path between two hosts if they
have only endpoint-independent mapping NATs between them, regardless of their filtering
behavior, as discussed in Section 4.1. The only variation is due to the use of Linux NAT
which does not fit nicely into the filtering and mapping behavior categorization.

In the scenarios where one host was behind a Linux NAT and another behind an EI or AD
NAT, the host behind the Linux NAT ended up sometimes using a peer reflexive candidate.
This happened because a check sent by the host behind EI/AD NAT reached the Linux
NAT before the other host had started its own check towards the server reflexive address
at AD/EI NAT. As described in Section 4.3, in this case the Linux NAT uses a different
mapping for the outgoing check resulting in new peer reflexive address. If the other NAT’s
filtering behavior had been address and port-dependent, this check would have failed and

only a relayed path would have been possible as in the L-PD and PD-L scenarios.

CHAPTER 4. MEASUREMENTS AND EVALUATION 58

If both of the hosts are behind a Linux NAT, it does not matter which one of the hosts
starts the checks since the other host’s NAT will switch to endpoint-dependent mapping
behavior and the other Linux NAT’s filtering behavior does not accept the check coming
from the new port. Therefore, in this case the relayed path is the only one that will work as

was seen with the L-L scenario.

4.5.1 Number of Messages

The number of messages sent during the ICE connectivity checks depends a lot on the stop-
ping criteria, but even if the criteria were the same, some scenarios needed on average more
than double the amount of messages before the checks were done. The least messages were
exchanged in the scenario where both hosts were behind endpoint-independent filtering and
mapping NATs. This sets the baseline for the amount of messages in scenarios where the
hosts are in different subnets, behind different NATsS.

NATs with endpoint-independent filtering behavior

In this scenario, both hosts first probe for connectivity on the host to host candidate pair
(H-H). The check does not succeed, since the hosts are in different subnets. After waiting
for the check pacing interval, Ty, they start the checks on the second highest candidate pair
in the list: local host to peer’s server reflexive (H-S). This check succeeds since the peer’s
NAT’s filtering behavior allows the check message to pass. The peer that first receives the
check, P,, answers to it and starts a triggered check on the same candidate pair. When the
answer to the check is received by the other peer, P, it notices from the mapped address
attribute that the check came in fact from the server reflexive address and marks the server
reflexive (S-S) candidate pair as validated. Also the H-S pair’s state changes to SUCCEED
since it produced a valid pair.

Because a check on the server reflexive candidate pair succeeded, all lower priority
checks are cancelled and only the host candidate pair (H-H) check continues. When the
triggered check arrives to the other host, it responses to it and also the peer P, learns that
the server reflexive pair works. Now both hosts have sent 3 messages.

Since the controlling host had initially 6 different candidate pairs in the checklist, it
used an RTO value of 3 seconds (6 x 500ms), and the soft deadline is reached before the
retransmissions start. Therefore, it nominates the only validated pair by sending another
check on the server reflexive candidate pair with the nominated flag. The controlled host
responses to it and when the controlling host receives the response, ICE processing stops,

resulting in 4 messages sent by both of the hosts.

CHAPTER 4. MEASUREMENTS AND EVALUATION 59

NATSs with other filtering/mapping behavior

If the NAT filtering behavior is endpoint-independent only for one host, the peer behind
the endpoint-independent filtering NAT, P,;, ends up sometimes sending one more message
than in the EI-EI scenario. If P,; sends the first check before the other host (P), unlike in
the EI-EI scenario, the NAT in front of P does not let the check pass because of the filtering
behavior. However, a check sent by P is delivered to P.; and it causes F; to cancel and
start a new check for that candidate. This new check passes because the check already sent
by P created a proper binding in its NAT. P answers to the check and now P has sent 3
messages and P.; 4 messages. The final nomination happens like in the EI-EI scenario.

In scenarios where the mapping behavior of P’s NAT is not endpoint-independent, like
in the L-EI and EI-L scenarios, the check sent by P comes from a different port than where
the check by P,; was sent. Because of the loose filtering behavior of P,;’s NAT, this check
passes and presents a new peer reflexive candidate for P,;, but does not increase the amount
of messages that need to be exchanged. If P sent the first check, everything happens like
in the EI-EI scenario, and both hosts send only 4 messages. Because the order in which the
hosts started the checks varied between the test runs, P,; sent 4 or 5 messages depending
on the exact timing.

In case both hosts had a NAT with either address or address and port-dependent filtering
behavior, it was always the host who started the checks first who had to send the extra check.
This happens because there is no binding for the faster host’s connectivity check before the
slower hosts sends its first check towards the peer.

The checks coming from a new peer reflexive address, due to Linux NAT mapping be-
havior, pass the other NAT as long as the NAT filtering behavior is not address and port-
dependent. Otherwise, a relay is needed which results in more connectivity check messages.
Because the relayed path was not accepted before 10 seconds had passed, the peers sent 10—
15 messages while trying the higher priority candidate pairs with retransmits even after a

successful check on the relayed candidate pair.

Hosts without a NAT

It was not surprising that the scenarios with more strict filtering or endpoint-dependent
mapping behavior NATs required more messages from the endpoints than the EI-EI sce-
nario. Instead, the fact that the scenario where there were no NATs at all (N-N), required
more messages than any of the scenarios where only one of the host was behind a NAT, was
rather unexpected.

An explanation to this behavior lies in the way how ICE handles candidate pairs which

have started the connectivity checks but have not received an answer back yet, i.e., pairs

CHAPTER 4. MEASUREMENTS AND EVALUATION 60

that are in the PROGRESS state. As mentioned in Section 2.4.2, an incoming check on a
candidate pair in PROGRESS state causes ICE to cancel the ongoing transaction and create
a new one. When two hosts without NATs start the checks, they send a binding request
to each other’s host candidates. When both of the hosts have send their own checks, they
receive the check from their peer and note that it matches the candidate pair where they just
started a check from. Therefore, they cancel the original check and send a new check on the
same pair. After sending the check they process the next incoming packet which is answer
to the check they just cancelled. This validates the pair and no further checks are needed on
that pair. However, they both already sent an extra check to which the peer has to answer.
So, both hosts send two checks, have to answer to two checks, and still need to nominate
the only validated pair, resulting in 5 connectivity messages in total.

In this light it seems strange why a check in the PROGRESS state is cancelled in case
of incoming check. Nevertheless, it makes sense since a common reason for the lack of a
response before an incoming check is that the original request was stopped by the peer’s
NAT because of missing mapping or filtering rule. The check that was received on the pair
in the PROGRESS state would have created such a rule and the new check should pass
the NAT.

If our implementation had the triggered check queues, the new check would not have been
sent immediately and a response to the original check would have removed the triggered
check from the queue. Yet, if RTT is bigger than 2 x (d + T'), where d is the delay between
the hosts for starting the checks and 7" is a value in the range of [0 — 7] (the time before
the check sending timer fires), the response to the original message would not be received
before the check from the triggered queue starts. This is shown in Figure 4.10. The response
(R1) to the first check (C1) is received after a response (R2) to the check (C2) sent by the
peer and a triggered check (TC3) due to the incoming check are sent. This happens if the
time from the sending of the C1 to the time when TC3 is sent is shorter than the time from
the sending of the C1 to the reception of R1 (see equations 4.1 — 4.3). The actual value for
T depends on when the previous connectivity check message was sent: if the check was
sent 1, ago, T' =T, — T..

d+ RTT/2+T < RTT/2+ RTT/2 4.1)
d+T < RTT/2 (4.2)
RTT > 2x(d+T) (4.3)

This behavior implies that beginning the checks simultaneously can actually hurt the

performance. If the check pacing is implemented as the ICE specification suggests,? the

3This was not observed in our measurements since we do not pace the triggered checks

CHAPTER 4. MEASUREMENTS AND EVALUATION 61

RTT/2

RTT/2

Figure 4.10: Situation resulting in an extra connectivity check

endpoints do not only need to send an extra check, but the controlling endpoint may also
need to wait up to 7" longer than without the triggered check before it gets to nominate the
best pair. With the recommended 7, value of 500ms, this means up to half a second delay.

A similar situation occurred in the scenarios where only the Initiator was behind a NAT.
The only difference was that now only the Responder ended up sending 5 messages and the

Initiator had to send only 4 messages.

4.5.2 Traffic Volume

The volume of the traffic generated by the ICE process naturally depends on the amount of
messages. However, the size of a single message can vary a bit depending on the included
STUN attributes.

Size of the connectivity check messages

A breakdown of a connectivity check message used in our implementation is shown in Fig-
ure 4.11. As noted in Section 2.3.2, all the STUN messages start with a 20 byte header
containing the type and length of the message, the magic cookie, and a transaction identi-
fier. In addition to the header, the connectivity check request messages contain also priority,
username, integrity and fingerprint TLV attributes. All the attributes have a 4 byte header,
followed by a value whose length depends on the type of the attribute. The priority attribute

has a 4 byte priority value for peer reflexive candidates (see Section 2.4.2), the integrity at-

CHAPTER 4. MEASUREMENTS AND EVALUATION 62

tribute has a 20 byte and the fingerprint a 4 byte checksum value [49]. Finally, the username
attribute contains a variable length value presenting the usernames of both of the peers.

IO 15I 31|

0] STUN Message type Message Length

Magic Cookie (4 bytes)

Transaction ID (12 bytes)

Priority (4 + 4 bytes)

Username (4 +79 + 1 bytes)

Integrity (4 +20 bytes)

Fingerprint (4 + 4 bytes)

Figure 4.11: ICE connectivity check request message structure

The ICE specification [46] says that the connectivity check messages should also contain
either ICE-CONTROLLED or ICE-CONTROLLING attribute that indicates the ICE role,
controlled or controlling, the host believes it should be in. This attribute contains a 64 bit
unsigned integer value that is used as a tie breaker if both endpoints believe they are in the
same role. As noted in Section 3.4.1, this cannot happen with HIP, so these attributes are
not included in the connectivity check messages. If they were, they would increase the size
of all the check messages by 12 bytes.

In the tests we used the peer HITs as the usernames. A single HIT in the STUN username
presentation consists of 8 groups of 4 hexadecimal characters which are delimited with a
colon. For the STUN username, the two HIT presentations are concatenated and separated
with a colon, resulting in 16 groups of hexadecimal characters and 15 colons. Since each
character takes one byte, in total the username takes 16 x 4 + 15 = 79 bytes. In addition,
the username TLV contains one byte of padding because the attribute must be aligned on a
32 bit boundary [49].

The only difference between a request and a response message is that the response mes-
sage contains a mapped address attribute instead of the priority attribute. The mapped
address attribute takes 12 bytes, i.e., 4 bytes more than a priority attribute. Also, the con-
nectivity check message that nominates the best pair contains a nominating attribute which

does not have a value and thus takes only 4 bytes. Hence, size of a normal connectivity

CHAPTER 4. MEASUREMENTS AND EVALUATION 63

check request is 20 + 8 4+ 84 + 24 + 8 = 144 bytes and a response or nominating request
takes 144 + 4 = 148 bytes.

Because of the rather long usernames, the username part takes roughly 60% of a whole
message, hence using more than half of the total bytes exchanged during the connectivity
check phase. If the byte overhead of the connectivity checks should be decreased, reducing
the username length would be a good candidate for this. The HITs are natural usernames
in the context of HIP, but e.g., a hash of the HIT would work equally well. Also, a more
efficient coding of the HIT could be used: now every byte is presented with two bytes since
one hexadecimal character can only present 4 bits of information. For example, if both of
the usernames were presented with 5 character, the username attribute would take in total
445+ 1+ 54 1= 16 (header, username, colon, username and padding) bytes instead of
84 bytes. Then, a request would take only 76 bytes and a response 80 bytes.

Bitrate of the checks

Since most of the scenarios needed 2 seconds and 584—728 sent bytes to finish, the average

upstream bitrate for these checks would be from %:8(’ ~ 2.3% to 7282:% ~ 2.9%. The

L-L scenario needed the most bytes, but also 10 seconds, to finish resulting in bitrate of

2113x8b ., 1 ~kb
2L3X8H 1 7R,

This bitrate is well below even the 9.6 kbps bandwidth of basic GSM (Global System for
Mobile communications) data, and newer GPRS (General Packet Radio Service) connec-
tions can achieve orders of magnitude higher bitrates [39]. The quick mode sent packets
5 times faster, but since the amount of sent messages was not much higher, the consumed
bitrate was approximately only from 5.8% to 6.7%. This would be closer the maximum
basic GSM bitrate, but would not still be an issue for faster connections. Also, if we used
shorter usernames, as described before, the size of the connectivity check messages, and
therefore the needed bitrate, could be almost halved and also the quick mode would be
easily manageable even with the basic GSM bandwidth.

Taking these issues into consideration, the connectivity check traffic should not be too
much for even modest range practical link speeds. Of course, if a link is already highly
utilized, even this amount of traffic can cause it to become congested and start dropping
traffic. Still, even the quick mode creates so little traffic that it should be safe to use it with
most of the access technologies in use today.

For all the scenarios, except when there are no NATs at all, the used downstream bitrate
is smaller than the upstream bitrate, since only some of the checks make it through the
NATs or are even sent to a routable address. For example, if both of the hosts are behind a
NAT, the first checks never make it to the peer’s NAT, since the private range host address is
not routed there. Also, since the first check that makes it through causes the lower priority

checks to cancel, only couple of connectivity check messages are usually received.

CHAPTER 4. MEASUREMENTS AND EVALUATION 64

4.5.3 Check Durations

In 9 out of the 12 scenarios, where both of the hosts were behind a NAT, the first successful
check was in practice always done 0.5 seconds after the start of the checks. This check
was always the second check in the checklist: from host to server reflexive candidate of the
peer, and hence done 500ms (7}) after the start of the checks. The first check between the
host candidates was always doomed to fail since the hosts were in different subnets. Even
if the first check to server reflexive address was in some scenarios dropped due to missing
filtering rule in AD or PD NAT, the check to other direction would succeed and create a
triggered check to other direction, keeping the success time close to 500ms.

In the PD-L and L-PD scenarios, depending on the timing, either one of the server reflex-
ive candidate worked and the first successful test was after 0.5 seconds, or only the relayed
candidate worked after 2 seconds as in the L-L scenario. The dependency on the check
timing is due to the Linux NAT behavior discussed in Section 4.3.

However, things got more interesting when both of the host were behind a Linux NAT or

only the Responder was behind a NAT.

Both hosts behind Linux NATs

Only in the scenario with two Linux NATs, it took constantly 2 seconds before the first
successful check, because the fifth candidate pair was the first one to succeed. One would
have expected already the third candidate pair of the Initiator, host to relayed candidate,
to yield success, but this was not the case. If the Initiator happens to send the first check,
the Responder’s TURN server drops the message because there is no permission for it, as
discussed in the section 2.3.3. Also, when the Responder performs its own connectivity
check on the same pair, i.e., from its relayed candidate to the peer’s host candidate, it
actually asks the TURN server to forward the check to a private range host address of the
peer, which naturally does not work. And to make things even worse, this check does not
create a proper permission for the checks sent by the peer, since the peer’s checks appear to
come from the server reflexive address. Consequently, even if the Initiator sends the check
after the Responder, the TURN server drops it.

For the fourth candidate pair both endpoints just use the Initiator’s relay, and also these
checks fail for the same reason. The fifth candidate pairs, relay to server reflexive address
(from Initiator’s point of view) work since now a permission for the right address is finally
created.

Clearly, the problem here is the TURN server’s address-dependent filtering behavior due
to the need of permissions. This feature was included in the specification to ease concerns of

enterprise network system administrators that TURN could be used to bypass their firewall

CHAPTER 4. MEASUREMENTS AND EVALUATION 65

security measures [48]. However, in many scenarios, more important than the (somewhat
limited) security benefit this feature brings, would be to finish the connectivity checks as
fast as possible. Thus, it would make sense to be able to create a relayed candidate that

accepts any incoming traffic without a need for explicit permission.

Only one host behind a NAT

In the scenarios where only one of the hosts was behind a NAT, the first check done by the
host that is behind a NAT always succeeds since there is no NAT before the peer that would
block the check. This check triggers also a check from the peer and both hosts perform
successful checks right at the beginning of the connectivity checks. Still, the scenarios
where the Initiator was not behind a NAT continued checks until the soft deadline, while
the other scenarios with only one NAT, or no NATsS at all, resulted in almost immediate
nomination and ending the checks.

The reason for this behavior is that the highest priority candidate pair, host to host, moves
to SUCCEEDED state for the peer behind a NAT when it performs the first check: the peer
sees that the check actually came from the server or peer reflexive candidate, it creates a
valid pair from that, but the original pair is still marked as SUCCEEDED. Yet, the peer that
is not behind a NAT is unaware that the checks for this pair can be stopped, and it continues
until the soft deadline.

This issue could be fixed by adding an attribute to the connectivity check messages which
tells from which candidate the check was sent. Then, also the controlling host without the
NAT would know which pair succeeds from the peer’s point of view, and it would not

continue trying to test a path that has no chance of ever working.

4.5.4 Two Hosts in the Same Subnet

The scenario where both of the hosts were in the same subnet with only one interface is
fairly similar to the scenario where neither one of the hosts has a NAT since the best path
between them is free of NATs. Therefore, it is natural that the results were identical to
the N-N scenario. The only difference between these scenarios is that in the shared subnet
scenario the hosts have also server reflexive candidates (from the same NAT), but they never
get to try them since the host-to-host candidate pair is prioritized over pairs with the server
reflexive candidate.

However, when the interface to the public network was enabled for the Initiator, the sce-
nario changed. Because of local prioritization, the Initiator prefers the public interface over
the private one. Consequently, the highest priority path would be from the host candidate
of the preferred, public interface rather than from the private interface. Since a check sent

CHAPTER 4. MEASUREMENTS AND EVALUATION 66

from the public interface to the peer’s most preferred (host) candidate with a private range
address is not delivered, this path never works. Because our check stopping algorithm tries
the highest priority path until the soft deadline is passed, the checks are not stopped even
while a check on another host-to-host candidate (from the Initiator’s private interface) suc-
ceeds. Hence, the checks always take at least 2 seconds in the normal and 1 second in the
quick mode.

This problem would not have occurred if the private interface was preferred over the
public one. Still, if the peer had been accessible only through the public interface, we
would have ended up to the same situation. Probably the best solution would be to use a
more intelligent stopping criteria which immediately accepts a path from the less preferred
interface too. However, there could be a reason for the user to prefer one interface over the
other. For example, if there is a difference in the cost of using the interfaces or the other
interface is using a more reliable or faster connection, it makes sense to keep trying checks
on the preferred path. If this is not the case, it would be useful to have multiple candidates
with the same preference, but this is not possible since, according to the ICE specification,
all the candidates need to have unique priorities.

For this reason, the local prioritization of interfaces and candidate types is not always an
adequate way for expressing what kind of candidate pair should be selected. This further
increases the importance of the stopping criteria which should not make decisions based

only on the priorities.

4.5.5 Quick Mode

The shorter value for T}, and check stopping deadlines of the quick mode essentially halved
the time it takes to create a path between two hosts. As noted in Section 3.4.3 and in [24],
this is often a rather important metric in case of interpersonal communication.

Since the first successful check with quick mode was made in most of the scenarios five
times faster than with the normal mode, a more aggressive check stopping criteria would
have been able to set up the path using roughly only one fifth of the time it takes for the
normal mode. Yet, there was not much more traffic generated by the quick mode. Even the
small increase in the amount of sent messages was due to faster retransmission, which in
turn could be able to create a more optimal path in case of packet loss. Also, as discussed
in Section 4.5.2, even the bandwidth usage of the quick mode is not considerably high.

The situation could be different in a network with longer RTT, since the retransmissions
could start before the first checks have even made it to the peer’s NAT. Still, it seems that
the connectivity check pacing should be as small as reasonable, because the NATs where
they should create bindings on are usually quite close to the peer sending the checks, and

therefore the (possibly long) RTT between the peers is not relevant there. Also, the mini-

CHAPTER 4. MEASUREMENTS AND EVALUATION 67

mum limit of RTO (500ms) makes sure that even with a small T;, value the retransmissions
do not become too aggressive.

Sending checks really fast could also cause congestion in the network, but on the other
hand, if the path created with ICE is not used by a protocol that tries to avoid congesting the
network, the traffic after the checks will likely anyway cause much more congestion than
the connectivity check messages. Of course, the congestion caused by sending the checks
too fast may cause a connectivity check message being dropped and therefore a less direct
path being selected.

Still, based on these observations, the timer values of the quick mode seem much more
reasonable than the values suggested by the ICE specification for non-RTP traffic.

4.5.6 Generality of the Measurement Results

The measurements were performed in our prototyping network which has a very low aver-
age RTT (less than 1ms) compared to communication through the Internet. Therefore, some
of the effects that are due to checks happening simultaneously will likely be different on the
real Internet. The signaling path through the TCP relay is much faster than a HIP four-way
base exchange through a relaying service and hence both endpoints start the connectivity
checks almost simultaneously. On the other hand, since the checks reach the other host,
or its NAT, much faster than they would do in the Internet, the probability that two checks
cross in the network is lower. This way our prototyping network can make simultaneously
happening connectivity checks both more and less probable.

Also, the prototyping network was fairly reliable and not congested, so we did not test
the behavior of ICE when some of the connectivity check messages are not delivered due to
packet loss. Since losing packets would lead to retransmissions, and possibly to selection of
sub-optimal paths, many of the results could be different if our implementation was tested
in a less reliable network.

Finally, since the stopping criteria of the checks plays a major role in the ICE perfor-
mance, with different criteria, the amount of messages that are needed would be quite dif-
ferent. We implemented only one simple algorithm for this and a more advanced algorithm
could be able to perform better. Similarly, different local prioritization of the candidates
could decrease, or increase, the time it takes to create a path. For example, a host that
knows that the peer is not in the same subnet could prioritize a server reflexive candidate
over the host candidates and this way find a working path using the first pair in the checklist

instead of trying to the host-to-host candidate pair first.

CHAPTER 4. MEASUREMENTS AND EVALUATION 68

4.6 Summary

We analyzed ICE behavior theoretically, and concluded that no TURN relay is needed as
long as there are no address-dependent mapping NATs between the hosts. Also, if one
of the hosts is behind such a NAT, but the other host does not have a NAT that has address
(and port) dependent filtering behavior, a path without a relay is possible. This behavior was
also validated by measurements performed on the prototype. In addition, complications that
may rise with multiple layers of NATSs, and a remedy to the problem was presented. Section
4.3 contained an analysis of unexpected Linux NAT behavior, where the NAT may switch
from endpoint-independent to address and port-dependent mapping behavior, depending on
the connectivity check timing. The measurements showed that this behavior can hurt the
connectivity check phase a lot.

Our ICE library was tested in 27 different NAT scenarios, the amount of messages and
bytes sent during the checks was counted, and the time it took for the checks to succeed
was measured. The results from different scenarios were presented and analyzed and some
unexpected results were discussed in more detail. Especially, the scenario where the hosts
are not behind NAT's got special attention and we derived a relation between the RTT and
the check timing that dictates whether a redundant connectivity check is performed. From
the number of transferred bytes we derived bitrate of the connectivity check traffic and
concluded that the bitrate is manageable even with modest bandwidth connections. Our
analysis on the check duration revealed a feature of TURN that causes the checks between
hosts with endpoint-dependent mapping NATS to take surprisingly long time. Also, if only
the Responder was behind a NAT, we found out that ICE continues the checks longer than
necessary. A fix to both of these problems was presented after the analysis. Finally, when
two hosts were put on the same subnet, but the Initiator was multihomed, we discovered that
hosts were able to create a path, but it took longer and the path was different than expected.

From the measurement we found out that the connectivity checks commonly required
hosts to send 4-5 messages and 600-750 bytes, but NATs with endpoint-dependent map-
ping could double the amount of needed checks. A version of the implementation with
shorter timer values, called quick mode, was able to create paths with similar amount of
traffic, but using only from 1/5 to 1/2 the time the normal mode used. Quick mode had
higher bandwidth requirements, but still the generated bitrate was not excessive. Also, from
the connectivity check message structure’s analysis we found out that the amount of bytes
transferred during the checks, and thus also bandwidth requirements, could be halved by

simply using shorter usernames.

Chapter 5

Discussion

In this chapter we discuss the applicability of HIP to P2PSIP NAT traversal: what is needed
from the P2PSIP, how much overhead will be caused by HIP and ICE, and how HIP’s
features can be beneficial for P2PSIP. We also present ideas for future work on how ICE

could be improved and also how we could make our evaluation of ICE more complete.

5.1 HIP as a NAT Traversal Solution for P2PSIP

As noted in Section 3.1, if HIP is used for creating connections between hosts, the appli-
cations do not need any other NAT traversal solutions, but they can use the path created by
HIP for communication. For this reason alone, HIP appears to benefit P2PSIP considerably.
However, this benefit does not come without a cost since HIP increases the communication
overhead, i.e., the amount of time it takes to set up a path and also the amount of extra
traffic that is generated. Also, while P2PSIP can benefit from HIP, it can also help HIP’s
NAT traversal work in situations where there are no HIP Relays available. These issues are

discussed in the following subsections.

5.1.1 Using P2PSIP Overlay with HIP

HIP needs a signaling path for the base exchange to be able to traverse NATs. In Section
3.2 we introduced a HIP Relay for this purpose, but in many scenarios such a relay may not
be available or known to the hosts. Instead, the relaying service can be provided by the P2P
overlay. [8] proposes using hop-by-hop routing of the base exchange through the overlay
for this purpose. This solution traverses NATs effortlessly, since the base exchange uses
the same path as the overlay network traffic. A downside of this approach is that the RTT
over the overlay can be relatively long since even a single hop in the overlay usually takes

69

CHAPTER 5. DISCUSSION 70

multiple hops in the underlying network. Hence, concluding the base exchange may take
considerably longer compared to using a single HIP Relay.

Another option would be to use a single overlay host that is not behind a NAT, or a host
that is behind a NAT with endpoint-independent filtering and mapping behavior, as a HIP
Relay. If such a host is not available, the hop-by-hop routing could be used as a fallback
option. Using a single host would be faster and use less resources from the overlay but
would also create a possible single point of failure. However, since a relay is needed only
during the base exchange, the probability that a peer disappears or fails during that time is
relatively low.

A third option would be to use a TURN server as the relay for also HIP signaling traffic.
One motivation for this is that since TURN is used also by other protocols than HIP, finding
a TURN relay could be in many scenarios more probable than finding a HIP Relay. How-
ever, a Responder behind a NAT cannot use a TURN server for receiving 11 packets because
of the required TURN permissions. Fixing this would require a change or an extension to
the TURN protocol, but it would also fix the TURN problem discussed in Section 4.5.3.

While HIP can benefit from the P2PSIP overlay, the P2PSIP overlay can benefit even
much more from HIP. An overlay that is using HIP for setting up the connections does not
need to worry about NAT traversal: the only requirement is that it should be able to carry the
base exchange packets through the overlay. Even this requirement is not necessary if there
are HIP Relays that can be used for the base exchange. Also, due to the use of IPsec tunnels,
no additional encryption or integrity protection is needed for the overlay traffic. The strong
authentication features of HIP can be used to help admission control of the overlay, the
mobility extensions can be useful for mobile hosts, and multihoming benefits overlay peers
with multiple network interfaces. Adding this kind of features, especially the mobility and

multihoming, in some other way and still make it secure and efficient could be problematic.

Relaying Data Using Overlay Peers

In a P2PSIP overlay network, peers may work as media relays for nodes that are behind P2P
unfriendly NATs. However, due to the nature of the peers, they may disappear without a
warning from the network or stop providing reliable relaying service for some other reason.
This is especially bad for a relay since it is the only working path between the communi-
cating nodes. Running the whole ICE procedure after noticing that the path does not work
anymore takes often too long time and thus the working path should be made more reliable.

One solution for this is to use more than one concurrent relaying nodes. If we send traffic
all the time through two or more relays, we multiply the chances that at least one relay can
deliver the traffic. Unfortunately, this also multiplies the amount of network traffic which is

especially bad in the relayed scenario with already non-optimal paths. Yet, an even bigger

CHAPTER 5. DISCUSSION 71

problem is that most of the applications that would be using the relayed data do not support
receiving data using multiple simultaneous paths. And even if such support was integrated
to the applications, doing it in a reliable way that does not open possibilities for attacks
discussed in Section 2.6.1, is not by any means trivial.

HIP can provide support for multiple simultaneous paths using the Simultaneous Multi
Access (SIMA) [40] extension. With SIMA, HIP can send packets belonging to different
flows between two hosts on different routes. This feature could be extended to replicate
the traffic at HIP layer, send it using two (or possibly more) different paths, and on the
other end drop duplicate packets. This way, a considerably more reliable path, that is still
transparent to upper layers, could be created between the hosts, with the expense of quite

high overhead.

5.1.2 Cost of HIP-ICE in P2PSIP

Using HIP with ICE for NAT traversal generates overhead for both connection setup and
data traffic. The HIP base exchange and the ICE connectivity checks must be done before
any data can be exchanged and all the data must be encapsulated in UDP and ESP during

the connection.

Overhead due to the base exchange

The HIP base exchange’s four-way handshake requires four messages through a relay or an
overlay. From a packet capture (see Appendix D for details) it can be seen that a normal
HIP base exchange requires the Initiator to send 40 4 680 = 720 bytes (I1 and 12) and the
Responder to send 600 + 216 = 816 bytes (R1 and R2).

In addition to the normal HIP parameters, in case of ICE-based NAT traversal, the hosts
exchange NAT transformation and LOCATOR parameters as described in Section 3.2. If
the only defined transformation is used, the NAT transformation parameter requires 8 bytes.
The LOCATOR parameter takes 4 bytes for the TLV header and 36 bytes for each ICE
candidate [28]. A host behind a NAT with a single interface has typically 3 local candidates:
host, server reflexive and relayed. Therefore, a typical LOCATOR parameter would be
4 4 3 x 36 = 112 bytes. With UDP encapsulation and non-ESP marker for both packets,
after taking into account the NAT transformation and LOCATOR parameters, this gives
ICE overhead of 2 x (8 + 4) + 8 + 112 = 144 bytes to the base exchange. In total, this
means that the Initiator has to send roughly 720 + 144 = 864 bytes and the Responder
816 4 144 = 960 bytes during the base exchange.

CHAPTER 5. DISCUSSION 72

Multiple layers of encapsulation

When HIP has created a path between the hosts, all the traffic between them is IPsec pro-
tected and hence encapsulated in ESP. For NAT traversal purposes, the ESP itself is en-
capsulated in UDP. Therefore, a protocol that is run on top of NAT traversing ESP uses

multiple layers of encapsulation on every data packet as depicted in Figure 5.1.

UDP ESP

(8 bytes) (8 bytes) (transport) data... ESP trailer (ICV)

Figure 5.1: Encapsulation of data in HIP initiated connections

The UDP encapsulation requires 8 bytes and the ESP header takes another 8 bytes. Be-
cause HIP uses the ESP Bound End-to-End Tunnel (BEET) mode [37], no additional IP
header is needed and the transport layer header comes directly after the ESP header. The
length of the ESP trailer depends on the selected security services: if no integrity protec-
tion or encryption is used, it is only 2 bytes long. For encryption purposes, the trailer may
contain padding so that the data length matches to the requirements of the used cipher al-
gorithm. Also an Initialization Vector (IV), that is needed for some cipher algorithms, may
be included in the data portion before the trailer.

For example, 3DES (Data Encryption Standard) [27] uses 8 byte IV and requires the data
to be a multiple of 8 bytes, needing padding of 0—7 bytes. If the packets are integrity pro-
tected, the ICV field contains the Integrity Check Value. For example, with a 160 bit Secure
Hash Algorithm 1 (SHA-1) Hash Message Authentication Code (HMAC) [31], padded with
4 bytes to match the IPv6 alignment conventions, ICV needs 24 bytes.

If the ESP security features are disabled, the per packet overhead of NAT traversing
ESP is 8 + 8 + 2 = 18 bytes (UDP header, ESP header and a minimal ESP trailer). If
the data is encrypted with 3DES and integrity protected with the SHA-1 HMAC, this adds
8 +24 + p = 32 4 p bytes IV and HMAC) where p is the amount of needed padding.
Hence, the total per packet overhead with the example security features is from 50 to 57
bytes. Yet, if HIP is regarded only as a NAT traversal solution, that is still able to perform
mobility and multihoming, the per packet overhead can be considered to be 18 bytes.

As a point of reference, this overhead could be compared to NAT traversal with Teredo
[21] which uses UDP encapsulation like HIP, but instead of ESP, encapsulates the data in
IPv6. A minimal IPv6 header is 40 bytes, resulting in per packet overhead of 48 bytes. Also,
the overhead created by the security features of ESP is similar to other security protocols

providing integrity and confidentiality, such as TLS [13].

CHAPTER 5. DISCUSSION 73

A path for UDP traffic created with plain ICE does not have any per packet overhead, so
it is naturally more efficient than the ESP encapsulated path created with HIP. Still, whether
the ESP overhead is significant, depends on the traffic that is sent on the path: for average
packet size of 1kB, the ESP overhead would be less than 2%, but for an interactive terminal
session, sending just a few bytes at a time, the overhead can be multiple times bigger than
the payload itself.

Total overhead

To get a rough figure of how much overhead the whole ICE and HIP process creates, we
can calculate the overhead of different phases together. Then, we can calculate how many
packets need to be sent before the amount of sent payload exceeds the overhead.

The candidate gathering phase has to be performed only once as long as the candidates
are kept alive. A single request message to a TURN server from each of the interfaces is
enough for getting relayed and server reflexive candidates. In case of single homed host, this
means only one message exchange, with 28 sent and 92 received bytes as noted in Section
4.4.3. The next phase, HIP base exchange, requires both of the hosts to send two messages
that contain the ICE candidates. As noted before, if both are single homed hosts behind a
NAT, this requires 864 bytes to be sent by the Initiator and 960 bytes by the Responder. The
amount of messages and bytes exchanged during the connectivity check phase depends a lot
on the types of the NATS, but 4-5 messages (584 — 728 bytes) sent by both endpoints seems
to be normal in a scenarios without misbehaving NATs. With Linux NATSs, on average up
to 14 messages (2215 bytes) might be needed. Thus, setting up a single connection between
two hosts requires roughly from 1 +2+4 = 7to 1 4+ 2 4+ 14 = 17 sent messages and from
28 + 864 + 584 = 1476 to 28 + 960 + 2215 = 3203 sent bytes.

When a path is created, every data packet has at least 18 bytes of overhead due to the ESP
and UDP encapsulation. If we send on average 1kB data packets, before the overhead is
less than 50%, we need to send 2—4 packets, mainly depending on the amount of messages
needed for the connectivity checks. If we send on average 100 byte packets, it takes 18
packets with total 1800 bytes of payload to exceed the overhead of 1464 + 18 x 18 = 1788
bytes. Yet, if also some possible alternative path has the same per packet overhead, the ESP
encapsulation should be disregarded and with 15 packets the amount of payload passes the
amount of connectivity check overhead.

This observation suggests that if only a few small messages are exchanged, an alternative
path, such as using the overlay, would make sense. On the other hand, already a couple of
bigger packets may justify the HIP and ICE overhead.

CHAPTER 5. DISCUSSION 74

MTU issues

Because the HIP base exchange packets are relatively large, they may exceed the MTU
limit of links between the hosts if multiple locators are included in them. This results in
fragmentation which can be problematic with NAT's as discussed in Section 2.1.5. A typical
MTU for IPv4 run over Ethernet is 1500 bytes [23] and for IPv6 the minimum MTU is 1280
bytes [12]. Before the [IPv6 MTU is reached for the biggest base exchange packet, 12 with
680 bytes, there can be up to | (1280 — 680 — 4 — 8 — 8 — 4)/36] = 16 locators'. The
common IPv4 MTU is reached after | (1500 — 680 — 4 — 8 — 8 — 4)/36] = 22 locators.

Having that many locators would require multiple interfaces: e.g., 6 interfaces, with
each behind a different NAT, could lead to 18 locators (host, server reflexive and relayed
candidate for each). Then, all of them would not fit into an 12 sent over IPv6 minimum MTU
without fragmentation. However, even if a host had that many interfaces, probably all of
them would not be need for ICE, but even a subset would be sufficient for finding a working
path. Also, the ICE draft recommends that the maximum connectivity check list size should
be limited to 100 entries [46], so even if both hosts send more than 10 candidates, only the
100 highest priority candidate pairs would eventually be tested, limiting the usefulness of
sending large amount of candidates.

Then again, if the base exchange is done over a P2P overlay, the overlay may set a lower
limit for the packet size than what the IPv4 and IPv6 MTU allow. In this case, the number
of locators sent by the hosts may need to be limited.

5.2 Future Work

Already in the measurement analysis part (Section 4.5) we mentioned a few possible im-
provements to ICE that were related to the observations on the connectivity check process.
During the prototype implementation we also found out other ways to improve the perfor-
mance of ICE in ways that are not found in the specification. The following sections discuss
these improvement ideas. We have not implemented these ideas, but they are left for future

work. Also, we present some ideas for making a more thorough analysis of ICE.

5.2.1 Enhancing ICE

ICE, and the hosts using it, could benefit from a self tuning RTO calculation that selects the
value for the RTO based on the network characteristics, from a TURN server telling which
networks are accessible through it, and from ability to use application layer hints as an input

for the stopping criteria. All these ideas for enhancing ICE are shortly presented below.

!Taking into account the NAT transformation parameter, UDP encapsulation, and non-ESP marker

CHAPTER 5. DISCUSSION 75

Self tuning retransmission timeout

Because of the low packet loss of our prototyping network, none of the tested scenarios
included connectivity check packets that were dropped for some other reason than a missing
NAT mapping or filtering rule. Hence, the retransmission timers were not tested in cases
where another try would have resulted in a succeeded check.

Still, we can observe that the default value for ICE RTO timer, presented in Section 2.4.2,
is relatively high. The high value prevents premature retransmits in networks with long
RTT links, but in a high-speed network even a single dropped packet can cause substantial
delay in completing the connectivity checks or may lead to un-optimal path selection. For
example, with 6 candidate pairs and the standard 500ms RTO, the very first retransmit
happens at 3 seconds after start of the connectivity checks — one second after the soft
deadline used in our implementation.

To cope with this issue, we should use different value of RTO for candidates with dif-
ferent network characteristics. However, the characteristics of the links are not normally
known to ICE. As a remedy to this problem, some hint of the candidate RTT can be
discovered at the candidate gathering phase. If the STUN or TURN server used to dis-
cover server reflexive addresses is connected using the same network that will forward the
traffic between the peers using that candidate, the time it takes for the response from the
STUN/TURN server to arrive can be used as an estimate of this peer’s part of total RTT.
Both peers could then communicate, during the exchange of the candidates, also the RTT
measurements and sum of both measurements could be used as the value for the initial RTO.

This enhancement would likely result in shorter than 500ms RTO with many high speed
access network technologies, but would not still use unrealistically small RTO values for
candidates that are from a network interface with long delays.

Private range destination addresses with TURN server

When all local and remote candidates are paired for the connectivity checks, a relayed
address from the TURN server is also paired with all remote host addresses — even if they
are from private address ranges. Since the TURN server is likely in the public Internet and
has no interface to the private subnets, none of these pairs with private range destination will
result in a working path. Still, they are tested and result in unnecessary increase in traffic.
What makes the problem even worse is the fact that the host candidates have by default
higher priority than the server reflexive candidate(s) (which would more likely work), so
all pairs that are less likely to work are tested before the ones that are more likely to work

using the high cost relayed path.

CHAPTER 5. DISCUSSION 76

There is a possibility that the TURN server has an interface to the private network too,
for example, if the TURN server is run on the same box that works as the NAT. In this case
it makes sense to try also the private range addresses. Unfortunately, there is no way for the
TURN client to know that.

To remedy this problem, an additional STUN attribute could be added to the TURN
allocation response which states to which private range networks, if any, the TURN server
has a connection to. The TURN client (i.e., ICE endpoint) could then check if it makes
sense to pair the relayed candidate with the private range host candidates. By making this
new attribute comprehension optional type, it would be incrementally deployable and would

interoperate also with implementations that do not support this feature.

Adjusting the stopping criteria

In Section 3.4.3 we discussed how the criteria of when to stop the connectivity checks is
crucial for ICE’s performance. The obvious way to implement it is to make the criteria same
for all ICE sessions. However, application layer hints and information about the previous
sessions could be used to adjust the criteria and this way decrease the time it takes for ICE
to conclude the connectivity checks.

For example, if the application knows that it is a high priority goal to get a connection
up quickly, but there is going to be only a small amount of narrow bandwidth traffic, us-
ing what ever path seems to work first would make sense. This would be essentially the
same as using ICE with aggressive nomination but using an extra ICE check for the nom-
ination. Also, since the relayed path is the most likely to work, it could be tried first to
speed up the process; or at least server reflexive candidates could be prioritized over host
candidates. Similarly, an application hint telling that large amount of latency sensitive data
will be transferred over the selected path could be used to adjust the algorithm to try more
persistently if the more optimal paths might work.

Information gathered from the previous sessions could also be used for determining the
ordering of the connectivity checks. For example, if all the previous ICE sessions with dif-
ferent peers ended up using a relay, the host is likely behind an address and port-dependent
NAT which allows direct connectivity only in rare cases. In this case, the relayed path could
be accepted earlier instead of trying the more optimal paths multiple times.

5.2.2 Further Evaluation of ICE

Even though we tested our implementation with 27 different NAT scenarios, we have barely
scratched the surface of all the possibilities with different NAT settings. One topic for future
work would thus be evaluating ICE in more complicated scenarios and with different types

CHAPTER 5. DISCUSSION 77

of NATSs than what we did in this work. ICE should be tested with NAT' that have different
mapping behaviors and also in networks with different NAT topologies, such as the one
discussed in Section 4.1.2.

In addition, we should address the issues about the measurement result generality noted in
Section 4.5.6. We could test higher RTT networks using nodes that are in different physical
networks, or preferably even in different sites around the Internet. The effect of packet
loss could be tested by artificially dropping some of the connectivity check packets and
measuring how that affects the performance. The different stopping criteria are a bit harder
thing to test, since there can be essentially infinite number of them. Yet, some different
classes of criteria could be tested and compared, and likely a better criteria than what we
used could be created. As noted multiple times before, this would probably lead to easiest
performance increments for our current implementation.

Nevertheless, probably the best way to evaluate ICE is to get it deployed and in use
in the Internet. Only experience from real use cases and real users will tell whether ICE
really works efficiently enough — or if it even makes a difference whether ICE ends up
sending, say, 4 or 6 messages during the connectivity check phase. Hopefully, also our ICE

implementation can, and will be used as a tool for getting more of this experience.

5.3 Summary

HIP benefits P2PSIP with NAT traversal, and also with other features, but P2PSIP nodes
can as well in turn help HIP by providing relaying functionality using the overlay nodes. If
arelay is needed for the data traffic, HIP could additionally be used for replicating the data
on multiple paths and hence increase the reliability of connections.

Because HIP uses encapsulation of both the signaling and data traffic, it has a higher
overhead than a plain ICE solution. Thus, if only a few messages will be exchanged using
a connection, the setup overhead can easily be higher than the payload that is transferred.
Also, link MTU sets limits for maximum amount of ICE candidates that should be ex-
changed during the base exchange, but the limit is so high that it is not likely to cause
any problems.

After analyzing the overhead, we presented three different ICE enhancement ideas left for
future work: a self tuning RTO algorithm, a private address range aware TURN server, and
using application layer hints for better ICE connectivity checks. In addition, one direction
for future work would be to evaluate ICE more thoroughly, and also do it by deploying ICE

to real applications in the Internet.

Chapter 6

Conclusions

Network Address Translators cause a lot of problems for different network protocols and
especially for peer-to-peer communication. Numerous different kinds of NAT's are deployed
in the Internet, and depending on the NAT behavior, different NAT traversal solutions may,
or may not, be able to create a peer-to-peer connection between two hosts.

Interactive Connectivity Establishment is a robust, but also fairly complex NAT traver-
sal solution. To evaluate how well ICE works, we implemented an ICE library prototype
and tested it with various different NAT scenarios. Our implementation was able to cre-
ate a working path in all the different scenarios, but many of them resulted in using more
messages and longer time than expected or necessary. These scenarios were thoroughly an-
alyzed and we derived conditions on when too many messages are exchanged and presented
solutions on how some of these redundant message exchanges could be avoided.

In addition to finding out whether a path can be created, we presented data on how much
traffic was needed and how long time it took to create a working path in different scenarios.
It appears that 45 connectivity check messages and less than a kilobyte of traffic is enough
in many cases. However, NATs with endpoint-dependent mapping behavior can easily dou-
ble the amount of messages needed for finding the optimal path. From the measurement
data we also derived bitrate estimations for the connectivity check traffic and concluded
that running the checks even on a narrow bandwidth access technology should not be a
big problem.

The check duration results revealed that, with the timer values suggested by the ICE
specification, the connectivity checks commonly take multiple seconds to finish. This was
fixed by using much shorter timer values and the tests confirmed that a path was created
this way much faster, without much increase in the amount of messages. We also presented
reasoning why the shorter timer values should not cause much problems even in networks

with higher latency.

78

CHAPTER 6. CONCLUSIONS 79

Since ICE has a higher success probability than the simple UDP hole punching with
different types of NATs, it makes sense to use ICE instead of just hole punching as a NAT
traversal solution. Successful NAT traversal with various NAT types is especially important
for P2P environments where both endpoints of a connection are likely to be behind NATS,
or even multiple layers of them.

By integrating ICE to Host Identity Protocol, a generic NAT traversal solution, that also
P2PSIP can easily benefit from, can be created. The P2PSIP overlay network can help HIP
by providing a relaying service and HIP can, in addition to NAT traversal, help P2PSIP with
security, mobility, multihoming and unreliable paths. We analyzed the cost of using HIP
with ICE for creating connections and found out that with only a few small messages, the
overhead can become substantial. However, already a couple of bigger messages are often
enough to justify the overhead traffic.

Even though NAT traversal seemed to be a simple research topic at the first glance, we
learned that the truth is quite different. As we noted from the experiences with the Linux
NATs, legacy NATs can vary a lot on their behavior, and even classifying them may not
always be straightforward. Running a distributed NAT traversal algorithm, such as ICE,
certainly does not make things simpler and resulted in unexpected results on many scenar-
ios. Thus, we conclude that The Twelve Networking Truths [7] hold also for NAT traversal:

it is more complicated than you think.

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

B. Aboba and W. Dixon. IPsec-Network Address Translation (NAT) Compatibility
Requirements. RFC 3715 (Informational), March 2004.

F. Audet and C. Jennings. Network Address Translation (NAT) Behavioral Require-
ments for Unicast UDP. RFC 4787 (Best Current Practice), January 2007.

S. Baset and H. Schulzrinne. An Analysis of the Skype Peer-to-Peer Internet Tele-
phony Protocol. INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, pages 1-11, April 2006.

A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig. NATBLASTER: Establishing
TCP connections between hosts behind NATs. In In Proceedings of ACM SIGCOMM
ASIA Workshop. ACM, 2005.

BitLord Frequently asked questions. http://www.bitlord.com/faq.php.
Referenced on 22.7.2008.

D. Bryan, P. Matthews, E. Shim, D. Willis, and S. Dawkins. Concepts and Terminol-
ogy for Peer to Peer SIP. draft-ietf-p2psip-concepts-01.txt (work in progress), July
2008. Expires: Jan 8, 2009.

R. Callon. The Twelve Networking Truths. RFC 1925 (Informational), April 1996.

G. Camarillo, P. Nikander, and J. Hautakorpi. HIP BONE: Host Identity Protocol
(HIP) Based Overlay Networking Environment. draft-camarillo-hip-bone-01 (work in
progress), February 2008. Expires: August 19, 2008.

B. Carpenter and K. Moore. Connection of IPv6 Domains via IPv4 Clouds. RFC 3056
(Proposed Standard), February 2001.

L. Daigle and IAB. IAB Considerations for UNilateral Self-Address Fixing (UNSAF)
Across Network Address Translation. RFC 3424 (Informational), November 2002.

80

http://www.bitlord.com/faq.php

BIBLIOGRAPHY 81

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

(23]

G. Van de Velde, T. Hain, R. Droms, B. Carpenter, and E. Klein. Local Network
Protection for IPv6. RFC 4864 (Informational), May 2007.

S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC
2460 (Draft Standard), December 1998. Updated by RFC 5095.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), August 2008.

K. Egevang and P. Francis. The IP Network Address Translator (NAT). RFC 1631
(Informational), May 1994. Obsoleted by RFC 3022.

B. Ford, D. Kegel, and P. Srisuresh. Peer-to-Peer Communication Across Network
Address Translators. In Proceedings of the 2005 USENIX Technical Conference, 2005.

S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh. NAT Behavioral Require-
ments for TCP. draft-ietf-behave-tcp-07.txt (work in progress), April 2007. Expires:
October 30, 2007.

S. Guha and P. Francis. Characterization and measurement of TCP traversal through
NATs and firewalls. In IMC "05: Proceedings of the 5th ACM SIGCOMM conference
on Internet measurement, pages 1-13, New York, NY, USA, 2005. ACM.

T. Hain. Architectural Implications of NAT. RFC 2993 (Informational), November
2000.

M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol. RFC
4566 (Proposed Standard), July 2006.

M. Holdrege and P. Srisuresh. Protocol Complications with the IP Network Address
Translator. RFC 3027 (Informational), January 2001.

C. Huitema. Teredo: Tunneling IPv6 over UDP through Network Address Transla-
tions (NATs). RFC 4380 (Proposed Standard), February 2006.

A. Huttunen, B. Swander, V. Volpe, L. DiBurro, and M. Stenberg. UDP Encapsulation
of IPsec ESP Packets. RFC 3948 (Proposed Standard), January 2005.

IEEE. Part 3: Carrier sense multiple access with collision detect on (CSMA/CD)
access method and physical layer specifications. IEEE Std 802.3, 2000 Edition, pages
i-1515, 2000.

BIBLIOGRAPHY 82

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

International Telecommunication Union. Network Grade of Service Parameters and
Target Values for Circuit-Switched Services in the Evolving ISDN. Recommendation
E.721, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, May
1999.

The netfilter.org “iptables” project. http://www.netfilter.org/
projects/iptables/. Referenced on 21.8.2008.

P. Jokela, R. Moskowitz, and P. Nikander. Using the Encapsulating Security Payload
(ESP) Transport Format with the Host Identity Protocol (HIP). RFC 5202 (Experi-
mental), April 2008.

P. Karn, P. Metzger, and W. Simpson. The ESP Triple DES Transform. RFC 1851
(Experimental), September 1995.

M. Komu, T. Henderson, P. Matthews, H. Tschofenig, and A. Keranen. Basic HIP
Extensions for Traversal of Network Address Translators. draft-ietf-hip-nat-traversal-
04.txt (work in progress), July 2008. Expires: Jan 16, 2009.

J. Laganier and L. Eggert. Host Identity Protocol (HIP) Rendezvous Extension. RFC
5204 (Experimental), April 2008.

M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS Protocol
Version 5. RFC 1928 (Proposed Standard), March 1996.

C. Madson and R. Glenn. The Use of HMAC-SHA-1-96 within ESP and AH. RFC
2404 (Proposed Standard), November 1998.

R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Architecture. RFC 4423
(Informational), May 2006.

R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity Protocol. draft-
moskowitz-hip-08 (work in progress), October 2003. Expires: April 22, 2004.

R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity Protocol. RFC
5201 (Experimental), April 2008.

P. Nikander, T. Henderson, C. Vogt, and J. Arkko. End-Host Mobility and Multihom-
ing with the Host Identity Protocol. RFC 5206 (Experimental), April 2008.

P. Nikander and J. Laganier. Host Identity Protocol (HIP) Domain Name System
(DNS) Extensions. RFC 5205 (Experimental), April 2008.

http://www.netfilter.org/projects/iptables/
http://www.netfilter.org/projects/iptables/

BIBLIOGRAPHY 83

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

P. Nikander and J. Melen. A Bound End-to-End Tunnel (BEET) mode for ESP. draft-
nikander-esp-beet-mode-09 (work in progress), August 2008. Expires: Feb 6, 2009.

P. Nikander, J. Ylitalo, and J. Wall. Integrating Security, Mobility and Multi-Homing
in a HIP Way. In Proceedings of NDSS Symposium 2003. Internet Society, Feb 2003.

H. Olofsson and A. Furuskar. Aspects of introducing EDGE in existing GSM net-
works. Universal Personal Communications, 1998. ICUPC ’98. IEEE 1998 Interna-
tional Conference on, 1:421-426 vol.1, Oct 1998.

S. Pierrel, P. Jokela, J. Melen, and K. Slavov. A Policy system for Simultaneous Multi-
Access with the Host Identity Protocol. In Proceedings of the 1st IEEE Workshop on
Autonomic Communications and Network Management (ACNM 2007), May 2007.

PINATH - Open Source ICE, STUN, and TURN Library. http://www.pjsip.
org/pjnath/docs/html/. Referenced on 21.8.2008.

J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated by RFC
1349.

J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), October 1985.
Updated by RFCs 2228, 2640, 2773, 3659.

Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Address
Allocation for Private Internets. RFC 1918 (Best Current Practice), February 1996.

J. Rosenberg. Interactive Connectivity Establishment. /ETF Journal, 2(3), November
2006.

J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal for Offer/Answer Protocols. draft-ietf-mmusic-
ice-19 (work in progress), October 2007. Expires: May 1, 2008.

J. Rosenberg. Guidelines for Usage of Interactive Connectivity Establishment (ICE)
by non Session Initiation Protocol (SIP) Protocols. draft-rosenberg-mmusic-ice-
nonsip-01 (work in progress), July 2008. Expires: January 15, 2009.

J. Rosenberg, R. Mahy, and P. Matthews. Traversal Using Relays around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN). draft-
ietf-behave-turn-09 (work in progress), July 2008. Expires: January 13, 2009.

J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utilities for
(NAT) (STUN). draft-ietf-behave-rfc3489bis-13 (work in progress), November 2007.
Expires: May 20, 2008.

http://www.pjsip.org/pjnath/docs/html/
http://www.pjsip.org/pjnath/docs/html/

BIBLIOGRAPHY 84

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with Session Description
Protocol (SDP). RFC 3264 (Proposed Standard), June 2002.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261 (Proposed
Standard), June 2002. Updated by RFCs 3265, 3853, 4320, 4916.

P. Saint-Andre. Jingle: Jabber Does Multimedia. [EEE MultiMedia, 14(1):90-94,
2007.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol
for Real-Time Applications. RFC 3550 (Standard), July 2003.

L. Silvennoinen. Legacy Network Address Translator Traversal Using the Host Iden-
tity Protocol. Master’s thesis, Helsinki University of Technology, Department of Elec-

trical and Communications Engineering, Oct 2007.

P. Srisuresh and K. Egevang. Traditional IP Network Address Translator (Traditional
NAT). RFC 3022 (Informational), January 2001.

P. Srisuresh, B. Ford, and D. Kegel. State of Peer-to-Peer (P2P) Communication across
Network Address Translators (NATs). RFC 5128 (Informational), March 2008.

P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Terminology
and Considerations. RFC 2663 (Informational), August 1999.

P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, and A. Rayhan. Middlebox commu-
nication architecture and framework. RFC 3303 (Informational), August 2002.

M. Stiemerling and J. Quittek. Problem Statement: HIP operation over Network Ad-
dress Translators. draft-stiemerling-hip-nat-00 (work in progress), February 2004.
Expires: August 2004.

M. Stiemerling, J. Quittek, and L. Eggert. NAT and Firewall Traversal Issues of Host
Identity Protocol (HIP) Communication. RFC 5207 (Informational), April 2008.

TCPDUMP/LIBPCAP public repository. http://www.tcpdump.org/. Refer-
enced on 27.8.2008.

H. Tschofenig and D. Wing. Utilizing Interactive Connectivity Establishment (ICE)
for the Host Identity Protocol (HIP). draft-tschofenig-hip-ice-00 (work in progress),
June 2007. Expires: December 23, 2007.

http://www.tcpdump.org/

BIBLIOGRAPHY 85

[63] UPnP Standards, Internet Gateway Device (IGD) V 1.0. http://www.upnp.
org/standardizeddcps/igd.asp. Referenced on 20.7.2008.

[64] J. Ylitalo, J. Melén, P. Nikander, and V. Torvinen. Re-Thinking security in IP based
micro-mobility. In In Proc. of 7th Information Security Conference (ISC04, 2004.

http://www.upnp.org/standardizeddcps/igd.asp
http://www.upnp.org/standardizeddcps/igd.asp

Appendix A

Linux NAT configuration

The Linux boxes were configured to works as a NAT device using the following script:

#! /bin/bash
set -e
PATH="/sbin:/usr/sbin:/bin:/usr/bin:${PATH}"
IPTABLES="/sbin/iptables"
case "$1" in
start)
accept by default
SIPTABLES —-P OUTPUT ACCEPT
SIPTABLES -P INPUT ACCEPT
SIPTABLES -P FORWARD ACCEPT

flush all chains
cat /proc/net/ip_tables_names | while read table; do
test "XS$table" = "Xmangle" && continue
SIPTABLES -t $table -L -n | while read c chain rest; do
if test "X$c" = "XChain" ; then
SIPTABLES -t $table -F $chain
fi
done
$IPTABLES -t Stable -X
done

enable IP forwarding
echo 1 > /proc/sys/net/ipv4/ip_forward

set up NATing
SIPTABLES -t nat -A POSTROUTING -o eth0 -3j MASQUERADE
SIPTABLES -t nat -A POSTROUTING -o ethl -3j MASQUERADE
SIPTABLES -t nat -A POSTROUTING -o eth2 -3j MASQUERADE
SIPTABLES -t nat -A POSTROUTING -o eth3 -3j MASQUERADE

P

*

echo "Usage: /etc/init.d/proto-nat {start}"

exit 1

i

esac

exit 0

86

Appendix B

Linux NAT behavior

The following tcpdump capture demonstrates how Linux NAT changes an allocated map-

ping if there is an incoming packet from an unknown address.

STUN Binding Request through the NAT. NAT allocates the port 51012.
13:50:02.398085 IP 10.1.0.185.51012 > 193.234.218.188.3478: UDP, length 20
13:50:02.398181 IP 193.234.218.189.51012 > 193.234.218.188.3478: UDP, length 20

Response from the STUN server to the Binding Request is accepted.
13:50:02.398846 IP 193.234.218.188.3478 > 193.234.218.189.51012: UDP, length 44
13:50:02.399277 IP 193.234.218.188.3478 > 10.1.0.185.51012: UDP, length 44

Connectivity checks start with host-host candidate pair.
13:50:02.438287 IP 10.1.0.185.51012 > 10.3.0.187.51002: UDP, length 144
13:50:02.438492 IP 193.234.218.189.51012 > 10.3.0.187.51002: UDP, length 144

Peer’s check to host’s server reflexive address arrives.

13:50:02.926808 IP 193.234.218.183.51002 > 193.234.218.189.51012: UDP, length 144

Linux NAT’s filtering behavior blocks this and the NAT replies with ICMP "port unreachable".
13:50:02.926924 TP 193.234.218.189 > 193.234.218.183: ICMP 193.234.218.189 udp port 51012 unreachable

Host start a check towards the peer’s server reflexive address.
13:50:02.940746 IP 10.1.0.185.51012 > 193.234.218.183.51002: UDP, length 144

Now, the NAT uses source port 59776 instead of the original 51012!
13:50:02.940879 IP 193.234.218.189.59776 > 193.234.218.183.51002: UDP, length 144

Peer’s Linux NAT replies with ICMP since there is no binding for the new source port.
13:50:02.941199 IP 193.234.218.183 > 193.234.218.189: ICMP 193.234.218.183 udp port 51002 unreachable
13:50:02.941300 IP 193.234.218.183 > 10.1.0.185: ICMP 193.234.218.183 udp port 51002 unreachable

[... relayed candidates get tested and succeed ...]

Host starts retransmits for the failed candidates

13:50:05.466382 TP 10.1.0.185.51012 > 10.3.0.187.51002: UDP, length 144

A check to the host candidate still uses the original port 51012.
13:50:05.466464 IP 193.234.218.189.51012 > 10.3.0.187.51002: UDP, length 144

13:50:05.964673 IP 10.1.0.185.51012 > 193.234.218.183.51002: UDP, length 144
However, the check to the server reflexive address uses the new port, 59776.
13:50:05.964762 IP 193.234.218.189.59776 > 193.234.218.183.51002: UDP, length 144

And the check for the server reflexive candidate fails again.

13:50:05.966178 IP 193.234.218.183 > 193.234.218.189: ICMP 193.234.218.183 udp port 51002 unreachable
13:50:05.966218 IP 193.234.218.183 > 10.1.0.185: ICMP 193.234.218.183 udp port 51002 unreachable

87

Appendix C

Results of the Quick Mode

The following graphs present the results of the connectivity checks using the quick mode

described in Section 4.4.

21

20 T T T T T T " Initiator s 20 Initiator e |
19 Responder === 19 Responder m==m= |
|
|

Message count

Message count
e
o

Q. %, O, Qo O, %y O, O, 02, %, %, %, % A%, %
4o, g e e 70 TO_T0, 0,70, 00, "0, T T TR, 0
O D K Sy X Ao %% % Y T 0 Y

NAT scenario NAT scenario

Figure C.1: Average sent messages in the Figure C.2: Number of messages sent in

quick mode the quick mode in non-NATed scenarios

88

APPENDIX C. RESULTS OF THE QUICK MODE

3200 e e e

3000

LT T T Minitiator i

2800

Responder ===

2600

2400

2200

2000

1800
1600

Byte count

1400

1200

1000

800

600
400
200

0, 2,26, 26, 1, O, O O 95 %5 % P X R, o

™

A e A 2

&

NAT scenario

Figure C.3: Average sent bytes in the

quick mode
05 T T T L — T
0.45
0.4
0.35

. 03

<

g 0.25

- 0.2
0.15 T
0.1 %] ¥ l * =k %
0.05 T

NAT scenario

Figure C.5: First successful test’s time in

the quick mode

0.003 T T T

0.0025

0.002

0.0015

Time (s)

0.001

0.0005

% 9% 9 9 9
%y, % U e K

% O % 2
% o, Y,

NAT scenario

Figure C.7: First successful test’s time in

the quick mode in non-NATed scenarios

Byte count

3200
3000
2800
2600
2400
2200
2000
1800
1600
1400
1200
1000

89

T T T T T T T T T
Initiator mm—
Responder mmmm 7

©
4/7&

% % %, 9 ,
& T X < 4 %, O‘/b v
NAT scenario

Figure C.4: Sent bytes in the quick mode

in non-NATed scenarios

Time (s)

%% % 0% 0%, %00 & QL
NN g Ko <,
AN QQQ'VOQ'%Q(QQQ‘%QAOQ(Sy R X

NAT scenario

Figure C.6: Time when all checks are done

in the quick mode

Time (s)

1.2 T T T T T T T T T

N .

0.8

0.6

0.4

0.2
o 9% 9 9 9 % O % 9
%y, g %y, % % %, %, %, %,

NAT scenario

Figure C.8: Time when checks are done in

the quick mode in non-NATed scenarios

Appendix D

Capture of a HIP Base Exchange

Following shows a tcpdump capture of a HIP base exchange (I1, R1, 12 and R2) be-
tween two hosts. The Initiator is at address 193.234.219.77 and the Responder at address
193.234.218.203. The D-H group ID was 3 (1536-bit MODP group) and the length of the
public key was 1024 bits (128 bytes). The base exchange was not UDP encapsulated, but

run directly on top of IPv4.

17:
17:
17:
17:

14
14
14
14

:28.
:28.
128
:28.

328503
421322

.645849

886289

IPp
Ip
Ip
IP

193.
193.
193.
193.

234
234
234
234

.219.
.218.
.219.
.218.

77 > 193.234.218.203:
203 > 193.234.219.77:
77 > 193.234.218.203:
203 > 193.234.219.77:

90

ip-proto-139
ip-proto-139
ip-proto-139
ip-proto-139

40

600
680
216

	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Goal and Scope of the Thesis
	Structure of the Thesis

	Background
	Network Address Translation
	Basic Network Address Translator
	Network Address and Port Translator
	Address Unbinding
	Benefits of Network Address Translation
	Problems Caused by Network Address Translation
	Ambiguity of Topology Caused by NATs

	NAT Classification
	Mapping Behavior
	Filtering Behavior
	Port Assignment Behavior
	Hairpinning Behavior
	Mapping Refreshment
	Different Types of NATs in the Internet

	NAT Traversal
	UDP Hole Punching
	STUN
	TURN

	Interactive Connectivity Establishment
	Basic Operation
	Advanced Features

	Peer-to-Peer Session Initiation Protocol
	Host Identity Protocol
	Mobility, Multihoming and Security
	Creating a HIP Connection
	Proposed NAT Traversal Solutions

	Summary

	NAT Traversal Using HIP with ICE
	Need for NAT traversal
	Benefits and Drawbacks of Using HIP

	Integrating ICE into HIP
	UDP Encapsulation
	HIP Signaling Path
	ICE Connectivity Checks

	Implementation Architecture
	Implementing ICE
	Differences From the Specification
	Sending Checks From Different Interfaces
	Stopping the Connectivity Checks

	Summary

	Measurements and Evaluation
	Theoretical NAT Traversal Using ICE
	Impact of Mapping and Filtering Behavior
	Multiple Layers of NATs

	Prototyping Environment
	Observations on NAT Behavior
	Measurement Results
	Selected Path
	Number of Messages
	Traffic Volume
	Check Durations
	Two Hosts in the Same Subnet

	Measurement Analysis
	Number of Messages
	Traffic Volume
	Check Durations
	Two Hosts in the Same Subnet
	Quick Mode
	Generality of the Measurement Results

	Summary

	Discussion
	HIP as a NAT Traversal Solution for P2PSIP
	Using P2PSIP Overlay with HIP
	Cost of HIP-ICE in P2PSIP

	Future Work
	Enhancing ICE
	Further Evaluation of ICE

	Summary

	Conclusions
	Linux NAT configuration
	Linux NAT behavior
	Results of the Quick Mode
	Capture of a HIP Base Exchange

