

HELSINKI UNIVERSITY OF TECHNOLOGY

Faculty of Electronics, Communications and Automation

Department of Communications and Networking

Name of the author: Lu Xiaojun

Title of the thesis: Disruption Tolerance for SIP

Thesis submitted in partial fulfilment of the requirement for the degree of Master of

Science in Technology in Espoo, Finland, 5th May 2008.

Supervisor: Professor Jörg Ott (Networking Laboratory)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80700944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HELSINKI UNIVERSITY OF TECHNOLOGY

ABSTRACT of the Master’s thesis
Author: Lu xiaojun

Name of the thesis: Disruption Tolerance for SIP

Date: 5th May 2008 Number of Pages: 76

Faculty:

Professorship:

Faculty of Electronics, Communications and Automation

Networking Technology

Supervisor: Jörg Ott

The wireless networks have been built with versatile wireless network technology,

including both wide area wireless networks and local area wireless networks. In such

heterogeneous network environment, mobile users may experience either short or long

interruption for different reasons while having a multimedia conversation. A lot of

emphasis is concentrated on improving radio signal and enhancing seamless handover.

However, recovery and backup multimedia conversation from a temporary network

failure is also an interesting topic to be discussed.

In this thesis, a SIP-based communication with enabling of disruption tolerance

mechanism is introduced. We present the idea of media stream and SIP signaling

based detection and recovery mechanisms, and come with an implementation of the

prototype. The disruption tolerance functions include the ways of detecting network

failure, storing the conversation during the meanwhile of the network disconnection,

recover the previous broken multimedia session and replay the unheard voice. A brief

experimental SIP network is built to evaluate the disruption tolerance functions of the

software prototype. The result of the experimentation shows that the multimedia

session can be recovered from the broken session in a short time, and the important

conversation will not be lost during the short network disconnection. The replayed

voice brings a delay to the recovered conversation which is not good experience for

the users. However, the delayed conversation is much better than losing the

conversation.

Keywords: SIP, disruption tolerance

ii

ACKNOWLEDGEMENTS

This Master’s thesis was written for the Networking Laboratory at TKK (Helsinki

University of Technology), Finland, under the supervision of Professor Jörg Ott.

I wish to express my most sincere and grateful thanks to Professor Jörg Ott for giving

me the opportunity to work under his supervision. His guidance and encouragement

during this thesis was one invaluable treasure of my studies at TKK.

Additionally, I appreciate the support from our laboratory staff that provided me with a

comfortable and pleasant working environment. I also give many thanks to my good

friend Jocy and writing clinic teacher William Martin for their proofreading of this

thesis document.

Finally, I would like to express my gratitude to my family. Their encouragement and

support was the source of my determination to complete my studies.

Helsinki University of Technology

Lu Xiaojun

iii

Table of Contents

ABSTRACT ..I

ACKNOWLEDGEMENTS .. II

TABLE OF CONTENTS ... III

ABBREVIATIONS AND ACRONYMS.. VI

1. INTRODUCTION... 1

1.1 MOBILITY SERVICES .. 1

1.1.1 Personal mobility ... 1

1.1.2 Terminal mobility .. 2

1.1.3 Service mobility ... 2

1.1.4 Session mobility ... 3

1.2 MOTIVATION .. 3

1.3 OUTLINE OF THESIS WORK .. 5

2. INTRODUCTION TO SIP-BASED MULTIMEDIA .. 6

2.1 HISTORY... 6

2.2 OVERVIEW OF SIP ... 7

2.2.1 User Agent of SIP... 7

2.2.2 SIP server ... 8

2.2.3 Protocol structure .. 9

2.2.4 SIP Messages .. 10

2.3 SIP OPERATIONS .. 14

2.3.1 Registration .. 14

2.3.2 Normal call process ... 16

2.4 SIP MEDIA SESSION .. 17

2.5 SIP FOR MOBILITY SUPPORT ... 19

2.6 RTP AND RTCP ... 20

iv

2.7 SUMMARY .. 22

3. TECHNICAL BACKGROUND... 23

3.1 OVERVIEW OF EXPERIMENTAL SIP NETWORK ... 23

3.2 SIP SERVER .. 24

3.3 SIP COMMUNICATOR ... 25

3.4 JMF ... 26

3.5 SUMMARY .. 28

4. SYSTEM ARCHITECTURE ... 29

4.1 OVERVIEW OF ENHANCED SIP COMMUNICATOR .. 29

4.2 MODULE DESCRIPTION.. 31

4.2.1 Sound record module .. 31

4.2.2 Network failure detection module.. 33

4.3 SIP MESSAGE FOR DIFFERENT USE CASES .. 36

4.3.1 Short Duration of Network Failure ... 37

4.3.2 Rebuilding a call after a long duration of network failure 39

4.3.3 Connect to voice mail server after a long period of network failure 44

4.4 SUMMARY .. 46

5. IMPLEMENTATION .. 47

5.1 HIGH LEVEL VIEW ... 47

5.2 SIP PACKAGE ... 48

5.3 MEDIA PACKAGE.. 50

5.4 GUI PACKAGE.. 52

5.4 SUMMARY .. 54

6. TESTING AND VALIDATION... 55

6.1 DEMONSTRATION SETUP.. 55

6.2 TESTING AND VALIDATION ... 57

6.2.1 Test cases .. 57

v

6.2.2 Result validation .. 59

6.3 SUMMARY .. 63

7. CONCLUSION... 64

REFERENCE .. 66

vi

Abbreviations and Acronyms

SIP Session Initiation Protocol

UMTS Universal Mobile Telecommunications System

LAN Local Area Network

WLAN Wireless LAN Network

IP Internet Protocol

VoIP Voice over IP

DHCP Dynamic Host Configuration Protocol

GPRS General Packet Radio Service

CDMA Code Division Multiple Access

PPP Point to Point Protocol

SDP Session Description Protocol

HTTP Hypertext Transfer Protocol

SMTP Simple Mail Transfer Protocol

IETF Internet Engineering Task Force

3GPP 3rd Generation Partnership Project

IMS IP Multimedia Subsystem

UA User Agent

UAC User Agent Client

UAS User Agent Server

B2BUA Back-to-Back User Agent

URI Uniform Resource Identifier

TCP Transmission Control Protocol

UDP User Datagram Protocol

BNF Backus-Naur Form grammar

UTF-8 8-bit Unicode Transformation Format

MIME Multipurpose Internet Mail Extensions

QoS Quality of Service

vii

AAA Authentication, Authorization and Accounting

RTP Real-time Transport Protocol

RTCP Real-time transport control protocol

PBX Private Brach exchange

BIND Berkeley Internet Name Domain

JMF Java Multimedia Framework

UML Unified Modeling Language

GUI Graphic User Interface

API Application Programming Interface

DTMF Dual-Tone Multi-Frequency

1. Introduction

The demand for wireless access is increasing with a lot of mobile network technology

being invented. The stability and connectivity are the most notable challenges for

wireless networks. When a mobile user accesses a wireless network, there are several

reasons which may lead to loss of connection. For example, the user passes through an

area with low signal coverage, the signal is attenuated, or unpredictable interference or

overload occurs. In addition, seamless roaming through different wireless networks is

difficult to realize. In the above cases, the mobile user may experience network

disconnection for a short while. It is not easy for wireless network service providers to

enhance wireless network coverage for both economic as well as technical reasons:

both the cost of building and the complexity of maintaining a ubiquitous network are

nowadays too high. An alternative solution is to develop the technology of

disconnection tolerance, which is the purpose of this master thesis. This solution

cannot substitute for broader range network coverage, but serves as a complementary

solution to improve usability.

1.1 Mobility services

Mobility services are defined as a bundle of mobility aspects for heterogeneous

networks. In general, the mobility services can be placed into four categories: personal

mobility, terminal mobility, session mobility and service mobility. Knowledge of

universal mobility services is necessary to understand this thesis work. This section

gives a brief introduction to the concept of mobility services.

1.1.1 Personal mobility

Personal mobility refers to the ability of a mobile user to access mobile service

1

2

anywhere. The mobility service is based on the user’s personal identifier, no matter

what kind of mobile device is being used. The network capability relies on this user’s

service profile.

1.1.2 Terminal mobility

Terminal mobility refers to the mobility of mobile devices, and may require several

network interfaces for a mobile device to access different mobile networks. A mobile

user can use the mobile device to move across heterogeneous networks while having

the same subscribed mobility service. The mobile device takes care of the accessing

network which is based on an access policy, e.g. signal strength or network bandwidth.

The terminal mobility relates to the concept of handover or the transfer between

networks. The ideal handover is called seamless handover [1], which minimizes

packets loss and delay. There are two types of handover mechanisms: hard handover

and soft handover. Hard handover breaks the current network connectivity first, and

then builds a new network connection. Soft handover makes a new network access

before terminating the current network connectivity. The mechanism of hard handover

is much simpler than soft handover, but causes packets loss. The mobile device may

receive the same packets from different network connective sources during soft

handover, so it needs to merge those duplicated packets. This makes soft handover

more complicated in cases of merging those asynchronous duplicated packets, but the

benefits is no packets are lost.

1.1.3 Service mobility

Service mobility means a mobile user can consistently access personalized mobility

services from the network services provider. The quality of service depends on the

user’s service profile. The service mobility requires a set of central servers to store the

user’s profile, provide registration service and keep trace of the user’s current location.

3

1.1.4 Session mobility

Session mobility is defined as maintaining an active session while switching between

different network contexts. The aspect of switching the network context can be

classified to horizontal handover and vertical handover. The horizontal handover

involves mobile nodes moving between access points of the same type (in terms of

coverage, data rate and mobility), such as UMTS to UMTS, or WLAN to WLAN. The

vertical handover involves mobile nodes moving between access points of different type,

such as UMTS to WLAN. [1] In most cases, the horizontal handover is much easier to

be handled than the vertical handover for the session mobility. For example, a session

switches between two wireless LANs may only change the IP addresses of the

terminals, but the session switches from a WLAN to a UMTS network may change the

media stream type and the transport protocol stack.

1.2 Motivation

A brief introduction of the mobile services has been given in the previous section. This

thesis emphasizes the aspect of the disruption tolerance mechanism for mobile

networks, which is related to maintain a call session context if the call is broken

unexpectedly. Session mobility is the main concept used in this thesis as the disruption

tolerance mechanism. The disruption tolerance mechanism also implicitly refers to

personal mobility, terminal mobility as well as service mobility. This section continues

with the motivation for this thesis.

VoIP (Voice over IP) technology is usually used as a low cost International call

solution, as a pure VoIP call1 is built on Internet resources without occupying the

resources of the telephone networks or the cellular networks, making a long distance

1 A pure VoIP call means both caller and callee are using an Internet resource for a call. Of course, if
either participate uses a normal telephone system, it requires extra resources from the
telecommunication networks.

4

call extremely cheap. For most mobile users, the cost of using the satellite or the

cellular networks is still expensive, and therefore the low-cost autonomous wireless

networks are more attractive to ordinary mobile users. Using local wireless networks

for VoIP calls is a new value added solution for mobile users. Modern mobile devices

may contain several different wireless network interfaces for achieving better

connectivity. Therefore, any available wireless network resources can be used for the

VoIP calls.

SIP (Session Initiation Protocol) [2] is a signaling protocol used to establish and tear

down multimedia stream sessions between two or more participants. SIP has mobility

features, and a brief introduction of SIP mobility is described in Chapter 2. As a

signaling protocol, SIP has already been successfully used for building VoIP systems.

When a mobile user is using a SIP-based soft phone in heterogeneous wireless network

environments, communication may be occasionally interrupted without explicit

warning. For instance, any call participants may lose connectivity and drop the call in

cases of weak connection signal or when crossing an area with poor coverage. In IP

networks, it always takes time for the mobile device to acquire an IP address from the

DHCP server1. While switching between different accesses networks, hard handover

may lose connection temporarily for acquiring a new IP address. It also happens to soft

handover when the mobile device is out of the signal coverage range of the old access

network before the new access network is acquired.

A solution to the temporary disconnection challenges described above should be

explored. The existing conversation shall be switched back and forth between the

synchronous (real-time communication) and the asynchronous model (voice message

based communication). If an ongoing call is robust enough to accept intermittent

connectivity, the mobility aspect of the SIP-based communication is enhanced for

1 In GPRS or CDMA networks, the acquisition method is PPP. It also takes time to get the access
address.

5

those unstable wireless network environments. The design idea of the disruption

tolerance mechanism is to temporarily keep the session context and the media content

of the current ongoing call. Whenever a network disconnection occurs to break the

current ongoing call, the broken call should be held on the mobile device and be

recovered later automatically.

This thesis work builds upon the existing Open Source code to prove the disruption

tolerance mechanism conceptually as well as to implement an intermittent connectivity

prototype for SIP-based communication. The implementation of the prototype is based

on an Open Source project - SIP communicator, which is a full java based SIP client

that implements basic SIP functions following RFC 3261 [2]. These functions of the

disruption tolerance are implemented as enhancement modules for the SIP

communicator.

1.3 Outline of this thesis

The main task of this thesis is to implement a SIP-based communication software

prototype incorporating with the disruption tolerance mechanism. Furthermore, an

experimental SIP network has been built to perform testing against the reference

implementation.

This thesis is structured as follows: The second chapter presents the basic knowledge

of the Session Initiation Protocol. A brief introduction of the technical background is

given in the third chapter. The fourth chapter describes the design architecture and

analyzes each use case in detail. The implementation details are discussed in the fifth

chapter. The sixth chapter explains an overview of testing and validation of the

software prototype. The final conclusions of this thesis are presented in the last chapter.

More detailed information refers to the thesis document which provides guidelines to

build and configure the running environment are presented in the appendices.

6

2. Introduction to SIP-based multimedia

This chapter provides the basic knowledge of SIP (Session Initiation Protocol) [2]. The

first section gives a brief introduction of the SIP history. The second section describes

the terminologies and components of SIP networks. Basic knowledge of SIP is required

to understand the implementation of this thesis work. The third section presents the SIP

registration and normal call process, while in the fourth section SIP media session and

SDP [3] are introduced. The fifth section explains SIP for mobility services and the

final section summarizes the main point coverage this chapter.

2.1 History

A lot of applications of the Internet and the telecommunication industry require a

signaling protocol to create and manage a session, as well as control the data

exchanging between the end points of participants. The Session Initiation Protocol (SIP)

[2] is designed for the purposes of soft switching technology, for providing versatile

functions like building a single call session or multi-parts call conference, forwarding a

call from a predefined user profile or forking a call to several places, providing instant

message services and so on. SIP borrows a lot of ideas from other mature protocols

like the Hypertext Transfer Protocol (HTTP) and the Simple Mail Transfer Protocol

(SMTP). All of the above protocols are string based protocols meaning the content of

protocol is readable by both machines and humans.

The first draft of SIP was called Session Invitation Protocol, which was published by

IETF (Internet Engineering Task Force) on February 22, 1996. Later in the first

publication draft on December 2, 1996, however, Session Initiation Protocol replaced

the original name. Afterwards, there were twelve drafts of SIP published by IETF

between 1996 and 1999. On March 17, 1999, RFC 2543 was eventually published by

IETF. Three years later, the first version of SIP RFC was improved upon by the second

7

version of RFC 3261, which was published on July 3, 2002. A lot related and enhanced

specifications have also been published by IEFT since the RFC 2543 was published. In

November 2000, the 3rd Generation Partnership Project (3GPP) accepted SIP as the

signaling protocol and design architecture of IP Multimedia Subsystem (IMS).

2.2 Overview of SIP

This section describes the basic knowledge of SIP that is used in this thesis. The first

and second parts discuss logical components in the SIP network, User Agent (UA) and

Network server. The third part outlines the protocol structure and the details of SIP

message construction are described in the fourth part.

2.2.1 User Agent of SIP

A SIP transaction comprises all messages which start from the first SIP request from

the client, and end with the last SIP response from the server. A UA acts as the User

Agent Client (UAC) when it is creating request, and the role of the UAC lasts until the

end of the SIP transaction. When a UA is replying to a request from another UAC, it

acts as the User Agent Server (UAS) in this transaction. The definitions of UAC and

UAS are slightly different compared to that of the normal client and server. For

example, in the web service, a web browser is called the client, and on another side the

machine which generates the HTTP response is called the server.

The behavior between two user agents is represented by dialog. The dialog facilitates

sequencing of messages between the user agents and proper routing of requests

between both of them. [2] The SIP dialog may contain of one or more transactions to

persist a conversation between the user agents. The identifier of a dialog is consisted of

a CALL-ID, a local tag and a remote tag, which ensures a unique dialog identifier. The

dialog identifier has the same value for both the UAC and the UAS. When a specified

8

request method receives a non-failure response, a dialog is created for this request

method. A dialog can also be generated in an early state if a provisional response has

been received. After a dialog is created, it contains several pieces of different states.

These states indicate the further behavior of both UAC and UAS, the details of which

are defined in RFC 3261. [2]

2.2.2 SIP server

There are several different types of servers in SIP networks:

• Proxy server

The proxy server is a logical SIP entity that acts as a message router. A Proxy has

the capability of resolving SIP addresses and making the “routing decision” of next

hop. A proxy only handles the requests which are under its ability to send responses.

If the request message contains any error or needs security authentication, the

proxy may respond with a corresponding error code. If a request routes through a

sequence of proxies, the backward response will traverse through those proxies in

reversed order. A proxy server can be running in either stateful or stateless mode. A

stateful proxy server creates transactions for the incoming request, and maintains

the transaction until a final response is received. A stateful proxy is mandatory to

fork a request to multiple destinations. A stateless proxy works in a simple way by

just forwarding requests to downstream destinations and sending responses to

upstream destinations.

• B2BUA

In SIP networks, a UA contains both UAC and UAS which is called B2BUA

(back-to-back user agent). In a particular transaction, a B2BUA acts as a UAC or a

UAS independently. A B2BUA usually acts as an intermediary entity that forwards

SIP messages from a SIP client to a SIP server. Compare to a SIP proxy which only

takes responsibility for routing function, a B2BUA acts more powerfully by

9

functioning as an intermediate SIP server which contains the ability to modify the

forwarded SIP messages.

• Redirect server

A redirect server is designed to provide routing information to a UA, which

receives routing requests and generates 3xx class responses. The response contains

the binding information from a SIP URI to an exact network address. If the redirect

server and the location server are separated components, the redirect server queries

the location server to obtain knowledge of the user’s location.

• Location server

A location server is a network component which provides a callee’s possible

location(s) information to a SIP redirect server or proxy server. The location server

may bind zero or more contact addresses to a user, and these bindings can be

updated by the registration or by other (non-SIP) ways.

• Registrar

A registrar is a special UAS that receives REGISTER requests that creates a

mapping of address-of-record to a set of contact addresses. An address-of-record is

a SIP URI (it is quite similar to an e-mail address), which is combined by personal

user information and a specified domain name. If there is no location server in the

SIP network, the registrar is the only one which keeps the knowledge of a user’s

location and shares the same data with other SIP proxies and redirects servers in

the same domain. The registrar co-operates with proxy servers and redirect servers

to offer a full routing discovery capability for SIP network.

2.2.3 Protocol structure

SIP uses the Transmission Control Protocol (TCP) or User Datagram Protocol (UDP)

10

as underlying protocols to convey protocol data units between servers and endpoints.

In the designed protocol structure, SIP is logically a three layered protocol. The lowest

layer defines the syntax and encoding of SIP. SIP specifies augmented Backus-Naur

Form grammar (BNF) as its encoding method. The second layer defines the way of SIP

message transportation, and it is called transport layer. SIP can use different underlying

transport protocols to transfer messages over networks. The mechanism of lower layer

transport protocols is transparent to SIP. The third layer is the transaction layer where

the meaning of transaction is quite similar to that of HTTP, each transaction being a

bundle of predefined requests and responses. A request from the UAC invokes a

particular function of the UAS, and later the UAS responds to the request. One

transaction refers to the interactive handshake which starts from the request sent from

the UAC until the end of the response corresponding to the request.

2.2.4 SIP Messages

SIP uses the UTF-8 encoding to represent the text-based messages. One obvious

benefit of a text-based protocol is to be readable by human beings, and it is easy to be

tested manually. The protocol can be verified easily by reading the protocol messages

instead of writing complicated testing programs. This feature improves many

debugging processes and determining the potential errors of the protocol. Another

benefit of the text-based protocol is that it is easy to be extended to include new

features. This brings extra value to SIP when used in different environments, and

makes it easy to define extension messages for SIP. The SIP messages can be separated

into two types: request and response. A request is from the UAC to the UAS and a

response is from UAS to UAC. All of the SIP messages use Internet Message

Format.[17]

A SIP request starts with a Request-line:

Request-line = Method + Single space + Request-URI + SIP version + CRLF

11

For example, a request-line for an INVITE request is presented as the following:

INVITE sip:example@netlab.hut.fi SIP/2.0

The following table lists six methods which are defined in RFC 3261 [2]. Other

methods are also defined in the extensive documentation related to SIP.

SIP method Description

INVITE Invites another user to start a call session.

BYE Says good bye to another user to end a call session.

OPTIONS Queries the capabilities of the server.

ACK Final acknowledgement to an INVITE request.

REGISTER Registers a user agent to a SIP registrar, the registrar keeps the

knowledge of the user agent’s location.

CANCEL Cancels a previous INVITE request.

Table 2-1 SIP methods

SIP uses URIs to identify users. The SIP request URI has the following format:

Request URI = SIP/SIPS scheme:user:password@host:port;uri-parameter?headers

“sip:” is the SIP scheme, it refers to a SIP URI. Like the difference between “http:” and

“https” schemes, “sips:” refers a security URI which is called SIPS scheme. In both

SIP and SIPS URIs, only the scheme and host are mandatory. The SIP version defines

the version number of the protocol, currently it must be “SIP/2.0” format.

A SIP response always starts with a status-line which is distinguished from a SIP

request:

Status-line = SIP-version + Single space + Status-code + Single space +

Reason-phrase + CRLF

12

The status-code is represented by a three digit number, and there are six classes of

status-code defined in RFC 3261. [2]

• 1xx: Provisional – This status-code means that the request was received by the

proxy or server, and that the request processing is in progress. Usually, when a

request needs to wait for more than 200ms, the status-code is sent to the UAC

as a temporary response.

• 2xx: Success – The success status-code is sent to the UAC after a request is

received, parsed, processed and accepted by the UAS.

• 3xx: Redirection – The redirection response gives the user’s new location or

information of alternative services which the UAC queried. Any redirection

response must not contain the address which was already listed in the “Via”

header field, otherwise a loop could be caused. On the other hand, the UAC

should check the address from the redirection response, and make sure the

redirection address was not routed before.

• 4xx: Client Error – The client error response means the request cannot be

processed by the server. The reason could be a malformed request or an

unauthorized request. The UAC should receive the error reason from the error

response, and then send a correct request to the server. The same request could

be successful depending on the server’s capability.

• 5xx: Server Error – When the request is valid but it cannot be processed by the

server, a server error response is returned. In this situation, the UAC should try

the same request to another possible server.

13

• 6xx: Global Failure – The global failure is the highest level failure response,

which means the request will be discarded or not accepted anywhere. After

receiving the global failure response, the UAC should stop sending the same

request to any server.

Both SIP request and response contain at least one header field, the set of header fields

ending with an empty line. SIP does not specify the sequence of those header fields,

but they are mostly put in the same order used in the protocol specification. The format

of header fields conforms to RFC 2234 [18] (new draft standard is RFC 4234 [19]). If

a header field only appears in a request, it is called a request header field. Following

the same rule, a response header field only makes sense of a response message. A UA

must ignore these unsupported header fields when a message is processed. A minimum

set of header fields of a SIP message must contain at least six header fields: “To”,

“From”, “CSeq”, “Call-ID”, “Max-Forwards” and “Via”.

Header field Description

To Indicates the logical recipient or the address-of-record target in

the request.

From Indicates the logical initiator’s identity.

CSeq The identifier of an ordered transaction.

Call-ID For the purpose of grouping a series of SIP messages, Call-ID

presents a unique identifier of the group messages.

Max-Forwards Limits the maximum number of hops of a request.

Via Records the path used for the transaction, the response is sent

back following the routing information from the “Via” header.

Table 2-2 Mandatory SIP header fields

14

A message-body is an optional part to be added after the header fields. Usually a

message-body encapsulates other protocols or conveys short messages. The content

type must be declared in the Content-Type header field with the character set as an

optional value when a specified encoding method is used in the message body. If the

message body contains multiple parts in a message, MIME [20] is used to describe the

message detail. The length of the message is counted as bytes that are introduced in the

Content-Length header field. SIP may use an unreliable transport protocol to transfer

message, so the Content-Length header field must be presented to indicate the end of

the message.

2.3 SIP operations

The basics of SIP [2] have been introduced in the previous section. This section

describes the basic SIP operations of registration, call setup and teardown. The SIP

messages of the above operations are shown in message sequence charts. A message

sequence chart is a graphical language for the description and specification of the

signaling between system components.

To simplify the presumption of the use cases, only two clients are used to represent the

call sessions in this thesis. An investigation of multipart call sessions is beyond the

scope of this document. The SIP clients are named as client A and client B. The

signaling between client A and client B are sorted in an order based on a vertical time

line. The distance between the two signals is not in a ratio of real time.

2.3.1 Registration

This section describes the registration operation of SIP. SIP client A sends a

REGISTER request to the SIP registrar, and then the registrar replies with a 200 OK

response to SIP client A. The registration operation is an element of the node discovery

mechanisms of SIP. The binding is created in registration for a particular domain that

associates the address-of-record URI of user A with contact addresses.1 The SIP

registrar will keep SIP client A’s contact addresses, and these contact addresses can be

updated via new registrations. Therefore, if a SIP proxy receives a request whose

Request-URI header field matches user A’s address-of-record URI, the proxy will

query the registrar to get SIP client A’s contact address, and then forward the request to

SIP client A. The entire registration process is depicted in Figure 2-1.

SIP registrar

REGISTER

200 OK

A

Figure 2-1 Registration

15

1 The user’s address-of-record URI can be associated with more than one contact address. The forking
mechanism of SIP is not discussed in this thesis.

2.3.2 Normal call process

Figure 2-2 demonstrates a call setup and teardown process between SIP clients A and B.

User A dials up user B’s SIP URI. SIP client A sends an INVITE request containing a

SDP [3] message through the SIP server to SIP client B. The SIP server forwards the

INVITE request from SIP client A to SIP client B, and then sends back a temporary

100 TRYING response to SIP client A. SIP client B receives the INVITE request from

SIP client A and alerts user B to answer the phone call. Also, SIP client B replies to SIP

client A with a 180 RINGING response, the response message is routed back along the

reverse path of the INVITE request routing path. After user B picks up the SIP phone,

SIP client B sends a 200 OK response which contains a SDP message to SIP client A.

After SIP client A receives the 200 OK response from SIP client B, both SIP clients A

and B have learned the endpoint IP address and media description from each other. An

ACK message is sent from SIP client A to SIP client B to acknowledge the session is

built. A media stream between SIP client A and SIP client B is built up, user A starts to

have a conversation with user B. At the end of conversation between user A and user B,

user B hangs up the SIP phone first. A BYE request is sent from SIP client B to SIP

client A through the SIP server. A 200 OK response from SIP client A to SIP client B

indicates the whole call is finished.

16

SIP server

200 OK

INVITE

180 RINGING

200 OK

INVITE

100 TRING

BYE

A (registered)

ACK

MEDIA STREAM

BYE

200 OK

200 OK

180 RINGING

B (registered)

Figure 2-2 Call setup and turnoff

2.4 SIP media session

In the previous section we have discussed the basic operations of SIP. In the example

of the setup and teardown of a call, the INVITE request conveys a SDP description for

compatible media types. A brief introduction of SDP (Session Description Protocol) [3]

is given in this section.

17

18

SDP is a standard description protocol of media content and how multimedia

information is transported, which supports the negotiation of session content and media

format. SDP must contain sufficient information to enable the session participants to

understand each other. A session description includes session name and purpose,

timing information, media comprising, the recipient’s information 1 , network

bandwidth of the session as well as contact information. Like SIP, SDP is entirely

text-based protocol which uses UTF-8 encoding. A SDP message consists of a series of

lines of string in this form:

<type>=<value>

The <type> is one case sensitive character that represents the description type, and the

<value> defines a formatted text that is the value of the description type. The details of

the SDP types and values are described in [3].

Table 2-3 describes the basic SDP types which are used in this thesis.

Type name Description

v= Protocol version

o= Originator and session identifier

s= Session name

c= Connection information

t= Time the session is active

m= Media name and transport address

a= Zero or more media attribute lines

Table 2-3 SDP description

1 The recipient’s information includes IP address, ports, format, etc.

19

An example SDP description is presented as the following:

v=0

o=test 0 0 IN IP4 192.168.5.101

s=-

c= IN IP4 192.168.5 .101

t=0 0

m=audio 22224 RTP/AVP 18

m=video 22222 RTP/AVP 31

a=recvonly

SIP uses SDP to describe session media types, and SDP is also useful in SIP mobility

services. A new INVITE request can be sent during a call session to inform a remote

participant of the changed local transport addresses, media or codec, usually referred to

as a re-INVITE request. SIP for mobility services are described in the next section.

2.5 SIP for mobility support

SIP is already designed for mobility services. SIP is an application layer signaling

protocol, so the mobility support using SIP also refers to an application layer mobility

management scheme. Chapter 1 has given a brief introduction of different types of

mobility services, and this section continues to discuss SIP for mobility services.

SIP supports personal mobility very well. The URI scheme of SIP can be used as a

personal identifier of the mobile user. The registration mechanism of SIP ensures

multiple terminals can be registered at the same time. An incoming call will be forked

to multiple terminals, and the current active terminal determined dynamically by the

user’s location.

Terminal mobility always refers to handover between different networks. The solution

20

for terminal mobility has two aspects that are called pre-call mobility and mid-call

mobility. The pre-call mobility is the simplest case which can be solved by the

registration process. The SIP location server will keep the mobile terminal’s location

up-to-date, so that incoming calls always reach the right addresses. The mid-call

mobility is more complicated than the pre-call mobility. A simple registration process

is not enough to update the current ongoing session because the packets from the

remote participant are still sent to the old contact address. The mobile terminal has to

notify the remote participant of the new contact address by sending a new INVITE

request.

There are two basic requirements for service mobility: maintaining the adequate QoS

(Quality of Service) for the current session and ensuring that users have access to all of

their subscribed services regardless of the attached networks. SIP provides a

combination of registration and AAA (Authentication, Authorization and Accounting)

functions in order to support the service mobility.

2.6 RTP and RTCP

So far, the basics of SIP have been introduced in this chapter. SIP based real-time

media streams, however, are usually carried in RTP (Real-time Transport Protocol) [23]

packets. Knowledge of RTP is also important to understand SIP-based real-time

communication.

RTP defines a standard packets format for multimedia transport on top of UDP (User

Datagram Protocol) [9]. UDP is a stateless protocol with no error correction

mechanism. Low delay latency lacks guarantee of packet loss. The UDP packets could

be discarded in cases of network failure or long delay. A low rate of UDP packet loss

may not affect the communication. RTP does not define a standard port for

communication. Therefore, the transport port is negotiated by the SDP for each

21

multimedia session1. The RTP data packets are sequenced by a 16-bit sequence number

filed that is defined in the RTP packet header. The receiver may use the sequence

number to detect packets loss or out-of-sequence packets. The 32-bit time-stamp field

from the RTP packet header indicates the packet creation time. The value of the

time-stamp filed can be used to determine the RTP packets transmission delay and

jitter level. The RTP packet header also defines fields to identify source and

participants for a multimedia session. The synchronization source (SSRC) identifier

indicates the source where the RTP packets are generated. Participants of the

multimedia session are identified by the contributing source (CSRC) identifiers. The

number of contributing sources is defined in the 4-bit CSRC count (CC) field, which

means the contributing sources are up to 15.

RTP and RTCP (Real-time Transport Control Protocol) [23] are commonly used

together. The default transport port for RTCP can be derived algorithmically from the

next higher odd port based on the RTP transport port.2 The RTCP packets are generated

periodically for adding additional system-level functionality to its related RTP stream.

The RTCP is an integrated media synchronization function by exchanging RTCP

messages to synchronize the system time clock for the multimedia session. The RTCP

participation reports indicate the status of the participants. The participation details

such as name, email and so on of each participant can also be exchanged by the RTCP

messages. RTCP QoS (Quality of service) reports periodical provide statistics of

packet loss, level of jitter and transmission delay, but they do not help to correct the

transmission errors. Neither RTP nor RTCP provides a mechanism to ensure the

delivery time, which means the QoS (Quality of service) must be controlled by another

mechanism.

1 The media descriptions (“m=”) in SDP defines the media type, transport port, transport protocol and
media format description.
2 The RTCP transport port can be specified in SDP with a separate attribute which is “a=rtcp”.

22

2.7 Summary

In this chapter, an overview of SIP was given, and SIP based solutions for mobility

services were also discussed. This primary SIP knowledge is helpful for going deeper

into this thesis work. The next chapter gives an introduction to the technical

background from an implementation perspective.

23

3. Technical background

This chapter introduces the technology that is used in the practical part of this thesis

work. The first section presents an overview of the experimental SIP network. The

following section continues with an introduction to the SIP server of the experimental

SIP network. The third section describes the SIP client, and the final section introduces

the Java Media Framework.

3.1 Overview of experimental SIP network

To build the experimental SIP network discussed in this thesis, both a SIP server and

two SIP clients are needed. An Open Source SIP server is used for testing purposes,

only requiring minor configuration work to be functional. The SIP server provides

registration and record routing services. Additionally, a voice mail server is also

connected to the SIP server for storing the voice mail from the SIP clients.

There are two SIP clients used in testing which are described subsequently. Both SIP

clients have to register on the SIP server before they can call each other. In the use

cases of this document, one SIP client acts as the caller and another one acts as the

callee. Figure 3-1 illustrates the logical components of this experimental SIP network.

SIP client ASIP Server
(Sipxpbx)

Voice mail server

Configured as component of SIP

server for voice mail service

• Server’s domain

• Implements logic for handling, presence and record router

SIP

SIP

RTP stream to
send recorded
voice message

External SIP
messaging

SIP client B

SIP

RTP
stream

Figure 3-1 Logical components of the simulated SIP network

3.2 SIP server

The SIP server is the core of the experimental SIP network, which for the purpose of

this thesis has not been modified. SipX [21] is chosen as the SIP server, and it can be

replaced by any other SIP servers which implement RFC 3261 [2].

The SIP server runs on a Linux machine. The domain name server is optional and may

be needed for those DNS names that can be used in SIP messages, so it is highly

recommended. In the following text, we give a short description of the operating

system, the SIP server application and the domain name server application.

24

25

• Operating system: In the experimental SIP network, Fedora core 5 Linux

distribution packages with kernel 2.6 are installed as the operating system for

the SIP server.

• SIP server: SipX [21] is one of the Open Source VoIP projects with high

scalability to deploy on a Linux machine. The sipX solution provides most

functions of SIP PBX (Private Branch eXchange). In this thesis work, it is

running as a registrar and record router for signaling routing purpose. In

addition, a voice mail server is also integrated into the SIP server.

• Domain name server: Although SIP accepts an IP address as a SIP address,

the domain name server is still recommended to be installed for running the

experimental SIP network. With the domain name server’s support, the SIP

clients can register with the SIP server using normal phone numbers1, and later

the registered phone numbers are used to call each other. BIND (Berkeley

Internet Name Domain) [22] is used in this thesis work.

3.3 SIP communicator

The SIP communicator is a Java based SIP client supporting both voice and video calls.

The reason for using the SIP communicator in this thesis work is due to less operating

system dependence. Java is a programming language originally developed by Sun

Microsystems. The Java code can be compiled to byte code for the virtual machine,

and interpreted by the virtual machine at running time. This way, Java code can be

written once and run on the most modern computers. The SIP communicator is built on

top of JMF (Java Multimedia Framework). The architecture of JMF is introduced in

the next section.

1 If the phone number is 1234, then the SIP URI is 1234@netlab.hut.fi.

26

The disconnection tolerance functions are built on the original SIP communicator,

which uses RTP streaming based detection and recovery mechanisms during a call

session. The statistics of RTP packets are used for checking network disconnection. In

addition, the RTCP reports are also used as references to prove the network status. The

extended functions for the disconnection tolerance mechanism are described in the

fourth chapter, where the details of the detection module are explained. The code

architecture of the SIP communicator is given in the fifth chapter.

The SIP communicator does not recognize all SIP messages. Only those SIP messages

described in the second chapter are accepted by the SIP communicator. If the SIP

communicator receives an unrecognized SIP message, it will throw an “unknown

message” exception. In some special cases, some SIP response messages from the SIP

server are not supported by the SIP communicator. These exceptions however will not

affect the testing and validation.

3.4 JMF

JMF is a java based multimedia framework which provides functions of multimedia

data capturing, encoding/decoding, file system operations and network transport. This

section gives an introduction to JMF.

JMF brings a lot of abstract components which need to be understood to implement the

SIP communicator. This introduction to JMF starts with a short description of JMF

components. Figure 3-2 demonstrates the mechanism of sending media data under the

JMF architecture. Each component of JMF is introduced in the following.

Processor
network

Data source

RTP Session

manager

Input device may be

a microphone or an

existing sound file

Data source

Figure 3-2 JMF components for sending data

A data source is an abstract component which is referenced as a media protocol handler.

There are various sub-classes of the data source component which are concrete

implementations of different protocols. When a data source is assigned to specified

media content, JMF will choose a correct implementation class to handle it. Usually,

the data source component can be used as the media data source for another JMF

component which is transparent to high level data models regardless of the real

implementation.

In JMF, the media controller is called the processor. The processor is also an abstract

module which defines the way of processing and controlling time based multimedia

data. The processor performs three major tasks: demultiplexing, data transcoding and

multiplexing. A multimedia stream can be combined with several individual

video/audio tracks. The demultiplexing task separates the multimedia stream into

different tracks. Each track is a predefined media format and can be processed

individually. The data transcoding task does the job of converting a media format to

another media format. The individual multimedia tracks can be combined to a mixed

multimedia stream by the multiplexing task.

The data sink is an output component for the multimedia data. If the data source is

considered as the reader of the multimedia data, then the data sink is the writer of the

27

28

multimedia data. The data sink component writes multimedia content to a specified

media location.

JMF contains a ready-made RTP engine which builds RTP sessions transparently to the

SIP communicator. The manager component of the RTP engine is called the RTP

manager. The RTP manager takes care of the RTP sessions for the multimedia data

transport, and also collects the global statistics of RTP/RTCP packets by default. The

SIP communicator uses the RTP manager to create, maintain and shutdown the

multimedia stream. The network detection and recovery mechanisms are built on top of

the RTP/RTCP reports. The mechanism of network detection is described in the next

chapter.

3.5 Summary

This chapter provided the technical background overview of this thesis work. The next

chapter continues to discuss the system architecture of the disruption tolerance

mechanism.

29

4. System architecture

The basic technology for this thesis is discussed in the previous chapter. This chapter

introduces the design architecture for the disruption tolerance mechanism, begins with

a brief description of the enhanced SIP communicator, and afterwards offers an

explanation of the enhancement modules. The use cases of disruption tolerance aspects

are presented by the SIP message sequence charts.

4.1 Overview of the enhanced SIP communicator

This section gives an overview of the enhanced functions for the SIP communicator.

The basic idea of the disruption tolerance mechanism is explained below.

The SIP communicator uses the network failure detection module to check the network

condition. The network failure detection module contains a time based thread which is

running at the beginning of the RTP session. The thread calculates periodically the

statistics of RTP/RTCP packets for the RTP session. The detection module uses the

statistic to detect network disconnection. If the network disconnection is detected, the

SIP communicator switches temporarily to handle network failure mode. The users

may continue to talk, and the voice is saved in the local file system. If the network is

recovered after a short time period (less than 15 seconds), the SIP communicator

recovers the previous broken call and replays the saved voice to the remote participant.

The users may notice the obvious voice delay, but the delay time could be reduced by

silence suppression. In case of an unpredictable disconnection time, the ongoing call

could be either expired automatically by the session timeout or hung up by the users.

Since the ongoing call is broken for a medium time period (15-180 seconds), the SIP

communicator will try to rebuild the unfinished call automatically and continue the

previous conversation with the saved voice. The users may continue to talk until they

hang up the call. Finally, if the network connection cannot be recovered within a

reasonable period, the recorded voice is sent to the voice mail server. Later, the users

can fetch the voice message from the voice mail server.

In order to replay the unheard voice from the previous broken call, the SIP

communicator uses different data sources for the out-going multimedia stream. Figure

4-1 shows the voice data flow of the SIP communicator.

Processor
Data source

RTP

Session

Microphone

Data source

Data source Data sink

Save captured voice to

local file system
Function of voice

recording

Player Data source

Speaker

Incoming RTP
packets

If a network failure happens,

use recorded file as data source

after network recovering

network

If a network failure

happens, stop using

voice data from

microphone, switch to

recorded file

Voice data flow after a

network failure happens

A network failure detection module is running

Figure 4-1 Voice data flow

In the initialization phase, the SIP communicator detects voice capture devices by

using JMF functions. The SIP communicator chooses the microphone as the default

voice data source. The abstract data source concept was explained earlier in the

30

31

previous chapter. Here, any encoded multimedia data can be considered as data sources,

and the data sources can be mapped to different destinations. The SIP communicator

uses both the voice capture device and the file data source for the out-going

multimedia stream. When a call is started, the voice data from the microphone is

forked to two destinations. One data stream is sent to the remote participant through

the network, and another one is simultaneously saved in the local file system. The

default folder for the recorded files is in the root folder of the file system. If network

failure happens, the network detection component fires an event to notify the SIP

communicator of the network disconnection. The event triggers the switching of the

data source from the voice capture device to the file data source. When the call is

recovered, the file data source is used for the out-going multimedia stream. The details

of the modules are introduced in the following section.

4.2 Module description

This section concentrates on the enhancement modules for the SIP communicator. Two

modules are implemented in this thesis in order to build the disruption tolerance

functions. The sound record module provides the voice recording function for the

entire call session. The network failure detection module provides the mechanism for

detecting network disconnection.

4.2.1 Sound record module

During a call, the voice data is saved in cycle files. The reason for using different files

to save voice data is for thread safety. One file cannot be written and read at the same

time. When JMF is writing data into a file, this file is locked and cannot be read

correctly by another thread. The default number of cycle files is three. The quota for

each file is limited to 180 seconds of recording time in order to prevent the file from

becoming too large. If the recording file reaches the time limit, the old recording

content is discarded silently unless the data is usable for recovering the previous

broken call. When a new call is created, the voice data from the microphone is written

into the first file until network disconnection is detected. When the network failure

occurs, the sound record module stops writing the first file, and releases the file to

prepare for replaying of the voice right after the network connection is recovered. The

task of recording the voice is switched to the second file. After network connectivity is

recovered, the sound record module uses the first file as the data source for replaying

the recorded voice. It also stops writing data to the second file. The second file is

released and prepared for the reading task, which is called for at the end of the first file.

The writing file task is switched to the third file. When the first file reaches the end of

the file, the second file is ready to become the data source for replaying voice, and the

sound record module stops writing data to the third file, and then switches back to

overwrite to the first file. In this way, three different files are cycled for writing and

reading till the end of the call. Figure 4-2 depicts the switching phases between cycle

files.

network
Data source

RTP Session

manager

write

File1 File2
File3

read

write

read read

write

Phase 1

Phase 2

Phase 3

mic

Figure 4-2 Sound record module

32

33

4.2.2 Network failure detection module

Unlike TCP which offers a reliable connection, RTP packets can be discarded without

any notifications to the sender. If any call participant loses connection, it is difficult for

the SIP communicator to detect the network condition of the remote participant. Also,

even if the SIP communicator knows the network connection problem itself, there is no

way to notify the remote SIP server or SIP client. The network failure detection module

is implemented to monitor the network condition of the remote participant. The

mechanism is described in the following text.

The network failure detection module contains a time based thread which is called the

timeout checker. The timeout checker starts running in the background as soon as the

first RTP packet is received by the RTP receiver. It wakes up every 3 seconds and

checks the current network status. The timeout checker collects the global reception

statistics of the RTP stream and counts the number of received RTP/RTCP packets

since the last check point. If no packets were received in this period, the timeout

checker fires a timeout event to inform the SIP communicator and sets the network

status to failure. If the network status was already in failure, the total disconnection

time is accumulated. If the network disconnection time exceeds the session expiration

time, the timeout checker fires a local hang up event to notify the SIP communicator to

hang up automatically. Otherwise, the statistical report shows which RTP packets were

received since the last check point. The timeout checker examines the network status.

If the network status was set to failure, the timeout checker fires a network recovery

event to inform the SIP communicator. The timeout checker keeps on running for the

whole RTP session, only stopping when the user hangs up the call or a local hang up

event is fired. Figure 4-3 presents the process of detecting the network failure.

Received RTP

packets

Network

connected

Yes No

Network

disconnected

Check network

situation

No

Reset network

status

Yes

Set network

status as failure

Yes

Accumulate

disconnection time

No

Disconnection time over

session expiration time

No

Yes

Hang up

Network

failure status

Network

failure status

Figure 4-3 Network failure detection model

Silence suppression is the term used to describe the process of not transmitting

information over the network when one of the calling participants is not speaking. The

function of silence suppression has not yet been implemented in this thesis work. If

silence suppression is to be used in future work, the RTP packets are only generated

34

35

while the user is speaking. Depending on the implementation of silence suppression1,

the network failure detection module may not work correctly if the users have been

silent for too long. However, RTCP packets are sent periodically regardless of the RTP

packets. Therefore, the consecutive RTCP packets could be used as a reference for

checking the network condition. If there are no RTP packets received since the last

checking interval, the lost RTCP packets indicate when network failure occurs.

The RTP/RTCP packets statistics based network failure detection mechanism cannot

detect the network failure time very precisely. As mentioned above, the check period is

3 seconds, so the SIP communicator would only know the network was disconnected

in the last 3 seconds time period. Of course, there are more precise ways to check the

exact disconnection time, for example, by monitoring network interfaces directly. The

benefit of RTP/RTCP packets statistics based detection mechanism is to eliminate the

complexity from lower layer network interfaces. If the mobile device has more than

one network interface activated at the same time, monitoring the network traffic of

each interface is dependent on the local policy of the mobile device.2 Therefore, the

soft handover between lower layer network connections will not affect the detection

mechanism.3

The SIP communicator can only detect the disconnection time approximately. As

described above, the timeout checker periodically counts the received RTP packets.

The network failure detection module uses the number of RTP packets received since

the last check point to detect the network disconnection. Therefore, the detection

module would not know the exact disconnection time, but only the network lost

connection since the last check point. The disconnection time is in the range of 0 to 3

seconds. In the replaying mode, the SIP communicator replays the recorded voice 3

1 If background noise is totally filtered in silence suppression codec, there is no packet sent while the
user remains silent.
2 The local policy of choosing network interface can be signaling strength, network bandwidth, user
specified and so on.
3 The precise monitoring solution is more devices specific.

seconds backwards from the time the network failure was detected. Figure 4-4

illustrates the voice replay time line.

Network is recovered The real disconnection time

3 sReplay start time

Consecutive voice

Disconnection
is detected

Silence suppression makes
the delay offset shorter

Disruptive voice

Network condition

Time line
t 0

Figure 4-4 Voice replay time line

After the media path is recovered, an uncompensated disconnection interval makes a

delay offset. The delayed voice creates a bad experience for the end user in the

continuation of the disrupted conversation. Silence suppression could be a good

candidate for reducing the delay offset.

4.3 SIP Message for Different Use Cases

Chapter two introduced the basics of SIP. This section describes the SIP signaling of

different scenarios in which network disconnection occurs. The SIP messages are

represented in message sequence charts. Three use cases are described in the following

section.

36

37

To simplify the use cases, we assume all use cases are between two SIP clients. The

SIP clients are named as SIP client A and SIP client B. The signaling between client A

and client B is sorted in an order based on a vertical time line.

4.3.1 Short Duration of Network Failure

This section describes the scenario of a short duration network failure after the media

stream is established. The second chapter introduced the sequence of building a

successful registration. Both user A and user B are registered to the SIP server. User A

calls user B. After a handshake between SIP client A and SIP client B, a media stream

is created between those two clients. There is no SIP signaling exchange between the

SIP clients during the media streaming phase, so that the SIP server will not notice if

any SIP clients are losing connection until the registration time is expired. If there is a

short time network connection failure, the SIP server has no way of detecting the

failure. The SIP client also has the same limitation for detecting if the remote client is

losing the connection. Therefore, any SIP based detection mechanism is not a good

candidate for efficient disconnection detection.1

The mechanism of RTP/RTCP packets statistics based disconnection detection is

explained in section 4.2.2. If a disconnection notification event is fired by the detection

mechanism, the SIP communicator switches to network failure mode. The SIP

communicator is not concerned about the real location of the network failure at either

local or remote parts. Any type of network failure will break the communication and

neither SIP clients can receive the remote media stream anymore. In network failure

mode, the SIP communicator is still sending RTP packets to the remote SIP client, but

1 If the SIP client uses session timers, fine granularity scalability is possible. But if the interval is too big,
this is not suitable for short time disconnection detection. SIP session timer [10] can generate SIP
messages in regular intervals, but the minutes based timeout value is not efficient for detecting the
network condition.

38

it is also saving media data to the local file system. The last unheard media data of the

users’ conversation is kept in the local file system. If the network failure is recovered

in a short time, both call parts will receive RTP packets from the remote SIP client. The

network detector notifies the SIP communicator to switch to replay audio mode. The

SIP communicator fetches the recorded media data and replays it to the remote

participant. Both users will hear the saved voice data for the duration of the network

failure from the remote call part. If the users keep on talking to each other, the

conversation is delayed based upon the previous network failure time. Figure 4-5

depicts the message sequence. In this example, user B hangs up the call at the end.

As we mentioned in section 4.2.2, the delayed voice can be reduced by using silence

suppression. The basic idea of silence suppression is to catch up with the silence

intervals in the users’ conversation, and then remove the silence intervals to make the

conversation shorter. The function of silence suppression is not implemented in this

thesis. The silence suppression function can be implemented as following: A filter

performs pre-processing of the media data which is going to be saved to the local file

system. The filter checks the media data and removes the silence intervals from the

media data. This way, no redundant silence voice is saved, and the unheard voice

becomes shorter. Further implementation of the silence suppression function is needed

to enhance the user experience of the SIP communicator.

39

B (registered)SIP server

200 OK

INVITE

180 RINGING

200 OK

INVITE

100 TRING

BYE

A (registered)

ACK

MEDIA STREAM (directly from microphone)

BYE

200 OK

200 OK

180 RINGING

MEDIA STREAM (from recorded file)

A short period network
 failure is detected

A short period network
 failure is detected

Figure 4-5 A short duration of network failure during a call

4.3.2 Rebuilding a call after a long duration of network

failure

In mobile communication, unpredictable network failure may occur at anytime. Long

failure duration causes media streams to time out, and users may lose patience during a

long waiting time without hearing any response from each other when there is a sudden

40

break in the call. The scenario of a short time network failure was described above in

section 4.3.1. This section describes the solution for rebuilding a call after a long

duration of network failure. The steps for creating a new call are the same as in

previous sections. Network failure happens after the media stream is created. As

section 4.2.2 described, the network failure detection model cannot tell the location of

the network problem. Both participants in the call affected by network failure will

observe the same result due to the network failure events. Although each SIP client

knows the network condition itself, it cannot exchange information with another

remote SIP client. After the network failure has happened, both SIP clients can detect

the transmission problem. If the network disconnection time is long enough that may

due to time out the active RTP session. After a predefined expiration time, the SIP

communicator shuts down the media stream automatically. In this case, the user may

continue to talk, so the unheard voice is also recorded to the local file system. After the

media stream is closed, the RTP/RTCP packets based recovery mechanism will no

longer work. SIP signaling is used here to rebuild the unfinished call. Both SIP clients

periodically send new INVITE requests through the SIP server to the remote call

participant. There are two cases explained below, the first case is when the remote SIP

client encounters a network failure, and the second one is when the local SIP client

encounters a network failure. If the network failure happens to both remote and local

SIP clients, it counts as the second case. The assumption is based on the condition that

the SIP server is always stable, which can be assumed in a well-functioning machine.

Handling the case of an unstable SIP server is beyond the scope of this thesis, and it is

assumed that both SIP clients can only handle a single call at a time.

• If the remote SIP client is not reachable, the INVITE request will reach the SIP

server but it will not reach the remote SIP client. Later the SIP server will reply

with a 408 REQUEST TIMEOUT1. After the local SIP client receives the 408

REQUEST TIMEOUT responses, it sends a new INVITE request to the remote

1 Or a 404 NOT FOUND if the remote part’s registration has expired in the meantime.

41

SIP client. The INVITE request will be sent periodically until a response or an

INVITE request from the remote SIP client is received.

• The SIP client creates a local transaction for the INVITE request. If the local

SIP client does not receive any responses or requests from the remote SIP

server or the remote SIP client during this transaction, it indicates that the

network failure has not been recovered. The SIP client sends a new INVITE

request after the previous INVITE transaction has expired. New INVITE

requests will be sent periodically until a response or an INVITE request from

the remote SIP client is received.

The period between the sequenced INVITE requests should be randomly distributed

around a specified time to avoid the INVITE requests being sent from each call

participant at the same time. The SIP client must not send a new INVITE request

before either 408 REQUEST TIMEOUT or 404 NOT FOUND responses have been

received, or the local transaction has expired. When the SIP client receives an INVITE

request from the remote SIP client, it firstly compares the received SIP message header

fields to the previously broken call dialog with the following steps:

• The INVITE request matches the previous broken call: if a new INVITE

request has not yet been sent, the SIP client must stop sending a new

INVITE request and reply to the INVITE request as soon as possible.

Otherwise the SIP client sends a 486 BUSY HERE response then generates

a new INVITE request that is randomly distributed for a specified duration.

If the SIP client receives a 486 BUSY HERE response for the previously

INVITE request, it should send a new INVITE request immediately.

• The INVITE request is not from the previously broken call but from a third

party: the SIP client handles the INVITE request as in normal case and

42

sends a CANCEL request to the remote SIP client. Later, all of the INVITE

requests from any remote SIP clients will be replied to with a 486 BUSY

HERE response. If the SIP client receives a CANCEL request from the

previous broken call part, it should no longer send a new INVITE request.

The recorded voice is going to be sent to the voice mail server after the

current call is hung up.

If neither SIP clients receive any new INVITE requests or responses from each other

during a predefined period, they should stop attempting to rebuild the broken call and

try another way to exchange information. A voice mail server is a permanent place to

keep the recorded voice data, and later the SIP client can fetch the lost voice call any

time. The way of connecting to the voice mail server is discussed in the next section.

Figure 4-6 shows a successful re-invitation after a network failure. In this example, SIP

client B discarded the first two INVITE requests because of a network failure. SIP

client A receives a 408 REQUEST TIMEOUT then generates a new INVITE request.

This INVITE request is delivered to SIP client B and the broken call is rebuilt. Both

SIP clients reply to the recorded voice, and later SIP client A hangs up the call. In the

prototype implementation, there is no control button on the SIP communicator to turn

off the automatic rebuild call function and the SIP client will always try to reconnect to

the remote call part after a call is broken. This enhancement should be added in the

future.

43

B (registered)SIP server

200 OK

INVITE

180 RINGING

200 OK

INVITE

100 TRING

A (registered)

ACK

MEDIA STREAM (direct from microphone)

408 REQUEST TIMEOUT

200 OK

180 RINGING

A long period network
 failure is detected

A long period network
 failure is detected

Figure 4-6 Rebuild a call after a long duration of network failure

INVITE

INVITE (discarded)

INVITE

INVITE

180 RINGING

200 OK

MEDIA STREAM (from recorded file)

BYE

200 OK

180 RINGING

INVITE (discarded)

44

4.3.3 Connect to voice mail server after a long period of

network failure

This section presents and discusses the process of connecting to the voice mail server.

If neither SIP clients reach each other actively, an alternative solution is to use a voice

mail server as a permanent repository to save the recorded voice data. As in the

previous sections, user A starts a new call with user B. There is a network failure which

occurs during the call. Here, we assume that user B has lost network connection for a

long time. SIP client A tries several times to invite SIP client B, but the broken call

cannot be automatically rebuilt in the way described in the previous section. In this

thesis implementation, there is a constant ‘N’ which defines the number of total

invitation times. If the call cannot be rebuilt after ‘N’ time’s invitation, both SIP clients

should not send any new INVITE requests. Instead, the SIP client sends the recorded

voice to the voice mail server. Later, each SIP client will fetch the voice mail from the

voice mail server independently. Figure 4-7 depicts the SIP message sequence of

connecting to the voice mail server. The function of connecting to the voice mail server

has not been implemented in this thesis. There are several missing functions from the

SIP communicator in this case, for example, the DTMF (Dual-tone multi-frequency)

function is not supported. When the SIP communicator connects to the voice mail

server, users cannot interact with the voice mail server by using the SIP communicator.

It is necessary to implement the DMTF function in the future for the SIP

communicator to be able to interact with the voice mail server. The SIP communicator

does not support persist functions to remember the call status permanently, which

means that the call status is only kept in memory. If the user shuts down the SIP

communicator before the network failure is recovered, the current call status will be

lost immediately. It would be better to implement the persist function for the SIP

communicator to write the unfinished call information to the local file system, and this

call information can be fetched by the SIP communicator later at any time. This feature

will improve the usability of the SIP communicator.

45

B (registered)SIP server

200 OK

INVITE

180 RINGING

200 OK

INVITE

100 TRING

A (registered)

ACK

MEDIA STREAM (direct from microphone)

408 REQUEST TIMEOUT

ACK

A long period network
 failure is detected

A long period network
 failure is detected

INVITE
INVITE

(discarded)

Figure 4-7 Connect to voice mail server after a long period of network failure

INVITE

200 OK

MEDIA STREAM (from recorded file)

BYE

200 OK

408 REQUEST TIMEOUT (N times)

Voice mail server

A sends recorded
media data to voice
mail server. B will do
it in the same way,
which is not
presented here.

INVITE INVITE
(discarded)

46

4.4 Summary

In this chapter, the design architecture was explained in detail and the theory of

implementing the disruption tolerance functions introduced. The sound record module

and the network failure detection module for the disruption tolerance mechanism were

described conceptually. Three use cases were assumed and the solution for each use

case was recommended. For a short duration of disconnection, the SIP communicator

temporarily stops the ongoing media stream and saves the users’ conversation. The

recorded voice is replayed automatically after the network recovery. For a longer

duration of network disconnection, the SIP communicator tries to rebuild the

previously broken call by sending INVITE requests. Finally, the voice mail server is a

permanent repository for the recorded voice data. Each use case was explained with a

SIP message sequence chart. The next chapter describes the implementation details of

the SIP communicator with the enhancement modules.

47

5. Implementation

This chapter presents the details of the implementation. To simplify the description,

UML (Unified Modeling Language) is used here to describe the interaction and

relationship between those classes. This chapter does not aim to cover all of the

implementation classes, but focuses on only those classes that are important for

understanding the code architecture.

5.1 High level view

The SIP communicator can be subdivided into three major modules. The SIP package

classes are implemented for processing SIP signaling. Classes from the media package

take care of multimedia data and RTP transport. The GUI (Graphic User Interface)

package contains classes which render the user interface and acting upon a user’s

action.

The class SipCommunicator is the main class of the SIP communicator, it is called

when starting the whole program. This class reads the system configuration and

initializes the program. The SipCommunicator does not know the implementation

details of the user interface, SIP signaling and the network connection. All of these

functions rely on underlying classes. The Class SipCommunicator contains three

management classes which are called SipManager, MediaManager and GuiManager.

These management classes refer to the packages which contain the classes of concrete

implementation of SIP signaling, media transportation, and graphical user interfaces

respectively. The relationship between these classes is presented in figure 5-1. The

management classes are introduced in the following sections.

• SipManager: the manager class of the SIP package which is responsible for

creating the SIP requests and generates the SIP responses.

• MediaManager: the manager class for controlling the multimedia stream and

managing RTP packets at the transport layer. This class also deals with voice

recording and rebuilding multimedia streams after the network disconnection is

recovered.

• GuiManager: the manager class of the graphical user interface package. It is

called by the SipCommunicator in the initialization phase to render the user

interface.

Figure 5-1 Top view of SIP communicator

5.2 SIP package

The SIP package provides all the functions of SIP signaling which are used in the SIP

communicator. The SIP basics were introduced in Chapter 2, and Chapter 4 described

the SIP messages for different user cases. This section gives a short introduction of the

48

implementation of the SIP package. Figure 5-2 depicts the relationship between the

classes in the SIP package. The functionality of each class is described below:

Figure 5-2 SIP package classes

The class SipManager is the factory class of SIP signaling. It manages the way of

generating SIP messages for different use cases. It only knows which SIP message is

going to be created, but it is not aware of the message detail. When a SIP request or

response is generated by a concrete underlying class, the concrete class also takes the

responsibility for maintaining the status of the respective SIP message.

As the name suggests, the class RegisterProcessing takes care of the entire register

processing of the SIP communicator. The class SipManager calls the registration

functions from this class to register the SIP communicator to the SIP server. When a

49

50

REGISTER request is sent, this class RegisterProcessing also takes care of the SIP

stack of the REGISTER request.

The class CallProcessing is an implementation class for creating SIP requests, parsing

SIP requests/responses and generating SIP responses. It provides the INVITE request

messages which are used by the class SipManager for creating new calls. Also, this

class parses the SIP INVITE requests which are forwarded from the class and builds

the corresponding SIP responses. The class CallDispatcher is a container for existing

calls. The call state information, transactions and dialogs of unfinished calls are kept in

separate instances and managed by this class. The information about the calls is used to

maintain the ongoing calls and generating stateful responses. This feature is very

important for multi-user call sessions.

5.3 Media package

Chapter 4 has introduced the basic JMF architecture, which is the basic concept of JMF.

The classes of the media package are built on top of the JMF APIs. The main task of

the media package is to provide multimedia data encoding, decoding, recording and

transport functions. Figure 5-3 shows the classes’ relationship of the media package.

The manager class of the media package is the MediaManager, which controls the

multimedia streams. The class MediaManager deals with the SDP (Session Description

Protocol) messages to find the negotiated media formats, and initialize the

corresponding data sources. The concrete implementation of the data transmission and

reception are implemented in the classes AVTransmitter and AVReceiver.

Figure 5-3 Media package classes

The class AVTransmitter is a concrete implementation class of the multimedia data

transport which is based on JMF. This class builds upon RTP data streams to the

remote clients and controls the media streams. Following the design idea explained in

the fourth chapter, the voice data sources may vary in different use cases. The class

AVTransmitter uses the microphone as the default data source when the call is started,

and a copy of the voice data is saved to the local file system at the same time. Later the

default data source could be replaced by the recorded voice data from the local file

system after the network disconnection is recovered. The switching between the

different data sources is invoked by the network status events which are generated by

the class TimeoutChecker.

51

52

The class AVReceiver is a receiver of RTP data packets. This class listens to the RTP

and RTCP ports and collects all incoming packets. This class uses the JMF APIs to

decode the received multimedia data and replays the voice to the users.

The class TimeoutChecker is a network failure detector of the SIP communicator. This

class is initialized by the class AVTransmitter after the first RTP packet from the

remote participant is received. A new thread is created during the phase of class

initialization. This thread counts RTP/RTCP packets at every 500ms, and then judges

the network condition. If there are no RTP packets received since the last check point,

a network failure event is fired. Later, the new coming RTP packets will trigger a

network recovery event. The interface ConnectionTimeoutListener holds three

methods which indicate three different types of network statuses: failure, recovery and

remaining. The implementation classes of this interface will be notified immediately

when the network condition events are fired.

The class LocalFileDataSourceHelper is a helper class for switching between the

recorded files. In order to be threading safe, each file is not allowed to be written and

read at the same time. This class tracks all of the recorded data files, and manages their

I/O status.

5.4 GUI package

This section describes the graphic user interface implementation of the SIP

communicator. The user interface components of the SIP communicator are mostly

based upon the swing APIs. Swing is a lightweight GUI toolkit for Java.

Figure 5-4 GUI package classes

Similar to the other packages, there is a manager class for this package which is named

GuiManager. The manager class initializes each component of the user interface and

adds them to the correct place. Also, this class listens to the events from the other

modules and reacts to them.

The main function of the class InterlocutorsTableModel is to display a drop down list

of the callees’ information to the user. The callee’s name, address and class status are

shown in a table format.

The class PhoneFrame renders the main window of the SIP communicator. Laying out

the frame of the SIP communicator is beyond the scope of this document, further

details of rendering the layout are discussed in the Java swing technology. The class

MenuBar is to create a menu of the SIP communicator, which is part of the widgets on

the main window.

53

54

The class AuthenticationSplash provides a dialog window for authentication

information. This class renders a popup dialog window for the user’s account name

and password in the register phase.

The class AlterManager is an exception from the GUI package which does not render

any graphic user interface. This class manages a set of audio clips for prompting and

alerting, for example, the ring for incoming calls. Nevertheless, audio is also a way to

interact with the user.

5.4 Summary

This chapter has given the implementation details of the SIP communicator. The first

section gave the packages view of the SIP communicator where each package was

explained in the subsequent sections. The introduction of the SIP package was given in

the second section. The third section introduced the media package. The fourth section

explained the GUI package for the user interfaces. The next chapter in this thesis

continues by focusing on the testing and validation of the implemented prototype.

6. Testing and validation

This chapter focuses on the testing and validation of the SIP communicator. The first

section describes the way of setting up the demonstration environment, while the

second section presents the testing results and an analysis of these results.

6.1 Demonstration setup

The pre-condition for running a demonstration is to build an experimental SIP network.

Based on the technical background described in the third chapter, we are building the

experimental SIP network with one SIP server and two SIP clients. In the

demonstration, one Linux machine is running the SIP server application, and two

Windows machines with WLAN connections running the SIP communicator

application. The windows machines are connected to the experimental SIP network by

a WLAN router. The SIP server has an Ethernet connection to a normal router. The

media path between the wireless router and the normal router is also an Ethernet

connection. The setup is illustrated below in Figure 6-1.

SIP communitcator SIP communitcator
WLAN router

Normal router

SIP server

WLAN WLAN

Cable

Cable

Figure 6-1 Demo setup

55

The SIP server is installed with all of the necessary server side applications which are

described in the third chapter. The SIP server is controlled remotely by Linux

commands through an SSH connection. The details of these control commands,

however, are not presented in this section. Here we assume that the SIP server is

booted and all of the required applications are running smoothly.

When the SIP communicator is started, a pop-up window appears on the screen and

requests the authentication information. The pop-up window contains two input fields:

the user name and password, as shows below in Figure 6-2.

Figure 6-2 Authentication window

We create two accounts in the SIP server for the purpose of testing. After the user’s

authentication information has been filled, the SIP communicator registers this

information with the SIP server. The registered information shows on the button of the

SIP communicator in a green color. After both SIP communicators are registered with

the SIP server, they are ready to call each other. Figure 6-3 depicts the user interface of

the SIP communicator after registration.

56

Figure 6-3 UI of SIP communicator

6.2 Testing and validation

Integration testing is an important part of all software research and development life

cycle. Presenting a full introduction of software testing is a huge topic of software

engineering, and is far beyond the scope of this thesis document. The main purpose of

testing in this section is to prove the disruption tolerance mechanism for the SIP

communicator. In the following text, a brief introduction of the test cases is given.

6.2.1 Test cases

In integration testing, it is necessary to first validate the normal call function to make

sure that both SIP communicators can call each other smoothly, then we address testing

of the disruption tolerance functions. The fourth chapter gave a description of different

57

58

use cases for these disruption tolerance functions. The testing verifies each use case in

the same order as the design architecture. The testing of individual components is not

within the scope of this thesis, that kind of testing is covered by unit testing. The test

cases are presented in Table 6-4 below.

Test case Description Result

1. Normal call User A calls user B without

disconnection during the

conversation, then user A

hangs up the call.

Works correctly.

2. A short duration of

network failure

User A calls user B. After the

call is started, the network

connection is deliberately

broken for a short duration.

The recorded conversation is

replayed automatically after

the network is recovered.

Works as assumed, the

recorded voice comes with

a large delay after the call

is recovered.

3. Rebuild a call after

a long duration of

network failure

User A calls user B. After the

conversation is started, the

network connection is

deliberately broken for a long

duration. Later, both SIP

communicators will try to

re-invite each other

automatically. The broken call

will be rebuilt and both users

will hear the recorded

conversation.

Works as assumed, the

broken call is rebuilt and

both users can hear the

voice replaying.

59

4. Connect to voice

mail server when

unpredictable network

disconnection happens

User A calls user B. After the

call is started, the network

connection is deliberately

broken for a longer duration.

Later, both SIP communicators

cannot rebuild the broken call.

The SIP communicator will

connect to the voice mail

server.

This function is not fully

implemented. The SIP

communicator connects to

the mail server after the

network connection is

recovered. Without the

DTMF function, the SIP

communicator cannot

interact with the voice

mail server.

Table 6-4 Test cases

The test cases table summarizes that most tests work well. The result for the second

test case indicates that the recorded voice came through with a large delay. As was

described in the fourth chapter, the delay can be reduced by using silence suppression.

On the other hand, the fourth test case could not be finished because the SIP

communicator cannot interact with the voice mail server, as the DTMF function is not

yet supported by the SIP communicator. More details of each test result are discussed

in the next section.

6.2.2 Result validation

The SIP communicator is real-time communication software. Therefore, performance

is one of the most important criteria for validation. The order of testing still follows the

test cases which are listed in the previous section. We use Ethereal to capture the RTP

packets from the Windows machine’s WLAN interface for each scenario. See the

analysis presented below.

Figure 6-5 Normal call

Figure 6-5 depicts the RTP packets delay from test case 1. The average per packet

delay is around 20ms. In the implementation, the G.729 codec is chosen as the default

codec for audio. The media stream remains on a consistent rate of latency time,

meanwhile, only a few packets take more than 100ms delay, which is acceptable for

the RTP media session. Those occasional large packets delay could be caused by the

concurrent applications. When the SIP communicator and the Ethereal are running on

the same Windows machine, extra time is taken when the application processes are

switching between each other. The user should not feel any obvious voice delay during

the entire call session.

60

Figure 6-6 A short break in a call

Figure 6-6 shows the packets delay from test case 2 when a short network

disconnection breaks the ongoing call. The network is deliberately broken for about 6

seconds, and then the network connection is recovered. However, the figure shows the

disconnection time to be more than 6 seconds. There are two possible reasons which

can result in longer disconnection time than expected. The first reason is the extra time

needed for connecting to the wireless network. When the windows machine recaptures

the wireless connection, it always takes several seconds for acquiring the network IP

address from the DHCP server. The second reason was explained in the fourth chapter,

which is caused by the imprecise RTP packets based detection mechanism. From the

figure above we can see the time gap of the total disconnection time is around 18

seconds. The average packets delay is quite similar with the first test case, but

occasionally a few packets come through the network with a large delay. Still, these

packets should not affect the real-time conversation too much. The packets density

after the network disconnection is a bit higher than before the network disconnection.
61

The reason lies in the replay mode where the packets are sent more regularly and

frequently.

Figure 6-7 Rebuild a call after network disconnection

As Figure 6-7 depicts the third test case, the call is terminated by an equally long

network disconnection. The broken call is rebuilt by re-inviting after the media path is

recovered. Same as in the previous test case, the packets delay is kept to a consistent

rate except few packets with large delay. Again, the occasional packets delay can be

omitted in this case without affecting the entire media conversation. As in the previous

test case, the packets density is a bit higher in the replay mode, but the average packets

delay is kept at the same level.

The fourth test case is not presented in this section. Its behavior can be considered the

same as in the third test case. The distinction between these two test cases is the

different remote participant in the replay mode. The third test case is to rebuild a call to
62

63

the remote SIP communicator, and it switches to the voice mail server in the fourth test

case respectively.

6.3 Summary

A brief introduction of testing was given in this chapter. The demonstration setup

explained the way of building the testing environment. There were four test cases

defined against the use cases respectively. The results for those test cases were also

analyzed in this chapter. The normal call worked quite smoothly. The behavior of the

call with a short network disconnection worked as planned, but a large delay of the

recorded voice was not as good as expected. The call with a long duration of network

disconnection was rebuilt successfully after the network was recovered. In the fourth

test case, the interaction with the SIP communicator and the voice mail server could

not be executed because the DTMF function is not yet supported by the SIP

communicator. The test results were acceptable for the prototype, but improvements

are needed in the future. The final conclusion of this thesis is discussed in the next

chapter.

64

7. Conclusion

This thesis has explored the disruption tolerance mechanism for SIP-based multimedia

communication. The document started with an introduction of the background and

motivation for this thesis, discussing different kinds of mobility services. The

disruption tolerance mechanism was presented as a combined mobility service solution

for unstable network communication. Then a brief introduction of the SIP basics is

given which was necessary to understand this thesis. SIP for mobility services were

discussed and some of these SIP mobility features were used for developing the

prototype. This prototype was built on top of the SIP communicator. The

implementation of the prototype started with the introduction of the technical

background. The design architecture for the disruption tolerance mechanism was

described first at the conceptual level. Three use cases were described in MSC charts

that were differentiated by the duration of disconnection. Afterwards, the

implementation details for the disruption tolerance mechanism were presented in UML

figures. Finally, an experimental SIP network was built for the testing purpose. Each

use case of the disruption tolerance mechanism was tested and the test result was

analyzed.

The disruption tolerance mechanism for the SIP communicator is an enhancement of

mobility service which helps a failed multimedia session to be recovered automatically.

The disconnection detection mechanism has been proposed for end-to-end real time

communication. The disconnection detection mechanism does not depend on the

location of the media path failure and does not rely on the disconnection indication

from any concrete network interfaces. This feature is especially useful to handle

vertical handover when the connection breaks down. Three use cases for recovery the

broken communication have been proposed which deal with the duration of network

disconnection. A prototype has been implemented for the disruption tolerance

mechanism which is built on top of the original SIP communicator. The

65

implementation shows that the technical aspects of the disruption tolerance mechanism

worked as well as expected. Basic testing was performed in an experimental SIP

network to validate the disconnection handling functions, and the results were quite

similar to expectations.

The prototype developed in this thesis has poor usability as mentioned previously. The

silence suppression function is still missing in this prototype, which is the core

function to reduce the time gap for the recovered conversation. The SIP communicator

does not support the DTMF function, so the user cannot interact with the voice mail

server. The user interface does not yet integrate the configuration functions for

handling disconnection aspects, only the default aspects described in this thesis work

are provided.

The experiment of the prototype has demonstrated the basic disruption tolerance

functions are working well. Future work is needed to improve both usability and

stability aspects mentioned above.

66

Reference

[1] Jukka Manner, Markku Kojo, “Mobility Related Terminology”, RFC 3753,
June 2004

[2] J. Rosenberg et al, Session initiation protocol”, RFC 3261, June 2002

[3] M. Handley et al, “Session description protocol”, RFC 4566, July 2006

[4] Henry Sinnreich, Alan B. Johnston, “Internet communications using SIP”,

WILEY, 2001

[5] A. B. Roach, “Session Initiation Protocol (SIP)-Specific Event Notification”,

RFC 3265, June 2002

[6] J. Rosenberg, “The Session Initiation Protocol (SIP) UPDATE Method”,

RFC 3311, September 2002

[7] R. Sparks, “Internet Media Type message/sipfrag”, RFC 3420, November 2002

[8] SIP communicator official web site, https://sip-communicator.dev.java.net/

[9] J. Postel, user Datagram Protocol, RFC 768, 28 August 1980

[10] S. Donovan and J. Rosenberg, “Session Timers in the Session Initiation Protocol
(SIP)”, RFC 4028, April 2005

[11] Java media framework (JMF), http://java.sun.com/products/java-media/jmf/

https://sip-communicator.dev.java.net/
http://java.sun.com/products/java-media/jmf/

67

[12] H. Schulzrinne, “RTP: A Transport Protocol for Real-Time Applications”,

RFC 3550, July 2003

[13] H. Schulzrinne, “RTP Profile for Audio and Video Conferences with Minimal

Control”, RFC 3551, July 2003

[14] Information Sciences Institute, “Transmission control protocol”, RFC 793,

September 1982

[15] N.Banerjee et al. “Seamless SIP-Based Mobility for Multimedia Applications,”

IEEE Network, Mar-Apr, 2006

[16] W.Wu et al. “SIP-Based Vertical Handoff Between WWANs And WLANs,” IEEE
Network, Jun, 2005

[17] P. Resnick, “Internet Message Format”, RFC 2822, April 2001

[18] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF",

RFC 2234, November 1997

[19] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF",

RFC 4234, October 2005

[20] N.Freed, N.Borenstein, ”Multipurpose Internet Mail Extensions(MIME) Part Two:

Media Types”, RFC 2046, November 1996

[21] SipX project, http://www.sipfoundry.org/

[22] BIND (Berkeley Internet Name Domain), http://www.isc.org/index.pl?/sw/bind/

http://www.sipfoundry.org/

68

[23] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “A Transport Protocol for

Real-Time Applications”, RFC 3550, July 2003

[24] R. Sparks, “The Session Initiation Protocol (SIP) Refer Method”, RFC 3515, April,

2003

[25] .E. Perkins, “IP Mobility Support for IPv4,” RFC 3220, January 2002

[26] Q.Wang et al. “Mobility Management Architectures Based On Joint Mobile IP
And SIP Protocols,” IEEE Wireless Commun, Dec, 2006

	HELSINKI UNIVERSITY OF TECHNOLOGY
	ABSTRACT of the Master’s thesis
	 4. System architecture

