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The aim of this study is to estimate two-axis model parameters for a synchronous machine using 

the numerical impulse method. An advantage of the numerical impulse method over the 

standstill frequency response and the sudden short circuit tests is that the obtained parameters 

describe behavior of the machine at the certain operation point. The operation point may be a 

loaded operation point with a three-phase supply.  

 

The parameters of the machine have been estimated using data from linear and nonlinear finite 

element models. It is seen that saturation does not affect much when an impulse with the 

amplitude of 1% of the average RMS-value of the line voltages is used. 

 

A linearization method based on the Taylor’s expansion is presented for synchronous machine 

equations. In addition, a computationally effective way to establish transfer functions is 

presented. The transfer function derivation takes advantage of the linear system representation 

and states of the system. 

 

Stability issues concerning the circuit model have been investigated in the sense of Lyapunov. It 

is taken note that there is only one steady state. The effect of the impulse amplitude in the non-

linear FEM model has been studied by doing different impulse sizes and the frequency 

responses are compared. 

 

The numerical impulse response method is verified using circuit simulations in Simulink. The 

frequency responses obtained from circuit simulations, with the estimated parameters, match 

well with the frequency responses of finite element simulations. The similarity verifies the used 

methods and the applicability of the numerical impulse method in parameter estimation. 

Keywords:  parameter estimation, synchronous machine, numerical impulse method, 

frequency response 
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Tämän työn tavoitteena on estimoida tahtikoneen kaksiakselimallin parametrit käyttäen 

numeerista impulssimenetelmää. Esitetyn menetelmän etu on, että saadut parametrit kuvaavat 

todellista toimintapistettä, toisin kuin harmonisen taajuusanalyysin ja oikosulkukokeen avulla 

saadut parametrit. 

 

Tahtikoneen parametrit on arvioitu käyttäen lineaarista ja epälineaarista elementtimenetelmä- 

mallia. Huomataan, että kyllästyminen ei juuri vaikuta taajuusvasteisiin, kun käytetään 1 % 

verkkojännitteen RMS-arvon suuruista impulssia. 

 

Työssä esitetään Taylorin kehitelmään perustuva lineaarisointimenetelmä tahtikoneen yhtälöille. 

Lisäksi esitetään laskennallisesti tehokas menetelmä siirtofunktion muodostamiseen, jossa 

käytetään lineaarisen systeemin esitystä ja tiloja hyväksi. 

 

Piirimallille on suoritettu stabiilisuustarkastelu Lyapunovin mielessä. Todetaan, että systeemillä 

on vain yksi pysyvä tila. Syötetyn impulssin amplitudin suuruuden vaikutusta taajuusvasteeseen 

elementtimenetelmän epälineaarisessa mallissa tutkitaan käyttämällä erisuuruisia impulsseja. 

 

Numeerisen impulssimenetelmän toimivuus on osoitettu todeksi piirimallilla tehtyjen 

simulaatioiden avulla Simulink- ympäristössä. Piirimallissa on käytetty estimoituja parametreja. 

Piirimallilla tehtyjen simulaatioiden taajuusvasteet vastasivat hyvin FEM simulaatioilla saatuja 

taajuusvasteita. Taajuusvasteiden yhteneväisyys osoittaa todeksi käytetyt menetelmät ja 

numeerisen impulssimenetelmän käyttökelpoisuuden parametrien estimoinnissa. 

Avainsanat:  parametrien estimointi, tahtikone, numeerinen impulssimenetelmä, taajuusvaste 
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Symbols and acronyms 
 

Symbols 

e  error 

f  frequency 

G  transfer function 

i  current 

I  inertia 

j  complex variable 

J  rotation matrix 

L  inductance of an inductor 

p  number of pole pairs 

P  power 

R  resistance of a resistor 

s  Laplace operator 

t  time 

T  torque 

u  voltage 

Y  admittance 

Z  impedance 

 

Greek symbols 

∆  deviation 

ψ  flux 

ω  angular frequency 

Ω  mechanical speed 

 

Subscripts 

0  operation point 

B  base value 

d  direct axis 

D  direct axis damper winding 

e  electrical 

f  field winding 

imp  impulse 

m  mechanical 



    

mr  mutual component in rotor 

ms  mutual component in stator 

q  quadrature axis 

Q  quadrature axis damper winding 

r  rotor 

rel  relative amplitude 

rms  root mean square 

s  stator 

 

Acronyms 

DE Differential Evolution 

FE finite element 

FEA finite element analysis 

FEM finite element method 

MIMO multiple input multiple output 

p. u. per unit 

SSFR stand still frequency response 
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1 Introduction 

 

This master’s thesis deals with parameter estimation for a synchronous machine. A 

conventional two-axis circuit model is adequate for many applications, provided the 

parameters are properly defined. The aim of this study is to introduce new sights in 

parameter estimation against previous and conventional methods. 

 

The appropriate parameter values are essential in control design and in power system 

applications. With accurate parameter values, the behavior of a machine can be 

predicted well. 

 

Nowadays, finite element analysis (FEA), Bastos, J. P. A. et al. (2003), is the state of the 

art in electrical machine design. The FEA gives accurate results, and in that perspective, 

it is natural that parameter estimation process using FEA would be a good approach in 

order to get competent parameter values. 

 

In this study, the numerical impulse method is applied in FEA and parameter values are 

extracted from finite element (FE) data, Figure 1. The impulse and the response together 

form a numerical transfer function. An analytical transfer function based on a 

conventional two-axis circuit model is derived and it is fitted into the numerical transfer 

function. The best fit gives the parameter values. 
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Figure 1 Purpose of the work. The parameters of the equivalent circuit are obtained from 

finite element analysis. 

 

1.1 Literature review 

The impulse response test has long traditions in mechanics. The method is used for fault 

diagnosis. In the method, a hammer is used to create an impulse, and the vibration 

response is recorded. From the vibration response the faults can be diagnosed. The 

impulse method is also applied successfully in research of magnetic forces generated by 

eccentric rotor, studied by Tenhunen A. (2003), Holopainen T. (2004) and Burakov A. et 

al. (2006). 
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An idea of using the numerical impulse method in FEA to estimate the parameters of an 

equivalent circuit is not widely studied. However, Repo A.-K. et al. (2006a, 2006b & 2007) 

have studied these issues for induction machines in three papers. The idea behind the 

impulse response test is to apply an excitation, which includes many frequencies. Thus 

we can avoid the usage of the harmonic excitation that means supplying one excitation 

frequency at a time.  

 

There are no publications studying this method for synchronous machines. Therefore the 

aim of this study is also to check the applicability of this method for synchronous 

machines. 

 

The Institute of Electrical and Electronics Engineers (IEEE) (1995) presents guidelines for 

parameter estimation for a synchronous machine. There are also publications written, for 

example, by Keyhani, A. et al. (1994) and Bortoni, E. C. et al. (2004), about parameter 

estimation for synchronous machines using standstill frequency response (SSFR). In the 

SSFR, it is assumed that the resistance of windings is determined by other means and 

the machine is tested over a certain frequency range. The armature or the field winding is 

supplied from a single-phase variable-frequency supply. Using monitored values of 

voltages and currents, the variation of the modulus and phase angle of the operational 

impedance are obtained. Operational impedance curves can be used to obtain 

parameters of a synchronous machine. 

 

A widely known way to estimate dynamical parameters of the synchronous machine is 

the use of a sudden three-phase short-circuit test presented, for example, by Wamkeue, 

R. Kamwa, I. et al. (2003). In this method, an unloaded generator is driven at the rated 

speed and the field voltage is maintained constant during the test. A short-circuit is 

caused. The line voltage and short-circuit current are recorded by voltage and current 

transformers. The dynamic reactances and time-constants may be computed from the 

response. 

 

The advantage of the proposed method is that it may be used at a certain operation point, 

and the obtained parameters describe the behavior at that point well. In the SSFR test, 

the rotor is at stand still and therefore it does not give appropriate parameters for an 

operation point where the rotor is rotating. 

 

1.2 Fundamental properties of electrical machines 

In this study, the parameters are estimated for a synchronous machine. An electrical 

machine converts electrical energy into mechanical energy in a motor, or vice versa in 

generator operation. The conversion process is not perfect because of the losses heat, 
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noise, etc., Figure 2. Despite the losses, the efficiency of a synchronous machine is quite 

high and it is higher than in induction machines. The high efficiency is a reason for 

synchronous machine usage in power systems and in high power drives. 

E l e c t r i c a l

m a c h i n e

E l e c t r i c a l  e n e r g y  i n M e c h a n i c a l  e n e r g y  o u t

L o s s e s  

Figure 2 Energy flow in an electrical machine in motor operation. An electrical motor 

converts electrical energy to mechanical energy via magnetic field. The conversion process is 

not perfect, and therefore there are some losses. 

 

1.3 Two axis model of synchronous machines 

A conventional three phase synchronous machine consists of a rotor and stator. The rotor 

and stator bodies are made of highly permeable material. The stator has a three-phase 

winding, and the rotor has an excitation winding, which is supplied by DC current. In the 

two-axis model in Figure 3, the rotor has also two damper windings. 

d

q

u d

u q

u f

i D

i q
i d

i Q

 

Figure 3 Two-axis model of the synchronous machine. 

 

In Figure 3, qu , du , fu  are the quadrature axis, direct axis and field winding voltage, 

respectively. Qi  and Di  are the quadrature and direct axis damper winding currents. 
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1.4 Elementary properties of synchronous machines 

A synchronous machine is often started as a conventional induction machine on its 

damper winding. The field voltage is turned on afterwards, when the machine has almost 

reached its synchronous speed. 

 

The synchronous speed depends on the number of poles and the frequency of voltage 

source. The speed is defined as follows 

2 f

p
Ω =

m

π
 (1) 

where, p  is the number of pole pairs and f  denotes the frequency of the voltage 

source. 

 

In steady state operation, there is no current flow in the damper windings. The rotating 

speed is the synchronous speed. 

 

1.5 Per-unit notation 

The per-unit notation may be conceptually helpful in the analysis of synchronous 

machines. Using the notation makes the parameters of all machines become quite 

similar. For variables a base value is noted, and then the variable is divided by its base 

value. In other words, per-unit notation is a way to normalize a machine. Normally, the 

base value is wanted to tie to some aspect of normal operation, to machine ratings for 

instance. 

 

The normalizing process covers the voltage, current, power, torque, flux and impedance. 

In fact, only the base voltage 
BU , current 

BI and frequency Bω  have to be specified. 

Having done this, other base quantities can be derived. 

 

Variable Formula 

Base power B B B

3

2
P U I=  

Base flux 
B

B

B

U
=ψ
ω

 

Base torque B B

B

p
T P

ω
=  

Base impedance 
B

B

B

U
Z

I
=  
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2 Methods 

 

2.1 Simulation model 

The use of the two-axis model is a conventional way to simulate synchronous machines. 

The idea behind the model is to divide all variables into two axes. They are perpendicular 

to each other, and therefore, there is no interaction. The rotor of a salient-pole 

synchronous machine is asymmetric, and therefore equations are considered in a 

system, which is rotating at rotor speed. Commonly, quantities, such as voltages and 

currents, are referred to the stator. 

 

The synchronous machine operation, in a conventional two-axis model, may be described 

properly with five voltage equations and a torque equation. In addition, we need five flux-

linkage equations. The system of equations is nonlinear, and therefore it can only be 

solved completely using numerical methods. 

 

The five voltage equations are presented below. They are referred to the stator and they 

are in a reference frame, which is rotating at electrical angular speed of the rotor rω .  

 

 d
d s d r q

d

d
u R i

t

ψ
ωψ= + +  (2)   

 
q

q s q r d

d

d
u R i

t

ψ
ωψ= + +  (3) 

 D
D D

d
0

d
R i

t

ψ
= +  (4) 

 f
f f f

d

d
u R i

t

ψ
= +  (5) 

 D
D D

d
0

d
R i

t

ψ
= +  (6) 

 

The system of equations can be represented in matrix form, as below, by separating the 

stator and rotor voltage equations 

 s
s s s k s s

d

d
u R i J

t

ψ
ω ψ= − −  (7) 

 r
r r r

d

d
u R i

t

ψ
= −  (8) 

where 
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d

s

q

ψ
ψ

ψ
 

=  
 

d

s

q

u
u

u

 
=  
 

d

s

q

0

0

R
R

R

 
=  
 

d

s

q

i
i

i

 
=  
 

d

s

q

i
i

i

 
=  
 

s

0 1

1 0
J

− 
=  
 

 

and 

f

r D

Q

ψ
ψ ψ

ψ

 
 

=  
  

f

r 0

0

u

u

 
 =  
  

f

r D

Q

0 0

0 0

0 0

R

R R

R

 
 =  
  

f

r D

Q

i

i i

i

 
 =  
  

 

 

The flux linkages may also be separated to stator and rotor matrices 

 s s s mr rL i L iψ = +  (9) 

 r ms s r rL i L iψ = +  (10) 

where 

sd

s

sq

0

0

L
L

L

 
=  
 

 

md md

mr

mq

0

0 0

L L
L

L

 
=  
 

 

f

r D

Q

0 0

0 0

0 0

L

L L

L

 
 =  
  

 

 

md

ms md

mq

0

0

0

L

L L

L

 
 =  
  

 

 

These can be rewritten  

Liψ =  

where 

 

sd md md

sq mq

s mr

md f

ms r

md D

mq Q

0 0

0 0 0

0 0 0

0 0 0

0 0 0

L L L

L L
L L

L LL
L L

L L

L L

 
 
  
 = = 
  
 
  

 

The torque equation is 
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e m

d

d

ω
= +

J
T T

p t
 (11) 

 

The conventional equivalent circuits following the two-axis model, according to Luomi et. 

al. (2005), are below. 

du

qωψ
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fR
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d
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Di

fi
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Figure 4 Standard two-axis model equivalent circuit of the d-axis of the synchronous 

machine. 

qu

dωψ
+-

sR

QR

sq

d

d
L

t
Q

d

d
L

t

mq

d

d
L

t

qi

Qi

qd

dt

ψ

mqi

 

Figure 5 Standard two-axis model equivalent circuit of the q-axis of the synchronous 

machine. 

 

2.2 MIMO- representation 

When using the two-axis model in the analysis of synchronous machines, there are two 

inputs, namely du  and qu . There are also two outputs, di  and qi . This kind of system is 

called the MIMO (Multiple Input Multiple Output) –system, Figure 6. Therefore we should 

consider the machine as an MIMO-system with two inputs and two outputs. In the MIMO 

representation, the transfer function is a 2x2 matrix.  
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M I M O

i n p u t s o u t p u t s

 

Figure 6 Schematic diagram of an MIMO system. In the MIMO-model, there may be many 

inputs and many outputs. In this representation, the transfer function is a matrix. 

 

We may define a 2x2 transfer function matrix, which is an admittance matrix if the voltage 

is considered as the input. 

 
d d11 12

q q21 22

i uY Y

i uY Y

∆ ∆    
=    ∆ ∆    

 (12) 

In order to define the admittance matrix, the numerical impulse test is performed. Two 

FEM simulations with perpendicular impulses and a FEM simulation without any impulse 

are run, first to du  while q 0u = , and then to qu  while d 0u = . The perpendicular 

impulses with the simulation without impulse determine the elements 11Y , 12Y , 21Y  and 

22Y . An impedance matrix is an inverse of the admittance matrix. 

 

2.3 Order of the two-axis model 

The basic two-axis model in Figure 4 has the order of two. One way, which may improve 

success in the fit, is to increase the order of the model, Keyhani, A. et al. (1994). The 

higher is the order of the model; the better is the fit. In the two-axis model it would mean 

that we add a new voltage equation, a new damper winding for instance. The additional 

damper winding can also be modeled in the circuit model. In Figure 7, the additional 

damper winding is depicted with a striped box. However, usually we want to preserve the 

standard two-axis model without modification. 
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qωψ
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fR

sd
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Figure 7 Additional damper winding. It increases the order of the model. 
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2.4 Linearization of the set of equations 

The set of equations of synchronous machines is nonlinear. However, a good model 

regarding small-displacement behavior about an operation point may be achieved by 

linearizing the equations. Since the machine can be treated as a linear system, the 

eigenvalues can be calculated and transfer functions can be established based on linear 

system theory. For instance, Glad, T. et al. (2000) presented the theory of the system 

linearization. 

 

A nonlinear equation system may be presented as below 

 

1 1

2 2

n n

( ( ), ( ))

( ( ), ( ))

( ( ), ( ))

( ) ( ( ), ( ))

   
   
   =   
   
   
 =

ɺ

ɺ

⋮ ⋮

ɺ

x f x t u t

x f x t u t

x f x t u t

y t g x t u t

 (13) 

 

The displacement variables can be presented in form 

0

0

0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x t x t x t

u t u t u t

y t y t y t

∆ = −

∆ = −
∆ = −

 

where subscript 0  refers to the operation point and f∆ is the displacement.  

 

The linear state-space presentation for displacements is 

 
( ) ( ) ( )

( ) ( ) ( )

x t A x t B u t

y t C x t D u t

∆ = ∆ + ∆

∆ = ∆ + ∆

ɺ
 (14) 

 

The system matrix is defined, as below, 

 

1 2 1

1 2

2 2 2

1 2

n n n

1 1 n

d ( , ) d ( , ) d ( , )

d d d

d ( , ) d ( , ) d ( , )

d d d

d ( , ) d ( , ) d ( , )

d d d

 
 
 
 
 =  
 
 
 
  

⋯

⋯

⋮ ⋱ ⋮

⋯

n

n

f x u f x u f x u

x x x

f x u f x u f x u

x x xA

f x u f x u f x u

x x x

 

 

The input matrix is 
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1

2

n

d ( , )

d

d ( , )

d

d ( , )

d

f x u

u

f x u

B u

f x u

u

 
 
 
 
 =
 
 
 
  

⋮

 

The output matrix is 

1 2 n

d ( , ) d ( , ) d ( , )

d d d

g x u g x u g x u
C

x x x

 
=  
 

⋯  

and the transmission matrix 

d ( , )

d

g x u
D

u
=  

This formulation might be more practical than the one presented by Müller, G. (1985). 

This approach does not need substitution of variables by their linear approximations, but 

it takes advantage of the Taylor’s expansion. 

 

After the linearization, a linear state-space representation for a synchronous machine can 

be obtained. Flux linkages have been chosen as the state variables.  

 

The state-space form for the stator voltage perturbation investigation is 

 s s

d

d

x
A x B u

t

∆
= ∆ + ∆  (15) 

The system matrix is 

s k s1

r k m r

0 0

0 0 ( )

R J
A L

R J

ω
ω ω

−   
= − −   −   

 

 

The state-vector is 

 
s

r

x
ψ
ψ
 

=  
 

 (16) 

The input matrix is 

s
0

I
B

 
=  
 

 

I  is a 2x2 identity matrix, and 0  is a 3x2 zero matrix. 
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2.5 Stability analysis 

The eigenvalues of the system matrix A  describe machine’s stability properties at the 

linearization point. If the eigenvalues are on the left half plane, the system will return to its 

stationary state after a small perturbation and the system is stable. Eigenvalues on the 

right half plane mean that the system is unstable. 

 

However, an unstable system may be stabilized using feedback. The original system is 

still unstable, but the whole system, which consists of the original system and the 

feedback, may be stable. Therefore, the response does not grow towards infinity. 

 

R e

I m

U n s t a b l e  h a l f  p l a n eS t a b l e  h a l f  p l a n e

 

Figure 8 Left and right half plane indicate stable and unstable area, respectively. If there is 

any pole on the unstable half plane, the system is unstable. Otherwise, the system is stable. 

2.5.1 Stability with respect to impulse size in the circuit model 

The impulse size, which can be applied in the stator voltage, may be restricted when the 

two-axis circuit model is used. The issue concerning the impulse size may be 

investigated using Lyapunov-stability analysis, presented, for example, by Glad, T. et al. 

(2000) and Struble, R. A. (1962). 

 

The Lyapunov function is a way to investigate stability. The idea is that a function ( )V x  

could be found with the following properties.  

 
0( ) 0V x =  (17) 

 ( ) 0V x > , 0x x≠  (18) 

 ( ) ( ) 0V x f x∇ <  (19) 
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( )f x  is presented in Equation 13. An arbitrary point can be interpreted as a point at 

origin by making a coordinate transform. Therefore, the stability study at the origin is 

sufficient. At the origin, the input is zero. 

 

One may consider stator voltage as the input. The voltage equation for the stator  

d d d

s k

q q q

0 1d

1 0d

i
R
it

ψ ψ
ω

ψ ψ
−      

= − −      
      

 

Using substitution
d 1

q 2

ψ

ψ
   

=   
  

x

x
, the set of equations above may be formulated, as 

follows, 

1

1 s d 1 k 2

1

2 s q 2 k 1

ω
ω

−

−

 = − +


= − −

ɺ

ɺ

x R L x x

x R L x x
 

We may try a Lyapunov function, which has the following form 

2 2

1 2( )V x x xα= + , 0α >  

 then holds ( ) 0V x > , when 0x x≠  and 0( ) 0V x =  when 0 0x x= =  

[ ]1 2( ) 2 2V x x xα∇ =  

1 1

1 s d 1 1 k 2 2 s q 2 2 k 1( ) ( ) 2 2 2 2V x f x x R L x x x x R L x x xα α ω ω− −∇ = − + − −  

Choosing 1α = one gets 

1 2 1 2

s d 1 s q 2( ) ( ) 2 2 0V x f x R L x R L x− −∇ = − − <  

So, a valid Lyapunov function may be 
2 2

1 2( )V x x x= + . Its isolines are circles with the 

center at the origin. The circles have different radii, Figure 9. The system is stable inside 

the circle. 

x 1

x 2

 

Figure 9 Isolines with different Lyapunov-function values. All the isolines have the same 

midpoint, and therefore there is only one steady state.  
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A system is globally asymptotically stable if there is a function V, additional to Eq. 17-19, 

satisfying  

( ) ,V x →∞  when x →∞  

If we are considering a circuit model, the impulse size does not affect to the operation 

point. There is only one steady state. The system is stable in the sense of Lyapunov, and 

the system will always return to its steady state. The return time depends on the 

eigenvalues of the system matrix. The further on the left half plane the eigenvalues are, 

the faster the machine returns to its steady state. 

 

The analysis is tested with two impulses, which have the peak values 225 and 22500 

voltages, Figure 10 and Figure 11. It can be noticed that deviations go towards zero in 

the both cases. The simulations are made with a circuit model, which is presented in 

Appendix 1.  

 

Based on the results, it seems that the Lyapunov stability analysis holds well. In addition, 

the circuit model is globally stable and there is only one steady state. The result gives 

freedom to choose the impulse amplitude without any concern about loosing the 

operation point. 
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Figure 10 Current deviation caused a voltage impulse. The deviation, at different times, after 

applying an impulse with a peak value of 225 V. Deviation goes towards zero as time goes on. 
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Figure 11 Current deviation caused a voltage impulse. In this case, the size of the impulse is 

22500 voltages.  

 

2.6 Theoretical transfer function formulation 

The transfer function formulation is an essential part of the proposed method. The 

transfer function is fitted in the FEM data, and the parameters are obtained from the fit. A 

transfer function between two variables may be established from basic linear control 

theory. The linear system representation is 

sx Ax Bu

y Cx Du

= +


= +
 

where x , u , s  and y  are the state vector, the input vector, the Laplace operator and 

the output vector, respectively. From the first equation, the input vector can be solved 

1(s )x I A Bu−= −  

and after the substitution into the second equation, we get 

1(s )y C I A Bu Du−= − +  

0D = , since we consider
d ( , )

0
d

g x u

u
= . If the stator current is considered as an output 

variable, the output vector can be selected as follows 
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d

s s

q

i
y i C x

i

 
= = = 

 
 

where 

[ ] 1

s 0C I L−=  

x  is the state vector, 
s

r

x
ψ
ψ
 

=  
 

 

 

For instance, a transfer function between stator current and voltage may be presented as 

follows 

 

s s si Y u=  

 

1

s s s( ) ( )Y s C sI A B−= −  

where, s
0

I
B

 
=  
 

 

 

This kind of transfer function formulation is more efficient than the one presented by 

Krause et al. (2002). The formulation presented by Krause needs a matrix inversion for a 

5x5 matrix three times, whereas the above formulation only once. Therefore, this 

approach is computationally more efficient. 

 

2.7 Numerical transfer function 

The numerical transfer function is established from the time-stepping FEM data. The 

purpose of the numerical transfer function is to give the estimation data for wherein the 

theoretical transfer function is fitted. Normally the transfer function is considered in 

frequency domain, and the Fourier transform makes the transformation from the time to 

frequency domain. In the frequency domain, the transfer function may be presented, as 

follows 

( j )
( j )

( j )

Y
G

U

ω
ω

ω
=  

( j )Y ω  and ( j )U ω  are the input and output data in frequency domain, respectively. The 

transfer function ( j )G ω  is also called the frequency response function. It depicts the 

spectral properties of the system. 
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The input should include all desired frequencies in order to take all time constants into 

account. Different inputs produce different outputs, but the ratio is always constant. The 

ratio is the numerical transfer function. 

 

2.8 Effect of saturation in the sense of parameter estimation 

In this study, three different models are considered. The two axis model is linear the 

speed is constant. The linear FE-model is also a linear model. The non-linear FE-model 

takes the saturation into account. Normally, saturation makes the behavior of the 

machine different compared to a linearized machine. The numerical transfer function of a 

non-linear model differs from the linearized model. In the sense of parameter estimation, 

it means that parameters of the non-linear FE-model are different in comparison to the 

parameters of the linear FE-model. However, the machine in our consideration has quite 

linear saturation curve. The curve, provided by the manufacturer, is presented in Figure 

12. 
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Figure 12 No-load voltage curve of the synchronous machine under investigation. The curve 

is almost straight, and therefore the saturation effect is small. 

 

2.9 Cost function formulation 

Least squares are used to formulate the cost function. The cost function is a measure of 

the goodness of the fit. The cost function evaluates deviation ie  between the simulated 

sy value and the estimated value sey . In order to take negative and positive deviations 

into account, the cost criterion is quadratic. In the case of least squares, the cost function 

has the following form 

2

i 2
i

Q e=∑ , where 
s11i se11i s12i se12i

s21i se21i s22i se22i

i

Y Y Y Y
e

Y Y Y Y

− − 
=  − − 

 

where the matrix norm is the Frobenius norm.  
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2.10 Differential Evolution algorithm 

The Differential Evolution algorithm makes the minimization of the cost function. The 

algorithm is a global optimization method that is based on evolution strategies. Price et al. 

(2005) presented the theory and practice of the Differential Evolution algorithm in their 

book. 

 

The basic schematic structure of the Differential Evolution algorithm is presented in 

Figure 13. First the population is initialized. Giving random values to every individual in 

population does it.  

 

The selection chooses three vectors. Two of them form a difference vector, and the last 

vector from the three vectors will be mutated. The crossover population is comprised of 

the difference vector and the mutated vector. The crossover is performed between 

crossover population members. The evaluation selects the best performing individual 

among the best individual in the existing population and the offspring. 

P o p u l a t i o nI n i t i a l i s a t i o n

C r o s s o v e r

p o p u l a t i o n

O f f s p r i n g

S e l e c t i o n

E v a l u a t i o n

C r o s s o v e r

 

Figure 13 Basic working principle of the Differential Evolution algorithm. 

 

2.11 Estimation process as a whole 

The proposed estimation process for synchronous machines follows the process for 

induction machines presented by Repo et al. (2006a, 2006b & 2007). The basic idea is 

presented in the flow chart in Figure 14. 

 

First in the estimation process, three simulations are made. One simulation is made 

without any impulse and two simulations with an impulse in both cases. The impulses are 

perpendicular to each other. 

 

Second, we have to establish a formula for the deviation. It can be done numerically 

subtracting the simulation without an impulse from the one with an impulse. 
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Figure 14 Flow chart of the parameter estimation procedure. 

 

Third, a numerical and theoretical transfer function is formed. The numerical one is 

constructed using deviations, and the theoretical one is formed based on the two-axis 

model. 

 

Fourth, the theoretical transfer function is fitted in the numerical transfer function data. 

The best fitting gives the parameters.  
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3 Results 

 

3.1 Introduction 

The machine under study is a 6-pole, Y-connected three-phase synchronous motor. The 

rated values are 12.5 MW, 3150V, 1-power factor, 50 Hz, and 1000 r/min. 

 

In this study, the excitation is applied into stator voltage and the stator current response is 

recorded. The simulations are made with the FEM and for verification purposes with the 

circuit model. The FEM-simulations are made with a linear and non-linear machine 

model. In other words, we can consider the difference of results between the linear and 

non-linear machine models. 

  

3.2 Operation points of the machine 

The machine has been modeled using FEM at two operation points, close to the nominal 

operation point. The first one has linear material properties, Table 1. The second 

operation point considers non-linear properties of material, in Table 2. Due to change in 

material properties, the values of variables vary a little bit. 

 

Table 1 First operating point. The FE-model is linear. 

Variable Value 

Connection star 

EMF of the line 3150 V 

Terminal voltage 3150 V 

Terminal current 2352 A 

Power factor 0.99 Cap. 

Rotation angle -151 El.deg. 

Rotation speed 1000 rpm 

Air-gap torque 120 kNm 

Apparent power 12.8 MVA 

Active power 12.7 MW 

Reactive power -1.5 MVAR 

Shaft power 12.5 MW 

Rotor voltage 65 V 

Rotor current 390 A 
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Table 2 Second operating point. The FE-model is non-linear. 

Variable Value 

Connection star 

EMF of the line 3150 V 

Terminal voltage 3150 V 

Terminal current 2432 A 

Power factor 0.99 Ind 

Rotation angle -151 el. deg. 

Rotation speed 1000 rpm 

Air-gap torque 126 kNm 

Apparent power 13.2 MVA 

Active power 13.2 MW 

Reactive power 259.8 kVAR 

Shaft power 13.2 MW 

Rotor voltage 65 V 

Rotor current 389 A 

 

 

3.3 Ran FEM simulations with FCSMEK 

The finite element simulations are made with the FCSMEK finite element program. The 

code is developed in the Laboratory of Electromechanics at TKK.  

 

The FEA process in FCSMEK has three stages. First we should create a finite element 

mesh, and it is generated based on information about dimensions and parameters of the 

electrical machine. Second, an initial state for time-stepping analysis is solved using a DC 

solution. Third, the time-stepping analysis is performed. 

 

The FEM results are in the stator reference frame. Therefore, the variables are wanted to 

transform to the rotor reference frame. It can be done by the following transformations 

{ }k j jk B
d qd

Re ( j ) tu u e eu ω ω φ−= +  

{ }k j jk B
d qq

Im ( j ) tu u e eu ω ω φ−= +  

{ }k j jk B
d qd

Re ( j ) ti i e ei ω ω φ−= +  

{ }k j jk B
d qq

Im ( j )
t

i i e ei ω ω φ−= +   

k indicates the rotating frame, which rotates at speed kω . Bω is the base frequency. φ  

denotes the angle between the d-axis in the stator and rotor reference frame after the 

transformation. 
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Figure 15 Angle between d-axis in stator and rotor’s reference frame is defined to be φ . 

rq , sq and rd , sd  depict the q-axis and d-axis in the rotor and stator reference frame, 

respectively. 

 

After the transformation, it can be noticed that pulses, du∆  and qu∆ , are on the d-axis 

and q-axis, Figure 17 and Figure 18, respectively. 

 

The applied impulse in the stator voltage causes responses in stator currents. They are 

recorded and transformed to frequency domain. Also, the voltage impulse is transformed 

to frequency domain. The used voltage impulse is defined as follows 

 
2

imp rel rms2 sin (2 )u a u ftπ=  (20) 

rmsu  is the average RMS-value of the line voltages. rela is the relative amplitude with 

respect to the voltage rmsu . t  is 2.5 milliseconds and f is 200 Hz. The excited impulse 

has an amplitude size of 1% of the average RMS-value of the line voltages rmsu . 

According to Repo et al. (2007), this gives a non-zero frequency content at range from -

750 to 800 Hz. 
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S i m u l a t i o n  w i t h  i m p u l s e  a t  d - a x i s

 

Figure 16 FEM simulation arrangements. The numerical impulse test consists of four FEM 

simulations. First, the initial state is computed and saved. Second, three different simulations 

are made from the initial state on, two simulations with perpendicular impulses and a 

simulation without any impulse. 

 

 

The initial state is the state after 8000 time steps. One time step is 50 microseconds. 

There are 400 time steps in one period of line frequency. After the determination of the 
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initial state, FEM simulations are made using 40000 time steps. This gives a frequency 

resolution of 0.5 Hz. There are three different simulations in time interval from 0.4 

seconds to 2.4 seconds. The first one is a simulation without an impulse. The second and 

the third are simulations with impulses at d- and q-axis. 
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Figure 17 Direction of the impulses after the frame transformation on the d-axis. 
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Figure 18 Direction of the impulses after the frame transformation on the q-axis. 
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This kind of approach is profitable; we can subtract the simulations with and without 

impulse from each other, and thus we can determine the deviation easily. The deviation 

in response can be specified in the same way. 

 

d d d0∆ = −u u u  

q q q0∆ = −u u u  

d d d0∆ = −i i i  

q q q0∆ = −u u u  

 

du denotes simulation with impulse, and d0u without impulse.  

 

3.4 Frequency responses of FEM simulations 

The frequency response analysis is made with FEM data. The obtained admittance 

frequency responses using linear material properties, in stator reference frame, are 

presented in Figures 19-22. 
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Figure 19 Frequency response of admittance d d/i u using linearized FEM data. The real 

part is large at zero frequency. It means that even small DC voltage causes big DC-

component in the current.  
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Figure 20 Frequency response of admittance q d/i u  using linearized FEM data. The 

frequency response has a peak at zero frequency. However, it is a negative peak, and thus 

different compared to Figure 19. 
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Figure 21 Frequency response of admittance d q/i u  using linearized FEM data. The 

frequency response has low peaks at frequencies 50 Hz and 100 Hz.  
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Figure 22 Frequency response of admittance using linearized FEM data. The frequency 

response is almost same as in Figure 16. Also this frequency response indicates big currents 

with small voltages. 

 

From the frequency responses we can notice that the graphs have the same form but the 

amplitudes vary. In FEM simulated responses, there are low peaks at frequencies 50 and 

100 Hz.  

 

3.5 Effect of the impulse amplitude in the non-linear FE model 

FEM simulations using the non-linear FE-model are performed and the effect of the 

impulse amplitude to the frequency response is studied. In order to perceive the 

applicability of the linear model, the effect of the impulse to the frequency response has 

to be small, and therefore the impulse has to be small enough. The impulse sizes 1%, 

10% and 20% of the average RMS-value of the line voltages, rmsu , are used. The closer 

inspection is done about the rated frequency 50 Hz. The results are presented in Figures 

23-26. 

 

Figures 23-26 show that about at frequency 50 Hz, impulse sizes 10% and 20% of the 

rmsu  make bigger errors in frequency response compared to the frequency response 

obtained by using impulse size of 1% the average RMS-value of the line voltages. It may 

be noticed that the estimated parameters using a 1% of amplitude differ from the 

parameters identified using bigger impulses. In some cases, the difference in frequency 

response can be even quite big. For instance in Figure 26, the imaginary part value using 

1% impulse is about –0.5 A/V, and using 20% impulse the value is –0.7 A/V at frequency 

51 Hz. The relative error is 0.2/0.5= 0.4 (40%). 
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However, at other frequencies than 50 Hz the error is very small. Table 3 presents the 

maximum error and the average error in the frequency interval –200 Hz to 200 Hz in the 

frequency response. The results show that, after all, the error in the frequency response 

due to the amplitude size is very small, on average, compared to the frequency response 

obtained by using impulse size of 1% of 
rmsu .  

 

Table 3 Maximum and average error in the real and imaginary part with different impulse 

amplitudes compare to the 1- % of 
rmsu impulse size 

 Amplitude 
of the 
impulse 

Maximum 
error 

Real part  

( /A V ) 

Maximum 
error 

Imaginary part 

( /A V ) 

Average 
error 

Real part 

( /A V ) 

Average error 
Imaginary part 

( /A V ) 

d d/i u  10 %       
          20 % 

0.2162 
0.4540 

0.2443 
0.5140 

0.0134 
0.0288 

0.0109 
0.0230 

q d/i u
 

10 %   
        20 % 

0.1158 
0.2441 

0.0690 
0.1445 

0.0040 
0.0087 

0.0069 
0.0145 

d q/i u
 

10 %         
          20 % 

0.0651 
0.1366 

0.1171 
0.2462 

0.0062 
0.0133 

0.0035 
0.0075 

q q/i u
 

10 %         
          20 % 

0.2387 
0.5020 

0.2103 
0.4425 

0.0111 
0.0237 

0.0138 
0.0292 
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Figure 23 Frequency response comparison using different impulse amplitudes in the non-

linear FE-model. The amplitude size of the impulse makes a slight difference about 50 Hz in 

the frequency response. 
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Figure 24 Frequency response comparison using different impulse amplitudes in the non-

linear FE-model. The imaginary and real parts are closing each other in contrast to Figure 

23, where they are getting further and further from each other about 50 Hz. 
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Figure 25 Frequency response comparison using different impulse amplitudes in the non-

linear FE-model. The difference between different amplitude curves is quite big. The 

amplitude of the impulse does affect much to the transfer function between quadrature axis 

current and voltage about 50 Hz. 
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Figure 26 Frequency response comparison using different impulse sizes in the non-linear FE-

model. The difference between different amplitude curves is quite small.  

 

3.6 Curve fitting using Differential Evolution algorithm 

In order to get the parameters of the machine, the theoretical transfer function is fitted in 

the numerical transfer function data points. The DE algorithm is used for the curve fitting. 

The crossover and weight factor values of the algorithm are 0.7 and 0.5. The search 

range is from 0 to 1. The population size is 1000, and the number of iterations is 7000. 

Resistances sR  and fR are fixed to values given by the manufacturer, in order to 

decrease the number of parameter estimates. 

 

3.6.1 Fitting results using the FEM data 

The fitting is performed using two different FEM data. First, FEM data with linear material 

properties is used; second, data from FEM simulation with non-linear material properties 

is used.  

 

In the simulation with a linear FE-model, all materials that have saturation are replaced by 

linear material. The relative permeability of the linear material is 1000. The success of the 

fit can also be viewed graphically. In the results, the absolute value and the angle of the 

matrix elements are presented. The diagonal elements are presented in Figure 27. 
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Figure 27 Fitting results of the diagonal elements to the FEM data. It can be noticed that the 

fitting succeeds well about frequency 1 (p. u.) and with larger frequencies. 

 

 

The non-diagonal elements are in Figure 28, and it can be marked that they have a 180 

degrees phase shift with respect to each other. 

 

One may want to make a closer inspection about frequency 1 (p. u.). It is the range, 

which is sensible in normal operation. Figure 29 shows that the diagonal elements equal 

to each other. Absolute values of non-diagonal elements equal also to each other. The 

non-diagonal elements have a 180 degrees phase shift in angle. 
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Figure 28 Fitting results of the non-diagonal elements to the FEM data. It can be marked 

that the fitting succeeds well over the whole frequency range.  
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Figure 29 Fitting results of the diagonal elements, and a closer inspection about frequency 1. 

It can be noticed that the behavior about frequency 1 (p. u.) can be modeled well using the 

estimated parameters. 
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Figure 30 Fitting results of the non-diagonal elements, and a closer inspection about 

frequency 1 (p. u.). Like in case of diagonal elements, the non-diagonal elements agree very 

well with the FEM data. 
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The other simulation is made using non-linear material properties. The graphical 

presentation of the fitting results is in Figure 31 and in Figure 32. The diagonal elements 

are equal to each other as in the case of linear material. 
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Figure 31 Fitting results of the diagonal elements with non-linear material properties. The 

fitting success follows well the fitting case with linear material properties in Figure 27. 
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Figure 32 Fitting results of the non-diagonal elements with non-linear material properties. 

Like in the diagonal elements, the fitting success follows the case with linear material 

properties in Figure 28. 

 

 

Properties of diagonal elements match also to characteristics of the diagonal elements 

with linear material. Non-diagonal elements have a 180 degrees phase shift. Also the 
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properties of non-diagonal elements match to properties of non-diagonal elements with 

linear material properties. 

 

A closer inspection about frequency 1 (p. u.) tells that the fitting is a success about the 

normal operation point, and the obtained parameters describe the machine’s behavior 

successfully. The fitting results of the diagonal elements around the frequency 1 are in 

Figure 33 and Figure 34. 
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Figure 33 Fitting results of the diagonal elements, and a closer inspection about frequency 1 

(p. u.). The fitting succeeds well in the neighborhood of the frequency 1 (p. u.) like in the case 

with linear material properties in Figure 29.  
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Figure 34 Fitting results of the non-diagonal elements, and a closer inspection about 

frequency 1 (p. u.). Like in the case of diagonal elements, the fitting success follows the case 

with linear material properties in Figure 30. 
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3.7 Circuit model simulations 

For verification purposes, simulations are also made with the circuit model in the Simulink 

environment. The synchronous machine model is constructed. The model is based on the 

two axis model and the voltage equations are in the synchronous reference frame. The 

torque equation is not taken into consideration. Three different models are used. The 

models are same but the inputs differ. The first model simulates steady-state operation, 

and there is no impulse as input. The second model simulates operation under an 

impulse in the d-axis as input, and the third model, which applies an impulse in the q-axis 

as input. The parameters for the circuit model are the estimated parameters with linear 

material properties. The comparison between frequency responses obtained by using the 

circuit model and the FE model makes the verification of the used methods. 

 

In the circuit model, the impulse can be addressed either to d- or q-axis. It is possible due 

to transformation from the 3- to 2-phase system. It is done using Park’s theorem. The 

three-phase variables can be expressed in the two-phase system using the following 

matrix 

 

α a

β b

0 c

1 1
1

2 2

2 3 3
0

3 2 2

1 1 1

2 2 2

i i

i i

i i

 − − 
    
    = −    
       
 
  

 (21)  

 

The inverse transformation, the transformation from the two-phase to three-phase 

system, may be presented as below 

 

a α

b β

c 0

1 0 1

2 1 3
1

3 2 2

1 3
1

2 2

i i

i i

i i

 
 

    
    = −    
       

 − −
  

 (22) 

The realization of the circuit model with Simulink blocks is presented in Appendix 1. 

 

3.8 Frequency responses of the circuit model 

The obtained admittance frequency responses, in stator reference frame, are presented 

in Figures 35-38. 
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Figure 35 Frequency response of admittance d d/i u  in Simulink. The frequency response 

matches well to the frequency response obtained by using FEM data, Figure 19. 

−150 −100 −50 0 50 100 150
−50

−40

−30

−20

−10

0

10

20

30

Frequency (Hz)

Fr
eq

ue
nc

y 
re

sp
on

se
 i

q / 
u d (A

/V
)

Real part
Imaginary part

 

Figure 36 Frequency response of admittance q d/i u in Simulink. The response matches to 

the frequency response obtained by using FEM data, Figure 20. At frequencies 50 Hz and 

100 Hz the FEM frequency response has low peaks that are not depicted by the circuit 

model. 
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Figure 37 Frequency response of admittance 
d q/i u  in Simulink. The frequency response 

follows the form of the frequency response obtained by using FEM, Figure 21. However, the 

low peaks at 50 Hz and 100 Hz do not appear in the circuit model. 
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Figure 38 Frequency response of admittance q q/i u  using Simulink. The frequency 

response matches well to the frequency response obtained by using the FEM data, Figure 22. 
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3.9 Obtained parameters 

Figures 27-34 show that the fitting succeeded well about the base frequency and at large 

frequencies. At small frequencies (0 - 1 p. u.) of diagonal elements, the fit is not good. 

The same behavior can be seen in the nonlinear and linear case. 

 

The saturation does not make a big difference in the fit nor frequency response. It is 

expected because the no-load voltage curve is almost straight. The results with nonlinear 

material properties are almost the same as the results with linear material properties. 

 

The obtained parameters are referred to stator, and they are in per units. The values of 

the stator resistance and magnetizing resistance are fixed to the values given by the 

manufacturer, and thus the number of cost function minima is decreased. The 

parameters of the two-axis model are listed in Table 4. The parameters given by the 

manufacturer are in Appendix 2. According to Verbeeck, J. et al. (1999), there is not a 

unique set of parameters, and therefore both parameter sets may be valid. 

 

It can be seen that the parameter values, obtained using the linear FE-model or non-

linear FE-model, are close to each other. It is also expected due to the fact that the 

saturation curve in Figure 12 is almost linear. 

 

The parameters describe well the behavior of a synchronous machine when the two-axis 

model is used. Simulink simulations gave same results as the FEM simulations. The 

similarity is verifying the methods that are used, and the applicability of the numerical 

impulse method in parameter estimation for a synchronous machine. 

 

Table 4 Obtained parameters. The value of the stator and excitation winding resistance were 

fixed to the values before the curve fitting process. Parameters with the mark * were not 

estimated. 

Description Symbol Value (p. u.) 

Linear  

FE-model 

Value (p. u.) 

Non-linear 

FE-model 

Stator resistance 
sR * 0.0047 0.0047 

Stator direct-axis inductance 
sdL  0.6547 0.8514 

Stator quadrature-axis inductance 
sqL  0.4855 0.5812 

Direct axis magnetizing inductance 
mdL  0.3369 0.4665 

Quadrature axis magnetizing inductance 
mqL  0.2324 0.3896 

Excitation winding inductance 
fL  0.9914 0.9986 
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Excitation winding resistance 
fR * 0.0009 0.0009 

D-axis damper winding inductance 
DL  0.8937 0.8973 

D-axis damper winding resistance 
DR  0.1001 0.0403 

Q-axis damper winding inductance 
QL  0.9791 0.9289 

Q-axis damper winding resistance 
QR  0.2075 0.0838 

 

 

3.10 Parameters at different operation points 

The parameters were also estimated at different operation points. The points were about 

0.5MW, 6MW and 12.5 MW, and the results are presented in Figure 39-42. It can be 

noted that the change of some parameters is remarkable between two different operation 

points. It may be that they substitute each other partly at different operation points during 

the optimization process, and therefore they do not present physical variation of the 

parameters. However, the fitting succeeded equally well at every point, and therefore the 

parameters present well the behavior of the machine at a certain point.  

 

Also, the DE algorithm works well. The algorithm has been tested by estimating the 

parameters three times in row at one operation point. The algorithm converged to the 

same minimum every round. However, according to Verbeeck, J. et al. (1999), there is 

not a unique set of parameters, and therefore an other global minimum may also be 

reached. A drawback of the algorithm is a big population size of 1000 members, and the 

number of iteration rounds. In this case the number of iterations was 7000 rounds. 

Another drawback is the high time consumption of DE. However, the DE is adequate for 

the optimization process if the two disadvantages above are considered small. 

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Power (MW)

Va
lu

e 
(p

. u
.)

Lf
Lmd
Lmq

 

Figure 39 mdL , mqL and fL  at different operation points. The inductance of the excitation 

winding is constant and magnetizing inductances increase over the power interval. 



 

  38   

 

 

 

0 5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Power (MW)

V
al

ue
 (

p.
 u

.)

Lsd
Lsq

 

Figure 40 Stator leakage inductances sdL and sqL over the power interval. 
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Figure 41 Damper winding inductances
DL and 

QL over the power interval. 
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Figure 42 Damper winding resistances R
D
and R

Q
over the power interval. 
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4 Discussion 

 

The two axis model parameters of a synchronous machine have been estimated using 

the numerical impulse method. Unlike the standstill frequency response test, the 

proposed method is describing the behavior of the machine at other operation points as 

well. The parameters are extracted from the data using an evolution algorithm. The 

obtained parameters have been verified using circuit simulations in the Simulink-

environment. 

 

Although, the standard two axis model and the estimated parameters describe the 

behavior of the machine well, higher order models may be more interesting. An accurate 

prediction of machine’s behavior is desirable. Also, the model that takes the mutual 

inductance between excitation and damper windings into account may be of interest in 

many cases. Research of the applicability of the impulse response method in the cases 

above may be reasonable in the future. 

 

The number of time-stepping finite element simulations might be possible to decrease 

compare to the arrangement presented in Figure 16. If the behavior of the machine is 

considered linear about an operation point, only one time-stepping finite element 

simulation might be needed. Based on the results, the linear behavior of the machine is a 

reasonable approximation about an operation point. Thus, the time consumption of the 

simulation stage could be decreased. 

 

The minimization of the cost function has been made using an evolution algorithm called 

Differential Evolution. The algorithm suits well for the minimization. The algorithm did 

catch the same minimum every time. The size of the population needs to be high, as well 

as, the number of iteration rounds. However, according to Verbeeck, J. et al. (1999), 

there are many global minima in the case when there are more than one damper winding 

on the axis. Therefore the algorithm may converge also to another global minimum, and 

the same values are not obtained. 

 

The minimization can possibly be made using the Newton iteration or another 

conventional optimization method also. It may be that, for example, the Newton iteration 

needs good initial values so that it converges, but in the case of convergence, the 

Newton iteration is fast. In the neighborhood of the solution, the convergence of the 

Newton iteration is quadratic. Optimization using an evolution algorithm is time- 

consuming, and therefore, the possibility to apply Newton iteration, for instance, in 

context of the numerical impulse method is interesting. 
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Good initial values for the iteration may be achieved using the properties of the frequency 

response. There is a publication written by Henschel et al. (1999), which covers an idea 

obtaining the values of the parameters directly from the frequency response. The idea 

may be interesting, and the suitability with the numerical impulse method may be 

investigated in the future. 

 

Saturation does not affect much in the investigated machine but a model for saturation 

may be of interest in cases where saturation effects are noticeable. The model should be 

built and the applicability of the model should be tested in context of the numerical 

impulse method. 

 

The parameters have been estimated at different operation points and it can be noticed 

that the variation in parameters may not be the physical variation of the parameters. They 

may substitute each other partly at different points. However, they describe well the 

behavior of the machine at operation points. In the future, it may be reasonable to try to 

change the optimization process so that the variations of the parameters describe the 

physical variations of the parameters. Also, the fit at low frequencies is not good. This 

issue is also of interest in the future. 

 

Measurements are needed in order to verify the obtained parameters. To obtain the 

frequency responses under study, the harmonic excitation experiments may be needed. 

However, the frequency responses obtained using the Simulink circuit model with 

estimated parameters match well with FEM simulations.  

 

The studied machine is a salient pole synchronous machine with an excitation winding. 

However, in the future, permanent magnet synchronous machines are getting more and 

more common. Therefore, the applicability of the numerical impulse method is of interest 

in context of permanent magnet synchronous machines.  
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5 Conclusion 

 

The suitability of the numerical impulse method for the synchronous machine parameter 

estimation has been studied. The two-axis model parameters have been estimated using 

FEM data, and the results are reasonable. The parameters are valid about the operation 

point selected. The parameters have been estimated using linear and nonlinear material 

FE-models. The estimated parameters are verified using circuit simulations in the 

Simulink environment. The results obtained from the circuit and FEM simulations match 

well with each other. 

 

Linearized equations may be used for describing the behavior about an operation point. A 

linearization method for the two-axis model equations taking advantage of the Taylor’s 

expansion is presented. From the linearized equations a transfer function between the 

current and voltage will be formulated. A formulation exploiting results in control theory 

has been presented. Lastly, the transfer function is fitted into the numerical transfer 

function produced by FEM simulations, and thus the parameters can be achieved. 

 

The fitting is made using a Differential Evolution algorithm. It has been noticed that it is 

easy to use and an effective tool for the fitting process. The algorithm does converge to 

the minimum round after round, but the size of population members is high, as well as, 

the number of iteration rounds. In case of more than one damper winding, there are n 

factorial (n!) global minima. A drawback in the Differential Evolution algorithm is the time 

consumption. 

 

The obtained values of the parameters, using the linear and non-linear FE-model are 

quite close to each other. The result is expected because the magnetizing curve is almost 

linear. It also seems that the parameters describe well the desired input/output behavior 

based on the experiments made using the circuit model in the Simulink environment. 

 

An MIMO-system model for a synchronous machine is presented. In that representation, 

the outputs and inputs are the d- and q-axis currents and voltages, and the transfer 

function is a 2x2 admittance or impedance matrix. In the optimizing process, the size of 

the matrix is measured by the Frobenius norm. 

 

The permitted impulse size in the circuit model has been studied using Lyapunov stability 

analysis. It can be interpreted that there is only one steady state, and the system is stable 

regardless of the impulse size.  
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The effect of the amplitude of the impulse in the FEM-simulations using the nonlinear 

material FE-model has been studied using three different impulse amplitudes, 1%, 10% 

and 20% of the average RMS-value of the line voltages. It can be noticed that the 

difference in frequency responses is very small, and the effect of the impulse amplitude is 

small with the studied amplitudes. Therefore the linearization about an operation point is 

reasonable. 

 

The numerical impulse method is suitable for the parameter estimation of synchronous 

machines. The great advantage of the impulse method is that the obtained parameters 

describe the real operation point of the machine. Also the saturation is considered. 

Additionally, the proposed method is not stressful on experimental measurements for the 

machine because high current peaks can be avoided, unlike in the sudden short circuit 

test. 
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7 Appendixes 

 

Appendix 1: Simulink model 

The Simulink model works in rotor reference frame and all variables are referred to stator. 

The simulation model is presented in Figure A1. The model in Figure A1 is a situation 

where the impulse is applied to the d-axis. The impulse to q-axis can be made changing 

the sum block to q-axis and connecting the impulse block to the sum block. In the steady-

state simulation, the ‘Impulse1’-block is unconnected. 

 

The transformation from the 3 to 2 phase system (block ‘abc->dq rotor’) is presented in 

Figure A2. The same block makes also the transformation to the rotor reference frame. 

The realization of the ‘Impulse1’-block is in Figure A3. It generates the impulse. The 

synchronous machine equations, without mechanical equation, are realized in Figure A4. 

It follows the conventional two axis model. The RungeKutta method makes the 

integration, and the fixed step size is chosen to be 0.0005 seconds. 

 

 

Figure A1 Schematic diagram about simulation environment. 

 

 

Figure A2 Schematic diagram of the transformation between the 3 and 2 phase systems in 

Matlab. 



 

     

 

 

Figure A3 Impulse block. 

 

 

 

 

 

Figure A4 Synchronous machine model. 

  



 

     

Appendix 2: Parameters of the manufacturer 

 

 

Table A1 Two-axis model parameters provided by the manufacturer. 

Description Value (p. u.) 

 

Stator resistance 0.0047 

Stator leakage inductance 0.2130 

Direct axis magnetizing inductance 2.4940 

Quadrature axis magnetizing inductance 1.0970 

Excitation winding leakage inductance 0.2270 

Excitation winding resistance 0.0009 

D-axis damper winding leakage inductance 0.1397 

D-axis damper winding resistance 0.0453 

Q-axis damper winding leakage inductance 0.1424 

Q-axis damper winding resistance 0.0279 

 


