
Helsinki University of Technology
Department of Electrical and Communications Engineering
Networking Laboratory

Mikko Aleksi Mäkinen

Model Based Approach to Software
Testing

Master’s Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science in Technology

May 22, 2007

Mikko Mäkinen

Supervisor: Professor Heikki Hämmäinen

Instructor: Antti Heimola, M. Sc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80700838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

HELSINKI UNIVERSITY ABSTRACT OF THE

OF TECHNOLOGY MASTER’S THESIS

Author: Mikko Aleksi Mäkinen

Name of the Thesis: Model Based Approach to Software Testing

Date: May 22, 2007 Number of pages: vii + 61

Department: Department of Electrical and Professorship: S-38

 Communications Engineering

Supervisor: Professor Heikki Hämmäinen

Instructor: Antti Heimola, M. Sc.

Software testing is becoming more and more difficult task every day because in the

current software engineering cycle the design and testing activities are separated,

which leads to a situation where test cases are not in harmony with the actual

application. One way to solve this problem is to take a model of the application into

use, which can be, e.g., a user interface model and from which the test cases can be

derived automatically. This technique is known as model based testing. The model

can also be used for, e.g., automatic code generation.

The main objectives of this thesis were to find a suitable way to deploy the model

based approach into an organization, to develop a model based testing tool in order to

test the approach and to show proof of financial benefits of the approach.

The thesis is divided into two parts. First, in the literature part, the model based

approach is explored thoroughly. In the second part a suggestion for the deployment

of model based approach into an organization is presented, a model based testing tool

implementation based on that suggestion is reviewed and a comparison between

traditional testing methods and model based testing is conducted.

The comparison between the testing methods showed that model based testing brings

financial benefits to the organization. By using model based testing, a lot of time was

saved in the test execution compared to the traditional testing methods.

Keywords: model, software, engineering, testing

II

TEKNILLINEN DIPLOMITYÖN

KORKEAKOULU TIIVISTELMÄ

Tekijä: Mikko Aleksi Mäkinen

Työn nimi: Mallipohjainen lähestymistapa ohjelmistotestaukseen

Päivämäärä: 22.5.2007 Sivuja: vii + 61

Osasto: Sähkö- ja tietoliikenne- Professuuri: S-38

 tekniikan osasto

Valvoja: Professori Heikki Hämmäinen

Ohjaaja: Antti Heimola, M. Sc.

Ohjelmistotestaus vaikeutuu päivä päivältä koska ohjelmistojen suunnittelu- ja

testausvaiheet ovat selkeästi toisistaan erillisiä toimintoja, jonka johdosta

testitapaukset eivät vastaa ohjelmiston oikeaa toiminnallisuutta. Eräs tapa ratkaista

tämä ongelma on ottaa käyttöön malli joka kuvaa ohjelmiston toimintaa esimerkiksi

käyttöliittymätasolla. Mallista voidaan mallipohjaisella testauksella tuottaa

automaattisesti tarvittavat testitapaukset. Mallista voidaan tuottaa automaattisesti

myös esimerkiksi lähdekoodia.

Tämän työn tavoitteina oli löytää tapa, jolla mallipohjaisen lähestymistavan voisi

tuoda organisaation käyttöön helposti, kehittää mallipohjainen testaustyökalu, jotta

lähestymistapaa voitaisiin testata sekä todistaa että lähestymistapa tarjoaa

taloudellisia hyötyjä.

Työ on jaettu kahteen osaan. Ensin, kirjallisuusosassa, mallipohjainen lähestymistapa

käydään läpi. Toisessa osassa esitellään ehdotus lähestymistavan tuomiseksi

organisaation, käydään läpi ehdotukseen perustuvan mallipohjaisen testaustyökalun

implementaatio sekä verrataan mallipohjaista testausta perinteisiin

testausmenetelmiin.

Tehty vertailu todisti että mallipohjainen testaus tarjoaa suuria taloudellisia hyötyjä.

Tekniikkaa käyttämällä säästettiin paljon testaukseen käytettyjä miestyötunteja.

Avainsanat: malli, ohjelmisto, tuotanto, testaus

III

Acknowledgements

This master’s thesis was done for Nokia Corporation between December 2006 and

May 2007, and I want to thank the company for this opportunity.

My supervisor Professor Heikki Hämmäinen gave me an excellent kick-start for the

writing by making me think the structure and contents of the work for which I am

very grateful. The work was instructed by M. Sc. Antti Heimola whose interesting

ideas and feedback also deserve thanks. Very special thanks goes to Pekka Kauppila,

who struggled with the bugs in my tool and managed to actually use it to perform the

tests presented later on in this work. My mate Kari Pietikäinen and co-worker Vesa

Raiskila helped with refining my English and academic writing.

The work could not have been done without the support of my family and friends,

and especially not without my future wife Heli.

May 22, 2007

Mikko Mäkinen

IV

ACKNOWLEDGEMENTS..III

ABBREVIATIONS ...VI

1. INTRODUCTION... 1

1.1 OBJECTIVES.. 2
1.2 SCOPE... 3
1.3 METHODS... 3
1.4 STRUCTURE.. 3

2. MODEL BASED SOFTWARE ENGINEERING .. 5

2.1 PROBLEMS WITH THE CURRENT STATE OF SOFTWARE ENGINEERING... 5
2.2 GENERAL DESCRIPTION OF A SOFTWARE MODEL... 6
2.3 BASIC MODEL TYPES... 7

2.3.1 Finite State Machines ... 8
2.3.2 Markov Chains ... 9
2.3.3 State charts ... 9
2.3.4 Grammars... 9
2.3.5 The Unified Modelling Language... 9

2.4 DIFFERENT APPROACHES TO SOFTWARE MODELLING.. 11
2.4.1 Use Case Model.. 11
2.4.2 Application Model .. 13

2.5 CREATING THE MODEL... 14
2.6 MODEL BASED TESTING... 16

2.6.1 Benefits of Model Based Testing... 17
2.6.2 Difficulties and Drawbacks of Model Based Testing.. 19
2.6.3 Currently Available Model Based Testing Tools.. 19

3. DEPLOYMENT OF MODEL BASED APPROACH INTO AN ORGAN IZATION 22

3.1 PROPOSITION FOR A STARTING POINT .. 22
3.2 THE FUTURE... 24

4. DESIGN AND IMPLEMENTATION OF THE MODEL BASED TES TING TOOL.............. 26

4.1 REASONS FOR IMPLEMENTING OWN TOOL ... 26
4.2 INTRODUCTION TO TEST AUTOMATION SYSTEM .. 27
4.3 PREVIOUS WORK.. 28
4.4 HIGH-LEVEL DESIGN.. 29

4.4.1 The Model... 31
4.4.2 File Input and Output ... 35
4.4.3 Test Case Generation and Execution ... 36
4.4.4 Graphical User Interface.. 37

4.5 THE IMPLEMENTATION: KENDO ...38
4.5.1 Test Case Generation Techniques .. 39
4.5.2 Graphical User Interface.. 44

4.6 FUTURE IMPROVEMENT SUGGESTIONS... 45

5. ANALYSIS... 47

5.1 COMPARISON TO PREVIOUS WORK... 47
5.1.1 Differences to the Previous Work ... 47
5.1.2 Advantages of the Current Tool Implementation.. 48

5.2 COMPARISON BETWEEN TESTING METHODS.. 49
5.2.1 Used Test Metrics ... 49
5.2.2 Test Environment.. 50
5.2.3 Results .. 53

6. CONCLUSIONS.. 56

V

6.1 RESULTS... 56
6.2 ASSESSMENT OF RESULTS.. 56
6.3 EXPLOITATION OF RESULTS.. 57
6.4 FUTURE RESEARCH.. 58

REFERENCES .. 59

VI

Abbreviations

ASTE Automatic System Test Engine

CPP Chinese postman problem

DCG Directed cyclic graph

DFS Depth-first search

FSM Finite state machine

GPS Global positioning system

GUI Graphical user interface

HTML Hypertext Mark-up Language

ISO International Organization for Standardization

JVM Java virtual machine

MMS Multimedia message

MVC Model-view-controller design pattern

RTF Rich text format

S60 Series 60 smart phone user interface

TSP Traveling salesman problem

UI User interface

UML Unified modelling language

VII

XML Extended mark-up language

XTND XML transitional network

1

1. Introduction

Smart phones, e.g. Nokia devices equipped with Series 60 (S60) user interface (UI),

are becoming more and more complex devices containing tens of different

applications and hardware add-ons that have little to do with the actual telephone part

of the phone, such as cameras and GPS-devices.

Increased complexity of smart phones also leads to increased number of errors.

Applications should be as thoroughly tested as possible, and the best way to achieve

this is to use test automation. Designing automated test cases for the smart phones is

not a simple matter. Traditionally, there are three different views on how an

application should work:

• User interface designer writes a broad specification of how the user interface

should look, what are the functions of different keys in different states of the

application, and how the application responds to user actions.

• Developer reads the specification, and writes the application according to

his/her view of the document.

• Tester takes the application and the specification and tries to figure out how

the program should work and does it work that way.

These different views easily lead into troubles, since they seldom are consistent.

Applications mature over time and get more features. Adding a feature to application

or changing a feature means that all three views of the application must be updated,

and this means that most time in testing is spend adjusting the test cases into always

changing applications.

2

If the different views could somehow be connected to each other, testing would

become a simpler task; test cases would always be in harmony with the actual

application. This situation would have two great advantages:

• Applications would be more thoroughly tested because of the synchronization

between the actual application and test cases.

• Costs of software development would decrease, since fewer testers would be

needed to do the same job.

1.1 Objectives

A model is a way of describing how user actions and system states in an application

relate to each other. If the model is thorough enough, describing every user action and

corresponding system response, it should be possible to automate the test case

creation and not just the test execution. This technique is known as model based

testing.

In order to deploy model based testing successfully into an organization the following

issues must be solved:

• A way is needed to bring model based testing to an organization “softly”, so

that the initial efforts required for deployment are not too high.

• A model based testing tool that creates test cases automatically from the

models must be available to be able to exploit the model based testing in an

organization.

• A clear proof of financial benefits must be shown in order to make things

happen in the organization.

The objective of this thesis is to find a solution to all of the above issues.

3

1.2 Scope

The scope of this thesis is in the user interface level of applications, although some

suggestions for the future are made regarding the other levels, too. The model based

testing tool is developed with S60 UI testing in mind, but it should not be too hard to

modify the tool to be used with other UIs as well. S60 applications are used when

comparing model based testing to traditional methods in order to show the financial

benefits of model based testing.

1.3 Methods

A literature study on model based testing and model based software development will

be conducted in order to obtain solid background knowledge for development of the

model based testing tool.

The model based testing tool will be implemented using Java based on the results of

the literature study. This allows actual usage of model based testing, since

commercially there is not a single suitable tool available. The implementation also

serves the purpose of learning; it is possible to see how the model based testing

should be used and are there any advantages over traditional testing methods.

In addition, a comparison of traditional test cases and test cases produced by the tool

implemented will be done. The comparison will be made using S60 Image Viewer

and Voice Recorder applications as a reference point. Code will be instrumented, and

the instrumentation figures obtained by using both testing methods will be compared.

The result of the comparison will ultimately decide whether it is worthwhile to

continue on the model based testing track.

1.4 Structure

Chapter �2 consists of a literature study of model based testing and model based

software development.

4

Chapter �3 contains suggestions how to deploy the model based approach into an

organization. The chapter mainly involves discussion about a good starting point on a

road to model based software engineering, but some future suggestions are presented

also.

In Chapter �4, an implementation of model based testing tool will be presented. Since

the implementation depends heavily of the test system used, an introduction to it will

be presented also in the chapter. The actual code or any coding related details will not

be presented; implementation will be described in high level although some relevant

algorithms are described.

Chapter �5 contains the comparison between traditional test case execution and model

based testing.

Conclusions of the results obtained in this work and future research suggestions are

discussed in Chapter �6.

5

2. Model Based Software Engineering

In this chapter, a literature study of model based software engineering is conducted.

First, the problems of current software development processes and reasons why

model based approach would be better are examined. After that, model in general and

different types of models and their applicability to different types of software

modelling are presented. The last two sections contain an overview of model based

software development and testing.

2.1 Problems with the Current State of Software
Engineering

In general, current process of software engineering is best described with the popular

V-model [1] (Figure 1). The V-model describes the whole software engineering

process, starting from the left tail’s specification and design activities, going through

coding stage, and ending up in the right tails testing activities.

As can be seen from the figure, design and testing are connected through the planning

phase, but are still clearly two separate actions. The planning phase traditionally

consists of a tester studying the different parts of the software system and then

writing and executing individual test scenarios that exercise the system [2].

6

����������	

����
���	���

����������	

�����
�

�����	��	���

��
���

������

��
���

������

������

	�
	���

��
	��

	�
	���

��	����	���

	�
	���

�����	����

	�
	���

�����	�����	�
	���������

��
	���	�
	���������

��	����	����	�
	���������

�������	�
	

��������

����������	

����
���	���

����������	

�����
�

�����	��	���

��
���

������

��
���

������

������

	�
	���

��
	��

	�
	���

��	����	���

	�
	���

�����	����

	�
	���

�����	�����	�
	���������

��
	���	�
	���������

��	����	����	�
	���������

�������	�
	

��������

Figure 1: The V-model

This approach to testing has at least two major challenges [2]:

• The traditional tests will suffer from the “pesticide paradox” [3], in which the

bug fixing leads to less and less efficient test cases since the bugs they reveal

have already been fixed.

• As software tends to change over time as new features are added, the tests

must be modified to support those changes. Modification of the tests takes

time and since time is money, the maintenance costs can rise high if

modifications are required often.

One solution to those problems is to take a model of the software into use. With the

model based approach, there is no need for separate test planning or even coding as

the test cases and code can be generated automatically from the model.

2.2 General Description of a Software Model

In order to explain the model based approach fully, a definition or a general

description of a software model has to be found. In [4], it is defined as following:

7

“Simply put, a model of software is a depiction of its behaviour. Behaviour

can be described in terms of the input sequences accepted by the system, the

actions, conditions, and output logic, or the flow of data through the

application’s modules and routines. In order for a model to be useful for

group of testers and for multiple testing tasks, it needs to be taken out of the

mind of those who understand what the software is supposed to accomplish

and written down in an easily understandable form. It is also generally

preferable that a model be as formal as it is practical. With these properties,

the model becomes shareable, reusable, precise description of the system

under test.”

Models can help to predict behaviour of software since generally they are simpler

than the actual software they describe [5]. The prediction of behaviour is essential for

the automated test case creation and thus for model based testing. One important, but

often neglected, requirement of software models is that the model must be more

abstract than the software it is used to model [6]. This requirement is because that in

order to have any benefits from the modelling the model must be easier to validate

than the actual software. If the model is at the same abstraction level as the software,

the efforts of validating that the model is correct are the same as validating that the

software is correct.

Software can be modelled in a number of ways, and the most important ones are

introduced in the following section.

2.3 Basic Model Types

Software can be modelled in numerous different ways, each of those having its own

pros and cons. The method of modelling has to be selected to suit the software that is

to be modelled. In [4] the most common ways to model software are presented, and

those are covered next.

8

2.3.1 Finite State Machines

Finite state machine (FSM) is a behaviour model, which consists of states and

transitions between those states. An example FSM is visualized in Figure 2.

Figure 2: Example finite state machine

The example FSM is a simple binary machine, where q0 is the start state, and q3 the

final state. Transitions between the states occur either with binary 1 or with binary 0.

For example, sequence 00 would go through states q0, q1 and end to q3, and sequence

10101 through q0, q2, q0, q2, q0, and end to q3.

FSM can be described formally as quintuple (I, S, T, F, L), where

• I is the set of inputs of the model

• S is the set of all states in the model

• T is a function which determines whether a transition occurs when an input is

applied to the system in a particular state

• F is the set of final states where the model can end up

• L is the state where the software is launched

The states and the transitions can be used to visualize almost any interaction between

any two systems, e.g., user and a coffee machine or two computers communicating

with each other with some protocol.

9

2.3.2 Markov Chains

Markov chains are stochastic models, which can also be used to software modelling.

It could be said that they are probabilistic state machines, meaning that the transitions

of the machine contain a probability, which is used to select which transition to

choose whenever leaving a state. They can be easily used to measure, e.g., software’s

reliability and mean time to failure.

2.3.3 State charts

State charts are an extension of finite state machines. They are used to model

complex or real-time systems, both of which are not possible to do easily with finite

state machines. In state charts, it is possible to specify state machines in a hierarchy,

where upper level states contain a complete lower level state machine, or several

machines. It is also possible to add certain external conditions into the model that

determine whether certain transitions are possible or not.

State charts are an equivalent to the Turing machine. They are easier to read than

finite state machines, but nontrivial to work with and require training beforehand.

2.3.4 Grammars

Grammars are used to describe the syntax of programming and other input languages,

and they are equivalent to different forms of finite state machines, so they can be used

e.g. to represent a model of a system in a more compact form than finite state

machines do. They are also easy to write and maintain.

On the other hand, grammars do not provide, as such, any visualization of the

language or model they represent.

2.3.5 The Unified Modelling Language

The unified modelling language (UML) is similar to finite state machines, except for

the fact that it is used to describe complicated behaviours of software, thus the simple

graphical representation of a state machine is replaced by a structured language.

10

UML contains two parts: a model, and a set of diagrams. The model could be best

described as a formal description of the diagrams, which are used for visualization,

and it contains three essential parts:

• Functional model, which shows the system functionality from the user’s point

of view

• Object model, which contains the system structure (objects, their methods and

attributes and relationships between them)

• Dynamic model, which shows the internal behaviour of the system using e.g.

sequence, activity and state machine diagrams

UML diagrams are divided also to three parts:

• Structure diagrams describe all the components the modelled system

contains; e.g. classes, packages, objects and the overall structure of the

system

• Behaviour diagrams are used to describe how the system actually

works. This includes e.g. workflows and use cases.

• Interaction diagrams describe the data and control flows of the system

If the diagrams are explored more thoroughly and deeper than what was presented, it

becomes apparent that the UML may contain more or less every model type described

earlier in this chapter at least in some form. This leads to increased complexity; UML

can be used, and is in fact designed to be used for modelling complicated software

systems at every level possible, from the low-level class diagrams and e.g. protocol

state machines to high-level user interactions, but due to it’s complexity it is not, as a

whole, suitable for simpler modelling tasks. Parts of UML, e.g., use case diagrams,

can be efficiently used for simple tasks, but then question arises whether the

modelling is done with UML or with something else.

11

2.4 Different Approaches to Software Modelling

Because of the scope of this thesis, the focus of this section, and the rest of this thesis,

is only on modelling software on the user interface level.

UI works by user executing different actions and the system (UI) going into different

states because of those actions, and because of that, it is clear that finite state

machines are the obvious choice for modelling software at the UI-level. This is

because of the visual simplicity they provide1, in contrast to UML, which does not

suit well for modelling systems as simple as UI.

The finite state machine contains a set of states, user actions and system responses,

and their relations to each other [7]. User actions and system responses are called

events from now on in this thesis. The finite state machine can be used e.g. to

describe a use case, or the whole application. The differences between these two

approaches are presented next.

2.4.1 Use Case Model

Use case is a description of one simple task that a user performs, e.g., taking a picture

with the camera, from the users point of view. In other words, use cases are used for

capturing user requirements without excessive technical jargon, which is usually the

case with software design documents.

Use case model consists of several user events and their corresponding responses, the

system events. After combining the events together, they define the whole use case.

The combination is called the flow of events. One way of defining use cases is UML

and its use case diagram. An example diagram representing a simple restaurant is in

Figure 3. As can be seen, the purpose of the UML use case diagram is only to

visualize the different actors of the system and their possible actions.

1 One of UML’s behaviour diagrams uses finite state machines for model visualization, but in author’s
opinion, it makes more sense to talk about finite state machines rather than “UML’s behaviour
diagrams.”

12

Figure 3: Example of UML use case diagram

Figure 4: Example use case document

In order for a use case to be usable, it should be defined more formally than the

UML’s use case diagram is, to ensure that everyone who reads it understands it

exactly the same way. In [8] a formal template of a use case document was presented.

The template is originally defined in [9]. Use case documents contain general

1.1.Capture Image
1.1.1.Description

This use case defines the steps for capturing image in S60 camera
application

1.1.2.Pre-condition
Camera application is open

1.1.3.Post-condition
None

1.1.4.Flow of Events
 User System
U.1 Press CenterPush key to

capture image [S.1]
S.1 Image is captured. Text §Image§

is displayed [U.2.x]
U.2.1

Press Clear key to delete
captured image [S.2]

S.2

Delete image confirmation is
displayed with text §Delete?§.
[U.3]

U.2.2 Press SoftKey §Options§
and Select Menu §Delete§ to
delete captured image [S.2]

U.3 Press SoftKey §Yes§ to
delete image. [S.3]

S.3 Image is deleted and Camera
application returns to initial view.

13

description about the use case, pre- and post-conditions (system states) for the use

case and a use case event table, which is a formal representation of the flow of events.

A simple example of use case document describing how to capture an image using

S60 camera application is in Figure 4.

Use cases are a good way to describe the different requirements the users have for the

system and it is also proven that automated test cases can be derived from the use

cases easily. On the other hand, since the use cases of one system do not interconnect

in any way, it is possible and even probable that they do not model the system as

thoroughly as possible. An attempt to increase the model’s coverage of the system is

to use so called application model.

2.4.2 Application Model

The application model, in contrast to use case model, describes the behaviour of a

whole application, e.g. a music player or a clock. Speaking in terms of UML, the

application model is the same as behaviour model. The model contains every entry

and exit point of an application and every state possible between them. Thus, every

user action is also modelled.

As an example, a simple application model of the Windows Sound Recorder is

presented in Figure 5. The model contains only two states, stopped and recording.

Transitions to different states occur when user clicks on either the record-button or

the stop-button.

Figure 5: A simple application model of the Sound Recorder

As with use case models, also application models should be based on formalized

documents, describing the states of the application, user actions between them and the

14

general flow in a sensible manner. Usually some kind of documents are created by

user interface (UI) designers to describe the UI, but in general the documents do not

contain as clear relationships between the states as is needed. In addition, as UI

documents tend to be overly verbose they are not feasible to be used with test

automation. The use case document template presented in the previous section can

also be used to describe the whole application with little or no modifications.

2.5 Creating the Model

A fact is that software models do not come out of thin air; they must be created

somehow. This fact is often neglected in research papers on model based testing.

In [4], the following three tasks are suggested for software modelling:

• Understand the system under test by learning about the software and its

environment. Learning includes e.g. determining the components that need to

be tested, reviewing available documentation, communicating with other

teams involved in the software engineering, potential user identification and

documenting every input, response and the sequences of inputs that need to be

modelled. This also possibly includes the maintenance of all gathered

information, i.e. the model.

• Choose the right model type for the software being modelled. There are also

other factors for choosing the model than that the model is adequate for the

software; e.g. people who are going to actually work with the model have to

be taken into consideration.

• Build the model by making a list of all possible inputs to the system,

document the situations where user can and cannot actually apply the input

and document the situations where input causes different responses from the

system.

After the model is built, it has to be transferred into state machine. Several algorithms

for automating this task exist; some are presented e.g. in [10].

15

Harry Robinson suggests for model creation an approach called operational modes in

[5]. Operational mode describes what user actions are possible in a state and what the

system responses are when the actions are executed. Although the use of operational

modes is suggested because “a finite state model used in representing the behaviour

of an application is likely to have many, many states – so many that it would be

tedious and unrealistic to create and maintain the model by hand”, no solution is

presented how the actual operational modes should be created and maintained so that

the task would not be tedious and unrealistic.

Both approaches to model creation discussed above are probably good if it is wanted

that the model be created manually. Although algorithms for creating state machines

from either one of discussed approaches exist, a lot of manual work is still required

before it is possible to use any automation to aid the creation of the state machines.

One solution for reducing the manual creation work is to use the model throughout

the software engineering process, starting from the design. If the software is described

as a model from the start, no separate creation process is needed. This approach is

commonly known as model driven development.

The defining characteristic of model driven development is that the primary focus and

products of software development are models rather than computer programs [11].

The major advantage of this approach is that models are expressed using concepts

that are less bound to the underlying implementation technology and closer to the

actual problem domain. Modelling can be done in any language or with any method;

e.g., UML can be used as well as UI specifications. The choice of the modelling

language depends on the level of modelling wanted.

The basic idea of model driven development is to automate the transformation of

models from one form to another [12], which means that models are imported from

some form which could be, e.g., the methods described before and exported to

another form; e.g., C source code. In order for the transformation to work, the import

and export languages have to be defined precisely; the language definition can be

chosen freely, which means that the models can be transformed practically from

anything to anything. The key factor in transformation is the mapping of source

language to the destination language. As an example, UML class diagrams can be

16

easily mapped to Java class skeletons, and UI specifications to test automation

scripts.

Models are not so useful if they end up only as documentation that is used as a

reference during the software development; the maximum value of modelling is only

achieved if models are used as seeds for automatic code generation and verification

activities. The verification part is known as model based testing, and it will be

covered later on in this chapter.

The ultimate vision of automatic code generation is that the model would take the role

of implementation languages, analogous to the way the third-generation programming

languages (e.g. C++) displaced assembly languages [11]. Code generation would not

produce only code skeletons, but complete and working programs. There would be no

need to examine or modify the generated programs, just as there is no need to

examine or modify the assembly language produced by third-generation

programming language compilers. This, of course, is a goal that is hard to achieve,

but as it is said in [11], there already exists tools and techniques that generate better

code than handcrafted would ever be, even when the models describe large-scale

industrial applications.

2.6 Model Based Testing

Model based testing can be summarized in one sentence; it is essentially a technique

for automatic creation of test cases from specified software model. The key advantage

of this technique is that the test generation can systematically derive all combination

of tests associated with the requirements represented in the model to automate both

the test design and test execution process [13].

Generating test cases from a finite state machine is usually straightforward and easy

task. The states in the machine contain information about what the state is; in the case

of actions, they describe the action that is executed, and in the case of responses, they

describe formally, what the response is. If the test cases are to be executed manually,

this is all the information that is needed. If the goal is to generate automated test

cases, the states also need to contain all the necessary test automation parameters that

17

are needed by the test automation system used. The test automation parameters can of

course be derived also from some other information, e.g. by using a text parser to

generate the parameters from the verbal descriptions automatically.

As the states contain all the necessary information, actual test case generation is

simple. The simplest approach is to traverse randomly through the state transition

diagram, from start to the end. One test case is constituted of the states visited during

traversing. Frequently it is wanted that the transition coverage criterion is 100% and

then random traversing is out of the question and a more sophisticated algorithm is

needed. In [2], some graph traversal algorithms are presented that aim to meet the

criterion, and the challenge is to choose the most effective one.

In [4] several advantages and disadvantages of model based testing are presented, and

those are explored next.

2.6.1 Benefits of Model Based Testing

Many studies conducted have shown that model based testing is effective, especially

when used to test small applications, embedded systems, user interfaces and state-rich

systems with reasonably complex data. Rosaria and Robinson (2000) studied testing

graphical user interfaces, Agrawal and Whittaker (1993) embedded control software

and Avritzer and Larson (1993) phone systems.

Usually the most attractive attribute of model based testing is thought to be the

automatic generation of test cases, but that is not all. Model of software can help

refining unclear and poorly defined requirements [13]. By eliminating model defects

before the coding begins and automating the test case creation the result is significant

cost savings and higher quality code. Figure 6 [14] shows the differences between

current defect discovery and elimination process (marked “Old”) and early defect

discovery (marked “New”).

18

Figure 6: Savings caused by earlier defect discovery

The figure shows that the sooner the defects are detected and fixed, the less the costs

of fixing them will be.

Other benefits that are more related to testing include e.g. the following, which were

presented in [13]:

• Comprehensive tests; if the model is a complete abstraction of the software, it

is possible to automatically create test cases which cover every possible

transition of the model by using graph algorithms.

• Defect discovery; model based test automation discovers defects more

effectively than manual methods. The article demonstrated this with a case

study in which manual method uncovered 33 defects in a system, and model

based method all of those and in addition 56 more.

As it was shown in this section the benefits of model based testing are huge if

modelling and all the related tasks are done efficiently, but it also has some

difficulties and drawbacks.

19

2.6.2 Difficulties and Drawbacks of Model Based Testing

Almost every research on model based testing agrees on one thing: deployment of

model based testing into an organization requires significant efforts and investments.

In [4], the following three reasons for the needed efforts and investments are

presented:

• Excessive amount of skills is required from the testers. They need to be

familiar with the model, which means knowledge of different forms of state

machines, formal languages, and automata theory. In addition, expertise in

tools and scripts is required when test automation is going to be used.

• A large initial effort in terms of man-hours is required. The type of the model

has to be carefully selected, different parts of software have to be divided so

that the modelling is easier because of the smaller areas and the actual model

has to be built.

• Models themselves have also some drawbacks. The biggest one of those is the

explosion of state-space needed. Even a simple application can contain so

many states that the maintenance of the model becomes difficult and tedious

task.

As can be seen from the list, model based approach to software testing is not the

perfect solution. The positive side though is that all the points in the list can be

overcame with thorough planning of the deployment of model based testing into an

organization.

2.6.3 Currently Available Model Based Testing Tools

A working model based testing tool is a requirement for deploying the model based

testing into an organization, and this section contains a small study of currently

available tools. Most of the tools in the list below were found from [15], and some

simply by surfing the net and reading articles on the work done on model based

approach.

The tools listed are either commercially or otherwise publicly available.

20

AETG™ by Telecordia™ Technologies is a web-based pair wise test case generator,

which uses the input data domain as the model. This means that the tools target use is

with e.g. databases or user input data validation.

Case Maker® by Diaz & Hilterscheid Unternehmensberatung GmbH is also a pair

wise test case generator, but in addition to using the input data domain as the model,

it uses also constraints specified by business rules, i.e. the business domain.

Conformiq Test Generator™ by Conformiq generates test cases from UML state

charts, which represent a high-level graphical test script. It has to be underlined that

the state charts do not represent the actual system under test but only the test script,

which means that the tool is more a test script editor than a real model based testing

tool.

CTesK, JTesK by UniTESK uses formal representations of software requirements as

the basis of test case generation. The requirements are written directly to the source

code with the help of extensions to the programming language, and the process of

transforming the requirements into test cases is automated.

MaTeLo by All4Tec generates test cases from usage model of the system under test.

The model is created by hand with the editor included, and is based on Markov chain

theories.

Qtronic™ by Conformiq automates the test case generation from software design

models. The Conformiq web site says that it can import UML models from several

tools, and analyze and verify the models. This sounds promising, but when tested, the

tool did not support e.g. model import. In addition, the modeller tool that was

included in the package did not do anything sensible.

Rave™ by T-VEC is used to model and analyze system requirements before the

coding begins. The requirements models are then used to generate test cases

automatically. The modelling is done with so-called tabular notation editor that is also

available from T-VEC.

Reactis® by Reactive System is targeted for model based testing of embedded

systems, and it generates the tests from Simulink® and Stateflow® models.

21

SmartTest by Smartware Technologies uses the same pair wise technologies as AETG

and Case Maker do, and the model is the input data domain.

Statemate™ Automatic Test Generator™ / Rhapsody® Automatic Test Generator™

(ATG) by I-Logix generates test cases from state charts of the system and from UML

state machine. The state charts have to be designed with the included designer tool.

TAU Tester by Telelogic uses TTCN-3 as the modelling notation and generates tests

from it automatically. The models have to be created by hand.

Test Cover by Testcover.com is a web-based service, which, like AETG, Case Maker,

and SmartTest, uses pair wise techniques and uses the input data domain as the

model.

TEMA Tool by Research Group on Software Engineering, Institute of Software

Systems in Tampere University of Technology is currently used e.g. for S60 UI

testing. It is based on the use of test models, which specify the behaviour of the

system under test from the perspective of testing. The tool is a test case generation

engine and it utilizes commercial tools used in the industry by extending them for the

purposes of executing test cases generated from test models.

T-Vec Tester for Simulink® - T-Vec Tester for MATRIXx® by T-Vec is used mainly

for testing of embedded systems. It generates test drivers and test vectors from either

Simulink or MATRIXx models.

ZigmaTEST Tools by ATS uses a finite state machine based models, from which it

can generate test sequences to cover the state machine transitions. The finite state

machines must be created by hand.

22

3. Deployment of Model Based
Approach Into an Organization

One of the key problems in bringing model based testing into any organization is that

the model needs to be created and be involved in the whole software engineering

process, not only in testing. Several researches, e.g. [4, 5, 13], suggest that testers

would be the ones to create the models used in testing, but as said in section �2.6.2,

this approach would require too much skill from the testers and thus is not applicable.

In section �2.5, model based software development was explained. Although the

prospects of it, e.g. automatic code generation, are tempting, it is not possible to

convert a real organization’s processes from traditional software development to

model based software development in a short time period. A simple, yet powerful,

starting point is needed on which the transition from traditional ways to model based

software engineering can be built on one small piece at a time. The starting point

must be easy to take into real use, and on the other hand it must provide at least some

clear cost and man-power benefits to the organization.

3.1 Proposition for a Starting Point

One possible starting point would be to utilize the work of user interface designers.

When designing the UI, they actually describe how the application flow goes in the

UI level. As was said in section �2.5, the basic idea of model driven development is

that the models act as transformers between different sources and targets. Source can

be a UI specification, if the document is in a formal form, and target e.g. a test

automation script. Figure 7 contains a modified V-model, which visualizes how this

transformation fits in to current software engineering process. The model replaces the

system test planning phase completely by automating the process.

23

����������	

����
���	���

����������	

�����
�

�����	��	���

��
���

������

��
���

������

������

	�
	���

��
	��

	�
	���

��	����	���

	�
	���

�����	����

	�
	���

�����	�����	�
	���������

��	����	����	�
	���������

�������	�
	

��������

�����

����������	

����
���	���

����������	

�����
�

�����	��	���

��
���

������

��
���

������

������

	�
	���

��
	��

	�
	���

��	����	���

	�
	���

�����	����

	�
	���

�����	�����	�
	���������

��	����	����	�
	���������

�������	�
	

��������

�����

Figure 7: Modified V-model

The presented approach should not require any extra work from anybody, since the

already existing work of UI designers is exploited in a new way. The exploitation

requires that a tool is available which can convert UI specifications into an

application model, and create test cases from it.

Once the model has been created automatically from the design, the testers only have

to add the test automation parameters into the model. Of course, they also have to

execute the tests and analyze the results but that is already a part of their job. The

adding of test automation parameters is only a one-time job so it should not be any

extra burden for the testers. It is also possible that the UI specifications would be

written in such a way that the test automation parameter adding could also be

automated by using a text parser, but this would require a formal way of creating the

designs.

One possibility to write the UI specifications in a formal form could be to make use

of the use case document template presented in section �2.4.1. The flow of events table

in the template can be used to describe the whole UI, since it contains user actions

and the corresponding system states. In the case of S60 UI, which contains several

small applications, the design document should be divided into several smaller pieces,

consisting of the small applications, and to one higher level document, which

24

describes how the main UI works and what are the relationships of different small

applications. For example, it is possible to enter the messaging application from

various other applications such as camera or image viewer. The higher level, or main,

document would describe the inputs and outputs of the small applications in a higher

abstraction level, and the other design documents the inner workings of the

applications.

The approach to the structure of UI specifications presented would be formal enough

for the model creation, and in addition to the formalism, the levelled structure would

also make the specifications easier to read since the higher level would not contain

too many details about the inner workings of separate applications. If more detail is

needed, a separate, small application specification can be used.

Because the proposition presented is only a starting point, discussion about the future

is also needed.

3.2 The Future

In the future, software model should be not only a helper for creating UI tests, but an

essential part of the whole software engineering process. This is visualized in Figure

8, in which further modifications are applied to the already modified V-model (Figure

7). The test cases derived from the models would not be only for the UI-level; test

cases could be derived also to all other levels including module, integration, and

acceptance testing.

If model driven development, which was presented in section �2.5, would be taken into

use, the products of software development would not be source code and programs as

such, but models from which the code and tests could be easily derived. In short, it

would be possible, if the models were good enough, to automate every other step of

the software engineering process except for the design part. This would result in

tremendous savings in man-hours, since automated tools would do most of the work.

25

����������	

����
���	���

����������	

�����
�

�����	��	���

��
���

������

��
���

������

������

	�
	���

��
	��

	�
	���

��	����	���

	�
	���

�����	����

	�
	���

�����

�����

�����

�����
����������	

����
���	���

����������	

�����
�

�����	��	���

��
���

������

��
���

������

������

	�
	���

��
	��

	�
	���

��	����	���

	�
	���

�����	����

	�
	���

�����

�����

�����

�����

Figure 8: Further modified V-model

Of course, several questions arise when thinking about automatic code and test

generation; e.g., whether the code is correct and optimized enough, and whether the

code coverage that is achieved with automatic test generation is at an acceptable level

are among those. These questions are of course relevant and justified, but maybe

there is no reason for being worried; as it is said in [11], the code correctness and

optimization questions were raised already over 40 years ago when the first compilers

were introduced. The same techniques that are used currently when compiling higher-

level languages into machine code can be applied to transformation of the model into

high-level language, and therefore the correctness or optimization are the smallest

problems the model driven development will face.

The biggest problems are related to the actual deployment of the model based

approach into a big organization. The wheels of a big software development

organization turn slowly and the processes are not easily changed, which bring great

obstacles into the way of deployment. Also at the moment, it seems impossible to

automate everything, but the change has to start from somewhere.

26

4. Design and Implementation of the
Model Based Testing Tool

As said in the introduction, a fully functional model based testing tool is a

requirement if model based approach is wanted to take into full use in an

organization. One of the objectives of this thesis was to implement a production

quality tool, and the objective is realized in this chapter.

First, the reasons for choosing to implement a new tool instead of using already

existing one are discussed. After that, the test system, which the tool is currently

using, is introduced briefly. Finally, the actual design and implementation of the tool

are presented.

4.1 Reasons for Implementing Own Tool

A small study of already existing model based testing tools was made in section �2.6.3.

The common problem with all of the tools studied was that they work only with

already existing application models, and this leads to problems with where the models

come from described in section �2.5. In section �3.1, a solution to the problem was

proposed in the form of a modified V-model (Figure 7).

The first requirement for the tool comes from the modified V-model, and is that the

tool has to support converting UI specifications to a model, and the model to test

automation scripts. This has to also work backwards in order to make it possible to

export the models created in the tool to UI specifications and test automation scripts

created by hand into model skeletons, so that the model is a two-way translator

between the UI specification and test cases, as visualized in Figure 9.

27

Figure 9: Model as a translator

Of course, it has to be also possible to create the model from a scratch, without the

need of any kind of existing documents or designs.

Second important requirement is that the tool has to support the test case generation

as described in section �2.6, i.e., randomly generated test cases and test cases for

which the model coverage is 100%.

Third requirement is related to graphical user interface of the tool and especially to

usability. The tool has to be so easy to use that everyone who is involved in the

software engineering process can, without too much work, learn how to use it, and

preferably so that they do not even have to read the user manual beforehand.

4.2 Introduction to Test Automation System

The test automation currently supported is based on Automatic System Test Engine

(ASTE), which is a keyword based test automation tool developed in Nokia. ASTE

reads test scripts and sends corresponding commands via a data gateway application

to the device under test.

Currently ASTE can be used to test several different S60 smart phones and smart

phone emulators. Test automation is based on running scripts, which consist of

keywords and their parameters. Keyword could be best described as one user action,

e.g. pressing a key.

There are several different logical groups of keywords, but the two interesting ones

are action keywords that execute some user action and verify keywords that verify

that something is displayed on the screen of the device under test. For example, action

keywords can be used to type something on the screen or to select some menu, and

the verify keywords to verify that some text or picture exists on the screen. There are

also some performance related and miscellaneous keywords.

28

Traditionally test cases are created by hand as scripts for ASTE. An example test

script is presented in Figure 10.

Figure 10: An example test script

The example test script looks like the following from the ASTE point of view:

1) Go to application state camera.

2) Press the centre selection key

3) Verify that texts “Options” and “Back” actually exist on the screen

4) Press the clear-key

5) Verify that texts “Yes” and “No” actually exist on the screen

6) Press the “soft key” “Yes” to exit

Depending on the results of the verification keywords, ASTE sets the test case to

either passed or failed. A log is also written in HTML-format, where the failures can

be seen in a user-friendly format.

4.3 Previous Work

In [8], a predecessor to the tool developed in this thesis was implemented. The

predecessor was based on the use case approach described in section �2.4.1. Because

29

of that, the previous version and the version implemented in this thesis are

fundamentally different; use cases differ radically from the application model used as

the basis of this work.

Following features were implemented in the prototype:

• Use case design

• Use case import from use case documents

• Prioritization of different paths in the use case

• Test case generation and execution

As can be seen from the list, the previous version supported only use case models

(section �2.4.1), and application models were not supported at all. Use case models

were not allowed to contain loops, and thus the test case generation was done with a

simple but appropriate depth-first search (DFS) algorithm.

Many of the features implemented to the tool during this work are based on the future

improvement suggestions in [8]. The suggestions included e.g.:

• Use case export to use case documents

• Support for test data

• Multiple use case support

• UI improvements

The previous version was a good starting point for this work, but this version was

designed and implemented entirely from a scratch. The design and implementation

are presented next.

4.4 High-level Design

As the goal of the design was to keep the tool as modular as possible, the architecture

was divided into four main blocks:

30

• The actual model, which is at the core

• File input and output

• Test case generation and execution

• Graphical user interface

The architecture is visualized below in Figure 11. As can be seen from the figure, the

architecture is straightforward and allows high level of modularity. For example,

every single part of the tool can be changed to another easily because the parts are not

too deeply tied to each other. It is possible to add file inputs or outputs easily, the test

generator can be changed to produce test automation scripts for a different test

automation system, and the GUI can be changed to e.g. a command line interface.

Figure 11: The high-level architecture

Since the graphical user interface (GUI) is an essential part of the tool and because

modular architecture was wanted, model-view-controller (MVC) design pattern was

31

used to build the relationship between the actual engine (as shown in Figure 11) and

the GUI:

• Model is the representation of the data that the application uses. It is possible,

but not required by the design pattern, that the model also encapsulates the

data access functions. The encapsulation is used in this design.

• View is typically the GUI element (as opposed to a common misconception

that the view is the whole GUI) which shows the model in some, specified

form. In this case, it could also be thought that the different file formats,

which are outputted and inputted, and the generated test cases, are just

different views of the same underlying model.

• Controller processes and responds to events and depending on those may

change the model in some way. Events are usually related to GUI and user

actions, but also other kinds of events are possible; e.g. a file changes on the

hard disk and controller is monitoring it, this leads to modifications to the

model.

The clear advantage of this design pattern is that the different components are

separated so that the model is in no way dependent of the view or the controller. This

allows a highly robust and modular architecture, which was also one of the goals.

Different parts of the architecture visualized in Figure 11, i.e., the model, file input

and output, test case generation and execution and the GUI, are presented next.

4.4.1 The Model

The architecture of the actual model is visualized in Figure 12. As seen from the

picture, the model consists of name and general description of the model, pre- and

post-conditions (at what state the system must be when the execution of the model

starts or stops), test data and a graph that is used as a data structure to store the actual

finite state machine.

32

Figure 12: The model architecture

4.4.1.1 THE GRAPH

The data structure used for storing the finite state machine is directed cyclic graph

(DCG), which means that every transition is traversable only into one direction and

that graph may contain cycles. An example graph is in Figure 13.

Figure 13: An example graph

33

Graph contains user and system events, and transitions between them. When

comparing the example graph presented in Figure 13 with the example finite state

machine from Figure 2, it can be seen that the graph is not a pure finite state machine,

since the transitions contain probabilities, which are borrowed from Markov chains.

The probabilities are used to simulate a situation where user e.g. when in idle-state

presses the menu-key 80% of the time and other keys combined 20% of the time. This

allows long-term testing which simulates actual human behaviour as accurately as it

is possible by mathematics.

Events contain description about what the event is and test automation keywords as

described in the previous section. Because sometimes it might be wanted that events

are enabled or disabled dynamically when certain conditions are met, the events also

contain so-called flag variable. The flags take the graph a little more away from the

pure finite state machine, since the external conditions, which enable or disable

events, is a feature from the state charts. The disabling of events is visualized in

Figure 14.

Figure 14: Events disabled

There exist two types of flags: static and dynamic. Static flags are used when a certain

application feature needs to be turned off for the current test case; e.g., it is possible

that it is wanted to test same model with several different devices, which either

contain or do not contain a camera. By setting flags depending on the device, it is

34

possible not to allow creation of any test cases that use camera. One good example

could be the sending of a MMS-message, where the model could contain an event

where picture is taken with the camera and then sent by MMS which is clearly not

possible if the device under test does not contain a camera.

Dynamic flags can be used for various tasks, but mainly their intended use is in the

case of changing application settings. For example, in the S60 Voice Recorder

application it is possible to change the quality of the recording to either high or low.

Certain events in the model could contain some test automation that is dependent on

the quality being either one. By using dynamic flags, it is possible to disable

transitions to events that are dependent on e.g. high quality when the quality is

changed to low at some other event.

4.4.1.2 TEST DATA

Test data is used when it is wanted that the test automation parameter contain several

different options. For example, if a test case is testing that certain file is opened and

correct message, “File opened successfully” or “File type is not supported!”, is shown

to user, it would not make sense to manually change the parameters into desired ones

if it is wanted to test a set containing several different files of correct and not correct

types.

In the tool, the test data is stored as tables in the model. An example test data table is

presented below.

Table 1: Example test data
Key word Verify word

CorrectFile.doc File opened successfully

CorrectXMLFile.xml File type is not supported!

CorruptFile.doc File type is not supported!

Now, instead of setting test automation parameters manually, e.g. kw_OpenFile

CorruptFile.doc and vw_verifyText “File type is not supported!” the test data is

added by replacing the parameters with the test data’s identification string. The tool

35

will automatically generate three separate test cases, as there are three separate entries

in the test data table.

Of course, if more than one test data table exists, also more test cases are generated.

Number of test cases is defined by the number of possible combinations of test data.

For example, with one table with three entries and another table with two entries

would lead to six different test cases.

4.4.2 File Input and Output

As one of the tool’s main functions is to work as a mediator between the UI

specification documents, models, and test cases, file input and output functions are

extremely important parts of the tool.

The actual model needs to be stored to hard disk in some format. Since flexibility is a

desired feature, extensible mark-up language (XML) was chosen as the format. The

XML’s structure is based on XML transition network definition (XTND)

specification [16] with some modifications in order to enable the storage of test

automation and other, general information.

It was chosen that UI specification documents can only be imported from and

exported to RTF-format. The decision was made because, as an example, Microsoft

Word’s document format is closed, and reading in reliably would be either a difficult

or a costly task. RTF-files can be saved with almost every word processor, and

importing and exporting them is easy even when using open source tools. The format

of the UI specifications should be the use case document template presented in

section �2.4.1. For now, it should be enough that single small applications can be

imported from the specifications and that models representing single small

applications can be exported to UI specifications. Later on, the possibility of the multi

level UI specifications presented in Chapter �3 should be taken into consideration.

One important feature of the tool is importing of existing test cases to models,

because it may be possible that there already exists even thousands of test cases

generated the traditional way. This feature helps a lot when the organization is

moving towards model based testing, since the old test cases can be easily used as

seeds when starting to build the use case or application models. Since ASTE is used

36

as the test automation system, the test cases are imported from the ASTE log files that

contain all the information needed.

4.4.3 Test Case Generation and Execution

There are two ways to generate test cases, either by generating random path from the

graph by using probabilities (as shown in Figure 15) or by generating a path which

visits every event in the graph (Figure 16). The result of path creation process is a

simple list of events visited during the path. Since events contain the needed test

automation information, the test script can be generated easily.

Figure 15: A random path

Figure 16: A path containing every event in the graph (events visited twice are marked with grey
colour)

37

Test scripts are generated as test case files, and then sent to execution in ASTE via a

socket interface. It would also be possible to send the test scripts to ASTE one

keyword at a time monitoring the execution process in real time, but that possibility is

not used since the tool’s main target is test case generation, not execution.

4.4.4 Graphical User Interface

The most important requirement of graphical user interface (GUI) design is good

usability. International Organization for Standardization (ISO) defines usability in

standard 9241 part 11 as “the extent to which a product can be used by specified users

to achieve specified goals with effectiveness, efficiency, and satisfaction in a

specified context of use.” According to usability consultant Jakob Nielsen [17],

usability is composed of the following factors:

• Easy to learn

• Efficient to use

• Easy to remember

• Few errors

• Subjectively pleasing

As the ISO definition says, the users of the tool and the goals they want to achieve

must be defined first in order to achieve good usability. The users of the tool can be

narrowed down to two groups: UI designers and testers.

The goal of the UI designers is to be able to design the UI from a scratch, without too

much hassle and extra work. The designers do not want to bother with test related

details, such as test automation parameters or flags, and in the optimal situation, all

irrelevant GUI elements should be hidden from the designers.

Testers’ goal is to be able to easily generate and execute test cases from the already

existing models. As that implies, in general testers should not have to create models

themselves from a scratch, but to use the work of the designers and only add the test

automation related parameters to the model. However, if the testers want to create

models, it should be possible also for them in an easy to use way.

38

4.5 The Implementation: KENDO

The model based testing tool, KENDO, was implemented entirely with Java

programming language using IntelliJ IDEA 5.1 integrated development environment.

Java was chosen as the language because of the portability features it offers; compiled

programs consist of so-called byte code that is run on the Java Virtual Machine

(JVM), as opposed to native assembly code produced by e.g. C- or C++-compilers.

Because of JVM, programs coded with Java can be run on any operating system for

which the JVM is available.

Several outside libraries were needed in order not to reinvent the wheel:

• JGraph is an open-source Java graph component, and it is used not only as

the actual graph model, but also as graph visualization in the GUI. One of the

main reasons for choosing this component was that it is extremely flexible;

with the component, it was possible to modify almost everything from the

model level to the visualization to suit the needs of the tool.

• Apache Velocity is a template engine, which permits the use of a powerful

template language to reference objects defined in Java code. It is used for

saving the models to XML-files.

• Apache Jakarta Digester is used for loading the models from XML-files. It

is a rule-based XML reader. Defined rules trigger defined actions when

certain XML elements are encountered by the reader. For example, in the tool,

new objects are created and their properties set during the XML reading.

• iText is mainly a library intended for exporting PDF-files from Java, but it

also supports RTF-file export and that is what the library is used to perform.

• JGoodies Looks is used to enhance the UI of the tool.

• ASTE library was taken along in order to use the socket interface to send test

cases for execution. The interface uses its own protocol, and the ASTE library

provides simple methods for using it without the need of writing complex

socket related code.

39

• Apache Log4j is used for logging events that happen during the program

execution. Those events include e.g. unrecoverable error situations, warnings,

and exceptions and, if enabled, debug statements.

In addition to the libraries used, the source code of KENDO consists of 70 classes,

which total to approximately 11500 lines of code2. The lines are divided between the

different modules as follows:

• GUI uses 6000 lines of code, which contain e.g. the normal windows, file

trees, tool bars and menus, as well as the graph component.

• The model consists of 3000 lines, which includes e.g. test data, flags, and the

graph representing the finite-state machine. Most of the lines, approximately

half, are used for test case generation algorithms.

• Utility classes, e.g. file input and output and test system interface, are made of

2300 lines of code.

• The main function, which starts the program execution, takes 250 lines of

code. It contains e.g. command-line parsing, splash window and initialization

functions.

The implementations of the test case generation and the graphical user interface are

presented next. Requirements for them were presented in sections �4.4.3 and �4.4.4,

respectively.

4.5.1 Test Case Generation Techniques

The most essential part of KENDO is the test case creation, where the model is

transferred to a test script runnable by ASTE. The test script is created by traversing

the graph through some path from the start event to the end. Paths can be created in

many ways, but the most important of them are:

2 Although all of the source code lines were written by the author, some of the classes are based on the
previous version of the tool. In those cases, the interfaces were taken from the previous version but all
of the functionality was rewritten from a scratch for this version.

40

• Random path based on the probabilities defined in the model

• Path visiting all transitions in the graph

• Path using multiple different application models

Creating the paths is not always as trivial as it sounds. Problems arise when the graph

contains so-called back loops. Back loop could be best described as a transition from

a lower level in a tree back to a higher level. The back loops mean that traditional

graph traversal algorithms cannot be used, because of the infinite loops they cause

when it is wanted that the traversion starts from a defined point and ends to a defined

point, as is the case with test case generation.

If a human looks at the picture, it is easy to determine a path that visits every event

from the start event to the defined end event without looping infinitely, but with

computers, it is a completely different case. The graph traversal methods used in

KENDO are described next.

4.5.1.1 GRAPH TRAVERSAL

Test script creation in KENDO is simple. Events in a graph are visited from the start

event to the end with some graph traversal method, and the test automation keywords

found in the events are written into the test script, in the order in which they are

found. The test script is finalized by writing header fields required by ASTE into it.

A simple traversal method is used when a random path using probabilities is wanted.

The graph is traversed from the start event to the end by selecting the transitions to

follow from each event randomly. The following algorithm is used:

1) In the case that the model contains static flags, remove the events they

disable and the transitions to/from those events.

2) Go to the start event.

3) Record the keywords in the current event and possibly set dynamic flags

on/off.

41

4) Examine the events where it is possible to go from the current event. If the

events are disabled by the dynamic flags, remove the transitions leading to

those events from the list of possible transitions.

5) If only one outgoing transition in the list of possible transitions, go to the

event where the transition leads and go to 3). If more than one outgoing

transition in the list of transitions, choose one of them by using random

number generator and the probabilities of the outgoing transitions, go to the

event where the randomly chosen transition leads to, and go to 2). If no

outgoing transitions, go to 6).

6) Currently in the last event, record the keywords and write the test script.

A more advanced algorithm is needed when 100% model coverage is wanted, i.e.,

that the path goes through every transition in the graph. The problem is known as the

Chinese Postman Problem (CPP) [18]. A similar problem, visiting all the nodes in a

graph, is known as the Travelling Salesman Problem (TSP) [19], but it is not as useful

in model based testing as CPP. This is because of in general it is more useful to know

that every single user action possible leads to wanted system response in contrast to

knowing that some, randomly chosen user actions lead to the wanted result.

Many papers published on model based testing propose different methods for graph

traversal, but in general, all of them fail to present an actual working solution for the

CPP. For example, in [2] there is a nice and high level collection of theories of graph

traversal techniques, but it does not show in any way how the techniques presented

should or could be applied to real life model based testing applications. In contrast to

high-level presentations, in [20], an out-of-the-box and detailed Java implementation

of an algorithm, which solves the CPP, is presented. The description of the algorithm

is out of the scope for this thesis, but the presented implementation is used with some

modifications in KENDO. It was thoroughly tested that the algorithm actually

produces usable paths.

Since the algorithm works only with static graphs [20], and the graph model in

KENDO may contain flags, which enable or disable transitions during the graph

traversal, a way is needed to transform a possible dynamic graph into several static

42

graphs somehow. This is achieved with a simple algorithm; every possible

combination of dynamic flags is created and as many new graphs there are, different

combinations are created. After that, every graph created is traversed with their

corresponding flag combination and events are enabled or disabled statically

according to the combination. When the creation of the new graphs is done, CPP is

solved for each of them one by one.

4.5.1.2 MULTIPLE MODELS

The ultimate goal of bringing model based testing into S60 software engineering

process is to model the whole S60 UI. There is no sense in creating one extremely big

model of the whole UI, since already the smaller applications can be complex and the

state space explosion mentioned in section �2.6.2 is one of the biggest problems of

model based testing.

Solution to problem is to make an abstraction of the model so that instead of

displaying all of the states the application contains, only one state that represents the

whole application is displayed. The new state contains at least one input and one

output, which represent the start and end states of the abstracted model. Transitions

can be added to and from the state normally. This is the implementation of the UI

specification proposition described in Chapter �3. The abstracted state represents a

small application, and the model of the whole S60 UI containing lots of different

small applications represents the high level UI specification explained in Chapter �3.

In addition to the mentioned input and output, the applications may contain several

other inputs and outputs because it is possible that the application can be entered and

exited from different points. Good example of this behaviour is the sending of

multimedia messages. When writing the message from a scratch, the MMS-

application is in the normal initial state (Figure 17) where an empty text field is

visible. It is also possible for the user to take a picture with the phone’s camera and

select “Send as MMS” directly from the camera-application. In that case, the MMS-

application is entered to a state where the picture taken is already attached to the

message (Figure 18).

43

Figure 17: MMS from a scratch

Figure 18: MMS from the camera

As an example, the abstraction is visualized with Figure 19 and Figure 20. Figure 19

contains an extremely simple example MMS model, which starts normally from the

creation of a new MMS in the Messaging application, but it can be entered also from

the Camera application. The model can be exited either normally or back to the

Camera application.

Figure 19: An example MMS model

Figure 20 contains the abstraction of the presented MMS model. It has two inputs and

outputs, just like the original model. As can be seen, the abstraction hides many

details, and improves the readability and usability of the model.

44

Figure 20: An example MMS abstraction

The test case generation when using multiple models is similar to the case with only

one model, as the same algorithms are used in both cases. Only difference is that the

wanted input and output have to be considered.

4.5.2 Graphical User Interface

The graphical user interface of KENDO is presented in Figure 21. The main GUI is

divided into two tabs; the design panel and the test run panel. Design panel is the

more important one of these two and only it will be discussed, whereas the test run

panel only contains necessary components to execute many test cases in a row and it

will not be handled at all.

The most important parts of the design panel are the graph editor, which is located in

the upper-right part of Figure 21, and the event editor in the lower-right part. Graph

editor allows following functions:

• Insertion and removal of events and transitions.

• Optimization, or automatic event aligning, of the graph.

• Zooming of the graph.

• Cut, copy and paste operations on events and transitions.

• Normal undo and redo operations.

45

Figure 21: KENDO GUI

When user selects an event in the graph editor, its properties are opened in the event

editor.

The event editor is located at the lower part of the GUI. It contains separate editors

for the description, test automation, and flag parameters. Description is edited with a

normal text field and test automation and flags with tables. The description, test

automation, and flag editors are separated to different tabs in the event editor.

4.6 Future Improvement Suggestions

In the future, a lot of effort should be put into improving the version control of the

models, which means controlling the model changes when, e.g., the UI specification

changes. Currently, the import functions of the tool simply rewrite the whole model

instead of only the changes, which is not desirable situation because the test

automation parameters added to the model will be lost during the import. A lot of

thought should be put to this feature since it is essential in the situation when it is

wanted that the model be in harmony with the specification.

46

In addition, the problem with state space explosion described in section �2.6.2 should

be studied more and this part of the tool improved. Currently features such as test data

support, flags, and usage of multiple models are helpers in this matter, but a lot of

room for improvements still exists.

47

5. Analysis

In this chapter, the model based testing tool implemented in this thesis is analyzed in

order to gain some information and knowledge whether the approach taken is towards

the right direction. Since this thesis is continuation to previous work, the differences

between this and the preceding thesis are presented first and the impact of the changes

is discussed. After that, the results achieved with model based testing are compared to

the results achieved with traditional, manual testing.

5.1 Comparison to Previous Work

In [8], a use case based approach to automated user interface testing was presented. It

included also a predecessor to the tool designed and implemented in this thesis. The

purpose of this section is to compare the work done in this thesis to the preceding

thesis.

5.1.1 Differences to the Previous Work

The biggest difference between this and the previous work on the same subject is in

the overall approach taken to model based testing. In [8], use case approach was used.

As explained earlier in section �2.4.1, use cases describe some functionality of a

system from the user’s point of view. The use cases can contain different paths, but in

general, they consist of a direct flow of user and system events due to their nature,

without the possibility of the flow jumping e.g. backwards or to a different path. This

approach sets restrictions on the possible scenarios, since, e.g. the modelling of a

whole application is not possible because of the restrictions in the flow control. In

addition, use cases are for modelling of simple and precise user actions, not whole

applications.

48

The approach taken in this thesis conforms more with the ideology of model based

testing than the use case approach used before. The tool implemented can be used to

model entire applications at the user interface level, which possibly allows more

thorough testing of applications since there is no need for lots of separate use cases to

cover the functionality of an application; a set of test cases covering the whole

application can be generated from one model.

The differences in approaches are not the only factor which affects the test case

generation since the tool implemented in this thesis has also several other advantages

over the one implemented previously. These are explored next.

5.1.2 Advantages of the Current Tool Implementation

The following features and improvements were needed in order to enable the usage of

the true model based testing ideology:

• The previous version was able to generate test cases covering all the paths in

one use case and prioritize them to high, medium, or low priorities. Test case

generation was based on a simple DFS algorithm, which worked well because

no loops were allowed. The current version can generate one test case that

goes through every transition in the model by using a modified Chinese

postman algorithm, reaching 100% model coverage. It is also possible to use

probabilities to create test cases randomly to simulate human behaviour.

Because of the 100% model coverage it is possible to compare the code

coverage achieved with model based testing to the coverage achieved with

manual tests and thus gain knowledge of whether the model based approach

has advantages over traditional testing methods or not. The methods are

compared in the next section.

• The possibility to use test data was added, which means that the work of the

testers becomes easier because they no longer need to write many separate test

scripts to, e.g., test such a case as described in section �4.4.1.2. The test data

also reduces the number of states required in an application model.

49

• In order to reduce the state space explosion, which is one of the biggest

problems of model based testing as described in section �2.6.2, flags were

added to the model. Flags can be used to, e.g., customize the same model for

different devices (the camera example in section �4.4.1.1) which means that

fewer states are needed to create the model.

• The usage of multiple models when creating the test cases was added to the

tool. This allows the possibility of creating one big model representing e.g. the

whole S60 UI from smaller application models. It also allows the possibility

of model import from and export to UI specifications conforming to the

proposition presented in Chapter �3.

The changes done to this version allow the usage of the full potential of model based

testing, in contrast to the previous version, which was basically a helper for creating

use case based test cases. In addition, some of the features added aim to reduce the

problem of state space explosion, which can prove to be a valuable feature in the

future.

In [8] it was shown that a graphical method of creating test cases is a lot faster than a

manual one. The next section aims to prove that model based testing is a technique

that brings financial benefits to an organization if its whole power is unleashed.

5.2 Comparison Between Testing Methods

In this section model based testing is compared to traditional, manual testing in terms

of the code coverage reached. At first, the used test environment is explained, and

after that, the test methods and the results they produced are analyzed.

5.2.1 Used Test Metrics

There are many different ways to measure code coverage, and the way used during

these tests was the so-called decision coverage, which measures conditional

expression evaluations (true or false), case branches in switch statements, exception

catching and control transfers. For example, let us consider the C code below:

50

int positive(int integer) {
if(integer >= 0)

return 1;
else

return 0;
}

The decision coverage criterion is only met if the function is called with both negative

and positive integers because of the if-else block.

5.2.2 Test Environment

Comparison between traditional, manual testing and model based testing was done

with the S60 applications Image Viewer and Voice Recorder by the Nokia S60

multimedia testing group. The Symbian code was instrumented using CTC++ code

coverage analyzer by Testwell (http://www.testwell.fi). CTC++ uses source code

instrumentation, which means that special instrumentation statements are added to the

source code during pre-processing. After that, the source code is compiled and the

CTC++ run-time library is linked to the instrumented program. During the actual

program execution, CTC++ collects the code coverage history in memory and writes

it to a data file after the execution is over. The data file can then be used to analyze

the actual code coverage parameters.

Manual tests are executed by testers based on test cases created from use case

descriptions. The use case format used differs a little bit from the one described in

section �2.4.1. The use cases contain test objectives (“Test that an image opens

correctly”), required test data (“One image of any supported image format”),

preconditions (“There is one image available on the phone”) and the execution steps

which contain the description of what to do (“Open the image”) and what the

expected result is (“The image is opened correctly”). The tester’s job is to read the

test cases, push the buttons on the actual device, and report the results achieved.

The models used in this comparison were created by hand by a tester because no

suitable user interface design documents were available in the organization at the

time. Although this method is against everything said about model creation

throughout this thesis, it is acceptable within the scope of this comparison. The test

cases were generated from the models randomly, and executed automatically for 8

51

hours. The automatic and manual executions can be compared, since the test scripts

used when automating the tests are based on the manual test cases.

Next, the applications used in this comparison are presented.

5.2.2.1 IMAGE VIEWER

Image Viewer application is used to view images on the phone. Images can be

captured with a camera, received by multimedia messages, or transferred by other

means to the phone.

The application contains quite a few features, the most important being the ability to

send images via multimedia messages or through Bluetooth or infrared connections.

When sending images via messages, the image is possibly resized or repacked in

order to reduce the size of the image file due to multimedia message restrictions.

Other connections do not require altering the image in any way; it is sent as is.

Other features of the application include setting an image as the background image of

the phone and rotating, zooming, renaming and deleting an image. Images can also be

browsed with the application.

Figure 22: Image Viewer

Figure 23: Image Viewer options

The Symbian source code of the application is divided into 16 source files that

contain 287 functions and 7741 lines of code. The number of lines is high in light of

52

the apparent simplicity of the Image Viewer. CTC++ identified 1840 measurement

points for code coverage measurement.

5.2.2.2 VOICE RECORDER

Voice Recorder is used to record short sound clips from the phone’s microphone. The

application can only be used to record new sound clips; it is not possible to record

more sound to previously recorded sound clips. Another restriction applies to

playback; since the application is a recorder, only the newly recorded clip can be

played back. Other playback control functions include pausing and stopping, fast

forward and fast reverse. The volume of the playback can also be set. The recording

quality can be either high or low. The latter is for sending the recorded clip via a

multimedia message, because of the restrictions in the size of multimedia messages.

After the recording, the clip is automatically saved either to the phone’s internal

memory or to a memory card. It is also possible to send the clip immediately via a

multimedia message. Clips cannot be deleted from the recorder directly; for that

purpose, some form of a file browser must be used. In addition, the playback of old

recordings is done via a browser.

Figure 24: Voice Recorder recording

Figure 25: Voice Recorder when recording finished

Voice Recorder is a simple application, but still the source code base is large; it is

divided into 32 source files that together contain 364 functions and 9019 lines of

53

code, which is more than the Image Viewer application has. 2234 measurement points

were used by CTC++.

5.2.3 Results

The results of the comparison are presented in Table 2. The table contains the

execution time used and the code coverage percentage reached with both model based

testing and the traditional method. The measured code coverage percentage, which

tells us how much of the application source code is executed during testing, is used as

the comparison figure between the two methods.

Table 2: Results of the comparison

Application Figures

Model
based
testing

Manual
testing

Execution time 8 48

Code coverage 71% 79%

Execution time 8 15

Code coverage 55% 60%

Image
Viewer

Voice
Recorder

The table shows that the code coverage achieved with model based testing is not far

from the coverage achieved with the traditional method. This is an interesting and a

promising result, especially when considering that the models were built by hand, in

contrast to being imported from any design documents. This means that the models

might contain small errors or that they are not as complete as they could be. In

addition to the manual creation of models, two other big factors that affect the code

coverage reached are:

• The models do not contain any inputs from or outputs to different

applications, in contrast to use cases that might contain, e.g., a case where the

image in Image Viewer or the sound clip recorded in Voice Recorder is sent

via MMS. In these cases, the corresponding application code is not executed

when using model based testing.

54

• The use cases contain cases that are not pure user interface tests; e.g., they

may test performance and memory consumption. This means that more of the

application code is executed with the tests based on the use cases since the

model is only a representation of the user interface functionality.

What is even more interesting than the code coverage achieved by model based

testing is that a huge number of man hours were used for the execution of traditional

tests. The model was executed with KENDO completely automatically for 8 hours

with random traversion of the graph.

The two testing methods can be best compared with code coverage / execution time

ratio, which tells us how many percent the code coverage percentage increases for

every hour used for test execution. For the Image Viewer the ratio is 8.9 for model

based testing and 1.6 for the traditional method, which shows a clear difference and

advantage for the model based approach. The ratios of Voice Recorder show the same

trend, as they are 6.9 for model based testing and 4.0 for the traditional method.

Because the test execution with KENDO was completely automatic, the execution did

not cost anything in contrast to the man hours used for the traditional test execution.

It is also considerably faster; in the case of the Image Viewer, almost the same code

coverage was reached with 8 hours of automatic testing as with 48 hours of manual

test execution. This means that over one week of work can be reduced to a simple,

overnight, automated task.

When comparing the time used to create the test cases and the models the advantages

of model based testing become even clearer, if possible. Both of the models were

created in approximately 8 hours, and debugged for another 32 hours, which makes

the total creation time of approximately 40 hours. No exact figures are available for

the manual test case creation, but it was approximated that the absolute minimum is

one hour per test case, and since about 150 test cases are used per application, the

total manual test creation time is approximately 150 hours. Model based testing is a

clear winner also in terms of the man-hours used to start-up the testing.

Because the time spent on both test case creation and test execution is known on both

testing methods, it is easy to compare them also on yearly basis. About 30% of the

55

manual test cases are run with each software release, which are bi-weekly. This

means that in the case of the Image Viewer, about 50 hours of testing will be

conducted on 26 weeks of a year, which totals to 1300 hours per year of test

execution. Altogether, about 1450 hours is spent on manual testing per year when

summing the execution time with the time spent on test case creation. The same

figure for the Voice Recorder is 280 hours per year.

By using model based testing, the time spent on testing activities would be

significantly lower. With the same testing cycle, i.e., bi-weekly, the testing would

take about 248 hours per year, including the model creation, and would be more

thorough because of the fact that only a subset of manual test cases are executed

during the bi-weekly cycle. The full set, which reached the higher code coverage in

the comparison, is executed rarely. It also has to be remembered that the test

execution is fully automated in the case of model based testing. The yearly figure for

model based testing does not contain the maintenance of the model; it cannot even be

estimated, since far too little experience on the subject has been gained. If the goal

presented in section �3.1, automatic model import from user interface specifications is

reached, then the man-hours required for the model creation and maintenance would

be reduced. This means that model based testing would be even clearer winner, and it

is a shame that this could not be proven empirically due to the lack of formal enough

user interface specifications.

The above calculations show that by using model based testing, approximately over

one thousand man-hours would be saved per year in the case of the Image Viewer.

The Voice Recorder did not show as much man-hour savings, but still fully

automated testing is significantly cheaper than 130 hours of manual testing. These

figures show clearly, that model based testing reduces the time, labour and money

needed to perform the testing activities.

56

6. Conclusions

In this chapter, the results obtained from this work are summed up by reviewing and

assessing them, and explaining how they are exploited currently in Nokia

organization. The chapter is concluded with a discussion about the future research

possibilities.

6.1 Results

The comparison made between model based testing and traditional, manual testing

showed clearly that the former is the cheaper and faster method, and almost as

effective in terms of the code coverage reached as the latter one. Model based testing

was a little bit behind the traditional method in code coverage, but the possible

reasons for this were explained in section �5.2.3.

It was approximated that on yearly basis, model based testing would save significant

amount of man-hours per S60 application, and in the case of the Image Viewer, over

one thousand.

6.2 Assessment of Results

The results obtained in the comparison between testing methods should be similar in

other cases as well, as long as the system under test is a rather simple user interface.

The code coverage reached of course depends on the quality of the model, and

nothing can be said about the manual test case coverage on other systems since it

depends heavily on the quality and the thoroughness of the test cases. In the case of

other S60 applications than Image Viewer and Voice Recorder, the results in terms of

57

the code coverage should follow the results achieved in this work because of similar

qualities between the manual test cases.

The man-hour savings calculated in section �5.2.3 are approximations, but the figures

used as the starting values were more under- than overestimations. Similar

approximated results should be achievable with other cases as well.

6.3 Exploitation of Results

Currently the tool implemented in this work is in continuous use in Nokia S60

multimedia testing group, and the usage might also be extended to other groups as

well, but the future is not clear at this stage. The promising results obtained in the

comparison of testing methods should be a clear signal for the organization that the

model based approach should be exploited even more, and that time and money

should be invested into it.

Currently it seems not possible to deploy the model based approach to the

organization with the starting point suggested in Chapter �3, which uses the user

interface specifications as the basis for the model creation. This is because the change

would involve too many people, and in an organization as big as Nokia, it seems to be

an impossible task to change the ways of working across the department borders. This

is mainly because a part of software engineering process as big as the user interface

specifications will not be modified unless a good reason exists, and no good reason

has been introduced yet. Hopefully the results obtained in this work could be one.

Another reason for the difficulties in deploying the model based approach is the lack

of productization of the KENDO tool implemented in this work. It is hard to sell the

approach to different departments when the tool, which is supposed to be used, does

not contain any documentation and on the top of that is still quite hard to use.

The difficulties are a shame, because in this work it was proven that model based

approach brings benefits into the user interface level testing, and the only thing left

missing was formal enough user interface specifications from which the models could

have been imported. If those were available, the comparison between testing methods

would have been more precise because the models would have been accurate

58

representations of the user interface, in contrast to the hand-crafted models used in the

comparison.

6.4 Future Research

The scope of this thesis was on the user interface level, and as said in section �3.2,

models should be brought to other levels of software engineering as well. This has

some problems, as the user interface approach used is a special case and cannot be

generalized to other levels easily because of the simplicity of the finite state machines

used. The other levels require more complex model representations.

At least the linking of the architecture design and the integration testing with a model

should be researched thoroughly, and added to the tool implementation. The module

design and module testing phases can also be studied, but currently it seems that

adding those to the same tool is not a good idea, because it will probably bloat the

models into a non-usable level.

Model based testing is an excellent tool for certain tasks, e.g. for small applications,

embedded systems, user interfaces and state-rich systems as stated in section �2.6.1,

but it cannot be effectively used for everything. For example, module design and

testing seem to be too complex to be integrated into the model based approach.

59

References

[1] Fewster, M. & Graham, D. Software Test Automation. Harlow, United

Kingdom: Pearson Education Ltd, 1999. 574 p. ISBN 0-201-33140-3.

[2] Robinson, H. Graph Theory Techniques in Model-Based Testing. 16th

International Conference and Exposition on Testing Computer

Software, Los Angeles, California, USA, 1999.

[3] Beizer, B. Software Testing Techniques. 2nd Ed. New York, USA: Van

Nostrand Reinhold Co, 1990. 550 p. ISBN 0-442-20672-0.

[4] El-Far, I. K. & Whittaker, J. A. Model-based Software Testing. In:

Marciniak, J. (ed.), Encyclopedia on Software Engineering, Volume 1.

New York, USA: John Wiley & Sons Inc, 2001. pp. 825-837. ISBN 0-

471-21008-0.

[5] Robinson, H. Finite state model-based testing on a shoestring.

International Conference on Software Testing Analysis and Review, San

Jose, California, USA, 1999.

[6] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner,

M., Sostawa, B., Zölch, R. & Stauner, T. One Evaluation of Model-

Based Testing and its Automation. In: Proceedings of the 27th

International Conference on Software Engineering. St. Louis, MO,

USA. 15.-21.5.2005. New York, NY, USA: The Association for

Computing Machinery. pp. 392-402. ISBN 1-59593-963-2.

[7] Apfelbaum, L. & Doyle, J. Model Based Testing. 10th International

Software Quality Week, San Francisco, California, USA, 1997.

60

[8] Nikkanen, M. Use Case Based Automatic User Interface Testing in

Mobile Devices. Master’s thesis. Helsinki University of Technology,

Department of Computer Science and Engineering. Espoo. 2005. 79 p.

[9] Collard, R. Test Design: Developing test cases from use cases. Software

Testing & Quality Engineering Magazine, 1999. Vol. 1:4. pp. 30-37.

[10] Prowell, S. J. TML: a description language for Markov chain usage

models. Information and Software Technology, 2000. Vol. 42:12. p.

825-833.

[11] Selic, B. The Pragmatics of Model-Driven Development. IEEE

Software, 2003. Vol. 20:5. pp. 19-25.

[12] Mellor, S. J., Clark, A. N. & Futagami, T. Model-Driven Development.

IEEE Software, 2003. Vol. 20:5. pp. 14-18.

[13] Blackburn, M., Busser, R. & Nauman, A. Why Model-Based Test

Automation is Different and What You Should Know to Get Started.

International Conference on Practical Software Quality and Testing,

Washington, USA, 2004.

[14] Safford, E. Test Automation Framework, State-based and Signal Flow

Examples. Twelfth Annual Software Technology Conference, Salt Lake

City, USA, 2000.

[15] Utting, M. & Legeard, B. Practical Model-Based Testing: A Tools

Approach. 1st ed. San Francisco, CA, USA: Morgan Kauffmann, 2007.

456 p. ISBN 0-12-372501-1.

[16] Nicol, G. T. (Ed.). XTND – XML Transition Network Definition. W3C

Note, 21.11.2000. [Cited 22.3.2007]. Available at:

http://www.w3.org/TR/xtnd/.

[17] Nielsen, J. Usability Engineering. 1st ed. San Francisco, CA, USA:

Morgan Kaufmann, 1993. 362 p. ISBN 0-12-518406-9.

61

[18] Eiselt, H.A., Gendreau, M. & Laporte, G. Arc Routing Problems, Part I:

The Chinese Postman Problem. Operations Research, 1995. Vol 43:2.

pp. 231-242.

[19] Kruskal, J. B., Jr. On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem. Proceedings of the American

Mathematical Society, 1956. Vol 7:1. pp. 48-50.

[20] Thimbleby, H. The directed Chinese Postman Problem. Software –

Practice and Experience, 2003. Vol 33:11. pp. 1081-1096.

