View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Aaltodoc Publication Archive

Helsinki University of Technology
Department of Electrical and Communications Engiimge
Networking Laboratory

Mikko Aleksi Makinen

Model Based Approach to Software
Testing

Master’s Thesis submitted in partial fulfilmenttbke requirements for the degree of
Master of Science in Technology

May 22, 2007
Mikko Makinen

Supervisor: Professor Heikki Hammainen

Instructor: Antti Heimola, M. Sc.

https://core.ac.uk/display/80700838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HELSINKI UNIVERSITY ABSTRACT OF THE
OF TECHNOLOGY MASTER’S THESIS

Author: Mikko Aleksi Makinen

Name of the Thesis: Model Based Approach to Software Testing

Date: May 22, 2007 Number of pages vii + 61

Department: Department of Electrical and Professorship S-38

Communications Engineering

Supervisor: Professor Heikki Hammainen

Instructor: Antti Heimola, M. Sc.

Software testing is becoming more and more diftitatk every day because in {

he

current software engineering cycle the design asting activities are separated,

which leads to a situation where test cases areimdtarmony with the actue
application. One way to solve this problem is tketa model of the application in
use, which can be, e.g., a user interface modelfrand which the test cases can
derived automatically. This technique is known asdel based testing. The moc

can also be used for, e.g., automatic code geaerati

The main objectives of this thesis were to findudable way to deploy the mod
based approach into an organization, to developdeirbased testing tool in order

test the approach and to show proof of financiakfies of the approach.

The thesis is divided into two parts. First, in titerature part, the model bas
approach is explored thoroughly. In the second patiggestion for the deployme
of model based approach into an organization isqmed, a model based testing t
implementation based on that suggestion is revieaed a comparison betwe

traditional testing methods and model based tessicgnducted.

The comparison between the testing methods shadwadrtodel based testing brin
financial benefits to the organization. By usingdabbased testing, a lot of time w,

saved in the test execution compared to the toadititesting methods.

A
[0
be

lel

nt

ool

as

Keywords: model, software, engineering, testing

TEKNILLINEN DIPLOMITYON

KORKEAKOULU THVISTELMA
Tekija: Mikko Aleksi Makinen

Ty6n nimi: Mallipohjainen lahestymistapa ohjelmistotestauksee
Paivamaara: 22.5.2007 Sivuja: vii + 61
Osasto: Sahko- ja tietoliikenne- Professuuri: S-38

tekniikan osasto

Valvoja: Professori Heikki Himmainen
Ohjaaja: Antti Heimola, M. Sc.

Ohjelmistotestaus vaikeutuu paiva paivaltd koskagelphistojen suunnittelu- ja

testausvaiheet ovat selkeasti toisistaan erillig@mintoja, jonka johdost
testitapaukset eivat vastaa ohjelmiston oikeaaitmiallisuutta. Eras tapa ratkais
tama ongelma on ottaa kayttoon malli joka kuvaalohiston toimintaa esimerkiks
kayttoliittymatasolla. Mallista voidaan mallipohgaila testauksella tuotte
automaattisesti tarvittavat testitapaukset. Mallistoidaan tuottaa automaattise

myo6s esimerkiksi lahdekoodia.

Taman tyon tavoitteina oli 10ytad tapa, jolla nadlhjaisen l&ahestymistavan vo
tuoda organisaation kayttéon helposti, kehittaalipaijainen testaustyokalu, jot
lahestymistapaa voitaisiin testata sekd todistatd déhestymistapa tarjog

taloudellisia hyotyja.

1a

sti

Si
[a

1a

Tyo6 on jaettu kahteen osaan. Ensin, kirjallisuussaamallipohjainen lahestymistajpa

kaydaan lapi. Toisessa osassa esitelladn ehdotussty@nistavan tuomisek
organisaation, kaydaan lapi ehdotukseen perustmatipohjaisen testaustyokaly
implementaatio seka verrataan mallipohjaista tsstau perinteisiin

testausmenetelmiin.

Tehty vertailu todisti ettd mallipohjainen testdaagoaa suuria taloudellisia hyoty;j

Tekniikkaa kayttdmalla saastettiin paljon testaeksedytettyja miestyotunteja.

Si

n

Avainsanat: malli, ohjelmisto, tuotanto, testaus

Acknowledgements

This master’s thesis was done for Nokia Corporabetween December 2006 and

May 2007, and | want to thank the company for gpportunity.

My supervisor Professor Heikki Himmainen gave mexaellent kick-start for the
writing by making me think the structure and coigeof the work for which | am
very grateful. The work was instructed by M. Sc.ttAikeimola whose interesting
ideas and feedback also deserve thanks. Very $pleaigks goes to Pekka Kauppila,
who struggled with the bugs in my tool and manatgealctually use it to perform the
tests presented later on in this work. My mate Kaetikdinen and co-worker Vesa

Raiskila helped with refining my English and acadewriting.

The work could not have been done without the stppiomy family and friends,

and especially not without my future wife Heli.

May 22, 2007

Mikko Makinen

ACKNOWLEDGEMENTSoiiiiiiiiii i i

ABBREVIATIONS ..ottt e e e ettt e e e e e e e s et et b b e e e e e easeeesbeab e e seessseessbebanness VI
L. INTRODUCGTION ..ottt ettt ettt e e e e e e ettt et e e e e e ee e e seaba b e e eeeessessbsbaeeeeeeeeaes 1
L L OBIECTIVES 1ttt ettttteetettsee ettt eee sttt eeee st eessaata e eesban e sesann e eestansaeesanseeessannsasaesaneesesaresnssnraeees 2
s 0T 0] = =TT 3
] Y1y L] o =TT 3
O = 1T = =S 3
2. MODEL BASED SOFTWARE ENGINEERINGcooiitieiiiiiieeeeeeeeee e 5
2.1 PROBLEMS WITH THECURRENT STATE OF SOFTWAREENGINEERING........ccivvvieeieiiiieeeieieeerarneeenns 5
2.2 GENERAL DESCRIPTION OF ASOFTWAREMODEL........ccuuttiiiiiieeieiiiieiieeseeeeeeeeevssssiaseseeseeesseaenans 6
2.3 BASICIMODEL TYPES....itttttuieieieeetiitttttieeeeeeetsteett i sseeasstetesaaa e sesasseesebaataeeesssasseesssresans 7
2.3. 1 FINite State MACKINESieeveeiiie et e e e e e e e e e e e e re e e e er it s e eeeaans 8
R I |V = 1o AV O 1 = 1T 1N 9
R G R £ (o1 = [£ 9
R €] =11 4 4 1= 1T RPN 9
2.3.5 The Unified Modelling LANQUAGEueerriereieeeeeeeeeeeee e ee e e eeeeas 9
2.4DIFFERENTAPPROACHES TCBOFTWAREMODELLING.....cuuutuiiieeiiieiiiiiiiieeeeeeeeessssasneeseeesseesenes 11
2. 4.1 USE CaASE MOUEL......cccoiiiiiiiiiie et e e e e e e e e e e b 11
2.4.2 APPHCAtION MOEIciiiiiiiiiiiii e e s aeee s 13
2. 5CREATING THEMODEL. ... i iiiiiiiiettiee e e e e ettt s e e e e e e ee st e et e e e e e e eessaea bbb seeeeeesessaebranneeas 14
2.6 MODEL BASED TESTING.....cuuttuuuiieeeeeittesuttesseseeterestsssssaseeesssstsessesiseesssesssssstrseesssasaees 16
2.6.1 Benefits of Model Based TESHNG...... .o eeiirririieeiiiiiiiieeeesnieeieeesssseeeeeessssnnreeeeess 17
2.6.2 Difficulties and Drawbacks of Model Basedtifgs.coovviiiiiieiniiiiiiiee e 19
2.6.3 Currently Available Model Based Testing TQQLS..........cccceeeiiiiiiiiieen e 19
3. DEPLOYMENT OF MODEL BASED APPROACH INTO AN ORGAN IZATION 22
3.1 PROPOSITION FOR ASTARTING POINT ..uuuiiiiiiiieiiiieeeeieee st e esesi e e seesaseeessa e essssanaesestneeeesnnnns 22
B 2 THE FUTURE . 1.t ettt ee et e e et e e e et e e e ettt e e e e aat s e e e et s e e e aeaa e e s aaan s e e seba e e s satn s esesnaneessssnsaeesnnnneens 24
4, DESIGN AND IMPLEMENTATION OF THE MODEL BASED TES TING TOOL.............. 26
4.1 REASONS FORMPLEMENTING OWN TOOL .1uutiiiiiinieriiiiieeeeiieeeestineesssnnsesessnneeessssnseessssneeessrnnenes 26
4.2INTRODUCTION TOTESTAUTOMATION SYSTEM ..evuvuueiieieiiieeitiiieeeeeeeeseeetiia s eeseeessessssesnnnnns 27
A . 3PREVIOUSWORK ... ciiitiieesitietee ettt e e e ste e e e st eeeesesaaeeseta e e saean e aeee st sesssaneerestaresntssneeessrnnanes 28
A AHIGH-LEVEL DESIGN...uuiiiitiiiiisitiieeeetei e e eetiie e e ee s esestatesssstaeessesnsaessstnasesstaneeeessninresssnnneeees 29
o I o TN Vo Yo =Y PSP 31
4.4.2 File INPUL AN OULPULeeeiieeeeee et e e ee e e e eaeeeeaeeaaaaens 35
4.4.3 Test Case Generation and EXECULIONuivieiiieiiiie e e ee e e e e eee 36
4.4.4 Graphical USer INtEIfaCe............ooi it e e e e e e e e e e e e e e e e e s e e e a e 37
4. 5THE IMPLEMENTATION: KENDO ... oottt mmmme e e e et e e se e e e e sa e s e ebeeeeen 38
4.5.1 Test Case Generation TEChNIQUEScoaaammmieiiiiiiiiieiiiee e e e ee e e e e eeeeeeeeeenees 39
4.5.2 Graphical USer INtEIfAaCE............ooi ittt e a e e 44
4.6 FUTURE IMPROVEMENT SUGGESTIONSetutttutntieeeeiertttestnseeeeseeesssssssnsssessesssrsssssnnseseesessenes 45
LT A N T 2] 1 TR 47
5.1 COMPARISON TOPREVIOUSWORKcuttuutiiieiieiitetitiesieeeesieessessassesesssssssssasassseesseessssssnnn s 47
5.1.1 Differences to the PrevioUS WOIKceceeeeiiiiee et e e 47
5.1.2 Advantages of the Current Tool Implementation..............ccccuvveiiiiiiiiiiiiiineieeeeee e, 48
5.2COMPARISONBETWEEN TESTINGIMETHODS. iiiiiieiititi i e e e e ee ettt s e e e e e e s eeeessaaaaanseeessseennees 49
5.2.1 Used Test Metrics
5.2.2 TESE ENVIFONMENT......ooiiiiiiiee sttt e et e e e e e et se e e e e e e e e e ee st ab e e e eeeeeeesbeaaenns
LS TZRC 31 = 1T U L N
6. CONCLUSIONSttt e e e et e et e et e e e e e s e ea st e e et b e e e eessserebbba e aeeas 56

B, L RE S UL T St i ittttittetettee ettt eeestt e eeeataeeese st e eesesat e eessaneeessansesesaaeeessansesessnnneeesssnseerrrnneeerrranaaes 56

6.2 A SSESSMENT OFRESULT S .. iittuteetittneeettttaeerertteeresstresssantaessstaeerstnieessrtneaesrstaaeerrrineerrsnns 56

B.3EXPLOITATION OF RESULTS c1uuuiiiitieiesittieetttiieeeettiesessstssssssatnseessssneessstseessrnneeesrsnseesssrineees 57

B. A FUTURE RESEARCH. ... ittt ettt e e et e e et e e e biie e e s eaa e e e e aet e e e seaa e e ee bt iaeeseta s esaaseeeesntaeessnans 58
REFERENGCESoottiiiii ettt ettt e e e e e e e et e e e e e e e e ee e ae s bab e e e eeeeeeessatbaneaeeeseeesrees 59

Abbreviations

ASTE Automatic System Test Engine

CPP Chinese postman problem

DCG Directed cyclic graph

DFS Depth-first search

FSM Finite state machine

GPS Global positioning system

GUI Graphical user interface

HTML Hypertext Mark-up Language

ISO International Organization for Standardization
JVM Java virtual machine

MMS Multimedia message

MVC Model-view-controller design pattern
RTF Rich text format

S60 Series 60 smart phone user interface
TSP Traveling salesman problem

Ul User interface

UML Unified modelling language

Vi

XML Extended mark-up language

XTND XML transitional network

Vi

1. Introduction

Smart phones, e.g. Nokia devices equipped witheS&0 (S60) user interface (Ul),
are becoming more and more complex devices contpiriens of different
applications and hardware add-ons that have titl#o with the actual telephone part

of the phone, such as cameras and GPS-devices.

Increased complexity of smart phones also leadindceased number of errors.
Applications should be as thoroughly tested asiplessand the best way to achieve
this is to use test automation. Designing automtgsticases for the smart phones is
not a simple matter. Traditionally, there are thmifferent views on how an

application should work:

» User interface designer writes a broad specificatibhow the user interface
should look, what are the functions of differenysken different states of the

application, and how the application responds & astions.

» Developer reads the specification, and writes tpplieation according to

his/her view of the document.

» Tester takes the application and the specificatiod tries to figure out how

the program should work and does it work that way.

These different views easily lead into troublesicsi they seldom are consistent.
Applications mature over time and get more featufekling a feature to application

or changing a feature means that all three viewth®fapplication must be updated,
and this means that most time in testing is speljusting the test cases into always

changing applications.

If the different views could somehow be connectedeach other, testing would
become a simpler task; test cases would alwaysnbbearmony with the actual

application. This situation would have two greatatages:

» Applications would be more thoroughly tested beeaafsthe synchronization

between the actual application and test cases.

» Costs of software development would decrease, $ewer testers would be

needed to do the same job.

1.1 Objectives

A model is a way of describing how user actions system states in an application
relate to each other. If the model is thorough ghodescribing every user action and
corresponding system response, it should be pessiblautomate the test case
creation and not just the test execution. This riggke is known as model based
testing.

In order to deploy model based testing successiuiyan organization the following

issues must be solved:

* A way is needed to bring model based testing torganization “softly”, so

that the initial efforts required for deploymeng awot too high.

* A model based testing tool that creates test casésmatically from the
models must be available to be able to exploitrtfzelel based testing in an

organization.

* A clear proof of financial benefits must be shownorder to make things

happen in the organization.

The objective of this thesis is to find a soluttorall of the above issues.

1.2 Scope

The scope of this thesis is in the user interfasell of applications, although some
suggestions for the future are made regarding ther devels, too. The model based
testing tool is developed with S60 Ul testing imdibut it should not be too hard to
modify the tool to be used with other Uls as w8&0 applications are used when
comparing model based testing to traditional methadorder to show the financial

benefits of model based testing.

1.3 Methods

A literature study on model based testing and mbdséd software development will
be conducted in order to obtain solid backgrounowkadge for development of the

model based testing tool.

The model based testing tool will be implementeidigidava based on the results of
the literature study. This allows actual usage obdel based testing, since
commercially there is not a single suitable tochitable. The implementation also
serves the purpose of learning; it is possiblede Bow the model based testing

should be used and are there any advantages adéranal testing methods.

In addition, a comparison of traditional test caaed test cases produced by the tool
implemented will be done. The comparison will bedmaising S60 Image Viewer
and Voice Recorder applications as a referencet.pBode will be instrumented, and
the instrumentation figures obtained by using hegting methods will be compared.
The result of the comparison will ultimately deciddnether it is worthwhile to

continue on the model based testing track.

1.4 Structure

Chapter2 consists of a literature study of model basedngsand model based

software development.

Chapter3 contains suggestions how to deploy the model doaggproach into an
organization. The chapter mainly involves discussibout a good starting point on a
road to model based software engineering, but Jatoee suggestions are presented

also.

In Chapter4, an implementation of model based testing todl vé presented. Since
the implementation depends heavily of the testesgatsed, an introduction to it will
be presented also in the chapter. The actual codeyocoding related details will not
be presented; implementation will be describedigh hevel although some relevant

algorithms are described.

Chapter5 contains the comparison between traditionaldase execution and model

based testing.

Conclusions of the results obtained in this worll &mture research suggestions are

discussed in Chaptér

2. Model Based Software Engineering

In this chapter, a literature study of model basefiware engineering is conducted.
First, the problems of current software developmerdcesses and reasons why
model based approach would be better are examiitat.that, model in general and
different types of models and their applicability different types of software
modelling are presented. The last two sectionsatoran overview of model based

software development and testing.

2.1 Problems with the Current State of Software
Engineering

In general, current process of software engineasrigest described with the popular
V-model [1] (Figure 1). The V-model describes théoke software engineering
process, starting from the left tail's specificatiand design activities, going through

coding stage, and ending up in the right tailSrigsactivities.

As can be seen from the figure, design and testiagonnected through the planning
phase, but are still clearly two separate actiditee planning phase traditionally
consists of a tester studying the different paftshe software system and then

writing and executing individual test scenariod #meercise the system [2].

Requirements| Acceptance test planning | Acceptance

specification N i’ testing
\ Requirements|_ System test planning | System /
analysis - i testing
\ Architecture | Integration test planning _| Integration /
design N i’ testing
Module test
Module planning Module
design X e testing

\ Coding /

Figure 1: The V-model

This approach to testing has at least two majolteriges [2]:

» The traditional tests will suffer from the “pestei paradox” [3], in which the
bug fixing leads to less and less efficient tesesasince the bugs they reveal
have already been fixed.

« As software tends to change over time as new festare added, the tests
must be modified to support those changes. Modifinaof the tests takes
time and since time is money, the maintenance coats rise high if

modifications are required often.

One solution to those problems is to take a motighe software into use. With the
model based approach, there is no need for sepasitplanning or even coding as

the test cases and code can be generated autdipditara the model.

2.2 General Description of a Software Model

In order to explain the model based approach fudlydefinition or a general

description of a software model has to be found4]nit is defined as following:

“Simply put, a model of software is a depictionitsf behaviour. Behaviour
can be described in terms of the input sequencespaed by the system, the
actions, conditions, and output logic, or the flawf data through the
application’s modules and routines. In order fornaodel to be useful for
group of testers and for multiple testing tasks)aeds to be taken out of the
mind of those who understand what the softwaraufgpased to accomplish
and written down in an easily understandable folinis also generally
preferable that a model be as formal as it is picadt With these properties,
the model becomes shareable, reusable, preciseripigse of the system

under test.”

Models can help to predict behaviour of softwameceigenerally they are simpler
than the actual software they describe [5]. Theipt®n of behaviour is essential for
the automated test case creation and thus for niadeld testing. One important, but
often neglected, requirement of software modelsh& the model must be more
abstract than the software it is used to modelT8]s requirement is because that in
order to have any benefits from the modelling thedet must be easier to validate
than the actual software. If the model is at theesabstraction level as the software,
the efforts of validating that the model is corract the same as validating that the

software is correct.

Software can be modelled in a number of ways, &ednbost important ones are

introduced in the following section.

2.3 Basic Model Types

Software can be modelled in numerous different wagsh of those having its own
pros and cons. The method of modelling has to leetee to suit the software that is
to be modelled. In [4] the most common ways to nhed&ware are presented, and
those are covered next.

2.3.1Finite State Machines

Finite state machine (FSM) is a behaviour modeljctviconsists of states and

transitions between those states. An example FSKéuslized in Figure 2.

)

Figure 2: Example finite state machine

1

The example FSM is a simple binary machine, whens the start state, and the
final state. Transitions between the states ocithierewith binary 1 or with binary O.
For example, sequence 00 would go through states gnd end to § and sequence

10101 through g, G, G, Go, and end to 4
FSM can be described formally as quintuple (I, S5,1L), where

» |isthe set of inputs of the model
e Sis the set of all states in the model

* T is a function which determines whether a traasitbccurs when an input is

applied to the system in a particular state
* Fis the set of final states where the model cahugn

* L is the state where the software is launched

The states and the transitions can be used toliewmost any interaction between
any two systems, e.g., user and a coffee machine@icomputers communicating

with each other with some protocol.

2.3.2Markov Chains

Markov chains are stochastic models, which can la¢ésased to software modelling.
It could be said that they are probabilistic stagechines, meaning that the transitions
of the machine contain a probability, which is udedselect which transition to
choose whenever leaving a state. They can be easly to measure, e.g., software’s

reliability and mean time to failure.

2.3.3State charts

State charts are an extension of finite state mashiThey are used to model
complex or real-time systems, both of which are pussible to do easily with finite

state machines. In state charts, it is possibkpexify state machines in a hierarchy,
where upper level states contain a complete loeeellstate machine, or several
machines. It is also possible to add certain eateconditions into the model that

determine whether certain transitions are possibleot.

State charts are an equivalent to the Turing machiiney are easier to read than

finite state machines, but nontrivial to work withd require training beforehand.

2.3.4Grammars

Grammars are used to describe the syntax of pragmagnand other input languages,
and they are equivalent to different forms of Brstate machines, so they can be used
e.g. to represent a model of a system in a morepaomform than finite state

machines do. They are also easy to write and mainta

On the other hand, grammars do not provide, as,sach visualization of the

language or model they represent.

2.3.5The Unified Modelling Language

The unified modelling language (UML) is similar fiaite state machines, except for
the fact that it is used to describe complicatdmbb®urs of software, thus the simple

graphical representation of a state machine isoepl by a structured language.

UML contains two parts: a model, and a set of diagg. The model could be best
described as a formal description of the diagramisch are used for visualization,

and it contains three essential parts:

» Functional model, which shows the system functibpflom the user’s point

of view

* Object model, which contains the system structabgegts, their methods and

attributes and relationships between them)

* Dynamic model, which shows the internal behaviduthe system using e.g.

sequence, activity and state machine diagrams

UML diagrams are divided also to three parts:

e Structure diagrams describe all the componentsrtbdelled system
contains; e.g. classes, packages, objects and/éhellostructure of the

system

* Behaviour diagrams are used to describe how theemysictually

works. This includes e.g. workflows and use cases.

» Interaction diagrams describe the data and coftitnek of the system

If the diagrams are explored more thoroughly anepde than what was presented, it
becomes apparent that the UML may contain moress évery model type described
earlier in this chapter at least in some form. Tééls to increased complexity; UML
can be used, and is in fact designed to be usethdalelling complicated software
systems at every level possible, from the low-leslaks diagrams and e.g. protocol
state machines to high-level user interactionsdoetto it's complexity it is not, as a
whole, suitable for simpler modelling tasks. Paft4JML, e.g., use case diagrams,
can be efficiently used for simple tasks, but tlmrestion arises whether the

modelling is done with UML or with something else.

10

2.4 Different Approaches to Software Modelling

Because of the scope of this thesis, the focukisfsection, and the rest of this thesis,

is only on modelling software on the user interfee|.

Ul works by user executing different actions ane sigstem (Ul) going into different
states because of those actions, and because tofittha clear that finite state
machines are the obvious choice for modelling saféwat the Ul-level. This is
because of the visual simplicity they provida contrast to UML, which does not

suit well for modelling systems as simple as UI.

The finite state machine contains a set of statest actions and system responses,
and their relations to each other [7]. User actiand system responses are called
events from now on in this thesis. The finite statachine can be used e.g. to
describe a use case, or the whole application. ditierences between these two

approaches are presented next.

2.4.1Use Case Model

Use case is a description of one simple task thiaea performs, e.g., taking a picture
with the camera, from the users point of view. thes words, use cases are used for
capturing user requirements without excessive teahjargon, which is usually the

case with software design documents.

Use case model consists of several user eventthaimdorresponding responses, the
system events. After combining the events togetthey define the whole use case.
The combination is called the flow of events. Oraywf defining use cases is UML
and its use case diagram. An example diagram reptieg a simple restaurant is in
Figure 3. As can be seen, the purpose of the UMb asse diagram is only to

visualize the different actors of the system amir thossible actions.

! One of UML'’s behaviour diagrams uses finite stagchines for model visualization, but in author’s
opinion, it makes more sense to talk about finigéesmachines rather than “UML’s behaviour
diagrams.”

11

%

Waiter

x

Customer

%

Cashier

Order faad
Eatfood

Fay for food

Figure 3: Example of UML use case diagram

FPrepare food %

9

Chef

1.1Capture Image

1.1.1Description
This use case defines the steps for capturing image in S60 camera
application

1.1.2Pre-condition
Camera application is open

1.1.3Post-condition

None

1.1.4Flow of Events

User System

U.1 Press CenterPush key to S.1 |mage is captured. Text 8image§
capture image [S.1] is displayed [U.2.x]

U.2.1 [Press Clear key to delete |S.2 |Delete image confirmation is
captured image [S.2] displayed with text 8Delete?8.

[U.3]

U.2.2 [Press SoftKey 8Options8
and Select Menu 8Delete§ to
delete captured image [S.2]

U.3 |Press SoftKey 8Yes§ to S.3 [mage is deleted and Camera
delete image. [S.3] application returns to initial view.

Figure 4: Example use case document

In order for a use case to be usable, it shouldidfsmed more formally than the
UML’s use case diagram is, to ensure that everyhe reads it understands it
exactly the same way. In [8] a formal template ofa case document was presented.

The template is originally defined in [9]. Use cadecuments contain general

12

description about the use case, pre- and post#omsli(system states) for the use
case and a use case event table, which is a foem@Esentation of the flow of events.
A simple example of use case document describitvg toocapture an image using

S60 camera application is in Figure 4.

Use cases are a good way to describe the diffeeguirements the users have for the
system and it is also proven that automated testscaan be derived from the use
cases easily. On the other hand, since the use oaseae system do not interconnect
in any way, it is possible and even probable thatytdo not model the system as
thoroughly as possible. An attempt to increasentibeel’s coverage of the system is

to use so called application model.

2.4.2 Application Model

The application model, in contrast to use case Inaescribes the behaviour of a
whole application, e.g. a music player or a clo8geaking in terms of UML, the

application model is the same as behaviour modsd. Model contains every entry
and exit point of an application and every statesgge between them. Thus, every

user action is also modelled.

As an example, a simple application model of thenddivs Sound Recorder is
presented in Figure 5. The model contains only staies, stopped and recording.
Transitions to different states occur when useskslion either the record-button or

the stop-button.

4, Sound - Sound Recorder E]E @

"%, Sound - Sound Recorder QE @
File Edit Effects Help File Edit Effects §aE:

— Recording =
Posibion: Length: —_— Pasibar: Length:
0.00 zec. 0.00 gec. 3.50 sec. 60,00 sec.
Stopped
-—

Figure 5: A simple application model of the Sound Bcorder

As with use case models, also application modetsilshbe based on formalized

documents, describing the states of the applicatiser actions between them and the

13

general flow in a sensible manner. Usually somel lah documents are created by

user interface (Ul) designers to describe the Ut,ib general the documents do not

contain as clear relationships between the stades ameeded. In addition, as Ul

documents tend to be overly verbose they are resilile to be used with test

automation. The use case document template prelsentte previous section can

also be used to describe the whole application litit or no modifications.

2.5 Creating the Model

A fact is that software models do not come outloh tair; they must be created

somehow. This fact is often neglected in reseaages on model based testing.

In [4], the following three tasks are suggestedsfaitware modelling:

Understand the system under test by learning abwtsoftware and its
environment. Learning includes e.g. determiningdabmponents that need to
be tested, reviewing available documentation, comicating with other
teams involved in the software engineering, poéniser identification and
documenting every input, response and the sequehaesuts that need to be
modelled. This also possibly includes the maintepamf all gathered

information, i.e. the model.

Choose the right model type for the software beirgglelled. There are also
other factors for choosing the model than thatrttwelel is adequate for the
software; e.g. people who are going to actuallykawith the model have to

be taken into consideration.

Build the model by making a list of all possibleputs to the system,
document the situations where user can and carmtoaly apply the input
and document the situations where input causesrdiit responses from the

system.

After the model is built, it has to be transferietb state machine. Several algorithms

for automating this task exist; some are preseatgdin [10].

14

Harry Robinson suggests for model creation an ampra@alled operational modes in
[5]. Operational mode describes what user actioagassible in a state and what the
system responses are when the actions are exedltiedugh the use of operational
modes is suggested because “a finite state moeel insrepresenting the behaviour
of an application is likely to have many, many esat so many that it would be
tedious and unrealistic to create and maintainntteelel by hand”, no solution is
presented how the actual operational modes shautitdated and maintained so that

the task would not be tedious and unrealistic.

Both approaches to model creation discussed alrevprabably good if it is wanted
that the model be created manually. Although atbors for creating state machines
from either one of discussed approaches existt af Imanual work is still required

before it is possible to use any automation talaédcreation of the state machines.

One solution for reducing the manual creation wisrko use the model throughout
the software engineering process, starting frondtsgn. If the software is described
as a model from the start, no separate creatiooepsois needed. This approach is

commonly known as model driven development.

The defining characteristic of model driven devehgmt is that the primary focus and
products of software development are models ratthem computer programs [11].
The major advantage of this approach is that modedsexpressed using concepts
that are less bound to the underlying implementatechnology and closer to the
actual problem domain. Modelling can be done in lamguage or with any method;
e.g., UML can be used as well as Ul specificatiofise choice of the modelling

language depends on the level of modelling wanted.

The basic idea of model driven development is ttoraate the transformation of
models from one form to another [12], which medret tnodels are imported from
some form which could be, e.g., the methods desdribefore and exported to
another form; e.g., C source code. In order fortthesformation to work, the import
and export languages have to be defined precisiedyjanguage definition can be
chosen freely, which means that the models canrdresformed practically from
anything to anything. The key factor in transforimatis the mapping of source

language to the destination language. As an examyMdi class diagrams can be

15

easily mapped to Java class skeletons, and Ul fgpgmns to test automation

scripts.

Models are not so useful if they end up only asudmntation that is used as a
reference during the software development; the mami value of modelling is only
achieved if models are used as seeds for automadie generation and verification
activities. The verification part is known as modelsed testing, and it will be

covered later on in this chapter.

The ultimate vision of automatic code generatiotiné the model would take the role
of implementation languages, analogous to the Wwayhird-generation programming
languages (e.g. C++) displaced assembly languddésQode generation would not
produce only code skeletons, but complete and wgrgrograms. There would be no
need to examine or modify the generated prograost, s there is no need to
examine or modify the assembly language produced thyd-generation
programming language compilers. This, of course goal that is hard to achieve,
but as it is said in [11], there already existddand techniques that generate better
code than handcrafted would ever be, even whenmbeéels describe large-scale

industrial applications.

2.6 Model Based Testing

Model based testing can be summarized in one seténs essentially a technique
for automatic creation of test cases from specHigitivare model. The key advantage
of this technique is that the test generation gestesnatically derive all combination

of tests associated with the requirements repredentthe model to automate both

the test design and test execution process [13].

Generating test cases from a finite state maclsinesually straightforward and easy

task. The states in the machine contain informadioout what the state is; in the case
of actions, they describe the action that is exatudnd in the case of responses, they
describe formally, what the response is. If theé ¢ases are to be executed manually,
this is all the information that is needed. If theal is to generate automated test

cases, the states also need to contain all thessergetest automation parameters that

16

are needed by the test automation system usede$hautomation parameters can of
course be derived also from some other informatég, by using a text parser to

generate the parameters from the verbal descriptatomatically.

As the states contain all the necessary informatémtual test case generation is
simple. The simplest approach is to traverse ramgldhmough the state transition
diagram, from start to the end. One test caseristitoted of the states visited during
traversing. Frequently it is wanted that the tramsicoverage criterion is 100% and
then random traversing is out of the question amdoge sophisticated algorithm is
needed. In [2], some graph traversal algorithmspaesented that aim to meet the

criterion, and the challenge is to choose the raffgttive one.

In [4] several advantages and disadvantages of inheded testing are presented, and

those are explored next.

2.6.1Benefits of Model Based Testing

Many studies conducted have shown that model bizstidg is effective, especially
when used to test small applications, embeddeeémgstuser interfaces and state-rich
systems with reasonably complex data. Rosaria aidnRon (2000) studied testing
graphical user interfaces, Agrawal and Whittaké&X9@) embedded control software

and Avritzer and Larson (1993) phone systems.

Usually the most attractive attribute of model lthsesting is thought to be the
automatic generation of test cases, but that isafiotModel of software can help
refining unclear and poorly defined requirement3][By eliminating model defects
before the coding begins and automating the tesst ceeation the result is significant
cost savings and higher quality code. Figure 6 Fdws the differences between
current defect discovery and elimination processrked “Old”) and early defect

discovery (marked “New”).

17

Old
Late Defect
Dizcovery Results in
Significant Rework

Defect
Prevention

r——— Rate of Discovery —*

| T Time:
Requirements Design & Release Release
Build to Test to Field

100X Decrease in Cost of Removing Defects

Figure 6: Savings caused by earlier defect discower

The figure shows that the sooner the defects aectal and fixed, the less the costs

of fixing them will be.

Other benefits that are more related to testinudee.g. the following, which were

presented in [13]:

» Comprehensive tests; if the model is a complet&adifon of the software, it
is possible to automatically create test cases lwiltiover every possible

transition of the model by using graph algorithms.

» Defect discovery; model based test automation seso defects more
effectively than manual methods. The article dertrated this with a case
study in which manual method uncovered 33 defetts system, and model

based method all of those and in addition 56 more.

As it was shown in this section the benefits of elodased testing are huge if
modelling and all the related tasks are done effity, but it also has some

difficulties and drawbacks.

18

2.6.2Difficulties and Drawbacks of Model Based Testing

Almost every research on model based testing agreesne thing: deployment of
model based testing into an organization requiiggsfecant efforts and investments.
In [4], the following three reasons for the needsffbrts and investments are

presented:

» Excessive amount of skills is required from theteess They need to be
familiar with the model, which means knowledge dfedent forms of state
machines, formal languages, and automata theonadtition, expertise in

tools and scripts is required when test automasi@oing to be used.

* A large initial effort in terms of man-hours is teged. The type of the model
has to be carefully selected, different parts dfwere have to be divided so
that the modelling is easier because of the smatkesis and the actual model
has to be built.

* Models themselves have also some drawbacks. Tigediigne of those is the
explosion of state-space needed. Even a simpldcapiph can contain so
many states that the maintenance of the model besdiifficult and tedious

task.

As can be seen from the list, model based apprtacdoftware testing is not the
perfect solution. The positive side though is thltthe points in the list can be
overcame with thorough planning of the deploymdntodel based testing into an

organization.

2.6.3Currently Available Model Based Testing Tools

A working model based testing tool is a requirenfentdeploying the model based
testing into an organization, and this section amst a small study of currently
available tools. Most of the tools in the list helawere found from [15], and some
simply by surfing the net and reading articles ba tvork done on model based

approach.

The tools listed are either commercially or otheevpublicly available.

19

AETG™Dby Telecordia™ Technologies is a web-based pasewsst case generator,
which uses the input data domain as the model. Miesns that the tools target use is

with e.g. databases or user input data validation.

Case Maker®by Diaz & Hilterscheid Unternehmensberatung GmbHilso a pair
wise test case generator, but in addition to utiegnput data domain as the model,

it uses also constraints specified by business ruke the business domain.

Conformig Test Generator™y Conformiq generates test cases from UML state
charts, which represent a high-level graphical $esipt. It has to be underlined that
the state charts do not represent the actual systelar test but only the test script,
which means that the tool is more a test scrippedihan a real model based testing
tool.

CTesK, JTesKy UniTESK uses formal representations of softwauirements as
the basis of test case generation. The requirenagatsvritten directly to the source
code with the help of extensions to the programniargguage, and the process of

transforming the requirements into test casestmnaated.

MaTeLoby All4Tec generates test cases from usage moddleo§ystem under test.
The model is created by hand with the editor inetjcand is based on Markov chain

theories.

Qtronic™ by Conformiq automates the test case generatiom fsoftware design
models. The Conformiq web site says that it canornpyML models from several
tools, and analyze and verify the models. This dewpromising, but when tested, the
tool did not support e.g. model import. In additiche modeller tool that was

included in the package did not do anything seasibl

Rave™by T-VEC is used to model and analyze system rements before the

coding begins. The requirements models are them Wsegenerate test cases
automatically. The modelling is done with so-caltebular notation editor that is also
available from T-VEC.

Reactis® by Reactive System is targeted for model basetinge®f embedded

systems, and it generates the tests from Simulenk®Stateflow® models.

20

SmartTesby Smartware Technologies uses the same pairtecbmologies as AETG
and Case Maker do, and the model is the inputdiataain.

Statemate™ Automatic Test Generator™ / Rhapsodyt®rdatic Test Generator™
(ATG) by I-Logix generates test cases from state cluditise system and from UML
state machine. The state charts have to be desigtiethe included designer tool.

TAU Testemy Telelogic uses TTCN-3 as the modelling notatoi generates tests

from it automatically. The models have to be credig hand.

Test Coveby Testcover.com is a web-based service, whikb, AETG, Case Maker,
and SmartTest, uses pair wise techniqgues and heemput data domain as the

model.

TEMA Tool by Research Group on Software Engineering, Institot Software
Systems in Tampere University of Technology is ently used e.g. for S60 Ul
testing. It is based on the use of test modelschvispecify the behaviour of the
system under test from the perspective of tesfling tool is a test case generation
engine and it utilizes commercial tools used inititeistry by extending them for the

purposes of executing test cases generated frammaetels.

T-Vec Tester for Simulink® - T-Vec Tester for MADGER by T-Vec is used mainly
for testing of embedded systems. It generatedtasdrs and test vectors from either
Simulink or MATRIXx models.

ZigmaTEST Tooldy ATS uses a finite state machine based mod&ls) fvhich it
can generate test sequences to cover the stateanmacnsitions. The finite state

machines must be created by hand.

21

3. Deployment of Model Based
Approach Into an Organization

One of the key problems in bringing model basetingsnto any organization is that
the model needs to be created and be involveddamthole software engineering
process, not only in testing. Several researchgs,[4, 5, 13], suggest that testers
would be the ones to create the models used imgediut as said in sectidh6.2,

this approach would require too much skill from testers and thus is not applicable.

In section2.5, model based software development was explaiAétiough the

prospects of it, e.g. automatic code generatioa,tampting, it is not possible to
convert a real organization’s processes from ti@uil software development to
model based software development in a short time®geA simple, yet powerful,

starting point is needed on which the transitimwfrtraditional ways to model based
software engineering can be built on one smallegiata time. The starting point
must be easy to take into real use, and on the btral it must provide at least some

clear cost and man-power benefits to the orgaoizati

3.1 Proposition for a Starting Point

One possible starting point would be to utilize therk of user interface designers.
When designing the Ul, they actually describe hber @application flow goes in the
Ul level. As was said in sectiagh5, the basic idea of model driven development is
that the models act as transformers between diffeseurces and targets. Source can
be a Ul specification, if the document is in a fafnform, and target e.g. a test
automation script. Figure 7 contains a modified Weel, which visualizes how this
transformation fits in to current software engimegiprocess. The model replaces the

system test planning phase completely by automé#tiegrocess.

22

Requirements - Acceptance test planning | Acceptance

specification M d testing

\ Requirements System /
d < Model > v

analysis testing

\ Architecture |_ Integration test planning _| Integration /

design X g testing

Module test
Module | Planning | woqyle

design X g testing

\ Coding /

A 4

A

Figure 7: Modified V-model

The presented approach should not require any &drk from anybody, since the
already existing work of Ul designers is exploiieda new way. The exploitation
requires that a tool is available which can conveit specifications into an

application model, and create test cases from it.

Once the model has been created automatically fnentlesign, the testers only have
to add the test automation parameters into the m@ifecourse, they also have to
execute the tests and analyze the results butidrateady a part of their job. The
adding of test automation parameters is only atone-job so it should not be any
extra burden for the testers. It is also possibl the Ul specifications would be
written in such a way that the test automation pater adding could also be
automated by using a text parser, but this woulgiire a formal way of creating the

designs.

One possibility to write the Ul specifications if@mal form could be to make use
of the use case document template presented irs@ct.1. The flow of events table
in the template can be used to describe the whalesibke it contains user actions
and the corresponding system states. In the caS&®fUI, which contains several
small applications, the design document shouldiidet] into several smaller pieces,

consisting of the small applications, and to onghér level document, which

23

describes how the main Ul works and what are thegtioaships of different small
applications. For example, it is possible to erite¥ messaging application from
various other applications such as camera or imyeer. The higher level, or main,
document would describe the inputs and outputk@fstall applications in a higher
abstraction level, and the other design documehés ihner workings of the

applications.

The approach to the structure of Ul specificatipresented would be formal enough
for the model creation, and in addition to the falism, the levelled structure would
also make the specifications easier to read sineehigher level would not contain
too many details about the inner workings of seteaagplications. If more detail is

needed, a separate, small application specificationbe used.

Because the proposition presented is only a stppmint, discussion about the future

is also needed.

3.2 The Future

In the future, software model should be not onhedper for creating Ul tests, but an
essential part of the whole software engineerirgg@ss. This is visualized in Figure
8, in which further modifications are applied te thready modified V-model (Figure
7). The test cases derived from the models woutdbeoonly for the Ul-level; test

cases could be derived also to all other leveltu@tieg module, integration, and

acceptance testing.

If model driven development, which was presenteskiction2.5, would be taken into
use, the products of software development wouldoeatource code and programs as
such, but models from which the code and testsdcbal easily derived. In short, it
would be possible, if the models were good enotmlautomate every other step of
the software engineering process except for thégdgsart. This would result in

tremendous savings in man-hours, since automatdsiwmuld do most of the work.

24

Requirements| | Acceptance
specification h d testing

v
X
o

Q
[
A

\ Requirements System /
a < Model > v

analysis - d testing

7}
v
Architecture Integration
< » Model >

design h i testing

\ Module Module /
[®{ Model [

design testing
7}
\ ‘ /‘

Figure 8: Further modified V-model

A 4
A

A

Of course, several questions arise when thinkingutautomatic code and test
generation; e.g., whether the code is correct gmin@ed enough, and whether the
code coverage that is achieved with automaticgesseration is at an acceptable level
are among those. These questions are of coursean¢lend justified, but maybe
there is no reason for being worried; as it is saiflL1], the code correctness and
optimization questions were raised already oveyeHys ago when the first compilers
were introduced. The same techniques that areaiseently when compiling higher-
level languages into machine code can be appli¢hbtsformation of the model into
high-level language, and therefore the correctmesgptimization are the smallest

problems the model driven development will face.

The biggest problems are related to the actualogemnt of the model based
approach into a big organization. The wheels of iq $oftware development
organization turn slowly and the processes aresastly changed, which bring great
obstacles into the way of deployment. Also at th@mant, it seems impossible to

automate everything, but the change has to start fomewhere.

25

4. Design and Implementation of the
Model Based Testing Tool

As said in the introduction, a fully functional meddbased testing tool is a
requirement if model based approach is wanted tee tmto full use in an
organization. One of the objectives of this theses to implement a production

quality tool, and the objective is realized in tbispter.

First, the reasons for choosing to implement a new instead of using already
existing one are discussed. After that, the testesy, which the tool is currently
using, is introduced briefly. Finally, the actuastyn and implementation of the tool

are presented.

4.1 Reasons for Implementing Own Tool

A small study of already existing model based tgstools was made in secti@rb. 3.
The common problem with all of the tools studiedswhat they work only with
already existing application models, and this l¢gadsroblems with where the models
come from described in sectiégh5. In sectior3.1, a solution to the problem was

proposed in the form of a modified V-model (Figie

The first requirement for the tool comes from thedified V-model, and is that the
tool has to support converting Ul specificationsatanodel, and the model to test
automation scripts. This has to also work backwamndsrder to make it possible to
export the models created in the tool to Ul speatfons and test automation scripts
created by hand into model skeletons, so that model is a two-way translator

between the Ul specification and test casssvisualized in Figure 9.

26

I Test

Specification N MDdEI > Automation

[3

) 4

Figure 9: Model as a translator

Of course, it has to be also possible to creatarthéel from a scratch, without the

need of any kind of existing documents or designs.

Second important requirement is that the tool basupport the test case generation
as described in sectio®.6, i.e., randomly generated test cases and &sstscfor

which the model coverage is 100%.

Third requirement is related to graphical userrfate of the tool and especially to
usability. The tool has to be so easy to use thatyene who is involved in the
software engineering process can, without too mmiolk, learn how to use it, and

preferably so that they do not even have to readifer manual beforehand.

4.2 Introduction to Test Automation System

The test automation currently supported is baseduwomatic System Test Engine
(ASTE), which is a keyword based test automatian tieveloped in Nokia. ASTE
reads test scripts and sends corresponding comnvimasdata gateway application

to the device under test.

Currently ASTE can be used to test several dife@80 smart phones and smart
phone emulators. Test automation is based on rgnsamipts, which consist of
keywords and their parameters. Keyword could bé¢ thescribed as one user action,

e.g. pressing a key.

There are several different logical groups of kesdgo but the two interesting ones
are action keywords that execute some user actidnvarify keywords that verify
that something is displayed on the screen of thedeinder test. For example, action
keywords can be used to type something on the s@eé select some menu, and
the verify keywords to verify that some text ortpie exists on the screen. There are

also some performance related and miscellaneowsdtey.

27

Traditionally test cases are created by hand aptsdior ASTE. An example test
script is presented in Figure 10.

1.1 Capture Image (H#O0000011

Test ohjectives:
Thiz use case defines the steps for capturing image in 260 cameras application

kw_App3tate SCameraf®
kw_PressHardkey < >
v VerifyText SOptionsg
v VerifyText SBack§
kw_ PressHardkey < >
v _VerifyText 5Yess
wuw_VerifyText 5SNof
kw_PressSoftkey 5Vesf

[B R L e

- - -
W WM O W

Figure 10: An example test script

The example test script looks like the followingrfr the ASTE point of view:
1) Go to application state camera.
2) Press the centre selection key
3) Verify that texts “Options” and “Back” actually estion the screen
4) Press the clear-key
5) Verify that texts “Yes” and “No” actually exist dhe screen

6) Press the “soft key” “Yes” to exit

Depending on the results of the verification keys#grASTE sets the test case to
either passed or failed. A log is also written iiML-format, where the failures can

be seen in a user-friendly format.

4.3 Previous Work

In [8], a predecessor to the tool developed in thissis was implemented. The

predecessor was based on the use case approacibatbst sectior?.4.1. Because

28

of that, the previous version and the version imaeted in this thesis are
fundamentally different; use cases differ radic&gm the application model used as
the basis of this work.

Following features were implemented in the protetyp

Use case design

Use case import from use case documents

Prioritization of different paths in the use case

Test case generation and execution

As can be seen from the list, the previous versigpported only use case models
(section2.4.1), and application models were not supportedllaUse case models
were not allowed to contain loops, and thus thedase generation was done with a

simple but appropriate depth-first search (DFSatigm.

Many of the features implemented to the tool duthig work are based on the future

improvement suggestions in [8]. The suggestionsided e.g.:

Use case export to use case documents

Support for test data

Multiple use case support

Ul improvements

The previous version was a good starting pointtfies work, but this version was
designed and implemented entirely from a scratt¢te design and implementation

are presented next.

4.4 High-level Design

As the goal of the design was to keep the tool adutar as possible, the architecture

was divided into four main blocks:

29

» The actual model, which is at the core
* File input and output
» Test case generation and execution

» Graphical user interface

The architecture is visualized below in Figure A.can be seen from the figure, the
architecture is straightforward and allows highelewf modularity. For example,
every single part of the tool can be changed tdremeasily because the parts are not
too deeply tied to each other. It is possible td file inputs or outputs easily, the test
generator can be changed to produce test automatiopts for a different test

automation system, and the GUI can be changedjt@&ommand line interface.

Engine

File Input f------------1----1 ASTE Log File

Model

Model in HhL- - Ll Specification
format Document

U R — |

Test Generator File Qutput - Iﬁst case

Test Executer

Lvi

Test System

Figure 11: The high-level architecture

Since the graphical user interface (GUI) is an misslepart of the tool and because

modular architecture was wanted, model-view-colgraMVC) design pattern was

30

used to build the relationship between the actogire (as shown in Figure 11) and
the GUI:

* Model is the representation of the data that th@iegtion uses. It is possible,
but not required by the design pattern, that thelehalso encapsulates the

data access functions. The encapsulation is uskisidesign.

* View is typically the GUI element (as opposed tocemmon misconception
that the view is the whole GUI) which shows the elokh some, specified
form. In this case, it could also be thought tHa different file formats,
which are outputted and inputted, and the generstetl cases, are just

different views of the same underlying model.

» Controller processes and responds to events andndielg on those may
change the model in some way. Events are usudlyeceto GUI and user
actions, but also other kinds of events are passiéb. a file changes on the
hard disk and controller is monitoring it, this dsato modifications to the

model.

The clear advantage of this design pattern is that different components are
separated so that the model is in no way deperadeghe view or the controller. This

allows a highly robust and modular architectureiciwlwas also one of the goals.

Different parts of the architecture visualized iigufe 11, i.e., the model, file input

and output, test case generation and executiothen@Ul, are presented next.

4.4.1The Model

The architecture of the actual model is visualimedrigure 12. As seen from the
picture, the model consists of name and generarig¢ion of the model, pre- and
post-conditions (at what state the system must benvthe execution of the model
starts or stops), test data and a graph that has@ data structure to store the actual

finite state machine.

31

Edge
Model J,f’ Probability
Marne o
Description [______ = ’
Pre-condition Graph .
Postcondition ., Event
Test Data —
:ﬂDeacnptmn
Test Automation
Flags

Figure 12: The model architecture

4.4.1.1 THE GRAPH
The data structure used for storing the finiteestatichine is directed cyclic graph

(DCG), which means that every transition is traabhs only into one direction and

that graph may contain cycles. An example graph EKgure 13.

Figure 13: An example graph

32

Graph contains user and system events, and t@msitbetween them. When
comparing the example graph presented in Figurevill the example finite state
machine from Figure 2, it can be seen that thelgimpot a pure finite state machine,

since the transitions contain probabilities, whacé borrowed from Markov chains.

The probabilities are used to simulate a situatitrere user e.g. when in idle-state
presses the menu-key 80% of the time and otherd@ybined 20% of the time. This
allows long-term testing which simulates actual hanbehaviour as accurately as it

is possible by mathematics.

Events contain description about what the evein test automation keywords as
described in the previous section. Because somegtimeight be wanted that events
are enabled or disabled dynamically when certaimditimns are met, the events also
contain so-called flag variable. The flags take greph a little more away from the

pure finite state machine, since the external dawdi, which enable or disable

events, is a feature from the state charts. Thabtliigy of events is visualized in

Figure 14.

Figure 14: Events disabled

There exist two types of flags: static and dynar8tatic flags are used when a certain
application feature needs to be turned off fordheent test case; e.g., it is possible
that it is wanted to test same model with severtiergnt devices, which either

contain or do not contain a camera. By settingsfldgpending on the device, it is

33

possible not to allow creation of any test cases$ tise camera. One good example
could be the sending of a MMS-message, where théehupuld contain an event
where picture is taken with the camera and them lsgrtMMS which is clearly not

possible if the device under test does not corgtaiamera.

Dynamic flags can be used for various tasks, buhigj#heir intended use is in the
case of changing application settings. For examplethe S60 Voice Recorder
application it is possible to change the qualitytted recording to either high or low.
Certain events in the model could contain someae&imation that is dependent on
the quality being either one. By using dynamic $lagt is possible to disable
transitions to events that are dependent on egh Quality when the quality is

changed to low at some other event.

4.41.2 TEST DATA

Test data is used when it is wanted that the tgsin@ation parameter contain several
different options. For example, if a test casee&ing that certain file is opened and
correct message, “File opened successfully” ore*Bipe is not supported!”, is shown

to user, it would not make sense to manually changgarameters into desired ones
if it is wanted to test a set containing sever#fedent files of correct and not correct

types.

In the tool, the test data is stored as tablekemtodel. An example test data table is

presented below.

Table 1: Example test data
Key word Verify word

CorrectFile.doc File opened successfully

CorrectXMLFile.xml| File type is not supported!

CorruptFile.doc File type is not supported!

Now, instead of setting test automation parameteasually, e.g.kw_OpenFile
CorruptFile.doc and vw_verifyText “File type is not supportedthe test data is

added by replacing the parameters with the testslatentification string. The tool

34

will automatically generate three separate tests;ass there are three separate entries

in the test data table.

Of course, if more than one test data table exéd$®, more test cases are generated.
Number of test cases is defined by the number s§ipte combinations of test data.
For example, with one table with three entries andther table with two entries

would lead to six different test cases.

4.4.2File Input and Output

As one of the tool's main functions is to work asmediator between the Ul
specification documents, models, and test casesinfput and output functions are

extremely important parts of the tool.

The actual model needs to be stored to hard disknme format. Since flexibility is a
desired feature, extensible mark-up language (XM&}¥ chosen as the format. The
XML'’s structure is based on XML transition networ#lefinition (XTND)
specification [16] with some modifications in ord&r enable the storage of test

automation and other, general information.

It was chosen that Ul specification documents caty doe imported from and
exported to RTF-format. The decision was made mxaas an example, Microsoft
Word’s document format is closed, and reading lialoéy would be either a difficult
or a costly task. RTF-fles can be saved with almmsery word processor, and
importing and exporting them is easy even whengusjpen source tools. The format
of the Ul specifications should be the use caseument template presented in
section2.4.1. For now, it should be enough that single lisagaplications can be
imported from the specifications and that modelpresenting single small
applications can be exported to Ul specificatidrager on, the possibility of the multi

level Ul specifications presented in Cha@eshould be taken into consideration.

One important feature of the tool is importing ofisting test cases to models,
because it may be possible that there alreadyserigen thousands of test cases
generated the traditional way. This feature help®tawhen the organization is
moving towards model based testing, since the &dtl tases can be easily used as

seeds when starting to build the use case or apiplic models. Since ASTE is used

35

as the test automation system, the test casespoeted from the ASTE log files that

contain all the information needed.

4.4 .3Test Case Generation and Execution

There are two ways to generate test cases, eyhgererating random path from the
graph by using probabilities (as shown in Figurg dbby generating a path which
visits every event in the graph (Figure 16). Theuleof path creation process is a
simple list of events visited during the path. Sirevents contain the needed test

automation information, the test script can be gated easily.

Figure 15: A random path

Figure 16: A path containing every event in the grph (events visited twice are marked with grey
colour)

36

Test scripts are generated as test case filesghandsent to execution in ASTE via a
socket interface. It would also be possible to s#rel test scripts to ASTE one
keyword at a time monitoring the execution proaeggal time, but that possibility is

not used since the tool's main target is test gaseration, not execution.

4.4.4Graphical User Interface

The most important requirement of graphical useéerface (GUI) design is good
usability. International Organization for Standaedion (ISO) defines usability in
standard 9241 part 11 as “the extent to which dyrbcan be used by specified users
to achieve specified goals with effectiveness, cedficy, and satisfaction in a
specified context of use.” According to usabilitpnsultant Jakob Nielsen [17],

usability is composed of the following factors:

Easy to learn

» Efficient to use

» Easy to remember
* Few errors

* Subjectively pleasing

As the ISO definition says, the users of the toul ¢he goals they want to achieve
must be defined first in order to achieve good iiggabThe users of the tool can be

narrowed down to two groups: Ul designers and teste

The goal of the Ul designers is to be able to detlig Ul from a scratch, without too
much hassle and extra work. The designers do nat wabother with test related
details, such as test automation parameters os,flgd in the optimal situation, all

irrelevant GUI elements should be hidden from tesighers.

Testers’ goal is to be able to easily generateexadute test cases from the already
existing models. As that implies, in general testrould not have to create models
themselves from a scratch, but to use the workefdesigners and only add the test
automation related parameters to the model. Howef/¢he testers want to create

models, it should be possible also for them inasydo use way.

37

4.5 The Implementation: KENDO

The model based testing tool, KENDO, was implenmgnéstirely with Java

programming language using IntelliJ IDEA 5.1 int#gd development environment.
Java was chosen as the language because of theipiyrfeatures it offers; compiled
programs consist of so-called byte code that is aonthe Java Virtual Machine
(JVM), as opposed to native assembly code prodbgee.g. C- or C++-compilers.
Because of JVM, programs coded with Java can bemnuany operating system for
which the JVM is available.

Several outside libraries were needed in ordetacnminvent the wheel:

» JGraph is an open-source Java graph component, andugeid not only as
the actual graph model, but also as graph visuadizan the GUI. One of the
main reasons for choosing this component was thiat extremely flexible;
with the component, it was possible to modify almegerything from the

model level to the visualization to suit the neefithe tool.

» Apache Velocityis a template engine, which permits the use obwepful
template language to reference objects definedawa tode. It is used for

saving the models to XML-files.

» Apache Jakarta Digesteris used for loading the models from XML-files. It
is a rule-based XML reader. Defined rules triggefired actions when
certain XML elements are encountered by the redi®rexample, in the tool,

new objects are created and their properties setgithe XML reading.

* iText is mainly a library intended for exporting PDFe8I from Java, but it

also supports RTF-file export and that is whatlitvary is used to perform.
» JGoodies Looksis used to enhance the Ul of the tool.

» ASTE library was taken along in order to use the soaketface to send test
cases for execution. The interface uses its owtopod, and the ASTE library
provides simple methods for using it without theedheof writing complex

socket related code.

38

* Apache Log4jis used for logging events that happen during giegram
execution. Those events include e.g. unrecoveete situations, warnings,

and exceptions and, if enabled, debug statements.

In addition to the libraries used, the source colEENDO consists of 70 classes,
which total to approximately 11500 lines of cadehe lines are divided between the

different modules as follows:

GUI uses 6000 lines of code, which contain e.g.nbemal windows, file

trees, tool bars and menus, as well as the grappaoent.

* The model consists of 3000 lines, which includes st data, flags, and the
graph representing the finite-state machine. Méshe lines, approximately

half, are used for test case generation algorithms.

» Ultility classes, e.g. file input and output and ®stem interface, are made of
2300 lines of code.

* The main function, which starts the program execytitakes 250 lines of
code. It contains e.g. command-line parsing, splasikdow and initialization

functions.

The implementations of the test case generationtlaadjraphical user interface are
presented next. Requirements for them were predentsections4.4.3 and4.4.4,

respectively.

4.5.1Test Case Generation Techniques

The most essential part of KENDO is the test casation, where the model is
transferred to a test script runnable by ASTE. T script is created by traversing
the graph through some path from the start evettiedcend. Paths can be created in

many ways, but the most important of them are:

2 Although all of the source code lines were writhgrthe author, some of the classes are baseckon th
previous version of the tool. In those cases, riterfiaces were taken from the previous versiorabhut
of the functionality was rewritten from a scratch this version.

39

* Random path based on the probabilities definedemtodel
» Path visiting all transitions in the graph

* Path using multiple different application models

Creating the paths is not always as trivial asitngls. Problems arise when the graph
contains so-called back loops. Back loop could & Hescribed as a transition from
a lower level in a tree back to a higher level. Taek loops mean that traditional
graph traversal algorithms cannot be used, becalufige infinite loops they cause
when it is wanted that the traversion starts frodeined point and ends to a defined

point, as is the case with test case generation.

If a human looks at the picture, it is easy to deiee a path that visits every event
from the start event to the defined end event withHooping infinitely, but with
computers, it is a completely different case. Tihaph traversal methods used in
KENDO are described next.

4.5.1.1 GRAPH TRAVERSAL

Test script creation in KENDO is simple. Eventsigraph are visited from the start
event to the end with some graph traversal metaiod the test automation keywords
found in the events are written into the test gciip the order in which they are

found. The test script is finalized by writing headields required by ASTE into it.

A simple traversal method is used when a randotn psing probabilities is wanted.
The graph is traversed from the start event toetie by selecting the transitions to

follow from each event randomly. The following atigom is used:

1) In the case that the model contains static flageove the events they

disable and the transitions to/from those events.
2) Go to the start event.

3) Record the keywords in the current event and plssieét dynamic flags

on/off.

40

4) Examine the events where it is possible to go ftbencurrent event. If the
events are disabled by the dynamic flags, remoeetrémsitions leading to

those events from the list of possible transitions.

5) If only one outgoing transition in the list of pdde transitions, go to the
event where the transition leads and go to 3). dfemthan one outgoing
transition in the list of transitions, choose orfetltem by using random
number generator and the probabilities of the datgtransitions, go to the
event where the randomly chosen transition leadsand go to 2). If no

outgoing transitions, go to 6).

6) Currently in the last event, record the keywordd @ante the test script.

A more advanced algorithm is needed when 100% mooletrage is wanted, i.e.,
that the path goes through every transition ingitagh. The problem is known as the
Chinese Postman Problem (CPP) [18]. A similar @oblvisiting all the nodes in a
graph, is known as the Travelling Salesman Prolfles#) [19], but it is not as useful
in model based testing as CPP. This is becausegsreral it is more useful to know
that every single user action possible leads tot@thrystem response in contrast to

knowing that some, randomly chosen user actiorstie#he wanted result.

Many papers published on model based testing peodiderent methods for graph
traversal, but in general, all of them fail to metsan actual working solution for the
CPP. For example, in [2] there is a nice and higlell collection of theories of graph
traversal techniques, but it does not show in any how the techniques presented
should or could be applied to real life model batsssting applications. In contrast to
high-level presentations, in [20], an out-of-the<tamd detailed Java implementation
of an algorithm, which solves the CPP, is presentéé description of the algorithm
is out of the scope for this thesis, but the presskimplementation is used with some
modifications in KENDO. It was thoroughly testedaththe algorithm actually

produces usable paths.

Since the algorithm works only with static grapt2®][and the graph model in
KENDO may contain flags, which enable or disabkensitions during the graph

traversal, a way is needed to transform a possijphmic graph into several static

41

graphs somehow. This is achieved with a simple rdlgo; every possible
combination of dynamic flags is created and as nraw graphs there are, different
combinations are created. After that, every grapdated is traversed with their
corresponding flag combination and events are edahlir disabled statically
according to the combination. When the creatiothef new graphs is done, CPP is

solved for each of them one by one.

4.5.1.2 MULTIPLE MODELS

The ultimate goal of bringing model based testintp iS60 software engineering
process is to model the whole S60 Ul. There isamss in creating one extremely big
model of the whole Ul, since already the smallgliaptions can be complex and the
state space explosion mentioned in seclBdh2 is one of the biggest problems of

model based testing.

Solution to problem is to make an abstraction & thodel so that instead of
displaying all of the states the application camainly one state that represents the
whole application is displayed. The new state dostat least one input and one
output, which represent the start and end stateseofibstracted model. Transitions
can be added to and from the state normally. Thihe implementation of the Ul
specification proposition described in ChapserThe abstracted state represents a
small application, and the model of the whole S@0cbhtaining lots of different

small applications represents the high level Ucgmation explained in Chapt&:.

In addition to the mentioned input and output, #pplications may contain several
other inputs and outputs because it is possiblettieaapplication can be entered and
exited from different points. Good example of thiehaviour is the sending of
multimedia messages. When writing the message feorscratch, the MMS-
application is in the normal initial state (Figut&) where an empty text field is
visible. It is also possible for the user to takpieture with the phone’s camera and
select “Send as MMS” directly from the camera-aggilon. In that case, the MMS-
application is entered to a state where the pictaken is already attached to the

message (Figure 18).

42

Multimedia Multimedia L "
X Fre Page 1/1 Page 1/1
A 0kB \a abc 0 ~
to: '
subject i subject
|
|
| AL KNS
I A
options Close options Close
Figure 17: MMS from a scratch Figure 18: MMS from the camera

As an example, the abstraction is visualized wigufe 19 and Figure 20. Figure 19
contains an extremely simple example MMS model,cwistarts normally from the
creation of a new MMS in the Messaging applicatiout, it can be entered also from
the Camera application. The model can be exitegeeihormally or back to the

Camera application.

Enter from
canera

Create new Aftach a
MHS picture

Exit to
canera

Figure 19: An example MMS model

Figure 20 contains the abstraction of the preseteld model. It has two inputs and
outputs, just like the original model. As can bergsethe abstraction hides many

details, and improves the readability and usabditthe model.

43

Camera —={] [1— Camera

MMS

Mewr —{] [F—= Mormal exit

Figure 20: An example MMS abstraction

The test case generation when using multiple madedsnilar to the case with only
one model, as the same algorithms are used indasths. Only difference is that the

wanted input and output have to be considered.

4.5.2Graphical User Interface

The graphical user interface of KENDO is preserniteBigure 21. The main GUI is

divided into two tabs; the design panel and thé tes panel. Design panel is the
more important one of these two and only it will discussed, whereas the test run
panel only contains necessary components to execany test cases in a row and it

will not be handled at all.

The most important parts of the design panel seeggthph editor, which is located in
the upper-right part of Figure 21, and the eveitbedn the lower-right part. Graph

editor allows following functions:
* Insertion and removal of events and transitions.
« Optimization, or automatic event aligning, of thagh.
» Zooming of the graph.
» Cut, copy and paste operations on events and tiansi

* Normal undo and redo operations.

44

£ Kendo - (No filename)*
File Tools Model Help
Design Panel | Test Run Panel

[Usecases

[Gl 2@ Bl KT NG Q |Nuuittures ~ | Optimize graph | Execute test in ASTE

[] cCalculator digits.xml

[] Capture Image.xrl
[] Canwerter menus.xml
] Date formak kexts xml
|] Fast swap test.xml
|] Flaghesti.xml

Figure 21: KENDO GUI

When user selects an event in the graph editopriaperties are opened in the event
editor.

The event editor is located at the lower part @ @UI. It contains separate editors
for the description, test automation, and flag peaeters. Description is edited with a
normal text field and test automation and flagshwiébles. The description, test

automation, and flag editors are separated tordifitetabs in the event editor.

4.6 Future Improvement Suggestions

In the future, a lot of effort should be put intagroving the version control of the
models, which means controlling the model changesnwe.g., the Ul specification
changes. Currently, the import functions of thel wimply rewrite the whole model
instead of only the changes, which is not desiraditaation because the test
automation parameters added to the model will Isé doiring the import. A lot of
thought should be put to this feature since itSseatial in the situation when it is

wanted that the model be in harmony with the spetibn.

45

In addition, the problem with state space explosiescribed in sectioR.6.2 should
be studied more and this part of the tool improv@atrently features such as test data
support, flags, and usage of multiple models aipehg in this matter, but a lot of

room for improvements still exists.

46

5. Analysis

In this chapter, the model based testing tool imgleted in this thesis is analyzed in
order to gain some information and knowledge whretthe approach taken is towards
the right direction. Since this thesis is contimato previous work, the differences
between this and the preceding thesis are presérgednd the impact of the changes
is discussed. After that, the results achieved witidel based testing are compared to

the results achieved with traditional, manual tegti

5.1 Comparison to Previous Work

In [8], a use case based approach to automatedntisgace testing was presented. It
included also a predecessor to the tool designddraplemented in this thesis. The
purpose of this section is to compare the work donthis thesis to the preceding

thesis.

5.1.1Differences to the Previous Work

The biggest difference between this and the previeork on the same subiject is in
the overall approach taken to model based testinN@], use case approach was used.
As explained earlier in sectioR.4.1, use cases describe some functionality of a
system from the user’s point of view. The use cas@scontain different paths, but in
general, they consist of a direct flow of user aggtem events due to their nature,
without the possibility of the flow jumping e.g.d¥avards or to a different path. This
approach sets restrictions on the possible scemasioce, e.g. the modelling of a
whole application is not possible because of tistrictions in the flow control. In
addition, use cases are for modelling of simple pratise user actions, not whole

applications.

47

The approach taken in this thesis conforms moré thié ideology of model based
testing than the use case approach used beforgao®henplemented can be used to
model entire applications at the user interfacesllewhich possibly allows more
thorough testing of applications since there isieed for lots of separate use cases to
cover the functionality of an application; a settekt cases covering the whole

application can be generated from one model.

The differences in approaches are not the onlyofasthich affects the test case
generation since the tool implemented in this ghbsis also several other advantages

over the one implemented previously. These areoegglnext.

5.1.2Advantages of the Current Tool Implementation

The following features and improvements were neadedder to enable the usage of

the true model based testing ideology:

* The previous version was able to generate tessaaseering all the paths in
one use case and prioritize them to high, mediungw priorities. Test case
generation was based on a simple DFS algorithngiwivorked well because
no loops were allowed. The current version can ggaeone test case that
goes through every transition in the model by usingnodified Chinese
postman algorithm, reaching 100% model coverage. atso possible to use
probabilities to create test cases randomly to kiteuhuman behaviour.
Because of the 100% model coverage it is possibleompare the code
coverage achieved with model based testing to tverage achieved with
manual tests and thus gain knowledge of whethentbdel based approach
has advantages over traditional testing methodsiadr The methods are

compared in the next section.

» The possibility to use test dateas added, which means that the work of the
testers becomes easier because they no longetoeeiie many separate test
scripts to, e.g., test such a case as describedcition4.4.1.2. The test data

also reduces the number of states required in plicapon model.

48

* In order to reduce the state space explosion, wiicbhne of the biggest
problems of model based testing as described itiose2.6.2, flags were
added to the model. Flags can be used to, e.ggmire the same model for
different devices (the camera example in sectighl.1) which means that

fewer states are needed to create the model.

* The usage of multiple models when creating the ¢ases was added to the
tool. This allows the possibility of creating onig model representing e.g. the
whole S60 Ul from smaller application models. Babllows the possibility
of model import from and export to Ul specificatoiconforming to the

proposition presented in Chapg&r

The changes done to this version allow the usagkeofull potential of model based

testing, in contrast to the previous version, whias basically a helper for creating
use case based test cases. In addition, some é&éahees added aim to reduce the
problem of state space explosion, which can proved a valuable feature in the

future.

In [8] it was shown that a graphical method of tireptest cases is a lot faster than a
manual one. The next section aims to prove thateibdsed testing is a technique

that brings financial benefits to an organizatibitsi whole power is unleashed.

5.2 Comparison Between Testing Methods

In this section model based testing is comparedhttitional, manual testing in terms
of the code coverage reached. At first, the usetidavironment is explained, and

after that, the test methods and the results theyuced are analyzed.

5.2.1Used Test Metrics

There are many different ways to measure code ageerand the way used during
these tests was the so-called decision coverageéchwhmeasures conditional
expression evaluations (true or false), case bemah switch statements, exception

catching and control transfers. For example, letarsider the C code below:

49

int positive(int integer) {
if(integer >= 0)
return 1;
el se
return O;

The decision coverage criterion is only met if tlnection is called with both negative

and positive integers because of the if-else block.

5.2.2Test Environment

Comparison between traditional, manual testing muodiel based testing was done
with the S60 applications Image Viewer and Voicec&der by the Nokia S60
multimedia testing group. The Symbian code wasunsénted using CTC++ code
coverage analyzer by Testwell (http://www.testviigll. CTC++ uses source code
instrumentation, which means that special instruateon statements are added to the
source code during pre-processing. After that,siierce code is compiled and the
CTC++ run-time library is linked to the instrumediterogram. During the actual
program execution, CTC++ collects the code covetagg@ry in memory and writes
it to a data file after the execution is over. Tata file can then be used to analyze

the actual code coverage parameters.

Manual tests are executed by testers based oncassts created from use case
descriptions. The use case format used differsétla bit from the one described in
section2.4.1. The use cases contain test objectives (“Trest an image opens
correctly”), required test data (“One image of asypported image format”),
preconditions (“There is one image available onghene”) and the execution steps
which contain the description of what to do (“Op#®e image”) and what the
expected result is (“The image is opened corrertlyhe tester’s job is to read the

test cases, push the buttons on the actual dandeseport the results achieved.

The models used in this comparison were createtidng by a tester because no
suitable user interface design documents were ablailin the organization at the
time. Although this method is against everythingdsabout model creation

throughout this thesis, it is acceptable within stepe of this comparison. The test

cases were generated from the models randomlyeaeduted automatically for 8

50

hours. The automatic and manual executions carobmpared, since the test scripts

used when automating the tests are based on theaftast cases.

Next, the applications used in this comparisonpaesented.

5.2.2.1 IMAGE VIEWER
Image Viewer application is used to view imagestbea phone. Images can be
captured with a camera, received by multimedia agess, or transferred by other

means to the phone.

The application contains quite a few features,ntwst important being the ability to
send images via multimedia messages or throughtdgitke or infrared connections.
When sending images via messages, the image isbjyosssized or repacked in
order to reduce the size of the image file due tdtimedia message restrictions.

Other connections do not require altering the imagey way; it is sent as is.

Other features of the application include settingraage as the background image of
the phone and rotating, zooming, renaming and idgl@n image. Images can also be

browsed with the application.

x oA (E0005H - x A, (E0005H

Send 1

Set as background im...
Assign for Contact §

Rotate 4
Zoom in
JI0I0IC Full screen
Options Back Select Cancel
Figure 22: Image Viewer Figure 23: Image Viewer options

The Symbian source code of the application is é@didnto 16 source files that

contain 287 functions and 7741 lines of code. Tinalmer of lines is high in light of

51

the apparent simplicity of the Image Viewer. CTCitlentified 1840 measurement

points for code coverage measurement.

5.2.2.2 VOICE RECORDER

Voice Recorder is used to record short sound &tga the phone’s microphone. The
application can only be used to record new sours;clt is not possible to record

more sound to previously recorded sound clips. Aeotrestriction applies to

playback; since the application is a recorder, dhly newly recorded clip can be
played back. Other playback control functions idelupausing and stopping, fast
forward and fast reverse. The volume of the plaibzsmn also be set. The recording
guality can be either high or low. The latter is &®nding the recorded clip via a

multimedia message, because of the restrictiotisisize of multimedia messages.

After the recording, the clip is automatically sdveither to the phone’s internal
memory or to a memory card. It is also possiblednd the clip immediately via a
multimedia message. Clips cannot be deleted froenrédtorder directly; for that
purpose, some form of a file browser must be ubedddition, the playback of old

recordings is done via a browser.

(&) (&)
X !i Recorder X !i Recorder

Memo(98) > || Memo(98)
m 26/07/2006 - 12:40 PM 26/07/2006 - 12:40 PM
Length 00:03 Length 00:17
] (o]
Recording L«
0 01:00 0 00:17
™ \ m [|
Pause Stop Options Exit

Figure 24: Voice Recorder recording Figure 25: Voice Recorder when recording finished

Voice Recorder is a simple application, but stk tsource code base is large; it is

divided into 32 source files that together contaé# functions and 9019 lines of

52

code, which is more than the Image Viewer applicatias. 2234 measurement points
were used by CTC++.

5.2.3Results

The results of the comparison are presented ineT&blThe table contains the

execution time used and the code coverage peraertaghed with both model based
testing and the traditional method. The measuratk amverage percentage, which
tells us how much of the application source codexecuted during testing, is used as

the comparison figure between the two methods.

Table 2: Results of the comparison
Model

based |Manual
Application |Figures testing [testing

Image |Execution time 8 48
Viewer

Code coverage 71% 79%

Voice Execution time 8 15
Recorder

Code coverage 55% 60%

The table shows that the code coverage achievddmaidel based testing is not far
from the coverage achieved with the traditionalhrodt This is an interesting and a
promising result, especially when considering that models were built by hand, in
contrast to being imported from any design docusienhis means that the models
might contain small errors or that they are notcamplete as they could be. In
addition to the manual creation of models, two pthig factors that affect the code

coverage reached are:

« The models do not contain any inputs from or owtptd different
applications, in contrast to use cases that mightain, e.g., a case where the
image in Image Viewer or the sound clip recorde¥aice Recorder is sent
via MMS. In these cases, the corresponding apphicatode is not executed

when using model based testing.

53

* The use cases contain cases that are not purantsgace tests; e.g., they
may test performance and memory consumption. Tlie@ns that more of the
application code is executed with the tests basethe use cases since the

model is only a representation of the user interfanctionality.

What is even more interesting than the code coeerathieved by model based
testing is that a huge number of man hours werd fmethe execution of traditional
tests. The model was executed with KENDO complegeitomatically for 8 hours

with random traversion of the graph.

The two testing methods can be best compared witle coverage / execution time
ratio, which tells us how many percent the codeecage percentage increases for
every hour used for test execution. For the Imagaver the ratio is 8.9 for model
based testing and 1.6 for the traditional methdaickv shows a clear difference and
advantage for the model based approach. The @tidsice Recorder show the same

trend, as they are 6.9 for model based testinglahtbr the traditional method.

Because the test execution with KENDO was completetomatic, the execution did
not cost anything in contrast to the man hours disethe traditional test execution.
It is also considerably faster; in the case oflthage Viewer, almost the same code
coverage was reached with 8 hours of automatimtesis with 48 hours of manual
test execution. This means that over one week ok wan be reduced to a simple,

overnight, automated task.

When comparing the time used to create the tesscasd the models the advantages
of model based testing become even clearer, ifipesBoth of the models were
created in approximately 8 hours, and debuggedriother 32 hours, which makes
the total creation time of approximately 40 houds. exact figures are available for
the manual test case creation, but it was apprdeunthat the absolute minimum is
one hour per test case, and since about 150 tess @ae used per application, the
total manual test creation time is approximatel® bdurs. Model based testing is a

clear winner also in terms of the man-hours usestad-up the testing.

Because the time spent on both test case creatibteat execution is known on both

testing methods, it is easy to compare them alsgeanly basis. About 30% of the

54

manual test cases are run with each software msle@sich are bi-weekly. This
means that in the case of the Image Viewer, abOuh&urs of testing will be
conducted on 26 weeks of a year, which totals t601Bours per year of test
execution. Altogether, about 1450 hours is spentmnamual testing per year when
summing the execution time with the time spent est tase creation. The same

figure for the Voice Recorder is 280 hours per year

By using model based testing, the time spent omingesactivities would be
significantly lower. With the same testing cycles.; bi-weekly, the testing would
take about 248 hours per year, including the madeation, and would be more
thorough because of the fact that only a subsehafual test cases are executed
during the bi-weekly cycle. The full set, which cbad the higher code coverage in
the comparison, is executed rarely. It also hadeoremembered that the test
execution is fully automated in the case of mod@eda testing. The yearly figure for
model based testing does not contain the maintenainthe model; it cannot even be
estimated, since far too little experience on thieject has been gained. If the goal
presented in sectiad® 1, automatic model import from user interfacecssations is
reached, then the man-hours required for the mo@eltion and maintenance would
be reduced. This means that model based testintglleeueven clearer winner, and it
is a shame that this could not be proven empiyiadlie to the lack of formal enough

user interface specifications.

The above calculations show that by using modeé¢dbdssting, approximately over
one thousand man-hours would be saved per yedwreitdse of the Image Viewer.
The Voice Recorder did not show as much man-howings, but still fully

automated testing is significantly cheaper than &80rs of manual testing. These
figures show clearly, thanodel based testing reduces the time, labour andegno

needed to perform the testing activities

55

6. Conclusions

In this chapter, the results obtained from thisknere summed up by reviewing and
assessing them, and explaining how they are erploiturrently in Nokia
organization. The chapter is concluded with a dismn about the future research

possibilities.

6.1 Results

The comparison made between model based testindgragitional, manual testing

showed clearly that the former is the cheaper asief method, and almost as
effective in terms of the code coverage reachdatiesatter one. Model based testing
was a little bit behind the traditional method inde coverage, but the possible

reasons for this were explained in secto 3.

It was approximated that on yearly basis, modeétdssting would save significant
amount of man-hours per S60 application, and incdse of the Image Viewer, over

one thousand.

6.2 Assessment of Results

The results obtained in the comparison betweemgestethods should be similar in
other cases as well, as long as the system unsteista rather simple user interface.
The code coverage reached of course depends oqutdagy of the model, and
nothing can be said about the manual test caseageen other systems since it
depends heavily on the quality and the thoroughoésise test cases. In the case of

other S60 applications than Image Viewer and V&eeorder, the results in terms of

56

the code coverage should follow the results ackienehis work because of similar

qualities between the manual test cases.

The man-hour savings calculated in secbah 3 are approximations, but the figures
used as the starting values were more under- tharestimations. Similar

approximated results should be achievable withrathses as well.

6.3 Exploitation of Results

Currently the tool implemented in this work is iontinuous use in Nokia S60
multimedia testing group, and the usage might akls@xtended to other groups as
well, but the future is not clear at this stagee Hromising results obtained in the
comparison of testing methods should be a cleavaifpr the organization that the
model based approach should be exploited even nam@,that time and money

should be invested into it.

Currently it seems not possible to deploy the mobated approach to the

organization with the starting point suggested imaer3, which uses the user

interface specifications as the basis for the modstion. This is because the change
would involve too many people, and in an organaratis big as Nokia, it seems to be
an impossible task to change the ways of workirrgsecthe department borders. This
is mainly because a part of software engineerimggss as big as the user interface
specifications will not be modified unless a goedson exists, and no good reason

has been introduced yet. Hopefully the resultsinbthin this work could be one.

Another reason for the difficulties in deployingetmodel based approach is the lack
of productization of the KENDO tool implementedtims work. It is hard to sell the
approach to different departments when the toolclwis supposed to be used, does

not contain any documentation and on the top dfighstill quite hard to use.

The difficulties are a shame, because in this wbrkas proven that model based
approach brings benefits into the user interfagelléesting, and the only thing left
missing was formal enough user interface speci@inatfrom which the models could
have been imported. If those were available, teparison between testing methods

would have been more precise because the modeldd wave been accurate

57

representations of the user interface, in conteagte hand-crafted models used in the

comparison.

6.4 Future Research

The scope of this thesis was on the user interiasl, and as said in sectid@?2,
models should be brought to other levels of soféwamgineering as well. This has
some problems, as the user interface approachisseedpecial case and cannot be
generalized to other levels easily because ofithpligity of the finite state machines

used. The other levels require more complex mag@klisentations.

At least the linking of the architecture design #melintegration testing with a model
should be researched thoroughly, and added tootiiemplementation. The module
design and module testing phases can also be @fudlig currently it seems that
adding those to the same tool is not a good ideaause it will probably bloat the

models into a non-usable level.

Model based testing is an excellent tool for cartasks, e.g. for small applications,
embedded systems, user interfaces and state-rgtansy as stated in sectidr6.1,
but it cannot be effectively used for everythingr Example, module design and

testing seem to be too complex to be integratedthe model based approach.

58

References

[1] Fewster, M. & Graham, DSoftware Test Automatiofdarlow, United
Kingdom: Pearson Education Ltd, 1999. 574 p. ISBRDQ-33140-3.

[2] Robinson, H.Graph Theory Techniques in Model-Based Testit6]
International Conference and Exposition on Testi@pmputer
Software, Los Angeles, California, USA, 1999.

[3] Beizer, B.Software Testing Technique®® Ed. New York, USA: Van
Nostrand Reinhold Co, 1990. 550 p. ISBN 0-442-206672

[4] El-Far, 1. K. & Whittaker, J. A.Model-based Software Testint:
Marciniak, J. (ed.), Encyclopedia on Software Eegiing, Volume 1.
New York, USA: John Wiley & Sons Inc, 2001. pp. 825%/. ISBN 0-
471-21008-0.

[5] Robinson, H. Finite state model-based testing on a shoestring
International Conference on Software Testing Arialgeid Review, San
Jose, California, USA, 1999.

[6] Pretschner, A., Prenninger, W., Wagner, S., #@ihC., Baumgartner,
M., Sostawa, B., Zolch, R. & Stauner, One Evaluation of Model-
Based Testing and its Automationn: Proceedings of the 97
International Conference on Software Engineering. L®uis, MO,
USA. 15.-21.5.2005. New York, NY, USA: The Assowmat for
Computing Machinery. pp. 392-402. ISBN 1-59593-263-

[7] Apfelbaum, L. & Doyle, J.Model Based Testingld" International
Software Quality Week, San Francisco, Californi8A)1997.

59

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Nikkanen, M.Use Case Based Automatic User Interface Testing in
Mobile Devices Master’'s thesis. Helsinki University of Technojog

Department of Computer Science and Engineeringo@&s2005. 79 p.

Collard, R.Test Design: Developing test cases from use c&dtvare
Testing & Quality Engineering Magazine, 1999. VM. pp. 30-37.

Prowell, S. JTML: a description language for Markov chain usage
models Information and Software Technology, 2000. VoR:12. p.
825-833.

Selic, B. The Pragmatics of Model-Driven DevelopmenEEE
Software, 2003. Vol. 20:5. pp. 19-25.

Mellor, S. J., Clark, A. N. & Futagami, Model-Driven Development
IEEE Software, 2003. Vol. 20:5. pp. 14-18.

Blackburn, M., Busser, R. & Nauman, AVhy Model-Based Test
Automation is Different and What You Should KnowGet Started
International Conference on Practical Software @Quand Testing,
Washington, USA, 2004.

Safford, E.Test Automation Framework, State-based and Siglwal F
Examples Twelfth Annual Software Technology Conferencet Sake
City, USA, 2000.

Utting, M. & Legeard, B.Practical Model-Based Testing: A Tools
Approach 1% ed. San Francisco, CA, USA: Morgan Kauffmann, 2007
456 p. ISBN 0-12-372501-1.

Nicol, G. T. (Ed.).XTND — XML Transition Network DefinitioW3C
Note, 21.11.2000. [Cited 22.3.2007]. Available at:
http://www.w3.0rg/TR/xtnd/

Nielsen, J.Usability Engineering 1 ed. San Francisco, CA, USA:
Morgan Kaufmann, 1993. 362 p. ISBN 0-12-518406-9.

60

[18]

[19]

[20]

Eiselt, H.A., Gendreau, M. & Laporte, &tc Routing Problems, Part I:
The Chinese Postman Proble@perations Research, 1995. Vol 43:2.
pp. 231-242.

Kruskal, J. B., JrOn the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem Proceedings of the American
Mathematical Society, 1956. Vol 7:1. pp. 48-50.

Thimbleby, H. The directed Chinese Postman ProbleBoftware —
Practice and Experience, 2003. Vol 33:11. pp. 10896.

61

