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Nonlinearities in string instruments are responsible for several interesting acoustical features,

resulting in characteristic and easily recognizable tones. For this reason, modern synthesis

models have to be capable of modeling this nonlinear behavior, when high quality results are

desired. This thesis presents two novel physical modeling algorithms for simulating the tension

modulation nonlinearity in plucked strings in a spatially distributed manner. The first method

uses fractional delay filters within a digital waveguide structure, allowing the length of the

string to be modulated during run time. The second method uses a nonlinear finite difference

approach, where the string state is approximated between sampling instants also using frac-

tional delay filters, thus allowing run-time modulation of the temporal sampling location. The

magnitude of the tension modulation is evaluated from the elongation of the string at every

time step in both cases. Simulation results of the two models are presented and compared.

Real-time sound synthesis of the kantele, a traditional Finnish plucked-string instrument with

strong effect of tension modulation, has been implemented using the nonlinear digital waveg-

uide algorithm.

Keywords: sound synthesis, tension modulation, digital waveguide, finite difference time-

domain modeling, computer music.
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Värähtelevän kielen epälineaarinen käyttäytyminen saa monissa kielisoittimissa aikaan soitti-

melle luonteenomaisen ja helposti tunnistettavan äänen. Laadukkaan kielisoitinsynteesin vuok-

si onkin tärkeää, että nykyaikaiset äänisynteesimenetelmät ottavat huomioon myös kielten epä-

lineaarisuudet. Tässä diplomityössä esitellään kaksi uutta synteesimenetelmää, jotka fysikaali-

sen mallinnuksen avulla simuloivat epälineaarisia näpättyjä kieliä paikkajakautuneesti, keskit-

tyen jännitysmodulaation tuottamiin epälineaarisuuksiin. Toinen menetelmistä käyttää hajau-

tettuja murtoviivesuotimia digitaalisen aaltojohtomallin viivesilmukan pituuden ajonaikaisessa

virittämisessä, kun taas toinen hyödyntää murtoviivesuotimia äärelliseen erotukseen pohjau-

tuvan mallin aikaresoluution muuttamisessa ajon aikana. Jännitysmodulaation suuruus arvioi-

daan kummankin mallin tapauksessa jokaisella aika-askeleella kielen pidentymästä. Molem-

pien mallien simulaatiotulokset esitellään ja niitä verrataan toisiinsa sekä myös mitattuihin

arvoihin. Epälineaarisen aaltojohtomallin avulla on toteutettu reaaliaikainen kantelemalli.

Avainsanat: Äänisynteesi, jännitysmodulaatio, digitaaliset aaltojohdot, äärellisen erotuksen

aika-alueen mallinnus, tietokonemusiikki
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Chapter 1

Introduction

This thesis deals with physical modeling of nonlinearly vibrating strings from the sound syn-

thesis point of view. The purpose of sound synthesis in general is to electronically produce

both realistic and non-realistic sounds for the needs of electronic musicians, computer games,

the movie industry, and virtual reality applications. The task of this thesis is to provide compu-

tational algorithms which simulate the behavior of nonlinear strings in a physically meaningful

way. These algorithms can then be used to produce synthesized string instrument sounds with

controllable physical parameters using a computer or a signal processor. The novelty of this

thesis lies in two new computational models: a spatially distributed nonlinear digital waveg-

uide string model, recently published by the author [42], and a spatially distributed nonlinear

finite difference string model.

1.1 Sound Synthesis Through Non-physical Methods

Until approximately the 1990s, sound synthesis was mainly implemented using techniques

which focused on imitating the sound itself, rather than the system that produces it. The sim-

plest of these techniques, the sampling synthesis, merely uses pre-recorded samples of the

sound and plays them back [53]. A slightly more advanced method, the wavetable synthesis,

uses combinations of short samples of different waveforms and concatenates or sums them up

in order to resemble the desired wave [53]. These sample-based methods, although widely used

in the commercial market and capable of producing very high-quality sounds, require quite a

lot of memory and lack the flexibility of adjusting the properties of the sound in an intuitive

way. A third sample-based method, granular synthesis, consideres sound signals as consisting

of “sound atoms” or grains, and combines them pitch synchronously or asynchronously for

generating the synthesized sound [53].

Another computationally simple sound synthesis technique, frequency modulation (FM),

became popular in the synth-pop of the 1980s. Originally introduced by Chowning in 1973

1



CHAPTER 1. INTRODUCTION 2

[14], FM synthesis in its basic form consists of a sine oscillator which is used to control the

pitch of another sine oscillator, thus producing a rich spectral content. This computationally

straightforward technique requires virtually no memory, and is capable of synthesizing highly

inharmonic sounds such as bells, cymbals, etc. Adjusting the FM synthesis control parame-

ters, however, results in even more ambiguous changes in the sound than with the previously

discussed models.

Spectral synthesis methods, as their name implies, try to simulate the spectral properties of

the target sound as they are perceived by the listener. One of these methods, additive synthesis,

is based on the idea that every sound can be seen as a superposition of an infinite number of

sine oscillators, each having different amplitude, frequency, and phase. Additive synthesis uses

a high number of these oscillators and sums their outputs to simulate the target sound. Since

each of the oscillators consume nonzero process time in reality, the sound quality of additional

synthesis is directly proportional to the computational complexity of the system.

Also belonging to the family of spectral synthesis methods, source-filter synthesis uses spec-

trally rich source signals together with time-varying filters to produce the synthesized sound.

This method, also known as subtractive synthesis, bears resemblance to the human voice pro-

duction mechanism, where the spectrally complex glottal signal is filtered by the vocal tract.

Depending on the case, this synthesis technique can be sometimes also seen as a physical mod-

eling technique. There are also several other useful and efficient techniques for sound synthesis,

but the list of all conventional synthesis methods is simply too numerous to be discussed here.

More thorough treatment of different sound synthesis techniques in general can be found e.g.

in [62] or [53].

1.2 Sound Synthesis Through Physical Modeling

A common disadvantage in the synthesis techniques in the preceding discussion is that the syn-

thesis control parameters, i.e. the parameters that change the tonal qualities of the synthesized

sound, are rather unintuitive and proper tuning of them is not based on real-life physics. This

results in synthesizers, which are hard to control and lack the expressiveness of real musical

instruments. To answer this call for intuitively-controlled sound synthesis algorithms, sound

synthesis through physical modeling has emerged.

Physical modeling is based on the idea that a real-life system can be simulated using math-

ematics, and the behavior of this computational model closely mimics the behavior of the

simulation target. In the sound synthesis context, this means that if we want to model, say a

drum, we will start by studying the vibrational behavior of a real drum, formulate the related

mathematical expressions, and program them on a computer or a signal processor. After this,

we can excite our physical model e.g. by hitting a pressure sensitive tablet connected to the

computer, and hear the corresponding sound via the computer’s loudspeakers. Since the com-
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putational model is based on physics, we can control various features of the drum model, e.g.

the material and dimensions of the membrane and the drum body, sound propagation velocity

inside the drum, etc.

It is also possible to construct physical models that would not be possible to implement in

real life, such as a drum with time-varying dimensions, or to connect different models in an

unorthodox way (e.g. to make a guitar string which is excited with a clarinet reed.). The control

of the physical models can be made even more intuitive if the model parameters are obtained

using electric sensors, such as accelerometers, wind controllers, or pressure sensors. Then a

musician could play this virtual instrument in a similar way that real musical instruments are

played, but would have the freedom of changing the model parameters and structure, if needed.

The different physical modeling techniques can roughly be divided into six categories [68]:

1. Source-filter models

2. Modal synthesis

3. Mass-spring networks

4. Wave digital filters

5. Digital waveguide modeling

6. Finite difference methods

First of these, the source-filter models, were already briefly discussed in the previous section.

Source-filter models of the human voice-production mechanism can be considered as physical

models, if both the source and the filter have physically meaningful presentations (e.g. a classic

linear-prediction speech production model is not a physical model since the glottal source is

typically seen as a mere impulse generator). Singing synthesis through source-filter models has

been studied e.g. in [54].

Modal synthesis relies on the fact that any sound-producing object can be represented as a

collection of vibrating substructures characterized by modal data [2]. The modal data associ-

ated with a specific substructure consists of the frequencies and the damping coefficients of the

structure’s resonant modes, and of a set of coordinates representing the shapes of the vibration

mode. Generally, the modal data from different structures has been obtained via vibrational

measurements. These modal data then respond to external excitations and to interaction forces

or air flows.

When a general external force is applied to a given point on a structure, it excites the struc-

ture’s modes. Every mode responds to this excitation independently of the other modes, but

the responding force and the resulting velocity is again the superposition of the forces and the

velocities of the individual modes. Therefore, in modal synthesis, the internal construction of

a complex vibrating structure can be seen as a set of parallel independent resonators and can
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be implemented as a set of parallel digital filters. The exciting motion to the substructure is

characterized by coordinates, which are bound to different filters by modal excitation matri-

ces. These matrices define the relationship between the place of excitation and the resulting

modal behavior. Basically, this means that excitation to different parts of the substructure ex-

cites different modes and produces different sounds; this simulates closely the behavior of real

vibrating structures.

A recent technique related to modal synthesis is the functional transformation method [64],

[63], where the modal data can be derived directly from the underlying wave equations via

Laplace- and Sturm-Liouville transformations. This is a considerable improvement, since it

removes the need for vibrational measurements and enables also the modeling of non-realizable

structures. After the algorithms for different vibrating objects have been derived, they can

efficiently be implemented in real time using digital filters.

Mass-spring networks consider physical structures as lattices of point masses interconnected

by springs. In a way, this can be seen as an “atomic view” of vibrating systems, since the struc-

tures are divided into sets of discrete mass-spring oscillators. Although the principles of mass-

spring networks are relatively straightforward to understand, modeling of more sophisticated

phenomena, e.g. frequency-dependent losses, stiffness, or nonlinearities is not so simple. Also,

since the number of modes in the synthesized sound is directly proportional to the number of

mass-spring oscillators in the model, high quality sound requires quite a lot of computational

power. Computer simulation of mass-spring networks has been discussed in [22].

Wave digital filters (WDFs) have their background in electrical engineering, where they

were used in discretizing analog filters into digital ones already in the 1970s. This technique,

first introduced by Fettweis [20], can as well be used in the modeling of vibrating systems,

if the mechanical system is first converted into an equivalent electric one using certain well-

known analogies. In the context of musical instruments this would mean that the system to

be modeled, say a piano hammer, must first be formulated as a mechanical system (e.g. as

a mass representing the hammer core, connected to a spring representing the compressible

felt). This mechanical structure can then be represented as an electrical circuit (a parallel

capacitor-inductor circuit, to be exact), and the circuit can be discretized using e.g. the bilinear

transformation. The discretization effectively re-defines the voltages and currents as incoming

and outgoing wave components. WDFs have usually been used in the modeling of lumped

systems [5], [47], although the modeling of spatially distributed systems is also possible using

multidimensional WDFs [7].

Digital waveguides and finite difference methods are extensively used in the physical mod-

eling of musical instruments, and they will be more thoroughly discussed in Chapters 3 and 4,

respectively.
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1.3 Contents of This Thesis

This thesis is structured as follows: we will begin by studying the elementary physics of vi-

brating strings in Chapter 2, where the foundation for understanding the latter part of this thesis

is laid. The next chapter, Chapter 3, will start by introducing the reader to digital waveguide

(DWG) modeling, and continue to formulate a spatially distributed digital waveguide string

model with tension modulation nonlinearity. Stability of the nonlinear DWG algorithm is also

discussed. The final section of Chapter 3 will give an example of how a physical model of a

kantele, a Finnish plucked-string instrument, can be implemented using the nonlinear DWG

model, and also present simulation results with comparisons to measured data.

Chapter 4 will begin by explaining the basic concepts of the finite difference method (FDM),

and then proceed to introducing a nonlinear finite difference string model. Stability issues, sim-

ulation results, and comparisons to real-world cases are also presented in this chapter, as well

as a comparison between the two nonlinear models. Chapter 5 will finally present conclusions

and point the direction to possible future studies.



Chapter 2

Physical Analysis of a Vibrating String

Since the purpose of physics-based modeling is to simulate the physical phenomena in the

system of interest, it is of paramount importance to be familiar with the behavior of the real-

world case before modeling can take place. This chapter will study some physical properties

of vibrating strings, the main focus being on those, which contribute the most to the resulting

sound.

2.1 Linear String

This section covers some of the underlying physics of a simplified vibrating string. The phe-

nomena discussed here has been presented in various textbooks on physics and acoustics (e.g.

[21], [17]), and it forms a basis for the comprehension of the upcoming chapters.

In mathematics, a function
B '��=) is said to be linear if and only if

B ' � ����� �&)�� � B ' � ) �
� B '��&) . This could be translated to plain English by stating that a system is considered to be

linear if its response is directly proportional to its excitation and if it treats combined excitation

signals as if they were independent of each other. As an example of the former, in a linear string,

if a plucking with some force
� � would result to a vibrational amplitude of

� � , a plucking with

a twice as high force 8 � � , would result to twice as high vibrational amplitude 8 � � . Another

useful concept is the time invariability, which in plain terms means that a time invariable system

operates in the exact same way at all times. If a system meets both of these criteria, it is said

to be linear and time-invariant (LTI). LTI systems are of great importance because they can be

commuted with each other, that is, two LTI systems can be merged into one single equivalent

system.

Although no real strings behave exactly like this, we can often simplify things by assuming

LTI, especially, if only modest vibrational amplitudes are considered. In this section we’ll

discuss this simplified case in order to derive expressions for string movement.

6



CHAPTER 2. PHYSICAL ANALYSIS OF A VIBRATING STRING 7

2.1.1 Vibrational polarizations

The movement of a vibrating string can be divided in four polarizations. This means that each

infinitely small string segment has four components of motion. The different polarizations are

illustrated in Figure 2.1. The first two of them, called transversal polarizations, take place in

the direction perpendicular to the string. These polarizations are named horizontal and vertical,

respectively. The next polarization is the movement in the direction of the string, i.e. the

compressional waves within the string medium. This polarization is called longitudinal. The

remaining polarization is called torsional, and it describes the rotational motion of the string

segment around its axis. The same naming policy for the polarizations is used throughout this

thesis. In plucked string instruments, the sound is mainly generated by string’s transversal

motion, although the longitudinal vibration often adds some interesting effects. The torsional

polarization is important with string-bow interactions (e.g. with a violin or a cello), but has

little effect in plucked strings and is therefore not discussed in this thesis. The coordinate axes

are assigned for different polarizations as follows: the longitudinal coordinate is denoted by � ,

the horizontal coordinate by � , and the vertical coordinate by D .

Figure 2.1: Each string segment has four components of motion, a.k.a four polarizations. These

are called longitudinal, horizontal, vertical, and torsional, and noted in this figure by � , � , D , and
� , respectively.

2.1.2 Ideal string

Let us consider for a moment a homogeneous string, which is completely flexible, linear and

lossless (i.e. the string’s total energy remains constant). Such a string is called an ideal string.

If we also consider the string moving only in one transversal polarization (e.g. horizontal), the

motion of an ideal string can be characterized by the well-known one-dimensional (1D) wave

equation:

� 141 '�� � � ) � � * � J J '�� � � ) : (2.1)
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Here, � 141 '�� � � ) denotes the second-order partial derivative of the string displacement in the

horizontal axis with respect to the time variable � , � J J '�� � � ) denotes the second-order partial

derivative of the horizontal displacement with respect to the longitudinal coordinate � , and �
denotes the transversal wave propagation velocity within the string medium. The first term

of Eq. 2.1, � 141 '�� � � ) , can be seen as the acceleration of a string segment at time instant � and

position � , and � J J '�� � � ) can be seen as the curvature of the string at the same point. Also, the

transversal wave propagation velocity can be written as

� �
� $ 
 � (2.2)

where $ is the string tension and 
 is the linear mass density of the string. By rewriting Eq.

2.1 as

$ � J J '�� � � ) � 
 � 141 '�� � � ) � (2.3)

we can see that the 1D wave equation can be interpreted as an expression of Newton’s second

law “force � mass � acceleration” on a microscopic scale [21], [17].

The 1D wave equation for longitudinal vibrations is similar to Eq. 2.1, but with the transver-

sal wave propagation velocity � replaced with the longitudinal wave propagation velocity

�! �
� � �


 � (2.4)

where
�

is Young’s modulus and
�

is the cross-sectional area of the string.

2.1.3 Traveling-wave solution

One solution to the 1D wave equation (Eq. 2.1) can be seen as a superposition of two wave-

forms traveling in opposite directions along the string. Figure 2.2 clarifies this interpretation.

This solution, commonly known as the traveling-wave solution, or as d’Alembert’s solution,

was first published by d’Alembert in 1747. This solution can be presented in the mathematical

language as [56]

� '�� � � ) � � / '���� � � � ) � �  '�� � � � � ) � (2.5)

where � / and �  denote the wave components proceeding right and left, respectively.

In an ideal string with fixed terminations, a traveling wave encounters a phase-inverting

reflection when reaching the endpoint. Also, the total string motion is a linear superposition of

all wave components traveling in the string. Eventually, this results in a vibrational movement

consisting only of such standing waves whose wavelengths satisfy

�&�
� 8 ��� � � �

� � � � > � 8 � @ � :4:4: (2.6)

where
���

is the wavelength of the � th wave component and ��� � � � denotes the string’s length.

This restriction can be understood for example by considering the fact that the string is fixed at
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Figure 2.2: [55] A vibrating string can be seen as consisting of two wave components, travel-

ing at opposite directions. In this illustration, the left column shows the wave components at

different time steps � . The dashed line denotes the wave component traveling right, while the

dash-dotted line denotes the wave component traveling left. The sum of the wave components

(a.k.a. the string displacement) at the same time instants is illustrated in the right column. The

string is plucked at three points simultaneously, thus yielding a triangular initial state.

its ends, i.e. the string displacement must be zero at � ��� and � � �
. Since the standing waves

are sinusoidal, they will have zero crossings at mid-wavelength and at wavelength. Therefore

they will also have to satisfy Eq. 2.6.

The different values of � in Eq. 2.6 are called the vibrational modes of the string, and

the total string vibration is formed by the superposition of these modes. Since the relationship

between frequency and wavelength is
B
� > ��' 8�� � ) , each mode produces a different vibrational

frequency which is an integer multiple of the fundamental frequency
B #
� > ��' 8�� � # ) . These

frequencies are located at harmonic intervals in the frequency scale, and are therefore called

harmonics. Note that the first harmonic
B #

is also considered the fundamental frequency, since

it is the lowest vibrational component in the system. The other harmonics have integer relation

to the fundamental frequency, so that
B��
� � B # � � � 8 � @ ��� � :4:4: . It is worth noting that there
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is some deviation in the numbering of the harmonic indices in the literature, since in speech

processing the fundamental frequency is often denoted
B � . The harmonics are often referred

also as partials, because they do not necessarily always have harmonic intervals. We will study

this case in more detail when discussing stiff strings in Section 2.1.5.

If an ideal string is plucked at �&� � ' � � � � �.) ��� � , it is obvious that the resulting waveform

cannot have a nodal point at �&� . Therefore also, every � � th mode will be missing, and also

every � � th harmonic in the resulting sound. Figure 2.3 illustrates the first vibrational modes

of a string, when it is plucked at different locations. These wave components which are absent

from the vibrational spectrum in the linear case are called missing harmonics, and they will be

discussed more thoroughly in Section 2.2.3.

Figure 2.3: In (a) the first six vibrational modes of a string are presented. The total vibrational

behavior of the string will be the superposition of all its modes. In (b), a string plucked at the

middle and its first modes are shown. Due to plucking location, the vibration consists only of

odd partials. Case (c) shows the string plucked at > � @ rd of its length. Again, since the vibration

cannot have a nodal point at the plucking location, every 3rd mode is missing. The modes that

are missing in (c) are shown in (d).
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2.1.4 Lossy string

Obviously, every real string vibration decays with time. This results mainly from three damp-

ing mechanisms [21]: (1) air damping, (2) internal damping in the string medium, and (3)

mechanical energy transfer through string terminations. The first two mechanisms are caused

by viscoelastic and thermodynamic losses and are therefore irreversible. Mechanical energy

transfer is a bit more complex phenomenon since it is a reversible process i.e. the energy can

move back and forth via the terminations.

Air damping takes place when the viscous flow around the vibrating string retards its motion.

Since the radii of strings are usually small, direct sound radiation can be neglected as a damping

term. Internal damping is caused by the elastic behavior of the string, and it is defined by the

string material only, while energy loss through the supports is characterized by the mechanical

admittances of the terminations.

Each of the damping mechanisms introduces an exponential decay to string oscillations and

has an individual frequency-dependent time constant. The time constant for the total decay

behavior of the string can be obtained by adding the reciprocals of the individual time coef-

ficients. As stated in [21], for thin metal strings, the losses consist mainly of air damping,

and the decay time for the upper harmonics is proportional to > � B . For instruments with gut

or nylon strings, however, internal losses become most dominant, and the decay time for the

upper harmonics varies as > � B
*
. Therefore, metal strings often have a considerably brighter

tone than nylon or gut strings.

The air damping mechanism is proportional to the transversal velocity component of the

string segment, and can therefore be inserted to the 1D wave equation 2.3 as a term containing

a first-order temporal derivative. Frequency-dependent losses, such as the internal friction

of the string, can be approximated by inserting a loss term containing a third-order temporal

derivative into the same equation, ending up with the lossy 1D wave equation [26], [11]:

$ � J J '�� � � ) � 
 � 141 '�� � � ) � "&# � 1 '�� � � )�� "
* � J J J '�� � � ) : (2.7)

Here,
" #

and
" *

are coefficients that simulate the frequency-independent and frequency-dependent

damping, respectively. The third-order spatial derivative term could be replaced with a term

containing mixed spatial and temporal derivatives as suggested in [63], but it would not likely

yield more accurate results, since both of them are merely harsh approximations of the real-

world case. A more sophisticated damping model can be found in [13] and [38].

2.1.5 Stiff string

In real strings, the restoring force consists not only of the string tension, but also of the stiffness

of the string. In flexible strings with small diameter (e.g. guitar), the effect of stiffness can

usually be neglected, but with larger strings (e.g. piano strings) it contributes substantially to
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the resulting sound. We can obtain the 1D wave equation for a stiff, lossy string by inserting

an additional term to Eq. 2.7, yielding

$ � J J '�� � � ) � 
 � 141 '�� � � ) � " # � J '�� � � ) � " * � 1 J J '�� � � ) � "
+ � J J J J '�� � � ) � (2.8)

where � J J J J '�� � � ) is the fourth-order spatial derivative of the string displacement, and [21]

" +
�

� � 
��I
� �

where 
 I stands for the radius of the string. In stiff strings, the wave components with dif-

ferent frequencies travel with different velocities. This phenomenon is called dispersion, and

it affects the resulting spectrum so that the partials are no longer located at exactly harmonic

intervals, but are stretched along the frequency axis. This inharmonicity is taken into account

for example when tuning a piano, where the octaves are tuned to greater ratios than 2:1 to min-

imize the beating between different strings. Since this thesis focuses on the sound synthesis

of strings with relatively high elasticity and small diameters, the effects of stiffness are not

covered thoroughly here. More in-depth study about this topic can be found for example in

[51].

2.2 Effects Due to Nonlinearities

The vibration of real strings can be considered linear in the most coarse approximations only.

More realistic string models require abandoning the linearity assumption, thus also introducing

more complex formulations for string behavior. This section will study some of the nonlinear-

ities in real strings.

2.2.1 Tension modulation

When a real string is displaced, its length, and therefore also its tension is increased. When the

string returns closer to its equilibrium state, its length and tension are decreased. This mech-

anism, where the tension is varied due to transversal vibrations, is called tension modulation,

and abbreviated TM. In the following, $ � is used to denote the nominal tension of the string,

i.e. the string tension at rest.

It is easy to see that the frequency of the TM is twice the frequency of the transversal vibra-

tion, since the transversal equilibrium produces minimum tension, and both extreme diplace-

ments produce maximum tension. In many musical instruments the string termination is rigid

in the longitudinal direction, so that TM cannot be effectively coupled to the instrument body,

and therefore cannot be heard directly. In instruments where this is not the case, partials cre-

ated by TM can be found at twice the frequencies of the transversal modes, and they are called

phantom partials. The generation of these partials is discussed in more detail in [15], and in

[4]. Other effects of TM are discussed in the following two subsections.
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2.2.2 Initial pitch glide

Due to decaying vibration, the string displacement is clearly greater just after the pluck than at

the end of the vibration. Therefore also the amplitude envelope of TM has the same form as

the transversal vibration itself. Also, the average value of the tension has a greater value in the

beginning of the vibrational movement, and it gradually decreases towards the nominal tension

level $�� .
As can be seen from Eq. 2.2, this increase in tension results in the increase of wave velocities,

which in turn leads to the increase in frequency. Thus, the frequency of a plucked string glides

from an initial value to the steady-state value (the frequency in the linear case). This is called

initial pitch glide, an effect which is most apparent with elastic strings with large vibrational

amplitudes and relatively low nominal string tension (such as electric guitar or kantele strings).

2.2.3 Generation of missing harmonics

Tension modulation is also responsible for another acoustic feature, generation of missing har-

monics. This means, as its name implies, that the harmonics which should be missing from

the vibration can be found from the spectrum. Typically, they begin with a gradual increase

near zero amplitude until they reach their peak value, and then decay off like all other harmon-

ics. In the following, this phenomenon is discussed, while trying not to go too deep into the

mathematics. A more in-depth study can be found from a paper by Legge and Fletcher [39].

Let us assume that the string tension $ is small enough, so that the transversal wave veloc-

ities are considerably smaller than the longitudinal wave velocity (in reality, the longitudinal

wave velocity is typically only 5-20 times higher than the transversal one, see Eqs. 2.2 and 2.4).

This means that the tension can be taken as uniform along the string. Although the TM takes

place in the longitudinal direction, it can also excite the string in the transversal directions at

the string termination point, provided that the termination is nonrigid in the transversal plane.

Figure 2.4 clarifies this.

As can be seen from the illustration, the varying of the tension, called tension modulation

driving force (TMDF) [60], excites the bridge in the vertical direction. If the bridge has a

nonzero mechanical admittance in the vertical direction, TMDF will cause the bridge to move

up and down.

Let us now consider a case where a vibrating string carries two transversal modes, � and

� . As stated above, the TM caused by mode � has a sinusoidal form with a frequency cor-

responding to mode 8 � . When this vibration is coupled through the nonrigid bridge with the

transversal vibration of mode � , the resulting vibration is the mode 8 � amplitude-modulated

with mode � . Thus, this vibration can excite mode � , if � ��� 8 ��� ��� .
Now it is clear that even if a string is plucked at � ��� � � , the � th mode, although supposed

to be missing, will receive energy from other modes because of this nonlinear coupling at the
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Figure 2.4: Tension modulation exerts a transversal force $ L
on the bridge. If the bridge is able

to move in the D -direction, this vibration will be coupled with the string. With a rigid bridge,

no coupling will take place, and the missing harmonics will not be generated (after [39]).

bridge. It is important to note, however, that this phenomenon cannot excite all the modes, e.g.

if the string is plucked near its center so that no even modes will be present, they will not be

generated by this mechanism either.

Since this energy transfer from other modes is rather gradual than instantaneous, the missing

modes excited by the TMDF will experience a gradual onset, and behave like other modes

after reaching their peak values. The rising rate of these missing harmonics can be shown to be

proportional to the cube of the pluck amplitude [39].

In real musical instruments, also another mechanism is responsible for the generation of

missing harmonics. The string is often terminated behind the bridge, and it undergoes a change

in direction at the bridge location. Figure 2.5 illustrates this fact. Now the TM can be directly

coupled with the vertical polarization, due to angle � at the bridge. This means that the TMDF

due to a transversal mode � will have a frequency corresponding to mode 8 � , so this mechanism

can excite only even modes, thus rising the even harmonics also in a middle-plucked string [39].

Figure 2.5: A more realistic bridge model. The angle � causes the tension to have a verti-

cal component, $ L
. This results in a TMDF with frequency twice as high as the transversal

frequency in the string (after [39]).
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2.2.4 Other nonlinearities

Although this thesis is mainly concerned in the nonlinearity due to tension modulation, there

exists also other important sources of nonlinearity in the realm of string instruments. Some of

these are discussed briefly in the following.

The vibrational amplitude of a plucked string is sometimes limited by the instrument body

itself. For example in guitars, the fretboard, which gives the performer the freedom of playing

different notes, also acts as a limiter for the string displacement. This limiting phenomenon

can also be used as a special effect, as is often done in playing the electric bass guitar. In this

playing technique, commonly known as the slap bass, the player hits the string usually with

the side of her thumb, allowing the string to “slap” on the fretboard. The string displacement

in a case like this is said to be hard-limited. We will discuss the modeling of the hard-limiting

nonlinearity in the following chapters.

A plucked string instrument, as its name implies, is excited using some kind of a tool to

displace the string and then release it. Usually, the excitor used is a finger or a plectrum, a

small somewhat elastic piece of plastic or other material. Since neither of these excitors are

totally rigid, but also possess elasticity, the type of the string release is rather gradual than

instantaneous. This phenomenon, commonly referred as the string-finger contact, introduces

nonlinearity to the excitation, and thus also to the following string vibration.

Other types of interesting nonlinear string excitations include the hammer-string contact

in piano-like instruments and the bow-string interaction in bowed string instruments. These

phenomena fall out of the scope of this thesis. The hammer-string nonlinearity is mainly due

to the compression of the hammer felt, and it is covered in many earlier studies [23], [24], [25],

[11], [59], and [9], to name a few. The bow-string nonlinearity is mainly caused by the stick-

slip contact between the string and the bow. Also this interaction is covered in many studies,

[40], [69], [50], and [16] present some of them.



Chapter 3

String Model Using Digital

Waveguides

3.1 Synthesis Through Waveguide Modeling

Digital waveguide modeling is a term often encountered when studying the synthesis of string

instruments. It is based on the fact that when an exciting signal is inserted into a string, it is

reflected at the boundaries, and returns to its initial position. At its simplest form, this can be

implemented as a single delay-loop with two consecutive samples averaged, as is done in the

classic Karplus-Strong (KS) algorithm [36]. The averaging corresponds to lowpass-filtering

and thus simulates the frequency dependent losses in the string. A noise burst is usually used

as the exciting signal in the most basic KS synthesizer. The basic Karplus-Strong algorithm is

illustrated in Fig. 3.1. It can produce surprisingly high quality sounds despite its computational

simplicity.

Figure 3.1: The classic Karplus-Strong algorithm. The averaging of two consecutive samples

corresponds to the lowpass-effect of the frequency-dependent losses. The excitation signal for

the string model is read from a wavetable (after [36]).

More sophisticated string instrument models can be obtained by extending the KS model for

16
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example by changing the averaging filter into a higher degree one, or by filtering the output of

the string model with a filter simulating the body response of the instrument. A tuning filter can

also be added to enable correct tuning of the string models, a problem which will be discussed

more throughly in Section 3.2.2. Also, a more realistic excitation signal can be obtained by

inverse filtering a recorded string tone with a corresponding KS model.

The computational load of the model can be reduced further, if the body response effects are

included in the excitation signal. This is generally known as commuted waveguide synthesis

(see e.g. [34]), and it can be used to produce very realistic plucked-string instrument tones. A

fine overview of extended KS models and DWG’s can be found in [35].

The string models discussed so far in this chapter comprise from a single delay loop with

predefined input and output locations. Since the various signal processing blocks inside these

models are lumped rather than distributed, it is not possible to gather meaningful data inside

these structures, but only from a certain predefined output location. In the following, models

without this constrain are discussed.

3.2 DWG Model of an Ideal String

This section describes the basics of DWG modeling and presents a computational model of an

ideal string. An excellent introduction to DWGs used in modeling musical instruments can be

found in [56].

3.2.1 Traveling-wave solution in the digital form

The traveling-wave solution (Eq. 2.5) of the 1D wave equation (Eq. 2.1) can be converted

into digital form by sampling the wave components at
�

intervals. Usually also the spatial

sampling interval
�

is chosen so that the wave propagation velocity satisfies � � � � � . This

causes the wave components to propagate one spatial sample in one time step. The sampling is

done formally by changing the variables in Eq. 2.5 [56]

��� � � � � �

� � � � � � � :

If now the traveling waves are redefined as

�  '(�E) � �  '(� � )
� / '(�E) � � / '(� � )

the discrete traveling-wave solution can be obtained

� '�� � � � � ) � � / '(� � ��) � �  '(� � ��) : (3.1)
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The term � / '(� � ��) can be thought as � / '(�E) , delayed by � samples. Similarly, the term �  '(�E)
can be thought as �  '(� � ��) , delayed by � samples. It is important to note that Eq. 3.1 is

not a mere approximation of Eq. 2.1 , but yields exact results at the sampling instants, within

the limits of the numerical precision of the samples [56]. This kind of structure can be easily

implemented with two delay lines containing unit delays, and � '�� � � � � ) can be obtained by

summing the delay line values at correct locations. The string state at the next time step can

be updated by simply shifting the samples one step in the direction of the delay line. This

procedure is shown in Figure 3.2.

Figure 3.2: A dual-delay line model of an ideal string. The state of a string segment can

be obtained at any spatial location by summing the values of the two delay lines at the same

location. Note that both delay lines are one-directional (after [55]).

Clearly, this kind of structure allows more freedom in choosing the output location than the

previously presented Karplus-Strong model. This model can be called spatially distributed,

since we can gather meaningful data from various locations on this string model. We can

also excite this model at various locations by means presented later in this chapter. This is an

important feature, since especially in string instruments, the excitation location determines the

resulting spectrum, as shown in Chapter 2. Also, the output location determines the resulting

sound by some extent as can be seen in electric guitars, where similar pickups at different

locations yield different tones.

In order to model the wave reflection at termination points of an ideal string, a sign change

must be introduced at the ends of the delay lines. This simulates the phase-inverting reflection

at the string end. Figure 3.3 shows a DWG model of an ideal string with proper terminations.

In this figure, the delay lines are illustrated so that only one movable output location is shown,

thus allowing the output point to be located anywhere on the string 1.

1The possible output locations have integer indices by nature. If a noninteger output location is desired, spatial

interpolation or fractional delay elements must be used. The latter topic will be discussed in more detail in Section

3.5.1.



CHAPTER 3. STRING MODEL USING DIGITAL WAVEGUIDES 19

Figure 3.3: A DWG model of an ideal string. The unit delays in Fig. 3.2 are combined here

for illustrational purposes to produce a bidirectional delay line. The phase-inverting reflection

at the termination points is implemented with a sign change (after [55]).

3.2.2 Tuning filters

It is obvious that when a string is modeled as a delay line its fundamental frequency depends on

the length of the delay line. More specifically, if the wave components propagate one spatial

sample in one time step, the fundamental frequency of the string model can be presented asB #
�

BAI ��' 8 � ) , where
BAI

is the sampling rate and
�

is the delay line length. Now if the delay

lines have integer lengths, the frequencies can have only certain values, provided that the sam-

pling rate is constant. This means that the frequency scale is not stepless, and realistic tuning

of the string models becomes impossible, especially at high frequencies. This is illustrated in

Figure 3.4.

This problem can be solved by inserting a special digital filter into the delay-line loop dis-

cussed above [30]. Such a filter is able to produce also fractional delay (FD) values, and is

therefore called a fractional delay filter [37]. We preserve a more thorough discussion of the

FD filters for Section 3.5.1.

3.3 DWG Model of a Lossy String

The losses in a vibrating string, discussed in Section 2.1.4, are often simulated in computational

models using frequency-independent and frequency-dependent losses. The former is equivalent

with the first loss term of Eq. 2.7, namely the term containing the first temporal derivative. It

can be checked that, when modeling the frequency-independent losses, d’Alembert’s solution

can be approximated as [56]

� '�� � � ) � 5 � � ����� *���� J � �
� / '�� � � � � ) � 5 � ����� *���� J � � �  '�� � � � � ) � (3.2)

provided that the string displacement is small. If these exponentially decaying traveling waves

are spatially and temporally sampled (using
�
� � � , as before), we end up with the discrete
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Figure 3.4: Tuning error as a function of the fundamental frequency for a DWG with integer

delay values. The sampling frequency is 44.1 kHz. The tuning error is drawn with a solid line,

while the dashed lines denote semitone steps of the musical scale. For reference, it has been

shown [41] that humans are able to distinguish frequency errors even below 0.5 %.

traveling wave solution with frequency-independent losses [56]

� '�� � � � � ) � � � � � / '(� � ��) � � � �  '(� � ��) � (3.3)

where � � 5 �
� # � � *��

.

The implementation of Eq. 3.3 is straightforward, since only a constant gain element must

be added in the lossless DWG implementation. However, the precise modeling of frequency-

dependent losses in DWG’s is a far more demanding task. Instead of trying to formulate the

remaining loss term in Eq. 2.7 as additional terms in Eq. 3.2, the frequency dependent losses

are often modeled using a loss filter (a.k.a. loop filter), which is inserted in the delay-line loop.

This element is usually a lowpass-filter, since high frequencies attenuate faster in the vibrating

string. A lossy DWG string containing both frequency-dependent and frequency-independent

losses is illustrated in Fig. 3.5.

This approximation of the frequency dependent losses without a rigorous derivation of terms

from the lossy wave equation should not seem too harsh a maneuver due to the LTI assumption

discussed in Chapter 2, and also since Eq. 2.7 is an approximation of the real-world case to

begin with.
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Figure 3.5: A lossy DWG string. The frequency-independent losses are implemented with a

gain factor ��� ��� > , and frequency-dependent losses with a loss filter C ' D
) (after [55]).

3.3.1 Effects of stiffness in DWG’s

The dispersive behavior of stiff strings can be simulated in DWG models by inserting suitable

allpass filters between the unit delays. The allpass filters do not change the amplitudes of the

wave components but introduce different phase delays for different frequencies, thus simulating

dispersion. Often in practical implementations the allpass filters are lumped as one single filter

at the termination (since allpass filters are generally LTI), in a similar way that was done with

the frequency dependent losses, in order to reduce the computational load. The usage of allpass

filters in simulating the string stiffness is discussed for example in [56].

3.4 Implementing Nonlinearities in DWG Models

When the hammer-string nonlinearity, briefly mentioned in Chapter 2, is implemented in a

DWG structure, problems arise due to the feedback loop between the string and the hammer

and spatial discontinities caused by discrete sampling. The contact between the hammer and a

DWG string has been studied for example in [3] and [6]. Another interesting nonlinear type of

string excitation is the bow-string contact. It has been studied in the DWG context previously

in [56], [57], and [28], for example.

The hard-limiting nonlinearity, also discussed in Chapter 2, can easily be modeled in DWG

systems. The key idea here is [32] that if the string displacement at a certain point exceeds the

constrained value, a negative impulse excitation is inserted to the same location. The amplitude

of the impulse should be chosen so that the displacement will have the maximum allowed value.

Modeling of the tension modulation in DWGs is discussed more thoroughly in the following.



CHAPTER 3. STRING MODEL USING DIGITAL WAVEGUIDES 22

3.5 Tension Modulation in DWG’s

When tension modulation is to be implemented in a string model, it clearly means that the

fundamental frequency of the string must be modulated also (see Eq. 2.2). In a DWG string

this corresponds to varying either the length of the delay lines or the temporal sampling instant.

This section discusses implementing the TM by varying the length of the delay lines, and is

presented earlier in recent publications by the author [42] and [43]. Since the delay lines can

generally have integer-valued delays only, directly altering the delay lines would lead to having

the tension change in a stepwise manner. Obviously, this behavior is not desired, thus we need

a tool for implementing delays with arbitrary lengths. This kind of tool is called a fractional

delay filter, and it is shortly discussed in the following. For an excellent tutorial about FD

filters, see [37].

3.5.1 Fractional delay filters

Basically, a fractional delay filter is a device for bandlimited interpolation between samples.

The key idea is to design a filter which will apply a desired amount of delay to the signal without

altering it otherwise. This means that the filter should have flat phase delay and magnitude

responses, and it should be able to have a phase delay of any value. Unfortunately, this ideal

solution is impossible to implement in reality, and all FD filters are more or less approximations

of the ideal case. The nonideality will manifest itself especially at high frequencies, as we are

about see.

In practice, the FD elements can be implemented with FIR or IIR filters. The FIR filters,

although generally easier to design, will always have a nonflat magnitude response at high

frequencies. This is not the case with IIR filters, since they can be implemented with an allpass

structure. Both filter types will, however, have nonideal phase responses, where the “phase

error” tends to increase towards the high frequencies. A first-order allpass filter was chosen for

the FD element of our string model. Its transfer function is of the form

� ' D
) � � � � D��
#

> � � D �
# (3.4)

where � is the filter coefficient which defines the length of the delay. Figure 3.6 illustrates the

phase delay responses of the first-order allpass filter. Notice that when � ��� , the filter acts as

a unit delay.

The decision for using a first-order allpass filter within the string model was made partly

because it is the simplest way to design an allpass filter approximating a given fractional delay

[37], and partly because the first-order allpass filter is the best choice for the fractional delay

element when delay values around unity are to be obtained [65]. The phase response error

caused by the allpass filter is not considered to pose a problem since its effect is negligible in

the audio frequency range, assuming the sampling frequency to be reasonably high [67].
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Figure 3.6: Phase delay response of a first-order allpass filter. The solid curves represent the

phase delay responses at different delay values, starting from
"
� � : 8 up to

"
� >�: ? . As can be

seen in the figure, the obtained delay values (solid lines) coincide well with the desired delay

values (dashed lines) only at low frequencies. Clearly the filter is ideal only when
"
� > , i.e.

when it produces a unit delay.

3.5.2 Distributed nonlinear DWG string

Previous works [66], [61], [19] use a single fractional delay element in a single-polarization

string model, or a DWG string terminated with a nonlinear double-spring [48] to simulate the

nonlinear string. This is done in order to reduce the computational complexity of the model,

but it has also some shortcomings. Since the system does not meet the LTI requirement2 , the

FD elements cannot be lumped into one single element without giving up the idea of viewing

the system as a distributed model. In other words, the whole string becomes a lumped model,

and the termination point “behind” the FD element becomes the only location for gathering a

meaningful output signal from the string. Physically this would correspond to a single elastic

element at the termination point of an otherwise rigid string. A more realistic solution can be

obtained if the elongation process is distributed along the delay line, in a way similar to a real

physical string, where the elasticity is distributed along the string, rather than lumped.

2More specifically, varying the allpass filter coefficients makes the system time-variant, and the fact that the

system state (string elongation) defines the allpass filter values makes the system nonlinear. Clearly, the actual

physical phenomenon is both nonlinear and time-invariant.
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The distributed nonlinearity can be implemented by exchanging every other unit delay ele-

ment in the DWG model (Figures 3.2 and 3.5) with a first-order allpass filter. Then the effective

length of the delay lines can be changed by varying the filter coefficients. We will now intro-

duce a delay block which contains a unit delay, a first-order allpass filter, and two scaling

coefficients for modeling the frequency-independent losses. This block is called a basic ele-

ment, and it is illustrated in Figure 3.7(a). Figure 3.7(b) shows how to obtain output data from a

junction between two basic elements. The nonlinear DWG string can now be constructed from

the lossy DWG structure in Fig. 3.5 by replacing each unit delay pair with a basic element.

The resulting structure is illustrated in Figure 3.8.

Figure 3.7: Illustration of (a) a basic element, and (b) how to obtain output data from a string

consisting of these elements. The directions of the wave components in (a) are opposite for

adjacent elements. In (b), either the velocity or the slope of the string segment can be obtained,

if velocity is used as the wave variable.

Figure 3.8: One-polarizational nonlinear DWG string. The string consists of the basic ele-

ments illustrated in Fig. 3.7(a). C � and C�� denote the loop filters simulating the frequency-

dependent losses. The excitation to the string can be inserted as a force signal using an interac-

tion element, denoted by
�
. The construction of the interaction element is illustrated in Figure

3.9.

From the discussion in Section 2.2.1, we can conclude that the suitable control signal for the

FD elements can be derived from the elongation of the string. In the following, since �A1�� �! ,
we assume that the longitudinal waves will propagate instantaneously through the string, and
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Figure 3.9: The interaction element allows excitation signals to be inserted to the string during

run-time. The input signal
� '(�E) can be seen as a force signal, and the output signal � '(�E) as a

displacement signal. The coefficients
� #

and
� *

represent the mechanical impedances of the

two string branches. Implementation of the integrator block is depicted in Figure 3.10.

Figure 3.10: The integrator block is implemented by summing up consecutive samples.

the elongation calculation and the FD parameter tuning can be done for the whole string in one

piece. Strictly speaking, of course, this is not the case with real strings, but carrying out the FD

parameter evaluations for multiple string segments would add a significant computational load,

likely without any audible advances. The elongation of the string can be expressed as [39]

� ���
	 '��0) �
�  ������
� � > � '�� J '�� � � ) ) * " � � � � F � (3.5)

where
� � F � is the nominal string length, � is the spatial coordinate along the string, and � is

the displacement of the string. The first spatial derivative in equation (3.5) suggests the use of

slope waves in the elongation calculation, and thus equation (3.5) can be approximated for the

digital waveguide as [61]
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� ���
	 '(�E) ���
� � � ��
��� � � > ��� � / '(��� ��) � �  '(��� ��)�� * � �� � F � (3.6)

where � / '(��� ��) and �  '(��� ��) are the slope waves at time instant � and position � , propagating

to the right and to the left, respectively.
�� � F � is the rounded nominal string length. To reduce

the computational complexity, equation (3.6) can be further simplified using a truncated Taylor

series expansion to [61]

� ���
	 '(�E) 6 >
8 �
� � � ��
��� �

� � / '(��� ��) � �  '(��� ��)��
*

(3.7)

while still maintaining a sufficient accuracy. The approximated delay variation of the total

DWG can be obtained from equation (3.7) as [61]

� 1 F 1 '(�E) 6 � >
8

�
�
#�

 � �
�
#
� �
� ����� ' > �

� �
$�� )

� ���
	 ' � )� � F � (3.8)

where
�

is Young’s modulus,
�

is the cross-sectional area of the string, and $ � is the nominal

tension corresponding to the string at rest.

Since the system under consideration uses a distributed set of delay elements, the total delay

must be divided by the number of delay elements in the DWG to obtain a delay value for each

individual element. The coefficient � in Eq. 3.4 can now be expressed as [67]

� � > � " �.- /2143 -  
> � " �.- /2143 -  (3.9)

where
" �.-0/21434-  is the delay intended for a single allpass filter. Note that previous studies have

used a different sign for � in Eqs. 3.4 and 3.9, although the operation of the allpass filter

remains the same.

3.5.3 Stability of the nonlinear digital waveguide algorithm

Although the stability of the nonlinear DWG algorithm can not be guaranteed in theory, we

found it experimentally to remain stable for nearly all parameter and excitation values. Only

highly exaggerated nonlinearities together with high excitation impulses resulted in stability

problems. We thus conclude that the nonlinear DWG waveguide has no real stability problems

when synthesis of natural plucked-instrument sounds are desired.

3.6 DWG Model of a Kantele

In this section, we demonstrate the nonlinear DWG formulation by constructing a two-polarizational

synthesis model of a kantele, a Finnish folk music instrument.
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3.6.1 Acoustical analysis of the kantele

The kantele is a bridgeless plucked string instrument, with usually five metal strings in its basic

form (see Fig. 3.11). The strings are terminated at one end by metal tuning pins, which are

screwed directly into the soundboard. At the opposite end all strings are wound once around

a horizontal metal bar called the varras and then knotted. Because of the nonzero distance

between the center of the varras and the knot, the vibrations in two polarization planes have

different effective lengths; the varras is the termination point for horizontal vibration, while

the knot acts as the termination for the vertical vibration, as illustrated in Fig. 3.11. This

phenomenon causes the total vibration of the string to have two fundamental components with

slightly different frequencies, producing beating [19]. A more detailed structure and acoustical

Figure 3.11: Illustration of the kantele. The string termination at varras is magnified for clar-

ity.
�

denotes the termination point for vertical vibration of the string, while � denotes the

termination point for horizontal vibration. � �
stands for the distance between

�
and � .

analysis of the kantele can be found in [19]. A study of the history of kantele and an acoustically

improved new design are presented in [52].

3.6.2 A novel kantele string model

The novel synthesis model of a single kantele string is constructed using two single-polarization

nonlinear DWG models, illustrated in Fig. 3.8, and connecting them together via a scaling

coefficient for modeling the coupling between the two polarizations. We restrict the coupling

to being one-directional in order to avoid stability problems which would otherwise rise due

to the feedback loop formed by the interconnected strings, as suggested by Karjalainen et. al.

[35]. The elongation approximations of the strings and the resulting allpass filter coefficient

values are evaluated separately for the two DWG models using the arithmetics described in

Sec. 3.5.2. The structure of the novel kantele string model is illustrated in Figure 3.12. In this

model,
B 3 � '(�E) denotes the plucking force exciting the string and � L '(�E) and � K '(�E) represent the

velocity signals coming from the strings vibrating vertically and horizontally, respectively.
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It is important to note that while � L '(�E) and � K '(�E) can be obtained anywhere along the string,

in this case they are evaluated at the termination points, so that terminal impedances can be

used.
� L 	 /23 � � � and

� K
	 /23 ��� � represent the vertical and horizontal terminal impedances, respec-

tively.
���

stands for the coupling impedance from vertical to horizontal string vibration polar-

ization, and
BAL K '(�E) represents the corresponding driving force. The forces to the termination

caused by the two one-polarizational vibrations are denoted by
B�L '(�E) and

B K '(�E) . The connec-

tion from the elongation approximation block to the output simulates the direct coupling of the

TM to the instrument body [60]. The force signal
B J '(�E) represents the TM modulation signal,

and a scaling coefficient, denoted by
�

, is used to control the amount of this coupling. The

output of the whole two-polarization string model is finally presented as a force signal
B F G 1 '(�E)

excerted to the string termination point. It must also be noted that this model simulates only a

single kantele string, and a model of the instrument body must also be added, if realistic sound

synthesis is desired.

Figure 3.12: A kantele string model. The one-polarization string model blocks are identical to

what is illustrated in Figure 3.8, but have different string lengths. It is important to note that the

coupling between the vibrational polarizations in a real physical system is more complicated

but a simplified one-way coupling is used here for ease of simulation.

3.6.3 Simulation results and comparison to measured data

The synthesis results reveal that the behavior of the nonlinear string model is consistent with

the theory of elastic strings, discussed in Section 2.2. The fundamental frequency behaviors

of a single-polarization string model and a real kantele tone are compared in Figure 3.13. The

real kantele sound was recorded in an anechoic chamber using a moderately-plucked five-

stringed kantele. In this figure, the horizontal dotted line approximates the mean value of

perceptual detection threshold of an initial pitch glide. The psychoacoustic detection threshold

in the frequency region of these tones is about 5.4 Hz [31]. This shows that the fundamental
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frequency glide is an audible phenomenon in the kantele even at modest plucking amplitudes,

and thus it must be modeled in the synthesis phase if high quality tones are desired. The string

model used in this figure has a total delay line length of 55.125 and the allpass coefficient � is

scaled using a constant value of 0.9 in order to simulate the behavior of the recorded sample.

The sampling frequency is 44.1 kHz.

The modeling of the generation of missing harmonics can be implemented similarly in the

distributed nonlinear DWG model as was suggested in [61]. If the boxcar integration of Eq.

3.8 is replaced with a leaky integrator having the transfer function

� ' D
) � � � > � ���
> � ��� D �

# � (3.10)

the generation of the missing harmonics can be controlled via the integration parameter ��� .

The variable � � defines the gain of the integration.

Figure 3.14 shows the amplitude envelopes of the first three harmonics of a synthesized

tone with two different �A� parameter values. The string is plucked in both cases using the

same excitation signal applied at the same location, approximately > � @ rd of the string’s length,

and as can be seen in the figure, the missing harmonic in (a) has a gradual increase after the

beginning transient, after which it experiences an exponential decay like all other modes. The

general form of the third harmonic in (b) is the same as in (a), but it is heavily attenuated.

The string in both cases consists of 60 basic elements, and it is plucked between the 20th and

21st elements. We use two identical third-order lowpass FIR filters with coefficients [ � � : � <�@A8 ,

� :������A? , � :������A? , � � : � <�@A8 ] at both ends of the string for modeling the frequency-dependent

losses. The beating discussed in Section 3.6.1 is naturally absent in Figures 3.13 and 3.14,

since only a single-polarization string was studied.

It is worthwhile to note that the generation of missing harmonics in the nonlinear DWG

model results from the properties of the integration of the elongation approximation, and is

therefore not a physically justified process. Also, unlike the real physical phenomenon, the

generation of missing harmonics in the nonlinear DWG case does not depend on the rigidity of

the terminations. Nevertheless, as can be seen, this feature can be exploited in emulating the

real string behavior, when the integration parameters are properly adjusted. Details on tuning

the leaky integrator parameters can be found in [61].

A real-time sound synthesis model of a kantele is constructed using a block-based, efficient

audio DSP tool, the BlockCompiler. The algorithm used is efficient enough to process a five-

string kantele model on an ordinary laptop computer at a 44.1 kHz sampling rate. A detailed

description of the BlockCompiler is presented by Karjalainen [33].
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Figure 3.13: Illustration of the fundamental frequency glide in the synthesized tone (solid

line) and in a real kantele tone, obtained via measurements (dashed line). The approximated

detection threshold of a pitch drift, illustrated as a dotted line, suggests that the fundamental

frequency drifts in both cases are audible.
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Figure 3.14: Generation of the missing harmonics in the nonlinear DWG model can be con-

trolled via the leaky integrator parameters. Here, the string was plucked approximately at> � @ rd of its length, so every 3rd harmonic should be missing from the resulting spectrum.

In a), ��� � � � : 8�� � 8 and the third harmonic clearly rises after the initial transient. In b),��� � � � :���� <�8 and the third harmonic is more attenuated.



Chapter 4

Nonlinear String Model Using Finite

Differences

4.1 Synthesis Through Finite Differences

In the previous chapter we discussed string synthesis via discretizing d’Alembert’s solution to

the 1D wave equation. Another approach is to discretize the wave equation itself, for example

by substituting finite difference terms for the derivatives in the wave equation (Eq. 2.1 in the

case of an ideal string). This mode of operation is commonly known as the finite difference

method, and it was first used for sound synthesis purposes by Hiller and Ruiz in the early

seventies [26] and [27]. Finite differences had already earlier been used in mathematics for

numerical solving of partial differential equations. A fine introduction to FDM in the synthesis

of plucked stringed instruments can be found in [10].

In this chapter we will first review the ideal FDM string model and discuss its tuning and

numerical dispersion. Next, we will have a look at the boundary conditions, review possible

excitation schemes, and discuss the lossy FDM string. Finally, we will turn our interest to

nonlinear FDM string models and present a novel algorithm for modeling nonlinear strings in

Section 4.4.1.

4.2 Finite Difference Model of an Ideal String

The partial derivatives in the 1D wave equation (Eq. 2.1) can be replaced by finite differences:

� 1 '�� � � ) 6 � '�� � � ) � � '�� � � � � )
� (4.1)

and

� J '�� � � ) 6 � '�� � � )�� � '�� � � � � )
� : (4.2)

31
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The second order temporal differentiation now becomes

� 141 '�� � � ) 6 � '�� � � ) � 8 � '�� � � � � ) � � '�� � 8 � � � )
� * : (4.3)

Next, a one-sample time shift is applied in order to avoid delay errors in the result, leading to

� 141 '�� � � ) 6 � '�� � � � � ) � 8 � '�� � � ) � � '�� � � � � )
� * : (4.4)

Likewise, for the spatial differentiation

� J J '�� � � ) 6 � '�� � � � � ) � 8 � '�� � � ) � � '�� � � � � )
� * : (4.5)

After substituting Eqs. 4.4 and 4.5 in the 1D wave equation (Eq. 2.1), the 1D finite difference

wave equation can now be written as

$ � '�� � � � � ) � 8 � '�� � � ) � � '�� � � � � )
� * � 
 � '�� � � � � ) � 8 � '�� � � ) � � '�� � � � � )

� * : (4.6)

Solving 4.6, we get

� '�� � � � � ) � $ � *

 � * � � '�� � � � � ) � 8 � '�� � � ) � � '�� � � � � )�� � 8 � '�� � � )�� � '���� � � � ) : (4.7)

Next, we define the relationship between the spatial and temporal sampling steps with [10]


 � � �� � > � (4.8)

where the “less than unity” restriction is called the Von Neumann stability condition. We will

call 
 a tuning coefficient1 and justify the naming later. Using this together with the definition

of transversal wave velocity (Eq. 2.2), Equation 4.7 can be written as

� '�� � � � � ) � 
 * � � '�� � � � � ) � � '�� � � � � )�� � 8 ' > � 
 * )
� '�� � � ) � � '���� � � � ) : (4.9)

If we now do the discretization by denoting � � � � � � � and � � � � � � �
, as we did in

Section 3.2.1, we end up with the finite difference approximation [10]

� '(� �9> � ��) 6 
 * � � '(��� � �9> ) � � '(��� � � > )�� � 8 ' > � 
 * )
� '(��� ��) � � '(� � > � ��) : (4.10)

If 
 � > , the finite difference approximations of Eqs. 4.1 and 4.2 become exact and the

recurrence equation becomes

� '(� � > � ��) � � '(��� � � > ) � � '(��� � � > ) � � '(� � > � ��) � (4.11)

which is the finite difference equation of an ideal string. Equation 4.11 can conveniently be

illustrated using a spatio-temporal grid, depicted in Figure 4.1. Here, the horizontal axis rep-

resents the spatial coordinate (i.e. position on the string) and the vertical axis represents the

temporal coordinate (i.e. the time instant). We will find the spatio-temporal grid especially

useful when illustrating the more complex nonlinear finite difference algorithm later.

1 � is also known as the Courant number.
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Figure 4.1: (a) Illustration of the 1D finite difference equation of an ideal string on a spatio-

temporal grid. The vertical axis denotes the time, while the horizontal axis denotes the spatial

location on the string. The left-hand side of Eq. 4.11 is presented with a black dot, while

the values used in the right-hand side of Eq. 4.11 are presented as blank dots. The arrows in

(a) denote the arithmetic operators of the equation and are usually left out, thus leading to a

simplified form, illustrated in (b).

4.2.1 Numerical dispersion and tuning

The Von Neumann stability condition can also be expressed in the frequency domain by rewrit-

ing Eq. 4.8 in terms of sampling frequency
B;I
� > � � and fundamental frequency of the stringB #

� � � 8 � � F � leading to [10]

, B # � BAI � 8 � (4.12)

where , is the maximum amount of partials of the string tone, as stated by the Nyquist theo-

rem. , also denotes the number of spatial points to be used in the simulation with sampling

frequency
B I

, if a string with fundamental frequency
B #

is desired. The fact that , is an integer

now raises problems in the tuning of the string, since only discrete fundamental frequency val-

ues can be obtained. The solution for the tuning problem is to use 
�� > . Since the variation

domain of the fundamental frequency of the string
B #

is [10]

� B #
�

BAI
8 � � F � �

BAI
8 ' � � F � � > ) �

BAI
8 � � F � ' � � F � � > ) � (4.13)

and since 
 depends linearly on
B #

, the correct value of 
 for a given fundamental frequency
B #

can be derived. This is illustrated in Figure 4.2.

Choosing 
�� > also gives raise to an unwanted numerical dispersion phenomenon called

grid dispersion [11], where the wave velocity in the numerical implementation will be less than

the ideal physical wave velocity. This artificial dispersion affects primarily the upper harmon-

ics, where the frequencies will be underestimated. If a typical error of >�� in the generated

frequencies is allowed, the difference between the tuning coefficient 
 and unity should not be

greater than > ��� � [10]. If the constraints between the correct tuning and grid dispersion do not
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Figure 4.2: Tuning coefficient 
 as a function of normalized fundamental frequency. The string

length
� � F � lies within the range [10, 100] (after [10]).

yield satisfactory results, the spatial density of the grid should be increased. This is known as

spatial oversampling.

Another clue that would suggest to use spatial oversampling is the fact that artificial damping

is introduced in the high-frequency range by the discretization process of Eqs. 4.1 and 4.2.

This happens because substituting the finite differences for the derivatives in the wave equation

corresponds in frequency domain to mapping the ��� axis in the � plane (continuous) to the

circle of radius > � 8 centered at D � > � 8 in the D plane (discrete) [56]. The damping is negligible

in the low frequencies, but as the frequency increases, the image of the ��� axis diverges away

from the unit circle.

It must be noted that despite the artificial damping, Equation 4.11 yields still exact results at

the sampling instants in the case of an ideal string. This can be proven [56] by substituting the

discrete traveling-wave solution (Eq. 3.1) into the right-hand side of Eq. 4.11, which shows that

Eqs. 3.1 and 4.11 are actually equivalent. From the discussion in Section 3.2.1, we conclude

that Eq. 4.11 must then also yield exact results at the sampling instants

4.2.2 Boundary conditions and string excitation

Since the spatial coordinate � of the string must lie between � and
� � F � , problems arise near

the ends of the string when evaluating Eq. 4.11 because spatial points outside the string are

needed. The problem can be solved by introducing boundary conditions that define how to
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evaluate the string movement when � � � or � � � � F � . The simplest approach, introduced

already in [26], would be to assume that the string terminations be rigid, so that � '(��� � ) �
� '(��� � � F � ) � � . This results in a phase-inverting termination, which suits perfectly the case

of an ideal string. A noninverting termination of a finite difference system is discussed in [32].

For a more realistic string termination model, several solutions have been introduced. In

[26], Hiller and Ruiz formulate boundary conditions for a lossy termination including reflection

coefficients 
� and 
./ for the left and right termination, respectively

� '(� � > � � ) � ' > � 
� )
� '(��� > ) � 
  � '(� � > � � ) (4.14)

and

� '(� � > � � � F � ) � ' > � 
./ )
� '(��� � � F � � > ) � 
./ � '(� � > � � � F � ) : (4.15)

If the supports are lossless, i.e. if there is a perfect reflection at the boundaries, 
; and 
 / will

equal unity; in general, however, they will be numbers between 0 and 1. For a guitar-like string

termination, where the string is clamped just behind the bridge, it is assumed [10] that the string

termination point and the bridge share the same displacement, leading to

� '(��� � � F � � > ) � � '(��� � � F � ) : (4.16)

The excitation of an FDM string can also be implemented in several ways. Since our primary

interest is focused on plucked-string instruments, we will not discuss violin- or piano-like

excitations here. Probably the simplest way to excite an FDM string is to set its initial shape

to match the displaced string prior to the release and then carry on with the simulation. If the

initial shape � ' ��� ��) of the FDM string is set to resemble e.g. the triangular form of a plucked

string, and if we assume that the string has no initial velocity, the string displacement at time

instant � � > must be set to [26]

� ' > � ��) �
�

� ' ��� ��) � � � ��� > � :4:4: � � � F � � ����9� � � � >#* � � ' ��� � � > ) � � ' ��� � � > )�� � � �9� � � � > � (4.17)

where � and � � > denote the coordinates of the slope discontinuity (i.e. the peak of the triangle).

In a way, this points out the “correct direction” for the string vibration after the initialization.

It must be noted, however, that if the spatial resolution of the string is high, the vertex of the

triangle must be smoothed to avoid slope discontinuities that might cause problems with high

frequency partials and grid dispersion, discussed in Section 4.2.1.

The plucking of a real string is, however, a more complex scheme than simply releasing the

string from its initial shape. The properties of the finger or a plectrum alter the behavior of the

string, and measurements reveal that the release is rather gradual than instantaneous [45], [46].

More advanced excitation models for FDM strings have been suggested e.g. in [10] and [18].

A simple but useful FDM string excitation method, which allows for interaction with the string
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during run-time has been proposed in [32]. There,

� '(��� ��)�� � '(��� ��) � >
8 � '(�E) (4.18)

and

� '(��� � � > )�� � '(��� � �9> ) � >
8 � '(�E) (4.19)

are inserted into the string, which causes a “boxcar” block function to spread in both directions

from the excitation point pair. Here, the impulsive wave component � '(�E) can be used as the

excitation signal in a similar way as the exciting force signal
� '(�E) in Section 3.5.2.

4.3 Finite Difference Approximation of a Lossy String

Frequency-independent losses can be modeled in an FDM string by discretizing the velocity-

dependent damping term in the lossy 1D wave equation (Eq. 2.7). The first-order temporal

derivative can be approximated using the central difference scheme, which gives [10] [18]

� 1 '�� � � ) � � '(� � > � ��)�� � '(� � > � ��)8 � � � ' � � ) � (4.20)

where
� '��=) denotes the order of the approximation error and

�
is, as before, the temporal

sampling interval. The reason for using the central difference scheme is its smaller approxima-

tion error compared to other schemes [58]. Inserting the central differences to the frequency-

independent lossy 1D wave equation (Eq. 2.7 with
" *
� � ) yields [10]

� '(� � > � ��) � � � '�� '(��� � � > ) � � '(��� � � > ) ) � � � � '(� � > � ��) � (4.21)

where

� � � >
> � " # � � 8 (4.22)

and �
� � > � " # � � 8> � "&# � � 8 : (4.23)

The string decay time can now be directly controlled via the damping coefficient
"�#

, since"�#
� > ��' 8 � ) , where � is the time constant for which the amplitude of the vibration decays to> � 5 of its initial value.

Modeling the frequency-dependent losses is again a more demanding task. By applying the

central difference scheme to the third-order temporal derivative of Eq. 2.7, we have [10]

� 14141 '�� � � ) 6 � '(� � 8 � ��) � 8 � '(� � > � ��) � 8 � '(� � > � ��) � � '(� � 8 � ��) � (4.24)

where the term � '(� � 8 � ��) would require information about the upcoming state of the string,

which is not known at time instant � � > when Eq. 4.24 is evaluated, and the scheme thus be-

comes implicit. Since the frequency-dependent damping term is relatively small, it is possible
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to approximate it using Eq. 4.11 so that the number of temporal steps will not be increased

and the number of spatial steps will be restricted to four. This somewhat complex recurrence

equation can be found in [10] and is not repeated here.

Equation 4.21 is actually a special case of a more general system, where both terms � '(��� � �> ) and � '(��� � � > ) have different coefficients, namely � �� and � �� . This structure is called a

1D finite difference time-domain (FDTD) waveguide [32], and it is illustrated in Figure 4.3.

This formulation can be used naturally for modeling the frequency-independent losses, but it

Figure 4.3: Digital waveguide implementation of the 1D wave equation’s finite difference ap-

proximation (after [32]).

is also cabable of simulating scattering junctions, a generalization of terminations, if � � and�
� values are chosen correctly [32]. Scattering junctions are used in simulating impedance

discontinuities, e.g. when the cross-section area of an acoustic tube changes, or when a string

is connected to the soundboard via a nonrigid termination. Since we are using a simplified

model for the string termination, and since the mechanical impedances in strings are generally

uniform, we will not go to further details here. Also, since the losses generally take place

uniformly throughout the string (excluding the terminations), we could give up the dependency

of � � and � � from the spatial location � . We will, however, leave the subscripts intact in

order to better distinguish the FDTD loss parameters from the DWG loss parameter � , and

allpass-coefficient � .

The FDTD waveguide can also be used in modeling fractionally positioned string termina-

tions, thus giving an alternative tool for tuning the string model. If the � � and �
� parameters

are chosen so that [32]

� �� � > � �
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� �� � > � �

� � � � 8;: ���
then the effective reflection point at low frequencies is at � � �

. This operation corresponds

to first-order Lagrange interpolation, a fractional delay technique not unlike we encountered in

Section 3.5.1. It must be noted, however, that since the location of the termination depends on

the frequency, this technique is applicable only with high sampling rates or with systems that

have heavy damping at high frequencies [32].

Finite difference models generally have stability problems if the spatial sampling frequency

is not sufficiently high. This is due to the grid dispersion phenomenon discussed in Section

4.2.1. Instability occurs when the string vibration starts to increase without addition of external

excitation, and therefore stability can be assured by applying suitable damping on the system.

It has been proven in [18], that choosing

� � �� � � � � �� � ��� � � � � > � �
� � � � *� � (4.25)

the stability of an LTI 1D FDTD string model can be guaranteed. In addition to this, the simple

form of Eq. 4.25 and the fact that we are not using physical quantities (such as
" #

in Eqs. 4.22

and 4.23) in modeling the string losses, suggests us to use this approach in our nonlinear FDTD

string model.

4.3.1 Stiffness in finite difference strings

The dispersive behavior of strings is best simulated in FDM models by directly discretizing the

stiff 1D wave equation (Eq. 2.8) using the same finite difference scheme as before (Eq. 4.2)

[27]. This leads to a recurrence equation containing three additional spatio-temporal terms in

the discretized wave equation. The recurrence equation for stiff strings has been covered in

earlier studies (e.g. [26], [10]) and will not be repeated here.

4.4 Nonlinearities in Finite Difference Models

As suggested in [32], the hard-limiting effects discussed in Section 2.2.4 can be modeled by

inserting an impulse excitation at the location of the limiter. The procedure is the same as in

the case of a DWG model, discussed in Section 2.2.4, because the string model used in [32] is

actually an FDTD waveguide. Nonlinear interactions between an excitor and an FDM string,

such as the hammer-string and the bow-string interactions, have been discussed in [9], [11],

and [12], and in [26], [49], and [50], respectively.
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4.4.1 Implementing TM in an FDTD string model

Implementing tension modulation in a digital waveguide string in Section 3.5 was not an overly

difficult task. This was due to the fact that the implementation of a DWG string is essentially

a feedback loop with delay, and therefore modulating the delay time of this loop corresponded

to modulating the wave velocities. In FDM strings, however, such an approach would not lead

to satisfactory results, since the physical quantities (e.g. displacement or velocity) themselves

are present in the string model, instead of their wave decompositions2 .

One approach could be to substitute fractional delay elements for the unit delays in the 1D

FDTD model, illustrated in Figure 4.3. This would, however, form a delay-free loop, and

thus lead to an implicit equation. Inserting unit delays between the fractional delays to avoid

the delay-free loops would not yield succesful results either, because that would violate the

recurrence equation 4.11, which states that the spatial and temporal distances between the

terms of Eq. 4.11 must remain the same. On a spatio-temporal grid this means that the spatial

resolution must equal the temporal resolution. Varying the tuning coefficient 
 would, in turn,

likely result in problems with the grid dispersion.

Due to these restrictions we concluded that in order for the system to work properly, we

would first have to evaluate the recurrence equation, interpolate the elongated string shape from

that, and then re-evaluate the recurrence equation using the interpolated values. This can also

be seen as using two FDTD systems in implementing the nonlinear string. The elongation of

the string would be evaluated from one system, and the result, the stretched string state, would

be updated to the other system. Figure 4.4 illustrates this procedure on the spatio-temporal

grid.

Figure 4.4: Illustration of the nonlinear FD algorithm on a spatio-temporal grid. The vertical

axis denotes the time, while the horizontal axis denotes the spatial location on the string. The

illustration is shown only for a string segment of length
� � F � � @ , for clarity. In each step of

the algorithm, most recently evaluated values are presented as black dots, while earlier values

are presented as white dots.

In step 1, the two initial states have been assigned for the string, and the state at the next

2Such a system which deals with the physical quantities themselves is called a Kirchhoff model, as opposed to a

wave model, which deals with the wave components of the physical quantities.
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instant (in the linear case) is obtained by the standard recurrence equation (Eq. 4.11). The

grid values which represent the state of the string at the corresponding time instant are circled

in step 1. In step 2, sample values corresponding to the TM have been interpolated from the

string states in step 1. In step 3, Eq. 4.11 has been applied on the values evaluated in step 2, in

order to obtain the string state corresponding to the change in tension. The two most recently

obtained states are now taken as the “initial states” in step 4, and we can return to step 1. As

seen in Fig. 4.4, the tension modulation corresponds here to interpolating the string state in the

temporal domain. The elongation of the FDTD string was evaluated similarly to what was done

in Equation 3.7, except that here the slope of the string was obtained by taking the difference

of the displacements between two adjacent string segments, rather than summing up the slope

wave components. In the following, we will have a closer look at the interpolation process.

4.4.2 String state interpolation

We chose again to use first-order allpass filters in interpolating the string state from the linear

model (Step 2 in Fig. 4.4). Figure 4.5(a) illustrates how the interpolated value of � '(��� ��) is

obtained from the linear values. The spatio-temporal grid on the left represents the string state

in the linear case, while the spatio-temporal grid on the right represents the string state after

spatial interpolation. The structure between the two grids is the block diagram of a first-order

allpass filter (Eq. 3.4). The coefficient � for the allpass filter was evaluated as presented earlier

by Eqs. 3.7-3.9.

From this figure, we notice that the allpass filter uses the value of � '(� � > � ��) delayed by

one time sample, thus corresponding to � '(��� ��) . Clearly, this can be obtained directly from

the grid on the left, and the branch on the left containing the unit delay can be reformed. The

result is shown in Figure 4.5(b). Here we also note that the interpolation system uses its own

output at the previous time instant. This is actually the same as using the value of � '(� � > � ��) ,
because it is the same as the output of the interpolation process one time step ago (this might

be best understood by noting that the bottom row of step 4 in Fig. 4.4 is the same as the bottom

row of step 1 at the next time instant). Thus, Fig. 4.5(b) can be further simplified to Fig. 4.5(c).

Having this said, the recurrence equation for the nonlinear finite difference string can be

written as

� # '(� � > � ��) � � � '�� * '(��� � � > ) � � * '(��� � � > ) ) � �
� � * '(� � > � ��) �
� * '(��� � � > ) � � � � # '(� � > � � � > ) � � # '(��� � � > ) � � � # '(� � > � � � > ) �
� * '(��� � � > ) � � � � # '(� � > � � � > ) � � # '(��� � � > ) � � � # '(� � > � � � > ) �
� * '(� � > � ��) � � � � # '(��� ��) � � # '(� � > � ��) � � � # '(� � 8 � ��) :

(4.26)

Here the subscript indices 1 and 2 refer to the linear and interpolated strings, respectively.

Simplifying and rearranging we end up with an equation containing only terms of � # , and the
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Figure 4.5: Illustration of the interpolation process due to the change in the string’s length. The

spatio-temporal grids on the left and right represent the linear and interpolated string states,

respectively. The fractional delay value caused by the interpolation is denoted by
"
. The

interpolation process in (a) is simplified in (b), and further in (c).

subscript may therefore be omitted

� '(� �9> � ��) � � � � � � '(� �9> � � � > ) � � � � � '(� �9> � � � > ) � � � � '(��� � � > )
�7�
� � � '(��� ��) � � � � '(��� � � > ) � � � � � '(� � > � � � > ) � � � � '(� � > � ��)
� � � � � '(� � > � � � > ) � �
� � � '(� � 8 � ��)

(4.27)

This equation is illustrated with a block diagram in Figure 4.6 along with its abstraction. A

nonlinear FDTD string can be constructed by connecting several of these blocks together. We

will refer to such a block as a nonlinear FDTD (NFDTD) element. Illustration of the lossless

NFDTD element can be found in Figure 4.7, where � � and �
� equal unity and have therefore
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Figure 4.6: Illustration of the lossy nonlinear FDTD element.

been left out.

Figure 4.7: Illustration of the lossless nonlinear FDTD element.
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4.4.3 String excitation and termination

For the interaction with the FDTD string model, we chose to use the “boxcar” excitation model

discussed in Section 4.2.2, so that the excitation signal could again be interpreted as a force

signal. Figure 4.8 presents an interaction block to be used with a nonlinear FDTD string. We

will call such a block the FDTD interaction element.

Figure 4.8: Illustration of the FDTD interaction element together with its abstraction. The

excitation algorithm is defined by Eqs. 4.18 and 4.19.

Using these DSP blocks, we can construct a one-polarization NFDTD string, as illustrated in

Figure 3.8. We chose to use rigid terminations for our nonlinear finite difference string model,

since the modeling of frequency-dependent losses at the terminations is not a key aspect of this

study. Fixed terminations do not ruin the generation of missing harmonics in our model either,

since the TMDF coupling is implemented in a different manner, as we are about to see in the

following section. The zero-blocks, introduced in Fig. 4.9, are elements that merely give zeros

to all outputs for all input signal values.

4.4.4 Simulation results and comparison to measured data

As suspected, the nonlinear FDTD algorithm is cabable of simulating the fundamental fre-

quency glide phenomenon of real musical instruments. Figure 4.10 depicts the fundamental

frequencies of a measured kantele tone and a nonlinear FDTD string tone as a function of time.

The measured kantele tone is the same one used in Fig. 3.13. The string model used here

consists of 56 NFDTD elements, and the tuning coefficient (Eq. 4.8) has a value of 
 � � :����A? .

The allpass coefficient � is scaled using a coefficient � : 8�� in order to correctly simulate the
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Figure 4.9: One-polarizational nonlinear FDTD string. The string consists of the nonlinear

FDTD elements illustrated in Fig. 4.6. The zero-blocks at the terminations give zero as an

output regardless of the input values, thus implying rigid terminations. The excitation to the

string can be inserted as a force signal using an FDTD interaction element, illustrated in Fig.

4.8.

recorded tone.
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Figure 4.10: Illustration of the fundamental frequency glide in the nonlinear FDTD tone (solid

line) and in a real kantele tone, obtained via measurements (dashed line). The dotted horizontal

line presents, as before, the approximated detection threshold of a pitch drift.

When modeling the generation of missing harmonics in the nonlinear DWG string, we ex-

ploited the computational error in the elongation calculation, and were able to turn the error to

our advantage. Modeling the generation of missing harmonics in a nonlinear FDTD string is

however not so simple. Even if a leaky integrator is used in the elongation calculation, its pa-

rameters do not have a desirable effect on the missing harmonics. This effect does not seem too

surprising when considering the major differences of these two algorithms. Instead, we con-

structed a model, where an additional interaction element is placed between the last NFDTD

element and the string termination. After evaluating the TMDF, we can insert it into the ad-

ditional interaction element, because the interaction element is able to excite the string during

run-time, and it takes a force signal as its input.

The vertical component of the TMDF can be seen to be directly proportional to the product

of the displacement of the last NFDTD element and the tension. Figure 4.11 clarifies this. Also,
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since the tension variation is directly proportional to the elongation signal, we can obtain the

TMDF by multiplying the elongation signal by the displacement of the last NFDTD element,

and scaling the product with a constant coefficient. This coefficient, denoted � ������� , can now

be used to control the amplitude of the missing harmonics. A nonlinear FDTD string model

with the generation of missing harmonics is presented in Figure 4.12.

Figure 4.11: Illustration of the NFDTD string termination. The arrows denote the tension mod-

ulation driving force, while the circles denote the displacements of different NFDTD elements.

The vertical component of the tension is directly proportional to the displacement of the last

NFDTD element, since � � � ' � ) � $ L ��$ J
� � ' , � � � � > ) � > , where � � is the index of the

last NFDTD element. Clearly also $ L
� � ' , � � � � > )H$ J

.

Figure 4.12: Illustration of the NFDTD string with a generation mechanism for missing har-

monics. A second interaction element is added in order to feed the TMDF into the string.

The scaling coefficient �E������� controls the amplitude of the missing harmonics. The string

elongation is approximated from the displacements of each NFDTD element.

Figure 4.13 represents the behavior of the first three harmonics of a tone synthesized by

this model. It can be seen that the missing harmonics can be “lifted” by choosing a proper
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value for ��� ����� . The stability of the system, however, poses an upper limit for the � �������
coefficient, since the TMDF mechanism continuously feeds energy to the string. According to

our experience, missing harmonics with amplitudes greater than what shown in Fig. 4.13 is

difficult.
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Figure 4.13: Generation of missing harmonics in a nonlinear FDTD string. The string was

plucked again approximately at > � @ rd of its length, and the coupling of the TMDF to the

transversal vibration was controlled using a scaling coefficient � ������� . In (a), the scaling

coefficient has a value of �E������� � � , and the missing third harmonic can be seen rising after

the initial transient. In (b), �E� ����� � � , and generation of missing harmonics doesn’t take

place.

4.5 Stability Analysis of the Nonlinear FDTD Algorithm

We studied the stability of the nonlinear FDTD algorithm using the Von Neumann analysis

[58] in the time-invariant case, i.e. parameter � of Eq. 4.27 was kept constant. The basic idea

of this method is to calculate the spatial Fourier spectrum of the system under discussion at

two consecutive time steps. An amplification function, which shows how the spatial spectrum

evolves with time, can then be derived from the two spectra. If the absolute value of this
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amplification function remains below unity, stability is guaranteed. Since the Von Neumann

analysis of complicated recurrence equations is not necessarily self-evident, we will discuss

this a bit more thoroughly here.

If the spatial inverse Fourier transform is defined

� '(��� ��) ������� '(����� )	� �
#
� 	 � 5 3 ��
 � (4.28)

the nonlinear finite difference recurrence equation 4.27 can be written as

	 � �
# 5 3 ��
 � � � � � 	 � � # 5 3 � � � # � 
 � � � � 	

�
�
# 5 3 � � �

# � 
 � � � 	
� 5 3 � � �

# � 

�7�
� � 	 � 5 3 ��
 � � � 	

� 5 3 � � �
# � 
 � � � � 	

�
�
# 5 3 � � �

# � 
 � � � 	 � �
# 5 3 ��


� � � � 	
�
�
# 5 3 � � �

# � 
 � �
� � 	 � �
* 5 3 ��
 : (4.29)

Dividing with 	 � �
* 5 3 ��
 and rearranging, we have

' > � � � �;5 3

 � � � �;5 � 3�
 ) 	
+
� ' � � � 5 3�
 � �
� � � � � 5 � 3�
 ) 	

*
� ' � � � �;5 3

 � � � � � � �;5 � 3

 ) 	 � �
� � � � : (4.30)

Using the Euler’s equation leads to a simpler form

� 	 + � � 	 * � � 	 � �
� ��� (4.31)

where �
� > � 8 � � �
��� �
' � )

� � � �
� � � 8 � � ��� �
' � )�
� � � � 8 � � �;��� �;' � )�
� � �
� � :

(4.32)

In order to get the amplification function 	 , we would now have to solve the third-order equa-

tion 4.31. Unfortunately, the solution of this equation is complicated and involves dozens of

terms. If we want to consider the stability of the lossless nonlinear FDTD string, we can sub-

stitute � � � �
� � > . This simplifies the solution of Eq. 4.31 enough to enable numerical

stability analysis for the amplification function. The absolute value of the amplification func-

tion 	 is illustrated in Figure 4.14 as a function of the interpolation coefficient � , and the spatial

frequency
�
.

It is important to note that this stability analysis is conducted on a lossless nonlinear FDTD

string with constant interpolation coefficient. We can thus call this system time-invariant (nor-

mally the interpolation coefficient depends on the string elongation). Figure 4.14 reveals that

in the lossless case, the time-invariant version of the nonlinear FDTD algorithm is unstable for

all but very small � parameter values. Making the algorithm time-variant results in an even less

stable system. In a practical lossy string implementation, however, the nonlinear FDTD string

remained stable for typical excitation amplitudes (i.e. excitation amplitudes commonly used

when playing real string instruments).
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Figure 4.14: Absolute value of amplification function 	 of a nonlinear FDTD algorithm as a

function of the allpass-coefficient � and the relative frequency
�
. The white color denotes areas

where the amplification function exceeds unity, i.e. when the model becomes unstable.

4.6 Comparison of the Nonlinear Algorithms

Now that both of the spatially distributed nonlinear string algorithms have been thoroughly

discussed, it is probably a good idea to have a brief comparison between the two models. At

first glance the algorithms seem quite alike; both models are spatially distributed, and the user

interface for both algorithms is similar. The excitation for both models is inserted during run-

time as a force signal into an interaction element and the amount of nonlinearity and the direct

coupling of the TM can be controlled via scaling coefficients. Also, the TM signal computation

is exactly the same in both models, and the initial pitch glide can be modeled quite similarly

using both models, unless heavily exaggerated pitch glides are desired.

A more careful examination, however, reveals also many differences. The inner structures

of the models are not at all similar; the signals inside the nonlinear DWG model can be inter-

preted as wave components (velocity waves, in this case), while the signals inside the nonlinear

FDTD model present the actual physical quantities (displacement of the string). This is the fun-

damental distinction between wave- and Kirchhoff models, and it is present in all DWG and

finite difference models. Also, due to the loop-like structure of the nonlinear DWG model, im-
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plementing frequency-dependent losses can be done simply by inserting a loop filter, whereas

the nonlinear FDTD model would require adding extra terms in the original wave equation for

realistic loss modeling.

The computational complexities of the algorithms are also different. Since the models con-

sist mainly of the basic string blocks (basic elements in the DWG case and NFDTD elements

in the finite difference case), the differences in the computation of the basic string blocks dom-

inates the computational needs of the algorithms. The basic element (Fig. 3.7) consists of four

multiplications and two summations per time sample, whereas the nonlinear FDTD element

(Fig. 4.6) requires a total of nine multiplications and eight summations for computing one time

sample. Although the interaction and termination blocks are much simpler in the finite dif-

ference case, the typically large number of the string elements turns the favor to the nonlinear

DWG model. The cost for the allpass-coefficient estimations and memory requirements for the

two models are approximately the same. Figure 4.15 depicts the number of total computational

operations per time sample as a function of string elements for both of the two models.
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Figure 4.15: Number of computational operations required for each time sample as a function

of the number of string elements. The computational requirements increase linearly in both

cases, although the slope is greater for the nonlinear FDTD string algorithm.

In the figure we can see, e.g. that if a nonlinear string with a nominal fundamental frequency

of 440 Hz and a temporal sampling frequency of 44.1 kHz is desired, the nonlinear FDTD
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algorithm would consist of 50 elements, and would therefore need a computational power

of 45 MFLOPS (millions of floating point operations per second), while the nonlinear DWG

algorithm would settle for 22 MFLOPS. From this approximation, we can conclude that in

theory, a modern PC with a computational power of 3500 MFLOPS would be able to run over

150 nonlinear DWG string models, or over 70 nonlinear FDTD string models in real-time. In

practice, however, the operating system, other processes, and implementational issues slow the

performance down considerably.

Besides the computational complexities, another important difference between the two pre-

sented models is stability. As discussed in Sections 3.5.3 and 4.5, the nonlinear FDTD al-

gorithm has far more severe stability problems than its digital waveguide counterpart. Both

models perform equally well when modeling the initial pitch glide phenomenon of existing

musical instruments, but exaggerating the glides results into stability problems much sooner

with the NFDTD model than with the NDWG one. Also, as discussed in section 4.4.4, the sta-

bility of the NFDTD algorithm limits the obtainable amplitudes of the missing harmonics, so

that realistic modeling of this phenomenon becomes difficult. Fortunately, the nonlinear DWG

algorithm does not have this constriction.



Chapter 5

Conclusions and Future Work

This chapter will briefly summarize the main results of this thesis and discuss where these

models could be used. Also, suggestions for possible future studies are presented.

5.1 Main Results of This Thesis

Two algorithms for modeling spatially distributed nonlinear strings in a physically meaningful

way were presented. The nonlinear digital waveguide model uses first-order allpass filters in

modulating the total delay time of the waveguide, which corresponds to a modulation of the

fundamental frequency in the resulting tone. The spatially distributed nature of this model is

the real novelty here, and it enables interaction with the string at any spatial location during run-

time. The nonlinear digital waveguide algorithm is able to closely simulate the fundamental

frequency glide phenomenon of real strings, as well as considerably exaggerate it. Also, the

generation of missing harmonics in real strings can be reasonably well emulated using the

digital waveguide model, although the computational process producing it is not physically

valid.

The second algorithm, a spatially distributed finite difference model of a nonlinear vibrat-

ing string, uses first-order allpass filters in interpolating the string state between consecutive

time samples in the lossy finite difference recurrence equation. This is essentially the same

as modulating the procession rate of the recurrence equation. Finite difference methods have

not been used in modeling nonlinear strings up until a very recent study by Bilbao [8]. Our

modeling approach, however, is considerably different. The nonlinear finite difference algo-

rithm presented in this thesis is capable of realistically simulating the fundamental frequency

glide, as well as exaggerate it to some extent. The generation of missing harmonics is modeled

by this algorithm in a pseudo-physical manner, although stability problems make the realis-

tic simulation of this phenomenon difficult. Comparison of the two methods reveals that the

nonlinear finite difference string algorithm is computationally twice as expensive as the digital

51
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waveguide version. The main results of this thesis will published later as a journal article [44].

5.2 Application Possibilities and Future Work

A natural application area for these string models is the electronic music industry. If combined

with proper instrument body models and reverberation algorithms, the string models could be

used in hardware or software synthesizers, resulting in high quality string instrument tones

with a great degree of flexibility. Also, the gaming industry and virtual reality applications

could gain from the string models. As an example of the latter, the nonlinear digital waveg-

uide algorithm was used in the implementation of a virtual kantele, in the experimental virtual

environment (EVE) at the Telecommunications Software and Multimedia Laboratory, Helsinki

University of Technology. Figure 5.1 illustrates the graphical user interface of the virtual kan-

tele. For more information about the EVE, see [1].

In the virtual kantele demo, five virtual strings are projected in the EVE-room, and the user

is able to excite them using magnetically-tracked data gloves. An illusion of a 3D environment

is generated via magnetically tracked stereo shutter glasses, synchronized to a set of projec-

tors. When the user excites a string, the resulting sound is generated via loudspeakers using

the kantele string model, discussed in Sec. 3.6.2, running on a software platform called Mus-

tajuuri [29]. The plucking velocity on the virtual string defines the amplitude of the excitation,

while the plucking location defines the amount of nonlinearity in the sound. The user can also

generate tones with negative nonlinearities, i.e. ascending pitch glides.

The formulation of energetically valid nonlinear string models (i.e. models where the string’s

energy behaves in a physically correct way), as well as embedding the nonlinear string algo-

rithms in a full-scale physical model of a plucked-string instrument body, are left for future

work.
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Figure 5.1: Illustration of the virtual kantele at EVE. The user can excite the virtual strings

(projected bars) using data gloves, and the resulting sound is played through a set of loud-

speakers. The velocity of the excitation defines the resulting amplitude of the vibration, and

the excitation location defines the amount of nonlinearity. The projected spheres denote the

locations of the user’s hands in the 3D environment.
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