

HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Electrical and Communications Engineering

Tuukka Taipale

Comparison of Routing Software in Linux

Thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science in Engineering

Espoo, Finland, September 27, 2006

Supervisor of the Thesis Professor D.Sc. (Tech.) Raimo Kantola

Instructor of the Thesis Master of Science Pasi Strengell

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80700801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF THE

 MASTER'S THESIS

Author: Tuukka Taipale

Name of the Thesis: Comparison of Routing Software in Linux

Date: September 27, 2006 Number of pages: 64

Department: Department of Electrical and Communications Engineering

Professorship: S-38 Networking Technology

Supervisor: Professor D.Sc (Tech.) Raimo Kantola

Instructor: Master of Science Pasi Strengell

Linux operating system is becoming more and more popular today. Network
connections are becoming faster and the amount is increasing all the time. Today’s
networks need routing so that the messages can go towards their destinations in the
Internet. The routing can be performed in the Linux systems. In this thesis we handle
both the Linux operating system and routing functionality.

Our routing software is based on the FreeBSD operating system. This thesis studies
how well that software works on Linux. The first step is to port this software on
Linux. After that we examine the functionality of the software in Linux by comparing
the routing daemon with two commercial routing solutions and an open source one.
The comparison consists of performance and software complexity measurements.

The results of these measurements not only show that the software is capable to be
run on Linux, but also give even more information on how different routing software
packages perform the routing tasks. The output of the software complexity
measurements shows the type of source code in the compared routing solutions. The
complexity of the software is related to the easiness to maintain it.

Keywords: Routing software, Routing performance, Software complexity

 i

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Tuukka Taipale

Työn nimi: Reititysohjelmistojen vertailu Linuxissa

Päivämäärä: 27 syyskuuta 2006 Sivumäärä: 64

Osasto: Sähkö- ja Tietoliikennetekniikan osasto

Professuuri: S-38 Tietoverkkotekniikka

Valvoja: Professori, TT Raimo Kantola

Ohjaaja: Filosofian Maisteri Pasi Strengell

Linux-käyttöjärjestelmä yleistyy nykyään yhä enemmän ja enemmän.
Verkkoyhteydet tulevat nopeammiksi ja niiden määrä kasvaa koko ajan. Nykypäivän
verkot tarvitsevat reititystä, jotta viestit voidaan välittää Internetissä eteenpäin kohti
vastaanottajaa. Linux-järjestelmät voivat toimia reitittiminä. Tässä työssä
käsittelemme sekä Linux-käyttöjärjestelmää että reititystoiminnallisuutta.

Reititysohjelmistomme perustuu FreeBSD-käyttöjärjestelmään. Tässä työssä
tutkimme, kuinka hyvin tämä ohjelmisto toimii Linuxissa. Ensimmäinen toimenpide
on muokata reititysohjelmisto yhteensopivaksi Linuxin kanssa. Sen jälkeen tutkimme
ohjelmiston toiminnallisuutta Linuxissa vertailemalla tätä reititysohjelmaa kahden
kaupallisen ja yhden avoimeen lähdekoodiin perustuvan reititysratkaisun kanssa.
Vertailu koostuu suorituskyky- ja ohjelmiston kompleksisuuden mittauksista.

Näiden mittausten tulokset eivät pelkästään näytä, että ohjelmaa voidaan ajaa
Linuxissa, vaan antavat myös lisätietoa siitä, miten reititysohjelmistot suorittavat
reititystehtäviä. Ohjelmiston kompleksisuusmittausten tuloksena näemme
lähdekoodin laadun vertailluissa reititysohjelmissa. Ohjelmiston kompleksisuus
liittyy siihen, kuinka helppoa ohjelmistoa on ylläpitää.

Avainsanat: Reititysohjelmisto, Reitityksen suorituskyky, Ohjelmiston
kompleksisuus

 ii

PREFACE

This master’s thesis was carried out in Nokia Networks, IPSO Platform and

FlexiPlatform departments. I appreciate the instructions and possibility to do this work

along with my other responsibilities.

I would like to express my gratitude to my supervisor Master of Science Pasi Strengell

for his guidance during my work for the thesis. I am also very grateful to the work

mates with whom I have discussed issues concerning IP routing.

I would also like to thank my wife Marjut for her patience during this work. Special

thanks also for my parents and siblings for being valuable support to me during my

studies.

Helsinki, September 27, 2006

Tuukka Taipale

 iii

Table of Contents

1. INTRODUCTION .. 1
1.1 BACKGROUND..1
1.2 OBJECTIVE ...1
1.3 STRUCTURE..2

2. ROUTING SOFTWARE ... 3
2.1 THE PURPOSE OF ROUTING SOFTWARE ..3

2.1.1 Traffic Forwarding...3
2.1.2 Routing Table Management ...4

2.2 EVALUATED ROUTING DAEMONS ..5
2.2.1 Nokia Ipsrd ...6
2.2.2 IpInfusion ZebOS..11
2.2.3 NextHop GateD ..13
2.2.4 Quagga ...15

2.3 FEATURE COMPARISON..17
2.3.1 Architecture ..17
2.3.2 Routing Protocols...18
2.3.3 Operating Systems..19

3. PORTING WORK REQUIREMENTS.. 20
3.1 SOFTWARE PORTING ..20

3.1.1 Before Porting ..20
3.1.2 Preparing for Porting...21
3.1.3 The Migration...22

3.2 ROUTING IN FREEBSD AND LINUX..23
3.2.1 Routing in FreeBSD ...23
3.2.2 Routing in Linux ...24
3.2.3 Routing Differences between FreeBSD and Linux...................................25
3.2.4 Interface Types in FreeBSD and Linux ..25

4. MEASURING SOFTWARE COMPLEXITY... 26
4.1 LINES-OF-CODE METRICS...26
4.2 MCCABE’S CYCLOMATIC NUMBER..27

4.2.1 Techical Detail ...27
4.2.2 Usage Considerations ..30
4.2.3 Maturity ..31
4.2.4 Costs and Limitations...31
4.2.5 Alternatives...31
4.2.6 Complementary Technologies ..32

4.3 HALSTEAD’S METRICS ...33
4.3.1 Technical Detail ...33
4.3.2 Usage Considerations ..34
4.3.3 Maturity ..35
4.3.4 Costs and Limitations...35

 iv

4.3.5 Alternatives...35
4.3.6 Complementary Technologies ..36

4.4 MAINTAINABILITY INDEX ..36
4.4.1 Technical Detail ...37
4.4.2 Usage Considerations ..38
4.4.3 Ways of Using MI ...38
4.4.4 Maturity ..39
4.4.5 Costs and Limitations...39
4.4.6 Dependencies..40
4.4.7 Alternatives...40
4.4.8 Complementary Technologies ..40

4.5 SOFTWARE COMPLEXITY MEASUREMENTS ..41
4.5.1 Measurement Tool..41
4.5.2 Selected Complexity Metrics for Comparison..41

5. PORTING WORK.. 42
5.1 PORTING OF IPSRD..42

5.1.1 Modules ..42
5.1.2 Referenced Libraries ..43
5.1.3 Needed Actions to Run the Process in Linux..43

5.2 ENCOUNTERED PORTING PROBLEMS..43
5.2.1 Compilation Errors ..43
5.2.2 Solutions for the Errors..44
5.2.3 Kernel Assertion Failures in the Beginning ...44

6. ROUTING DAEMON PERFORMANCE ... 45
6.1 TEST ENVIRONMENT ..45
6.2 TEST CONTENTS...46

6.2.1 Inserting 100000 Routes...46
6.2.2 Memory Usage ...46
6.2.3 OSPF Convergence ..47

7. RESULTS AND SUGGESTIONS... 48
7.1 THE PERFORMANCE OF THE ROUTING DAEMONS...48

7.1.1 Inserting 100000 Routes...48
7.1.2 Memory Usage ...48
7.1.3 OSPF Convergence ..50

7.2 COMPLEXITY MEASUREMENT RESULTS ...50
7.2.1 File Length ...51
7.2.2 Comments Percentage..51
7.2.3 Cyclomatic Number..52
7.2.4 Information Volume..53
7.2.5 Maintainability Index ...54

7.3 COMPARISON SUMMARY..55
7.3.1 Performance Summary ...58
7.3.2 Complexity Differences ..59

7.4 CONCLUSION..59
8. BIBLIOGRAPHY... 61

 v

List of Figures

Figure 1: IPSO Routing Subsystem Architecture [IPS] ...7
Figure 2: ZebOS Modular Routing and Switching Software Building Blocks [IPI] ...12
Figure 3: GateD Architecture [NHT] ...14
Figure 4: Quagga Architecture [RAM] ..16
Figure 5: Routing Design [MCK] ..24
Figure 6: Connected Graph of a Simple Program [CYC] ..28
Figure 7: Test Network...46
Figure 8: Memory Usage with OSPF Routes...49
Figure 9: Memory Usage with RIP Routes ..49
Figure 10: File Length Comparison ...51
Figure 11: Comments Percentage...52
Figure 12: Cyclomatic Number Measurement Results ..53
Figure 13: Information Volume Measurement Results..54
Figure 14: Maintainability Index Measurement Results ..55

 vi

Comparison of Routing Software in Linux Tuukka Taipale

1. Introduction

1.1 Background

Every network node in the Internet has to be capable to send and receive Internet

Protocol (IP) packets. As all the endpoints cannot have a connection between each

other, we need to form a structured network between all the Internet hosts. The

network contains then endpoints and nodes between them. Those nodes between the

endpoints are called routers. The task of a router is to forward Internet packets

between the endpoints. Another task is to keep their internal forwarding table up to

date.

Router is a special-purpose dedicated computer that connects several networks.

Routers switch packets between these networks in a process known as forwarding.

This process may be repeated several times on a single packet by multiple routers until

the packet can be delivered to the final destination - switching the packet from router

to router to router... until the packet gets to its destination. [BAK]

These routers are computers that have an operating system (OS). The OS runs

different processes that take care of the hardware and provide the interface for the user

to this hardware. One of these processes is a routing daemon that handles all the

routing related work. In this thesis we start from a routing daemon that runs in a

FreeBSD1 based OS. Our goal is to determine: How suitable this routing daemon is

for Linux?

1.2 Objective

First, we port this routing daemon to Linux. Regarding this work phase we study the

differences between Linux and FreeBSD that are related to routing. These differences

show us the needed modifications in porting.

1 FreeBSD is open source variant of Berkeley Software Distribution (BSD), which is a UNIX
variant. [MCK]

 1

Comparison of Routing Software in Linux Tuukka Taipale

In addition we measure the complexity and maintainability of the ported routing

daemon. To define if the ported routing daemon is of good quality, we compare the

complexity measurement results with the corresponding results of a few other routing

daemons. The software complexity comparison includes two commercial routing

daemons (IpInfusion ZebOS and NextHop GateD) and an open source one (Quagga).

Performance plays a big role in routers. So we compare also the performance of the

routing daemons mentioned above. Performance measurements include for example

scalability, memory usage and convergence times.

As the ported routing daemon is not optimized anyway, we exclude extensive stress

testing and stability evaluation from this thesis. These kinds of tests are more useful in

a later phase, when the ported routing daemon is optimized for Linux. We do not

study the internal structure of the routing daemons either. Additionally, we do not

introduce the different routing protocols, as this thesis concentrates more on the

software than to the functionality of the routing protocols.

1.3 Structure

This thesis starts with introducing the routing software in chapter 2. That chapter

introduces the routing solutions compared in this thesis. Chapter 3 describes the

porting work needed to migrate the routing daemon from FreeBSD to Linux. We

discuss the software complexity measurements in chapter 4. That chapter introduces

the different ways to measure the complexity from the source code.

Chapter 5 describes the work done in porting. After that we compare the performance

of the routing daemons in chapter 6. Chapter 7 presents the results and conclusions of

this thesis.

 2

Comparison of Routing Software in Linux Tuukka Taipale

2. Routing Software

Today’s operating systems usually run many processes. Daemon is a special type of

process. It is a process which goes around in the background and does routine work

[LEH]. This description suits well with this study. In this case the routine work the

daemon process does consist of routing tasks. This chapter introduces the different

routing solutions we investigate in this thesis.

2.1 The Purpose of Routing Software

An IP router has basically two tasks. Routing is generally accomplished by

maintaining a routing table in each end system and each router, that gives, for each

possible destination network, the next router to which the internet datagram should be

sent [STA]. This long description of router tasks summarizes the two parts. Firstly, the

router forwards the datagrams from sender towards the destination in the network.

Secondly, the router keeps the routing table synchronized between the other routers. In

the following subsections we describe these two tasks in detail.

2.1.1 Traffic Forwarding

Forwarding is the process a router goes through for each packet it receives. The

packet may be consumed by the router, it may be output on one or more interfaces of

the router, or both. Forwarding includes the process of deciding what to do with the

packet as well as queuing it up for (possible) output or internal consumption. [BAK]

We use the above definition for forwarding in this thesis. The process which decides

where the packets should be forwarded uses specific rules for that. These rules are

stored in the Forwarding Information Base (FIB).

The table containing the information necessary to forward IP Datagrams, in this

document, is called the Forwarding Information Base. At minimum, this contains the

interface identifier and next hop information for each reachable destination network

prefix. [BAK]

 3

Comparison of Routing Software in Linux Tuukka Taipale

Both forwarding and FIB are very important terms when we speak about routing. If a

router was a customer servant, IP Datagrams would be its customers. The customer

serving job would then be called forwarding. Even if the packets were coming to the

router itself, they should be forwarded to a suitable receiving process. To continue

more this example of customers and their servant, we can imagine the situation in a

hotel’s reception. The receptionist receives customers. The receptionist is now our

forwarder. He/she looks the customer room from booking list, or FIB in our terms.

Finally the receptionist points the way to the room, or a next hop, to the customer.

This was a different situation, but the same forwarding functionality.

What would we then do if one of our links goes down? At least we do not receive any

packets for forwarding from there anymore. The following subsection explains more

that case.

2.1.2 Routing Table Management

The second task of a router is to keep its routing table up to date. Routing table can

also be described by route database. The term "router" derives from the process of

building this route database; routing protocols and configuration interact in a process

called routing [BAK]. This sentence tells the core idea behind the route database.

Router gathers information of the network via routing protocols and saves that to the

database. Another alternative is to modify the configuration by hand. Both these ways

makes the router able to adapt to the network changes dynamically.

The hand made changes are easy to understand, but how can the router adjust its

internal database when network changes? This case was above in the previous

subsection where we thought about the case when one link goes down. This failure

can be noticed by routing protocols. A router uses them to adjust its database

automatically to the network changes. We have different kinds of routing protocols,

but in this case their functionality is similar. Routing protocols constantly send polling

messages over the link. Default time interval for the polling packets for example in

Routing Information Protocol (RIP) is 30 seconds [BAK]. Then, if the router has not

received the polling packet from the link for 180 seconds, the link is marked as failed.

 4

Comparison of Routing Software in Linux Tuukka Taipale

All these kinds of routing information is then in the routing table. We can assume that

in the beginning, when the network is initially set up, the network has also other

routing traffic. These messages include route add and probably also route remove

messages. But after this initial routing table synchronization messaging, the network

transfers only these link polling packets. This means, from the routing table

perspective, that routing table has minor alternating needs after initialization.

To continue the above example from hotel reception, we connect the routing table also

to it. We have the customer names and corresponding rooms in our FIB. Routing table

now has more information. This information is not defined in any RFC yet, but we can

imagine some relevant facts we need to know from each customer. These can include

for example phone number, home address and customer age, to name but a few. We

see that these facts are not so important in the forwarding process. However, they are

real and can be used for example for customer classification purposes. In routing we

can similarly classify the traffic according to packet information.

2.2 Evaluated Routing Daemons

In this section we describe more the evaluated routing daemons. As all these

applications are routing daemons, it means that they do basically the work described

in the previous section. We have four routing daemons: Nokia proprietary ipsrd,

ZebOS from IpInfusion, GateD from Nexthop and open source Quagga. Each of them

is introduced in the different subsections below. For easier comparison, we have

organized the subsections of each routing daemon in the same form. The introductions

are in the following order: Overview, Architecture, Routing protocols and Supported

operating systems. As ipsrd is the routing daemon that we are modifying during the

porting work, we give the most detailed introduction to its architecture.

The routing protocols are not introduced here. The traditional routing protocols

mentioned in the following subsections can be studied from the references in the table

below. The different routing daemons may support also other routing protocols. They

are not introduced here either.

 5

Comparison of Routing Software in Linux Tuukka Taipale

Table 1: Traditional Routing Protocols

Abbreviation Name Reference

BGP Border Gateway Protocol RFC 1771

OSPF Open Shortest Path First RFC 2328

RIP Routing Information Protocol RFC 2453

2.2.1 Nokia Ipsrd

Overview

Ipsrd is a Nokia proprietary routing daemon. The name of ipsrd comes from its

predecessor: Ipsilon Routing Daemon.

Ipsrd is a modular user level process consisting of core services, a routing database,

and protocol modules supporting multiple routing protocols. Ipsrd is based on GateD

3.5 Release Beta 3. [IPS]

Architecture

The following figure describes the ipsrd architecture:

 6

Comparison of Routing Software in Linux Tuukka Taipale

ipsrd

ipsrd.conf

User
Space

Kernel Forwarding
table
reads/writes

Routing
socket

Routing
messages

Device Drivers

Physical Interfaces

IPSO Routing Subsystem

Routing Table

Routing
Protocols

Interface
Module

Routing
Module

Interface
state
notifications

Call-back

Tasks, timers, jobs

Memory Mgmt

Neighbour Comm.

Policy
module

Forwarding
Table

Figure 1: IPSO Routing Subsystem Architecture [IPS]

Ipsrd core specifically provides mechanisms for scheduling protocol computation,

memory management mechanisms, neighbor communication management

mechanisms, route storage mechanisms, and configuration and reconfiguration

support.

The routing table is built from various routing protocols that are enabled and also from

information obtained from the kernel about connectivity the router has to a network

topology. Forwarding is performed by the operating system kernel and thus the

instructions for forwarding are also there. Ipsrd only updates these instructions when

needed.

Events handled by ipsrd can be summarized as:

• Receive and send protocol messages,

• Protocol functionality processing,

 7

Comparison of Routing Software in Linux Tuukka Taipale

• Receive interface state change and corresponding protocol actions,

• Fire timers and generate resulting actions,

• Respond to the received signals, including reconfiguring itself based on

changes in system configuration,

• Add/delete routes and protocol-installed Address Resolution Protocol

(ARP) entries to and from the kernel forwarding table,

• Monitoring.

The following paragraphs describe the different parts of the ipsrd architecture in

figure. Ipsrd is the big circle in the user space of figure and the different parts are

inside that circle.

Protocol scheduling

As per GateD architecture, ipsrd provides a common substrate, which includes

abstractions such as tasks, timers and jobs, for implementing primitive operations

(read/write protocol message, perform route computation) efficiently. [IPS] The next

paragraphs have the definitions for these abstractions [IPS].

A task is a separately schedulable thread of protocol computation. All ipsrd processing

is done within a single process, and routing protocols are implemented as one or

several tasks. Different protocol implementations use tasks differently. The simplest

way to use tasks is to allocate a single task to all computation that happens within a

protocol. Each protocol listens on a socket for messages of its protocol. Similarly,

ipsrd interface task listens on an interface socket, and the forwarding table task has

access to the forwarding table by operations on a routing socket.

A timer is an event scheduled for a future instant, which causes some non-preemptable

computation to be performed at that instant. This computation is associated with a

specific task. Routing protocols use timers for periodic tasks such as monitoring

connection status, timing out connection opens and so on. The ipsrd timer module as

per GateD implementation allows specification of both one-shot timers and interval

 8

Comparison of Routing Software in Linux Tuukka Taipale

timers. Also ipsrd allows protocols to specify higher priority timers, drifting timers, as

well as non-drifting timers. Time specification granularity is 1 second.

A job (which can either be foreground or background) is non-preemptable protocol

computation that can be scheduled anytime in the future. Foreground jobs are time-

limited computations run when it is safe to modify the ipsrd routing database.

Background jobs are longer running computations scheduled when no timers or I/O is

pending. For example the OSPF implementation sets a timer after an SPF computation

to ensure that the SPF computation is not done within that time period; at the expiry of

the timer, it sets up a background job to run the next SPF computation. Each

background job has a priority between zero and seven; background jobs are scheduled

in priority order.

Memory management

Ipsrd uses the operating system memory management functionality for some

situations. However, to optimize memory usage for the most common case of

allocating control blocks, ipsrd provides its own memory management routines.

Neighbour communication

Every routing protocol instance communicates with one or more neighbors for

exchange of routing information. Ipsrd provides an interface for protocol

implementations to send/receive routing messages (transport mechanism APIs), and

some abstract data types for physical entities involved in such communication (structs

for neighbour communication, one per protocol used to store neighbour’s address,

state info etc).

Interface module

Ipsrd uses a 4-level hierarchical structure to store router's connectivity information.

These are physical interface, logical interface, address family and address. This is

designed to be consistent with the operating system kernel. On start-up ipsrd receives

all state from the kernel through a SYSCTL call. It also receives interface

up/down/delete/add and address add/delete events asynchronously in interface routing

 9

Comparison of Routing Software in Linux Tuukka Taipale

socket messages. For each received message ipsrd then notifies the protocol modules

of the changes through protocol's registered call-back functions.

Routing module

Route storage mechanism in ipsrd routing module provides a central repository for

different protocol instances to maintain routing information.

Ipsrd uses a routing socket message to modify the kernel forwarding table as and

when ipsrd’s routing table is modified by the protocols. It learns the view of the

kernel's forwarding table on start-up through a SYSCTL call and then uses that

information to modify routes. Ipsrd can add, delete or change existing routes in the

forwarding table.

Routing policy

The ipsrd policy module provides a mechanism for storing ipsrd routing policy

descriptions. Ipsrd supports setting of rules for routing policy. Route filtering allows

the user to define the list of routes the router will accept from or propagate to its

neighbours; ipsrd supports only inbound route filtering (list of routes that will be

accepted from the neighbours).

Route precedence is the value ipsrd uses to prioritize routes to the same destination

from one protocol or peer over another.

With ipsrd route aggregation it is possible to generate a more general route given the

presence of a one or more specific routes, and by that way reduce the amount of

routing information passed around.

Additionally it is possible to redistribute the routes between the different protocols

that ipsrd supports.

Routing protocols

Ipsrd supports EGP (exterior gateway protocol), IGP (interior gateway protocol), and

multicast routing protocols as separate modules.

 10

Comparison of Routing Software in Linux Tuukka Taipale

Interior routing protocols supported are RIP (v1, v2), RIPng, OSPFv2, and OSPFv3.

Additionally Cisco specific IGRP is supported.

BGPv4 is the supported exterior routing protocol.

DVMRPv3 and PIM (sparse and dense mode) are supported multicast protocols.

The following router services are also available:

• Router discovery: ipsrd implements the server portion (v4 and v6)

• VRRP v2

• bootp relay functionality

Additionally ICMP and IGMP (v2 and mtrace) are supported, latter for multicast

protocols and for reporting multicast group membership.

Supported operating systems

As Nokia proprietary routing daemon, ipsrd supports only Nokia proprietary Ipsilon

Operating System2 (IPSO). However, the goal of the porting work of this thesis is to

make ipsrd compatible with Linux kernel 2.6.x.

2.2.2 IpInfusion ZebOS

Overview

ZebOS is routing software evolved on top of open source GNU Zebra [ZEB]. Zebra

software is commercially produced as ZebOS Server Routing Suite [RAM]. In this

thesis we measure ZebOS Advanced Routing Suite (ARS), which has more features

than Zebra or ZebOS Server Routing Suite. Despite the fact that ZebOS has more

2 The IPSO is based on FreeBSD 2.1.5, and IPSO still shares
similarities with other UNIX-style operating systems. FreeBSD itself is
derived from BSD4.4-Lite, a version of UNIX developed at the University
of California, Berkeley. [IPS]

 11

Comparison of Routing Software in Linux Tuukka Taipale

features, the software architecture is still of the same type in both Zebra and ZebOS

[IPI].

Architecture

ZebOS has a modular platform independent architecture [IPI]. ZebOS manages its

various protocols as separate daemon processes. This is the major difference for

example between ipsrd and ZebOS. When ipsrd performs the routing work in a single

process, ZebOS has its own process for each protocol. The following figure describes

the ZebOS architecture.

Figure 2: ZebOS Modular Routing and Switching Software Building Blocks [IPI]

Each protocol module is built on the ZebOS Network Services Module (NSM). It is

the base module that simultaneously and independently communicates with every

ZebOS ARS routing and switching process. The NSM manages both the route table

and each of the enabled protocols; performs route conversion and redistribution; and

manages the interface state, routing policies and filtering. The NSM communicates

through the Platform Abstraction Layer (PAL) to the underlying operating system or

network processor for forwarding table updates. [IPI]

Routing protocols

The ZebOS ARS supports both IPv4 and IPv6 versions of OSPF, BGP, IS-IS and RIP.

It also offers virtual routing support and Traffic Engineering (TE) extensions and

Constrained Shortest Path First (CSPF) topology support for the OSPF and IS-IS

Protocol Modules. ZebOS also provides MPLS modules. [IPI] As we do not measure

 12

Comparison of Routing Software in Linux Tuukka Taipale

MPLS routing modules, we skip the MPLS introduction here. The details can be

investigated from [IPI]. Supported multicast routing protocols are IPv4 and IPv6

versions of PIM-SM and PIM-DM, IGMP v1/v2 and DVMRP.

Supported operating systems

ZebOS supports Linux, MontaVista Professional Edition, NetBSD and VxWorks.

[IPI]

2.2.3 NextHop GateD

Overview

For over fifteen years, GateD has been the standard starting point for anyone who

needed routing in the Internet, for everything from server redundancy to the most

scalable, core IP routers. [NHT] This marketing text from NextHop GateD datasheet

shows the long history of GateD. The first GateD was developed at Cornell University

by the Cornell GateDaemon Consortium [COR].

GateD (GateDaemon) is traditional [RAM] routing software. Traditional means here

that GateD has the longest history of the routing daemons compared in this thesis. In

the beginning of its history GateD was open source software (through GateD

Consortium), but today NextHop has commercialized the software. GateD is a single

daemon that can run multiple protocols at the same time [FEN]. This is different from

ZebOS, which has multiple processes performing routing tasks.

Architecture

NextHop GateD and ipsrd are based on the same GateDaemon and thus share the

same architecture. They both have all the functionality in a single process. GateD is a

modular software program consisting of core services, a routing database, and

protocol modules supporting multiple routing protocols [G35]. The following figure

illustrates the GateD architecture and modules.

 13

Comparison of Routing Software in Linux Tuukka Taipale

Figure 3: GateD Architecture [NHT]

As we can see from the figure, the majority of the modules are inside the box marked

with dashed line. That box is the single process of the routing daemon. The CLI part

and the TCP/IP Stack and Operating System are the parts outside that box. The

different modules of the figure are introduced below.

The basic features on which the routing protocols rely are on the borders of the box in

the architecture figure (GateD AMI and Hardware Abstraction Layer). The core of

GateD consists of the following features [NHT]: GateD AMI (Advanced Management

Interface), OS adaptation layer, Sophisticated Policy Engine, Memory Management,

Static Route Support, Timer Facilities, Cooperative Multitasking, Checksum

Generation and Verification and MIBs. So this long list contains the basis of GateD.

This basis is complemented by various routing protocols in the other modules of the

core box.

 14

Comparison of Routing Software in Linux Tuukka Taipale

Routing protocols

The routing protocol packages are additional available components for the basic

GateD core. Available components include GateD Fast OSPF, GateD BGP, GateD IS-

IS, GateD DVMRP, GateD PIM-SM, GateD PIM-SSM, GateD PIM-DM, GateD

MSDP, GateD MP-BGP for IPv6, GateD IS-IS for IPv6, GateD Fast OSPF3, GateD

MPLS, GateD VRE (Virtual Routing Environment), and GateD VPN (layer-3 MPLS-

BGP virtual private networking). RIP v1 and v2 are included to the core package

[NHT].

Supported operating systems

NextHop’s GateD software has been ported to many software and hardware

environments including Solaris, LynxOS, Nucleus, Linux, HP-UX, Tru64 UNIX and

proprietary OSes. NextHop can supply a pre-ported version of GateD for a number of

these environments including: [NHT]

- NetBSD

- Monta Vista Carrier Grade Linux

- Red Hat Enterprise Linux

- Wind River Systems VxWorks, PNE

- Green Hills Integrity

- ENEA OSE

2.2.4 Quagga

Overview

Quagga is a routing software package that provides TCP/IP based routing services

with routing protocols support. Quagga is an open source routing daemon, distributed

under the GNU General Public License. Quagga is a fork of GNU Zebra which was

developed by Kunihiro Ishiguro. [QUA] It means that the Quagga is based on the

 15

Comparison of Routing Software in Linux Tuukka Taipale

same code base than the ZebOS introduced earlier. This results in many similarities in

Quagga and ZebOS.

Architecture

As this routing software is developed from GNU Zebra, the core process is named

zebra. The other routing protocols run in their own daemons. The following figure

illustrates the architecture of the Quagga routing daemon, along with the associated

daemons of RIP, BGP and OSPF [RAM].

Figure 4: Quagga Architecture [RAM]

The Protocol daemons interact with the kernel routing table using Zebra daemon as

the intermediary. Zebra defines its own TCP-based protocol to handle inter-process

communication between the Zebra daemon and the protocol daemons. Each protocol

 16

Comparison of Routing Software in Linux Tuukka Taipale

daemon sends selected routes to Zebra daemon, which is responsible for interacting,

and managing the routes to be installed in the forwarding table. [RAM]

Zebra daemon effectively serves as a moderator for allocation and distribution of

services and resources to the various protocol daemons. Each daemon has its own

routing table. Zebra daemon maintains the kernel routing table, and is also responsible

for redistributing information between the various routing protocol daemons. [RAM]

Routing protocols

Quagga supports RIP v1 and v2, RIPng, OSPFv2, OSPFv3 and BGP. [QUA]

Supported operating systems

Quagga supports gnu/Linux 2.4.x and higher, FreeBSD 4.x and higher, NetBSD 1.6

and higher, OpenBSD 2.5 and higher, Solaris 8 and higher [QUA].

2.3 Feature Comparison

The comparison is based on the above introductions of each routing daemon.

According with them, we divide the comparison into three parts: architecture,

available routing protocols and supported operating systems. Generally, the more the

routing software has features the bigger it is. Bigger software can be more expensive

and more difficult to use and configure than a smaller one.

2.3.1 Architecture

Architecture has a significant effect on the design of the software. Architectural

similarities as well as differences can be identified from each routing daemon.

Different architectures can result in more or less efficient software performance.

Architectural design has also a big effect on the software complexity.

We divide the routing daemons into two categories: single process and multiprocess.

That property has a big effect on the architecture of the routing software. Based on the

traditional GateDaemon codebase, Nokia ipsrd and NextHop GateD belong to the

single process category. Similarly, IpInfusion ZebOS and Quagga belong to the

multiproces category. The latter two routing daemons are derived from the open

 17

Comparison of Routing Software in Linux Tuukka Taipale

source GNU Zebra software, which is designed to have multiple processes. Here we

can also see that architectural design decisions have a longstanding status in the

software.

As the biggest architectural difference between the routing daemons is the above

process division, we can still compare some other properties. Operating systems

usually provide an interface to handle the kernel internal data. Due to this design of

the operating system kernel, each daemon centralizes the routing messages through a

single software module. Multiprocess daemons transfer the routing messages from

protocols to the operating system kernel via the zebra daemon process. In single

process daemons these messages are transferred to the kernel via the core part. The

routing software has to share this kind of conformance to external interfaces.

2.3.2 Routing Protocols

The most important features of a routing daemon are of course routing protocols. We

compare also them. By comparing the set of routing protocols we can for example see

how large networks the router can support.

We have organized the routing protocols to the table below. The table contains also

the routing daemons. The routing protocols mentioned in the introductions of the

routing daemons are in the left side column of the table. Letter x in each row stands

for that the routing daemon includes the protocol in question. An empty box means

that the routing protocol is not included to the software. Some protocols like MPLS

not so important in this thesis are excluded from the table.

 18

Comparison of Routing Software in Linux Tuukka Taipale

Table 2: Routing Protocols in the Different Routing Solutions

Nokia ipsrd
IpInfusion
ZebOS NextHop GateD Quagga

RIP v1/v2 x x x x
OSPFv2 x x x x
BGP4 x x x x
IS-IS x x

DVMRP x x x
PIM-SM x x x
PIM-DM x x x
IGMPv2 x x x

RIPng x x x x
OSPFv3 x x x x
BGP4++ x x
IS-IS IPv6 x x

IPv4 Protocols

Multicast Protocols

IPv6 Protocols

2.3.3 Operating Systems

By comparing the supported operating systems we can see how portable the software

is. The more operating systems the routing software supports the more we have

possibilities to run it.

The target operating system for the ported ipsrd is Linux. We measure the routing

software in Linux and all the routing daemons support it. That is the most important

requirement for us. According to our overview of the supported operating systems,

NextHop GateD supports the widest range of different operating systems. Quagga, as

open source software, provides the most up-to-date support to the most common open

source operating systems. IpInfusion ZebOS supports fewer OSes than GateD. Ipsrd

does not support many OSes, only IPSO. Linux is also considered as the supported OS

for ipsrd because as result of this thesis we provide a Linux version of ipsrd.

 19

Comparison of Routing Software in Linux Tuukka Taipale

3. Porting Work Requirements

This chapter describes the requirements for the software porting work. The first

section gives an overview of the porting work. The second section clarifies the

differences between the initial and the goal operating systems.

3.1 Software Porting

Porting software can also be called migrating software to another system. In the

beginning, we have an application in our initial operating system. The goal is to make

the application compatible with the other operating system we are willing to use. We

call this migration process porting. Porting requires adjustments and modifications to

the application because the initial and target systems have differences. When we

modify the original application according to the differences, we port the application.

Porting work is more effective when we divide the work into different steps. The

following subsections describe the different work phases suggested by Imperial

Software Technology (IST), a company making commercial software migrating

projects.

3.1.1 Before Porting

The difference between migration and development project must be noticed. When we

port an application, it does not mean that we rewrite the code. In the migrating

process, we try to do the smallest amount of work possible to preserve the code while

replacing the needed interfaces. If the porting work has a clear strategy, and moves

forward in small, safe steps, the migration has a good chance of finishing on time and

within budget. This means that for every change we make, we should be able to prove

that we have not broken anything. [IST]

The above advice is very useful. Proceeding with small steps takes time. In case of

finding no problems that time could be spent on something else. However, if we can

track a fault in our work, it is best to know the fault as soon as possible after making

 20

Comparison of Routing Software in Linux Tuukka Taipale

it. Then, the backtracking of the problem will be much faster and easier than it would

be in case where we migrate many parts of the application simultaneously.

All in all, the porting work should be prepared well beforehand. That way the work

itself is done much faster. The following subsection gives some practical suggestions

for preparing for porting.

3.1.2 Preparing for Porting

Migrating the code is the last thing in a migration. The essential work before that is to

make the structure safe. This includes also that we make us familiar with the

application. The level of detail should be that when we take the application to pieces,

we know where every bit goes. The following five-step instructions should cut the

migration time at least in half [IST]:

1. Rewrite the project makefiles:

This helps us to clean our application. Rewriting the makefiles makes us to

think what needs to be built and how. This also assists us to be sure what

program lines we can drop away from code. It is often possible that we have

even dead or obsolete code in our application. This step confirms us if the

application includes some code we should get rid of. When we remove

unnecessary code, we have also less code lines to check in the porting

phase.

2. Move things around:

Our application can have such a part that is spread over many files.

Especially, if that is the part we want to update, we must reorganize our

files. [IST] suggests that if we were updating for example the GUI of our

application, we could move all GUI code out of files that are 80% or more

non-GUI files and move all application code out of files that are 80% or

more GUI code files. This way we should get a much cleaner divide.

 21

Comparison of Routing Software in Linux Tuukka Taipale

3. Look for unnecessary use of the API:

This usually means look for contamination of non-API code with API data

structures simply because they are there. In other words, if we do not really

need some API structures, we must not use them.

4. Look for generated code:

All the generated code should always get thrown away. Instead the design

file is far easier to migrate to an appropriate design for the new toolkit than

map generated code into a new toolkit.

5. Do all the above things before migrating a single line of code:

The last step notices us to check that after the previous enhancements the

application still builds and runs. Shortcutting any of these tasks will risk the

migration process later. At least it is possible that we do some unnecessary

work.

The above instructions apply partly for our project. IST has made the instructions for

general type porting projects. They have the GUI migrating as an example in the

instructions. In our case we are not updating any GUI to the application. Instead we

replace the low level interfaces. In spite of this, the above model can be used as a

reference. The first two steps are well relevant to our case as well. All in all, it is good

to recognize the other steps, too.

3.1.3 The Migration

The migration process itself depends heavily on the context of the project. In our case

we are just porting the application from FreeBSD to Linux. Both these are UNIX

variants, and thus not much difference exists. In addition, our application does not

have GUI, which should be updated. This makes the project a little less complex. The

differences between FreeBSD and Linux are described in the following sections 3.2

and 3.3. They show us the requirements that our porting work must fulfill.

 22

Comparison of Routing Software in Linux Tuukka Taipale

3.2 Routing in FreeBSD and Linux

Even if FreeBSD and Linux are both UNIX variants, there are routing related

differences between them. FreeBSD has a little more complex routing interface

between kernel and user than Linux has. Also network interfaces have differences.

The following subsections describe more these differences. From the differences we

can see the required code modifications in porting work.

3.2.1 Routing in FreeBSD

Routing requires that the network node has multiple network interfaces [MCK]. With

multiple interfaces the node can take packets from one and forward them to another

interface. The requirement to have multiple interfaces is kind of physical. We have

also functional properties. The following description gives a good introduction to

FreeBSD routing system.

The routing facilities were designed for use by single homed and multihomed hosts, as

well as for routers. There are several components involved in routing, illustrated in the

following figure. The design of the routing system places some components within the

operating system and others at user level. The routing facilities included in the kernel

do not impose routing policies, but instead support a routing mechanism by which

externally defined policies can be implemented. By a routing mechanism, we mean a

table lookup that provides a first-hop route (a specific network interface and

immediate destination) for each destination. [MCK]

 23

Comparison of Routing Software in Linux Tuukka Taipale

Figure 5: Routing Design [MCK]

Figure 5 shows the FreeBSD routing facilities. These include the kernel level routing

table and a routing socket. The user level consists of the routing daemon and routing

information next to it. As these components are described in the previous chapters if

this thesis, we give here the description of the routing socket. It is not mentioned

before.

Routing socket

The user-level routing interface is the routing socket [MCK]. It is used to add, delete

and change the routes in the kernel routing table. It is the way the routing daemon

writes the route data to the kernel. Basically any user-level process that works with a

routing table has to use the routing socket. Routing daemon is a userland process and

sends and receives routing information. Routing table is the database for routing, and

it is inside the kernel. Routing socket is the way to transfer information between these

two parts.

3.2.2 Routing in Linux

The routing socket mentioned in the previous subsection is replaced in Linux by

Linux Netlink [SAL]. Netlink is the messaging system between the kernel and the user

space. The routing design figure in the previous subsection applies also to Linux

context. Netlink supports many IP services. One of them is the routing service. As this

 24

Comparison of Routing Software in Linux Tuukka Taipale

thesis describes routing, we do not describe here the other IP services supported by

Netlink.

Linux Netlink has several routing message types. They can be used to create and

remove routing related settings in the kernel. We can for example add a route to the

kernel routing table with Netlink. Netlink route socket offers us also means to

configure, gather statistics and listen to changes in shared resources [SAL]. These

resources include IP addresses and network interfaces.

3.2.3 Routing Differences between FreeBSD and Linux

Based on the previous two subsections, there are not many differences between Linux

and FreeBSD. The most noticeable difference is that in FreeBSD we have message

types to change for example nexthop for a route already in the routing table. Linux

does not provide such a message type. Another difference is that Linux Netlink

supports multiple IP services when the BSD routing socket is only for routing

purposes.

3.2.4 Interface Types in FreeBSD and Linux

As mentioned above, interface changes are handled in both FreeBSD and Linux by the

routing socket between the user space and the kernel. That is why we also take a look

at the interfaces in these operating systems. The differences in them have an influence

on the porting work itself.

FreeBSD network interfaces are organized hierarchically in four layers: physical

interface, logical interface, address family and address. On the other hand, Linux uses

a two layer hierarchical interface structure: link and address. This mapping has to be

done in the porting work.

 25

Comparison of Routing Software in Linux Tuukka Taipale

4. Measuring Software Complexity

There are several attributes we can use to measure software complexity. Complexity

measurement is a static way of measuring software. In these measurements we do not

need to run the software. Instead we only browse through the source files and check

them in various ways. The different measurement ways are introduced in this chapter.

Software Engineering Institute of Carnegie Mellon University has published excellent

descriptions of these metrics in their web pages [SEI]. We use these pages as a

reference in this chapter.

4.1 Lines-of-code Metrics

The lines-of-code measures are the most traditional measures used to quantify

software complexity. They are simple, easy to count, and very easy to understand.

They do not, however, take into account the intelligence content and the layout of the

code. [VER]

The lines can be calculated from the source code in different ways. In this thesis we

are using the following lines-of-code metrics:

• LOCphy: number of physical lines

• LOCbl: number of blank lines (a blank line inside a comment block is

considered to be a comment line)

• LOCpro: number of program lines (declarations, definitions, directives,

and code)

• LOCcom: number of comment lines

The following recommendations are given for the lines-of-code measures: [VER]

Function length should be 4 to 40 program lines. A function definition contains at least

a prototype, one line of code, and a pair of braces, which makes 4 lines. A function

longer than 40 program lines probably implements many functions. Functions

 26

Comparison of Routing Software in Linux Tuukka Taipale

containing one selection statement with many branches are an exception to this rule.

Decomposing them into smaller functions often decreases readability.

File length should be 4 to 400 program lines. The smallest entity that may reasonably

occupy a whole source file is a function, and the minimum length of a function is 4

lines. Files longer than 400 program lines (10..40 functions) are usually too long to be

understood as a whole.

At least 30 percent and at most 75 percent of a file should be comments. If less than

one third of a file is comments the file is either very trivial or poorly explained. If

more than 75% of a file are comments, the file is not a program but a document. In a

well-documented header file percentage of comments may sometimes exceed 75%.

4.2 McCabe’s Cyclomatic Number

Cyclomatic complexity is the most widely used member of a class of static software

metrics. Cyclomatic complexity may be considered a broad measure of soundness and

confidence for a program. Introduced by Thomas McCabe in 1976, it measures the

number of linearly-independent paths through a program module. This measure

provides a single ordinal number that can be compared to the complexity of other

programs. Cyclomatic complexity is often referred to simply as program complexity,

or as McCabe's complexity. It is often used in concert with other software metrics. As

one of the more widely-accepted software metrics, it is intended to be independent of

language and language format. [CYC]

As the cyclomatic number makes us an easy way to compare software, we have taken

it also to this thesis. By comparing this number we can see the relative complexity of

the whole software. Below, we have more careful introduction to this subject. The

descriptions are from our reference pages [CYC].

4.2.1 Techical Detail

The cyclomatic complexity of a software module is calculated from a connected graph

of the module (that shows the topology of control flow within the program):

Cyclomatic complexity (CC) = E - N + p

 27

Comparison of Routing Software in Linux Tuukka Taipale

where E = the number of edges of the graph

N = the number of nodes of the graph

p = the number of connected components

To actually count these elements requires establishing a counting convention, i.e. tools

to count cyclomatic complexity contain these conventions. The complexity number is

generally considered to provide a stronger measure of a program's structural

complexity than is provided by counting lines of code. The following figure is a

connected graph of a simple program with a cyclomatic complexity of seven. Nodes

are the numbered locations, which correspond to logic branch points; edges are the

lines between the nodes. The conditions increasing the cyclomatic complexity are the

nodes that have more than one path beginning from it.

Figure 6: Connected Graph of a Simple Program [CYC]

 28

Comparison of Routing Software in Linux Tuukka Taipale

In this thesis we calculate the cyclomatic complexity on the entire source files.

Basically each conditional statement increases the cyclomatic complexity by one.

These language constructs are: if (...), for (...), while (...), case ..., catch (...), &&, ||, ?,

#if, #ifdef, #ifndef, #elif. It should be noted that the cyclomatic complexity is

insensitive to unconditional branches like goto-, return- and break-statements although

they surely increase the complexity [VER].

A large number of programs have been measured, and ranges of complexity have been

established that help the software engineer determine a program's inherent risk and

stability. The resulting calibrated measure can be used in development, maintenance,

and reengineering situations to develop estimates of risk, cost, or program stability.

Studies show a correlation between a program's cyclomatic complexity and its error

frequency. A low cyclomatic complexity contributes to a program's understandability

and indicates that it is amenable to modification at a lower risk than a more complex

program. A module's cyclomatic complexity is also a strong indicator of its testability.

A common application of cyclomatic complexity is to compare it against a set of

threshold values. One such threshold set is in the table below:

Table 3: Cyclomatic Complexity [CYC]

Cyclomatic Complexity Risk Evaluation

1-10 a simple program, without much risk

11-20 more complex, moderate risk

21-50 complex, high risk program

greater than 50 untestable program (very high risk)

 29

Comparison of Routing Software in Linux Tuukka Taipale

4.2.2 Usage Considerations

Cyclomatic complexity can be applied in several areas, including

• Code development risk analysis. While code is under development, it can

be measured for complexity to assess inherent risk or risk buildup.

• Change risk analysis in maintenance. Code complexity tends to increase

as it is maintained over time. By measuring the complexity before and

after a proposed change, this buildup can be monitored and used to help to

decide how to minimize the risk of the change.

• Test Planning. Mathematical analysis has shown that cyclomatic

complexity gives the exact number of tests needed to test every decision

point in a program for each outcome. Thus, the analysis can be used for

test planning. An excessively complex module will require a prohibitive

number of test steps; that number can be reduced to a practical size by

breaking the module into smaller, less-complex sub-modules.

• Reengineering. Cyclomatic complexity analysis provides knowledge of

the structure of the operational code of a system. The risk involved in

reengineering a piece of code is related to its complexity. Therefore, cost

and risk analysis can benefit from proper application of such an analysis.

Cyclomatic complexity can be calculated manually for small program suites, but

automated tools are preferable for most operational environments. For automated

graphing and complexity calculation, the technology is language-sensitive; there must

be a front-end source parser for each language, with variants for dialectic differences.

Cyclomatic complexity is usually only moderately sensitive to program change. Other

measures (see Complementary Technologies) may be very sensitive. It is common to

use several metrics together, either as checks against each other or as part of a

calculation set.

 30

Comparison of Routing Software in Linux Tuukka Taipale

4.2.3 Maturity

Cyclomatic complexity measurement, an established but evolving technology, was

introduced in 1976. Since that time it has been applied to tens of millions of lines of

code in both Department of Defense (DoD) and commercial applications. The

resulting base of empirical knowledge has allowed software developers to calibrate

measurements of their own software and arrive at some understanding of its

complexity. Code graphing and complexity calculation tools are available as part (or

as options) of several commercial software environments.

4.2.4 Costs and Limitations

Cyclomatic complexity measurement tools are typically bundled inside commercially-

available CASE toolsets. It is usually one of several metrics offered. Application of

complexity measurements requires a small amount of training. The fact that a code

module has high cyclomatic complexity does not, by itself, mean that it represents

excess risk, or that it can or should be redesigned to make it simpler; more must be

known about the specific application.

4.2.5 Alternatives

Cyclomatic complexity is one measure of structural complexity. Other metrics bring

out other facets of complexity, including both structural and computational

complexity, as shown in the table below.

Table 4: Other Facets of Complexity [CYC]

Complexity Measurement Primary Measure of

Halstead Complexity Measures Algorithmic complexity, measured by counting

operators and operands

Henry and Kafura metrics Coupling between modules (parameters, global

variables, calls)

 31

Comparison of Routing Software in Linux Tuukka Taipale

Bowles metrics Module and system complexity; coupling via

parameters and global variables

Troy and Zweben metrics Modularity or coupling; complexity of structure

(maximum depth of structure chart); calls-to and

called-by

Ligier metrics Modularity of the structure chart

4.2.6 Complementary Technologies

The following three metrics are specialized measures that are used in specific

situations:

1. Essential complexity. This measures how much unstructured logic exists in

a module (e.g., a loop with an exiting GOTO statement).

2. The program in Figure 6 has no such unstructured logic, so its essential

complexity value is one.

3. Design complexity. This measures interaction between decision logic and

subroutine or function calls.

4. The program in Figure 6 has a design complexity value of 4, which is well

within the range of desirability.

5. Data complexity. This measures interaction between data references and

decision logic.

Other metrics that are "related" to Cyclomatic complexity in general intent are also

available in some CASE toolsets.

The metrics listed in Alternatives are also complementary; each metric highlights a

different facet of the source code.

 32

Comparison of Routing Software in Linux Tuukka Taipale

4.3 Halstead’s Metrics

Halstead complexity measurement was developed to measure a program module's

complexity directly from source code, with emphasis on computational complexity.

The measures were developed by the late Maurice Halstead as a means of determining

a quantitative measure of complexity directly from the operators and operands in the

module. Among the earliest software metrics, they are strong indicators of code

complexity. Because they are applied to code, they are most often used as a

maintenance metric. There are widely differing opinions on the worth of Halstead

measures, ranging from "convoluted... [and] unreliable" to "among the strongest

measures of maintainability". The material in this technology description is largely

based on the empirical evidence found in the Maintainability Index work, but there is

evidence that Halstead measures are also useful during development, to assess code

quality in computationally-dense applications. [HAL]

4.3.1 Technical Detail

The Halstead measures are based on four scalar numbers derived directly from a

program's source code:

n1 = the number of distinct operators

n2 = the number of distinct operands

N1 = the total number of operators

N2 = the total number of operands

From these numbers, five measures are derived:

Measure Symbol Formula

Program length N N= N1 + N2

Program

vocabulary

n n= n1 + n2

 33

Comparison of Routing Software in Linux Tuukka Taipale

Volume V V= N * (LOG2 n)

Difficulty D D= (n1/2) * (N2/n2)

Effort E E= D * V

These measures are simple to calculate once the rules for identifying operators and

operands have been determined. The extraction of the component numbers from code

requires a language-sensitive scanner, which is a reasonably simple program for most

languages.

4.3.2 Usage Considerations

Applicability

The Halstead measures are applicable to operational systems and to development

efforts once the code has been written. Because maintainability should be a concern

during development, the Halstead measures should be considered for use during code

development to follow complexity trends. A significant complexity measure increase

during testing may be the sign of a brittle or high-risk module. Halstead measures

have been criticized for a variety of reasons, among them the claim that they are a

weak measure because they measure lexical and/or textual complexity rather than the

structural or logic flow complexity exemplified by Cyclomatic Complexity measures.

However, they have been shown to be a very strong component of the Maintainability

Index measurement of maintainability. In particular, the complexity of code with a

high ratio of calculational logic to branch logic may be more accurately assessed by

Halstead measures than by Cyclomatic Complexity, which measures structural

complexity.

Relation to other complexity measures

Marciniak describes all of the commonly-known software complexity measures and

puts them in a common framework [MAR]. This is helpful background for any

complexity measurement effort. Most measurement programs benefit from using

several measures, at least initially; discarding those that do not suit the specific

 34

Comparison of Routing Software in Linux Tuukka Taipale

environment; and combining those that work (see subsection Complementary

Technologies).

4.3.3 Maturity

Halstead measures were introduced in 1977 and have been used and experimented

with extensively since that time. They are one of the oldest measures of program

complexity. Because of the criticisms mentioned above, they have seen limited use.

However, their properties are well-known and, in the context explained in Usage

Considerations, they can be quite useful.

4.3.4 Costs and Limitations

The algorithms are free; the tool described in Technical Detail, contains Halstead

scanners for Pascal and C, and some commercially-available CASE toolsets include

the Halstead measures as part of their metric set. For languages not supported,

standalone scanners can probably be written inexpensively, and the results can be

exported to a spreadsheet or database to do the calculations and store the results for

use as metrics. It should be noted that difficulties sometimes arise in uniquely

identifying operators and operands. Adding Halstead measures to an existing

maintenance environment's metrics collection effort and then applying them to the

software maintenance process will require not only the code scanner, but a collection

system that feeds the resulting data to the metrics effort. Halstead measures may not

be sufficient by themselves as software metrics (see subsection Complementary

Technologies).

4.3.5 Alternatives

A common practice today is to combine measures to suit the specific program

environment. Most measures are amenable for use in combination with others

(although some overlap). Thus, many alternative measures are to some degree

complementary. Oman presents a very comprehensive list of code metrics that are

found in maintainability analysis work, and orders them by degree of influence on the

maintainability measure being developed in that effort [OMA]. Some examples are

(all are averages across the set of programs being measured)

 35

Comparison of Routing Software in Linux Tuukka Taipale

• lines of code per module

• lines of comments per module

• variable span per module

• lines of data declarations per module

4.3.6 Complementary Technologies

Cyclomatic Complexity and its associated complexity measures measure the structural

complexity of a program. Maintainability Index technique for measuring program

maintainability combines cyclomatic complexity with Halstead measures to produce a

practical measure of maintainability.

Function point measures provide a measure of functionality, with some significant

limitations (at least in the basic function point enumeration method); the variant called

engineering function points adds measurement of mathematical functionality that may

complement Halstead measures.

Lines-of-code (LOC) metrics offer a gross measure of code, but do not measure

content well. However, LOC in combination with Halstead measures may help relate

program size to functionality.

4.4 Maintainability Index

Quantitative measurement of an operational system's maintainability is desirable both

as an instantaneous measure and as a predictor of maintainability over time. Efforts to

measure and track maintainability are intended to help reduce or reverse a system's

tendency toward "code entropy" or degraded integrity, and to indicate when it

becomes cheaper and/or less risky to rewrite the code than to change it. Software

Maintainability Metrics Models in Practice is the latest report from an ongoing, multi-

year joint effort (involving the Software Engineering Test Laboratory of the

University of Idaho, the Idaho National Engineering Laboratory, Hewlett-Packard,

and other companies) to quantify maintainability via a Maintainability Index (MI)

[WEL]. Measurement and use of the MI is a process technology, facilitated by simple

 36

Comparison of Routing Software in Linux Tuukka Taipale

tools, that in implementation becomes part of the overall development or maintenance

process. These efforts also indicate that MI measurement applied during software

development can help reduce lifecycle costs. The developer can track and control the

MI of code as it is developed, and then supply the measurement as part of code

delivery to aid in the transition to maintenance.

4.4.1 Technical Detail

In the MI technology, a program's maintainability is calculated using a combination of

widely-used and commonly-available measures to form a MI. The basic MI of a set of

programs is a polynomial of the following form (all are based on average-per-code-

module measurement):

171 - 5.2 * ln(aveV) - 0.23 * aveV(g') - 16.2 * ln (aveLOC) + 50 * sin (sqrt(2.4 *

perCM))

The coefficients are derived from actual usage (see Usage Considerations). The terms

are defined as follows:

aveV = average Halstead Volume V per module

aveV(g') = average extended cyclomatic complexity per module

aveLOC = the average count of lines of code (LOC) per module; and, optionally

perCM = average percent of lines of comments per module

The module is, in this thesis, a function or a struct definition in a single source code

file. In this thesis we measure the source code files. The average is calculated over the

number of these modules in a single file.

Oman develops the MI equation forms and their rationale [O92]; the Oman study

indicates that the above metrics are good and sufficient predictors of maintainability.

Oman builds further on this work using a modification of the MI and describing how

it was calibrated for a specific large suite of industrial-use operational code [OMA].

Oman describes a prototype tool that was developed specifically to support the capture

and use of maintainability measures for Pascal and C [O91]. The aggregate strength of

 37

Comparison of Routing Software in Linux Tuukka Taipale

this work and the underlying simplicity of the concept make the MI technique

potentially very useful for operational Department of Defense systems.

4.4.2 Usage Considerations

Calibration of the equations.

The coefficients shown in the equation are the result of calibration using data from

numerous software systems being maintained by Hewlett-Packard. The authors claim

that follow-on efforts show that this form of the MI equation generally fits other

industrial-sized software systems [OMA and WEL], and the breadth of the work tends

to support this claim. It is advisable to test the coefficients for proper fit with each

major system to which the MI is applied.

Effects from comments in code.

The user must analyze comment content and quality in the specific system to decide

whether the comment term perCM is useful.

4.4.3 Ways of Using MI

1. The system can be checked periodically for maintainability, which is also

a way of calibrating the equations.

2. It can be integrated into a development effort to screen code quality as it is

being built and modified; this could yield potentially significant life cycle

cost savings.

3. It can be used to drive maintenance activities by evaluating modules either

selectively or globally to find high-risk code.

4. MI can be used to compare or evaluate systems: Comparing the MIs of a

known-quality system and a third-party system can provide key

information in a make-or-buy decision.

 38

Comparison of Routing Software in Linux Tuukka Taipale

4.4.4 Maturity

Oman tested the MI approach by using production operational code containing around

50 000 lines of code to determine the metric parameters, and by checking the results

against subjective data gathered using the 1989 AFOTEC maintainability evaluation

questionnaire [AFO, OMA]. Other production code of about half that size was used to

check the results, with apparent consistency.

Welker applied the results to analyses of a US Air Force (USAF) system, the

Improved Many-On-Many (IMOM) electronic combat modeling system. The original

IMOM (in FORTRAN) was translated to C and the C version was later reengineered

into Ada. The maintainability of both newer versions was measured over time using

the MI approach [WEL]. Results were as follows:

• The reengineered version's MI was more than twice as high as the original

code (larger MI = more maintainable), and declined only slightly over

time (note that the original code was not measured over time for

maintainability, so change in its MI could not be measured).

• The translated baseline's MI was not significantly different from the

original. This is of special interest to those considering translation,

because one of the primary objectives of translation is to reduce future

maintenance costs. There was also evidence that the MI of translated code

deteriorates more quickly than reengineered code.

4.4.5 Costs and Limitations

Calculating the MI is generally simple and straightforward, given that several

commercially-available programming environments contain utilities to count code

lines, comment lines, and even Cyclomatic Complexity. Other tools to calculate

Halstead Complexity Measures are less common than the one described in Oman

[O91] because the measure is not used as widely. However, once conventions for the

counting have been established, it is generally not difficult to write language-specific

code scanners to count the Halstead components (operators and operands) and

calculate the E and V measures. In relating that removal of unused code in a single

 39

Comparison of Routing Software in Linux Tuukka Taipale

module did not affect the MI, Pearse highlights the fact that MI is a system

measurement; its parameters are average values [PEA]. However, measuring the MI

of individual modules is useful because changes in either structural or computational

complexity are reflected in a module's MI. A product/process measurement program

not already gathering the metrics used in MI could find them useful additions. Those

metrics already being gathered may be useful in constructing a custom MI for the

system. However, it would be advisable to consult the references for their findings on

the effectiveness of metrics, other than Halstead E and V and cyclomatic complexity,

in determining maintainability.

4.4.6 Dependencies

The MI method depends on the use of Cyclomatic Complexity and Halstead

Complexity Measures. To realize the full benefit of MI, the maintenance environment

must allow the rewriting of a module when it becomes measurably unmaintainable.

The point of measuring the MI is to identify risk; when unacceptably risky code is

identified, it should be rewritten.

4.4.7 Alternatives

The process described by Sittenauer is designed to assist in deciding whether or not to

reengineer a system [SIT]. There are also many research and analytic efforts that deal

with maintainability as a function of program structure, design, and content, but none

was found that was as clearly appropriate as MI to current Department of Defense

systems.

4.4.8 Complementary Technologies

The MI technology takes into account many metrics. Thus, there are not many

complementary technologies for the MI. The test in Sittenauer is meant to verify

generally the condition of a system, and would be useful as a periodic check of a

software system and for comparison with the MI [SIT].

 40

Comparison of Routing Software in Linux Tuukka Taipale

4.5 Software Complexity Measurements

This section introduces the software complexity measurements. In the beginning we

describe the tool used for the measuring. Then we select some complexity metrics we

are checking from each routing daemon.

4.5.1 Measurement Tool

The measurements are performed with the CMT++ tool from Verifysoft [VER]. This

tool calculates McCabe’s cyclomatic number, Lines-of-code metrics, Halstead’s

metrics and Maintainability Index. As we have discussed, these metrics combined are

a good indication of the quality of software. We compare the routing daemons also

with these metrics.

CMT++ browses through all the code and gathers the metric values from the files. We

collect the complexity measurement results to Excel sheets and calculate also the

relative values. We can also utilize the Lines-of-code metrics to calculate the average

values. This helps us to compare the software of different size.

4.5.2 Selected Complexity Metrics for Comparison

We compare the routing daemons primarily with the Maintainability Index. It takes

into account many other metrics as well. As MI is quite an abstract number, we also

compare several other metrics and their combinations. From the Lines-of-code metrics

we compare the file length and the percentage of comments. From the other metrics,

we compare the cyclomatic number v(G) and information volume V.

All the metrics are measured from each file of the routing software. We compare the

result of each file to the recommended values discussed in chapter 4. Then we check

the result values if they are inside the recommendations or if they are too much or too

small. This produces us the number of files in each category. To compare different

routing software, we divide the amount of files in each category by the total number of

files in the routing software in question. The final output is a relative value which can

easily be compared among the different routing solutions.

 41

Comparison of Routing Software in Linux Tuukka Taipale

5. Porting Work

This chapter describes the work done in porting. After the porting work description we

take a look at the encountered problems. Finally, in the next chapter we validate that

our porting is successful. The porting starts with the FreeBSD version of routing

daemon ipsrd. The goal is to have that software running and performing routing tasks

in Linux. The subsections below introduce the steps performed during the porting

work. This chapter gives a basis for the routing daemon comparison in the following

chapters. Because we do not initially have the routing daemon ipsrd running in Linux,

the porting work is required to make that possible.

5.1 Porting of Ipsrd

The very first task we do is to take the source code of the routing software from

FreeBSD to Linux environment. As this is done, we rewrite the makefiles as

recommended in [IST]. The next step according to the instructions is to move things

around. We do not need to reorganize our code because we decide to keep the sources

as much unchanged as possible. That would cause fewer problems. We do not follow

the other instructions of [IST] either. Those are not applicable to our project. We do

not have for example generated code in the routing software.

5.1.1 Modules

Clearly the biggest part of the code in the modules can be as they are. We do not need

to touch other places than those which were directly connected to the kernel. The need

to modify the code lines related to the kernel is due to the different interfaces

described in more detail in chapter 3.

The way we do the porting is by creating a new layer between the Linux kernel and

the routing daemon. The layer converts the route routing socket messages from ipsrd

to Netlink route socket messages for the Linux kernel. Also the rest of the differences

are translated. The layer converts the network interface socket traffic to the

compatible format for both the ipsrd and the Linux kernel. As the routing interface

 42

Comparison of Routing Software in Linux Tuukka Taipale

specifications are publicly available with the source codes of FreeBSD and Linux, we

do not include them into this thesis.

5.1.2 Referenced Libraries

As FreeBSD and Linux have mostly the same libraries, we just need to do a few

adjustments to the source code. The differing libraries are related to the routing

sockets. That is why we can remove include statements for FreeBSD route socket, and

add the corresponding Linux Netlink socket include statements instead.

5.1.3 Needed Actions to Run the Process in Linux

After the needed adjustments are ready, we can compile the program. Compilation

goes well when the software is compatible with the system it is compiled in. The

problems during the compilation should be solved, otherwise the program does not

compile at all. The problems encountered in porting are discussed below.

Due to the design of the routing daemon we have to give a configuration file as an

argument when we start the process. When the configuration file is formatted right,

we can start the process with no pain.

5.2 Encountered Porting Problems

This subsection discusses the problems encountered in the porting work. The

problems can be used to track typical errors the developers do, not only in porting but

also in regular software development.

5.2.1 Compilation Errors

The compilation errors are not always a bad thing. In our project we made a good use

of these errors. They showed usually the place where we had forgotten to make an

update in the porting work. Of course some errors put us to really think what we can

do with the error. For example having included some FreeBSD library instead of the

needed one from Linux caused difficult problems.

 43

Comparison of Routing Software in Linux Tuukka Taipale

Notable in the compiler output was also quite a big amount of warnings. Those

warnings were usually created because of deprecated casting on left values. For some

reason the related warning was not shown in the FreeBSD compilation.

5.2.2 Solutions for the Errors

All the compiler errors were successfully corrected. Sometimes it required a search

from the Internet to see from which library some variables are referenced. Even if we

were able to solve all the errors by browsing the source code, we did that rather rarely.

Linux has also good command line programs for searching a pattern from a file. We

were using those standard programs very much.

5.2.3 Kernel Assertion Failures in the Beginning

Ipsrd is designed to check that the internal data of the process is correct. Therefore,

there are such places in the code where the values and variables are checked with an

assertion function. If this check fails, the process is terminated. Especially in the

beginning we got some assertion failures. A typical reason for a failure was the same

as earlier; we had forgotten to port something. It was still good that we got these

failures, as we could correct them already during the development phase.

 44

Comparison of Routing Software in Linux Tuukka Taipale

6. Routing Daemon Performance

This chapter compares the performance of the routing daemons investigated in this

thesis. They are Nokia ipsrd, IpInfusion ZebOS, NextHop GateD and open source

Quagga. The comparison is made by testing the routing daemons in an identical test

setup. That is described in the following section.

6.1 Test Environment

We use the same hardware and Linux version in all tests. This makes the results

comparable among the routing daemons. The test network is identical as well. This

section explains the test setup.

We use the Nokia IP740i hardware. It is a standard rack mounted computer. IP740i

can be used for easy installation of Linux and the routing software. The used Linux

distribution is Red Hat Enterprise Linux 4.0 (RHEL) with kernel version 2.6.14. The

additional software consists of each routing daemon in turn. The testing of Quagga is

done with a Fedora Core Linux kernel version 2.6.16. This kernel is newer than the

one used in the other tests. The testing for Quagga was done first. We had the different

kernel version at that point.

The network setup includes the test machine IP740i, IXIA [IXI] traffic

generator/analyzer, a router, a switch and a PC. The PC is used for configuration. The

test network setup is illustrated in figure 7. The router in the figure can be any OSPF

and RIP capable router. We used an IPSO router here.

 45

Comparison of Routing Software in Linux Tuukka Taipale

Figure 7: Test Network

6.2 Test Contents

This section describes the router features we are testing. We are mainly testing the

performance of the routing daemons. The performance tests include the memory usage

of the routing daemons with a changing number of OSPF and RIP routes. We insert

also 100000 routes to the kernel through the routing daemon and measure the time it

takes to complete that. The last test measures the OSPF convergence time with a

varying number of routes. The following sections describe these tests.

6.2.1 Inserting 100000 Routes

This is the simplest test. To see how fast the routing daemon can put the routes to the

kernel, we use the OSPF protocol to insert 100000 routes at once. Then we measure

the time it takes to put all the routes to the kernel routing table. Finally we can

compare the results and see how fast the routing daemons are in this kind of quick

add.

6.2.2 Memory Usage

Memory usage is tested with both OSPF and RIP protocols. We start from 10000

routes, and add 10000 routes more at a time until we have a total of 100000 routes

 46

Comparison of Routing Software in Linux Tuukka Taipale

installed. During this we measure the memory usage of the routing daemon. This

helps to see how efficiently the routing daemon can use the operating system memory.

6.2.3 OSPF Convergence

Route convergence test measures how fast the router can adapt to the network state

changes. This test is performed using OSPF and testing the convergence time with

three different route amounts: 100, 1000 and 10000. The IXIA traffic generator inserts

the wanted amount of routes to the router under test. It uses the OSPF protocol and

gives the same routes via two different networks. The other network has a smaller cost

for the routes. When the tested routing daemon has updated the information and has

set the default routes to go via the cheaper network, the IXIA removes these routes

suddenly from the cheaper network. Finally, the routing daemon has updated its

routing database and forwards the traffic via the only connected network. The time

from the removal of the original routes to the complete updating of the new routes is

the measured OSPF convergence time.

 47

Comparison of Routing Software in Linux Tuukka Taipale

7. Results and Suggestions

This chapter presents the results of this thesis. Firstly, we describe the results of the

performance comparison. Secondly, we present the complexity measurement results.

After that, we analyze the ipsrd results compared with the other routing solutions.

Finally we think about this thesis and give our own opinion of this work and

suggestions for further investigation. This chapter concludes the thesis.

7.1 The Performance of the Routing Daemons

This section presents the results of the performance tests described in chapter 6. We

present the result of each test in its own section. They are: Inserting 100000 Routes,

Memory Usage and OSPF Convergence.

7.1.1 Inserting 100000 Routes

The simplest test has the shortest results. The results can be found in the following

table. Nokia ipsrd has a known problem of inserting 100000 OSPF routes. This is why

the corresponding result in the table is N/A.

Table 5: Time to Insert 100000 OSPF Routes

Nokia ipsrd IpInfusion ZebOS NextHop Gated Quagga
time (s) N/A 539 567 550

The results show that with these values ZebOS seems to perform the best in this test.

However, all the result times are between 539 and 567 seconds. This is from 8

minutes 59 seconds to 9 minutes 27 seconds. The delay of 28 seconds in about 9

minutes is still quite small.

7.1.2 Memory Usage

We divide the memory usage results into OSPF and RIP parts. This follows the testing

we performed. The next figures illustrate the memory usage in both cases. For ipsrd

we tested OSPF routes until 60000. For Quagga we did not test the memory usage

 48

Comparison of Routing Software in Linux Tuukka Taipale

with RIP routes as the version we tested did not support that many RIP routes. The

supported number of RIP routes was only about 2000 for an interface in Quagga.

Figure 8: Memory Usage with OSPF Routes

Figure 9: Memory Usage with RIP Routes

 49

Comparison of Routing Software in Linux Tuukka Taipale

From these figures we can see that the software with multiple processes uses clearly

more memory than the ones with a single process design. Both Quagga and ZebOS are

above ipsrd and GateD in the memory usage results. We can see that the memory

usage is increasing in a linear fashion when the number of routes grows bigger.

7.1.3 OSPF Convergence

The OSPF convergence test results show us the quickness of the routing solutions to

apply the new settings of the network. The following table presents the results for this

test. We show three different cases with a different number of routes. The time is

measured in seconds.

Table 6: OSPF Convergence Time Results

Nokia ipsrd IpInfusion ZebOS NextHop Gated Quagga
Routes time (s) time (s) time (s) time (s)

100 8.70 5.81 10.09 1.63
1000 9.57 7.50 15.68 3.07
10000 33.62 13.61 34.02 10.93

The results show that the fastest in this test was Quagga. ZebOS comes next. The

division to the multiprocess and single process architecture can be noticed from these

results. The multiprocess architecture enables the routing daemon to calculate the

needed next hops faster than the single process daemons do. Ipsrd is a slightly faster

than GateD. However, comparing the ipsrd and GateD results to the corresponding

results of Quagga and ZebOS, we notice an amazing performance gap with a big

number of routes.

7.2 Complexity Measurement Results

The results from the complexity measurements are presented in this section. The

results are divided so that we present each metric in a different subsection. We

compare the metric results between each routing solution. These results have a strong

influence on how difficult the software is to understand and modify. For these results

we have used a similar format in all metrics. All the result values are presented as

percents.

 50

Comparison of Routing Software in Linux Tuukka Taipale

7.2.1 File Length

The recommended values used in the comparison are introduced in chapter 4. We put

them also here for completeness. The file length should be from 4 to 400 lines. The

figure below presents the proportion of files in each routing solution in the

recommended range and outside that.

Figure 10: File Length Comparison

All the routing daemons seem to have about 60% of all files in the recommended

range. GateD has little more long files than the other programs. The proportion of very

short files is near zero. This comparison does not result in any big difference between

the routing daemons. The GateD has more (5%) too long files than the other solutions.

Thus, GateD is the worst in this comparison. The other routing solutions are on about

the same level.

7.2.2 Comments Percentage

The percentage of comments in the source code files should show how well the code

is explained. The comment percentage should be between 30% and 75%. These values

are used as reference limits to the result values. The following figure presents the

results of this calculation.

 51

Comparison of Routing Software in Linux Tuukka Taipale

Figure 11: Comments Percentage

The routing daemons have quite many differences from the commenting perspective.

GateD seems to have the most (14.10%) files with over 75% of lines commented.

Ipsrd has about half of that proportion (7.39%) with highly commented lines. Both

ZebOS and Quagga have very few those files. Ipsrd has the biggest proportion

(55,78%) in the recommended range. Also GateD has about half (46,63%) of the files

in the recommended range. ZebOS and Quagga have only one third of all their files

between 30% and 75% comments. A significant amount of ZebOS and Quagga files

are commented less than the recommended limit is. When this proportion is about two

thirds with ZebOS and Quagga, both ipsrd and GateD have fewer than 40% of all files

in the too few commented category. This comparison shows that ZebOS and Quagga

are the worst solutions. Ipsrd is the best and GateD is also good.

7.2.3 Cyclomatic Number

The comparison of recommended cyclomatic complexity should inform us about how

complex the code is from the perspective of loops and conditions in the code. The

measurements are based on the limits recommended in chapter 4. Cyclomatic number

 52

Comparison of Routing Software in Linux Tuukka Taipale

of a source code file should be between 15 and 100. The following figure illustrates

the results of this metric.

Figure 12: Cyclomatic Number Measurement Results

The results show that ipsrd and ZebOS have over 15% of the files more complex than

recommended. GateD and Quagga do not have a significant fraction of too complex

files. However, ipsrd has the biggest proportion of files in the less than 15 category.

The other routing daemons have nearly 10% less those files. A common thing for

GateD and Quagga is that they have nearly half of their files in the recommended

complexity range. For the rest two routing daemons, the recommended range includes

only slightly over one fourth of the files. If we compare the proportion of too complex

files, Quagga and GateD are the best.

7.2.4 Information Volume

The information volume should describe the amount of information inside a single

file. These results are calculated from each routing solution. The recommended values

here are from 100 to 8000. Similarly to the previous sections, we present these results

here in percentages. The following figure illustrates the results of this measurement.

 53

Comparison of Routing Software in Linux Tuukka Taipale

Figure 13: Information Volume Measurement Results

This measurement did not show any big differences between the routing solutions.

Each of them has a similar distribution of files in the Information Volume

measurements. The recommended value 8000 is overstepped in about 40% of all files

in all the routing daemons. The biggest part of files is in the recommended range in all

the routing solutions. There are only few files in the category of less than 100 which is

the recommended lowest limit.

7.2.5 Maintainability Index

This measurement combines the distinct metrics measured in the previous subsections.

This result is calculated also automatically with the tool we use. According to the

recommendations, Maintainability Index value under 65 shows that the related code is

difficult to maintain. If the value is between 65 and 85 the code is moderately difficult

to maintain. The Maintainability Index value should always be over 85 to prove that

the code is easy to maintain. The following figure illustrates the results of this

measurement.

 54

Comparison of Routing Software in Linux Tuukka Taipale

Figure 14: Maintainability Index Measurement Results

The above results on the Maintainability Index measurements show that the routing

solutions have differences in their maintainability. Nokia ipsrd has clearly the most

files in the best category. With nearly half (46.36%) of all the files of good

maintainability ipsrd beats ZebOS and Quagga by over 10%. GateD has also a good

amount (40%) of files in this category. All the routing solutions have quite a big

proportion (40%) of files under the low limit. Ipsrd has the least (41.36%) of these

difficult-to-maintain files. ZebOS and GateD have more (about 46%) files in this

category. Quagga has the biggest proportion (48.3%) of these difficult files. ZebOS

has the most (18.45%) files in the moderate-to-maintain category. The other routing

solutions have less (12% - 15%) of these files. Ipsrd performs the best in this

comparison. ZebOS and GateD are equally good. Quagga is the worst routing solution

because it has the most files in the difficult-to-maintain category.

7.3 Comparison Summary

We have presented the results of the different measurements of each routing solution.

This subsection summarizes the earlier measurements. Now we compare the overall

results of the routing daemons.

 55

Comparison of Routing Software in Linux Tuukka Taipale

The following table summarizes the comparison results. Each routing solution gets

points about how good it is in the different measurement. The evaluated number

equals with the amount of beaten routing solutions. For example if ipsrd is the best in

a measurement it beats three other routing solutions, and thus gets three points. The

complexity measurement results are checked in a following way:

File Length: The proportion of files in the recommended range. Bigger is

better.

Comments Percentage: The proportion of files in the recommended range. Bigger is

better.

Cyclomatic Number: The proportion of files in the recommended range. Bigger is

better.

Information volume: The proportion of files in the recommended range. Bigger is

better.

Maintainability index: The proportion of files under the low limit. Smaller is better.

Table 7: Comparison Results Summary

Nokia ipsrd
IpInfusion
ZebOS

NextHop
GateD Quagga

Inserting 100000 OSPF routes 0 3 1 2
Memory Usage (OSPF) 2 1 3 0
Memory Usage (RIP) 3 1 2 0
OSPF Convergence 1 2 0 3

File Length 3 2 0 1
Comments Percentage 3 0 2 1

Cyclomatic Number 0 1 2 3
Information Volume 1 3 0 2
Maintainability Index 3 2 1 0

16 15 11 12

Performance

Complexity Measurements

Sum

Ipsrd gets the most points from this comparison. ZebOS is second with only one point

less than ipsrd. GateD and Quagga are a little further from the top two routing

 56

Comparison of Routing Software in Linux Tuukka Taipale

solutions. This evaluation is done with a weight of one in all the results. We can also

put different weights to the above results.

For example the memory usage is measured two times. If we take an average of these

two results and put a double weight to the other performance results, the multiprocess

routing solutions would perform much better than the single process solutions. The

memory effectiveness can still relate to the scalability of the routing solution. The

more memory the program uses the less routes it will support. In future, the

performance might be more important than the memory usage, as the memory is

becoming cheaper and cheaper all the time. It means that the multiprocess routing

solutions might require less performance enhancement work.

We can put different weights also to the complexity measurements results. The initial

results contain the values that are used in the MI calculation. The last result is the MI

value itself. This calculation puts a double weight to the MI. It is possible to use only

this final MI result. The factors of the MI are weighted already in the MI calculation.

We see from the MI results that ipsrd is the best in this comparison.

When we combine the weighted results of the previous paragraphs, we can get

interesting overall results. We can conclude the measurement results here. We

calculate the final points so that we combine the memory usage into a single value.

The other performance results are summed up as they are already. The complexity

measurement results are doubled. The final results are summarized in the following

table.

 57

Comparison of Routing Software in Linux Tuukka Taipale

Table 8: Weighted Comparison Results Summary

Nokia ipsrd
IpInfusion
ZebOS

NextHop
GateD Quagga

Inserting 100000 OSPF routes 0 3 1 2
Memory Usage Average 2.5 1 2.5 0

OSPF Convergence 1 2 0 3
Sum 3.5 6 3.5 5

Maintainability Index 3 2 1 0
Double MI 6 4 2 0

9.5 10 5.5 5

Performance

Complexity Measurements

Sum

This table shows that finally ZebOS gets 0.5 points more than ipsrd. This gap is small

but means that ZebOS is the best routing solution in this weighted comparison. GateD

and Quagga get about half of the points given to the best two. If we did not take into

account the complexity measurements, ZebOS would be the best. Quagga would be

the second. The original comparison results make the different weight setups possible.

Basically, by weighting any of the routing solutions would get the best points. The

weighting used in this thesis is only one way of measuring the alternatives.

7.3.1 Performance Summary

The first performance measurement of inserting routes shows us no critical

differences. The measurements of the memory usage test show that the single process

routing daemons use significantly less memory than the multiprocess ones. Also open

source Quagga is using the most memory. That is a problem of open source

development. The performance of the routing solution is not as important as the

support of different features.

Another notable difference between open source and commercial routing solutions can

be seen from the OSPF convergence measurement results. The open source Quagga is

the fastest in those. The supremacy in convergence can be explained with a slightly

different kernel version used in Quagga measurements.

 58

Comparison of Routing Software in Linux Tuukka Taipale

The multiprocess routing solutions are faster in the convergence time. The separation

of tasks between multiple processes makes the routing daemon able to update its

routing table faster. That can be seen especially with a big number of routes.

7.3.2 Complexity Differences

The complexity measurements show the biggest differences between the routing

daemons in the comments percentage and cyclomatic complexity. As these are

considered also in the Maintainability Index calculation the results of it show also

difference between the routing solutions.

Ipsrd has the best results in the Maintainability Index measurements. Comments are

also done the best in ipsrd. Cyclomatic complexity is the best in Quagga. Both ipsrd

and ZebOS perform the worst in the cyclomatic complexity measurements. The

Maintainability Index measurement summarizes many metrics into a single value. We

suppose that ipsrd is the best routing daemon from the overall software complexity

viewpoint.

7.4 Conclusion

This thesis studied the routing daemon based on the FreeBSD operating system. The

goal was to solve how suitable the routing daemon is for Linux. We ported this

software to Linux. Then we compared the performance and software complexity

between the ported routing software and a few other routing solutions. The results

show that the ported routing daemon suits well to Linux.

This thesis has required more work than I thought in the beginning. Especially the

theoretical background was surprisingly demanding to learn and find references.

However, the work made me learn about the routing software. That was one of my

initial goals for this work.

The objectives stated in the beginning were fulfilled quite well in this thesis. The only

setback we encountered was that Quagga did not support as many RIP routes as we

required for memory usage testing. All in all, this thesis gives a good basis for further

testing and comparison of these or other routing solutions.

 59

Comparison of Routing Software in Linux Tuukka Taipale

The initial decision to exclude routing protocol introductions from this thesis proved

to be good. Those introductions would have made this thesis too large. The decision to

concentrate only on the software issues was beneficial to the progress of this thesis. It

clarified the objectives and gave a good basis for the writing in the very beginning.

Future work will include a more careful performance testing. The work is needed to

solve the reason for the noticeable performance difference in the OSPF convergence

of the multiprocess and single process routing software. We should also solve the

problem of ipsrd with a big amount of OSPF routes. The work with ipsrd should

continue by optimizing and stabilizing the software for Linux. After that ipsrd has a

good future also on Linux.

 60

Comparison of Routing Software in Linux Tuukka Taipale

8. Bibliography

[AFO] Software Maintainability Evaluation Guide 800-2, Volume 3. Kirtland

AFB, NM: HQ Air Force Operational Test and Evaluation Center

(AFOTEC), 1989.

[BAK] F. Baker, “Requirements for IP Version 4 Routers”, RFC 1812, June

1995

[BRA] Internet Engineering Task Force (R. Braden, Editor), “Requirements for

Internet Hosts -- Communication Layers”, RFC 1122, October 1989

[COR] Cornell University, “MESL Techical Report”,

http://cidc.library.cornell.edu/reports/mesl.htm

[CYC] E. VanDoren, ”Cyclomatic Complexity”, July 2000,

http://www.sei.cmu.edu/str/descriptions/cyclomatic.html

[FEN] M. Feng, R. Leung, A. D. Jun, “Linux Network”, Summer Report 1999,

Network Architecture Lab, Electrical and Computer Engineering,

University of Toronto, September 1999,

http://dcn.ssu.ac.kr/~softgear/prog_sw_report_summer_99.pdf

[G35] GateD R3_5Alpha_5 Documentation, April 1994,

http://sunse.jinr.ru/local/gated/main.html

[GIL] R. Gilligan, E. Nordmark, “Transition Mechanisms for IPv6 Hosts and

Routers”, RFC 1933, April 1996

[HAL] E. VanDoren, ”Halstead Complexity Measures”, January 1997,

http://www.sei.cmu.edu/str/descriptions/halstead.html

[IPI] IP Infusion Inc., ” ZebOS Advanced Routing Suite”, 2003,

http://www.ipinfusion.com/products/advanced/products_advanced.html

 61

Comparison of Routing Software in Linux Tuukka Taipale

[IPS] Nokia, “IPSO-NET System Architecture Specification”, Nokia internal

document, October 2005

[IST] Imperial Software Technology, ”An ABC of Software Migration”,

http://www.softwaremigration.com/abc.html

[IXI] IXIA, ”IXIA - Leader in IP Performance Testing”,2006,

http://www.ixiacom.com/

[LEH] G. Lehey, “The Complete FreeBSD”, 3rd ed., Walnut Creek CDROM,

Walnut Creek CA, May 1999

[MAR] J. J. Marciniak, ed., Encyclopedia of Software Engineering, 131-165.

New York, NY: John Wiley & Sons, 1994.

[MCK] M. K. McKusick, K. Bostick, M. J. Karels, J. S. Quarterman, “The

Design and Implementation of the 4.4 BSD Operating System”, 9th ed.,

Addison-Wesley, August 2000

[MIT] E. VanDoren, “Maintainability Index Technique for Measuring Program

Maintainability”, March 2002,

http://www.sei.cmu.edu/str/descriptions/mitmpm.html

[NHT] NextHop Technologies, Inc., ”GateD Next Generation Carrier (NGC)”,

2005, http://www.nexthop.com/products/ngc.html

[NOK] Nokia, “Ipsrd, The Ipsilon Routing Daemon, User Manual”, Nokia

internal document, September 1999

[O91] P. Oman, “HP-MAS: A Tool for Software Maintainability, Software

Engineering” (#91-08-TR). Moscow, ID: Test Laboratory, University of

Idaho, 1991.

[O92] P. Oman, J. Hagemeister, “Construction and Validation of Polynomials

for Predicting Software Maintainability” (92-01TR). Moscow, ID:

Software Engineering Test Lab, University of Idaho, 1992.

 62

Comparison of Routing Software in Linux Tuukka Taipale

[OMA] P. Oman, J. Hagemeister, "Constructing and Testing of Polynomials

Predicting Software Maintainability." Journal of Systems and Software

24, 3 (March 1994): 251-266.

[PEA] T. Pearse, P. Oman, "Maintainability Measurements on Industrial

Source Code Maintenance Activities," 295-303. Proceedings of the

International Conference on Software Maintenance. Opio, France,

October 17-20, 1995. Los Alamitos, CA: IEEE Computer Society Press,

1995.

[QUA] Quagga Routing Software Suite, July 2006, http://www.quagga.net/

[RAM] A. Ramanath, ”A Study of the interaction of BGP/OSPF in

Zebra/ZebOS/Quagga”, August 2004,

http://www.quagga.net/docs/BGP_OSPF_Interaction_Report.pdf

[SAL] J. Salim, H. Khosravi, A. Kleen, A. Kuznetsov, “Linux Netlink as an IP

Services Protocol”, RFC 3549, July 2003

[SEI] Software Engineering Institute, Carnegie Mellon University,

http://www.sei.cmu.edu/about/index.html

[SIT] C. Sittenauer, M. Olsem, "Time to Reengineer?" Crosstalk, Journal of

Defense Software Engineering 32 (March 1992): 7-10.

[STA] William Stallings, “Data and Computer Communications”, 5th ed.,

Prentice Hall, Inc., Upper Saddle River, New Jersey, 1997

[TRO] G. Trotter, “Terminology for Forwarding Information Base (FIB) based

Router Performance”, RFC 3222, December 2001

[VER] Verifysoft Technology, “CMT++ Complexity Measures C/C++”,

October 2005, http://www.verifysoft.com/en_cmtpp.html

[WEL] K. D. Welker, P. W. Oman, "Software Maintainability Metrics Models

in Practice." Crosstalk, Journal of Defense Software Engineering 8, 11

(November/December 1995): 19-23.

 63

Comparison of Routing Software in Linux Tuukka Taipale

[YUJ] J. Yu, “Scalable Routing Design Principles”, RFC 2791, July 2000

[ZEB] IP Infusion Inc., ”GNU Zebra -- routing software”, 2003,

http://www.zebra.org/

 64

	1. Introduction
	1.1 Background
	1.2 Objective
	1.3 Structure

	2. Routing Software
	2.1 The Purpose of Routing Software
	2.1.1 Traffic Forwarding
	2.1.2 Routing Table Management

	2.2 Evaluated Routing Daemons
	2.2.1 Nokia Ipsrd
	2.2.2 IpInfusion ZebOS
	2.2.3 NextHop GateD
	2.2.4 Quagga

	2.3 Feature Comparison
	2.3.1 Architecture
	2.3.2 Routing Protocols
	2.3.3 Operating Systems

	3. Porting Work Requirements
	3.1 Software Porting
	3.1.1 Before Porting
	3.1.2 Preparing for Porting
	3.1.3 The Migration

	3.2 Routing in FreeBSD and Linux
	3.2.1 Routing in FreeBSD
	3.2.2 Routing in Linux
	3.2.3 Routing Differences between FreeBSD and Linux
	3.2.4 Interface Types in FreeBSD and Linux

	4. Measuring Software Complexity
	4.1 Lines-of-code Metrics
	4.2 McCabe’s Cyclomatic Number
	4.2.1 Techical Detail
	4.2.2 Usage Considerations
	4.2.3 Maturity
	4.2.4 Costs and Limitations
	4.2.5 Alternatives
	4.2.6 Complementary Technologies

	4.3 Halstead’s Metrics
	4.3.1 Technical Detail
	4.3.2 Usage Considerations
	4.3.3 Maturity
	4.3.4 Costs and Limitations
	4.3.5 Alternatives
	4.3.6 Complementary Technologies

	4.4 Maintainability Index
	4.4.1 Technical Detail
	4.4.2 Usage Considerations
	4.4.3 Ways of Using MI
	4.4.4 Maturity
	4.4.5 Costs and Limitations
	4.4.6 Dependencies
	4.4.7 Alternatives
	4.4.8 Complementary Technologies

	4.5 Software Complexity Measurements
	4.5.1 Measurement Tool
	4.5.2 Selected Complexity Metrics for Comparison

	5. Porting Work
	5.1 Porting of Ipsrd
	5.1.1 Modules
	5.1.2 Referenced Libraries
	5.1.3 Needed Actions to Run the Process in Linux

	5.2 Encountered Porting Problems
	5.2.1 Compilation Errors
	5.2.2 Solutions for the Errors
	5.2.3 Kernel Assertion Failures in the Beginning

	6. Routing Daemon Performance
	6.1 Test Environment
	6.2 Test Contents
	6.2.1 Inserting 100000 Routes
	6.2.2 Memory Usage
	6.2.3 OSPF Convergence

	7. Results and Suggestions
	7.1 The Performance of the Routing Daemons
	7.1.1 Inserting 100000 Routes
	7.1.2 Memory Usage
	7.1.3 OSPF Convergence

	7.2 Complexity Measurement Results
	7.2.1 File Length
	7.2.2 Comments Percentage
	7.2.3 Cyclomatic Number
	7.2.4 Information Volume
	7.2.5 Maintainability Index

	7.3 Comparison Summary
	7.3.1 Performance Summary
	7.3.2 Complexity Differences

	7.4 Conclusion

	8. Bibliography

