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Tässä diplomityössä esitetään hierarkinen Bayesilainen malli tautikartoituksen avuksi.
Tautikartoitus on spatiaalisen epidemiologian osa-alue, jonka tavoitteena on tutkia ter-
veysriskin maantieteellistä vaihtelua. Tavoitteena on kuvata taudin jakautumista kartalla
ja korostaa alueita, joissa tauti- tai kuolemanriski ovat kohonneita.

Tässä työssä käytetään kolmen hierarkiakerroksen mallia tutkimaan kuolleisuusriskin alu-
eellisia vaihteluja kuolleisuusdatasta. Kuolleisuus tietyllä alueella mallinnetaan Poissonin
prosessilla, jonka odotusarvo saadaan vakioidun kuolleisuusriskin ja suhteellisen riskin
tulona. Kuolleisuusriski vakioidaan taustapopulaation ikä-, sukupuoli- ja koulutustasoja-
kauman avulla. Suhteellisen riskin logaritmille annetaan prioriksi Gaussinen prosessi, jo-
ka tasoittaa riskipintaa ja lisää alueiden väliset korrelaatiot malliin. Gaussisen prosessin
ongelmaksi muodostuu kovarianssimatriisin inversioon tarvittava aika, jota pienennetään
tekemällä Gaussiselle prosessille harva aproksimaatio.

Spatiaalisessa epidemiologiassa on tärkeää pystyä määrittämään tautiriskin alueellisen
vaihtelun tilastollinen merkittävyys. Jotta mallin epävarmuusestimaateille saataisiin mah-
dollisimman hyvät arviot suoritetaan mallin parametrien ylitse integrointi Markov ket-
ju Monte Carlo menetelmiä käyttäen. Gaussisen prosessin latenttien muuttujien näyt-
teistämistä nopeutetaan muunnoksella, joka käyttää hyväkseen posteriorijakauman kova-
rianssin aproksimaatiota. Markov-ketju-näytteistäminen suoritetaan hybrid Monte Carlo
-menetelmällä, jonka oleellinen osa on marginaaliuskottavuuden logaritmin gradienttien
laskenta. Harvan aproksimaation tapauksessa gradientit lasketaan muodostamatta ekspli-
siittisesti täyttä kovarianssimatriisia. Työ esittelee latenttien muuttujien muunnoksen ja
gradienttien laskennan toteutukset.

Täyttä ja harvaa Gaussista prosessia käyttäviä malleja testataan kahteen kuolemansyy-
dataan neljällä eri kovarianssifunktiolla, ja malleja verrataan keskenään käyttäen DIC-
informaatiokriteeriä. Kuolemansyydatan analyysin tulokset esitetään kuolemanriskikart-
toina.
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This thesis presents a hierarchical Bayesian model for disease mapping methodology. Dis-
ease mapping studies comprise spatial epidemiological methods to summarize the spatial
variations in the incidence rate of diseases. The aim is to describe the overall disease
distribution on a map and highlight areas of elevated or lowered mortality or morbidity
risk.

In this work, a three level hierarchical model is build to study the spatial variations in the
relative mortality risk in an areally referenced health-care data. The mortality in an area
is modeled as a Poisson process with mean intensity surface, which is a product of a stan-
dardized expected number of deaths and a relative risk. The expected number of deaths
is evaluated using an age, gender and scholarly degree standardization. The logartihm of
the relative risk is given a Gaussian process prior, which smoothes the risk surface and in-
cludes the spatial correlation between areas in the model. A problem in Gaussian processes
is the computational burden of the required covariance matrix inversion. To overcome the
computational problem a fully independent conditional sparse approximation is used.

In spatial epidemiology it is very important to have good estimates whether the spatial vari-
ation is significant. To set a golden standard for the uncertainty estimates, both the hyper-
parameters and the latent values of Gaussian process are marginalized out using Markov
chain Monte Carlo methods. The sampling of the latent values is sped up with transforma-
tions taking into account the approximate conditional posterior covariance. The sampling
is conducted using hybrid Monte Carlo methods which require the gradients of the log-
arithm of marginal likelihood. The gradients of the sparse approximation are evaluated
without forming the full covariance matrix. The work presents an implementation of the
gradients and the transformation of latent values for the sparse approximation.

The full and sparse Gaussian models, with four different covariance functions, are applied
for two mortality data sets. The models are compared to each others with deviance in-
formation criterion and the results of the analysis are presented with maps revealing the
relative risk.
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Chapter 1

Introduction

The creation of maps is an activity almost as old as the recorded history. The earliest

examples of maps can be dated to the ancient civilizations in Mesopotamia and Egypt

some 5000 years back in time. The ancient maps typically show important features of

physical geography, such as mountains and bodies of water, but aspects of human activity

were also mapped. Since the construction of maps is tedious work, cartography has dealt

most of its history with so-called general maps, which represent simultaneously several,

rather stable, geographical phenomena. Around 1800 begun the development of thematic

maps, which display the spatial pattern of a single phenomenon. The maps were often

stimulated by available data on the environment or society, such as weather or crime

rates.

The spatial epidemiology saw the light of day alongside with the development of thematic

maps. The world of 19th century was tormented by infectious diseases, such as yellow

fewer in the United States and cholera in Europe, and thus the early works in spatial

epidemiology were motivated by the desire to map and study the geographical patterns in

disease, and to identify risk factors that may explain those patterns. The early works in the

spatial epidemiology initiated disease mapping, a major branch of spatial epidemiological

studies, in which also this thesis is placed.

Disease mapping studies aim to summarize the spatial variations in the incidence rate, to
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identify areas of high and low disease risk. During the last decades the fast improvement

in the computer technology has made the collection, storage and analysis of health data

easier than ever, and thus led also to an increased interest in disease mapping. At the

same time, the ongoing expansion in the available geo-referenced health data has led to a

demand for more sophisticated statistical analysis methods. Bayesian statistical inference

provides state of the art methods for analyzing complex real life problems and thus is an

attractive manner for the modern-day disease mapping.

A substantial feature of the Bayesian data analysis is the quantification of uncertainties

with subjective probabilities. The methodological framework of the Bayesian statistics

provides a formal theorem to combine prior knowledge and the information in observed

data into posterior knowledge with well defined uncertainties. The inference in Bayesian

methods typically leads to complex integrals that are usually estimated numerically with

stochastic sampling algorithms. The motivation for this work is originated in the desire to

study the applicability of Bayesian approach for disease mapping.

Bayesian models have been implemented in disease mapping already for some time, and

thus the particular aim of the work was to study the applicability of Gaussian process

and its approximation, sparse Gaussian process, to model risk surfaces. Gaussian pro-

cesses are an attractive manner to construct intensity surfaces for the purposes of disease

mapping, but they face severe problems as the size of data increases. To overcome these

limitations a number of approximate methods have been suggested in the literature and

the sparse approximation used in this work was published just recently.

The main focus of this work is on methodology research and not in the spatial epidemi-

ology particularly. The work introduces an implementation of a recently proposed sparse

Gaussian process into the problem of disease mapping and presents solutions to some of

the problems faced in the implementation. The method is tested for two case data sets,

the mortality due to cerebral vascular and alcohol related diseases in Finland in 1995-

1999. The results obtained from the case problems are promising, but reveal some data

dependent problems with the sampling algorithm used.

The structure of this thesis is organized as follows. The discussion starts in chapter 2 with
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a brief overview on spatial epidemiology and the issues related to it. Additionally, the data

set used for the study is described. Chapter 3 gives an introduction in Bayesian inference

and model checking. The chapter discusses also disease mapping, in more detail and

introduces a general Bayesian approach for it. In chapter 4 the focus is aimed at Gaussian

processes and the theory behind the sparse approximation used in the work is revealed.

The specific model constructed in the work and the case data sets are presented in chapter

5. The computational methods play an essential role in the implementation and some of

the key aspects involved in it are discussed in chapter 6. These include the used Markov

chain Monte Carlo methods, discussion on a helpful parameter transformation and on

the implementation in Matlab environment. Chapter 7 presents the results on the case

problems and chapter 8 provides a conclusion regarding the work.
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Chapter 2

Spatial epidemiology

The recent improvements in availability of geographically indexed health and population

data together with advances in computing, geographical information systems and statisti-

cal methodology have enabled the investigation of spatial variation in disease risk in more

realistic manner than ever before. Spatial epidemiology concerns both, describing and un-

derstanding the spatial variation in the disease risk. This chapter gives a brief overview to

the issues related to the subject. A more detailed treatment on the wide range of matters

related to spatial epidemiology is given, for example, by Elliot et al. (2001).

2.1 Focus for the study

Spatial epidemiology concerns the analysis of the spatial/geographical distribution of the

incidence of disease (Lawson, 2001). The simplest form of the subject is the use and inter-

pretation of maps of the locations of disease cases. The associated issues within the spatial

epidemiology are the map production and the statistical analysis of the mapped data. By

the nature of disease maps, many epidemiological concepts also play an important role in

the analysis. The map production concerns not only the collation of geographical infor-

mation, but the visualization of the information as well. The statistical analysis involves

the study and use of the spatial statistical methods for the spatial health care data. In
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essence, these two different aspects of the subject have their own impact on the method-

ology. In this work the focus is in the statistical methods of spatial epidemiology and in

the aspects related to them.

In any spatial epidemiological analysis, there will be a study focus, which specifies the

nature and style of the methods used. The focus consist of hypotheses about the nature of

the spatial distribution of the disease examined and these hypotheses can be categorized in

three broad classes of study, disease mapping, ecological analysis and disease clustering

(Lawson, 2001).

Disease clustering concerns the analysis of abnormal aggregations of disease. In the sim-

plest form the aim is to assess, if there are clusters of elevated incidence of disease, which

can not be explained by the normal variation in incidence given the population distribu-

tion. More specific cluster studies may also aim to ascertain the location of a possible

cluster.

In the ecological analysis the aim is to analyze the relation between the spatial distribution

of disease incidence and measured explanatory variables. The analysis is usually carried

out at aggregated spatial level, as for example concerning regional incidence compared to

the measured explanatory factors at the same region.

The aim of this thesis falls in the category of disease mapping, which concern the use of

models to describe the overall disease distribution on the map. Often the object is simply

to smooth the map of disease to uncover the underlying structure from the noisy data. The

aim may for example be to highlight areas of elevated or lowered risk or to obtain clues

to the disease aetiology.

2.2 Defining spatial data

Spatial data can be classified in a various ways depending on the process creating it and the

information it contains. First division can be done by the process defining the locations of

the data. In point process models the point locations, or co-ordinates, of data are thought
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to be a realization of a stochastic process whereas in point level and areal models the

locations of the data are known (Banerjee et al., 2004). A point level and point process

data are appointed to continuously varying co-ordinates while areal data refers to a finite

sub-region of space, as for example county or country.

The information attached to a certain point or an area might be a simple number of oc-

currences referring to count data or in the case of point and areal referenced data it may

also contain additional covariates. In practice the boundary between point and areal ref-

erenced data is not always that clear, since as the area becomes small enough it could be

considered appointing to a certain point, and vice verse often, especially in spatial epi-

demiology, it is hard to imagine data that can be appointed strictly to a certain point and

not in a finite region.

The data studied in this work contains the information of background population, death

rates for diseases and number of explanatory variables in cells of size 250 by 250 meters

at minimum. It is referred as point referenced data since the information is appointed to

a certain co-ordinate and the cell size is rather small. As mentioned above it could also

be referred to areal data, and this sure will be the case when the data is aggregated into

larger cells.

2.3 Health data

Health data for a spatial analysis often arise from several different sources and have sel-

dom been collected for spatial epidemiology in particular. Thus a detailed knowledge

of the various sources of the data is vital (Staines and Järup, 2001). Unlike physics,

for example, where the measurements are taken under controlled conditions focusing on

the study problem, in epidemiology the data is often obtained from governmental registers

collected for other purposes than epidemiology. Registries usually record all the members

of a certain population during a pre-specified time period and thus leave out the people

who for some reason failed to be diagnosed, or who were diagnosed before or after the

registry.
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Social sciences are notorious for their problematic data and epidemiologists are accus-

tomed to collecting and working with data of limited quality. Even in pre-designed exper-

iments the result of the health status of a person is a subject to human errors in diagnosis,

and the comparison of results from a study group consist extra noise due to the heterogene-

ity of the people in the group. The continuous improvements in the computer technology

has expanded the possibilities to data collection, storage and linkage, and thus given rise

to overflowing upsurge in information available for spatial epidemiology as well. At the

same time the development has made even more essential the critical analysis of the data

present.

In contrast to many other countries the qualitative and quantitative properties of registry

data in Finland are in general very good. A systematic data collection is based on a

unique personal identification number assigned to every citizen since 1960s. The per-

sonal identification number can be used to link several data-bases, including a registry of

coordinates that define the accurate location of the citizen’s living space. This provides a

great potential for research purposes in general and for studies of spatial properties of so-

cial phenomenon in particular. For readers interested more on the subject, a more detailed

discussion of issues concerning health and registry data is given, for example, by Lawson

(2001); Staines and Järup (2001).

2.4 Visualizing the data

As spatial epidemiology is interested in exploring the spatial variations in disease risk, it

is natural to visualize the results of statistical analysis in a map. A map is defined as a

collection of spatially defined objects and it is always an approximation of the true spatial

phenomenon chosen by the map-maker. Thus the information in a map is a subjective

choice, which should be taken into account when analyzing maps.

Not only is the information presented in the map partial, but the visualization of the in-

formation has also great influence on how well it can be adopted. Among others the

symbols, colors, resolution and scale of the map concurrent on the interpretation of a
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map, and therefore, it is essential to pay attention also on the visualization of the results

from a spatial analysis. In this work the focus is not in how to make good maps, but

readers interested in the subject are advised to see the treatment of, for example, Lawson

(2001), MacEachren et al. (1998), Rytkönen (2004) and Monmonier (2004).

2.5 Description of data used in the study

The data used for the case studies comprised of a lattice data set containing mortality and

population data from the year 1970 to the end of 1999. The whole country of Finland

is included, spanning an area over 1100km in height and more than 600km in width.

The standard population is approximately 5 million people and there are around 200 000

deceased for each five-year period. The data lists every death during 1970-2000 and

provides snapshots of the population from census surveys conducted every five years.

The data was aggregated by Statistics Finland from point-referenced data into a lattice

formed of 250m × 250m grid cells. Background population and deaths for each cause of

death, covering one month segments, were provided as counts pointed to cells.

The data consisted of six covariates. 1) Age of an individual, 2) sex of an individual,

3) cause of death for a deceased individual, assigned according to 54 coded values, 4)

date of death for a deceased individual, 5) co-ordinates of the lattice cell, within which

the individual had a home. 6) scholarly degree of the individual assigned according to 3

coded values.
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Chapter 3

Bayesian approach to disease mapping

Bayesian data analysis comprises practical methods for making inferences from data us-

ing probability models for quantities observed and for quantities wished to learn about.

The Bayesian analysis is based on the notion of subjective probability, where all prob-

abilities are measured according to ones prior beliefs and observations of past events.

This differs fundamentally from the definition of frequentist statistics, where probability

is defined as the number of favorable results in a random test conducted infinite number

of times. The cornerstone of Bayesian statistical analysis is the Bayes’ theorem, named

after Reverend Thomas Bayes (c. 1702-1761), which provides a formal way to combine

the prior knowledge of model constructor with the observed data by considering all the

parameters of the model and the observable quantities random variables. This is another

difference between Bayesian and frequentist approach, which makes it straightforward in

Bayesian context to express uncertainties mathematically.

This chapter considers the principles of Bayesian inference in general and its applica-

tion to specific problem of disease mapping. A more general treatment of Bayesian data

analysis is given, for example, by (Gelman et al., 2004).
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3.1 Bayesian inference

3.1.1 Bayesian approach

The key principle of Bayesian approach is to construct the posterior probability distribu-

tion for the unknown entities in a model given the data sample. To use the model, marginal

distributions are constructed for all those entities that we are interested in, that is, the end

variables of the study. These can be parameters in parametric models, or predictions in

(non-parametric) regression or classification tasks.

Use of the posterior probabilities requires explicit definition of the prior probabilities for

the parameters. The posterior probability for the parameters in a model M given data D

is, according to Bayes’ rule,

p(θ |D, M) =
p(D|θ, M)p(θ |M)

p(D|M)
, (3.1)

where p(D|θ, M) is the likelihood of the parameters θ , p(θ |M) is the prior probability

of θ , and p(D|M) is a normalizing constant, called evidence of the model M . The term

M denotes all the hypotheses and assumptions that are made in defining the model, like

a choice of covariance function for Gaussian process, specific residual model, covariates

included in the model and so on. All the results are conditioned on these assumptions. In

this notation the normalization term p(D|M) is directly understandable as the marginal

probability of the data, conditioned on M . Integrating over all the parameters, comprise

p(D|M) =

∫
θ

p(D|θ, M)p(θ |M)dθ. (3.2)

When having several models, p(D|Ml) is the marginal likelihood of the model l, which

can be used in comprising the posterior probabilities of the models, hence the term evi-

dence of the model.

The prior probability of the parameters p(θ |M) reflects the subjective prior beliefs and

knowledge of the model constructor. Most of the time the prior knowledge is not sufficient
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enough to specify a fixed prior distribution and the parameters of the prior, called hyper-

parameters, are also given a prior, a hyperprior. The hyperprior, when present, modify

the posterior as following

p(θ, γ |D, M) =
p(D | θ, M)p(θ | γ )p(γ | M)

p(D | M)
, (3.3)

where γ represents the hyperparameters of θ , or in other words second level hyperparam-

eters.

3.1.2 Posterior analysis and prediction

The result of Bayesian modeling is the conditional probability distribution of unobserved

variables of interest, given the observed data. Consider first a nonlinear unknown function

f of which there are noisy observations y for certain inputs x. The posterior distribution

of a function value f for an input x given the training data D = {(x1, y1), ..., (xn, yn)}, is

obtained by integrating the predictions of the model with respect to the posterior distribu-

tion of the model

p( f | x, D, M) =

∫
p( f | x, θ)p(θ | D, M)dθ, (3.4)

where θ denotes all the model parameters and hyperparameters of the prior structure.

The probability model for the measurements, p(y | x, θ, γ, M), contains the chosen ap-

proximation functions and residual models. It defines also the likelihood part in the pos-

terior probability term, p(θ | D, M) ∝ p(D | θ)p(θ | M). In a regression problem with

additive noise ε,

y = f (x, θ)+ ε, (3.5)

the likelihood is straightforwardly obtained from the noise model of ε. In the regression

problem the function values f itself are the target and the equation 3.4 gives the posterior

probability distribution for them.

A different likelihood is obtained for example in a two class classification problem where
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the function values are transformed through a logistic transformation and the probability

for a binary valued target y being 1 is

p(y = 1 | x, θ) =
[
1+ exp(− f (x, θ))

]−1
. (3.6)

Here the function values play a role of help parameters, which are needed in making the

decision between y being 1 or 0, and the interpretation of them alone is not that clear

anymore.

3.1.3 Integrating over the parameters

The marginalization usually leads to complex integrals that are possible to solve ana-

lytically only in the rare case of so-called conjugate prior for likelihood (Gelman et al.,

2004), and thus the literature presents multitude of approaches, how the integrals can be

approximated. In point estimate approaches the requirement is to give a single best es-

timate of parameters without integration and obviously there are several candidates for

a point estimate, for example mean, median or mode of the posterior. In the classical

maximum likelihood (ML) approach the aim is to find a point estimate for the parame-

ters to maximize the likelihood of a model p(D | θ, M). However, the approach is not

Bayesian, since firstly the prior assumptions of the parameters p(θ | M) are left out, and

more importantly the inference is based on conditioning the data on parameters and not

the parameters on the data. The difference between these two interpretations can be un-

derstood considering a frequentist framework, where the single best estimate is a random

variable such that, when calculated repeatedly for many new data sets its average will be

the estimate. The fundamental assumption in the Bayesian framework, however, is that

the inference is based on the specific data available at the moment and the estimate ob-

tained is the single best conditioned on the posterior knowledge. Closest to ML estimate

in a Bayesian context is the Maximum a Posterior (MAP) approach, where the point esti-

mate maximizes the posterior probability density p(θ |D) ∝ p(D | θ)p(θ), or minimizes

12



the negative log-posterior cost function

E = − log (p(D | θ))− log (p(θ)) , (3.7)

In the rest of the text the above function will be called an energy function for the reasons

to become apparent during the discussion of hybrid Monte Carlo method in section 6.2.3.

A point estimate does not provide information about the shape of the posterior distri-

bution. To get also an estimate for the shape, for example, a normal approximation (e.g.

Gelman et al., 2004) can be centered at the posterior mode. Contrary to point estimates the

normal approximation gives also an estimate for the variance and thus for the confiden-

tial intervals. To find the single best point there are a variety of optimization algorithms

presented in the literature, for example a scaled conjugate gradient algorithm (Bishop,

1995).

In a full Bayesian approach no fixed values are estimated for parameters or hyperparam-

eters, but they are marginalized out. Approximations are then needed for the integrations

over the hyperparameters to obtain the posterior of parameters and over the parameters to

obtain the predictions of the model (Lampinen and Vehtari, 2001). In this work the infer-

ence is conducted in a full Bayesian manner by approximating the integrals with Markov

chain Monte Carlo methods to be discussed in section 6.2.

3.1.4 Model comparison

There are always many options in setting up a model for any applied problem (e.g. Gelman

et al., 2004). Thus there is also a need to compare the usability of the different models in

the problem at hand. There are typically two situations in which models are compared.

First, a common approach in model construction is to start with a simple model, check its

fit to data and then expand it. The original model is then compared to the expanded, more

complex model, in order to judge how much have been gained by expanding the model.

This generalizes in the case of comparing a set of nested models and judging how much

complexity is necessary to fit the data.
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The second scenario of model comparison occurs, when two or more non-nested models

are compared. In this case, none of the models generalizes the others and the judgment

is given which of the models works best. A better approach still would be to construct a

larger model that includes all the original models as special cases, after which predictions

could be made by integrating over the models similarly as over the hyperparameters.

Model fit can be summarized numerically by a measure such as mean squared error in

regression problems or a fraction of misclassified data points in classification. Measures

for the predictive ability of the model can also be constructed, for example, by cross-

validation or methods using replicates from posterior predictive distribution. Here the

method used for model comparison is the deviance information criterion to be discussed

next.

Deviance information criterion

Deviance information criterion (DIC) is a measure of model fit proposed by Spiegelhal-

ter et al. (2002). The measure is based on the Deviance discrepancy measure, which is

defined as minus two times the log-likelihood

D(y, θ) = −2 log(p(y|θ)). (3.8)

The deviance has an important role in statistical model comparison because, up to a fixed

constant that does not depend on θ , the expected deviance equals two times the Kullback-

Leibler information of the model. In the limit of large sample sizes, the model with the

highest posterior probability will have the lowest Kullback-Leibler information and thus

also the lowest expected deviance (e.g. Spiegelhalter et al., 2002; Gelman et al., 2004).

The deviance of a model can thus be thought as the loss in information about the true

phenomenon when using the model.

Spiegelhalter et al. (2002) define a standardized deviance

Dst(y, θ) = −2 log(p(y|θ))+ 2 log(s(y)), (3.9)
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where s(y) is some fully specified standardization term that is a function of the data alone.

For members of the exponential family with E [Y ] = µ(θ) the deviance Dst(y, θ) is called

a saturated deviance obtained by setting s(y) = p(y|µ(θ) = y).

The expected deviance can be estimated by a point estimate for the parameters such as

the posterior mean θ̂mean. However, as discussed by Spiegelhalter et al. (2002) it is not

strictly necessary to use posterior mean as a point estimate for θ and especially in the

case of exponential family likelihood a posterior median θ̂median may by justified. The

deviance at θ̂ is denoted as

Dθ̂ (y) = D(y, θ̂ ). (3.10)

In the Bayesian context, it is appealing to average the deviance itself over the posterior

distribution to obtain the posterior mean deviance. As will be discussed in the context of

Markov chain Monte Carlo methods in the section 6.2, this can be approximated using

the posterior simulations of θ

D̂avg(y) =
1
N

N∑
t=1

D(y, θ (t)). (3.11)

The difference between the posterior mean deviance and the deviance at θ̂ represents

the effect of the model fitting and can be used as a measure of the effective number of

parameters

pD = D̂avg(y)− Dθ̂ (y). (3.12)

The deviance information criterion is defined as the deviance at θ̂ , plus twice the effective

number of parameters

DI C = Dθ̂ (y)+ 2pd (3.13)

= D̂avg(y)+ pd, (3.14)

where the deviance can be either the classical or standardized deviance defined above.

DIC can be considered as a Bayesian measure of fit or adequacy, penalized by an addi-

tional complexity term pD.
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3.2 Disease mapping

3.2.1 The study focus

Disease mapping concerns the use of statistical models to describe the overall disease

distribution on the map. The study focus is to analyze spatial variations in disease risk,

within which different formats of epidemiological data naturally give rise to different

statistical methods. Often the object is simply to smooth the map of disease to uncover

the underlying structure from the noisy data. The aim may for example be to highlight

areas of elevated or lowered risk or to obtain clues to the disease aetiology.

3.2.2 Earlier works

The origins of disease mapping can be traced back to the 19th century, when frequently

raging infectious diseases tormented the countries of the time, particularly yellow fewer

in the United States and cholera in Europe. One of the most famous early epidemiologists

was John Snow (1813-1858), who demonstrated the spread of cholera, through contami-

nated water in London (Walter, 2001). With his early spot maps of locations with cholera

infections Snow was able to show that cholera infections were much more frequent in

certain areas of the city. The cause of the increased infection rate was then tracked to the

contaminated parts of the Thames.

In the 20th century the research focus shifted from infectious diseases towards chronic

diseases such as cancer and heart diseases. In Great Britain, for example, a number of

cancer mortality maps were produced for England and Wales in 1920s and 1930s. In

early 19th hundreds an important methodological advance was an adjustment for regional

differences in age and sex, thus avoiding possibly biased comparison of crude rates of

earlier works. By the 1980s some of the first maps with statistical spatial analysis were

constructed and the first works with maps showing time trend patterns of diseases were

also published. The fast increase in computational power in the late 19 hundreds made

the development and use of more sophisticated statistical methods possible. One of the
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first empirical Bayesian smoothing techniques was used by Devine et al. in 1991 in the

United States (Walter, 2001).

In Finland the systematic collection of public health data has been conducted already for

several decades. For example E. Pukkala et al. in 1987 was able to summarize cancer

incidence data since as early as 1953 (Walter, 2001), producing one of the first time trend

and widest time ranges covered cancer atlases in Europe. The work by E. Pukkala et al.

was also one of the earliest to use data smoothing, with a geometric centroid approach.

In past few years there have been several public health applications for disease mapping

in Finland. For example Bayesian studies of Type I diabetes mellitus (Rytkönen, 2004;

Moltchanova, 2005) and studies of acute myocardial infarction in eastern Finland (Kar-

vonen et al., 2002) to mention few of them.

3.2.3 About prior assumptions

The usual assumptions in the model construction are that the measured death rates are a

combination of two different (stochastic) processes, the other governing the expectation

of mortality and the other the actual death rates in a certain area. The expectation of

the mortality is as an intensity surface getting high values in the areas where the prior

belief suggests large numbers of death cases. For example in big cities, with a high

density of population, there are more death cases than in rural areas with less people. In

addition to the background population density the properties of the population might have

affect on the intensity as well, and thus these properties could be used as an explanatory

covariate. For example age, sex, education and social status of people can be included in

such covariates. Also it is possible to add environmental causes such as lakes, industry or

main traffic routes in the model. In addition to including explanatory covariates into the

model, an important purpose of the intensity surface is to give a ways of smoothing the

data and of describing the areal correlations and some stochastic randomness.

The intensity surface represents the number of death cases expected to realize in a certain

area. Now, the measured data is not assumed to be explained totally by the intensity
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surface, not even the surface was a true one. As in every natural process there are some

irregularities present in the data and the stochastic process build for the occurred death

cases given the expected value, presents the assumptions about these irregularities. These

might include both the noise present in the data and the stochastic randomness of the

underlying process.

3.2.4 Generic hierarchical three level model

A widely discussed generic three level hierarchical model for disease mapping based on

aggregation of the underlying individual level risk can be summarized as (Best et al.,

2005)

Yi ∼ Poisson(Eiµi ) (3.15)

log(µi ) ∼ p(·|θ), (3.16)

θ ∼ π() (3.17)

where Yi is the observed number of deaths, Ei the standardized expected number of deaths

and µi the relative mortality risk in an area Ai . The generic prior p(·|θ) is an appropriate

second level prior for log relative risk and θ represents the hyperparameters with prior

π(). The homogeneous Poisson process, more commonly Poisson process, is the most

commonly used theoretical model for the generation of disease cases (Best et al., 2005).

Due to the fact that the population sizes in general are large and the number of disease

cases relatively small the Poisson distribution can be considered as a good approximation

for the underlying binomial distribution. The standardized expected number of deaths

is evaluated from the explanatory covariates present in the data and as discussed earlier

there is a multitude of ways to construct the standardization. The role of µ is to model the

risk relative to E , a deterministic function of explanatory variables.

The difference between most common disease mapping models is in the prior given for

log(µ). A common second level prior is a Conditional Autoregressive (CAR) model, used

for example by Richardson et al. (2004) and Moltchanova (2005). The model is based on
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evaluating the variance of log relative risk in an area as an average between its neigbours.

CAR model is a generic name for a class of models using the same approach for variance

evaluation. The model has its main difficulties with a sparse data, where some or many

of the neigbours are empty. A multivariate normal prior given as log(µ) ∼ N (m, K),

is one of the most flexible distribution for representing correlated random variables and

Gaussian processes used in this work are its extension to a continuous surfaces (Best et al.,

2005).

3.2.5 Age adjusted expected value of deaths

In epidemiology most health rates are strongly age-dependent. Most commonly, resulting

from the slow deterioration of human biological system, the older age groups generate

higher death rates than younger ones. The opposite could take place, for example, in

accidental death causes.

The crude death rate, the total number of deaths divided by the number of people, is a

widely used measure of mortality. However, crude death rates are influenced by the age

composition of the population and as such, the comparisons of crude death rates over

time or between groups may be misleading if the populations compared differ in age

composition. (Anderson and Rosenberg, 1998)

The crude rate is in most cases inadequate to describe mortality risk across the whole

population and an age-standardization is a method used to address this problem by defin-

ing more detailed rates that better reflect the age composition of the population. Age-

standardization is based on death rates that are separately calculated for different age

groups. The population is usually apportioned to five year segments, for example below

5, 5-9, 10-14, ..., 80-84 and over 84 years (Anderson and Rosenberg, 1998). The selec-

tion of appropriate groupings is not strict but should reflect the average age-structure of

the population.

In this work the standardization is done following the idea of the directly standardized
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rate DSR (Ahmad et al., 2000). The directly standardized death rate for an area Ai is

DSR =
R∑

r=1

Yr

Nr

nri∑R
r=1 nri

, (3.18)

where Yr and Nr are the total number of deaths and people in the whole area of study in

the age-group r , and nri is the number of people in the age-group r and in the are i . Now

the age adjusted expected value in an area Ai is obtained as the product of the rate and the

population in the area,

Ei =

R∑
r=1

Yr

Nr
nir . (3.19)

The standardization in this work uses the information about age, gender and scholarly de-

gree of the people. The population under study was first divided between genders. Both

genders were then partitioned into 14 age segments accounting in 28 age-gender groups.

All the age-gender groups were still partitioned with respect to 3 scholarly degrees ac-

counting into 66 age groups in total, since not all scholarly degrees are present for all

age-gender groups.
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Chapter 4

Gaussian processes

Gaussian processes (GP) (e.g. Rasmussen and Williams, 2006) are a flexible and attrac-

tive method for a wide variety of supervised learning problems, such as regression and

classification in machine learning or spatial analysis in epidemiology. They have been

studied already for some time, but due to the fast increase in memory requirements and

computational demands as the function of the number of training cases, they have been

competitive only in problems with a moderate size dataset. Recently there has been an in-

creasing interest in GPs due to the approximate methods which reduce the computational

load.

In this chapter, the Gaussian processes are discussed following the treatment of Quinonero-

Candela and Rasmussen (2005) and Rasmussen and Williams (2006). First the definition

of Gaussian processes and some fundamental theory behind them are considered. The

use of Gaussian processes is discussed with a simple regression problem, after which the

consideration is extended into applications with an arbitrary likelihood. The covariance

functions used in the work are discussed shortly and at the end of the chapter the focus

is taken into sparse approximations and in particularly in the approximation used in this

work. The treatment of Rasmussen and Williams (2006) is build up around training GP to

find a point estimate for parameters. In this work the aim is, however, on the full Bayesian

inference by integrating over the parameters.
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4.1 Definition

Whereas a probability distribution describes the properties of random variables, a stochas-

tic process governs the properties of functions. A Gaussian process is a generalization of

a Gaussian distribution, which can be understood, for example, by considering a set of

explanatory variables, X = {xi , ..., xn} that are mapped to some function values f (xi ).

A Gaussian process GP defines the probability of continuous set of function values f (xi )

indexed by the explanatory variables X, whereas a (one dimensional) Gaussian distribu-

tion could be used to define the probability of a one function value f (xi ) given explana-

tory variable xi . Formally a Gaussian process is defined as following (Rasmussen and

Williams, 2006):

Definition 1 A Gaussian process is a collection of random variables, any finite number

of which have a joint Gaussian distribution.

A Gaussian process is a fully probabilistic model that is completely defined by its mean

function, m(x), and covariance function, k(xi , xj ), defined

m(x) = E
[

f (x)
]

(4.1)

k(xi , xj ) = E
[
( f (xi )− m(xi ))( f (xj )− m(xj ))

]
. (4.2)

In a Bayesian framework GP can be used to define a prior distribution over a set of func-

tions

p( f | x1, x2, ..., xn) ∼ GP
(
m(x)), k(x, x′)

)
, (4.3)

which map the explanatory variables xi into the function values fi = f (xi ) of interest.

The properties such as smoothness and differentiability of the functions restricted by GP

can be varied with the choice of the covariance function k(xi , xj ). Although GPs are very

flexible models they are still limited by the form of the covariance function. For example,

it is difficult to model non-stationary processes with GP because it is hard to construct

useful non-stationary covariance functions.
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The definition of GP as a collection of random variables automatically implies a consis-

tency requirement, which is also known as the marginalization property. The consistency

property means that if a GP specifies for example ( f1, f2) ∼ N(m, K), then it must also

specify f1 ∼ N(m1, K1,1), where K1,1 is the relevant submatrix of the covariance matrix

K (Rasmussen and Williams, 2006).

4.2 Full Gaussian process

4.2.1 Gaussian processes with normal likelihood

Probably the easiest and most intuitive problem to implement for Gaussian process is a

regression problem with additive and independent Gaussian noise. Given a training data

D = (xi , yi ), i = 1, ..., n of n pairs of explanatory variables (inputs) x and targets y, a

predictive distribution of the function values f∗ at test locations x∗ is computed. The

function values of test cases, f∗,i , or training cases, fi , are also called as latent values and

they represent the noiseless underlying phenomenon under the noisy targets

yi = f (xi )+ εi , where εi ∼ N (0, σ 2
noise), (4.4)

where σ 2
noise is the variance of the noise. To construct a Bayesian inference first the latent

values f =
[

f1, f2, ..., fn
]T are given a Gaussian process prior

p(f | x1, x2, ..., xn) ∼ GP(0, K), (4.5)

where the entries of the covariance matrix Ki j are given by the covariance function

k(xi , xj ). For simplicity the mean of the GP is defined here to be zero, which does not

restrict the generality of the treatment but makes the equations easier to follow. At this

point the dependence of the covariance function parameters and their hyperparameters is

omitted. In contrast to parametric models, such as for example linear regression, in which

the prior is defined over the parameter values of a fixed function, the GP restricts the study

on certain kind of functions defined by the mean and the covariance functions.
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The consistency property implies that the joint prior of the training and test cases can be

written as

p(f, f∗) = GP

0,

 Kf,f Kf,∗

K∗,f K∗,∗

 , (4.6)

where the covariance matrix is partitioned into four submatrices, whose subscript define

the variables between which the correlation is computed. For example Kf,∗ defines the

covariance matrix between training and test latent values. Here it should also be noted

that due to the symmetry property of covariance matrix KT
f,∗ = K∗,f (see equation (4.2)).

The likelihood is defined by the noise model (4.4) to be also Gaussian with mean f

p(y| f) = N(f, σ 2
noiseI), (4.7)

where I is the identity matrix. By combining the prior and the likelihood, the joint poste-

rior of latent values can be obtained using the Bayes rule (3.1)

p(f, f∗|y) =
p(y| f)p(f, f∗)

p(y)
, (4.8)

where p(y) =
∫

p(y| f)p(f)d f is the marginal likelihood from equation (3.2). To com-

plete the Bayesian inference for the desired posterior predictive distribution of test vari-

ables, the unwanted training set latent variables are marginalized out

p(f∗ |y) =

∫
p(f, f∗|y)df =

1
p(y)

∫
p(f, f∗)p(y| f)df, (4.9)

which, since both factors in the integral are Gaussian, can be evaluated in the closed form

to give the Gaussian posterior predictive distribution

p(f∗ | y) = N
(

K∗,f(Kf,f+σ 2
noiseI)−1y, K∗,∗−K∗,f(Kf,f+σ 2

noiseI)−1 Kf,∗

)
. (4.10)

The predictive distribution of test targets p(y∗ | y), can be computed easily by adding the

noise σ 2
noiseI into the variance in the expression of p(f∗ |y).

At this point it can also be noticed, why GPs are considered as non-parametric models. As

can be seen it is possible to express the prior without any parametric assumptions. This
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far, though, the inference presented has been incomplete by leaving out the consideration

of the specific form of GP used, given in the form of the covariance function, and giving

only a general result. When taking in also the (necessary) covariance function parameters

it can be seen that they play a role similar to hyperparameters in parametric models such

as for example the hyperparameters of weights in MLP networks. So, the integration over

parameters is done in (4.10) and what is left is the inference on hyperparameters. The use

of Gaussian process for regression problem is illustrated in the picture 4.1.

To complete the inference, the prior for hyperparameters is included in the model to give

a joint posterior

p(f, f∗, θ |y) =
p(y| f)p(f, f∗ | θ)p(θ)

p(y)
, (4.11)

and a predictive distribution

p(f∗ |y) =

∫
p(f, f∗, θ |y)dfdθ =

1
p(y)

∫
p(y| f)p(f, f∗ | θ)p(θ)dfdθ, (4.12)

where θ represents all the covariance function parameters and hyperparameters. Here

the integration over latent values can again be conducted analytically as in (4.10), but

the integration over hyperparameters is usually not analytically tractable, which results

in various approximations. In GP regression the likelihood times the prior is a product

of two Gaussian distributions resulting as well in a Gaussian distribution p(y| f)p(f) ∼

N (0, Kf,f+σ 2
noiseI). Now the energy function (3.7) needed in, for example, Markov chain

Monte Carlo methods, is obtained a particularly easy form

E = − log (p(y| f)p(f | θ))− log (p(θ))

= −
1
2

log
∣∣∣Kf,f+σ 2

noiseI
∣∣∣− 1

2
yT
(

Kf,f+σ 2
noiseI

)−1
y−

n
2

log(2π)− log (p(θ)) ,

(4.13)

which is independent of the new cases f∗. The prior hierarchy could be extended also to

the level of the hyperparameters of covariance function parameters. However, in this work

the prior structure is constructed only to the first level hyperparameters θ . The likelihood

term in (4.13) can also be called a marginal likelihood, since it is already marginalized

analytically over the latent values. This is the interpretation of, for example, Rasmussen
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Figure 4.1: An example of GP regression with full GP. The data points are marked with
blue dots, the green line represents the output f of trained GP and dashed red lines are
the f ± 2σ , where the σ is the standard deviation predicted by the model.

and Williams (2006).

4.2.2 Gaussian processes with an arbitrary likelihood

The inference for GP with an arbitrary likelihood follows closely the steps in that of

regression. The main difference is that the latent values can not be thought as noiseless

target values any longer. To construct the GP inference, first the target values yi are again

given a probabilistic model that depends on the latent values

yi ∼ p (g( fi ) | xi ) , (4.14)

which is the likelihood of yi with a parameter g( fi ), where function g(·) can be any

function of latent value fi associated with input xi . In the regression problem the noise is

modeled to be additive as in (4.4), but here it is included in the model p (g( fi ) | xi ). The

model (4.14) can be for example a logistic transformation (3.6), where g is an identity

function.
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The next step, as in regression problem, is to give a Gaussian process prior for latent

values p(f | x1, x2, ..., xn) ∼ GP(0, K). The latent values can be considered now as

underlying help parameters, similar to the hyperparameters, from which the name latent.

Since the target values y are not normally distributed given the latent values the posterior

predictive distribution

p(f∗ |y) =

∫
p(f, f∗|y)df =

1
p(y)

∫
p(f, f∗)p(y|g(f))df, (4.15)

can no longer be solved analytically. In this case the integration over latent values can

be conducted by, for example, MCMC methods as in the case of hyperparameters. The

energy function is now modified into

E = − log (p(y|g(f)))− log (p(f | θ))− log (p(θ))

= − log (p(y | g(f)))−
1
2

log
∣∣Kf,f

∣∣− 1
2

fT K−1
f,f f−

n
2

log(2π)− log (p(θ)) , (4.16)

where the minus log likelihood log (p(y | g(f))) is explicitly shown in the equation and

when compared to (4.13) the covariance matrix Kf,f+σ 2
noiseI is replaced by the prior co-

variance Kf,f and the test cases y are replaced by the latent values.

A variety of approximative methods other than Markov chain Monte Carlo methods for

the integral (4.15) are presented in the literature. Minka (2001) has proposed the iterative

Expectation propagation algorithm (EP) in which posterior of latent values is approxi-

mated by a product of normal distributions centered at points that are sought with an it-

erative algorithm. The algorithm is successfully implemented, for example, for Gaussian

processes in two class classification problems with probit likelihood. Other variational an-

alytic approximation is the Laplace’s Method (e.g. Williams and Barber, 1998) or normal

approximation mentioned in section 3.1.3. Here the integration is conducted via Markov

chain Monte Carlo sampling to obtain golden standard results for the problem, but EP and

Laplace methods could be tested later.
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4.3 Covariance functions

4.3.1 General definitions and characteristics

An arbitrary function of inputs xi and xj will not in general be a valid covariance function.

In this section, some of the basic requirements and properties of covariance functions will

be discussed, after which the covariance functions used in the work will be considered

briefly. For more extensive discussion on the subject, see the treatment of, for example,

Rasmussen and Williams (2006) or Abrahamsen (1997).

A general name for a function k of two arguments mapping a pair of inputs xi ∈ Rn , x j ∈

Rn into R is a kernel. A sufficient and necessary condition for a kernel k to be a covariance

function of consistent finite-dimensional distribution is the positive semidefiniteness of the

kernel (e.g Abrahamsen, 1997). A kernel is said to be symmetric if k(xi , xj ) = k(xj , xi ),

and clearly, from the definition (4.2), covariance functions are symmetric. If the kernel

k is a covariance function and there is a matrix K whose entries are Ki j = k(xi , xj ), the

matrix is called a covariance matrix.

A covariance function is called stationary if it is a function of xi − xj , which is invariant

to translations in the input space. Further, the covariance function is isotropic, if it is a

function only of | xi − xj |, and thus it is invariant to all rotations in the input space. For

example a squared exponential covariance function to be discussed later is both stationary

and isotropic. The covariance functions can be combined as new covariance functions.

For example the sum or product of two covariance functions can be used to make a new

covariance function.

The smoothness properties of the Gaussian process are determined by the properties of the

covariance function around 0 and they can be summarized with terms of a mean square

differentiability of a Gaussian process and a differentiability of a covariance function. The

mean square differentiability of a process is a stronger property than the differentiability

of a covariance function and it is discussed in more detail, for example, by Rasmussen and

Williams (2006). The smoothness of the process then has influence on, how fast varying
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effects the process can adapt.

4.3.2 Squared exponential covariance function

Probably the most widely-used covariance function is a squared exponential defined as

ksexp(xi , xj ) = σ 2
sexp exp

− 1
l2

P∑
p=1

(xi,p − x j,p)
2

 , (4.17)

where l is the length scale and σ 2
sexp is the magnitude. The length scale governs the

distance, how far apart inputs still correlate. The role of magnitude can be understood by

considering a covariance function that is sum of two kernels, in which case the magnitude

describes how much either of the two parts describe of the whole covariance.

A squared exponential covariance function is infinitely differentiable leading to very

smooth Gaussian processes that are infinitely mean square differentiable. The covari-

ance function is stationary and isotropic in its basic form. The squared exponential, as

all the other covariance functions discussed here, can be modified into a non-isotropic

form by setting a different length scale for all the components of x. This is referred as an

automatic relevance determination kernel discussed by, for example, Neal (1996). In this

work all the covariance matrices are stationary and isotropic.

4.3.3 Exponential covariance function

The exponential covariance function is given as

kexp(xi , xj ) = σ 2
exp exp

−1
l

√√√√ P∑
p=1

(xi,p − x j,p)2

 . (4.18)

Even the exponential covariance function is infinitely differentiable likewise the squared

exponential, a Gaussian process defined by it is not mean squared differentiable. Thus a

Gaussian process with an exponential covariance function is not as smooth as one with
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a squared exponential. This means that GP with an exponential covariance function can

adapt to a rougher phenomenon than with a squared exponential.

4.3.4 Mátern class of covariance functions

The Mátern class of covariance functions is given by

kmatern(xi , xj ) = σ 2
m

21−ν

0(ν)

(√
2νr
l

)ν

Kν

(√
2νr
l

)
, (4.19)

where l is the length scale, ν a positive parameter, r = | xi − xj | and Kν a modified

Bessel function (e.g. Abramowitz and Stegun, 1970). This covariance function has the

property that as ν →∞ it approaches a squared exponential and as ν → 1
2 it approaches

an exponential covariance function. A Gaussian process with Mátern class covariance

function is k times mean square differentiable if ν > k. Thus the smoothness properties

of the GP with a Mátern covariance function can be controlled with the parameter ν.

The Mátern covariance functions can be computed faster when ν is a half integer ν =

p+ 1/2, where p is a positive integer (e.g. Rasmussen and Williams, 2006). The general

expression can be derived into

k(xi , xj ) = σ 2
m exp

(
−

√
2νr
l

)
0(p + 1)

0(2p + 1)

p∑
i=0

(p + i)!
i!(p − i)!

(√
8νr
l

)p−i

(4.20)

The Mátern class covariance functions used in this work have ν = 3/2 and ν = 5/2, and

can be represented with the above as

kν=3/2(yi , yj ) = σ 2
ν=3/2

(
1+

√
3r
l

)
exp

(
−

√
3r
l

)
(4.21)

kν=5/2(yi , yj ) = σ 2
ν=5/2

(
1+

√
5r
l
+

5r2

3l2

)
exp

(
−

√
5r
l

)
(4.22)
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4.4 Sparse Gaussian processes

4.4.1 About sparse approximations

The main drawback of a full Gaussian process is the fast growing need of computation

time and memory requirements as the size of the training set increases. The memory

requirements for storing and the time for inversion of an n× n covariance matrix, needed

for example in (4.16), grow respectively as O(n2) and O(n3) with respect to the size of

the training data n. Sparse Gaussian processes are a class of approximations in which

the full covariance matrix is given a reduced rank approximation in order to speed up the

computations.

The simplest possible sparse approximation would be to use only a subset of the training

data. In this approach the information from left out data points is completely lost and

it would be very hard to get a realistic picture of the uncertainties of the model. The

more sophisticated sparse approximations, in contrast to just throwing out information,

try to use the information present in the training data as well as possible without explic-

itly handling the full covariance matrix. They also aim to give a more realistic picture of

the uncertainties present in the approximation. The more sophisticated sparse approxima-

tions include for example the subset of regressors approximation presented by Silverman

(1985) and Wahba et al. (1999), the deterministic training conditional by Csató and Opper

(2002) and Seeger et al. (2003) and the Nyström approximation proposed by Williams and

Seeger (2001). The method used in this work is a Fully independent training conditional

presented by Snelson and Ghahramani (2006) with a name sparse pseudo-input Gaussian

process. A good overview and a unifying treatment of the different sparse approximations

is given by Quinonero-Candela and Rasmussen (2005).

Before continuing to discussion of the sparse approximation used in this work, two results

that are fundamental for the method are presented. First of them is the matrix inversion

lemma or Woodbury, Sherman and Morrison formula:

Lemma 1 Let Z be an n × n matrix, W an m × m matrix, U an n × m matrix and V an
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n × m matrix. If Z and W are nonsingular, then UWV + Z is nonsingular if and only if

W−1
+ VZ−1U is nonsingular in which case

(UWV+ Z)−1
= Z−1

− Z−1U(W−1
+ VZ−1U)−1VZ−1 (4.23)

The advantage of the above lemma is obtained in the case of an n × n matrix UWV+ Z

for which the inversion of Z is easy to construct. That is a case, for example, when Z is

a diagonal matrix. In the sparse approximation used here, the inverse of W is known also

and Z−1U is the transpose of VZ−1.

The other result is a matrix determinant lemma which states:

Lemma 2 Let Z be an n × n matrix, W an m × m matrix, U an n × m matrix and V an

n × m matrix. If Z and W are nonsingular, then

|UWV+ Z| = |Z||W||W−1
+ VZ−1U|. (4.24)

The advantage of the lemma results again if Z is of nice form. The proof for both of the

lemmas is given, for example, by Harville (1997).

4.4.2 Fully independent training conditional

The fully independent training conditional (FITC) sparse approximation was first intro-

duced by Snelson and Ghahramani (2006) with a name sparse pseudo-input Gaussian

process. The name used here was given by Quinonero-Candela and Rasmussen (2005) in

their unifying review of sparse Gaussian processes.

To start with the construction of FITC, the joint prior p(f, f∗) in (4.6) is modified in

a way, which will reduce the computational requirements from the predictive distribu-

tion (4.10). First the prior is rewritten using an additional set of m inducing variables

u = [u1, ..., um]T and forming the joint prior for all the latent and the inducing variables
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p(f, f∗, u). The inducing variables are latent variables of the Gaussian process, as well as

f and f∗, corresponding to a set of input locations xu called inducing inputs. Due to the

consistency property of Gaussian processes the original prior p(f, f∗) can be recovered

simply integrating out the inducing variables

p(f, f∗) =
∫

p(f, f∗, u)d u =
∫

p(f, f∗ | u)p(u)d u, (4.25)

where p(u) = N
(
0, Ku,u

)
is the inducing prior. The fundamental idea of most of the

sparse approximations is to approximate the joint prior by assuming that f and f∗ are

conditionally independent given u. This gives for the joint prior of latent values an ap-

proximation

p(f, f∗) ≈ q(f, f∗) =
∫

q(f | u)q(f∗ | u)p(u)d u, (4.26)

where q(f | u) and q(f∗ | u) are the approximate inducing conditionals. Here the latent

variables f and f∗ can communicate only through u, which therefore induces the depen-

dence’s between the training and the test cases.

It is worth noting here that whereas the inducing variables u are always marginalized

out in the predictive distribution, the choice of inducing inputs does leave an imprint

on the final solution, as shown later in the figure 4.2. FITC approximation can thus be

viewed as a standard Gaussian process with a particular non-stationary covariance func-

tion parametrized by the inducing inputs. The choice of the inducing inputs thus plays an

important role in the goodness of the model.

Introducing a short hand notation Qa,b = Ka,uK−1
u,uKu,b the exact expressions for the

training and test conditionals in (4.26) can be expressed as

p(f | u) = N (Kf,u K−1
u,u u, Kf,f−Qf,f) (4.27)

p(f∗ | u) = N (K∗,u K−1
u,u u, K∗,∗−Q∗,∗). (4.28)

Here u can be thought to play a role of special noise free observations in which case the

expressions of the exact conditionals are special cases of the predictive distribution.

To complete the construction of FITC approximation the inducing conditionals are written
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as

qFITC(f | u) = N (Kf,u K−1
u,u u, diag

[
Kf,f−Qf,f

]
) (4.29)

qFITC(f∗ | u) = N (K∗,u K−1
u,u u, K∗,∗−Q∗,∗) = f (f∗ | u), (4.30)

implying the effective joint prior of f and f∗ as

p(f, f∗) = GP

0,

 Qf,f−diag
[
Qf,f−Kf,f

]
Qf,∗

Q∗,f K∗,∗

 . (4.31)

As discussed earlier in the context of a full Gaussian process the key equations in the

GP inference are the posterior predictive distribution of a regression problem (4.10) and

the energy functions in (4.13) and (4.16). Now in FITC approximation the covariance

matrix Kf,f in these equations is replaced by Qf,f−diag
[
Qf,f−Kf,f

]
. By defining 3 =

diag
[
Kf,f−Qf,f

]
the predictive distribution and the energy function in regression problem

can be written, respectively, as

p(f∗ |y) =N
(

K∗,f(Qf,f+3+σ 2
noiseI)−1y, K∗,∗−K∗,f(Qf,f+3+σ 2

noiseI)−1 Kf,∗

)
(4.32)

E =−
1
2

log
∣∣∣Qf,f+3+σ 2

noiseI
∣∣∣− 1

2
yT
(

Qf,f+3+σ 2
noiseI

)−1
y

−
n
2

log(2π)− log (p(θ)) . (4.33)

In the case of an arbitrary likelihood, it is not possible to solve analytically the predictive

distribution. The noise term σ 2
noiseI is replaced and the likelihood is changed to the general

p(y|g(f)) giving an energy function

E =−
1
2

log
∣∣Qf,f+3

∣∣− 1
2

yT (Qf,f+3
)−1 y−

n
2

log(2π)

− log (p(y | g(f)))− log (p(θ)) . (4.34)

In a full Gaussian process, the computationally most prohibitive part of evaluations is the

inversion of covariance matrix. Here the inversion of Qf,f+3 or Qf,f+3+σ 2
noiseI can be
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transformed in a more efficient form using the matrix inversion lemma (4.23)

(
Qf,f+3

)−1
= 3−1

+3−1 Kf,u

(
Ku,u+Ku,f 3

−1 Kf,u

)−1
Ku,f 3

−1, (4.35)

where the inversion of diagonal n × n matrix 3 can be transformed into an elementwise

inversion of a vector diag [3] and the only matrix inversion required is that of an m ×

m matrix
(
Ku,u+Ku,f 3

−1 Kf,u
)
. The computational cost is dominated by the matrix

multiplication Ku,f 3
−1 Kf,u, which is O(m2n) (Snelson and Ghahramani, 2006). Then,

compared to the inversion of an n× n matrix of full GP the computational cost in FITC is

reduced from O(n3) to O(m2n). The determinant can also be evaluated more efficiently

using the matrix determinant lemma (4.24) resulting in

∣∣Qf,f+3
∣∣ = |3 ||K−1

u,u||Ku,u+Ku,f 3
−1 Kf,u |. (4.36)

4.4.3 On the choice of the inducing inputs

Until now the choice of the inducing inputs Xu has not been considered. However, the

choice of them is a crucial part of the model construction. Although the inducing vari-

ables u are marginalized out from the inducing conditionals, the choice of the inducing

inputs does leave an imprint in the final inference, and thus the choice of them should be

done with care. Traditionally the inducing inputs in sparse approximations are carefully

chosen subset from the training or test inputs, but nothing in the construction of FITC

approximation limits the choice on them.

Consider the predictive distribution (4.32) of the Gaussian process regression with FITC

approximation. The predictive distribution is obtained from an analytic solution

p(f∗ |y) = N
(

K∗,f(Qf,f+3+σ 2
noiseI)−1y, K∗,∗−K∗,f(Qf,f+3+σ 2

noiseI)−1 Kf,∗

)
,

where Qf,f = Kf,u K−1
u,u Ku,f and the elements of covariance matrices are given as a func-

tion of inputs Ki j = k(xi , xj ). The characteristic of covariance functions, as discussed

in section 4.3, is that the further apart two points are from each other the smaller the
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covariance between them is and thus the less they have influence on each others. The

distance, after which the covariance between two points is negligible, is governed by the

length scale. Since Qf,f and 3 are functions of Kf,u and Ku,f, it can be seen from above

that the posterior expectation of FITC approximation E [f∗] = K∗,f(Qf,f+3+σ 2
noiseI)−1y

approaches the prior expectation E [f∗] = K∗,f(diag
[
Kf,f

]
+ σ 2

noiseI)−1y as the distance

between the inducing and the training inputs increases, To be precise the potteries ap-

proaches only an approximate prior, because there is only diagonal of Kf,f. Similarly

the posterior covariance approaches the prior covariance. Also the opposite holds, as

the number and location of inducing inputs approaches those of training set inputs the

solution approaches the full model.

As well as the increase in the distance between the inducing and the data inputs moves the

predictions towards the prior, the prior dominates also the posterior inference of the pa-

rameter values in the same case. Thus, there may first be a problem in finding the posterior

of parameters and then in finding the posterior predictions with those parameters. The in-

fluence of the inducing inputs on the posterior inference is demonstrated in the figure 4.2,

where a FITC sparse Gaussian process is applied for the same regression problem data as

in the figure 4.1. In each case there is a same number of inducing inputs. The posterior

mean of length scale in full GP is approximately l = 0.6. The upper two cases represent

solutions, where the inducing inputs were chosen uniformly from the area spanned by the

data and uniformly from the data inputs. The expectation of f∗ is rather similar in both

cases. The dashed red lines represent the 2σ , which is two times the standard deviation

predicted by the model. In the lower cases it is seen that the inducing inputs are too far

away from the data points for the model to fit in the data. In this case the data is explained

in growing amount with the variance, which is seen in the wider distance between f± 2σ

lines.

Snelson and Ghahramani (2006) choose the inducing inputs by maximizing the marginal

likelihood with respect to a fixed number of them. In this work the inducing inputs are

chosen uniformly from the data inputs. A full Bayesian approach would be to marginalize

out the inducing inputs with, for example, Monte Carlo integration.
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(d) Really badly chosen inducing inputs
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(e) A full GP for comparison

Figure 4.2: An example of GP regression with FITC sparse approximation. The data
points are marked with blue dots, the green line represents the output f∗ of trained GP,
dashed red lines are the f∗ ± 2σ and red crosses represent the locations of the inducing
inputs. The σ is the standard deviation predicted by the model. The number of the
inducing inputs is same in all the figures.
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Chapter 5

Constructing the model

The focus of this work is to construct a full Bayesian model for finding possible spatial

variations in the death rates of chronic diseases. The data available is a point referenced

health data with various covariates. The approach to the study problem follows a generic

hierarchical three level model with the Poisson likelihood and a sparse log Gaussian pro-

cess prior. Gaussian process should be a reasonable choice to construct the intensity

surface for the relative risk, since the surface is naturally smoothed by the process and the

spatial correlations between areas can be included in an explicit and natural way into the

model via a correlation function. The hyperprior is defined by half-Students’-t distribu-

tion to allow a priori small and moderate size process variation for the intensity surface.

The chapter starts by describing the case data under study, after which the model con-

struction is treated in more detail. At the end of the chapter the model is placed under

model criticism to analyze the restrictions and faults in it.

5.1 Data sets studied

For testing the FITC sparse approximation there were four different study sets constructed

from the data available. The sets of data consisted of the mortality due to two different
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diseases, cerebral vascular diseases and alcohol-related diseases, in the time interval

1995-1999. The data sets were studied with lattice resolutions of 20km × 20km and

10km × 10km resulting in 915 and 3193 data points respectively. The cerebral vascular

diseases comprised roughly 18 000 deaths and the alcohol-related diseases about 5200

deaths.

5.2 Sparse log Gaussian process model

The model constructed in this work follows the general approach discussed in section

3.2.4. The data is aggregated into areas Ai with co-ordinates (xi,1, xi,2) and consist of

information about the number of the death cases and the background population, and the

explanatory covariates for both mortality and background data. The likelihood is Poisson

with mean Eiµi , where the standardized expected number of deaths Ei is evaluated using

an age, gender and scholarly degree standardization as discussed in section 3.2.5. The log

relative risk is given a Gaussian process prior with zero mean. The complete model until

second level prior is

Y ∼ Poisson(Eµ) (5.1)

log(µ) = f(xi , xj ) ∼ GP(0, k(xi , xj )). (5.2)

The drawback of GP is the computational burden of the required covariance matrix in-

version. The computation time becomes prohibitive as the data amount increases up to

around a few thousand of cases, limiting the study either to very small areas or a sparsely

populated grid. To overcome the computational limitations the GP is given an FITC sparse

approximation, from which the name sparse log Gaussian process.

The model here is similar to the log Gaussian Cox processes discussed, for example, by

Møller et al. (1998); Beneš et al. (2002). The main difference between the Cox processes

and the approach in this work is that the Cox process is defined strictly only for spatial

point processes, in which the co-ordinates of data are random variables constructed by the

Cox process. Here the co-ordinates of point referenced data are fixed, not random. The
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data can be aggregated into areas of various sizes and the same model can be used for the

resulting areal data using the co-ordinates of sub-regions as point co-ordinates.

5.3 Prior for covariance function parameters

The covariance functions used in the work are a squared exponential, an exponential, a

Mátern ν = 3/2 and a Mátern ν = 5/2 discussed in section 4.3. It is a priori plausible

that the process variance is zero or very small and thus the prior for covariance function

parameters should be such that it enables both the length-scale l and the magnitude σ 2

to reach zero. The prior should also allow, especially for the length scale, higher values

reflecting to correlating points far apart. To obtain these characteristics the covariance

function parameters are both given a half-Students’t prior (Gelman, 2006)

p(l|ν = 1, A = 4) ∝

0 if l < 0,(
1+ 1

ν

( l
A

)2)−(ν+1)/2
otherwise

(5.3)

p(σ 2
· |ν = 0.3, A = 4) ∝


0 if l < 0,(

1+ 1
ν

(
σ 2
·

A

)2
)−(ν+1)/2

otherwise,
(5.4)

where A is the scale and ν the degrees of freedom. The prior distributions are shown in

the figure 5.1

5.4 Inducing inputs

The inducing inputs are chosen uniformly from the data. In the case of 20km×20km

lattice with 915 data points every other data input is chosen resulting in 221 inducing

inputs and in the 10km×10km lattice 238 inducing inputs are chosen by taking every

fourth of 3193 data inputs. The distance between inducing inputs is in both cases 40km

and the maximum distance from a data input to the nearest inducing input is 20 kilometers.

The choice of the inducing inputs is shown in the figure 5.2.
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Figure 5.1: The prior distribution for length scale and magnitude of covariance func-
tion.
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Figure 5.2: The inducing inputs in the case study problems. The inducing inputs were
chosen by taking uniformly every other data point in the case of 915 data points, on the
left, and every fourth data point in the case of 3193 data points, on the right. From the
pictures it is also seen how sparsely populated country Finland is on the north. The white
areas contain cells with no population.
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5.5 Model criticism

Poisson distribution is a widely used approximation for the likelihood of the death rate.

Due to the characteristic that the mean and the variance of Poisson distribution are the

same parameter, Poisson distribution can be considered as a good approximation of the

underlying binomial distribution in the cases of a large population size and a small num-

ber of diseases cases. This is the general situation for example in the densely populated

countries and cities of middle Europe. However, in Finland and especially in the north-

ern and eastern parts of Finland, the population sizes are rather small, which results in

high uncertainty in the expected death rate and thus the noise allowed by the Poisson

distribution may be too small, resulting in an extra-Poisson variation.

In the areas, where the Poisson likelihood is too strict, the posterior of the relative risk

may obtain unreasonable large values and thus result in a false interpretation of a spatial

effect. The background population is obtained from the census surveys conducted every

five years and the changes in population during that time may be rather big. Especially the

migration from the sparsely populated rural areas into the big cities increases the already

high uncertainty of the expected death rate in those areas. The problem of extra-Poisson

variation is discussed in brief for example by Diggle (2001).

Gaussian process should be a reasonable prior for log(µ), since the surface of the log

relative risk is naturally smoothed by the process and the spatial correlations between

areas can be included in an explicit and natural way into the model via a correlation

function. Gaussian distribution is symmetric around its mean, which is not necessarily

the case with the distribution of µ. However the log transformation of µ reduces the

possible non-symmetry and log(µ) is also more likely to be Gaussian distributed with

mean zero than µ with mean one.

The inducing inputs of FITC approximation were chosen uniformly over data inputs. As

discussed in section 4.4.3 this results in rather invariable variance estimate in all areas. By

choosing more inducing inputs from the areas with large population density and less in

the areas of small population density the uncertainty of the predictions could be reduced

42



in the areas where also the data uncertainty is smaller. The number of the inducing inputs

was chosen so that the distance from a data input to the nearest inducing input is not too

big. This distance is 20km at maximum, which means that spatial effects with length scale

lot smaller than 20km can not be found. However, in the case of 20km×20km lattice that

kind of spatial effects can not be found with full model either, since the distance between

two data inputs is also 20km at minimum. In the denser 10km×10km lattice the choice

of inducing inputs may already have effect on how fast varying phenomenon the model

can adapt. The best approach in choosing the inducing inputs would be to sample the

number and locations of them with for example Reversible Jump Markov Chain Monte

Carlo method (Green, 1995).
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Chapter 6

Computational methods

Computational methods play an essential role in applications of all statistical methods.

In Bayesian analysis the integrals resulting from the marginalization principle can not in

general be solved analytically and thus they are given either analytic or numerical approx-

imations. The approximations require both novel methods and computational power. In

this work, not only the integrals of Bayesian analysis are computationally demanding, but

also Gaussian processes lead to time consuming calculations. In particular the inverse of

the covariance function and the matrix multiplications need to be conducted with care.

The advantage of FITC approximation is that there is no need to invert or construct any

n × n matrix in the computations. This chapter begins by introducing the implementa-

tion environment and discussing some tricks used to avoid n× n matrices in calculations.

Next, the discussion is given about the Markov chain Monte Carlo methods, which are

used to conduct the integration over the nuisance parameters of the model. After in-

troducing Markov chains and the iterative methods to construct them, the discussion is

continued with transformations of parameters and in particular of the transformation of

the latent values with respect to their approximate posterior variance. The chapter ends

with derivation of the gradients of an energy function.
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6.1 Implementation issues

6.1.1 Implementation environment

The model and the methods discussed above are implemented in Matlab 7.* environment

as a part of a Gaussian processes toolbox. Main parts of the toolbox were written during

the work on the thesis and at the moment the first version of the toolbox is usable. The

toolbox follows the idea and uses some of the code of MCMCstuff toolbox (available

in the Internet at http://www.lce.hut.fi/research/mm/mcmcstuff/), which is a collection of

Matlab functions for Bayesian inference with MCMC methods. The two toolboxes are not

compatible with each others and the future objective is to publish also the new toolbox in

the Internet, and thus provide also a reference implementation for the methods discussed

here.

Matlab provides an efficient environment to implement and test new methods due to its

easy to use syntax and wide variety of ready made toolboxes. However, Matlab functions

are designed to handle matrices with general structure, and thus they are not the most

efficient choice for manipulating large matrices with known properties. In Gaussian pro-

cesses, for example, a covariance matrix is both symmetric and positive definite, which

enables the use of more efficient algorithms for computing matrix products, determinants

and inversions. For a treatment of algorithms for matrix evaluations see for example the

treatment of Golub and van Loan (1996).

At the moment, this work is implemented in Matlab and the matrix evaluations in the

code are optimized for fast performance with the tools provided by Matlab. Special care

is taken in the matrix computations in FITC approximation, which are conducted in a

manner that all matrices of size n × n are avoided. The Matlab version 7.* was chosen

for implementation environment because of the nested function property provided by it.

The nested functions provide an easy way to share common information between related

functions.
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6.1.2 About computations with matrices and vectors

As discussed above in the context of Gaussian processes the most time consuming part

of the implementation is the inversion of the full covariance matrix, which needs a time

proportional to O(n3). However, other matrix evaluations such as multiplications and

determinants of matrices may become computationally prohibitive as well. Unnecessarily

large matrices should be avoided also for saving memory, since the memory for storing a

matrix is proportional to O(n2).

In general, the computational cost and memory requirements for solving matrix problems

can be reduced significantly, if the implementation is conducted with care. The order of

computations, saving intermediate results, reuse of storage variables and taking advantage

of the possible known structure of matrix are examples of basic tricks that should be used

in the programming. In the case of symmetric covariance matrix a practical operator is

also the Cholesky decomposition:

Definition 2 The Cholesky decomposition of a symmetric, positive definite matrix A de-

composes A into a product of a lower triangular matrix L = chol [A] and its transpose

LLT
= A. (6.1)

Cholesky decomposition is numerically very stable and it is useful in many calculations

involving symmetric matrices. An example of using Cholesky decomposition is the eval-

uation of yT Kf,f
−1 y, needed for example in the evaluation of an energy function (4.16).

This can be evaluated efficiently solving first b = chol
[
Kf,f

]
\ y and then evaluation bTb,

where the notation A \ x is the vector x that solves the Ax = b, also called forward sub-

stitution. The computation of Cholesky decomposition takes time n3/6 and the forward

substitution of time n2/2. The Cholesky decomposition can also be used to evaluate the

determinant of a symmetric and positive definite matrix as follows

|K| =
n∏

i=1

L2
i i , (6.2)
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where L is the Cholesky decomposition of K.

The last example of the use of Cholesky is the construction of the diagonal 3 matrix in

equation (4.35) without forming the full n × n matrix Qf,f. The diagonal elements of

Kf,f can be easily obtained from the covariance function k(xi , xi ) and diag
[
Qf,f

]
can be

constructed by first evaluating

B = (chol(Ku,u)
−1)T Ku,f (6.3)

where the transpose is needed because the inversion is taken after Cholesky decompo-

sition. From this the diagonals of Qf,f are obtained as Qf,f( j, j) = 6i b2
i j , where bi j

is the i j th element of B, and the diagonal elements of 3 are obtained from 3(i, i) =

k(xi , xi ) − Qf,f(i, i). The diagonal elements can then be stored in a vector of length n,

which requires a memory proportional to only O(n). The matrix operations can also be

conducted faster with the vector of diagonal elements than with the full diagonal ma-

trix. For example the multiplication 3 Kf,u corresponds to multiplying the rows Kf,u(i, ·),

i = 1, ..., n, with the respective diagonal elements 3i i .

6.2 Markov chain Monte Carlo methods

Bayesian analysis usually results in complex integrals that are not analytically tractable.

As discussed in section 3.1.3 there are wide variety of approximative methods, of which

the numerical Markov chain Monte Carlo (MCMC) methods are considered here (e.g.

Gilks et al., 1996). In Monte Carlo integration for example the expectations of the form

E
[

f
]
=

∫
f (x, θ)p(θ)dθ, (6.4)

are approximated, using a sample of values θ (t) drawn from the distribution p(θ), by

E
[

f
]
≈

1
N

N∑
t=1

f (x |θ (t), M). (6.5)
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Thus the population mean of f (x, θ) is estimated by a sample mean. When the samples

θ (t) are independent, the laws of large numbers ensure that the approximation can be made

as accurate as desired by increasing the sample size N (e.g Gilks et al., 1996).

The samples θ (t) can be drawn from the desired distribution with MCMC methods. A

Markov chain is defined as a sequence of random variables satisfying the Markov prop-

erty:

Definition 3 A stochastic process has the Markov property if the conditional probability

distribution of future states of the process, given the present and past states, depends only

on the current state of the process, that is

Pr
[

X (t+1)
= x (t+1)

| X (0)
= x (0), ..., X (t)

= x (t)
]
= Pr

[
X (t+1)

= x (t+1)
| X (t)

= x (t)
]
.

(6.6)

The probability (6.6) is defined as the transition probability of a Markov chain.

In order to produce a chain of samples that converge to a stationary distribution, three

important properties have to be satisfied. First the chain has to be irreducible. That is,

every state of the process has to be acceptable from every other state with positive proba-

bility and in some number of iterations. Secondly the chain needs to be aperiodic. This

prevents the Markov chain from oscillating between different sets of states in a regular

periodic movement. And most importantly, the chain has to be positive recurrent. In pos-

itive recurrent chain the expected return time to any state is finite. A positive recurrent

and aperiodic chain is also called ergodic. The fundamental result in constructing Markov

chains is the ergodic theorem, which assures for an ergodic chain a sure converge towards

a unique stationary distribution in the limit of infinite long chain (Roberts, 1996).

Markov chain Monte Carlo methods are a class of algorithms for sampling from a prob-

ability distribution based on constructing a Markov chain with the desired distribution as

its stationary distribution. The basic building block in constructing such an algorithm is to

satisfy the ergodicity of the chain. However, even the ergodic theorem ensures the conver-

gence towards the stationary distribution, it does not offer any information about the time
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needed for convergence. Moreover, most of the time it is infeasible to draw independent

samples from the Markov chain, resulting in autocorrelation between nearby samples. As

a result it is essential to have tools to monitor the convergence and the independence of

the samples as discussed in the section 6.2.4.

There are a wide variety of MCMC sampling algorithms presented in the literature. The

efficiency of the algorithm depends highly on the problem at hand and, thus, a method

that works well in one problem can fail in the other. In this section, the three sampling

algorithms used in the work are introduced and discussed shortly. The theoretical back-

ground and a more extensive discussion of MCMC methods are given, for example, by

(Gilks et al., 1996; Neal, 1996; Gelman et al., 2004; Nabney, 2001).

6.2.1 Metropolis Hastings algorithm

The Metropolis-Hastings algorithm is a generalization of a random walk Metropolis al-

gorithm. The Metropolis algorithm utilizes a proposal distribution, from which a new

candidate state is generated and, then either accepted or rejected based on the probabil-

ity density ratio between the proposed and the current states. The Metropolis algorithm

is an adaptation of a random walk, where the ergodicity of the chain is ensured by the

acceptance rule between the old and the new states.

The proposal distribution of the Metropolis algorithm has to be symmetric to both direc-

tions, the moves from the current state to a new and from the new state to the current. In

many cases the symmetry requirement leads to an inefficient sampling and Metropolis-

Hastings algorithm is planned to overcome this limitation. In Metropolis-Hastings the

acceptance rule is based on both the ratio of proposal distributions and the ratio of proba-

bility densities. The algorithm is as follows.

1. Draw a starting point θ (0), for which p(θ (0)
|D) > 0

2. for t = 1, 2, ...

(a) Sample a proposal θ (∗) from proposal distribution Jt(θ
(∗)
|θ (t−1))
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(b) Calculate the acceptance ratio

α = min
(

1,
p(θ (∗)

|D)Jt(θ
(t−1)
|θ (∗))

p(θ (t−1)|D)Jt(θ (∗)|θ (t−1))

)
(6.7)

3. Set

θ t
=

 θ (∗) with probability α

θ (t−1) otherwise.

The Metropolis-Hastings algorithm is easy to construct and rather efficient for distribu-

tions with a low dimensionality. The essential part is the proposal distribution which

highly influences the effectiveness of the algorithm. The optimal rejection rate is 0.56 for

one dimension and 0.77 when many parameters are updated at once. Metropolis-Hastings

faces its limitations in a case of a high dimensional and/or a heavily skewed distribution.

For more detailed treatment and proof of ergodicity see the discussion of Gelman et al.

(2004).

6.2.2 Gibbs sampling

Gibbs sampling (e.g Gelman et al., 2004) is one of the basic algorithms among the

Markov chain Monte Carlo methods. The method is particularly useful for sampling

multi-dimensional distributions, if the sampling of joint distribution of the variables is not

directly feasible but there is an effective sampling algorithm to sample from the condi-

tional distributions of each variable or a subset of variables. The basic idea of the sampler

is to generate samples from the joint distribution by cycling through all the parameters and

draw one parameter or one subset of parameters in turn, conditioned on the current values

of all the others. Now, suppose a parameter vector θ = {θ1, θ2, ..., θn} with n components

or subvectors. At iteration t the Gibbs sampler cycles through all the n components of θ

and draws a new value θ
(t)
j for each parameter from its conditional distribution given all

the other parameters at their current values

p
(
θ

(t)
j |θ

(t)
1 , θ

(t)
2 , ..., θ

(t)
j−1, θ

(t−1)
j+1 , ..., θ (t−1)

n

)
. (6.8)
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Therefore the conditional sampling at each iteration is performed n times and new sam-

pled values are immediately used.

6.2.3 Hybrid Monte Carlo

The efficiency of Metropolis and Metropolis-Hastings algorithm depends highly on the

goodness of the proposal distribution. If the parameter space sampled is high dimensional

and the different components of parameters have a different size of a variance, or worse,

are highly correlated it is hard to construct an efficient proposal distribution. If the vari-

ance of the proposal distribution is too large the components with a low variance lead to

high rejection rate and in the case of a too low variance the autocorrelation time increases.

Also the time needed for the algorithm to move from one end of the distribution to the

other is rather long. The phenomenon is discussed more in section 6.3.2. To overcome

these difficulties, hybrid Monte Carlo (HMC) algorithm was proposed by Duane et al.

(1987). The discussion of the method follows the treatment of Neal (1996).

Hybrid Monte Carlo algorithm uses the basic idea of Metropolis-Hastings algorithm so

that the candidate states are generated by dynamical simulations in a phase space of posi-

tion and momentum variables. The position variable q, with n real valued components qi ,

corresponds to the sampled parameters θ , and for every component of position there is a

momentum ki related to it.

The probability density of position may be written in a canonical form as

P(q) ∝ exp(−E(q)), (6.9)

where E(q) is the potential energy function of q. Hence, for a non-zero probability

density function P(q), it is possible to define an energy E(q) = − log (P(q)). The

energy function may be, for example, the log-posterior cost function 3.7.

In addition to energy function a kinetic energy K (k) due to the momentum is needed to

utilize the dynamical methods. Having both energy functions a Hamiltonian function that
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gives the total energy of the system may be constructed as H(q, k) = E(q)+ K (k), after

which the canonical distribution over the phase space is obtained from

P(q, p) ∝ exp(−H(q, k)). (6.10)

The sampling in HMC is split into two sub-tasks 1) sampling for the values of q and k

by the dynamical simulation with a fixed total energy, H(q, p), (dynamic sampling) and

2) sampling energy states H using the Gibbs method (stochastic sampling). Then, by

altering the deterministic dynamical simulation and the stochastic energy level sampling

an ergodic Markov chain from the desired distribution can be produced.

The dynamic sampling is conducted by moving from the starting position (q, p) to the

new position (q∗, p∗) according to the Hamiltonian dynamics of the system. The Hamil-

tonian dynamics for fixed H(q, p) could be followed exactly by integrating along the

path (q(t), k(t)), where t denotes time. This, however, is not possible in practice and thus

the dynamics must be simulated by discretized time steps. In a leapfrog democratization

starting from q and k at time t an approximation to the position q∗ and momentum k, at

time t + δt is obtained as follows

ki (t +
δt
2

) =ki (t)−
δt
2

∂ E
∂qi

(q(t)) (6.11)

qi (t + δt) =qi (t)+ δt
ki (t + δt

2 )

mi
(6.12)

ki (t + δt) =ki (t +
δt
2

)−
δt
2

∂ E
∂qi

(q(+δt)), (6.13)

where mi represents the mass associated with the component i . In an exact dynamics the

total energy of the Hamiltonian system would remain constant, but the simulation with

discretized timesteps causes error in the total energy, that is H(q∗, p∗) 6= H(q, p). The

bias resulting from the error is, however, eliminated by the occasional rejections based on

the canonical distribution (6.10). The dynamical simulation may be summarized as

1. Starting from the current state, (q, k), perform L leapfrog steps with a step size δt

to reach the state (q∗, p∗).
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2. Negate the momentum variables producing the state (q ′, k′) = (q∗,−k∗)

3. Regard (q ′, k′) as a candidate for the next state, accepting it with probability

min(1, exp(−(H(q ′, k′)− H(q, k))).

A crucial part of the HMC sampling are the choice of the time step size δt , also called

a step size adjustment factor, and the number of steps taken. The parameters should be

tuned so that 5-15% of all the candidates are rejected, the portion of rejected samples is

called a rejection rate.

A key part of HMC are the gradients with respect to the position variables. The gradient

evaluation is discussed more in the section 6.4. A special case of HMC sampling is the

Langevin-Hastings algorithm, (e.g. Møller and Waagepetersen, 2003) in which only one

leapfrog step is used to move from current position to a new one. A more complete

treatment concerning the hybrid Monte Carlo method is given by Neal (1996) and Neal

(1993).

Hybrid Monte Carlo with persistence

In the hybrid Monte Carlo with persistence for the momentum the momentum is replaced

only partially between trajectories. This causes that the motion will tend to persist in

largely the same direction from step to step. The partial replacement of the momentum

variables is made as following

knew
i = λperski + (1− λ2

pers)
1/2kGibs

i , (6.14)

where the persistence parameter λpers adjust how much of the old momentum is replaced

and kGibs
i is the momentum component obtained from Gibbs sampling. The persistence

property may be useful, if the momentum would otherwise be changed too much con-

sidering the old position parameter. As well, if the parameters θ sampled with HMC are

strongly dependent on other parameters that change between trajectories, the persistence

property may help the sample chain of θ to explore the distribution space faster. For more
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complete discussion about persistence see the treatment of Neal (1996).

6.2.4 Monitoring convergence

The use of MCMC samples for a posterior inference is based on the assumption that the

samples are independently and identically distributed samples from a desired distribution.

If the sampler satisfy the needed postulates, the theory of Markov chains ensures the

convergence of chain to the right distribution in the limit of infinite long chain. However,

it is possible to use only a finite number of samples as an approximation of the real

distribution, in which case the convergence may still be incomplete. As well the samples

drawn are correlated to the nearby samples or the sample chain may be stuck in a local

mode. Resulting from the above uncertainties, it is compulsory to verify the goodness of

the sample chain and to be able to point out possible convergence problems.

There are two important characteristic numbers to measure the goodness of sample chain,

burn-in and autocorrelation time. Burn-in represents the time needed from the sample

chain to reach the approximate equilibrium and autocorrelation time defines the distance

between two nearest uncorrelated samples. For example, if autocorrelation time of chain

is τ the first sample after θ (t) not correlated to it is θ (t+τ). The first step in monitoring the

convergence and the correlation is to inspect it visually. In the figure 6.1 there is an ex-

ample of heavily correlating sample chain that has not converged and a converged sample

chain with no correlation. In the literature there are discussed a number of computational

methods to approximate the burn-in and the autocorrelation time.

As the very first step of verifying the chain, the number of burn-in samples should be

removed. Approximations for the burn-in are obtained by using, for example, potential

scale reduction factor (PSRF) (Brooks and Gelman, 1998). PSRF test estimates when

two or more sample chains started from different points are from the same distributions

by comparing the between variation and within variation. The PSRF test can be used

also for one sample chain, in which case the factor is calculated between the first and last

parts, for example, first and last third of the chain. However, use of only one sample chain
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(a) A non-converged sample chain with autocorrelation τ = 284.
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(b) A converged sample chain with no autocorrelation.

Figure 6.1: An example of a correlating non-converged and a converged non-
correlating sample chain.

produces over-optimistic results.

After removing the burn-in the autocorrelation time can be estimated in various methods.

The one used in this work is Geyer’s initial monotone sequence estimator (Geyer, 1992).

After the autocorrelation time is determined the sample chain should be thinned by taking

in only every τ ’th sample from the original sample chain. An alternative to thinning is

batching (e.g. Neal, 1993). The sample chain is divided evenly into batches of the same

size and the mean or median of each batch is evaluated. These can then be handled as

(quasi-) independent samples.

The convergence of the sample chain should be checked before and after thinning. After

removing the burn-in the estimate for autocorrelation time is more reliable and as well the

convergence estimate is more reliable after thinning. A Kolmogorov-Smirnov test (Robert

and Casella, 2004) can be used as an additional test against non-convergence. The test

55



assumes independence of samples and thus is sensitive to the auto-correlation.

The sampling parameters and the length of the sample chain must be selected so that the

test values from above tests are acceptable. The autocorrelation time should not be much

more than 5% of all samples; otherwise the estimation of it is unreliable. The number of

samples divided by the autocorrelation time tells roughly the effective sample size.

6.3 Transformation of latent values

6.3.1 Transformation of variables

It is common to transform a probability distribution from one parametrization to another

(e.g. Gelman et al., 2004). For example the parameter space, in which the model is de-

fined, may not always be the optimal for computational purposes, as MCMC sampling, or

it may be easier to construct a prior structure for a transformed parameter or parameters,

as µ in (5.2). In some applications it may also be useful to transform between parameter

spaces of different dimensionality (Green, 1995). In this work a log parametrization of

the covariance function parameters and a transformation of the latent values of Gaussian

process with their approximate posterior variance play an important role in the implemen-

tation. Here, the aim of the transformations is to reduce the dependency of parameters on

each others to make their sampling easier. Some basic results for a probability density on

a transformed space are discussed below.

Let pθ (θ) be the probability density of a parameter θ and suppose a transformation

w = f (θ), where w and θ has the same number of components. If pθ (θ) is a discrete

distribution, and f is a one-to-one function, the density of w is given by

pw(w) = pθ ( f −1(w)). (6.15)

In the case of continues probability density pθ and one-to-one transformation function,
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the joint density of the transformed vector is

pw(w) = |J |pθ ( f −1(w)), (6.16)

where J is the Jacobian matrix of the transformation θ = f −1(w) as a function of w. The

Jacobian is a square matrix with entries (i, j) given by partial derivatives ∂θi/∂wj .

As discussed in the context of Bayesian approach and HMC sampling many of the com-

putation are done with the energy function (3.7) which is obtained for the transformed

parameter as

Ew(w) = − log |J | − log
(

p(D | f −1(w))
)
− log

(
pθ ( f −1(w))

)
= Eθ (θ)− log |J |. (6.17)

In the HMC sampling also the gradients of the energy function Ew with respect to the

parameters w are needed. A general expression for them is obtained as following

∂ Ew(w)

∂w
=

∂

∂θ

[
Eθ (θ)− log(|J |)

] ∂θ

∂w

=

[
∂ Eθ (θ)

∂θ
−

1
|J |

∂|J |
∂θ

]
∂θ

∂w
. (6.18)

6.3.2 Non-isotropic distribution

In a multivariate normal distribution, the eigenvalues and the eigenvectors of the covari-

ance matrix can be used to study the properties of the distribution. Figure 6.2 illustrates

how the eigenvalues of the covariance matrix affect on the shape of the distribution mak-

ing it look like a cigar in a direction defined by the eigenvectors.

The sampling of latent values is conducted by HMC algorithm in which the new proposal

state is generated by the dynamical simulations and it is accepted by the Metropolis rule.

The dynamical simulations reduces the random walk behavior especially if the latent val-

ues have different size of variance and, thus, helps the algorithm move faster from other

end of the distribution to the other. Hybrid Monte Carlo faces also its limitations if the
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Figure 6.2: Two dimensional normal distributions. The distribution on the left repre-
sents isotropic normal distribution and covariance matrix with eigenvalues λ1 = λ2 = 1
and eigenvectors v1 = [0, 1], v2 = [1, 0]. On the middle a normal distribution in which
the variance for parameters differ from each others. The covariance matrix has eigenval-
ues λ1 = 0.5 and λ2 = 4.0 and eigenvectors v1 = [0, 1], v2 = [1, 0]. On the right a
normal distribution with correlating parameters. The covariance matrix has eigenvalues
λ1 = λ2 = 5.5 and eigenvectors v1 = [−0.71,−0.71], v2 = [−0.71, 0.71].

variance differences and the correlation between sampled parameters are too large, re-

flecting to a highly cigar like distribution. In these situations it might be helpful to scale

and rotate the parameter space into another and conduct the sampling in the resulting new

parameter space. In the figure 6.2 the distributions on the left and on the right represent

the easiest and the most troublesome ones to sample from. In the case of the distribution

on the right an ideal transformation would transform the distribution similar to the one on

the left. An overview of scaling for different algorithms is given, for example, by Roberts

and Rosenthal (2001).

6.3.3 Approximate posterior variance

In order to reduce the inhomogeneity of the latent values f Christensen et al. (2006) have

suggested to transform them with their approximate posterior covariance matrix 6 and

to conduct the sampling in the resulting f̃ = 6−1/2 f space. In this work the approach is

followed for the full GP and extended for FITC sparse approximation.

The posterior distribution of latent values is a product of the normal prior and the Poisson

likelihood. The likelihood is given a normal approximation in its mode and its precision
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is approximated with a second derivative of the log Poisson in the mode

6−1
l ≈ −

∂2 log(Poisson(Eµ))

∂ f 2 = Eµ. (6.19)

The precision of the likelihood is thus a product of the age adjusted and the relative mor-

tality risk. The approximate posterior precision is obtained as a sum of the precisions of

the prior K−1 and the likelihood

6−1
= K−1

+ diag [E1µ1, ..., Enµn] . (6.20)

In order to retain the reversibility of MCMC sampling the transformation may not depend

on the sampled parameter, and thus µ is approximated with its prior mean 1. This should

be a reasonably good approximation since µ’s posterior variance is usually moderate in

spatial epidemiology. The above equation leads to the observation that if the prior co-

variance is kept unchanged a large expected mortality rate leads to a smaller posterior

variance than a small one. As well, because the number of deaths is modeled by Poisson

distribution with mean E [Yi ] = Eiµi , a large numbers of death cases tend to be more in-

formative about their mean than small ones. In the case of very rare diseases, with small

number of death cases, the above characteristic results into a covariance matrix with a

large number of very small eigenvalues and a few large ones and thus into a very narrow,

high dimensional, cigar like distribution.

6.3.4 Transformation in FITC

In the FITC approximation Qf,f + 3, replaces the prior covariance K, and the posterior

precision transforms to

6−1
FITC =

(
Qf,f +3

)−1
+ diag [E1µ1, ..., Enµn] , (6.21)

where 3 is a diagonal n×n matrix and Qf,f an n×n matrix of rank m. The transformation

f̃ = 6
−1/2
FITC f could be done by evaluating the full matrix 6−1

FITC and taking a matrix square

root of it. However, in this case the advantage of sparse approximation would be lost.
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In order to extend the transformation to FITC approximation in a way the evaluation

of the full covariance matrix is avoided a matrix inversion lemma (4.23) is first used to

break up
(
Qf,f +3

)−1 into computationally more efficient form, after which the posterior

precision is obtained a relation

6−1
FITC = 3−1

−3−1Kf,u

(
Ku,u +Ku,f3

−1Kf,u

)−1
Ku,f3

−1
+6−1

l . (6.22)

Next, denoting

3̂−1
= 6−1

l +3−1 (6.23)

L =3−1Kf,uchol
[
Ku,u +Ku,f3

−1Kf,u

]−1
(6.24)

and using the fact that KT
f,u = Ku,f and

(
3−1)T

= 3−1 the posterior precision can be

simplified into

6−1
FITC = 3̂−1

− LLT, (6.25)

where L is a n × m matrix and 3̂ a diagonal n × n matrix.

So far only the notation of the posterior precision has been modified and no transforma-

tion of any kind have occurred. The first transformation needed is to scale the posterior

precision so that the diagonal elements of 3̂ are scaled to a constant, that is 3̂ = λI. To do

this 6−1
FITC is multiplied by 3̂1/2 from left and right, which corresponds to transforming

the latent values into a f̂ = 3̂−1/2 f space with approximate posterior precision

6̂−1
FITC = I− 3̂1/2LLT3̂1/2. (6.26)

Here the matrix 6̂−1
FITC is of rank n and the matrix 3̂1/2LLT3̂1/2 of rank m. The trans-

formation to be done in the following, results in a scaling in the direction of the m largest

eigenvalues instead of in the direction of all the eigenvalues as is the case with full GP.

It has been shown (e.g. Harville, 1997, theorem 21.9.1) that corresponding to any n × n

symmetric non-negative definite matrix A there exists symmetric non-negative definite
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matrix R such that A = R2 and

R = Udiag
[√

d1, ...,
√

dn

]
UT
= UD1/2UT, (6.27)

where d1, ..., dn are the eigenvalues of A and U is any n × n matrix such that UTAU = D

(that is for example a matrix of eigenvectors). It also holds that if A is a n × n matrix

and k an arbitrary scalar, the eigenvectors and eigenvalues of the difference A − kI are

related to those of A itself in relatively simple way. If λ is the eigenvalue of A and x the

eigenvector corresponding to it, the eigenvalue and eigenvector of A− kI are λ− k and x

respectively (Harville, 1997, section 21.10).

Using the above results the m largest eigenvalues of 6̂−1
FITC and the eigenvectors corre-

sponding to them can be constructed by relations

USUT
= 3̂1/2LLT3̂1/2 (6.28)

D2
= diag [1− S11, ..., 1− Smm] , (6.29)

where D is an m × m diagonal matrix of square roots of the m largest eigenvalues to be

used later and U an n × m matrix with the corresponding eigenvectors on its columns.

The singular value decomposition USUT can be found without explicitly forming the full

n × n matrix by first defining a help matrix B = US1/2VT and finding the eigenvalue

decomposition of the m × m matrix

BTB = VSVT, (6.30)

after which the matrix of eigenvectors U is obtained from relation U = BVS−1/2.

After solving U, 3̂ and D the transformation equations into a transformed space and back

to the latent value space for FITC are obtained, respectively, from the following equations

f̃ = 3̂−1/2 f+UDUT3̂−1/2 f−UUT3̂−1/2 f (6.31)

f = 3̂1/2(f̃+ UD−1UTf̃− UUTf̃). (6.32)
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The transformation done here is actually a combination of three steps. First the latent

values are scaled by 3̂−1/2. After this the components of f along the dimensions de-

fined by eigenvectors are first removed and then added with scaling by the square root

of eigenvalues. For the transformation back to the latent values the steps are taken vice

verse.

Algorithm 1 Transformation and re-transformation of latent values with their approxi-
mate posterior covariance. NOTE 1! The vectors of diagonal elements are represented
with the same symbol as the diagonal matrices in the equations in the text. NOTE 2!
Some of the notations are from Matlab. They are: ./ (pointwise division), .* (pointwise
multiplication)
Input: f (latent values log(µ)), E (expected number of deaths), Kf,u, Ku,u,

k =
[
Kf,f(1, 1), ..., Kf,f(n, n)

]
(vector of diagonal elements of Kf,f)

1: if transform from f to f̃ then
2: q← diagonals of Qf,f from chol(Ku,u) \Kf,u

T (see eq. (6.3))
3: 3← k − q (vector diag[3] of length n)
4: 3̂−1

← E.*exp(f)+1./3; (vector diag
[
3̂
]

of length n, eq. (6.23))
5: K← 3−1 Kf,u (evaluate as discussed in section 6.1.2)

6: L← K
((

chol
[
Ku,u+Kf,u K

])−1
)T

(This is faster and numerically more stable

than Kchol
[(

Ku,u+Kf,u K
)−1

]
)

7: B← L*3̂1/2

8: S← eigenvalues of BTB (a vector of length m eq. (6.30))
9: V← eigenvectors of BTB (m × m matrix eq. (6.30))

10: U← BV/S1/2

11: D← (1− S)1/2 (this is a vector and thus the square root
can be evaluated pointwise)

12: save D, U and 3̂ (for use in re-transformation)
13: f̂← 3̂

−1/2 f
14: f̃← f̂+ U

[(
DUT
− UT) f̂

]
15: return f̃
16: end if

17: if transform from f̃ to f then
18: load D, U and 3̂

19: f← 3̂
1/2
[
f̃+ U

(
(D−1UT

− UT)f̃
)]

20: return f
21: end if
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6.4 Gradients of an energy function

6.4.1 Gradients with respect to hyperparameters

The hyperparameters and the latent values are sampled with hybrid Monte Carlo method,

which needs the information about the derivatives of an energy function E with respect to

the sampled parameters. In regression problem with full GP the gradients with respect to

hyperparameters θ are obtained from

∂ E
∂θ
=

∂

∂θ
log(p(y |x, θ))+

∂

∂θ
log(p(θ |γ ))

=
1
2

tr
(

K−1
f,f

∂ Kf,f

∂θ

)
−

1
2

yT K−1
f,f

∂ Kf,f

∂θ
K−1

f,f y+
∂

∂θ
log(p(θ |γ ), (6.33)

where log(p(θ |γ ) is the term resulting from the hyperprior. If the Gaussian process is

used with an arbitrary likelihood the energy function is obtained from the equation (4.16)

as discussed in section 4.2.2. In that case the gradients with respect to θ are obtained from

the above relation by changing the vector of training targets y to the latent value vector

f. In the energy function with an arbitrary likelihood only the covariance matrix Kf,f and

the prior p(θ) are functions of θ and thus the derivative of the likelihood p(y |g(f)) in

equation (4.16) equals to zero. Below the discussion is given by considering the gradients

in regression problem, but as mentioned, the results can also be ablied for other likeli-

hoods by changing y in the equations into f. The hyperprior term is also neglected in the

following treatment in order to shorten the notation.

In the FITC approximation the covariance matrix Kf,f is replaced by Qf,f+3 and the

gradient of an energy function is obtained from

∂ E(θ)

∂θ
=tr

((
Qf,f+3

)−1 ∂(Qf,f+3)

∂θ

)
−

1
2

yT (Qf,f+3
)−1 ∂(Qf,f+3)

∂θ

(
Qf,f+3

)−1 y . (6.34)

In the case of full GP the entries ∂ Kf,f(i, j)
∂θ can be obtained directly from the derivatives of

the covariance function ∂k(xi ,xj )
∂θ , but with the FITC approximation the problem is some-
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what more awkward, since

∂(Qf,f+3)

∂θ
=

∂(Qf,f)

∂θ
+

∂

∂θ
diag

[
Kf,f

]
−

∂

∂θ
diag

[
Qf,f

]
(6.35)

where the gradients of Qf,f = Kf,u K−1
u,u Ku,f can not be evaluated without matrix opera-

tions. Snelson and Ghahramani (2006) had used a gradient ascent method for optimiz-

ing the parameters of GP with FITC sparse approximation in their work. However, the

gradients in (6.34) could not be found in the literature and thus the evaluation and imple-

mentation of them played an essential role in this work. The derivation of gradients is

conducted below.

There are two terms in (6.34) that are evaluated separately, the upper and the lower line

of the equation, and they will be denoted as following

T = tr
((

Qf,f+3
)−1 ∂(Qf,f+3)

∂θ

)
(6.36)

V =
1
2

yT (Qf,f+3
)−1 ∂(Qf,f+3)

∂θ

(
Qf,f+3

)−1 y . (6.37)

The evaluation of both of the terms requires the expression of the gradients of Qf,f, which

can be evaluated straightforwardly into the form of

∂ Qf,f

∂θ
=

[
2

∂

∂θ

[
Kf,u

]
+Kf,u K−1

u,u
∂

∂θ

[
Ku,u

]] (
Kf,u K−1

u,u

)T
. (6.38)

This is an n × n matrix and thus it is not evaluated explicitly. First, to start with the

evaluation of the term V a length n vector b = yT (Qf,f+3
)−1 is constructed. This can

be done efficiently by denoting L = 3−1Kf,uchol
[
Ku,u +Ku,f3

−1Kf,u
]−1, after which

the vector is obtained from

b = yT
(

3−1
+3−1 Kf,u

(
Ku,u+Ku,f 3

−1 Kf,u

)−1
Ku,f 3

−1
)

= yT 3−1
+
(
yT L

) (
yT L

)T
. (6.39)

Here the multiplications with diagonal matrix (or a vector of diagonal elements) are con-

ducted as described earlier in the section 6.1.2. Now, by plugging in the gradients of Qf,f
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from (6.38) V can be expressed as

V =b
∂ Qf,f

∂θ
bT
+b

∂ 3

∂θ
bT

=

[
b 2

∂

∂θ

[
Kf,u

]
+ b Kf,u K−1

u,u
∂

∂θ

[
Ku,u

]] (
Kf,u K−1

u,u

)T
bT

+ b
∂

∂θ

[
diag

[
Kf,f

]]
bT
−b

∂

∂θ

[
diag

[
Qf,f

]]
bT, (6.40)

where the first and the second term can be evaluated without forming an n × n matrix

if the calculation are conducted in right order. In order to proceed with the third term a

diagonal matrix B = diag
[
b2

1, b2
2, ..., b2

n
]

is defined so that its diagonal elements are the

elements of b squared, and thus the third term can be modified into

b
∂(diag

[
Qf,f

]
)

∂θ
bT
=tr

(
b

∂(diag
[
Qf,f

]
)

∂θ
bT

)

=tr

(
B

∂(diag
[
Qf,f

]
)

∂θ

)

=tr
(

B
∂(Qf,f)

∂θ

)
, (6.41)

where the last step is taken by noticing that the multiplication by a diagonal matrix from

left corresponds to multiplying the columns of B with the respective diagonal elements

of ∂
∂θ diag

[
Qf,f

]
. The same result is obtained by multiplying the rows of ∂

∂θ Qf,f by the

respective diagonals of B (see discussion in section 6.1.2), which was defined to be di-

agonal and thus the diagonal operator can be neglected. Now, by taking in the ∂ Qf,f
∂θ and

using the fact that tr(AB) = tr(BA), where B is an m × n matrix and A an n × m matrix,

this can be modified futrher as follows

b
∂(diag

[
Qf,f

]
)

∂θ
bT
=2tr

((
Kf,u K−1

u,u

)T
B

∂

∂θ

[
Kf,u

])
−

tr
((

Kf,u K−1
u,u

)T
B Kf,u K−1

u,u
∂

∂θ

[
Ku,u

])
. (6.42)

Above, the expressions inside the trace operator form an n × n matrix, if the matrix mul-

tiplications are conducted and the trace is taken after that. However, this can be avoided

by noticing that the trace of a matrix product between an n × m matrix A and an m × n
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matrix C can be written as

tr(AC) = 6n
i=16

m
j=1ai j cj i (6.43)

which is actually a dot product of vectors a = [a11, a12, ..., a1n, a21, ..., a2n, ..., amn] and

c = [c11, c21, ..., cn1, c12, ..., cn2, ..., cnm]. The evaluation of the traces in (6.42) can thus

be handled with a dot product of two 1 × nm vectors. The needed results for above

equalities are given, for example, by Harville (1997, pages 50–52). Furthermore, by

writing the term
(
Kf,u K−1

u,u
)T bT in (6.40) as

(
b Kf,u K−1

u,u
)T, the final solution of V can be

obtained from

V =
[

2 b
∂

∂θ

[
Kf,u

]
+ b Kf,u K−1

u,u
∂

∂θ

[
Ku,u

]] (
b Kf,u K−1

u,u

)T
+ b

∂(diag
[
Kf,f

]
)

∂θ
bT

− 2tr
((

Kf,u K−1
u,u

)T
B

∂

∂θ

[
Kf,u

])
+ tr

((
Kf,u K−1

u,u

)T
B Kf,u K−1

u,u
∂

∂θ

[
Ku,u

])
,

(6.44)

which can be evaluated without forming any n× n matrix and enables the use of interme-

diate results in several places.

The evaluation of the term T is begun by partitioning it as following

T =tr
((

Qf,f+3
)−1 ∂ Qf,f

∂θ

)
+ tr

((
Qf,f+3

)−1 ∂

∂θ
diag

[
Kf,f

])
−

tr
((

Qf,f+3
)−1 ∂

∂θ
diag

[
Qf,f

])
. (6.45)

where the matrix inversion lemma can be used for the first term. The second term can be

evaluated by first solving diag
[(

Qf,f+3
)−1

]
, and then using the fact that tr (Adiag [B]) =

tr (diag [A] diag [B]) The multiplication by a diagonal matrix from left in the last term

corresponds to multiplying the columns of
(
Qf,f+3

)−1 with the respective diagonal ele-

ments of ∂
∂θ diag

[
Qf,f

]
. The same result is obtained by multiplying the rows of ∂

∂θ Qf,f by

the respective diagonals of
(
Qf,f+3

)−1. Thus using the same idea as in (6.41) the last

term can be changed into tr
(

diag
[(

Qf,f+3
)−1

]
∂
∂θ

[
Qf,f

])
. By plugging in the deriva-

tive of Qf,f from equation (6.38) and using the fact that tr(AB) = tr(BA) as above, the
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expression can be modified into

T =2tr
((

Kf,u K−1
u,u

)T (
Qf,f+3

)−1 ∂

∂θ

[
Kf,u

])
+

tr
((

Kf,u K−1
u,u

)T (
Qf,f+3

)−1 Kf,u K−1
u,u

∂

∂θ

[
Ku,u

])
+

tr
(

diag
[(

Qf,f+3
)−1

] ∂

∂θ

[
diag

[
Kf,f

]])
−

2tr
(

diag
[(

Qf,f+3
)−1

] ∂

∂θ

[
Kf,u

] (
Kf,u K−1

u,u

)T
)
+

tr
(

diag
[(

Qf,f+3
)−1

]
Kf,u K−1

u,u
∂

∂θ

[
Ku,u

] (
Kf,u K−1

u,u

)T
)

. (6.46)

Earlier it was mentioned that the evaluation of trace can be changed to a dot product of

two vectors formed of the matrices. Thus by conducting the operations above in a right

order, the calculation of T can be conducted without forming any n × n matrix.

Algorithm 2 Calculate the gradients of minus log likelihood. Note! Here the notation
C(:) represents a vector [c11, c21, ..., cn1, c12, ..., cn2, ..., cnn]T.

Input: Kf,u, Ku,u, ∂
∂θ

[
Kf,u

]
, ∂

∂θ

[
Ku,u

]
y, k =

[
Kf,f(1, 1), ..., Kf,f(n, n)

]
1: % First evaluate help matrices
2: b← yT (Qf,f+3

)−1 (evaluate as in (6.39))
3: A← Kf,u K−1

u,u
4: F← ATB
5: G← bA
6: M← AT (Qf,f+3

)−1

7: q← diag
[(

Qf,f+3
)−1

]
(1× n vector of diagonal elements)

8: P← A ∂
∂θ

[
Ku,u

]
9: R← 2diag

[(
Qf,f+3

)−1
]

∂
∂θ

[
Kf,u

]
10: W← diag

[(
Qf,f+3

)−1
]

P

11: % Then evaluate the gradient
12: V ← 2 ∗ ∂

∂θ

[
Kf,u

]
+G ∗ ∂

∂θ

[
Ku,u

]
13: V ← V ∗GT

+ (b.*k) ∗ bT

14: V ← V + 2 ∗
(
FT(:)

)T
∗

∂
∂θ

[
Kf,u(:)

]
+
(
FT(:)

)T
∗ P(:)

15: T ← 2 ∗ (MT(:))T
∗

∂
∂θ

[
Kf,u(:)

]
+ (MT(:))T

∗ P(:)+ q ∗ kT

16: T ← T + RT(:))T
∗ AT(:)+WT(:))T

∗ AT(:)

17: return T + V
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6.4.2 Gradients with respect to latent values

In the regression problem the integration over latent values can be conducted analytically,

as shown in the equation (4.10). However, this is not possible with an arbitrary likelihood,

in which case the integral over latent values has to be approximated. In this work the

approximation is conducted by sampling the latent values by hybrid Monte Carlo, which

needs the gradients of an energy function with respect to the latent values

∂ E
∂ f
=

∂

∂ f
[
− log (p(y|g(f)))− p ((f |θ)) log (p(θ))

]
=

∂

∂ f
[
− log (p(y|g(f)))

]
−

∂

∂ f

[
−

1
2

fT K−1
f,f f

]
,

=
∂

∂ f
[
− log (p(y|g(f)))

]
−K−1

f,f f . (6.47)

Again, in the case of FITC approximation the covariance matrix Kf,f is changed to Qf,f+3

and the gradient of an energy function with respect to latent values is obtained from

∂ E
∂ f
=

∂

∂ f
[
− log p(y|g(f))

]
−
(
Qf,f+3

)−1 f . (6.48)

In the model used here the likelihood p(y|g(f)) is Poisson with mean exp( f )E, where E

is the expected number of deaths. Thus the gradient term resulting from likelihood is

∂

∂ f
[
− log (p(y|g(f)))

]
= exp(f)E− y . (6.49)

Here it can be concluded that the gradients of an energy function with respect to latent

values are computationally lot faster than the gradients with respect to the hyperparame-

ters.
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Chapter 7

Results on case problems

The model and methods discussed above were tested with four sets of data. The sets of

data consisted of the mortality due to two different diseases, cerebral vascular diseases

and alcohol-related diseases, in the time interval 1995-1999. The data sets were studied

with lattice resolutions of 20km × 20km and 10km × 10km, resulting in 915 and 3193

data points respectively.

In the following sections, the performance and the results of FITC sparse Gaussian pro-

cess are compared to the performance and the results of a full Gaussian process. The

discussion includes the treatment of the MCMC simulations and model comparison using

DIC. Some of the results for the specific problems are illustrated by maps.

7.1 Examples of maps

The final products of the disease mapping analysis are the maps representing the spatial

variations in the disease risk. When creating such a map, the map-maker has to decide

what information he wants to present, and how, he is going to do it. Throughout the

discussion here, the focus has been to define the relative risk in different areas, and thus

the relative risk is a natural variable to present on a map. However, as discussed earlier
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the results of Bayesian analysis are the probability distributions of variables of interest,

and thus there is no single value for the relative risk to present, but there is a posterior

knowledge of how probable certain values of the relative risk are in certain areas.

Presenting the whole distribution of the relative risk in all areas of the map is practically

impossible and thus it has to be decided how to present the posterior information with

single parameter values. Natural choices to plot are the mean or median of the relative

risk, but they do not provide any information about the confidential intervals, when plotted

alone. One possibility is to highlight areas where the relative risk is over certain value

with a certain minimum probability. For example, areas where µ > 1.05 with probability

p(µ > 1.05) > 0.8. However, in this approach the areas fulfilling the requirements can

not be distinguished.

Here the posterior knowledge about relative risk is presented using two maps simultane-

ously. The other map presents the median of the relative risk and the other presents the

probability of the relative risk being over 1, p(µ > 1|D). This was chosen for plotting,

because the probability mass of the relative risk is distributed equally on both sides of the

median of the risk. Thus it is equally probable that the relative risk is smaller or larger

than the plotted value. The median map gives a crude estimate of the differences between

relative risk levels in different areas, but other useful information is how probable it is that

the relative risk is higher or lower to one. The map presenting p(µ > 1|D) represents the

information of how probably the risk is increased or decreased in certain areas.

The maps presented here are the ones created by the best full GP and FITC models. With

all the data sets these were the models with exponential covariance function. The models

are compared in section 7.4.

The maps 7.1 and 7.2 present the results from the data aggregated into 20km×20km

lattice. The maps are drawn in a grid of size of 35×60, where the side of a cell is in nature

20km. The resolution is rather rough, but areas of elevated and decreased disease risk can

be distinguished from the maps. Both of the maps reveal areas, where the disease risk

is elevated statistically significantly and especially the maps of alcohol related diseases

reveal rather high relative risk in the eastern parts of the Finland.
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(a) FITC sparse approximation
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(b) Full Gaussian process

Figure 7.1: The relative risk surface of the cerebral vascular diseases and the surface
of p(µ > 1) in 20km×20km lattice. The maps are results from the full GP and FITC
approximation with exponential covariance function. These were the best full and sparse
models in the case of the 20km×20km lattice. See table 7.3.
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(a) FITC sparse approximation
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(b) Full Gaussian process

Figure 7.2: The relative risk surface of the alcohol related diseases and the surface
of p(µ > 1) in 20km×20km lattice. The maps are results from the full GP and FITC
approximation with exponential covariance function. These were the best full and sparse
models in the case of the 20km×20km lattice. See table 7.4.
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The maps on a 35×60 resolution are rather rough, but the models trained with the 20km×

20km lattice data, can be used to smooth the map presentation by making predictions in a

denser grid. This may result in visually better appearance, but does not provide any extra

information. The aggregation of data into 20km×20km lattice has already smoothed the

data and thus lost some of it spatial information. In the figures 7.3 and 7.4 the disease

maps are presented in a 70×120 grid, representing a 10km×10km lattice in nature. The

other map in the figures is a prediction of full GP trained by the 20km×20km lattice data

into a denser grid, and the other is a product of an FITC approximation trained by the

10km×10km lattice data.

The maps in figures 7.3 and 7.4 look visually better than the ones plotted with smaller

resolution. The main difference between the two maps in both figures is that the map of

FITC approximation is more sharp-featured than the map of full Gaussian process model

trained by the 20km×20km lattice data. Making the predictions from a 35×60 grid to

a denser 70×120 grid has smoothed out the sharp features and made the appearance of

the map better. This kind of smoothing could be done also with the model trained by

the 10km×10km lattice data. The maps 7.3(a) and 7.4(a) reveal more peaks of elevated

risk than the maps 7.4(b) and 7.3(b), which suggest that there may be rather small scale

variations in the disease risk that were smoothed out already in aggregation of data into

a 20km×20km lattice. This explains also, why the exponential covariance function was

found the best model for the 10km×10km lattice data, as it is the least smooth of the

covariance functions used (see section 7.4).

7.2 Sampling from the posterior

The data sets were rather different in nature as there were over three times more death

cases in cerebral vascular diseases than in the alcohol related diseases. However, both

data sets reflected diseases of rather small number of deaths, roughly 18 000 deaths in the

cerebral vascular diseases and about 5200 in the alcohol-related diseases. As discussed

in section 6.3.3, a small number of death cases lead to a posterior covariance matrix of

relative risk with a large number of small eigenvalues and only a few large ones. This in
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(a) FITC sparse approximation for 10km×10km lattice data
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(b) Prediction of full GP trained with 20km×20km lattice data into 10km×10km lattice

Figure 7.3: The relative risk surface of the cerebral vascular diseases and the surface
of p(µ > 1) in 10km×10km lattice. The maps are results from the FITC approximation
for the 10km×10km lattice data and from the full GP trained by 20km×20km lattice
data, which is used to make predictions in the denser grid. Both of the models have an
exponential covariance function. These were the best sparse and predictive full models.
See tables 7.5 and 7.3.
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(a) FITC sparse approximation for 10km×10km lattice data
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(b) Prediction of full GP trained with 20km×20km lattice data into 10km×10km lattice

Figure 7.4: The relative risk surface of the alcohol related diseases and the surface
of p(µ > 1) in 10km×10km lattice. The maps are results from the FITC approximation
for the 10km×10km lattice data and from the full GP trained by 20km×20km lattice
data, which is used to make predictions in the denser grid. Both of the models have an
exponential covariance function. These were the best sparse and predictive full models.
See tables 7.5 and 7.4.
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Figure 7.5: The eigenvalues of prior and approximate posterior covariance matrix
in the case of study data, plotted in the ascending order. The covariance has been
evaluated with posterior mean values of covariance function parameter. As discussed in
section 6.3.3 a small number of death cases leads to a posterior covariance matrix with
large number of small eigenvalues and only few large ones. This in turn represents a
heavily non-isotropic and/or correlated joint posterior distribution for the relative risk,
demonstrated in the figure 6.2. Here it can be concluded that the alcohol-related diseases
data is more cigar like than the cerebral vascular diseases

turn may be a result of heavily non-isotropic and/or correlated joint posterior distribution

demonstrated in the figure 6.2. The eigenvalues of the approximate posterior of the rela-

tive risk are shown in the figure 7.5, from which it is seen that the posterior with both data

sets is rather cigar like.

In the case of cerebral vascular diseases data the parameters were significantly easier to

sample than in the case of alcohol related diseases. The bottle neck of sampling with

cerebral vascular diseases data were both, the length-scale and the magnitude and in the

case of alcohol related diseases the length scale. The sampling with 915 data points and

221 inducing inputs was easier and the convergence faster than with 3193 data points and

238 inducing inputs. This may be a result of more data points and less inducing inputs

per data points in the case of 10km×10km lattice.
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The sampling from joint posterior of hyperparameters θ =
[
l, σ 2
·

]
and the latent values

f is performed by Gibbs sampling, where the sampling from the conditional distributions

p(θ | f, D) and p(f |θ, D) is conducted via hybrid Monte Carlo method. Hybrid Monte

Carlo is efficient to sample from the conditional posteriors alone, but since the covari-

ance function parameters, and especially the length-scale, are heavily dependent on the

latent values the Gibbs sampling from the joint posterior p(θ, f |D) is slow mixing. Large

changes in the latent values result in significant changes in the posterior of θ , which in

turn increases the random walk behavior of hyperparameter sampling, and thus leads to

a high autocorrelation time. The latent value sampling is more robust for the changes

in the covariance function parameters, since they are transformed by their approximate

posterior. The change in the hyperparameters reflects to a change in the prior of latent

values, which is taken into account also in the transformation (6.31). Christensen et al.

(2006) suggested also a transformation for the hyperparameters, but it did not help with

the models used here.

In this work, the mixing of hyperparameters was improved by using HMC with persis-

tence, which reduces the random walk behavior. A good persistence parameter λpers value

was around 0.9-0.95, which means that 90% of the original momentum is changed after

21 trajectories (see section 6.2.3). The mixing of the parameters can be altered by the

other sampling options as well, and there are rather many options that can be tuned in the

HMC method. To test the sampling of hyperparameters and latent values, and to find good

sampling options, a number of chains were sampled for each data set and each model, and

the best found were chosen for the final simulations. The options in the sampling were

unique for all the models, and they were tuned to set the rejection rate around 0.04–0.1.

The resulted autocorrelation times and sampling time for one sample are shown in the

tables 7.1 and 7.2. The options used can be concluded as following:

1. Cerebral vascular diseases data.

Hyperparameter sampling: Persistence parameter λpers = 0.9–0.95, stepsize δt =

0.01–0.015, number of leapfrog steps L = 4–5. Latent value sampling: No persis-

tence, stepsize δt = 0.15–0.2, number of leapfrog steps L = 10.

2. Alcohol related diseases data.
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Covariance full/ cerebral vascular diseases alcohol related diseases
function FITC l σ 2 log(µ) l σ 2 log(µ)

ksexp FITC 54 26 4 121 25 12
full 129 34 9 131 8.3 11

kexp FITC 35 26 3 24 7.6 2.7
full 26 14 3 23 22 4.0

kν=3/2 FITC 27 14 3 55 12 5.1
full 45 25 4 216 19 36

kν=5/2 FITC 65 38 4 186 9.0 37
full 65 42 6 268 1.9 40

Table 7.1: The autocorrelation times for full and FITC sparse Gaussian process in
the case of 20km × 20km lattice, 915 data points. The autocorrelation time in the case
of latent values log(µ) is the time under which 97.5% of latent values are. With the sam-
pling parameters used a CPU-time needed for one (dependent) sample in Intel Pentium
4 (1700MHz, 1GB memory) workstation for the FITC approximation was approximately
9s and for the full GP 19s.

Covariance full/ cerebral vascular diseases alcohol related diseases
function FITC l σ 2 log(µ) l σ 2 log(µ)

ksexp FITC 49 38 1.7 141 50 3.8
kexp FITC 25 26 1.5 22 7.8 1.8
kν=3/2 FITC 43 75 2.7 435 156 19
kν=5/2 FITC 44 52 2.6 610 120 71

Table 7.2: The autocorrelation times for full and FITC sparse Gaussian process in the
case of 10km × 10km lattice, 3193 data points. The autocorrelation time in the case of
latent values log(µ) is the time under which 97.5% of latent values are. With the sampling
parameters used the CPU-time needed for one (dependent) sample in Intel Pentium 4
(1700MHz, 1GB memory) workstation for the FITC approximation was approximately
54s.

Hyperparameter sampling: Persistence parameter λpers = 0.9–0.95, stepsize δt =

0.01–0.015, number of leapfrog steps L = 4–5, number of trajectories 3 (Mátern

ν = 3/2 only 1). Latent value sampling: No persistence, stepsize δt = 0.015–0.2,

number of leapfrog steps L = 10.
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7.3 Time needed for the sampling

The time needed for the posterior simulations with Gaussian processes is highly depen-

dent on the size of the data, and in the case of FITC approximation also on the number

of inducing inputs. As the sampling from the conditional distributions p(θ | f, D) and

p(f |θ, D) is conducted via hybrid Monte Carlo method, the evaluation of gradients with

respect to the hyperparameters and the latent values are required at each iteration round as

many times as there are leapfrog steps. The gradients are derived in the section 6.4, and it

can be concluded already from the equations (6.44), (6.46) and (6.48) that the computa-

tion of gradients with respect to the hyperparameters is significantly more time consuming

than the evaluation of gradients with respect to the latent values.

In the figure 7.6, there are shown the times needed for drawing one sample from joint

posterior p(θ, f |D), and from the conditional posteriors p(θ | f, D) and p(f |θ, D), as a

function of the number of inducing inputs with FITC approximation and 915 data points.

The times are obtained by using 5 leapfrog steps in sampling from p(θ | f, D) and 10

leapfrog steps in sampling from p(f |θ, D). These options were used with cerebral vas-

cular diseases and represent the time needed to draw one non-efficient sample with Intel

Pentium 4 (1700MHz, 1GB memory) workstation. In the case of alcohol related diseases,

the number of leapfrog steps was same but when sampling from p(θ | f, D) there were

3 trajectories taken at each round. Thus the time needed for one non-efficient sample

increased to 24 seconds.

From tables 7.1 and 7.2 it can be summarized that with Intel Pentium 4 (1700MHz, 1GB

memory) work station and 915 data points, it took approximately 6.5 hours at minimum

(cerebral vascular diseases, FITC approximation and exponential covariance function).

With 3193 datapoints the respective time was 37 hours (cerebral vascular diseases, FITC

approximation and exponential covariance function).
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Figure 7.6: CPU-time for one sample from p(θ, f|D) as a function of a number of
inducing inputs with 915 data points and FITC approximation. The continues lines
represent the times needed for one sample with FITC approximation and the dashed lines
show the time with full GP. From the picture it is seen that the sampling time with FITC
is less than the time with full GP when the number of inducing inputs is approximately
40% of the number of data points. In order to compare the model performance see tables
7.3 and 7.4. The times are obtained by using 5 leapfrog steps in sampling from p(θ | f, D)
and 10 leapfrog steps in sampling from p(f |θ, D) with Intel Pentium 4 (1700MHz, 1GB
memory) workstation.

7.4 Model comparison

The model comparison is conducted by the deviance information criterion described in

the section 3.1.4. The posterior distributions of covariance function parameters were also

compared to each others in order to recognize possible major faults. The distributions are

shown in the figure 7.7 and 7.8.

In the case of cerebral vascular diseases, the posterior distribution of length-scale l of

a given covariance function and disease is rather similar no matter if the model is full

GP or FITC sparse approximation or, if the data was in 20km × 20km or 10km × 10km

lattice. However the posterior mean of the magnitude σ 2 in the case of 10km × 10km

lattice data is larger than in the case of 20km × 20km lattice. The higher values in the

magnitude suggest that there is a need for larger variance with the 10km × 10km lattice.

This may be a result from a phenomenon with small length-scale which was not present
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Figure 7.7: Posterior distributions of length scale and magnitude in cerebral vascular
diseases data. Blue solid line represents FITC approximation and 20km × 20km lattice,
red dashed line (- -) represents full GP and 20km × 20km lattice and green dashed line
(-.) represents FITC approximation and 10km × 10km lattice.

in the less accurate data of 20km × 20km lattice, but could be seen in the data aggregated

into a denser grid. In that case the model may have fitted into the overall phenomenon

with longer length scale and since the long length scale does not allow quick variations

the model fit to them by increased variance. In the case of alcohol related diseases the

length-scale is little smaller in the case of 10km×10km lattice, which suggests as well

that there is present a phenomenon with smaller length-scale.

The DIC measure and the number of effective parameters pD are evaluated with the sat-

urated deviance (Spiegelhalter et al., 2002)

Dst(y, θ) = 26i

[
Yi log

(
Yi

Eiµi

)
− (Yi − Eiµi )

]
. (7.1)

The model complexity, or the number of effective parameters pD, is not invariant on the

choice of the parameterization of θ̂ . Although, normally the choice of the parameteri-

zation does not have strong effect on it. However, Spiegelhalter et al. (2002) have used
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Figure 7.8: Posterior distributions of length scale and magnitude in cerebral vascular
diseases data. Blue solid line represents FITC approximation and 20km × 20km lattice,
red dashed line (- -) represents full GP and 20km × 20km lattice and green dashed line
(-.) represents FITC approximation and 10km × 10km lattice.

both mean and median parameterization for the Poisson likelihood, and pointed out that

in the case of possible big difference between the deviance and pD estimates with dif-

ferent characterizations the model should be investigated more carefully. Thus, here the

summaries are evaluated with both θ̂mean and θ̂median. The results of the statistics are

shown in the tables 7.3–7.6, and it can be concluded that the results with either one of the

parameterization are very similar.

From tables 7.3 and 7.4 it can be concluded that in general the full GP models did some-

what better than the sparse models. However, the difference was negligible in most of the

cases, the squared exponential and Mátern ν = 5/2 in table 7.3 and the Mátern 3/2 in

table 7.4 being the exceptions, and thus the difference in model performance between full
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Table 7.3: The DIC statistics in the case of cerebral vascular diseases data and
20km × 20km lattice using two alternative parameterization (mean and median)
and saturated deviance. The number of data points in the models is 915 and the number
of inducing inputs 221 (approximately 25% of the data points).

full/
FITC D̂avg,st(y) pmean

D DICmean
st pmedian

D DICmedian
st

ksexp FITC 904 148.6 1052 143.3 1047
full 902 144.2 1046 137.7 1040

kexp FITC 905 142.7 1047 138.6 1043
full 900 145.2 1045 141.2 1041

kν=3/2 FITC 905 146.3 1051 141.4 1046
full 900 147.6 1047 143.8 1043

kν=5/2 FITC 907 142.7 1050 139.6 1047
full 894 150.1 1044 147.3 1041

Table 7.4: The DIC statistics in the case of alcohol related diseases data and
20km × 20km lattice using two alternative parameterization (mean and median)
and saturated deviance. The number of data points in the models is 915 and the number
of inducing inputs 221 (approximately 25% of the data points).

full/
FITC D̂avg,st(y) pmean

D DICmean
st pmedian

D DICmedian
st

ksexp FITC 1020 52.6 1073 52.7 1073
full 1020 52.2 1072 52.9 1073

kexp FITC 902 115.3 1017 117.5 1019
full 909 112.2 1021 112.8 1022

kν=3/2 FITC 953 88.8 1042 87.6 1041
full 954 84.9 1039 81.9 1036

kν=5/2 FITC 981 75.4 1057 71.4 1053
full 994 63.4 1057 62.9 1057

and FITC approximation, with the chosen inducing inputs, can be considered to be neg-

ligible and perhaps using even less inducing inputs would be enough. The future studies

could thus consider also the number of needed inducing inputs.

In the case of cerebral vascular diseases and the 20km×20km lattice the differences in

model performance with different covariance functions were really small and all the mod-

els did practically as well. However, with the 10km×10km lattice data the exponential

covariance function seems to work somewhat better than the others.
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Table 7.5: The DIC statistics in the case of cerebral vascular diseases and
10km×10km lattice using two alternative parameterization (mean and median) and
saturated deviance.

D̂avg,st(y) pmean
D DICmean

st pmedian
D DICmedian

st
ksexp 2936 216.3 3153 213.2 3149
kexp 2891 243.4 3134 241.4 3132
kν=3/2 2914 231.3 3145 228.7 3143
kν=5/2 2908 237.4 3145 236.6 3144

Table 7.6: The DIC statistics in the case of alcohol related diseases and 10km×10km
lattice using two alternative parameterization (mean and median) and saturated de-
viance.

D̂avg,st(y) pmean
D DICmean

st pmedian
D DICmedian

st
ksexp 2252 195.0 2447 208.3 2461
kexp 2243 176.7 2419 178.1 2421
kν=3/2 2272 170.5 2443 173.4 2446
kν=5/2 2331 137.0 2468 131.7 2463

With the alcohol related diseases data set the exponential covariance function worked best

with both aggregation level. The number of effective parameter of exponential covariance

function model is around 115 (depending on the parameterization and GP) in table 7.4,

whereas the number is reduced to almost half in the case of squared exponential and the

Mátern ν = 5/2 covariance functions and to 3/4th in the case of Mátern ν = 3/2. This

indicates that the model with exponential covariance function is more complex, and it has

fitted to data more than the others. However, the difference in DIC value is rather large in

favor of exponential function and thus it can be considered working best.
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Chapter 8

Conclusions and future work

The aim of this work was to study a hierarchical three level model in disease mapping

with a given point referenced healthcare data. The particular model constructed of Pois-

son likelihood and sparse Gaussian process prior. The sparse approximation used was

fully independent training conditional, and the main emphasis of the work was placed on

implementing it for the Poisson likelihood. The models were constructed under Bayesian

framework and the posterior inference was performed using Markov Chain Monte Carlo

methods.

The posterior simulations of latent values were sped up with a transformation using their

approximate posterior precision. The transformation worked well and enabled good mix-

ing in the latent value sampling. The efficiency of the posterior simulations was limited

by the sampling of covariance function parameters, which seemed to be highly data de-

pendent.

The hierarchical model was constructed with both full and sparse Gaussian process with

four different covariance functions, squared exponential, exponential, Mátern ν = 3/2

and Mátern ν = 5/2. The resulting eight models were compared to each other using two

sets of mortality data. The model comparison was performed using deviance information

criterion. In both of the data cases, the models with exponential covariance function were

found best, and the difference between the other models small.
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The work was focused on the methodology research and thus the significance of the results

for the research of spatial epidemiology in Finland remains still for further study. This

will be performed in collaboration with healthcare specialists.

Here the sparse approximation for Gaussian process was compared with the computa-

tionally more demanding full Gaussian process. The results were promising and thus

encourage for further study of the method. However, probably the most widely used

family of models in disease mapping is the conditional autoregressive models, which out-

perform Gaussian processes in their computation speed but face considerable problems,

for example, with areally sparse data. Later the results with the sparse and full Gaussian

process will be compared to the results obtained with a conditional autoregressive model.

The Gaussian processes used in this work have only one covariance function, which can

fit only in a phenomenon with one length-scale. In the future, models with more than one

covariance function will be tried in order to test if there are phenomenon with different

length-scales. The performance of the models with less inducing inputs would also be of

interest.

A technical subject that needs more development is the sampling of the number and the

locations of inducing inputs. The accuracy of variational type approximations, such as

expectation propagation algorithm, for marginalizing over latent values could also be of

interest in future development. At the moment the limitation of the method is the Markov

chain Monte Carlo simulations of covariance function parameters, especially the length-

scale, and thus the implementation of method in larger data sets needs development in the

hyperparameter sampling.

Gaussian processes can be used in wide variety of supervised learning problems. In the

thesis the fully independent training conditional approximation was implemented in gen-

eral manner for Matlab so that it can be used in other problems also. In the future the

sparse Gaussian process will be studied and compared to MLP network in a metal casting

problem.

At the moment the software is implemented in Matlab environment, which provides an

efficient user interface and a wide variety of ready made toolboxes. However Matlab is
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not computationally most efficient in large matrix evaluations with known matrix proper-

ties. In the future the most time consuming matrix evaluations will be implemented with

C/C++ code as mex-files that can be called from Matlab in order to obtain time savings.
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