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ABSTRACT: This report presents a methodology for missing value imputa-
tion. The methodology is based on an ensemble of Self-Organizing Maps
(SOM), which is weighted using Nonnegative Least Squares algorithm. In-
stead of a need for lengthy validation procedure as when using single SOMs,
the ensemble proceeds straight into final model building. Therefore, the
methodology has very low computational time while retaining the accuracy.
The performance is compared to other state-of-the-art methodologies using
two real world databases from different fields.

KEYWORDS: Self-Organizing Maps, Ensemble of SOMs, Missing Value Im-
putation, Nonnegative Least Squares, Fast Computation





CONTENTS

1 Introduction 7

2 Imputation using SOM 9

3 Ensemble of SOMs 11

4 Experiments 13
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Corporate Finance . . . . . . . . . . . . . . . . . . . 13
4.1.2 Tanganyika Lake Temperature . . . . . . . . . . . . . 14

4.2 Compared Methodologies . . . . . . . . . . . . . . . . . . . 15
4.2.1 EOF . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 EOF Pruning . . . . . . . . . . . . . . . . . . . . . . 15
4.2.3 Probabilistic PCA . . . . . . . . . . . . . . . . . . . 15

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Conclusions 18

Bibliography 18

5





Chapter 1

Introduction

The presence of missing values in the underlying time series is a recurrent
problem when dealing with databases. Number of methods have been de-
veloped to solve the problem and fill the missing values.

In this paper, we focus on Self-Organizing Maps [6] (SOM), which aim to
ideally group homogeneous individuals, highlighting a neighborhood struc-
ture between classes in a chosen lattice. The SOM algorithm is based on
unsupervised learning principle where the training is entirely stochastic, data-
driven. No information about the input data is required. Recent approaches
propose to take advantage of the homogeneity of the underlying classes for
data completion purposes [11]. Furthermore, the SOM algorithm allows
projection of high-dimensional data to a low-dimensional grid. Through this
projection and focusing on its property of topology preservation, SOM allows
nonlinear interpolation for missing values.

But how to find optimal SOM size and shape? One of the typical ma-
chine learning paradigms is about finding the model that best fits the given
data, in terms of test or validation. Searching for such a model can be very
time consuming: finding the model class that best suits the type of data, opti-
mizing the possible hyper-parameters, and finally training the model once all
details of the model structure have been selected. This procedure can lead to
a rather good model, which fits the data and avoids the pitfalls of overfitting.

On the other hand, creating an ensemble of less good models might
achieve better performance, while alleviating the problem of extensive val-
idation procedure. Even faster model building is achieved through parallel
computation, which is easy to implement when several different models are
built.

The goal is then to weight each model in the ensemble so that the overall
output has the best possible performance. Several ensemble techniques have
been proposed, out of which two kinds can be distinguished [4]: the vari-
able weights approach and the average ones. Traditionally, average weights
ensemble techniques are used by simply taking an average of all the built
models. While this obviously has the advantage of having immediately the
weights of all models, it yields suboptimal results. The variable weights en-
semble techniques try to optimize the weight of each model in the ensemble
according to a criterion. Techniques such as the Genetic Algorithm have
been recently used for such optimization [12] but they are very time con-
suming.
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This paper describes a method, which combines several SOMs in order to
enhance the accuracy of the nonlinear interpolation. The ensemble weights
are obtained with a classical constrained linear solution, the Nonnegative
Least Squares, and it improves the accuracy of the imputation as well as
speeds up the process by removing the need for validation.

The following section presents the SOM imputation methodology and
Section 3 presents the Ensemble of SOMs. Section 4 compares the perfor-
mance of the presented methodology against the state-of-the-art imputation
methodologies using two real world databases. Finally, conclusions and fur-
ther work are derived and presented in Section 5.
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Chapter 2

Imputation using SOM

The SOM algorithm is based on an unsupervised learning principle, where
training is entirely data-driven and no information about the input data is
required [6]. Here we use a 2-dimensional network, composed of c units
(or code vectors) shaped as a square lattice. Each unit of a network has
as many weights as the length T of the learning data samples, xn, n =
1, 2, ..., N . All units of a network can be collected to a weight matrix m (t) =
[m1 (t) ,m2 (t) , ...,mc (t)] where mi (t) is the T -dimensional weight vector
of the unit i at time t and t represents the steps of the learning process. Each
unit is connected to its neighboring units through a neighborhood function
λ(mi,mj, t), which defines the shape and the size of the neighborhood at
time t. The neighborhood can be constant through the entire learning pro-
cess or it can change in the course of learning.

The learning starts by initializing the network node weights randomly.
Then, for a randomly selected sample xt+1, we calculate the Best Matching
Unit (BMU), which is the neuron whose weights are closest to the sample.
The BMU calculation is defined as

mBMU(xt+1) = arg min
mi,i∈I

{‖xt+1 −mi (t)‖} , (2.1)

where I = [1, 2, ..., c] is the set of network node indices, the BMU denotes
the index of the best matching node and ‖.‖ is a standard Euclidean norm.

If the randomly selected sample includes missing values, the BMU cannot
be solved outright. Instead, an adapted SOM algorithm, proposed by Cottrell
and Letrémy [3], is used. The randomly drawn sample xt+1 having missing
value(s) is split into two subsets xT

t+1 = NMxt+1 ∪ Mxt+1 , where NMxt+1 is
the subset where the values of xt+1 are not missing and Mxt+1 is the sub-
set, where the values of xt+1 are missing. We define a norm on the subset
NMxt+1 as

‖xt+1 −mi (t)‖NMxt+1
=

∑
k∈NMxt+1

(xt+1,k −mi,k(t))
2 , (2.2)

where xt+1,k for k = [1, ..., T ] denotes the kth value of the chosen vector and
mi,k(t) for k = [1, ..., T ] and for i = [1, ..., c] is the kth value of the ith code
vector.

Then the BMU is calculated with
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mBMU(xt+1) = arg min
mi,i∈I

{
‖xt+1 −mi (t)‖NMxt+1

}
. (2.3)

When the BMU is found the network weights are updated as

mi (t + 1) = mi (t)− ε(t)λ
(
mBMU(xt+1),mi, t

)
[mi (t)− xt+1] ,∀i ∈ I,

(2.4)
where ε(t) is the adaptation gain parameter, which is ]0, 1[-valued, decreasing
gradually with time. The number of neurons taken into account during the
weight update depends on the neighborhood function λ(mi,mj, t). The
number of neurons, which need the weight update, usually decreases with
time.

After the weight update the next sample is randomly drawn from the data
matrix and the procedure is started again by finding the BMU of the sample.
The learning procedure is stopped when the SOM algorithm has converged.

Once the SOM algorithm has converged, we obtain some clusters con-
taining our data. Cottrell and Letrémy proposed to fill the missing values of
the dataset by the coordinates of the code vectors of each BMU as natural
first candidates for the missing value completion:

π(Mx) (x) = π(Mx)

(
mBMU(x)

)
, (2.5)

where π(Mx) (.) replaces the missing values Mx of sample x with the corre-
sponding values of the BMU of the sample. The replacement is done for
every data sample and then the SOM has finished filling the missing values
in the data.

The procedure is summarized in Table 2.1. There is a toolbox available
for performing the SOM algorithm in [1].

Table 2.1: Summary of the SOM algorithm for finding the missing values.

1. SOM node weights are initialized randomly

2. SOM learning process begins

(a) Input x is drawn from the learning data set X

i. If x does not contain missing values, BMU is found ac-
cording to Equation 2.1

ii. If x contains missing values, BMU is found according to
Equation 2.3

(b) Neuron weights are updated according to Equation 2.5

3. Once the learning process is done, for each observation contain-
ing missing values, the weights of the BMU of the observation are
substituted for the missing values
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Chapter 3

Ensemble of SOMs

The Ensemble of SOMs methodology is summarized in Figure 3.1.

Figure 3.1: Ensemble of SOMs summarized.

The core of the methodology is the Self-Organizing Map (SOM). Several
SOMs are trained using different number of nodes and the imputation results
of the SOMs are linearly combined. The linear coefficients are computed
using Nonnegative Least Squares (NNLS) algorithm.

Each SOM map Mi has different number of nodes and the given impu-
tation estimates for the missing values in the database are also different. For
each missing value y, every SOM in the combination is giving an estimation
ŷi and the final estimation of the missing value ŷ is the linear combination
of the individual SOM estimates. The combination procedure is shown in
Figure 3.2.

M1

Mn

ŷ1

nŷ

∑ ŷŷ i

α 1≥0

α i≥0

α n≥0

Figure 3.2: Illustrative scheme of the combination of SOMs.

Assuming that each SOM is unbiased, the combination can be made un-
biased by having

∑
αi = 1. Negative weights have no physical meaning

and would lead to overfitting, hence the weights have to be restricted to be
nonnegative [7, 9].

For the determination of the weights αi, a classical constrained optimiza-
tion method called Non-Negative constrained Least-Squares (NNLS) algo-
rithm [8] is used to compute the solution.

For the computation, a small set of the data is removed and used as a cal-
ibration set. The size of the calibration set has to be selected with respect to
the number of missing values in the database. Selecting too many calibration
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points in a database having large percentage of missing values already results
to inaccuracy due to the lack of data. On the other hand, selecting too few
calibration points decreases the accuracy of computing the weights for the
SOM estimates. In any case, number of calibration points should be larger
than the number of SOMs in the ensemble.

When the calibration set has been estimated by the SOMs, the coefficients
αi are solved from the constrained linear system, shown in Equation (3.1),
using the NNLS algorithm.

arg min
α

∥∥∥∥yCal −
n∑

i=1

αiŷ
Cal
i

∥∥∥∥2

s.t. αi ≥ 0 . (3.1)

After using the NNLS algorithm, the Ensemble of SOMs can be used to
fill the missing values on the whole database.

The way of combining the SOM estimates of missing values removes the
need for lengthy and time consuming Cross-Validation procedure needed
in traditional SOM imputation. Each SOM size needs to be trained only
once and the most accurate ones are combined using the NNLS and the
calibration set. Furthermore, the linear combination by the NNLS is known
to converge in 1

2
n steps [8] and the result is notably more accurate than any

individual SOM map used in the combination.
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Chapter 4

Experiments

In the following, the datasets used in the experiments are introduced. The
datasets are very diverse and coming from very different fields, namely, cor-
porate finance and climatology. Both of the datasets are tough to fill, due to
their nonlinear nature and inherently present missing values.

The Ensemble of SOMs methodology is compared against other imputa-
tion methodologies, which are presented briefly after the datasets.

4.1 DATASETS

4.1.1 Corporate Finance

The corporate finance data collects information about companies and their
performance1. The information is completely numerical and it inherently
includes 14 percent of missing values.

The source of the data is Thomson One Banker and it includes almost
6000 French and British companies. Each company is represented by 45
yearly key numbers from years 1999 to 2006, including three binary variables
for the operative field. All companies are either registered in Paris Stock Ex-
change or London Stock Exchange and most of the companies are medium
sized (51-500 employees) or large (more than 500 employees).

In the 45 key numbers, some characteristics such as assets, current as-
sets, total debt or total equity are taken into account. The objective in this
dataset is to build indicators able to explain the variable long term debt (Y)
(i.e. long term debt/total debt). 7 variables are built. Each variable is an
indicator to explain Y. The main indicators are Market value of shares/Book
value of shares, variation of sales, Altman’s score, size, corporate performance
(EBITDA/Total assets), industrial sector and the characteristics of the legal
system (creditor oriented or common law system for UK firms and debtor
oriented or civil law système for French firms).

1Since the data included in this dataset is confidential, it is not publicly available.
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4.1.2 Tanganyika Lake Temperature

The third dataset, Tanganyika Lake Surface Temperature dataset2, is the
largest one of the three datasets used in the experiments. The Tanganyika
lake lies in the African Rift area and it is over 670 kilometers long with an
average width of about 50 kilometers. The measurements are obtained from
the thermal infrared bands of the MODIS sensors of the satellite covering
the lake with a spatial resolution of one kilometer.

The satellite has measured the lake a total of 666 times between years 2002
and 2006. The measuring frequency of the satellite is not constant during the
five year period, instead it varies from one to 33 days. On average we have
one image every 2,5 days.

The spatial resolution gives us more than 32 000 daily measurement points
in one image. The amount of missing values in each image varies from 100
percent to four percent, meaning that some images have no measurement
values and some have only four percent of the data missing. Finally, the
whole dataset has over 63 percent of the data missing.

Because of the huge size of the dataset, it is divided into slices. Each
measurement image of the lake is cut to ten pieces in north-south direction.
This is done in order to take into account the change in the dynamics of the
long lake and to make the filling more local. Moreover, the percentage of
missing values is on average greater in the northern part of the lake whereas
the middle and the southern parts have more measurements present.

As an example slice, the most southern part of the lake is shown in Figure
4.1 and used as an example slice in the following.

Figure 4.1: Southern slice of the Tanganyika Lake dataset, days from 182 to
185 from 2005.

Because of the large number of missing data in the database, each day with
more than 90 percent of the data missing from the slice is removed from the
dataset before the learning phase. This is done for each slice individually.
For the southernmost slice of the Tanganyika Lake, it leaves us 390 days with
each day containing a total of 2947 measurement points with a total of 27
percent of the data missing on average.

2Tanganyika Lake dataset, MODIS Data, a courtesy of Yves Cornet and the University
of Liege, Belgium. The data comes from an RS dataset produced in the framework of the
CKIMFISH project.
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4.2 COMPARED METHODOLOGIES

4.2.1 EOF

Empirical Orthogonal Functions (EOF) methodology is based on Singular
Value Decomposition (SVD) algorithm. In a nutshell, after initialization of
the missing values, the SVD is used to compute the singular vectors and
values, which are used to reconstruct the dataset. The reconstructed data re-
places the missing values in the original set and the procedure is repeated sev-
eral times. After the missing values are not changing anymore, the method-
ology terminates.

One needs to select the number of singular values and vectors to be used
in the reconstruction. This is achieved using Cross-Validation method and
trying out several possible values. For more information about EOF, see [2].

4.2.2 EOF Pruning

The EOF Pruning3 improves the original EOF methodology. Whereas the
EOF selects a certain number of largest singular values and vectors, the EOF
Pruning selects them in a non-continuous fashion. Otherwise the procedure
is the same than with the original EOF, but the EOF Pruning requires only
a few rounds of computation using SVD and most of the computation time
is spent on selecting the singular values and vectors. For more information
on EOF Pruning, see [10].

4.2.3 Probabilistic PCA

Probabilistic Principal Component Analysis (PPCA) extends the standard
PCA by using a probabilistic formulation, which enables the use of data with
missing values. In the experiments, we use freely available Matlab toolbox4

with Variational Bayesian algorithm. For more information on PPCA and
the toolbox, see [5]

4.3 RESULTS

Before the filling process is started, we need to remove the test set from the
data. Test set is removed in order to estimate the accuracy of the method-
ologies. For SOM, EOF, EOF Pruning and PPCA also validation sets are
selected. For Ensemble of SOMs validation sets are not necessary, but still
calibration set is needed. The calibration sets are selected in a similar way
than validation sets for other methods.

The validation sets and the calibration set are not identical, but each test
set is identical in order to be able to compare the methodologies reliably. The
whole selection procedure starting from the selection of test sets is completely

3There is a toolbox available for performing the EOF Pruning. It can be downloaded
from http://www.cis.hut.fi/projects/eiml/research/downloads/someof-toolbox

4The PPCA toolbox can be downloaded from
http://www.cis.hut.fi/alexilin/software/
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repeated 10 times in order to have robust approximation of the generalization
error for each methodology. The selected sets in each repetition are not
overlapping with each other. All results are calculated as an average of the
10 repetitions.

In the experiments, when combining the SOM maps, the number of
SOM maps varied. Each SOM has different amount of nodes aligned into
a two-dimensional lattice using hexagonal neighborhood. The sizes of the
SOMs were defined as described in [6] and in [1] in SOM algorithm im-
plementation in SOM Toolbox. All SOMs were trained using the default
settings.

The results regarding the finance dataset are presented in Table 4.1.

Table 4.1: The results of all methods using Finance dataset.

Finance Val MSE Test MSE Computational Time
EOF 0.680 0.707 1.42 hours
EOF Pruning 0.305 0.318 18.6 minutes
SOM 0.452 0.458 38.40 minutes
Ensemble of SOMs 0.424 5.9 minutes
PPCA 0.639 0.755 18.35 hours

From Table 4.1, we can see that the best methodology, in terms of the
accuracy, is EOF Pruning. Even though the Ensemble of SOMs is not as
accurate as the EOF Pruning, it is the second most accurate and faster than
all other methods.

However, what is surprising with this Finance dataset, is that the test errors
are all higher than validation errors. This is counterintuitive from what we
have learned when dealing with databases with missing values. This warrants
more research into the data to detect why it behaves differently.

Table 4.2 shows the results with the Tanganyika dataset.

Table 4.2: The results of all methods using Tanganyika dataset.

Val MSE Test MSE Computational Time
EOF 0.0553 0.0595 30.3 hours
EOF Pruning 0.0442 0.0426 23.3 hours
SOM 0.0393 0.0379 3.14 hours
Ensemble of SOMs 0.0280 39.5 minutes
PPCA 0.0700 0.0818 > 8 days

From Table 4.2, we can see that according to the test error, the Ensemble
of SOMs is the best methodology according to the accuracy. In this case,
the EOF Pruning is not able to fill the missing values as accurately as the
methodologies related to the SOM.

Computational time is also the smallest when using the Ensemble of
SOMs, largely due to the lack of lengthy validation procedure. It can also
be seen that EOF methodologies have very high computational time, most
likely due to the enormous size of the dataset.
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In both presented results in the two datasets, the Ensemble of SOMs is
the fastest among the tested methodologies. Similarly, in both presented test
cases, the Ensemble of SOMs improve the traditional SOM imputation in
terms of accuracy. Furthermore, the computational time is always lower with
the Ensemble of SOMs than with the traditional one.

CHAPTER 4. EXPERIMENTS 17



Chapter 5

Conclusions

This paper demonstrates many benefits of using the Ensemble of SOMs in-
stead of traditional SOM methodology. The combination achieves better
performance than any individual SOM, based on the obtained test errors.
Furthermore, the performance of the Ensemble of SOMs is close to or even
exceeds the performance of the state-of-the-art methodologies.

In terms of computational time, the Ensemble of SOMs is clearly faster
than other compared methodologies in the presented test cases. This is due
to the straightforward calibration of the ensemble without the need of lengthy
and time taking validation procedure.

Since there are several separated SOM maps to be built, it is also very
straightforward to parallelize the computation procedure. This would make
the computation even faster without the need to make any changes to the
ensembling technique.

At the same time, the EOF Pruning has been proven to be very accu-
rate imputation methodology. Therefore, as a further work, it will be tested
the use of the Ensemble of SOMs as an initialization for the EOF Pruning
methodology. Since the Ensemble of SOMs is very fast, the computational
time of the combination should not increase too much, but the accuracy
could be enhanced.
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