
TKK Reports in Information and Computer Science

Espoo 2010 TKK-ICS-R28

MODEL CHECKING EMBEDDED CONTROL SOFTWARE

Juho Frits

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80700757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




TKK Reports in Information and Computer Science

Espoo 2010 TKK-ICS-R28

MODEL CHECKING EMBEDDED CONTROL SOFTWARE

Juho Frits

Aalto University School of Science and Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Aalto-yliopiston teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos



Distribution:

Aalto University School of Science and Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

PO Box 15400

FI-00076 AALTO

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 470 01

Fax +358 9 470 23369

E-mail: series@ics.tkk.fi

©c Juho Frits

ISBN 978-952-60-3102-6 (Print)

ISBN 978-952-60-3103-3 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://lib.tkk.fi/Reports/2010/isbn9789526031033.pdf

Multiprint oy

Espoo 2010



ABSTRACT: Recently, embedded systems have become more and more com-
plicated and thus traditional testing and simulation techniques for system val-
idation are in many cases not sufficient. Additionally, the control of several
real-world systems and processes require complex timing, which is difficult to
verify with testing. The time scales of different delays can vary so much that
the set of different timings possible to validate with testing is usually very lim-
ited. More powerful methods are needed and one formal method that can be
used to verify and validate whether a complex system meets its requirements
is model checking.

The goal of this work is to evaluate the applicability of model checking for
embedded control software. A general model checking methodology is given
along with some central guidelines for modeling real-time control systems
and, especially, the control software of those systems.

Using the model checking methodology a part of the control firmware of
an Uninterruptible Power Supply (UPS) is modeled with the model check-
ing tool UPPAAL, which uses networks of timed automata as its modeling
language. Ten failure cases related to the operation of the UPS were inves-
tigated and one or several specifications were formalized from each failure
case using a temporal logic called Timed Computation Tree Logic (TCTL).
The model of the system was verified against the system specifications and as
a result of the verification two of the specifications were found to be violated.

The results of the work indicate that model checking is a promising method
for verifying and finding errors of timed software controlled embedded sys-
tems.

KEYWORDS: Model checking, embedded software, real-time





CONTENTS

List of Figures 7

List of Tables 8

List of Abbreviations 9

1 Introduction 11
1.1 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Work Description . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Outline of the Work . . . . . . . . . . . . . . . . . . . . . . . 12

2 Model Checking Software Systems 13
2.1 Model Checking Embedded Control Software . . . . . . . . 13
2.2 Model Checking Operating System Device Drivers . . . . . . 14

3 Modelling and Analyzing Real-Time Systems 15
3.1 Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Formal Syntax and Semantics . . . . . . . . . . . . . 17
3.2.2 Network of Timed Automata . . . . . . . . . . . . . . 18

3.3 Temporal Logics . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Computation Tree Logic . . . . . . . . . . . . . . . . 19
3.3.2 Timed Computation Tree Logic . . . . . . . . . . . . 21

3.4 The UPPAAL Model Checker . . . . . . . . . . . . . . . . . 23
3.4.1 Modelling language . . . . . . . . . . . . . . . . . . 23
3.4.2 Query Language . . . . . . . . . . . . . . . . . . . . 25

4 Model Checking Methodology for Timed Software Controllers 26
4.1 Overview of Timed Software Controllers . . . . . . . . . . . 26
4.2 An Abstract Model of Embedded Control Systems . . . . . . 26

4.2.1 Structure of the Abstract Model . . . . . . . . . . . . 26
4.3 Model Checking Methodology . . . . . . . . . . . . . . . . . 27

4.3.1 Modelling System Environment . . . . . . . . . . . . 28
4.3.2 Modelling Control Software . . . . . . . . . . . . . . 28
4.3.3 Timing Aspects . . . . . . . . . . . . . . . . . . . . . 31
4.3.4 Verification of Real-Time Embedded Software . . . . 32

5 Case Study: Model Checking the Control Software of a UPS De-
vice 33
5.1 Uninterruptible Power Supply . . . . . . . . . . . . . . . . . 33
5.2 Description of the System . . . . . . . . . . . . . . . . . . . 34
5.3 Description of the UPPAAL Model . . . . . . . . . . . . . . . 35

5.3.1 Configuration of the System . . . . . . . . . . . . . . 35
5.3.2 Structure of the UPPAAL Model . . . . . . . . . . . . 35

5.4 Model of the System Environment . . . . . . . . . . . . . . . 36
5.4.1 Hardware Models of Switches K3 and K5 . . . . . . . 38

CONTENTS 5



5.5 Model of the Control Software . . . . . . . . . . . . . . . . . 38
5.5.1 Model of the Main State Machine . . . . . . . . . . . 38
5.5.2 Modeling the Control Software of Switches K3 and K5 44
5.5.3 Modeling the Bypass . . . . . . . . . . . . . . . . . . 46

5.6 Verified Properties . . . . . . . . . . . . . . . . . . . . . . . 47
5.6.1 Failure Case 1 . . . . . . . . . . . . . . . . . . . . . 47
5.6.2 Failure Case 2 . . . . . . . . . . . . . . . . . . . . . 48
5.6.3 Failure Case 3 . . . . . . . . . . . . . . . . . . . . . 48
5.6.4 Failure Case 4 . . . . . . . . . . . . . . . . . . . . . 49
5.6.5 Failure Case 5 . . . . . . . . . . . . . . . . . . . . . 49
5.6.6 Failure Cases 6-9 . . . . . . . . . . . . . . . . . . . . 50
5.6.7 Failure Case 10 . . . . . . . . . . . . . . . . . . . . . 51

6 Results 52

7 Conclusions 56
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 57

Appendices 62

A Global Variable Declarations of the UPPAAL Model of the UPS
Device 62

B System Declarations of the UPPAAL Model of the UPS Device 64

6 CONTENTS



LIST OF FIGURES

3.1 A finite automaton . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 A timed automaton . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Network of two timed automata . . . . . . . . . . . . . . . . 19
3.4 An example UPPAAL model of a lamp . . . . . . . . . . . . . 24
4.1 Abstract model of software controlled embedded systems . . . 27
4.2 Example of a state machine and its UPPAAL model . . . . . . 29
4.3 Example of modeling a for loop with UPPAAL . . . . . . . . . 31
4.4 Example of a counter and its UPPAAL model using a clock . . 31
5.1 System diagram of the UPS . . . . . . . . . . . . . . . . . . . 34
5.2 Structure of the UPPAAL model . . . . . . . . . . . . . . . . 36
5.3 UPPAAL automaton modeling the system environment . . . . 37
5.4 UPPAAL automaton modeling the hardware of K3 switch . . . 37
5.5 Main state machine . . . . . . . . . . . . . . . . . . . . . . . 39
5.6 UPPAAL automaton modeling main state machine . . . . . . 39
5.7 UPPAAL automaton modeling DC Starting state . . . . . . . 40
5.8 UPPAAL automaton modeling Inverter Starting state . . . . . 41
5.9 UPPAAL automaton modeling Inverter Syncing state . . . . . 41
5.10 UPPAAL automaton modeling Inverter Online state . . . . . . 42
5.11 UPPAAL automaton modeling emergency transfer to bypass . 43
5.12 UPPAAL automaton observing the state of the K3 switch . . . 44
5.13 UPPAAL automaton updating K3ClosedDebounced variable . 45
5.14 UPPAAL automaton modeling the control logic of K5 switch . 45
5.15 UPPAAL automaton modeling the bypass . . . . . . . . . . . 47
5.16 UPPAAL automaton modeling the bypass overvoltage . . . . . 47
6.1 Voltages and bit assignments in case of symmetric input over-

voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

LIST OF FIGURES 7



LIST OF TABLES

6.1 Model checking times . . . . . . . . . . . . . . . . . . . . . 52
6.2 Model checking times when all failures were enabled . . . . . 53

8 LIST OF TABLES



LIST OF ABBREVIATIONS

AC Alternating Current

API Application Programming Interface

CTL Computation Tree Logic

DC Direct Current

ESML Embedded System Modeling Language

MCESS Model Checking of Embedded Systems Software

PC Personal Computer

RAM Random Access Memory

SAL Symbolic Analysis Laboratory

SCR Silicon Controlled Rectifier

SDV Static Driver Verifier

TCTL Timed Computation Tree Logic

UPS Uninterruptible Power Supply

LIST OF TABLES 9





1 INTRODUCTION

In recent years, the deployment of embedded systems [27] has broadened
in many application fields including safety-critical applications. At the same
time, the complexity of embedded software applications has increased. Addi-
tionally, correct timing is usually a critical part of the functionality of embed-
ded control software. Increased complexity and hard real-time requirements
create challenges for the verification of the correct operation of the software.

Traditionally, testing has been used to find bugs in embedded software [12].
However, testing is not sufficient in all cases. Testing can be used to find er-
rors in software but it can not be used to prove the system error free. In
many industries the requirements for the dependability of software are high
and thus more efficient validation methods are needed. One technique for
enhancing the reliability of software is model checking [13].

1.1 MODEL CHECKING

Model checking is a formal method for verifying hardware and software de-
signs. Traditionally testing, simulation, and deductive verification have been
used to validate complex systems. The advantage of model checking com-
pared to those methods is that formal verification explores exhaustively all
possible behaviors of the system, while simulation and testing usually explore
only some of the possible behaviors of the system.

The model checking process consists of three tasks, which are modeling,
specification, and verification. The first step is specifying the properties the
system must satisfy. The properties are given in some logical formalism such
as temporal logic, which can express the required behavior of the system over
time.

In modeling task a system design is converted to a formal modeling lan-
guage understood by a model checking tool. The model should capture all
the properties which are needed to determine the correctness of the design.
On the other hand, the model should abstract away from details that only
make the verification process more complicated but do not affect the cor-
rectness of the system regarding to the checked properties.

The verification phase is fully automatic. When a model of the system
design and a specification of the property the design must satisfy are given to
a model checking tool, it automatically conducts the reasoning process. If
the property is not satisfied, model checker usually gives a counterexample
execution in which the property does not hold. The error trace is useful in
finding where the error occurred and whether it was caused by a modeling
error, a specification error, or an error in the system design.

Model checking, however, also has some disadvantages. One of them
is the state explosion problem [37], which can occur if the system has many
input variables or if the system consists of many components which can make
transitions in parallel. In state explosion the number of global states of the
model grows exponentially to the size of the model.

1. INTRODUCTION 11



1.2 WORK DESCRIPTION

The objective of this work is to evaluate the suitability of model checking
to timed embedded control software. Moreover, we introduce a general
methodology for applying model checking to software controlled embedded
systems.

In the case study the model checking methodology is adapted to model
checking of an embedded control software of an Uninterruptible Power Sup-
ply (UPS) [9, 17] device. The UPS control software represents a challeng-
ing case for the evaluation of suitability of model checking as a verification
method for embedded systems.

The model checking tool used in the verification is UPPAAL, which is a
state of the art model checker for timed systems. UPPAAL was chosen as the
model checker because the system is very timing dependent and verifying
that the system operates correctly in every possible timing sequence was con-
sidered important. Several failure cases related to the operation of the UPS
are examined and the model is verified against properties extracted from the
failure cases.

1.3 OUTLINE OF THE WORK

The rest of this work is organized as follows. In Chapter 2 a survey of re-
lated research of model checking software systems is presented. In Chapter 3
the theory behind the UPPAAL model checker is discussed. A model check-
ing methodology for embedded controllers is presented in Chapter 4. The
case study of model checking a control software of a Uninterruptible Power
Supply (UPS) is presented in Chapter 5. In Chapter 6 the results of the
model checking are discussed. Finally, the conclusions of the work are in
Chapter 7.

12 1. INTRODUCTION



2 MODEL CHECKING SOFTWARE SYSTEMS

Model checking has recently been applied to many software systems, such
as embedded control systems [29, 30, 19, 34, 25, 36] and operating system
software [7, 6, 39].

2.1 MODEL CHECKING EMBEDDED CONTROL SOFTWARE

Model checking has been used to analyze several embedded control sys-
tems. A bounded model checker from Symbolic Analysis Laboratory (SAL)
tool suite [16] was successfully employed in the modeling of an interrupt-
dependent altitude display task of an aircraft [19]. A technique was in-
troduced for creating an abstract model considering the relationship be-
tween state-triggered and interrupt-triggered transitions. The model check-
ing method uses an abstraction of grouping instructions into basic blocks,
which cannot be interrupted and it does not matter if the interrupt happens
during the execution of the basic block or immediately after it. The approach
was found to be suitable for finding flaws from dynamic behavior of a control
program.

In paper [34] a model checking method for embedded microcontrollers is
presented. The model is generated from the assembly language code, which
is compiled from C source code of the program. In the work, model check-
ing is applied to programs written for the ATMEL ATmega family of micro-
controllers, but the method is easily retargetable to other types of microcon-
trollers. Two model checking approaches are used to model check assembly
code. The first approach is based on a model checking tool [mc]square [33],
which uses a simulator, called Avrora [35], to build the state space step-by-
step. The second approach translates the assembly language program to-
gether with a description of the microcontoller into a bytecode language of
NIPS virtual machine [38]. The model checking is performed using a tool
called Model Checking of Embedded Systems Software (MCESS). The ap-
proaches were evaluated by model checking two example programs and both
approaches were able to find two errors related to the timing of interrupts
from the programs.

In BOS project [25, 36] a movable storm surge barrier was constructed in
the Nieuwe Waterweg canal to protect the low, western part of the Nether-
lands from storm floods. Critical parts of the automated software controlled
storm surge barrier system were verified using the SPIN [23] model checker.
The results of using formal methods in the BOS system were promising.
Model checking revealed several errors in the design of the system and the
testing phase was easier because many of the faults had already been discov-
ered and corrected when applying formal methods.

In paper [29] a verification method for component based event driven sys-
tems using the publisher/subscriber communication pattern is introduced.
The method uses the GREAT [1] graph transformation tool to map the Em-
bedded System Modeling Language (ESML) [26] application models to UP-
PAAL [28] timed automata. UPPAAL is then used to verify timed properties

2. MODEL CHECKING SOFTWARE SYSTEMS 13



of event-driven systems. The model checking method is successfully used to
analyze the correctness of the real-time CORBA avionics applications built
upon the event-driven Boeing Bold Stroke architecture.

2.2 MODEL CHECKING OPERATING SYSTEM DEVICE DRIVERS

In the SLAM project [7] model checking is applied to static analysis of C
programs. The SLAM toolkit uses program analysis, model checking, and
automated deduction to statically analyze temporal safety properties of se-
quential C programs. The toolkit can be used to automatically check that
a program correctly uses an Application Programming Interface (API) to an
external library. A tool, called Static Driver Verifier (SDV) [6], for analyz-
ing Windows device drivers is built upon the SLAM toolkit. The tool is used
for verifying that a device driver properly interacts with the operating system
kernel.

Predicate abstraction [20] and model checking have been applied to veri-
fication of Linux device drivers [39]. A tool called DDVERIFY is created by
integrating model checkers Cadence SMV [31] and BOPPO [15] into a verifi-
cation tool SATABS [14], which is based on predicate abstraction. DDVER-
IFY can be used to verify concurrent programs with shared memory. The
performance of DDVERIFY is not yet good enough for verification of realis-
tic size device drivers based on the benchmarks presented in the paper [39].
However, DDVERIFY is a promising tool and after some optimizations it
should be suitable for automated verification of Linux device drivers.

14 2. MODEL CHECKING SOFTWARE SYSTEMS



l0 l1

a

b

b
a

Figure 3.1: A finite automaton

3 MODELLING AND ANALYZING REAL-TIME SYSTEMS

Several model checking methods use automata as their modeling structure.
Model checking can be performed using finite state automata, Büchi au-
tomata [32], timed automata [5], or some other automata formalism [11, 24].

3.1 FINITE AUTOMATA

A finite state automaton is a model of a system with a finite number of states,
transitions between those states, and actions [13]. Finite automata can oper-
ate on finite or infinite words.

Definition 3.1 (Finite Automata) A finite automaton over finite words is a
five tuple A = 〈Σ, L,∆, L0, F 〉 such that

� Σ is a finite alphabet,

� L is a finite set of locations,

� ∆ ⊆ L× Σ× L is the transition relation,

� L0 ∈ L is the initial location, and

� F ⊆ L is the set of final locations.

Automata are usually represented as graphs with labelled transitions,
where the nodes represent the locations L of the automaton, and the edges
are given by the transition relation ∆. The initial location is usually marked
with an incoming arrow, and the final locations with double circles. In Fig-
ure 3.1, an example automaton is shown, in which Σ = {a, b}, L = {l0, l1},
∆ = {(l0, a, l1), (l0, b, l0), (l1, a, l1), (l1, b, l0)}, L0 = l0, and F = {l1}.

Let v be a word of Σ∗ of length |v|. A run ρ of an automaton A over v is a
mapping ρ : {0, 1, ..., |v|} 7→ L, where:

� the first location of the run is the initial location: ρ(0) = L0,

� the transition from the ith location ρ(i) to the i+ 1st location ρ(i+ 1)
upon reading the ith input letter v(i) belongs to the transition relation,
that is, for each i, 0 ≤ i < |v|, (ρ(i), v(i), ρ(i+ 1)) ∈ ∆.

3. MODELLING AND ANALYZING REAL-TIME SYSTEMS 15



l0

x ≤ 3

l1 x ≤ 10 ∧ y < 5

a
x ≥ 2
y := 0

b
x := 0, y := 0

Figure 3.2: A timed automaton

A run ρ of an automaton A over v is accepting if it ends in a final location,
ρ(|v|) ∈ F . A accepts a word v if and only if there exists an accepting run
ρ on v. The set of accepted words of an automaton A is the language of A,
L(A).

3.2 TIMED AUTOMATA

A timed automaton [4, 10] is a finite state automaton extended with real-
valued clock variables. All the clocks are initialized with zero when the sys-
tem is started and after that they are increased at the same rate. A clock can
be reset in a transition and the valuation of a clock equals to the time passed
since the clock was last reset.

In the original work of Alur and Dill [4] timed automata were finite au-
tomata over infinite words extended with clock constraints, called guards, on
the edges of the automata. A transition can be taken only when the values
of the clocks satisfy the guard. A guard on an edge of an automaton can not
force the transition to be taken, and this can lead to a situation in which the
automaton stays forever in some location. This problem was solved by Alur
and Dill by introducing a set of accepting locations, similar to those in Büchi
automata. Only those executions passing through an accepting location in-
finitely often are considered valid behaviors of an automaton. By using the
acceptance conditions with guard constraints an automaton can be forced to
leave a location within certain time limits.

In timed safety automata [22], also a location can be associated with a
clock constraint, called a location invariant. An automaton can stay in a lo-
cation only as long as the invariant of the location is true. Location invariants
are used instead of acceptance conditions to force an automaton to leave a
location.

The structure of a timed safety automaton is simpler than that of a timed
automaton, which is why timed safety automata have been adopted in many
real-time verification tools such as UPPAAL [28] and Kronos [40]. In this
work we focus on timed safety automata, and will refer to them as timed
automata or simply automata hereafter.

An example of a timed automaton is shown in Figure 3.2. The automaton
has two locations: L = {l0, l1}, and two clocks x and y. The starting location
l0 is marked with an incoming arrow and it has an invariant stating that the

16 3. MODELLING AND ANALYZING REAL-TIME SYSTEMS



location must be left before clock x becomes greater than 3. The invariant
of l1 is x ≤ 10 ∧ y < 5, which means that the automaton can stay in that
location as long as the clock x is less than or equal to 10 and the clock y is
less than 5. The edge from l0 to l1 has an action a and a guard x ≥ 2 stating
that the edge can be taken when the clock x has a value greater than or equal
to 2. When the edge is taken, clock y is reset. The edge from l1 to l0 has an
action b. The edge also resets both the clocks x and y.

3.2.1 Formal Syntax and Semantics

Next the formal syntax and semantics of a timed automaton [10] are defined.
To begin with, a definition of clock constraints is given. Let C be a set of
non-negative real-valued clock variables. A set of clock constraints B(C) is
defined as follows:

� All inequalities of the form x ∼ n and x − y ∼ n are in B(C), where
x, y ∈ C, n ∈ N, and ∼∈ {<,≤,=,≥, >}.

� If ϕ1 and ϕ2 are in B(C), then ϕ1 ∧ ϕ2 is in B(C).

Definition 3.2 (Syntax of Timed Automata) A timed automaton is a six tu-
ple A = 〈L, l0,Σ, C, E, I〉, where

� L is a finite set of locations,

� l0 ∈ L is the initial location,

� Σ is a finite set of actions,

� C is a finite set of clocks,

� E ⊆ L×Σ×B(C)× 2C ×L is a set of edges between locations, each
having an action, a guard, and a set of clocks to be reset,

� I : L→ B(C) is a mapping from locations to clock constraints, called
the location invariants.

The semantics of a timed automaton is defined as a labelled transition
system [21]. A clock assignment is a function u : C 7→ R+ mapping the
clocks to the non-negative reals. Let RC denote the set of clock assignments.
Let u |= g denote that the clock assignment u satisfies the guard g and let u |=
I(l) denote that the clock assignment u satisfies all the invariant constraints
of location l.

For d ∈ R+, let u + d denote the clock assignment mapping all x ∈ C to
u(x) + d. For r ⊆ C, let u′ = [r 7→ 0]u denote the clock assignment where
for all x ∈ r : u′(x) = 0 and for all y ∈ C \ r : u′(y) = u(y). Initially, all the
clocks are assigned to zero value, that is, u0(x) = 0 for all x ∈ C, where u0

denotes the initial clock assignment.
A state s = 〈l, u〉 of a timed automaton consists of the current location l

and the current values of the clock variables, that is, a clock assignment u.
There are two types of transitions between states. In a delay transition the
automaton delays for some time, that is, all the clocks of the automaton are

3. MODELLING AND ANALYZING REAL-TIME SYSTEMS 17



increased by some positive value. In an action transition an enabled edge is
followed. An edge e = 〈l, a, g, r, l′〉 is enabled in a state s = 〈l, u〉 if the
guard g of the edge evaluates to true and the invariant of the target state of
the transition satisfies the new clock assignment obtained by resetting the set
of clocks r.

Definition 3.3 (Semantics of Timed Automata) The semantics of a timed
automaton A = 〈L, l0,Σ, C, E, I〉 is defined as a labelled transition system
〈S, s0,Σ,→〉, where S = L × RC is the set of states, s0 = 〈l0, u0〉 ∈ S is
the initial state, Σ is the set of actions, and →⊆ S × {R+ ∪ Σ} × S is the
transition relation consisting of delay and action transitions such that:

� for 〈l, u〉 ∈ S and d ∈ R+, 〈l, u〉 d→ 〈l, u + d〉 if for all d′, 0 ≤ d′ ≤ d:
u+ d′ |= I(l),

� for 〈l, u〉 ∈ S and a ∈ Σ, 〈l, u〉 a→ 〈l′, u′〉 if there exists an edge
e = 〈l, a, g, r, l′〉 ∈ E such that u |= g, u′ = [r 7→ 0]u, and u′ |= I(l′).

3.2.2 Network of Timed Automata

A network of timed automata [10] is a parallel composition A1 ‖ ... ‖
An over a common set of clocks and actions of n timed automata Ai =
〈Li, l

0
i ,Σ, C, Ei, Ii〉, 1 ≤ i ≤ n. The action alphabet Σ consists of common

actions a, used for synchronizations of the automata, and internal actions
represented by a symbol τ . A location vector is a vector l̄ = (l1, ..., ln). Let
I(l̄) =

∧
i Ii(li) be a composition of the invariant functions over the location

vector. A location vector, where the ith location li is replaced by l′i is denoted
by l̄[l′i/li].

Definition 3.4 (Semantics of a Network of Timed Automata)
LetAi = 〈Li, l

0
i ,Σ, C, Ei, Ii〉 be a network of timed automata. The semantics

is defined as a labeled transition system 〈S, s0,Σ,→〉, where S = (L1 × ...×
Ln)× RC is the set of states, s0 = 〈l̄0, u0〉 ∈ S is the initial state, Σ is the set
of actions, and →⊆ S × (R+ ∪ Σ) × S is the transition relation defined by
the rules:

� for 〈l̄, u〉 ∈ S and d ∈ R+, 〈l̄, u〉 d→ 〈l̄, u+ d〉 if for all d’, 0 ≤ d′ ≤ d :
u+ d′ |= I(l̄),

� for 〈l̄, u〉 ∈ S, 〈l̄, u〉 τ→ 〈l̄[l′i/li], u′〉 if there exists an edge e = 〈li, τ, g, r,
l′i〉 ∈ Ei for some i ∈ {1, ..., n} such that u |= g, u′ = [r 7→ 0]u, and
u′ |= I(l̄[l′i/li]),

� for 〈l̄, u〉 ∈ S and a ∈ Σ, a 6= τ , 〈l̄, u〉 a→ 〈l̄[l′i/li][l′j/lj], u′〉 if there
exist edges ei = 〈li, a, gi, ri, l

′
i〉 ∈ Ei and ej = 〈lj, a, gj, rj, l

′
j〉 ∈ Ej ,

i 6= j, such that u |= (gi ∧ gj), u′ = [ri ∪ rj 7→ 0]u, and u′ |=
I(l̄[l′i/li][l

′
j/lj]).

An example of a network of two timed automata is shown in Figure 3.3.
For the initial state 〈l̄0, u0〉, where l̄0 = (l1, k1) and u0(x) = u0(y) = 0, the
transition relation of the network has the following transitions:

18 3. MODELLING AND ANALYZING REAL-TIME SYSTEMS



l1 l2 x ≤ 10

a
x := 0

b
b

x ≥ 5 a

k1

y ≤ 5

k2 y ≤ 8

k3 y ≤ 10

τ

a

b
τ

y:=0

b
y:=0

Figure 3.3: Network of two timed automata

� 〈l̄0, u0〉
d→ 〈l̄0, u0 + d〉, where d ∈ (0, 5],

� 〈l̄0, u0〉
τ→ 〈l̄0[k1/k1], u0〉 = 〈(l1, k1), u0〉, and

� 〈l̄0, u0〉
a→ 〈l̄1, u1〉, where l̄1 = l̄0[l2/l1][k2/k1] = (l2, k2) and u1 =

[{x} ∪ ∅ 7→ 0]u0 meaning u1(x) = 0 and u1(y) = u0(y).

3.3 TEMPORAL LOGICS

Temporal logic is used to describe sequences of transitions between states in
a reactive system. With temporal logics properties like “eventually some state
is reached” or “an error state is never entered” can be specified. Temporal
logics can be classified depending on the underlying time structure to linear
time and branching time logics. We will focus on a branching time logic
called Computation Tree Logic (CTL) [18], and its extension for real-time
systems: Timed Computation Tree Logic (TCTL) [3].

3.3.1 Computation Tree Logic

CTL, introduced by Emerson and Clarke [18], is a branching-time temporal
logic used as a specification language for finite-state systems. The executions
of the system are modeled as linear sequences of system events. Those event
sequences are called computation paths in the underlying computation tree
modeling the structure of time.

CTL formulas are composed of logical operators, path quantifiers, and
temporal operators. The path quantifiers are used to state if a property should

3. MODELLING AND ANALYZING REAL-TIME SYSTEMS 19



hold on some computation path (E) or on all computation paths (A) starting
from the current state. The temporal operators are used to describe properties
of a path through the computation tree. Five typical temporal operators are:

� X (“next time”) requires that the property holds at the next state of the
path.

� F (“eventually”) specifies that the property holds at some state of the
path.

� G (“globally”) specifies that the property holds at every state of the path.

� U (“until”) is a binary operator. A formula φ1Uφ2 holds when φ2 is
true at some state of the path and φ1 is true at every preceding state of
the path.

� R (“release”) is the logical dual of the U operator. The operator re-
quires that the second argument must hold up to and including the
first state where the first argument holds. The first argument is not
required to become true eventually.

All CTL formulas can be defined using only X and U operators. Let AP
be a set of atomic propositions. The CTL formulas are inductively defined
as follows:

φ := p | false | φ1 → φ2 | EXφ1 | E(φ1Uφ2) | A(φ1Uφ2),

where p ∈ AP and φ1, φ2 are CTL formulas. EXφ1 means that there exists
an immediate successor state in which φ1 holds. E(φ1Uφ2) specifies that
there is a path having an initial prefix such that φ2 holds at the last state of
the prefix and φ1 holds at every intermediate state. A(φ1Uφ2) requires that
the previous condition holds for every computation path. The operators F,
G, and R can be defined using X and U operators:

� EFφ1 ≡ E(trueUφ1)

� AFφ1 ≡ A(trueUφ1)

� EGφ1 ≡ ¬AF¬φ1

� AGφ1 ≡ ¬EF¬φ1

� E(φ1Rφ2) ≡ ¬A(¬φ1U¬φ2)

� A(φ1Rφ2) ≡ ¬E(¬φ1U¬φ2)

The semantics of CTL formulas is defined with respect to a Kripke struc-
ture M = 〈S, s0, R, L〉, where S is a set of states, s0 ∈ S is an initial state,
R ⊆ S × S is a total transition relation, and L : S → 2AP is a labelling
function. A transition relation R is total iff for each s ∈ S there exists a t ∈ S
such that (s, t) ∈ R.

A path in M is an infinite sequence of states π = s0, s1, s2, ... such that
(si, si+1) ∈ R for all i ≥ 0. Notation M, s |= f means that f is true at state
s in structure M . Let TrM(s) be the set of paths in M starting from the state
s. The satisfaction relation |= is defined inductively as follows:

20 3. MODELLING AND ANALYZING REAL-TIME SYSTEMS



M, s |= p iff p ∈ L(s)
M, s |= ¬φ iff M, s 2 φ

M, s |= φ1 → φ2 iff M, s 2 φ1 or M, s |= φ2

M, s |= EXφ iff ∃t ∈ S, s.t. (s, t) ∈ R and M, t |= φ
M, s |= E(φ1Uφ2) iff ∃π = s0, s1, s2, ... ∈ TrM(s) :

∃(i ≥ 0)[M, si |= φ2 ∧ ∀(0 ≤ j < i)M, sj |= φ1]
M, s |= A(φ1Uφ2) iff ∀π = s0, s1, s2, ... ∈ TrM(s) :

∃(i ≥ 0)[M, si |= φ2 ∧ ∀(0 ≤ j < i)M, sj |= φ1]

The Kripke structure M satisfies φ iff M, s0 |= φ. A CTL formula is called
satisfiable iff there exists a Kripke structure M such that M, s |= φ for some
state s of M .

3.3.2 Timed Computation Tree Logic

TCTL [2, 3] is an extension to the CTL for real-time systems. In CTL it
is possible to write a formula EFp meaning that on some computation path
p will eventually become true. However, it is not possible to limit the time
within which p must become true. One way to introduce real-time in tempo-
ral logic is to introduce subscripts on the temporal operators to restrict their
scope in time. Using this approach to extend the syntax of CTL it is possible
to write EF<5p meaning that on some computation path p will become true
within 5 time units.

We define the semantics of TCTL with respect to timed automata. To
interpret the formulas of TCTL over a timed automaton, we need to extend
the definition of timed automata to define which atomic propositions are
true in the locations of the timed automaton. A labeled timed automaton is
a pair M = 〈A, µ〉, where A = 〈L, l0,Σ, C, E, I〉 is a timed automaton and
µ : L→ 2AP is a labeling function assigning to each location l ∈ L of A the
set of atomic propositions true in that location. A state s = 〈l, u, µ(l)〉 of M
consists of a location l, a clock assignment u, and a set of atomic propositions
µ(l) ⊆ AP true in the location l.

As opposed to CTL, which operates in discrete time domain, TCTL op-
erates in a dense time domain. In TCTL a computation path is a map from
the time domain R+, consisting of nonnegative reals, to the states S of the
system. Along any computation path there is a unique state at every instant
of time.

Definition 3.5 (s-path) Let S be a set of states. For a state s ∈ S an s-path
through S is a map ρ from R+ to S satisfying ρ(0) = s.

A computation tree in dense time is described by specifying a set of com-
putation paths starting from a state s ∈ S. A prefix of an s-path ρ up to time
t ∈ R+ is denoted by ρt. A suffix of ρ at time t, denoted by ρt, is a ρ(t)-path
defined by: ∀t′ ∈ R+ : ρt(t′) = ρ(t + t′). A concatenation of ρ′ : [0, t) → S
and ρ, denoted by ρ′ · ρ, is defined by:

for t′ ∈ R+ : (ρ′ · ρ)(t′) =

{
ρ′(t′) if t′ < t,
ρ(t′ − t) otherwise.

3. MODELLING AND ANALYZING REAL-TIME SYSTEMS 21



A map f associates a set of s-paths through S for each state s ∈ S. For
example, for the initial state s0 of a labeled timed automaton M , f(s0) gives
all the possible computation paths through the states of M . A map f satisfies
the following closure properties:
1. Suffix closure:

∀s ∈ S,∀ρ ∈ f(s),∀t ∈ R+ : ρt ∈ f(ρ(t))

2. Fusion closure:

∀s ∈ S,∀ρ ∈ f(s),∀t ∈ R+ : ρt · f(ρ(t)) ⊆ f(s)

The fusion closure property states that the behavior of the system depends
only on the current state and not on the past. Next we define the syntax of
TCTL.

Definition 3.6 (Syntax of TCTL) Let AP be a set of atomic propositions
and N be the set of natural numbers. The formulas φ of TCTL are induc-
tively defined as follows:

φ := p | false | φ1 → φ2 | E(φ1U∼cφ2) | A(φ1U∼cφ2),

where p ∈ AP , c ∈ N, φ1 and φ2 are TCTL formulas, and ∼∈ {<,≤,=,≥
, >}.

For example, E(φ1U<cφ2) means that there exists a computation path
with an initial prefix of length less than c time units such that at the last
state of the prefix φ2 holds and φ1 holds at every intermediate state of the
prefix. Similarly, A(φ1U<cφ2) means that every computation path has a
prefix described above.

Definition 3.7 (Satisfaction relation) Let M = 〈A, µ〉 be a labeled timed
automaton, S be the set of states of M , s = 〈l, u, µ(l)〉 ∈ S be a state of
M , and AP be a set of atomic propositions. The satisfaction relation |= for
TCTL is defined inductively as follows:

� M, s |= p iff p ∈ µ(l),

� M, s 2 false,

� M, s |= (φ1 → φ2) iff s 2 φ1 or s |= φ2,

� M, s |= E(φ1U∼cφ2) iff there exists a path ρ ∈ f(s), for some t ∼ c :
ρ(t) |= φ2 and for all 0 ≤ t′ < t : ρ(t′) |= φ1, and

� M, s |= A(φ1U∼cφ2) iff for all paths ρ ∈ f(s), for some t ∼ c : ρ(t) |=
φ2 and for all 0 ≤ t′ < t : ρ(t′) |= φ1,

where p ∈ AP , f(s) is the set of s-paths through S, and φ1, φ2 are TCTL
formulas.

A TCTL formula φ is satisfiable iff there is a labeled timed automaton
M = 〈A, µ〉 and a state s ∈ S, such that M, s |= φ.

As an example, take M = 〈A, µ〉, where A is the timed automaton shown
in Figure 3.2 and µ(l0) = {v}, µ(l1) = {w}. M satisfies the following TCTL
formula:

22 3. MODELLING AND ANALYZING REAL-TIME SYSTEMS



E(v U<=2 w),

because there exists a path ρ ∈ f(s0) with an initial prefix of length 2 time
units such that at the last state of the prefix w holds (ρ(2) = 〈l1, u2, {w}〉,
u2(x) = 2, u2(y) = 0) and v holds in every intermediate state (ρ(t) =
〈l0, u1, {v}〉, t ∈ [0, 2), u1(x) = u1(y) = t).

3.4 THE UPPAAL MODEL CHECKER

UPPAAL [8, 28] is a real-time model checker. The modeling language of
UPPAAL is based on the theory of timed automata. The query language, used
for specifying properties to be checked, is a subset of TCTL. In this section
we introduce the modeling and query languages of UPPAAL in detail.

3.4.1 Modelling language

The modeling language of UPPAAL is based on networks of timed automata.
Templates of timed automata can be created with the graphical user interface
of the UPPAAL modeling tool. Global variables and functions, accessible by
every automaton, can be declared in global declaration section of the model.
In addition, each automaton template has a section for local declarations of
variables and functions. The automata templates are instantiated and com-
posed as a network in a section for process declarations.

The formalism of timed automata is extended with bounded integer vari-
ables, which are part of the state. A state of the system is defined by loca-
tions of all automata, clock valuations, and the values of the integer variables.
Clocks can be considered as typed variables with type clock and, thus, all the
variables can be treated the same as clock variables in Definition 3.4. The
clock assignment u in the state configuration 〈l̄, u〉 can be extended to store
also the values of the integer variables. The difference between clock and in-
teger variables is that clocks can only be used to measure time and differences
in time whereas integers can be used to perform more complex arithmetic
operations. UPPAAL also supports arrays of clocks, constants, channels, and
integer variables.

The automata, also called as processes, communicate synchronously
by hand-shake synchronization using input and output actions, and asyn-
chronously using shared integer variables. The action alphabet Σ consists
of output actions a!, input actions a?, and internal actions denoted by the
symbol τ . Synchronizations happen through channels. In a binary synchro-
nization two automata take an action transition simultaneously with one au-
tomaton sending a synchronization (denoted with action a!) to a channel a,
and another receiving it with action a?. Semantically, binary synchroniza-
tion is like the third type of transition in Definition 3.4 except that the action
of the sending automaton is a! and the action of the receiving automaton is
a?.

In addition to normal binary synchronization channels UPPAAL has broad-
cast and urgent synchronizations. In broadcast synchronization the number
of receivers is not limited. The sender automaton can fire an edge with broad-
cast synchronization even though the receiver automata can not synchronize

3. MODELLING AND ANALYZING REAL-TIME SYSTEMS 23



brightlowoff

press?

y < 5

press?

y >= 5

press?

press?

y = 0

idle
press!

Figure 3.4: An example UPPAAL model of a lamp

in the current state. The semantics of a broadcast synchronization is like the
semantics of a binary synchronization except that the number of the receiv-
ing edges is not limited and the edge with a sending synchronization can
be taken even though there are not enabled edges with a receiving synchro-
nization. However, if there are automata with enabled edges with receiving
synchronization, those edges must be taken when an edge with a sending
synchronization is taken.

An urgent synchronization has an exception that if a transition with urgent
synchronization is enabled, the system may not delay taking it. However, in-
terleaving with other enabled action transitions is possible even though a
transition with urgent synchronization is enabled. To allow urgent synchro-
nizations the semantics of a network of timed automata in Definition 3.4
must be changed so that delay transitions are not allowed to be taken when a
transition synchronizing over an urgent channel is enabled.

Locations of UPPAAL automata can be declared urgent or committed.
Time is not allowed to pass when at least one of the processes is in an ur-
gent or committed location. Semantically, urgent locations are equivalent to
adding an extra clock x that is reset on every incoming edge of the urgent
location, and adding an invariant x ≤ 0 to the location. Committed loca-
tions of UPPAAL can be used to model atomic sequences of actions. A state
is committed if at least one of the locations in the state is committed. When
a system is in a committed state, only transitions with at least one outgoing
edge from a committed location are enabled. In the semantics of a network
(Definition 3.4) delay transitions are not allowed and only those action tran-
sitions are allowed where at least one of the source locations li is committed
when the system is in a committed state. The difference between urgent and
committed locations is that all action transitions (even those not leading out
of any urgent location) are allowed when one or more automata are in urgent
locations.

In Figure 3.4 is an example model of a lamp and a user with a button for
controlling the lamp. The model consists of two processes, which are Lamp
and User. The Lamp automaton has three locations: off, low, and bright.
The processes synchronize through channel press. The User automaton has
only one location, named idle, and an edge with a sending synchronization
press!. The edge can be taken any time.

Initially, when user presses the button, the Lamp automaton receives the
synchronization and takes an edge to location low and the lamp is turned
on. When the Lamp automaton takes the edge from off to low, a clock vari-
able y is reset to zero. If the user quickly presses the button again, the lamp
becomes bright (the Lamp automaton takes an edge from low to bright).
Finally, the lamp is turned off if the user presses the button after the delay of

24 3. MODELLING AND ANALYZING REAL-TIME SYSTEMS



five time units (Lamp automaton still in location low) or when the lamp is
burning brightly (Lamp automaton in location bright).

3.4.2 Query Language

The query language of UPPAAL [8] is a subset of TCTL. The language con-
sists of path formulas and state formulas. A state formula is a side-effect free
expression, which can be evaluated for a state independent of the behavior of
the model. The expressions can be conjunctions and disjunctions over clock
constraints and integer expressions. For instance, a state formula can be an
expression like c < 5 && i == 3 that is true in a state whenever clock c has
a value less than 5 and integer variable i equals 3. Variables and locations of
automata can be referenced using an expression on the form A.l, where A is
an automaton and l is a variable or a location of A.

In the UPPAAL syntax the temporal operator G (“globally”) is denoted as
[] and the operator F (“eventually”) is denoted as <>. The path formulas of
UPPAAL’s TCTL have one of the following forms:

� A[] φ — Invariantly φ

� A<> φ — Always eventually φ

� E[] φ — Potentially always φ

� E<> φ — Possibly φ

� φ-->ψ — φ leads to ψ

where φ and ψ are state formulas. The leads to operator (-->) is a shorthand
for A[](φ→ A<> ψ).

UPPAAL’s TCTL does not support restricting the time scope of the tempo-
ral operators. Instead, time constraints can be constructed by restricting the
values of the clock variables in the state formulas.

For example, a property “Is it possible for the lamp to burn brightly 3 time
units after the first push of the button?” can be formalized for the UPPAAL
model in Figure 3.4 with the following TCTL formula:

E<> (y == 3 && Lamp.bright)

The formula holds in the model, because there exist an execution where
the button is pressed twice within 3 time units, when the Lamp automaton is
initially in location off.

3. MODELLING AND ANALYZING REAL-TIME SYSTEMS 25



4 MODEL CHECKING METHODOLOGY FOR TIMED SOFTWARE
CONTROLLERS

4.1 OVERVIEW OF TIMED SOFTWARE CONTROLLERS

A common feature to all embedded systems is that they interact with the
physical world, called environment. Typically, an embedded system receives
signals from environment through sensors and sends output signals to actors,
which manipulate the environment. The interaction with the physical envi-
ronment happens through some specific interfaces that determine the types
of signals used in the interaction.

A software controller is typically used in an embedded system to manage a
dedicated task. Most control tasks include timing and those tasks are of spe-
cial interest in the model checking methodology described in the following
sections.

4.2 AN ABSTRACT MODEL OF EMBEDDED CONTROL SYSTEMS

In this section we present an abstract model of software controlled embedded
systems for which our model checking methodology can be applied to. The
model is very general in the sense that it does not make any assumptions on
the devices controlled by the software. Also the structure of the software is
not restricted by the model.

In software development new features are added to the software all the
time. When modeling a piece of software under development, expandability
of the model must be considered. It is not very efficient if the model must be
created from scratch every time a new feature or modification is added to the
software. The model needs to be modular and easily understandable so that
it can be easily modified later on.

The purpose of the abstract model is to create a basis for modular and
easily reviewable model checking models. In Section 4.3 a model checking
methodology built upon the abstract model is introduced.

4.2.1 Structure of the Abstract Model

The abstract model is shown in Figure 4.1. The model consists of two parts:
the controller and the system environment. The system environment is an
abstraction of the controlled devices and components as well as the sensors
measuring the state of the system. The system environment consists of all
the parts of the physical environment affecting the state of the system. The
division to controller and system environment was made because those two
parts of the system can usually be modeled quite independently.

The controller models the software controller running the software un-
der investigation. The hardware of the controller (e.g. a microprocessor) is
abstracted away from the model and it is assumed to operate properly. We
are only interested in verifying the correct operation of the control software.
In the model of the controller there is a module for each controlled device.

26 4. MODEL CHECKING METHODOLOGY FOR TIMED SOFTWARE CONTROLLERS



Controller

System Environment

Runtime software

Sensors

Inputs
Outputs

......

... ...

Controlled Devices

Figure 4.1: Abstract model of software controlled embedded systems

Those modules model the control logics of the software used for controlling
the devices.

The arrows from the controller to the system environment represent con-
trol signals to the controlled devices. The arrows from system environment
to the controller represent measurement and status signals from sensors and
devices to the software controller. In this model the signals are considered to
be integer valued so that they can be modeled in a straightforward way using
UPPAAL’s integer variables.

In the abstract model a state of the software controller is seen as a com-
bination of the values of the internal variables and the values of the input
signals. The output signals of the controller are calculated based on the
current state of the controller. The state of the system environment is deter-
mined by the internal states of the controlled devices. A state of the abstract
model is determined by the state of the controller and the state of the system
environment.

4.3 MODEL CHECKING METHODOLOGY

In this section a methodology for modeling a software controlled real-time
system using UPPAAL is described. The methodology applies to systems de-
scribed in Section 4.2. The main idea is to divide the UPPAAL model in two
parts: the software model and the environment model. The software model

4. MODEL CHECKING METHODOLOGY FOR TIMED SOFTWARE CONTROLLERS 27



is an abstract representation of the control software under investigation and
the environment model captures the behavior of the system environment.

It is practical to begin the modeling task by determining a configuration of
the system, which is to be modeled. If the system is small, it can be modeled
as a whole. For bigger systems it can be impractical, or even impossible, to
model the whole system. Thus, it is wise to bound the system by choosing an
interesting configuration. A configuration can be bounded by, for example,
assuming some variables to have a constant value all through the execution of
the system. The system can also be over-approximated by allowing the values
of some variables to change freely. For instance, a measurement of a process
variable can be assumed to vary within certain limits and the measurement
can have whatever value at any instant of time.

To reduce the state space of the model abstractions can be made by re-
stricting the value ranges of variables. Integer and real-valued variables, such
as measurements of process variables, can in many cases be abstracted to
binary variables such that it is only observed if the value of the variable is
higher or lower than some threshold value. These abstractions reduce the
state space of the model significantly and make the modeling of bigger sub-
systems possible.

One of the objectives of the model checking methodology is to create a
basis for modular models. In the UPPAAL modeling language there is no
such concept as a module. In the following a module refers to a set of one or
more timed automata operating as a whole and forming an entirety.

4.3.1 Modelling System Environment

A model of the system environment includes all the external actions of the
modeled system not controllable by the software and the behavior of the con-
trolled hardware. The system environment can be modeled, for example,
by creating a module sending synchronization events when the state of the
environment changes. Those events are then received by software model.

The environment model also contains modules for the hardware compo-
nents, which are controlled by the software. A component model abstracts
the relevant operation of the component, including the time delays related
to the correct functioning of the component. If fault models are of interest,
they can be embedded into the hardware models of the components.

Each hardware component controlled by the software also has a module
in the software model. The module models the control logic of the software
for controlling the component. The software model is in interaction with the
hardware model such that the software model knows the state of the hardware
the same way as the software gets status information by reading the sensors.

4.3.2 Modelling Control Software

Data structures
The only data structures UPPAAL supports are an array and a struct (similar
to a structure in C programming language). If the modeled software has
more complicated data structures which need to be modeled, they must be
converted to simpler data structures using only those two types of structures

28 4. MODEL CHECKING METHODOLOGY FOR TIMED SOFTWARE CONTROLLERS



vo id s t a t e _ m a c h i n e ( )
{

s w i t c h ( S t a t e ) {
c a s e STATE_0 :

s t a t e _ 0 ( ) ;
break ;

/ / c a s e s STATE_1 . . N−1

c a s e STATE_N :
s t a t e _ N ( ) ;
break ;

}
}

vo id s t a t e _ 0 ( )
{

/ / S t a t e a c t i o n s

i f ( t i m e r ++ >= ONE_SECOND) {
S t a t e = STATE_1 ;
t i m e r = 0 ;

}
}

Init

State_N

State_1

State_0

TransferForward?

TransferForward?

TransferForward?

ToState_0!

ToState_0!

ToState_N!

ToState_1!

Idle

timer <= 1000

ToState_0?

timer >= 1000
TransferForward!

StateActions(),
timer = 0

Figure 4.2: Example of a state machine and its UPPAAL model

or to several individual variables.

State machine
Many embedded software applications are implemented as state machines,
which are practical if the system has several different operation modes. A state
machine is easily translatable to UPPAAL modeling language by creating an
UPPAAL automaton for the state machine. If the states of the state machine
have several actions and complicated timing behavior associated to them,
they can be modeled with one automaton per state while one automaton
keeps track of the current state.

An example of a state machine written in C programming language is
shown in Figure 4.2. The function state_machine is called periodically, for
example, every 5 ms. A variable State keeps a tally of the current state of the
state machine. Each state is implemented with a function and those func-
tions update the value of the variable State when transferring to a new state.
In Figure 4.2 only the implementation of state 0 is shown. In state 0 there is,
in addition to some set of actions, a delay of one second before transferring
to state 1. The delay is implemented with an integer-valued variable timer,
which is incremented periodically when the state machine is in state 0. The
timer timeouts after one second and the state machine transfers to state 1.

The UPPAAL model of the state machine is shown on the right side of
Figure 4.2. The upper automaton models the overall structure of the state
machine and the lower automaton is the model of state 0. The automata

4. MODEL CHECKING METHODOLOGY FOR TIMED SOFTWARE CONTROLLERS 29



communicate through synchronization channels. The channels ToState_X
(0 ≤ X ≤ N ) are used to inform the automata modeling individual states
about entering of particular state. When leaving a state a synchronization to
channel TransferForward is sent by the automaton modeling the state to
inform the state machine automaton about state change.

In the state machine automaton committed locations are used to con-
join two synchronizing transitions together with no time passing between the
transitions. If the structure of the state machine is more complicated, that
is, from some state it is possible to transfer to more than one succeeding
state, a global variable NextState can be used to tell the state machine au-
tomaton to which state the machine is transferring. A new value is assigned
to NextState by the automata modeling the states. From the committed
locations of the state machine automaton there must be edges to each of
the locations modeling the successor states of each state. Those edges have
guards of the form NextState == STATE_X.

This approach of modeling the state machine quarantees that the au-
tomata modeling the states need not know anything about each other as they
only communicate with the automaton modeling the structure of the state
machine. If a new state is added to the model, an automaton is created for
it, which needs to implement the interface with the main state machine au-
tomaton regarding to the two channels for entering and leaving a state. This
makes the model more modular as states of the state machine can be added
or removed from the model fairly easily and the actions of one state are all
contained within one automaton.

Control structures
The modeling of control structures is quite straightforward when using the
following translations. An assignment of a new value for a variable is mod-
eled as an update in the update section of an edge. A sequence of statements
is modeled by creating several subsequent edges concatenated by commit-
ted locations. In case of a sequence of assignments, the assignments can be
combined together and modeled as one edge update consisting of all the as-
signments. A conditional statement is modeled with two or more outgoing
edges from a location with the conditions as the guards of the edges. The
guards must be formulated in such a way that they evaluate to true only when
the corresponding branch of the source code is executed.

A loop is modeled with an initial location having two outgoing edges. One
of the edges has a guard, which evaluates to true if and only if the condition
of the loop expression is fulfilled. The body of the loop is modeled as a
sequence of statements and from the final location there is an edge back
to the initial location of the loop. The other edge from the initial location
has a guard, which evaluates to true only when the guard of the first edge
evaluates to false. An example of a for loop and its UPPAAL model are shown
in Figure 4.3.

A subprogram call is modeled the same way as a sequence of statements.
Subprogram calls can also be modeled by using global or local functions of
UPPAAL and calling the function from an appropriate edge. In functions it
is possible to use for and while loops and if statements, so it is sometimes
more convenient to model those control structures with functions. In gen-

30 4. MODEL CHECKING METHODOLOGY FOR TIMED SOFTWARE CONTROLLERS



i n t x , y , z ;
y = 0 ;
z = 0 ;

f o r ( x = 0 ; x < 5 ; ++x ) {
y += x ;
z = 2 ∗ y ;

}

++x

x < 5
y += x,
z = 2 * yx >= 5

y = 0,
z = 0,
x = 0

Figure 4.3: Example of modeling a for loop with UPPAAL

vo id u p d a t e _ c o u n t e r ( )
{

i f ( cond )
++c ;

e l s e
c = 0 ;

i f ( c >= 100_MS) {
x = 1 ;
c = 0 ;

}
}

TimedOut
WaitTimeout

d <= 120Init

cond_false?

d >= 100
x = 1

cond_true?
d = 0

Figure 4.4: Example of a counter and its UPPAAL model using a clock

eral, keeping the number of locations of the automata as small as possible
is a good idea because extra locations increase the state space of the model
rapidly. Larger state space increase the time and memory consumption of
the verification runs. If it is possible to model a control structure using a
function, it is usually profitable to do so.

4.3.3 Timing Aspects

Correct timing is usually a critical part of a system. Many embedded systems
have several time delays of varying length related to the operation and con-
trol of the system. Typically, in the source code of the control software time
is handled using discrete counter variables, which are incremented periodi-
cally. When modeling counters with UPPAAL, the most practical way is to
use UPPAAL’s real-valued clock variables.

When modeling a discrete counter with a real-valued clock variable, it
must be taken into account that the counter is incremented in intervals. For
example, consider a counter c, which is incremented in an interrupt han-
dling routine every 20 milliseconds when some condition cond is true. The
counter timeouts in 100 ms, that is, when 100 ms has been elapsed from the
first increment of c. The delay before the first increment of the counter after

4. MODEL CHECKING METHODOLOGY FOR TIMED SOFTWARE CONTROLLERS 31



cond becomes true can be somewhere between 0 and 20 ms. Now, assume
c is modeled with a real-valued clock variable d, which is reset the exact mo-
ment cond becomes true. To model the behavior of c exactly, d must be able
to timeout after 100-120 ms. The additional delay comes from the fact that
cond may have already been true for at most 20 ms before c is incremented
the first time.

The source code snippet of handling of the counter c and the UPPAAL
model of it using the clock d are shown in Figure 4.4. The variable cond is
modeled using two synchronization channels cond_true and cond_false

to inform the automaton about cond changing to true or false, respectively.
The edge from WaitTimeout to TimedOut can be taken when d has a value
between 100 and 120.

4.3.4 Verification of Real-Time Embedded Software

The verified properties can typically be extracted from the interface between
the controller and the system environment. In Figure 4.1 the interface is
drawn with a dashed line around the controller. Usually we are interested
in how the software reacts to some event from the system environment. This
kind of properties can be observed from the input and output signals crossing
the interface.

When making abstractions during modeling, special attention needs to
be paid to the correctness of the model checking results. If the state space
of the model is reduced by using over-approximation techniques, e.g., al-
lowing the values of some variables to alternate freely, the model is an over-
approximation of the system. This means that the model captures all the
behaviors of the modeled system, but in addition to those there can be addi-
tional ’spurious’ traces. If the model checking tool gives a positive answer, we
can be sure that the system satisfies the given property (assuming the model
is otherwise built properly). But if the answer is negative, the trace generated
by the model checking tool may not be an execution of the actual system. In
this case the model needs to be refined to get rid of the ’spurious’ trace.

32 4. MODEL CHECKING METHODOLOGY FOR TIMED SOFTWARE CONTROLLERS



5 CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE
OF A UPS DEVICE

In the case study the goal was to model a part of a control firmware of a UPS
device and investigate whether key safety properties are satisfied in case of
several failure situations such as in the case of a component failure. The
model checking tool employed in the study was UPPAAL [28]. The modeling
and verification of the system were carried out using the practices of the
model checking methodology introduced in Chapter 4.

In Section 5.1 a general overview of different kinds of UPS designs is
given. Section 5.2 gives a description of the UPS device under investigation.
The UPPAAL model of the system is described in detail in Sections 5.3–5.5.
Section 5.6 describes the failure cases and the properties with their TCTL
formalizations regarding the operation of the UPS in those failure situations.

5.1 UNINTERRUPTIBLE POWER SUPPLY

A UPS [9, 17] provides back-up power in case of power failure and protects
connected equipment from different power disturbances. The backup power
is typically derived from a battery. The Direct Current (DC) of a battery
is converted to Alternating Current (AC) with an inverter. The power for
loading the battery is converted from AC to DC with a rectifier. Some more
complicated UPS designs have an additional bypass line, which can be used
if there is a failure in the primary power path.

The UPS devices can be divided to four types. The most basic type is
standby power supply, which normally derives the power directly from the
primary power source until power fails. In case of failure of the primary
source a battery powered inverter is turned on to continue supplying power
and a transfer switch switches the load over to the backup power source.
The switching of power sources causes a momentary loss of power, which is
unacceptable in many configurations and makes standby power supplies not
suitable for those applications.

A line interactive UPS has an inverter/converter, which connects the bat-
tery continuously to the output of the UPS. Battery charging power is pro-
vided by operating the inverter in reverse when the input AC is connected.
A transfer switch in the input AC line is opened when the input power fails,
and battery continues to supply power to the output through inverter.

A standby-ferro UPS has a three-coil transformer connecting two power
paths to the output. The primary power path comes from AC input through
a transfer switch and the secondary power path from battery through an in-
verter.

An On-Line UPS, also called Double Conversion UPS, is the most com-
mon design in larger, above 10 kVA systems. The primary power path is from
AC input through rectifier and inverter to the output. The secondary path is
through a bypass line and a static bypass switch. Battery is located between
rectifier and inverter, and provides power to the output in case the AC input
fails. In some models the battery is continually connected to the inverter,

5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE 33



K3

K5

AC

DC

Inverter

AC

DC

Rectifier

DC

DC

Battery
converter

K2

K1

Battery

Static Bypass Switch

Bypass line
input

Output
Rectifier line
input

DC link

Figure 5.1: System diagram of the UPS

which means there is no transfer time during input power failure.

5.2 DESCRIPTION OF THE SYSTEM

The block diagram of the double conversion UPS investigated in this case
study is shown in Figure 5.1. The UPS has two AC power connections. The
primary power path is from AC input, through a rectifier, through an inverter
to the output. Between rectifier and inverter is a DC link, which can also be
powered from battery through a battery converter. The secondary power con-
nection is the bypass line, which is used in different power failure situations
or when maintaining the UPS device. The bypass line can be powered from
the same supply source as the rectifier or from a separate supply source.

The different power paths are controlled using four switches. In the input
line there is K1, which is normally closed and opened only when there is
power disturbances. The power to and from battery is fed through K2. After
the inverter there is the K3 switch, and in the bypass line there is a backfeed
contactor called K5. The bypass line also has a static switch consisting of two
Silicon Controlled Rectifiers (SCRs).

The UPS also has several measurements not presented in Figure 5.1. The
switches K1, K2, K3, and K5 have auxiliary switches sensing the state of the
switch. Voltage is measured from the rectifier and bypass input lines, bat-
tery, DC link, inverter output, after K5 switch, and UPS output. Current is
measured from the battery output, DC link, inverter output, and bypass line.

In the case study only a part of the control firmware of the UPS was mod-

34 5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE



eled and verified. The subsystem (outlined with a dashed line in Figure 5.1)
consists of the DC link, inverter, bypass, switches K3 and K5, and the static
bypass switch. No assumptions about the environment is made. Voltages in
DC link and bypass input line can change freely. Also the load can change
freely as time evolves.

The main operational criterion of a UPS is to protect the UPS hardware
and the load from damages while trying to maintain power at output as long
as possible. Primarily, the UPS feeds power to the output through the in-
verter, but in case of, for example, output undervoltage the UPS transfers
to bypass if it is available. In an extreme case of bypass being not available
the load might be dropped when a critical alarm occurs. Most of the mea-
surements and alarm signals have filtering and therefore there is a short delay
before the UPS takes an action. The delay varies from milliseconds to several
minutes depending on the criticality of the alarm.

The UPS modules can be configured to operate in parallel to increase the
availability or the capacity of the UPS system. In this work we focus on the
operation of a single unit.

5.3 DESCRIPTION OF THE UPPAAL MODEL

5.3.1 Configuration of the System

The modeled system is quite large and complicated and thus some restric-
tions are needed to be made when modeling the system. As previously men-
tioned, we are only interested in the operation of one unit and not in the
parallel operation of several units. During the modeling phase all variables
related to the parallel operation were assumed to have zero value. Thus, the
firmware parts for parallel operation were not modeled at all.

The UPS device has several test modes used to analyze the operating con-
dition of the hardware. For example, there is a test mode to test the voltage
and charge levels of a battery. All those test modes were considered to be
disabled when building the model.

Many of the verified properties relate to the fault models of the UPS de-
vice. However, we are only interested in verifying that the UPS is single-
failure tolerant. If multiple failures can happen simultaneously, many of the
properties are violated although they hold when only one failure is allowed
to happen. This is why there are in the model three configuration bits for en-
abling or disabling failures. Those bits are: K3_CAN_FAIL (for enabling the
failures of K3 switch), K5_CAN_FAIL (for enabling the failures of K5 switch),
and ENABLE_BYP_ACOV (for enabling overvoltage in the bypass input line).

5.3.2 Structure of the UPPAAL Model

The model of the UPS system was constructed using the model checking
methodology presented in Section 4.3. The structure of the UPPAAL model
is shown in Figure 5.2. The structure follows the division of the abstract
model presented in Section 4.2. The circles in Figure 5.2 represent the timed
automata of the UPPAAL model. Dashed line is used to illustrate groups of

5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE 35



K3_SW

K5_SW

K3_HW

K5_HW

Environment

MainStateMachine

InvOnlineState

DCStartingState

InvStartingState

InvSyncingState

Software model Environment model

Bypass BypassOV

EmergXferToByp

K3CD

Figure 5.2: Structure of the UPPAAL model

automata, i.e., automata modeling some part of the system and operating
in collaboration. The arrows between (groups of) automata illustrate the
communication between the automata.

As shown in Figure 5.2, the model is divided in two parts: the software
model and the model of the system environment. The model of the sys-
tem environment is explained in Section 5.4 and the model of the control
software is explained in Section 5.5. The declarations of global variables of
the model are in Appendix A and the system declarations including process
instantiations and the parallel composition of processes forming the system
are in Appendix B. All the clock variables are declared locally in the local
declarations sections of the automata templates.

5.4 MODEL OF THE SYSTEM ENVIRONMENT

The model of the system environment is built based on design documents
of the UPS device. The environment model consists of three automata:
Environment, K3_HW, and K5_HW. The Environment automaton models ex-
ternal events of the UPS system. The automata K3_HW and K5_HW model the
hardware of the switches K3 and K5.

The Environment automaton sends synchronization events to the au-
tomata in software model in case of some external events. The automaton

36 5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE



!ENABLE_BYP_ACOV

ENABLE_BYP_ACOV
BypInputOV!

OutputACUV!

OutputACOV!

ACOVActive || ACUVActive
OutputInLimits!
ACOVActive = 0,
ACUVActive = 0

DCLinkOV
DCInLimits!
DCLinkOV = 0

RectInputOV!

Figure 5.3: UPPAAL automaton modeling the system environment

FailToOpen

FailToClose

Open

Closing
c <= closeMax

Opening

c <= openMax

Closed

Open_K3?

Close_K3?

K3_CAN_FAIL
K3Closed!
c = 0

K3_CAN_FAIL
K3Opened!
c = 0

K3_CAN_FAIL &&
c == openMax

K3_CAN_FAIL &&
c == closeMax

c >= closeMin
K3Closed!

Close_K3?
c = 0

c >= openMin
K3Opened!

Open_K3?
c = 0

Figure 5.4: UPPAAL automaton modeling the hardware of K3 switch

consists of two locations. Initially, the automaton is in the leftmost location
and from there it can take any of the five outgoing edges anytime. Each of
those edges have a sending synchronization modeling a change of voltage
level in UPS input or output or in the DC link.

If there is overvoltage in the input line of the rectifier, a synchronization
RectInputOV is sent and a committed location is reached. From there, one
of the two outgoing edges is fired depending on whether the configuration
bit ENABLE_BYP_ACOV is set or not. If the bit is set (meaning there can be
overvoltage in the bypass line and the bypass and rectifier inputs are con-
nected to a common supply source), a synchronization BypInputOV is sent.
In case of over- or undervoltage in the UPS output, a synchronization is sent
to channel OutputACOV or OutputACUV, respectively. OutputInLimits syn-
chronization models the normal voltage level of the UPS output. It can be
sent only when an output under- or overvoltage alarm is active. Similarly,
if the DC link overvoltage alarm is active, the DCInLimits synchronization
can be sent to inform the software model about normal voltage level in the
DC link.

5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE 37



5.4.1 Hardware Models of Switches K3 and K5

A timed automaton modeling the hardware of the K3 switch is shown in
Figure 5.4. The automaton template has four integer parameters: closeMin,
closeMax, openMin, and openMax. The parameters are used for specifying
the opening and closing times of the switch. The times are parameters so
that they can be easily changed if different types of switches are modeled.

The locations Open and Closed model when the switch is open or closed.
Two intermediate locations, Opening and Closing, model the transitions
between the open and closed states of the switch. For example, in the Open-
ing location the switch is commanded to open but has not yet had time to
open and is still closed.

A configuration bit K3_CAN_FAIL is used to set fault models of the switch
active or inactive. When the fault models are active, two additional loca-
tions, FailToOpen and FailToClose, are reachable. Those locations model
the situations when the switch will not open or close within certain time
limits. When the fault models are active, the switch can also open or close
spuriously. In the automaton this is modeled by the edges from the location
Open to the location Opening and from the location Closed to the location
Closing.

The automaton template modeling the hardware of the K5 switch is oth-
erwise the same as the one for K3 switch shown in Figure 5.4 but the variable
and channel names has been changed from K3 to K5. Those two automata
could not be modeled with one template because they use different types of
synchronization channels.

5.5 MODEL OF THE CONTROL SOFTWARE

The software model is built based on the control firmware of the UPS. As
seen from Figure 5.2, the software model consists of a model of the main state
machine, a module modeling the control of bypass, and software models for
the switches K3 and K5. In following, the automata modeling the control
software are introduced.

5.5.1 Model of the Main State Machine

The main state machine of the software is modeled using the principle ex-
plained in Section 4.3.2. The UPPAAL model consists of one automaton
modeling the structure of the main state machine, and one automaton for
each of the states DC Starting, Inverter Starting, and Inverter Syncing. The
Inverter Online state is modeled with two automata because that state con-
sists of several timed actions, which are easier and more practical to model
using two automata instead of only one.

The automaton modeling the structure of the main state machine, shown
in Figure 5.6, has a location for each machine state. Locations Initializ-
ingState and ShutdownState are marked urgent because those two states
have not been modeled. The automaton communicates with the automata
modeling the states through synchronization channels and a global variable

38 5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE



Figure 5.5: Main state machine

InvOnLineState

InvSyncingState

InvStartingState

DCStartingState

ShutdownState

InitializingState

nextState == DCSTARTING
ToDCStarting!

ChangeState?

ToInvStarting!

nextState == INVSYNCING
ToInvSyncing!

ToInvSyncing!

ChangeState?

ChangeState?

ChangeState?

nextState == INVONLINE
ToInvOnline!

nextState == DCSTARTING
ToDCStarting!

ToDCStarting!

Figure 5.6: UPPAAL automaton modeling main state machine

5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE 39



DCOV

Hold

d <= 1000

Idle

ShutdownBit

DCInLimits?
d = 0

DCLinkOV

!DCLinkOV
d = 0

d == 1000 &&
!ShutdownBit
ChangeState!

Open_K3!
CloseK3Command = 0,
InvOn = 0

ToDCStarting?

Figure 5.7: UPPAAL automaton modeling DC Starting state

nextState indicating the succeeding machine state. When transferring to a
new state, the automaton sends a synchronization event to a channel named
according to the new state. Respectively, when leaving a state the automaton
modeling the state sends a synchronization event to a channel ChangeState
to inform the main state machine automaton about state change. If it is pos-
sible to transfer to several states from some state, a variable nextState is
assigned by a state automaton to a value corresponding the new state. That
variable is used in the guard constraints of the main state machine automaton
to force the automaton to take the corresponding edge leading to the desired
location.

DC Starting State
In Figure 5.7 is an automaton modeling the DC Starting state. The automa-
ton is always in a location Idle when the main state machine is not in the
DC Starting state. When a synchronization from a channel ToDCStarting
is received, the automaton performs the actions of the DCStarting state and
after that transfers back to location Idle.

Immediately after transferring to the DCStarting state the automaton sends
a synchronization to open the K3 switch. A variable InvOn is assigned to
value 0 to represent the situation of inverter being turned off. After the tran-
sition a committed location is reached, from where one of the two outgoing
edges is taken depending on the value of DCLinkOV variable. If the variable
has a value of 0 (meaning there is no overvoltage present in the DC link),
the automaton transfers to location Hold. If the DCLinkOV variable has a
value of 1, the automaton transfers to a location DCOV, where it waits for a
synchronization from a channel DCInLimits indicating that there no longer
is overvoltage present in the DC link. In location Hold the automaton stays
for one second (1000 time units) before transferring back to location Idle.
However, if the variable ShutdownBit has value 1, the automaton can only
fire an edge to another location from where there are no outgoing edges.
ShutdownBit is used to prevent the main state machine from proceeding to

40 5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE



c <= 5000

Idle

Startc == 5000
ChangeState!

ToInvStarting?

InvOn = 1, c = 0

Figure 5.8: UPPAAL automaton modeling Inverter Starting state

uvov

K3_closed

WaitK3Close
GoOnlineCount <= 250

Idle

CheckK3State
GoOnlineCount <= 10

Start

OutputInLimits?

ACOVActive ||
ACUVActive

ChangeState!
nextState = DCSTARTING

HoldBypassAvailable!

HoldBypassAvailable!

GoOnlineCount == 10 &&
K3ClosedDebounced == 1

K3Closed?

GoOnlineCount == 10 &&
K3ClosedDebounced == 0

ChangeState!
BypassSCRCommand = 0,
nextState = INVONLINE

!ACOVActive &&
!ACUVActive
Close_K3!
GoOnlineCount = 0,
CloseK3Command = 1

GoOnlineCount == 250 &&
K3ClosedDebounced == 0
Open_K3!
CloseK3Command = 0,
ShutdownBit = 1

ToInvSyncing?

Figure 5.9: UPPAAL automaton modeling Inverter Syncing state

the Inverter Starting state.

Inverter Starting State
The timed automaton model of the Inverter Starting state is presented in
Figure 5.8. A clock variable c is declared locally. After Inverter Starting state
is entered, the inverter is turned on by assigning the variable InvOn to value
1. After that 5 seconds is waited in the bottommost location before moving
back to location Idle and sending a synchronization ChangeState to the
main state machine automaton to move to the next state.

Inverter Syncing State
A timed automaton modeling the Inverter Syncing state is shown in Fig-
ure 5.9. When the Inverter Syncing state is reached, the automaton transfer
to location Start. If there is over- or undervoltage in the UPS output, the
automaton transfers to a location uvov where it waits for the output voltage to
get back within certain limits. When the output voltage is in limits, a synchro-
nization OutputInLimits is received from the environment automaton and
an edge back to location Start is fired. From there the automaton immedi-

5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE 41



Idle

Timer <= 3000

AlarmActive

Timer <= 2

Wait
ChangeState?

OutputACUV?
Timer = 0,
ACUVActive = 1

OutputACOV?
Timer = 0,
ACOVActive = 1

ChangeState?

ChangeState!
nextState = DCSTARTINGToInvOnline?

ChangeState?

Timer >= 3000!BypAvailable &&
Timer == 2

BypAvailable && Timer == 2
BypassSCRCommand = 1

Figure 5.10: UPPAAL automaton modeling Inverter Online state

ately transfers forward sending a synchronization to close the K3 switch. After
that a HoldBypassAvailable synchronization is sent to Bypass automaton,
which holds the bypass available for one second after the UPS has transfered
from bypass to inverter.

In the next location, named CheckK3State, the automaton waits for 10
ms for the K3 switch to close. If after those 10 ms K3 is closed, an edge to a
committed location K3_closed is taken. As K3 is closed, the UPS is ready
to transfer to the Inverter Online state. From the Inverter Syncing state it is
possible to transfer also to the DC Starting state, which is why the variable
nextState needs to be assigned to a value INVONLINE when sending the
synchronization ChangeState to the main state machine automaton.

The other outgoing edge from the CheckK3State location leads to a lo-
cation WaitK3Close and is taken if the K3 switch has not had time to close
within 10 ms. If K3 closes (K3Closed synchronization is received), an edge
to the location K3_closed is taken. Finally, if K3 is not closed after 250
ms from the close command, the automaton transfers back to location Idle

via a committed location. In the first edge K3 is commanded open and a
variable ShutdownBit is assigned to value 1 to signal the failure of K3. The
main state machine is transferred to state DC Starting and, therefore, the
nextState variable is assigned to value DCSTARTING in the edge sending the
ChangeState synchronization.

Inverter Online State
The Inverter Online state is modeled with two automata, each handling its
own set of actions and alarms. As the automata operate in parallel and both
automata can send the ChangeState synchronization when transferring to
the next state, they must be able to react to the ChangeState synchronization
sent by the other automaton. This means that from each location, where
time is allowed to pass, there must be an edge back to location Idle with a
receiving synchronization from channel ChangeState. Those edges make
sure that both automata are in location Idle when the main state machine
is not in the Inverter Online state.

In Figure 5.10 is shown an automaton handling the inverter output under-

42 5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE



DCOVRamping
dcovDly <= 9

dcov

Idle

CloseK3Command &&
BypAvailable
K3Opened?

BypassSCRCommand = 1

ChangeState?

dcovDly >= 9
DCLinkOV = 1

RectInputOV?
dcovDly = 0

CloseK3Command &&
BypAvailable
K3Opened?
BypassSCRCommand = 1

ChangeState?

ChangeState!
nextState = DCSTARTING

!BypAvailable

BypAvailable
BypassSCRCommand = 1

ToInvOnline?

Figure 5.11: UPPAAL automaton modeling emergency transfer to bypass

and overvoltage alarms. The main operational criterion of the UPS in case
of output under- or overvoltage is to transfer to bypass if it is available or in
an extreme case of bypass not being available to drop the load.

If one of the voltage alarms becomes active (synchronization OutputACOV

or OutputACUV is received from the Environment automaton) the automa-
ton waits for 2 ms in location AlarmActive and checks whether bypass is
available or not. If bypass is available, an edge leading to the committed
location on the right is taken and the bypass static switch is commanded
closed (BypassSCRCommand = 1). If bypass is not available, from the lo-
cation AlarmActive an edge to the bottommost location is fired. In that
location the automaton waits until 3 seconds has passed from the under-
/overvoltage alarm becoming active and after that transfers to the committed
location on the right. From the committed location an edge back to the lo-
cation Idle is taken and the main state machine is commanded to transfer
to the DC Starting state.

The other automaton, shown in Figure 5.11, models the overvoltage of the
DC link and the case of K3 switch opening when it should be closed. If there
is overvoltage in the input of the rectifier, RectInputOV synchronization is
received from Environment automaton and an edge to location DCOVRamp-

ing is taken. The DC link voltage starts ramping up and after 9 milliseconds
it goes over an overvoltage limit and the automaton takes an edge to location
dcov assigning variable DCLinkOV to value 1. The UPS transfer to bypass,
i.e., closes the bypass static switch, only if the bypass is available (modeled
with the two outgoing edges from the location dcov). After that the automa-
ton takes an edge back to location Idle telling the main state machine to
transfer to the DC Starting state.

If the K3 switch opens when it is commanded closed (K3Opened synchro-
nization is received although the variable CloseK3Command has a value of
1) and the bypass is available, the bypass static switch is closed. Also in the
case of K3 opening spuriously the main state machine transfers to the DC
Starting state.

5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE 43



OpenSpuriously

CloseSpuriously

K3WontOpen

Opening
c <= 640

K3WontClose

Closing
c <= 320

Closed

Opened

Close_K3? Open_K3?

K3Opened?
c = 0

c == 640
ShutdownBit = 1

Close_K3?
c = 0

c == 320

K3Closed?
c = 0

Open_K3?
c = 0

K3Closed?

K3Opened?

Figure 5.12: UPPAAL automaton observing the state of the K3 switch

5.5.2 Modeling the Control Software of Switches K3 and K5

K3 Switch
The software model of the K3 switch consists of two automata. An automa-
ton observing the state of the switch is presented in Figure 5.12. The actual
control logic of the switch is distributed around the model to other automata
because in the source code the K3 switch is controlled from many places.
Thus, implementing the control logic within one automaton would be diffi-
cult.

The automaton in Figure 5.12 has locations Opened and Closed model-
ing the state of the switch to be open or closed. Two intermediate locations,
Opening and Closing, model the situations of the switch being commanded
to open or close but having not had time to realize the command. The au-
tomaton receives synchronization events from several channels and transfers
between the four aforementioned locations according to the synchroniza-
tions received. When the switch is commanded to open or close, a synchro-
nization is received from channel Open_K3 or Close_K3, respectively. When
the switch opens or closes, a synchronization sent by the automaton model-
ing the hardware of K3 is received from channel K3Opened or K3Closed,
respectively. Two committed locations, OpenSpuriously and CloseSpuri-

ously, model the situation of the switch opening or closing when not com-
manded. The locations K3WontOpen and K3WontClose model the situations
of the switch not opening or closing when commanded.

Another automaton, presented in Figure 5.13, updates the value of a K3-

ClosedDebounced variable. The variable has some filtering to make sure the
state of the switch has really changed before updating the value of the vari-
able. The automaton transfers between locations Open and Closed whenever
it receives a synchronization from channel K3Opened or K3Closed. During
those transitions the clock variable c is reset and after the automaton has
been in one of those locations for the filtration time, an edge leading back
to the location is taken updating the value of the K3ClosedDebounced vari-

44 5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE



Open

c <= 19 ||
!K3ClosedDebounced

Closed

c <= 10 || 
K3ClosedDebounced c == 19 && K3ClosedDebounced

K3ClosedDebounced = 0

c == 10 && !K3ClosedDebounced
K3ClosedDebounced = 1 K3Closed?

c = 0

K3Opened?
c = 0

Figure 5.13: UPPAAL automaton updating K3ClosedDebounced variable

AuxFailure

Init

c <= 10000

FailToOpen

FailToClose

Opened

WaitToOpen
c <= 320

WaitToClose
c <= 320

Closed

K5_closed = 0,
c= 0

K5_CAN_FAIL

K5_closed = 1

c == 10000 &&
BypassACOV &&
!BypassSCRCommand
Open_K5!
c = 0

K5Closed?
K5_closed = 1,
c = 0

K5Opened?
K5_closed = 0, c = 0

!BypassACOV ||
BypassSCRCommand

BypACOV?
c = 0 c == 320

K5Failed!
K5_Failed = 1

c == 320

K5Failed!
K5_Failed = 1

K5Closed?
K5_closed = 1

(BypassInLimits && !CloseK3Command) ||
(BypAvailable && CloseK3Command)
Close_K5!
c = 0

K5Opened?
K5_closed = 0

Figure 5.14: UPPAAL automaton modeling the control logic of K5 switch

able. The switch needs to be open for 10 ms and closed for 19 ms before the
variable is updated.

K5 Switch
The software model of the K5 switch is shown in Figure 5.14. The automaton
sends open and close commands to the hardware model of K5 and keeps track
of the state of the switch.

Initially, the switch is assumed to be closed and from the initial location
the automaton takes without delay an edge to location Closed assigning the
variable K5_closed to value 1. If K5 is closed and the bypass overvoltage
alarm becomes active (BypACOV synchronization is received from the Envi-
ronment automaton), the automaton waits for 10 seconds and makes sure
that the overvoltage alarm is still active and the bypass static switch is com-
manded open before giving a command to open the switch (Open_K5 syn-
chronization is sent to the hardware model of K5) by taking the edge to
the location WaitToOpen. In the WaitToOpen location the automaton waits
for the switch to open and when it happens (K5Opened synchronization is
received from the hardware model automaton of K5), an edge to location
Opened is taken. However, if the switch does not open within 320 ms, an
edge to location FailToOpen is taken and a K5Failed synchronization is
sent.

When the switch is open, it is closed again when certain conditions hold.
If the voltage in the bypass line is within certain safe limits and the K3 switch
is commanded to open or if the bypass is available and K3 is commanded
closed, a command to close K5 is given and the automaton transfers to loca-
tion WaitToClose. The channel Close_K5 is declared as urgent so that the

5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE 45



edge from Opened to WaitToClose is taken as soon as the guard of the edge
becomes true. As in the case of opening the switch, at most 320 ms is waited
in the location WaitToClose for the switch to close and an edge either to
location FailToClose or to location Closed is taken.

Another fault mode of the switch (in addition to not opening or closing
within certain time limits) is to open or close when not commanded to. This
is modeled with the edge from the location Closed to WaitToClose for the
case of K5 opening spuriously and with the edge from the location Opened

to WaitToOpen for the case of K5 closing spuriously. Finally, the auxiliary
switch (showing if the switch is closed or not) of K5 can fail showing that the
switch is open although it is closed. This failure is modeled with the loca-
tion AuxFailure, which can be reached from the location Closed any time.
From AuxFailure an edge is immediately taken to location WaitToClose

and the variable K5_closed is assigned to value 0 to model the situation of
software seeing the switch to be closed.

5.5.3 Modeling the Bypass

The operation of bypass is modeled with two automata. The main automa-
ton keeping track of the availability of the bypass is shown in Figure 5.15.
Initially, the bypass is assumed to be available and the bypass is connected
to the output (K5 and bypass static switch are closed). Thus, from the ini-
tial location an edge is taken to location Available assigning variables By-
pAvailable and BypassSCRCommand to one. If the K5 switch fails to open
or close (K5Failed synchronization is received) or if there is overvoltage in
the bypass line (BypACOV synchronization is received), the bypass is made un-
available. The delay before bypass becomes unavailable is between 10 and
15 ms (waited in location Filtering) because the availability of the bypass
is handled in a function called every 5 ms and there is a short filtering before
the UPS takes action in those fault situations. The varying delay is modeled
as explained in the timing example in Section 4.3.2.

The outgoing edge from the location Unavailable is possible to take only
if the value of the variable K5_Failed is 0, i.e., K5 has not failed to open or
close and thus it is possible for the bypass to become available again. There
is a delay of 0–5 ms before the bypass becomes available after the voltage in
the bypass line has dropped back to nominal.

After transferring from bypass to inverter the bypass is kept available for
one second. This is modeled with the edge from the location Available

to HoldAvailable with a synchronization HoldBypassAvailable sent by
the automaton modeling the Inverter Syncing state during the transfer from
bypass to inverter. In HoldAvailable the automaton stays for one second
and after that transfers back to the location Available. However, if during
the period of one second the voltage in the bypass line has raised over the
overvoltage threshold or K5 has failed, the bypass is made unavailable by
transferring to location Unavailable via the location Filtering.

An automaton modeling the overvoltage of the bypass is shown in Fig-
ure 5.16. If the ENABLE_BYP_ACOV configuration bit is set to 0, the au-
tomaton cannot leave the location InLimits and thus the configuration bit
prevents bypass overvoltage from happening. When the overvoltage is en-

46 5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE



BypAvailDly <= 5

Filtering
BypAvailDly <= 15

Unavailable

HoldAvailable
HoldAvailableDelay <= 1000

Available

BypAvailDly = 0

K5Failed?
K5Failed?

BypAvailable = 1,
BypassInLimits = 1

BypAvailDly >= 10
BypAvailable = 0

HoldAvailableDelay == 1000 &&
(BypassACOV || K5_Failed)
BypAvailDly = 0

!K5_Failed

BypassACOV = 0,
BypAvailDly = 0

HoldBypassAvailable?
HoldAvailableDelay = 0

HoldAvailableDelay
== 1000 &&
!BypassACOV &&
!K5_Failed

BypassSCRCommand
HoldBypassAvailable?
BypAvailable = 1,
HoldAvailableDelay = 0

BypAvailable = 1,
BypassSCRCommand = 1

BypACOV?

Figure 5.15: UPPAAL automaton modeling the bypass

BypOV2 BypOV1
c <= 5

Filtering

c <= 5

InLimits

BypassInLimits = 1,
BypassACOV = 0

BypassInLimits = 0,
BypassSCRCommand = 0

c == 5
BypACOV!
BypassACOV = 1,
c = 0

BypInputOV?
c = 0

Figure 5.16: UPPAAL automaton modeling the bypass overvoltage

abled by the configuration bit, a transition from the location InLimits to
location Filtering is taken when the environment automaton sends the
BypInputOV synchronization. It takes about five milliseconds before the by-
pass overvoltage alarm is set because of a couple of filtrations in the UPS
firmware. This is why the automaton waits in the location Filtering for five
time units before transferring to location BypOV1. Within five milliseconds
from that the next edge to location BypOV2 is taken. During the transition
the bypass static switch is opened (BypassSCRCommand = 0). From BypOV2

the edge back to location InLimits can be taken anytime. The transition
models the situation of bypass voltage coming back to nominal level.

5.6 VERIFIED PROPERTIES

The UPPAAL model of the control firmware of the UPS device was verified
against several properties derived from a set of failure cases. In this section
the properties are introduced and in the following chapter the verification
results are discussed.

5.6.1 Failure Case 1

Failure description: K3 will not close when commanded.

5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE 47



Action: UPS should stay on bypass if the bypass is available. In UPPAAL’s
TCTL the property is formalized as follows:

A[] ((k3_sw.K3WontClose && BypAvailable &&

State.InvSyncingState) imply (K5_closed &&

BypassSCRCommand ))

The formula states that always when the K3 switch is not closed although
commanded (k3.K3WontClose), the bypass is available (BypAvailable),
and the main state machine is in Inverter Syncing state, then the load should
be on bypass. The load is on bypass when the bypass backfeed contactor is
closed (K5_closed) and the static bypass switch is commanded closed (By-
passSCRCommand). The main state machine is required to be in the Inverter
Syncing state because that is the only state where the UPS attempts to close
the K3 switch and the location k3.K3WontClose is also reachable in the case
of K3 opening when it should be closed.

5.6.2 Failure Case 2

Failure description: K3 opens when it should be closed.

Action: The desired action depends on whether the bypass is available or
not.

a. If the load is on inverter and the bypass is available, the UPS should
transfer to bypass within 20 ms. In TCTL this is:

State.InvOnLineState && CloseK3Command &&

k3_sw.OpenSpuriously && BypAvailable −−>
k3_sw.c <= 20 && K5_closed && BypassSCRCommand

The formula states that when K3 is commanded closed (CloseK3Command)
and it opens when it should not (k3.OpenSpuriously) and the bypass is
available, then eventually K5 should be closed and the static switch should
be commanded closed. The clock k3.K3OpenedCounter is reset when K3
opens, and before the clock reaches value 20 (ms), the bypass switches should
be closed.

b. If the load is on inverter and the bypass is not available, there should
be no changes in the operation of the UPS. In TCTL this is formalized as
follows:

A[] (CloseK3Command && (k3_sw.OpenSpuriously ||

k3_sw.Opened) && !BypAvailable imply !BypassSCRCommand)

The formula states that always when K3 is commanded closed but it is open
and the bypass is not available, the bypass static switch is commanded open.

5.6.3 Failure Case 3

Failure description: K3 will not open when commanded or closes when it
should be open.

48 5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE



Action: If the load is on bypass, the UPS should stay on bypass without
testing the inverter. In TCTL:

A[] !(k3.K3WontOpen && InvOn)

The formula states that the system should never reach a state where K3 will
not open (k3.K3WontOpen) and the inverter is commanded on (InvOn).

5.6.4 Failure Case 4

Failure description: K5 wont close or opens when should be closed.

Actions: If the load is on inverter, stay on inverter and disable bypass oper-
ation. The property is checked in two parts.

a. First we check that the UPS stays on inverter. In TCTL:

A[] (k5.FailToClose && !ACOVActive && !ACUVActive &&

!DCLinkOV && State.InvOnLineState) imply

(InvOn && K3ClosedDebounced)

The formula contains several extra constraints to exclude inverter and DC
link failures from happening at the same time. The formula specifies that
whenever k5 automaton is in FailToClose location (the location is also
reached when K5 opens when it should not), output AC under- and overvolt-
age alarms are not active, there is no overvoltage in the DC link (!DCLinkOV),
and the main state machine is in InvOnLineState, then the inverter should
be on and K3 closed (K3ClosedDebounced).

b. The second formula verifies that the bypass operation is disabled in
case of K5 failure. In TCTL:

k5.FailToClose −−> !BypAvailable

The formula states that whenever the K5 fails to close or K5 opens when it
should be closed, eventually the bypass operation is disabled (!BypAvail-
able).

5.6.5 Failure Case 5

Failure description: The auxiliary switch of K5 changes to open state when
the contactor is closed and commanded to be closed.

Action: The UPS should continue feeding the load on bypass. In TCTL
this is:

A[] (k5_hw.Closed && !K5_closed && !CloseK3Command &&

BypAvailable imply BypassSCRCommand)

If the auxiliary switch of K5 shows that the switch is open (!K5_closed)
although it is closed (k5_hw.Closed), the UPS is not attempting to feed the
load with inverter (K3 is commanded open: !CloseK3Command), and the
bypass is available, then the UPS stays on bypass keeping the bypass static
switch closed.

5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE 49



5.6.6 Failure Cases 6-9

Failure description: Inverter output over/undervoltage. Caused by either:

� Failure case 6: Inverter output capacitor shorts in one phase -> Under
voltage

� Failure case 7: Inverter output voltage feedback fails in one phase, the
measurement halts to zero voltage value

� Failure case 8: Inverter IGBT shorts, output is shorted to DC link ->
Over voltage

� Failure case 9: Inverter output voltage feedback fails in one phase, the
measurement halts to the maximum voltage value

Action: UPS reacts to each of the four over- and undervoltage cases the
same way and, thus, they can be checked using the same properties. The
desired behavior on failure depends on whether the load is on inverter or
bypass and the availability of bypass.

a. If the load is on inverter and the bypass is available, the UPS should
eventually transfer to bypass. In failure cases 7 and 8 the transfer should
happen within 5 ms from the fault, and in cases 6 and 9 within 10 ms from
the fault. However, in each of these cases 5 ms is used in the verification as
it proved to be sufficient also for cases 6 and 9. With UPPAAL’s TCTL the
property is specified as:

(acuvov.AlarmActive && BypAvailable) −−>
(acuvov.Timer <= 5 && BypassSCRCommand &&

(K5_closed || k5.Closing ))

The property states that if output under- or overvoltage alarm is active and
bypass is available, before 5 ms from the alarm (acuvov.Timer <= 5) the
static switch is closed and K5 is either closed or closing. The clock variable
acuvov.Timer is reset immediately after the alarm becomes active. K5 can
not be assumed to be closed after 5 ms because it takes between 30 and 115
ms for the switch to close.

b. The second case is that the load is on inverter but the bypass is not
available, in which case the output must be turned off within 3 seconds. In
TCTL this is:

(acuvov.AlarmActive && !BypAvailable) −−>
(! BypassSCRCommand && !K5_closed &&

!K3ClosedDebounced && acuvov.Timer <= 3000)

c. If the load is on bypass when the failure occurs, the UPS should test
the inverter by turning it on and stay on bypass if the inverter output is not
within limits. In other words the UPS should transfer back to inverter when
there is no reason to stay on bypass. In TCTL the property is:

50 5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE



(BypassSCRCommand && !ACOVActive && !ACUVActive &&

!DCLinkOV) −−> (CloseK3Command && InvOn)

The UPS should transfer from bypass to inverter when output under- and
overvoltage and DC link overvoltage alarms are not active.

5.6.7 Failure Case 10

Failure description: Symmetric input overvoltage. If the bypass input line
and the rectifier are connected to a common supply source, both DC link
and bypass voltages rise simultaneously.

Action: The desired action depends on whether the bypass input is con-
nected to the same supply source as the rectifier and whether the bypass is
available or not.

a. In case of symmetric input overvoltage UPS should not transfer to
bypass. In TCTL:

A[] !( DCLinkOV && BypassACOV && BypassSCRCommand &&

K5_closed)

The TCTL property states that there should never be a situation when DC
link overvoltage and bypass overvoltage alarms are active and the UPS is on
bypass (static switch and K5 closed).

b. If the bypass supply is not from the same source with the rectifier
(there is no overvoltage in the bypass line), transfer to bypass. In TCTL:

(etb.dcov && BypAvailable && !BypassACOV) −−>
(BypassSCRCommand && K5_closed)

The formula states that if there is overvoltage in the DC link but the bypass
is available and no overvoltage is present in bypass line, then eventually the
UPS is on bypass, i.e., the bypass static switch and the K5 switch are both
closed.

5. CASE STUDY: MODEL CHECKING THE CONTROL SOFTWARE OF A UPS DEVICE 51



Table 6.1: Model checking times
Failure Case Configuration Time Satisfied

K3 K5 Bypass
1 1 0 0 <1 s Yes
2 a 1 0 0 <1 s Yes
2 b 1 0 0 <1 s Yes
3 1 0 0 <1 s No
4 a 0 1 0 5 s Yes
4 b 0 1 0 34 s Yes
5 0 1 0 5 s Yes
6–9 a 0 0 0 <1 s Yes
6–9 b 0 0 0 <1 s Yes
6–9 c 0 0 0 <1 s Yes
10 a 0 0 1 <1 s No
10 b 0 0 0 <1 s Yes

6 RESULTS

The model checking was performed on a standard PC with 2 GB of RAM
and Intel Core 2 Duo E6320 processor running at 1.86 GHz. The UPPAAL
version used in the model checking was 4.0.11 and the operating system was
Debian GNU/Linux 4.0.

The verification proved that in most of the failure cases the UPS firmware
behaves correctly. The verification times were within one minute for all of
the verified properties as seen from Table 6.1. The verification times did
not vary a lot even though different configurations were used for checking
different properties. In Table 6.1 the configurations are presented by the
values of the three configuration variables: K3, K5, and Bypass represent the
variables K3_CAN_FAIL, K5_CAN_FAIL, and ENABLE_BYP_ACOV, respectively.

As comparison, in Table 6.2 model checking times are shown for a model
in which all the failures are enabled (by using the following configuration:
K3_CAN_FAIL = 1, K5_CAN_FAIL = 1, ENABLE_BYP_ACOV = 1). From
the results it can be seen that most of the properties are not satisfied any
longer. This is caused by the additional failure modes introducing function-
ality causing the properties to be violated.

From the results in Table 6.2 it can also be seen that some of the properties
have much longer verification times than when checked against a single-fault
model. This is caused by the fact that the additional failure modes make
the state space of the model substantially larger. Especially, the verification
time of the property of failure case 4b grew enormously; the verification did
not finish within 20 hours. This is caused by the added functionality and
several time delays of different scale in the model causing the executions of
the model to have a great number of states.

The size of the state space varies depending on the verified property. In
the model checking runs performed for the safety properties (properties of
form A[] φ) of failure cases 1–10 the size of the state space varied between

52 6. RESULTS



Table 6.2: Model checking times when all failures were enabled
Failure Case Time Satisfied
1 1 min 29 s No
2 a 2 s No
2 b 1 s No
3 <1 s No
4 a 1 s No
4 b >20 h –
5 19 s No
6–9 a 1 s No
6–9 b 2 s No
6–9 c 12 min 13 s No
10 a 1 s No
10 b 11 s No

50 and 205,000. The state space of liveness properties (properties of form
φ --> ψ) is not known because UPPAAL does not support the calculation of
the state space size for those properties.

As a result of the model checking failure cases 3 and 10a were found to be
violated. In failure case 3 the property does not hold because the inverter can
be turned on although K3 is closed. In the Inverter Starting state the inverter
is turned on without checking if the K3 switch is open. The firmware has
a functionality to prevent the starting of the inverter, but it is based on a
filtered bit of K3 being closed although commanded open with a filtering
time of 640 ms. During that time the state machine can reach the Inverter
Starting state where the inverter is turned on. This happens if the K3 switch
closes when the state machine is transferring from the DC Starting state to
the Inverter Starting state and the transfer happens within 640 ms from the
switch closing.

The failure case 10a is violated because the UPS may transfer to bypass
even though there is overvoltage in the bypass line. The situation of symmet-
ric input overvoltage is shown in Figure 6.1.

The decision to transfer to bypass is made after the DCLinkOV variable
gets value 1. The decision is made based on the value of the variable By-

pAvailable, as modeled in the automaton modeling the DC link overvolt-
age (shown in Figure 5.11). The edge assigning the variable BypassSCRCom-
mand to 1 is taken only if the bypass is available.

The values of the variables regarding the bypass operation in the case of
bypass overvoltage are assigned as follows. The variable BypACOV is assigned
to 1 after 5 ms from the beginning of the overvoltage situation as modeled by
the bypass overvoltage automaton shown in Figure 5.16. From this it follows
that the variable BypassInLimits is assigned to 0 value after 0–5 ms (see the
automaton in Figure 5.16) and the BypAvailable variable is assigned to 0
after 10–15 ms (in the automaton in Figure 5.15).

The bypass static switch is opened only after the BypassInLimits variable
has changed to value 0. This means that there exists a timing sequence where
the load is briefly transfered to bypass although there is overvoltage in the

6. RESULTS 53



Input

DCLink

Bypass

28 V/ms

Nominal

Nominal

610 V

1.65*Nominal

1.65*Nominal

BypACOV = 1 BypassInLimits = 0 BypAvailable = 0

DCLinkOV = 1

870 V

5 ms

9 ms

0-5 ms

10-15 ms

Figure 6.1: Voltages and bit assignments in case of symmetric input overvolt-
age

54 6. RESULTS



bypass line. The decision to transfer to bypass is made before the UPS has
had time to react to the overvoltage in the bypass line.

6. RESULTS 55



7 CONCLUSIONS

In this work we studied the applicability of model checking to the verification
of real-time embedded control software. The central goal of the study was
to evaluate whether a real-world embedded software can be modeled with
adequate level of abstraction so that the verification results are reliable. The
suitability of the real-time model checking tool UPPAAL for the verification
of the control software of a UPS device was evaluated.

The modeling of an embedded software is not a straightforward task. Find-
ing all different control sequences from the code can be a time consuming
and error prone task. Modeling a variable which is updated in dozens of
places and read in even more is challenging. It is also difficult to verify that
the model has all the same behaviors as the system itself. This is why system-
atic model checking methodologies are needed for modeling an embedded
software. In this work we presented a methodology for modeling and ana-
lyzing a real-time embedded software. The methodology makes it easier to
create modular and easily reviewable models.

In the case study a part of the control firmware of a UPS device was mod-
eled using the UPPAAL model checker. Several failure cases were formalized
using UPPAAL’s TCTL and verified against the model. The firmware was
found to operate as desired in most of the failure cases. However, in two of
the failure cases a timing-related bug was revealed with model checking.

UPPAAL was found to be a suitable tool for model checking a timed em-
bedded control software. The model of the UPS device consists of a total
of 16 clock variables and the time delays range from a couple of millisec-
onds to ten seconds making the timing of the model rather complex. Even
then, UPPAAL was able to carry out the model checking of each of the ver-
ified properties within one minute in the case of single-failure models. In
conclusion, model checking is a valuable tool for finding bugs from embed-
ded software and, on the other hand, for verifying whether the design of a
complex embedded system meets its requirements.

7.1 FUTURE WORK

The next step is to develop more automated methods for translating the
source code to the UPPAAL model. Automated translation is needed for uti-
lizing model checking as part of the software development process to find
bugs and design errors already during the development phase. Building a
model manually is too time consuming if the software is modified often. By
using automated tools for the translation a new revision of the code can be
easily translated to a model and checked against properties, which verify that
there are no bugs or regressions in the code.

The applicability of the model checking methodology presented in this
work should be assessed against other case studies. The structure of an em-
bedded software varies largely from application to another, which makes it
difficult to establish modeling techniques applicable to a wide range of sys-
tems.

56 7. CONCLUSIONS



ACKNOWLEDGEMENTS

This report is a reprint of my Master’s Thesis. This work was prepared under
the research project Model-Based Safety Evaluation of Automation Systems
(MODSAFE), which is part of the Finnish Research Programme on Nuclear
Power Plant Safety 2007–2010 (SAFIR2010). I am very grateful to my su-
pervisor Prof. Ilkka Niemelä for giving me the opportunity to work in this
research project and for the valuable guidance and encouragement during
the preparation of this Thesis. I also want to thank Prof. Keijo Heljanko for
his comments and advice.

Special thanks go to Eaton Power Quality Oy for providing material used
in the case study and to Jari Eloranta and Risto Karola for support and advice
during the study.

Finally, I want to thank my family for their support throughout the period
of my university studies.

7. CONCLUSIONS 57



BIBLIOGRAPHY

[1] Aditya Agrawal, Gabor Karsai, and Akos Ledeczi. An end-to-end
domain-driven software development framework. In Proceedings of the
18th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications (OOPSLA 2003), pages 8–
15. ACM, 2003.

[2] Rajeev Alur. Techniques for automatic verification of real-time systems.
PhD thesis, Stanford University, 1991.

[3] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking
in dense real-time. Information and Computation, 104(1):2–34, 1993.

[4] Rajeev Alur and David L. Dill. Automata for modeling real-time sys-
tems. In Proceedings of the Seventeenth International Colloquium
on Automata, Languages and Programming, pages 322–335. Springer-
Verlag, 1990.

[5] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[6] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani.
SLAM and static driver verifier: Technology transfer of formal methods
inside microsoft. In Proceedings of the 4th International Conference
on Integrated Formal Methods (IFM 2004), volume 2999 of Lecture
Notes in Computer Science, pages 1–20. Springer-Verlag, 2004.

[7] Thomas Ball and Sriram K. Rajamani. The SLAM project: debug-
ging system software via static analysis. In Proceedings of the ACM
SIGPLAN Symposium on the Principles of Programming Languages
(POPL 2002), pages 1–3. ACM, 2002.

[8] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on
UPPAAL. In M. Bernardo and F. Corradini, editors, Formal Methods
for the Design of Real-Time Systems (revised lectures), volume 3185 of
Lecture Notes in Computer Science, pages 200–237. Springer-Verlag,
2004.

[9] Stoyan B. Bekiarov and Ali Emadi. Uninterruptible power supplies:
classification, operation, dynamics, and control. In Proceedings of
the 17th Annual IEEE Applied Power Electronics Conference (APEC
2002), pages 597–604, 2002.

[10] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Lectures on Concurrency and Petri Nets, pages 87–124.
Springer-Verlag, 2004.

[11] Patricia Bouyer. Weighted timed automata: Model-checking and
games. In Proceedings of the 22nd Annual Conference on Mathe-
matical Foundations of Programming Semantics (MFPS XXII), volume

58 BIBLIOGRAPHY



158 of Electronic Notes in Theoretical Computer Science, pages 3–17,
2006.

[12] Bart Broekman and Edwin Notenboom. Testing Embedded Software.
Pearson Education Limited, 2003.

[13] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, 1999.

[14] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen
Yorav. SATABS: SAT-based predicate abstraction for ANSI-C. In
Proceedings of the 11th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS 2005), vol-
ume 3440 of Lecture Notes in Computer Science, pages 570–574.
Springer-Verlag, 2005.

[15] Byron Cook, Daniel Kroening, and Natasha Sharygina. Symbolic
model checking for asynchronous Boolean programs. In P. Godefroid,
editor, Proceedings of SPIN 2005, volume 3639 of Lecture Notes in
Computer Science, pages 75–90. Springer-Verlag, 2005.

[16] L. de Moura, S. Owre, and N. Shankar. The SAL language manual.
Technical Report SRI-CSL-01-02 (Rev. 2), SRI International, 2003.

[17] A. Emadi, A. Nasiri, and Stoyan B. Bekiarov. Uninterruptible Power
Supplies and Active Filters. CRC Press, 2005.

[18] E. A. Emerson and Edmund M. Clarke. Using branching time tempo-
ral logic to synthesize synchronization skeletons. Science of Computer
Programming, 2:241–266, 1982.

[19] Colin Fidge and Phil Cook. Model checking interrupt-dependent soft-
ware. In Proceedings of the 12th Asia-Pacific Software Engineering
Conference (APSEC 2005), pages 51–58. IEEE Computer Society,
2005.

[20] Susanne Graf and Hassen Saidi. Construction of abstract state graphs
with PVS. In Proceedings of the 9th International Conference on Com-
puter Aided Verification (CAV 1997), volume 1254 of Lecture Notes in
Computer Science, pages 72–83. Springer-Verlag, 1997.

[21] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed tran-
sition systems. In Proceedings of the Real-Time: Theory in Practice,
REX Workshop, volume 600 of Lecture Notes in Computer Science,
pages 226–251, 1991.

[22] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. Journal of
Information and Computation, 111(2):193–244, 1994.

[23] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23:279–295, 1997.

BIBLIOGRAPHY 59



[24] M. Jurdzinski, F. Laroussinie, and J. Sproston. Model checking proba-
bilistic timed automata with one or two clocks. In Proceedings of the
13th International Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS 2007), volume 4424 of Lecture
Notes in Computer Science, pages 170–184. Springer-Verlag, 2007.

[25] Pim Kars. Formal methods in the design of a storm surge barrier control
system. Lecture Notes in Computer Science: Lectures on Embedded
Systems, 1494:353–367, 1998.

[26] G. Karsai, S. Neema, A. Bakay, A. Ledeczi, F. Shi, and A. Gokhale. A
model-based front-end to TAO/ACE: The embedded system modeling
language. In Proceedings of the 2nd Workshop on TAO, 2002.

[27] Jean J. Labrosse, Jack G. Ganssle, Robert Oshana, Colin Walls, and
Keith E. Curtis. Embedded Software. Newnes, 2007.

[28] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-
2):134–152, 1997.

[29] Gabor Madl, Sherif Abdelwahed, and Gabor Karsai. Automatic verifica-
tion of component-based real-time CORBA applications. In Proceed-
ings of the 25th IEEE International Real-Time Systems Symposium
(RTSS 2004), pages 231–240. IEEE Computer Society, 2004.

[30] Gabor Madl, Sherif Abdelwahed, and Douglas C. Schmidt. Verifying
distributed real-time properties of embedded systems via graph trans-
formations and model checking. Real-Time Systems, 33(1-3):77–100,
2006.

[31] K. McMillan. Getting started with SMV. Cadence Berkeley Laborato-
ries, USA, 1998.

[32] Madhavan Mukund. Finite-state automata on infinite inputs. In The
6th National Seminar on Theorectical Computer Science, Banasthali,
Rajasthan, India, 1996.

[33] Bastian Schlich and Stefan Kowalewski. [mc]square: A model checker
for microcontroller code. In Proceedings of the Second International
Symposium on Leveraging Applications of Formal Methods, Verifica-
tion and Validation (ISOLA 2006), pages 466–473. IEEE Computer
Society, 2006.

[34] Bastian Schlich, Michael Rohrbach, Michael Weber, and Stefan
Kowalewski. Model checking software for microcontrollers. Technical
Report AIB-2006-11, RWTH Aachen University, 2006.

[35] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: scalable sensor net-
work simulation with precise timing. In Proceedings of the Fourth In-
ternational Conference on Information Processing in Sensor Networks
(IPSN 2005), pages 477–482. IEEE Press, 2005.

60 BIBLIOGRAPHY



[36] Jan Tretmans, Klaas Wijbrans, and Michel Chaudron. Software engi-
neering with formal methods: The development of a storm surge bar-
rier control system - revisiting seven myths of formal methods. Formal
Methods in System Design, 19(2):195–215, 2001.

[37] Antti Valmari. The state explosion problem. Lecture Notes in Com-
puter Science: Lectures on Petri Nets I: Basic Models, 1491:429–528,
1998.

[38] M. Weber. An embeddable virtual machine for state space generation.
In D. Bošnački and S. Edelkamp, editors, Proceedings of the 14th SPIN
Workshop, volume 4595 of Lecture Notes in Computer Science, pages
168–185. Springer-Verlag, 2007.

[39] Thomas Witkowski, Nicolas Blanc, Daniel Kroening, and Georg Weis-
senbacher. Model checking concurrent Linux device drivers. In Pro-
ceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering (ASE 2007), pages 501–504. ACM,
2007.

[40] Sergio Yovine. Kronos: A verification tool for real-time systems. (Kronos
user’s manual release 2.2). International Journal on Software Tools for
Technology Transfer, 1:123–133, 1997.

BIBLIOGRAPHY 61



A GLOBAL VARIABLE DECLARATIONS OF THE UPPAAL MODEL
OF THE UPS DEVICE

bool K3ClosedDebounced;

bool K5_closed;

bool CloseK5Command;

bool BypAvailable;

bool BypassACOV;

bool BypassInLimits;

bool CloseK3Command;

bool BypassSCRCommand;

bool DCLinkOV;

bool InvOn;

bool ACOVActive;

bool ACUVActive;

bool ShutdownBit;

bool K5_Failed;

broadcast chan Open_K3;

broadcast chan Close_K3;

broadcast chan K3Opened;

broadcast chan K3Closed;

chan Open_K5;

urgent chan Close_K5;

broadcast chan K5Opened;

broadcast chan K5Closed;

broadcast chan K5Failed;

chan OutputACOV;

chan OutputACUV;

broadcast chan BypACOV;

chan RectInputOV;

broadcast chan BypInputOV;

broadcast chan HoldBypassAvailable;

chan DCInLimits;

chan OutputInLimits;

broadcast chan ChangeState;

chan ToDCStarting;

chan ToInvStarting;

chan ToInvSyncing;

broadcast chan ToInvOnline;

// Variables for modeling the state machine

int nextState;

const int DCSTARTING = 0;

const int INVSYNCING = 1;

const int INVONLINE = 2;

// Configuration bits

const bool K3_CAN_FAIL = 0;

62 APPENDIX A. GLOBAL VARIABLE DECLARATIONS OF THE UPPAAL MODEL OF THE UPS

DEVICE



const bool K5_CAN_FAIL = 1;

const bool ENABLE_BYP_ACOV = 0;

APPENDIX A. GLOBAL VARIABLE DECLARATIONS OF THE UPPAAL MODEL OF THE UPS DEVICE 63



B SYSTEM DECLARATIONS OF THE UPPAAL MODEL OF THE
UPS DEVICE

// Process instantiations of the environment model

// automata

env = Environment ();

// Parameters: min and max closing time ,

// min and max opening time

k3_hw = K3_HW(30, 115, 25, 80);

k5_hw = K5_HW(30, 115, 25, 80);

// Process instantiations of the software model

// automata

State = MainStateMachine ();

dcstarting = DCStartingState ();

invstarting = InvStartingState ();

invsyncing = InvSyncingState ();

invonline = InvOnlineState ();

k3_sw = K3_SW();

k3_cd = K3CD();

k5_sw = K5_SW();

bypass = Bypass ();

byp_ov = BypassOV ();

etb = EmergXferToByp ();

// List of processes to be composed into a system.

system State , dcstarting , invstarting , invsyncing ,

invonline , k3_sw , k3_hw , k3_cd , k5_sw , k5_hw , env ,

bypass , byp_ov , etb;

64 APPENDIX B. SYSTEM DECLARATIONS OF THE UPPAAL MODEL OF THE UPS DEVICE





TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-R18 Roland Kindermann
Testing a Java Card applet using the LIME Interface Test Bench: A case study.
September 2009.

TKK-ICS-R19 Kalle J. Palomäki, Ulpu Remes, Mikko Kurimo (Eds.)

Studies on Noise Robust Automatic Speech Recognition. September 2009.

TKK-ICS-R20 Kristian Nybo, Juuso Parkkinen, Samuel Kaski

Graph Visualization With Latent Variable Models. September 2009.

TKK-ICS-R21 Sami Hanhijärvi, Kai Puolamäki, Gemma C. Garriga

Multiple Hypothesis Testing in Pattern Discovery. November 2009.

TKK-ICS-R22 Antti E. J. Hyvärinen, Tommi Junttila, Ilkka Niemelä

Partitioning Search Spaces of a Randomized Search. November 2009.

TKK-ICS-R23 Matti Pöllä, Timo Honkela, Teuvo Kohonen
Bibliography of Self-Organizing Map (SOM) Papers: 2002–2005 Addendum.
December 2009.

TKK-ICS-R24 Timo Honkela, Nina Janasik, Krista Lagus, Tiina Lindh-Knuutila, Mika Pantzar, Juha Raitio

Modeling communities of experts. December 2009.

TKK-ICS-R25 Jani Lampinen, Sami Liedes, Kari Kähkönen, Janne Kauttio, Keijo Heljanko

Interface Specification Methods for Software Components. December 2009.

TKK-ICS-R26 Kari Kähkönen

Automated Test Generation for Software Components. December 2009.

TKK-ICS-R27 Antti Ajanki, Mark Billinghurst, Melih Kandemir, Samuel Kaski, Markus Koskela, Mikko

Kurimo, Jorma Laaksonen, Kai Puolamäki, Timo Tossavainen
Ubiquitous Contextual Information Access with Proactive Retrieval and Augmentation.
December 2009.

ISBN 978-952-60-3102-6 (Print)

ISBN 978-952-60-3103-3 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)


