
TKK Reports in Information and Computer Science

Espoo 2009 TKK-ICS-R26

AUTOMATED TEST GENERATION FOR SOFTWARE

COMPONENTS

Kari Kähkönen

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80700755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TKK Reports in Information and Computer Science

Espoo 2009 TKK-ICS-R26

AUTOMATED TEST GENERATION FOR SOFTWARE

COMPONENTS

Kari Kähkönen

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

P.O.Box 5400

FI-02015 TKK

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 470 01

Fax +358 9 470 23369

E-mail: series@ics.tkk.fi

©c Kari Kähkönen

ISBN 978-952-248-280-8 (Print)

ISBN 978-952-248-281-5 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://lib.tkk.fi/Reports/2009/isbn9789522482815.pdf

TKK ICS

Espoo 2009

ABSTRACT: This report presents a method developed as a part of the LIME-
project (Lightweight formal Methods for distributed component-based Em-
bedded systems) for generating test cases for software components. The main
technique employed in this work is dynamic symbolic execution, where a
program is executed both concretely and symbolically at the same time. Dur-
ing an execution a set of symbolic constraints is collected describing the in-
put values that will force the program to follow an unexplored execution
path. By solving the collected constraints new input values are obtained al-
lowing each test run to exercise different behaviour of the program. Based on
the methods developed in this work, a tool has been implemented that can
be used for automated testing of sequential Java programs.

KEYWORDS: Automated testing, dynamic symbolic execution

CONTENTS

1 Introduction 7

2 Overview 8
2.1 Basic Concepts . 8
2.2 Dynamic Symbolic Execution 9
2.3 Enabling Dynamic Symbolic Execution of Concrete Programs 12

3 Collecting Symbolic Constraints at Runtime 15
3.1 Syntax of Programs . 15
3.2 Instrumentation . 16

Storing Symbolic Values . 17
Symbolic Execution with Primitive Data Types 18
Symbolic Execution with Objects 22
Symbolic Execution with Method Calls 25

3.3 Used Approximations . 26
3.4 Objects with Invariants . 27

4 Generating Inputs 28
4.1 Representing Symbolic Execution Trees 29
4.2 Constructing Symbolic Execution Trees 30

Failing to Follow a Predicted Execution Path 33
4.3 Search Strategies . 35

Depth-first and Breadth-first Searches 35
Selecting Unvisited Nodes Based on Priorities 36
Selecting Unvisited Nodes Randomly 37

4.4 Reporting Errors . 37
4.5 Solving Path Constraints . 37

Local and Reference Constraints 37
Solving Constraints Concurrently 38
Optimisations . 39

5 Test Generation for Programs with Specifications 40

6 Implementation 41
6.1 Structure of the Testing System 41
6.2 Generating JUnit Test Cases 43
6.3 Computing Branch Coverage 43
6.4 Limitations . 43

7 Conclusions 44

References 44

CONTENTS 5

1 INTRODUCTION

Several automated test case generation methods have been suggested over
the years. One of the simplest is random testing [2], in which a number of
inputs to the system are generated randomly. The system under test is exe-
cuted with these inputs and it is checked that the test runs do not violate a
given specification or that the test runs exercise enough of the intended be-
haviour of the system. Random testing is a lightweight method as it is easy to
generate random inputs and a test run does not require any time or memory
resources in addition to those needed by the execution of the program. How-
ever, random testing has its limitations. It might generate inputs that exercise
the same behaviour multiple times and it is possible that to check some be-
haviour, very specific inputs would need to be generated, making it highly
unlikely to get these inputs by random means in a reasonable time. Addition-
ally, in random testing and testing in general it is difficult to determine when
the testing should be stopped as it is not known at any point whether the state
space of a program has been fully explored.

Symbolic execution [13, 6, 12] is one proposed solution that addresses the
limitations of random testing. The main idea in symbolic execution is to
analyse a program so that it is possible to generate test inputs that will exer-
cise different behaviour in each test run. The analysis is done by executing
the given program symbolically, that is, using symbolic values in place of
concrete ones in program execution. The symbolic values represent a set
of possible concrete input values that will cause the execution to follow the
current execution path. At each branching statement a condition is formed
that constrains the set of input values that will force the execution to take
the desired branch. The idea of symbolic execution is not a new one as it
has been around from the 1970s, but the recent advancements in constraint
solvers and the continuing improvement in modern computers have made
the approach interesting as it is not anymore limited to only the simplest of
programs.

In this report we consider a variant of symbolic execution called dynamic
symbolic execution [10, 16] (also known as concolic testing). In this ap-
proach the program is executed both concretely and symbolically at the same
time and the collected symbolic constraints are used to guide the concrete
execution. This approach can be seen as a dynamic analysis method where
as the traditional symbolic execution is a form of static analysis. The benefit
of combining the symbolic and concrete executions is that accurate informa-
tion about the program state that might not be easily accessible in the static
case is now available due to the concrete execution.

The goal of this work is to develop a test generation method for testing
of sequential Java programs. It is also discussed how the method can be ex-
tended to allow the testing process to be guided by specfications written in
LIME Interface Specification Language and monitored by LIME Interface
Monitoring Tool [11].

1 INTRODUCTION 7

2 OVERVIEW

The purpose of this section is to familiarise the reader with the used termi-
nology and give an overview of how dynamic symbolic execution works in
general. The key concepts behind symbolic execution will be introduced
first and then it will be explained through running examples how execut-
ing a program both concretely and symbolically can be used to generate test
inputs that will explore distinct executions of the system under test.

2.1 Basic Concepts

A program written with an imperative programming language can be seen
as consisting of a sequence of statements that are the smallest elements in a
program that can be executed separately. For example, assignments and sub-
routine calls are statements. By executing a statement a program can change
its state. An execution path of a program P is a sequence of statements that
could be executed in the given order from the beginning of P . A prefix of
length n of an execution path π is a sequence that consists of the first n state-
ments of π. For sequential programs, the execution path that will be followed
is determined only by the input values of the program. Every value the pro-
gram reads that is not decided solely by the execution history can be seen
as an input (e.g., values received from the user and the use of random value
generators). Naturally, if multi-threaded programs are also considered, the
thread scheduling introduces another source of non-determinism in addition
to the one caused by input values. However, in this work the discussion is
limited to sequential programs only.

A control flow graph of a program is a graph representation of the potential
execution paths in the program such that the nodes in the graph represent
statements of the program and edges represent the control paths between the
statements.

Example 1 Figure 1 shows a simple Java program on the left and a control
flow graph of the program on the right side. In this case, all of the paths
from the start node to the end node in the control flow graph represent a
potential execution path. If at the first line of the program an input value
is read such that x = −10 and the program statements are represented by
their line numbers, the resulting execution path is (1, 2, 4, 6, 7, 9). In fact,
any input value for the variable x that is less than or equal to -5 will cause
the program to follow the same execution path. It is also worth noting that
not all of the possible paths in the control flow graph are actual execution
paths. It is, for example, impossible to follow a potential execution path
(1, 2, 4, 6, 7, 9, 10, 11) regardless of what input values the program is given.
This is because the branching statements at lines 4 and 9 set contradicting
requirements to the value of x.

Different measures are used in testing to indicate how well a program under
test has been exercised by the performed tests. Two measures that are relevant
for understanding the test generation method described in this report are
branch coverage and path coverage. Branch coverage indicates how many of

8 2 OVERVIEW

1 x = i n p u t () ;
2 x = x + 5 ;
3
4 i f (x > 0)
5 y = i n p u t () ;
6 e l s e
7 y = 1 0 ;
8
9 i f (x > 2)

10 i f (y == 2789)
11 e r r o r () ;

Figure 1: An example program and its control flow graph

the control structures (e.g., if-statements) in the program has evaluated both
to true and false during testing. Path coverage, on the other hand, indicates
if every possible control path in the code has been tested. In non-trivial
programs the number of possible paths is generally too large so that full path
coverage can be obtained. Furthermore, in programs with loops the number
of distinct paths through the program can be infinite.

2.2 Dynamic Symbolic Execution

In dynamic symbolic execution the aim is to reason about the execution
paths and the inputs of a program symbolically during a concrete execution
of the program. In order to execute a program P symbolically, each concrete
variable in P is associated with a symbolic value in addition to its concrete
value. A symbolic value represents a set of concrete values a variable can
have at the current point of execution. A symbolic value of variable x will be
denoted by S(x) and it can be either:

(a) an input symbol,
(b) an expression where a binary operator is applied to two symbolic values,

or
(c) an expression where a binary operator is applied to a symbolic value

and a concrete value.

An input symbol is a symbolic representation of a single input value to a
program P such that no two input values have the same input symbol. The
binary operators in this context mean the same ones that are used in the
program with concrete variables, such as summation and multiplication. If
a variable x has a value that does not depend on any input values, it does
not have a symbolic value associated to it. The symbolic values of variables
are updated just like concrete values during execution. To be more precise,

2 OVERVIEW 9

a symbolic value of a variable is constructed as follows. If the variable is
assigned an input value, it will be of type (a). Copying a concrete value
from a variable to another causes the symbolic value to be copied also if the
variable that is being assigned to another one has a symbolic value. When a
binary operator is applied to a variable that has a symbolic value, the resulting
symbolic expression will be of the type (b) if the other operand has also a
symbolic value and of the type (c) if the other operand is a constant or a
variable that does not have a symbolic value. In the latter case, the concrete
value of the constant or variable is used in the symbolic expression. It can be
seen that if the input symbols in a symbolic value are replaced with concrete
input values, the symbolic expression will tell what the concrete value of the
variable would be at the point of execution where the symbolic value was
constructed.

When a program P is executed, the same execution path is followed re-
gardless of the input values until a branching statement is encountered that
selects an outgoing branch based on some variable that has a symbolic value
associated with it (i.e., inputs to the system affect its value). If the symbolic
values of the variables that are used to determine the outgoing branch are
known, it is possible to reason about the outcome symbolically. A local con-
straint is a symbolic expression x ◦ y, where x is a symbolic value, y is either
a symbolic or concrete value and ◦ ∈ {=, 6=, <,≤, >,≥}. If it is assumed
that in branching statements two values are compared (branching statements
with multiple comparisons joined with logical OR or AND operators are seen
as separate branching statements in this section), it is possible to form a local
constraint for the true and false branches assuming that at least one of the
variables used in the comparison has a symbolic value. A local constraint
gives restrictions to the input values that must be satisfied in order for a con-
crete execution to take the branch corresponding to the local constraint. At
any given branching statement, the two local constraints that correspond to
the outgoing branches are negations of each other. Each branching state-
ment that causes a local constraint to be constructed can be seen as a point
where the set of input values following the current execution path is possibly
divided into two distinct sets that follow different execution paths.

Example 2 Let us look at our running example program in Figure 1. At the
beginning of any execution of the program, an input value is read to a variable
x. Let the symbol representing this input be input1. This input symbol will
be the symbolic value of x after the first assignment in line 1. At the next
assignment statement, x = x + 5, the symbolic value of x is updated to be
S(x) = input1 + 5. As the following if-statement depends on x and it has
a symbolic value, local constraints input1 + 5 > 0 and input1 + 5 ≤ 0 are
formed to indicate what values of x will follow the true and false branches of
the if-statements respectively.

So far only the symbolic representation of primitive data types has been
discussed. To be able to generate test cases for programs that take objects as
input describing, for example, various data structures, the ability to reason
about the references of these objects is needed as well. For primitive data
types it is enough to collect arithmetic constraints as shown with local con-
straints but to allow symbolic reasoning about references to input objects and

10 2 OVERVIEW

their relationship to each other, it is necessary to also collect constraints that
tell whether some references must or must not point to a same input object.
These kind of constraints will be called reference constraints. To make this
kind of reasoning possible a symbolic value is also associated with each input
object. A symbolic value of an object o is denoted by R(o). It should be
noted that if an object has a symbolic value it is always an input symbol as it
is not possible to operate with object references similarly to numeric variables
(e.g., use summation). Reference constraints are formed at branching state-
ments where two object references are compared to each other and they are
of the form x ◦ y, where x is a symbolic value of an input object, y is either a
symbolic value or null and ◦ ∈ {=, 6=}. When input objects are constructed,
they are set to reference the same object if and only if so required by a refer-
ence constraint. As input objects have data fields, they are initialised as new
input values. In this work a method called lazy initialisation is used meaning
that the fields of an object are initialised on demand only after one of the
fields of a symbolic object is accessed during execution for the first time.

Example 3 Let us assume that a program taking two objects, o1 and o2, as
input is executed symbolically. Let us also assume that R(o1) = obj1 and
R(o2) = obj2. When an if-statement is executed that checks whether the
references point to the same object, two reference constraints are formed.
obj1 = obj2 for the true branch and obj1 6= obj2 for the false branch.

Given a prefix of an execution path, we are interested in finding concrete
inputs that will exercise one of the execution paths that has the given prefix.
Assuming that the local constraints and reference constraints corresponding
to the prefix are available, it is not enough to consider only the last constraint
on the prefix as all of them can add requirements for the inputs as illustrated
in the Example 1. A path constraint of an execution path prefix is a con-
junction of all the local constraints and reference constraints that must be
satisfied so that the prefix can be followed by a concrete execution. If the
path constraint is satisfiable, there exists concrete input values that will fol-
low an execution path with the desired prefix and if it is unsatisfiable, then
no such execution path can exist.

All the possible execution paths of a program can be expressed in a form
of a tree. A symbolic execution tree is a binary tree where the nodes repre-
sent locations in an execution path where symbolic execution is occurring.
An assignment with symbolic values is represented with a node that has only
one child and a branching statement depending on symbolic values is repre-
sented by a node with two children, one for the true branch and the other for
the false branch. The tree also contains information on the symbolic values
of variables for each execution point as well as the path constraints that must
be satisfied in order to reach a given node in the symbolic execution tree.
The number of nodes in a symbolic execution tree can be finite or infinite
depending on whether there are infinite loops in the given program.

Example 4 A symbolic execution tree of our example program is shown in
Figure 2. The path constraints are denoted in the figure by the short hand
PC. If the aim is to follow an execution path that takes the true branch on the
first if-statement and the false branch of the second, the corresponding path

2 OVERVIEW 11

Figure 2: Symbolic execution tree of the first example program

condition is input1+5 > 0∧input1+5 ≤ 2 which is satisfiable if input1 = −4
or input1 = −3. Trying to follow an execution path that takes first the false
branch and then the true branch in our example, leads to path constraint that
is unsatisfiable. This gives the information that no execution path with the
given prefix can exist. The execution path (1, 2, 4, 6, 7, 9, 10, 11) discussed in
Example 1 can be seen as an example of this.

2.3 Enabling Dynamic Symbolic Execution of Concrete Programs

The purpose of this section is to give an informal description of our test gen-
eration tool that is based on the concepts introduced earlier in this section.
As a symbolic execution tree describes the distinct execution paths of a given
program, the tool is based on constructing such a tree by running the pro-
gram under test both with concrete and symbolic values at the same time. If
the full symbolic execution tree of a program can be constructed, it can be
used to compute test inputs that give full path coverage of the given program.

The tool works as follows. A program under test is first modified to allow
symbolic execution to be done along the concrete execution. The program
is then executed first with random input values to some predefined depth.
The depth limit is used in order to avoid infinite executions. During a test
run, the tool keeps track of the symbolic values of variables and constructs

12 2 OVERVIEW

1 C l a s s S i m p l e L i s t
2 {
3 publ ic i n t v a l u e ;
4 publ ic L i s t n e x t ;
5 }

1 vo id example () {
2 i n t x = i n p u t () ;
3 S i m p l e L i s t y ;
4
5 x = x + 5 ;
6
7 i f (x > 0)
8 y = i n p u t () ;
9 e l s e

10 y = n u l l ;
11
12 i f (y . n e x t == y)
13 e r r o r () ;
14 }

Figure 3: Second example program

path constrains and starts building a symbolic execution tree based on the
collected constraints. Each test run can be seen as exploring one path in
the symbolic execution tree of the program. As branching statements are
executed, the paths in the symbolic execution tree are also extended with
branches. The concrete execution follows one branch based on the concrete
input values. For the other branch a new node that is marked as unvisited
is added to the tree and the local or reference constraint corresponding to
the branch is added to the node. After a test run finishes, one of the unvis-
ited nodes in the symbolic execution tree is selected and the path constraint
corresponding to the execution path prefix the node represents is given to
a constraint solver. If the path constraint is unsatisfiable, a new unvisited
node is selected and if the path constraint is satisfiable, the constraint solver
is asked to provide a satisfying assignment for the constraint and this corre-
sponds to the concrete input values that are used on the next test run. When
there are no unvisited branches left in the symbolic execution tree, the test
generation algorithm terminates. During this testing process, our tool reports
any uncaught exceptions as errors in the program under test.

The described test generation approach is further illustrated by an exam-
ple given below. A more formal description of how both local and referece
constraints are generated during execution is given in Section 3.

Example 5 Let us consider a modified version of the simple example pro-
gram discussed earlier. The program now takes both a primitive integer value
and an object representing a linked list as input to the system. The example
code is shown in Figure 3 and the different test runs from the viewpoint of a
symbolic execution tree are shown in Figure 4. The concrete values of prim-
itive variables are shown in parentheses as they are not part of the symbolic
execution tree. The first test run is executed with randomly generated in-
put values. The variable x is assigned a concrete value −572 and a symbolic
value input1 at line 2. A node corresponding to this first symbolic operation
is added as the root of the symbolic execution tree. For the x = x + 5 state-
ment a new node is added to the symbolic execution tree reflecting that the

2 OVERVIEW 13

Figure 4: Running example of the testing algorithm

symbolic value of x is updated to input1 + 5. At line 7 a branching state-
ment is encountered and as x has a symbolic value associated to it, two local
constraints, input1 + 5 > 0 and input1 + 5 ≤ 0, are formed for the true
and false branches respectively. Two nodes are added to the symbolic execu-
tion tree to represent this branching. As the concrete execution will follow
the false branch, the node corresponding to it will be chosen as the one that
will be expanded by the current test run and the other node is marked to be
unvisited so that future test runs can select it and compute input values that
will force the execution to follow the true branch instead. Because the false
branch was followed, the object reference y is set to be null and this causes
an null pointer exception at line 12. This causes our tool to inform the user
about an found error and the current test run terminates.

After the first test run, the symbolic execution tree looks like the left most
tree on Figure 4. The fully explored subtrees are marked with dashed lines.
The resulting tree has only one unvisited node and that is selected as the
node that will be expanded during the second test run. If there were multiple
unvisited nodes, an arbitrary strategy could be used to select which node
to expand. To get input values for the new test run the local and referece
constraints are collected along a path from the node to the root of the tree
and a path constraint is formed of these constraints. In this case there is only
one local constraint on this path and the path constraint is simply input1 +
5 > 0. The path constraint is then given to an off-the-shelf constraint solver
that reports that the constraint is satisfiable and gives input1 = 0 as one
assignment that satisfies the constraint.

Given this information the variable x is given the value 0 instead of a ran-
dom value on the second test run. This will cause the concrete execution
to take the true branch at line 7 as expected. On line 8 an instance of the
class SimpleList is read as an input. This will cause y to be assigned with
a new SimpleList object but the fields of this object are not initialised with
input values yet. This input object is given a new symbolic value, in this
case obj1. When executing the line 12, the field y.next is accessed and ac-
cording to the lazy initialisation approach we are using this will cause all the

14 2 OVERVIEW

field of y to be initialised with input values. This will give the field y.value
symbolic value input2 and y.next symbolic value obj2 as shown in the sec-
ond tree of Figure 4. Whenever a new symbolic object is created and there
are no restrictions placed on it in the path constraint, our tool will create a
new object that is distinct from the other symbolic objects. Because of this
the concrete object y.next is different from y and the execution follows the
false branch on line 12. As the branching statement uses symbolic objects,
reference constraints obj2 = obj1 and obj2 6= obj1 are created.

The second test run leaves again one unvisited node to the symbolic ex-
ecution tree and the path constraint corresponding to it is input1 + 5 >
0 ∧ obj2 6= obj1. For the third test run the variable x is given the value 0
again and when initialising the field y.next it is set reference the object y as
the path constraint requires the objects with symbolic values obj1 and obj2 to
be the same. With these inputs the concrete execution hits the error method
call on line 13. Note that the field y.value can be given a random value as it
is not mentioned in the path constraint. After the third test run there are no
unvisited nodes left in the symbolic execution tree as shown in the rightmost
tree in Figure 4. This allows the test generation algorithm to terminate.

3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME

In order to give the program under test the input values computed from path
constraints and to collect symbolic information about the test runs during
execution, it is necessary to instrument it first. During instrumentation the
original code is left unmodified so that the program can be run with con-
crete values and new statements are added to appropriate places to enable
the symbolic execution at the same time.

In this section it is explained how symbolic information can stored during
execution and what kind of instrumentation is needed. The discussion here
considers mostly instrumenting Java programs. However, similar approach
can be taken to instrument other imperative programming languages as well.
It is also discussed how the developed testing system can be used to test pro-
grams that take complex data (e.g., objects representing data structures) as
inputs and what kind of approximations are made in certain cases for effi-
ciency reasons.

The approach described in this chapter follows mostly the approach ex-
plained in [16] for tools named CUTE and jCUTE. The main differences
between the approach described here and the approach taken in CUTE are
highlighted at the relevant sections.

3.1 Syntax of Programs

As the number of different instructions available in Java bytecode and the
variety of Java statements that can be written as Java source code is large
enough to make the instrumentation of all the possible statement types cum-
bersome, it is convenient to translate Java to an intermediate language that
offers less statements and has a more restricted syntax than normal Java. In
our tool implementation Jimple [18] is used as this intermediate language

3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME 15

statement ::= label | assign | if comparison goto label |
return | begin | end

assign ::= variable = expression |
object reference = object reference

variable ::= local variable | object field

object reference ::= object | null | new object | input

expression ::= constant | variable | binop | invoke | input

binop ::= variable op variable

op ::= + | - | * | / | « | » | & | %

comparison ::= < | ≤ | > | ≥| == | ! =

Figure 5: Syntax of statements in the intermediate language

without loss of any expressive power in comparison with Java. To describe
the instrumentation process here, the full syntax of Jimple is not needed and
so an idealised imperative language based on simple three-address code will
be used to represent the language that is instrumented. Syntax of the state-
ments expressible in this language is presented in Figure 5. In addition to the
shown statements, the language also contains class and method definitions.
The tools used in instrumentation are discussed in more detail in Section 6

Any normal Java statement can be expressed using this simplified syntax.
For example, looping constructs can be written with if and goto expressions.
Note also that if-statements where logical OR operators are used (e.g., if
(x == 5 || x < 0)) must be expressed by using multiple if-statements. This
has the effect that the path constraints formed during execution contain only
conjunctions and no disjunctions. This is also the case with the Jimple lan-
guage used in the tool. To simplify the presentation further, the types of
variables and constants are left out of the discussion. The reader can imagine
the variable types to be, for example, primitive Java integers but all primitive
types are handled in a similar fashion as discussed in the subsequent sections.

3.2 Instrumentation

Adding the code for symbolic execution to a given program can be made in
a fully automatic fashion with the exception that it is assumed that the user
identifies the points in the source code where the system gets its input values.
If the goal is to unit test a method, the user can, for example, write a test driver
that generates the wanted symbolic inputs and filters the unwanted values
out if necessary and then calls the method to be tested with these values. The
locations where the inputs are read in the source code are not limited in any
way. This allows the user to take, for example, a fully implemented program
and replace the parts where the original inputs are read with symbolic input
statements and then proceed with testing.

Every statement that can read or update a variable with its value depend-
ing on the inputs must be instrumented. The approach taken in our tool is
to instrument all statements that could operate on symbolic inputs regardless

16 3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME

of whether a statement operates only with concrete values during test runs or
not. This means that a majority of the lines in the code will be instrumented.
This slows down the execution with a constant factor.

To describe the instrumentation process it is first discussed how symbolic
values of primitive type variables and objects can be stored. The instrumen-
tation of programs with only primitive type input values is then described.
After this it is explained how the instrumentation can be extended for pro-
grams that take objects as inputs and finally it is discussed how method calls
must be instrumented.

Storing Symbolic Values
To form the symbolic path constraints introduced in the previous chapter,
it is necessary to know for each variable the symbolic expression associated
with it during execution. For this reason we introduce symbolic memory
maps S and R for primitive type variables and objects, respectively. These
memory maps are maintained by the code added during instrumentation. A
symbolic value of a variable x is denoted by S(x) like in the previous chapter
and S ′ = S[x 7→ s] is written to express that S ′(x) = s and the rest of the
mappings in S and S ′ are identical. S ′ = S − x is used to denote that the
mapping of variable x to a symbolic value is removed. S ′(x) is defined in
this case to return an implementation specific value indicating that x is not
symbolic. The map R maps objects to symbolic values in a similar fashion.
In addition to S and R a mapping denoted by M is also maintained but the
description of this mapping is postponed until later of this section.

On the implementation level the memory addresses of data values could
be used as the keys to which the symbolic values are mapped to as the ad-
dresses can be seen as unique identifiers. However, because in Java it is not
possible to have access to pointers and memory addresses, the names of the
variables are used as the keys for primitive type variables. This solution has
naturally the problem that names are not unique for each variable. There-
fore the mapping has been implemented by adding a new symbolic variable
during instrumentation for each primitive local variable in the program. In
other words, each primitive type local variable has a counterpart variable with
the same exact scope as the original. As in each scope we have no ambigu-
ity over the memory address a variable name refers to, the problem of non-
unique names is solved. This approach naturally requires that the mapping
is maintained by the new variables added during instrumentation and this
effectively doubles the number of local variables the program uses. By apply-
ing static analysis to the source code to identify the statements and variables
that can be affected by the inputs (e.g., using type-dependence analysis [1]),
it would be possible to optimise the amount of instrumentation to gain some
improvement in execution time and memory usage. It should be noted here
that the described method to store symbolic values associates the symbolic
value with a variable and not with the value. As in Java it is not possible to
have two primitive type variables to point to the same memory location, it
is safe to do the association this way (i.e., it is not possible to have aliasing
variables changing their values without changing the symbolic value of the
counterpart).

In the case of object fields, a similar approach could be used as with local

3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME 17

variables (i.e., new symbolic fields could be added to the class description to
store the symbolic values). However, to minimize the amount of instrumen-
tation needed, the symbolic memory map for object fields is implemented
as a data structure that uses the object reference and field name as a key and
maps the key to a symbolic value.

With input objects it is possible to have multiple references to the same
object. Therefore the mapping R is implemented by maintaining a data
structure that maps an object reference to a symbolic value, as the reference
can be used as an unique identifier similar to the object field case. Whenever
a symbolic value of an object is needed, the data structure is searched for a
reference to the object and the symbolic value mapped to the reference is
returned if the reference is found.

To keep the symbolic values stored for each variable short during exe-
cution, each time a symbolic value is changed a new symbolic identifier is
made to represent this value. For example, instead of storing a symbolic value
input1 + 5 for a variable x a symbolic value s0 is used and the information
that s0 = input1 + 5 is maintained separately. After another summation with
value 5 the symbolic value would be S(x) = s1 and s1 = s0 + 5. Consider
a case where a variable is summed repeatedly with itself. This would lead to
the symbolic expression growing exponentially in the number of summations
if new symbolic identifiers were not introduced. Naturally it is possible to do
some simplifications like input1 + input1 = 2× input1 similarly to [16, 17] to
keep the symbolic expressions succinct. This possibility is discussed further
in Chapter 4 but the implementation of such simplifications is left for future
work.

The symbolic execution tree constructed during test runs is maintained
in a separate module to the runtime environment where the tests are exe-
cuted. Our testing system can be seen as consisting of two parts: one is the
instrumented program under test and the second is a module that maintains
a symbolic execution tree and uses it to select test inputs for test runs. An
instrumented program will be called a test executor and the second module
a test selector. The test executors store data relevant to a single test run by
themselves and report all the information relevant to the construction of the
symbolic execution tree to the test selector. The details of the test selector
are given in Chapter 4.

Symbolic Execution with Primitive Data Types
To instrument a given program, each statement in it will be processed one
at a time and code performing symbolic execution will be added for that
statement if needed. The basic principle during instrumentation is to try to
minimise the amount of code added directly to the original code and to do
most of the work in methods that are called from the instrumented code lines.
The statements added during instrumentation to a program containing only
primitive type input values are shown in Table 1. The letter v will be used as
a shorthand for variables, letter o for objects and letter e for expressions.

Before a test run can be started, the symbolic execution part of the pro-
gram must be initialised. During the initialisation, a connection is formed to
the test selector. The selector sends a list of concrete input values that must
be used one at a time in the given order when an input statement is exe-

18 3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME

Before instrumentation After instrumentation

begin I = receive inputs;
i = k = j = inputNumber = 0;
S = M = R = [];
begin

v = e; EXECUTEASSIGNMENT(v, e);
v = e;

v = input; v = GETINPUT(v);
if v1 op v2 goto l; EXECUTECONDITION(op, v1, v2);

if v1 op v2 goto l;
goto; CHECKGOTOCOUNT();

goto;
end REPORTEND();

end

Table 1: Instrumentation of statements

cuted to make sure that the correct execution path prefix will be followed.
The selector can alternatively send also the path constraint that can be used
to compute the input values. This alternative is discussed in more detail in
Section 4.5. The input values received from the test selector are denoted
by an input mapping I that maps the number of an input (expressed by in-
putNumber) to a concrete input value. In other words, the map I can be
seen as a sequence of input values ordered by the input number (i.e., when
the first input statement is executed the first value of the sequence is used).
If the program is not fully deterministic (e.g., the system uses input values
that are not received from the test selector) the test run is not guaranteed to
follow the expected execution path. To detect executions that do not follow
expected execution paths, a bit-vector containing the information of which
outgoing branch was taken at each branching statement is constructed. By
reporting this bit-vector to the test selector it can be checked if the correct
path has been followed. This is further discussed in Chapter 4.

At every point where the program terminates successfully, the test selector
needs to be informed about this so that an execution path can be marked
to be explored. Every time a program terminates, normally or due to an
error, the connection to the selector is closed. If the successful termination
is not reported before this happens, the test run is considered to have found
a program error. This means that every non-error termination point must
be identified, which in our tool is done automatically when the program is
transformed into Jimple.

Every input statement indicated by the user is replaced with a call to a
method that assigns a concrete input value and a symbolic value to the re-
spective variable. The symbolic variable is simply assigned with a new unique
input symbol and it is reported to the test selector that this value represents
the new input value. For the concrete input, it is first checked if there are
values given by the selector left to use. If there are not, a random value will
be used. This is further illustrated in Figure 6.

With every assignment statement it is necessary to make sure that the sym-
bolic values are also updated. Figure 7 shows how this is done. When a

3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME 19

GETINPUT(v)

1 S[v 7→ si]; //si is a new symbolic value
2 i = i + 1;
3 REPORT(S(v) = inputk);
4 k = k + 1;
5 if (inputNumber ∈ domain(I))
6 result = I(inputNumber);
7 else
8 result = a random value;
9 inputNumber = inputNumber + 1;

10 return result ;

Figure 6: Getting correct input values during execution

concrete value is assigned to a variable, the symbolic value associated with
the variable is simply removed if such a value exists. Assigning a value from a
variable to another requires only copying the symbolic value to the respective
symbolic variable. The case v = v1 op v2 where the result of applying a binary
operator to two variables is assigned to another variable is slightly more com-
plex. It is first checked (on line 10) whether the binary operator is supported
by the constraint solver being used and if it is not, the assignment is executed
only concretely and the symbolic value of v is removed. If the binary oper-
ator is applied to at least one variable with a symbolic value, a new unique
symbolic identifier is generated to express the result of the assignment and
this identifier is given as the symbolic value of v. As the symbolic identifier
in itself does not contain the information of the symbolic expression corre-
sponding to it, this fact is reported to the test selector as shown, for example,
on line 18. If the binary operator is a multiplication or division and the both
variables to which the binary operator is applied to have symbolic values, the
constraints resulting from using the new symbolic value are nonlinear. As the
nonlinear integer programming problems are in general undecidable, there
might be no support in constraint solvers to handle nonlinear constraints
that result from these kind of assignments. (However, when representing
variables as fixed-size bit-vectors, which corresponds more closely to the way
values are stored in computers, the problem becomes decidable.) If the tool
is used with a constraint solver that does not support nonlinear constraints,
the symbolic expression corresponding to the assignment is approximated by
replacing one of the symbolic values used in the assignment with a concrete
value (line 16). This allows part of the symbolic information to be carried
over the assignment statement. This same approximation is also used in the
jCUTE tool.

To execute if-statements symbolically, it is first determined which outgo-
ing branch the concrete execution will take and then a local constraint is re-
ported to the test selector as illustrated in Figure 8. The method first checks
whether the if-statement operates on symbolic values or not. If only concrete
values are used, the test selector needs not to be informed as the statement
does not affect the symbolic execution tree of the program. If symbolic val-

20 3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME

EXECUTEASSIGNMENT(v, e)

1 match (e)
2 case c: //c is a constant value
3 S = S − v;
4 case v1: //v1 is a variable
5 if (v1 ∈ domain(S))
6 S = S[v 7→ S(v1)];
7 else
8 S = S − v;
9 case v1 op v2:

10 if (op is not supported by the constraint solver)
11 S = S − v;
12 else if(v1 ∈ domain(S) ∧ v2 ∈ domain(S))
13 S[v 7→ si]; //si is a new symbolic value
14 i = i + 1;
15 if (op ∈ {∗, /} ∧ only linear constraints supported)
16 REPORT(S(v) = S(v1) op v2);
17 else
18 REPORT(S(v) = S(v1) op S(v2));
19 else if(v1 ∈ domain(S))
20 S[v 7→ si];
21 i = i + 1;
22 REPORT(S(v) = S(v1) op v2);
23 else if(v2 ∈ domain(S))
24 S[v 7→ si];
25 i = i + 1;
26 REPORT(S(v) = v1 op S(v2));
27 else
28 S = S − v;

Figure 7: Executing symbolic assignments

ues are used, the local constraint for the true branch is reported to the test
selector (the false branch can be obtained by simply negating this condition)
as well as the branch taken by the current concrete execution so that the test
selector knows which of the branches it will keep expanding. Note that on
line 2 the information of the taken branch is used in construction of the bit-
vector containing all the chosen branches regardles whether the if-statement
operates on symbolic values or not. The constructed bit-vector is sent to the
test selector whenever REPORT method is called.

As a program may have infinite execution paths due to looping constructs,
the test runs must be cut at some predefined depth to make sure that the
testing terminates. The only ways of creating a loop in Jimple and in our ide-
alised language is by using goto statements or recursive method calls. Each
goto statement is instrumented with a CHECKGOTOCOUNT method, that
implements a counter that is increased each time a goto statement is ex-
ecuted. Every method call is instrumented with a CHECKINVOKECOUNT

3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME 21

EXECUTECONDITION(op, v1, v2)

1 branchTaken = EVALUATE(v1 op v2);
2 CONSTRUCTBRANCHBITVECTOR(branchTaken);
3 if (v1 ∈ domain(S) ∧ v2 ∈ domain(S))
4 REPORT(S(v1) op S(v2), branchTaken);
5 else if(v1 ∈ domain(S))
6 REPORT(S(v1) op v2, branchTaken);
7 else if(v2 ∈ domain(S))
8 REPORT(S(v2) op v1, branchTaken);

Figure 8: Executing if-statements symbolically

Before instrumentation After instrumentation

o = input; o = GETSYMBOLICOBJECT(o);
v = o.field ; LAZYINITIALIZE(o);

EXECUTEASSIGNMENT(v, o.field);
v = o.field ;

o.field = e; LAZYINITIALIZE(o);
EXECUTEASSIGNMENT(o.field, e);
o.field = e;

if o1 op o2 goto l; EXECUTEOBJECTCONDITION(“op”, o1, o2);
if o1 op o2 goto l;

Table 2: Instrumentation of object statements

method, that works similarly to the case with goto statements. Whenever a
method or goto counter exceeds a given depth value, the test run is reported
to have been successful and the test run is terminated.

Symbolic Execution with Objects
The additional instrumentation needed for symbolic execution with input
objects is shown in Table 2. Notice that there is no need to add any in-
strumentation to assignment statements using object references. To see the
difference to the primitive data type case, consider assignments x = 5 and
y = null, where x is an integer and y is an object reference. The first assign-
ment replaces the earlier value in the memory location reserved for variable
x. If a symbolic value is associated with the memory location, assignments
affecting the value in it must also affect the symbolic value. In the second
assignment the value of y is not an object but a reference to one. This means
that when y is set to be null, it does not change the object it was referencing
in any way. As symbolic values are associated with objects, no object refer-
ence assignments can change the symbolic values of objects. Furthermore
it is not possible to directly replace or delete an object in a given memory
location in Java.

Getting objects as inputs is more complicated than getting simple nu-
meric values. The main difference to primitive type inputs is that with prim-
itive inputs the test selector can simply give a concrete value that is assigned

22 3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME

GETSYMBOLICOBJECT(o)

1 if (inputNumber ∈ domain(I))
2 l = I(inputNumber);
3 if (l == 0)
4 result = null;
5 else if(l ∈ domain(M))
6 result = M(l);
7 else
8 result = new object of type o;
9 R = R[result 7→ objj];

10 M = M[l 7→ result];
11 else
12 result = new object of type o;
13 R = R[result 7→ objj];
14 inputNumber = inputNumber + 1;
15 j = j + 1;
16 return result ;

Figure 9: Getting symbolic objects as inputs

to a variable but with object inputs no such concrete value can be given. In
place of concrete values the test selector sends logical addresses to input ob-
jects. A logical address is a natural number where the value zero is a special
value that corresponds to a null reference. When the test selector wants to
have two input objects to be the same, it will give them both the same logical
address in the input map I. For example, if the input map corresponds to
an input sequence (1,0,1,2), the first and third calls to GETSYMBOLICOB-
JECT will give the reference to the same object, second call will give a null
reference and fourth call a reference to an object that is not the same as the
ones given by the earlier calls. To be able to return a reference to an already
created object, as in case of the third call in the previous example, a map-
ping from logical address to concrete objects is maintained. This mapping is
denoted by M.

Figure 9 shows the algorithm for creating a new input object. Similarly
to the primitive input case it is first checked if the test selector has given an
input value that must be used at the current execution point. If the input
map contains a value, it corresponds to a logical address of an object. If the
address corresponds to a null reference, the algorithm simply returns null as
the result. Otherwise it is checked (line 5) if the required object has already
been created by looking a reference to it in the map M. If the reference
is found, it is returned as the result and if it is not found, a new object is
created and the mapping from the given logical address to the newly created
object is added to M. A symbolic value objj is also associated to the created
object. The value j is a running number to prevent the same input symbol
from being used multiple times.

If the input map does not contain a logical address to be used, a new
object is created and a symbolic value is associated with it. Notice that in this

3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME 23

case no logical address is given to the object. This is because all input objects
are assumed to be distinct unless required otherwise by the test selector. As
the input map does not containt at this point any new values, there cannot be
any requirements for input object created later during the test run. Note also
that any new object returned by GETSYMBOLICOBJECT is simply created
by using a default class constructor. This means that the fields of the object
are not initialised with any symbolic values at this point.

In LAZYINITIALIZE, the given object is marked to have been initialised to
prevent multiple initialisations. To initialise the fields, the tool supports two
approaches: all of the fields in an object can be initialised as new symbolic
inputs or the user can provide a custom method that has been added to the
class of the object and does the initialisation. The first approach creates ob-
jects that have no restrictions on what values their primitive type fields can
have and that have every object field set to be a new symbolic object. This ap-
proach is suitable for simple objects that do not have dependencies between
their fields, such as linked lists that are not sorted with respect to their con-
tent. However, when the objects are more structured and have invariants that
must hold, it is more convenient to allow the user to specify which fields are
to be initialised with symbolic inputs and allow some fields to be initialised
with only concrete values, possibly depending on the input values received
for the other fields. This is achieved by calling a user written method at the
time when lazy initialisation is done. Currently the method must be added
manually to the source code of the class but this could be done automati-
cally during instrumentation even when no source code of the object class
is available. The initialisation method can access normally the public and
private fields of the object and may contain arbitrary Java code. The user
is, however, responsible that the initialisation code does not have side effects
that could not happen when the original program is executed without any
code added for symbolic execution. The problem of creating input objects
that must satisfy invariants is discussed in more detain in the Section 3.4.
The lazy initialisation approach is one of the biggest differences in our tool
in comparison with jCUTE. In jCUTE all input objects are initialised as
null references on the first time they are encountered in a test run and they
are initialised with randon inputs like in our tool if a local constraint requires
them to be non-null. The initialisation is done at the point where the object
is received as input and not on demand as in our tool. The advantages and
disadvantages of lazy initialisation in comparison to the jCUTE method are
discussed in Chapter 4.

To collect reference constraints the EXECUTEOBJECTCONDITION method
presented in Figure 10 is executed before any if-statement that compares
objects references instead of primitive values. Our tool collects reference
constraints that can be only of the form o1 = o2, o1 6= o2, o1 = null and
o1 6= null, where o1 and o2 are symbolic objects. The EXECUTEOBJECT-
CONDITION method checks if the comparison of objects falls under one of
these types and also determines the outgoing branch of the if-statement taken
by the concrete execution (in line 2). If the comparison is of the supported
type and input objects are used in the comparison, the method generates
an reference constraint based on the symbolic values of the objects. As null
object references do not have symbolic values associated to them, they are

24 3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME

EXECUTEOBJECTCONDITION(op, o1, o2)

1 if (op ∈ {==, ! =})
2 branchTaken = EVALUATE(o1 op o2);
3 CONSTRUCTBRANCHBITVECTOR(branchTaken);
4 if (o1 ∈ domain(R) ∧ o2 ∈ domain(R))
5 REPORT(R(o1) op R(o2), branchTaken);
6 else if(o1 ∈ domain(R) ∧ o2 == null)
7 REPORT(R(o1) op null, branchTaken);
8 else if(o2 ∈ domain(R) ∧ o1 == null)
9 REPORT(R(o2) op null, branchTaken);

Figure 10: Generating reference constraints

handled as a special case (in lines 6 and 8). The generated reference con-
straint and the branch that the concrete test run will take are then reported
to the test selector.

Symbolic Execution with Method Calls

In Java all arguments to methods are passed by value. This means that when
a method is called with arguments that have symbolic values associated with
them, the symbolic values must be associated with the corresponding new
variables inside the method as well. Table 3 shows the code instrumented
at method calls. When a method is called, all symbolic values of the argu-
ments are pushed into an argument stack and these values are read from the
stack and assigned to the corresponding symbolic variables at the beginning
of the method execution. Likewise, the symbolic return value of a method
is transferred from the method to the caller using the argument stack. To be
more precise, the tool must also be able to handle cases where the method
caller and the method might not be both instrumented as the user has control
of what parts are instrumented and there might be some libraries or native
methods that cannot be instrumented. Otherwise the stack could be empty
when it is read or there might be some old argument values that were not
read and removed by an uninstrumented method. For this the tool asso-
ciates a method identification to the elements in the argument stack and
uses this to check that there are no old arguments and removes them if nec-
essary when adding new ones and makes sure that the arguments or return
values received are in fact from the right source. If during a pop operation
the argument stack is empty or contains old arguments, no symbolic values
are passed to a method or a caller. The basic principle behind method in-
strumentation, however, stays the same as shown in Table 3 regardless of the
implementation of these checks.

Note also that when object references are used as arguments in method
calls or as return values there is no need for additional instrumentation. The
same reasoning as with assignment statements holds in this case as well.

3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME 25

Before instrumentation After instrumentation

v = method(v1, ..., vn); CHECKINVOKECOUNT();
push(S(v1)); ...; push(S(vn));
v = method(v1, ..., vn);
S[v 7→ pop()];

method(v1, ..., vn) { method(v1, ..., vn) {
... S[vn 7→ pop()]; ...;S[v1 7→ pop()];
return v; ...
} push(S(v));

return v;
}

Table 3: Instrumentation of methods and method calls

3.3 Used Approximations

The path constraints generated by running a program that has been instru-
mented the way it has been described in this chapter are not guaranteed to be
precise enough to make it possible to generate test inputs that will cover all
the possible behaviour of the program. That is, the current approach cannot
be used in general for proving that an implementation does not throw any
uncaught exceptions. This limitation is due to the fact that local or reference
constraints are only constructed at branching points of a program similarly
to [16] where a program code, a[i] = 0; a[j] = 1; if (a[i] == 0) ERROR, was
given as an example of this. If the variables i and j are input variables, it
is possible to follow execution paths that either hit the error statement or
avoid it based on the fact whether i and j are equal. However, as there is no
if-statement that would check for this fact, our tool assumes that the values
are independent and does not generate constraints i = j and i 6= j. Simi-
larly, our tool does not generate null dereferences or object reference aliases
if there are no branching statements that result in such reference constraints.
This no aliasing assumption is made also by CUTE and jCUTE to improve
efficiency as in many practical cases the approximation seems to give rea-
sonably good results. EXE [5], however, is a symbolic execution based tool
that creates exact constraints even when aliasing as shown above can occur.
The approach used is to add a disjunction of all possible aliasing cases to the
path constraint. The downside is that the path constraints will get more com-
plex and thus more difficult for the constraint solver to solve. Improving the
accuracy of the constraints generated by our tool is left for future study.

Another point where the tool fails to explore all possible behaviour is when
symbolic values are used with operators that are not supported by the used
constraint solver or uninstrumented methods are called, such as native calls
to functions implemented in another programming language. As discussed
earlier, the symbolic values are approximated with concrete values in these
cases. Such approximations are necessary and actually show the advantage
that dynamic test generation has over static methods. To illustrate this, con-
sider that we are unit testing the following method:

boolean test (int x, int y) {

26 3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME

if (x == blackBox(y))

return true;

else

return false;

}

The method blackBox is an uninstrumented method and no source code
for this method is available. If static analysis is used to this method, it is im-
possible to generate concrete input values for x and y that will test either of
the branches in the test method as nothing can be assumed about the value
returned by blackBox. Our tool can, similarly to other dynamic symbolic
execution tools, circumvent this problem partly. As the program is first exe-
cuted with concrete random values, some concrete value is also received as
the result of blackBox(y) and a local constraint that forces x to be equal or
unequal to this value can be generated. Therefore it is possible to find input
values for both of the branches. Naturally, the symbolic value associated with
y is lost and our tool is limited to enter the branches with only some random
concrete values.

3.4 Objects with Invariants

Generating object inputs that must satisfy an invariant causes problems if the
fields of an object can be initialised with arbitrary input values. For example,
consider a case where a method that gets a binary search tree as input is unit
tested. In binary search trees, at any given node in the tree, the left subtree of
the node contains only values that are less than the value of this node and the
right subtree contains values that are greater or equal to the value of the node.
As there are no restrictions on how the concrete input values are generated
other than the path constraints collected during testing, it could happen that
a binary search tree that does not fulfil the invariant that requires the nodes
to be correctly ordered, is generated. If the method being tested is assuming
that the input it receives is in fact a valid binary search tree, the testing could
generate test cases that are not possible with valid inputs. This could cause
the tool to report unwanted errors.

Using the initialisation method approach described in the previous sec-
tion can help in some cases. For example, if an input object has two fields
of which the first has to be always greater than the second, it is easy write an
initialisation method that adds a requirement to the path constraint that guar-
antees that the fields are initialised correctly. However, this approach might
not be enough if the object that is being initialised is part of a data structure
consisting of many objects. The initialisation method can look at the data
structure only from the point of view of the object itself, but to create a valid
data structure as an input, it might be necessary to look at the data structure
as a whole. For example, in the binary search tree, if the node object does
not contain a reference to its parent node, it is impossible to constrain the
value of the node to be less or greater than the value of the parent as the
initialisation method does not have access to the parent. To generate such
data structures, the user must write an external test driver that generates valid
inputs first and only after that passes the structure to the method that is being
tested. The price to pay here is that the input structure will be initialised at

3 COLLECTING SYMBOLIC CONSTRAINTS AT RUNTIME 27

least partly before it is used regardless of the requirements that the system un-
der test might place on the structure. In the initialisation method approach
the object will be initialised on demand and this can avoid generating some
unnecessary test cases. For example, with an external test driver it might be
necessary generate binary search trees of all possible shapes to guarantee that
the testing is exhaustive even if some shapes would follow the same execution
path.

In [19] two approaches are presented for generating input data structures.
Both of these approaches can be used with our tool by writing a test driver
that implements the approach. In the first approach, the data structures are
generated by using repeatedly the basic methods the data structure offers
(e.g., creation of a new data structure and addition of a new element) if these
are available. A data structure constructed this way with symbolic elements
is valid if the implementation of it is correct. It is important to note here,
that to generate all possible variants of a data structure, it may be necessary to
use all the operations the data structure provides. For example, it is possible
that some variants cannot be generated by using only additions but element
removals are also necessary.

The second approach is to use a method that checks if an required invari-
ant holds in a given data structure. When this method is executed with a
symbolic input, the local and reference constraints added to the path con-
straint during the checking ensure that the objects passing the check are rep-
resenting valid data structures. In a way, this approach can be seen as solving
the method for checking invariants: the symbolic execution of the method
generates the constraints that lead to valid structures and the execution paths
leading to invalid structures can be terminated before the generated structure
is passed to the system under test.

4 GENERATING INPUTS

In this chapter the focus is moved to describing the second main part of
our tool, the test selector, which receives the constraints generated during
test runs and uses these constraints to compute new input values. Many of
the previously implemented dynamic symbolic execution tools, such as [16,
10], use information only from the latest test run. This, in practice, limits
the order in which a symbolic execution tree of a program is explored to a
depth first search but on the positive side saves memory as there is no need to
construct a representation of the symbolic execution tree. Our tool, however,
constructs and maintains a symbolic execution tree based on the information
of all the previous test runs. A similar approach is also used in a more recent
tool called Pex [17]. Constructing a symbolic execution tree allows the test
selector to use a variety of different strategies on how to choose an unvisited
branch from the tree for the next test run. It also makes it possible to run
multiple test runs concurrently as the test runs exercise different execution
paths and the test runs need only to communicate with the test selector and
not with each other. This will be further discussed in this chapter and in
Section 6.

The general working principle of the test selector is shown in Figure 11.

28 4 GENERATING INPUTS

1 Tree T = new symbolic execution tree;
2 Strategy S = select search strategy;
3 while (T has unvisited nodes)
4 m = n = S(T); //an unvisited node n is selected by using strategy S
5 pc = >;
6 while (m 6= T.root)
7 pc = pc ∧m.constraint; //a path constraint pc is constructed
8 m = m.parent;
9 inputs = SOLVE(pc);

10 if (inputs 6= unsatisfiable)
11 Give inputs to a test executor e;
12 Expand n based on symbolic execution done by e;
13 if (e reports an error)
14 Report input values leading to error;
15 mark n visited;

Figure 11: General testing algorithm

The test selector uses a strategy S to select an unvisited node from the sym-
bolic execution tree. The search strategies implemented in our tool are dis-
cussed in Section 4.3. After an unvisited node is selected, a path constraint
corresponding to it is formed by collecting local and reference constraints
on the path from the unvisited node to the root of the tree (lines 6-8). For
the first test run the path constraint is considered to be true so that the first
test run will be executed with unconstrained input values. To get concrete
input values for a desired execution path the path constraint is given to an off-
the-shelf constraint solver. Solving the path constraints is discussed in more
detail in Section 4.3. In particular, it will be discussed how object constraints
are solved and what implications they might have on the symbolic execution
tree, as the lazy initialisation approach used by the test executors can cause
some complications if these are not taken into account. If the path constraint
is satisfiable, the concrete input values that satisfy the constraint are given to a
test executor and the symbolic execution tree is updated based on the events
observed during the test run.

4.1 Representing Symbolic Execution Trees

The data structure for the symbolic execution tree can vary from a search
strategy to another as each strategy might need to have some information
stored to the tree that no other strategy requires. Any data structure that is
used to maintain the information needed to compute new input values must
have the following three characteristics:

• it can be used to get path constraints for currently unvisited branches,

• it can be used to guaratentee that the same execution path is not tested
multiple times, and

4 GENERATING INPUTS 29

Message type Description

Assignment A new symbolic value has been created due to
a new input or assignment statement that uses
a symbolic value with a binary operator.

Branch Symbolic value has been used at a branching
statement. Contains a local or object constraint
and the branch that was taken by the concrete
execution.

Object Initialisation A symbolic object has been initialised.
Depth limit The maximum execution depth has been

reached.
Error The Java program under test has terminated

due to an uncaught exception.
End The program has terminated normally.

Table 4: Message types and their descriptions

• it can be used to check that a test run follows the execution path pre-
dicted by the branches in the symbolic execution tree.

The third characteristic is needed because it is possible due to approxima-
tions our tool makes that a test run does not follow the execution path that
would be expected after solving a path constraint of an unexplored branch in
the symbolic execution tree. Handling the executions that fail to follow the
predicted path is discussed in more detail later in this section.

All the strategies currently implemented in our tool use binary trees as the
main data structure and even though there are some differences in the fields
that each node in the tree has, the basic principle how the trees are con-
structed is the same. Futhermore, the search strategies use different auxilary
data structures to efficiently select unvisited nodes from the binary tree.

4.2 Constructing Symbolic Execution Trees

As illustrated by the examples in Chapter 2, each path in a symbolic exe-
cution tree represents a possible prefix of an execution path. The symbolic
execution tree is constructed by adding new nodes and creating new paths
based on the messages generated during test runs. The types of messages a
test selector can receive are shown in Table 4 as a summary from Chapter 3.
Assume that a node has been selected from the symbolic execution tree as
the current node that is to be expanded. As a basic principle, all received
assignment messages create a single child node to the current node being ex-
panded and the assignment in the message (e.g., s0 = input1 or s5 = s2× 8)
is set as a constraint for all the paths that contain the newly added node. A
branching message creates two child nodes and sets the constraint in the mes-
sage as a constraint for the first node and a negation of the constraint for the
other node. The child node that corresponds to the path that the concrete
execution is following is chosen as the node that will be expanded by future
messages and the other is marked as unvisited.

Depth limit and error messages denote that the current path is not ex-

30 4 GENERATING INPUTS

1 L i s t l 1 = i n p u t () ;
2 L i s t l 2 = i n p u t () ;
3 i n t x = i n p u t () ;
4
5 i f (x == 5) {
6 i f (l 1 != n u l l)
7 i f (l 2 != n u l l) {
8 l 1 . v a l u e = l 2 . v a l u e ;
9

10 i f (l 1 == l 2)
11 p r i n t (l 1 . v a l u e) ;
12 }
13 }

Figure 12: Symbolic object example

plored any further and the current node that was to be expanded is marked
as finished. If both children of the parent of this node are marked as finished,
the parent is set to be finished also. If the used search strategy does not need
information about the already visited subtrees in the symbolic execution tree,
it also possible to delete unnecessary nodes from the tree. This can be done
when a node is marked finished and it does not have any children or the child
nodes have been marked as finished.

For symbolic execution that uses only primitive data types, the construc-
tion method described above is enough and a path constraint for an unvisited
node can be formed by collecting all constraints on a path from root to the
unvisited node. However, when symbolic objects are used with lazy initialisa-
tion the situation is slightly more complex. Consider the example program in
Figure 12. Let us assume that the test selector has generated inputs that will
take the true branches on the first three if-statements and the false branch on
the fourth. The partial symbolic execution tree that is constructed based on
this test run is shown on the right side of the program code. Note that the
symbolic list objects are initialised lazily when line 8 is executed. Assume
now that for the next test run the test selector wants to follow the same execu-
tion path as before with the exception that the execution is forced to take the
true branch on line 10. We would like to start expanding the unvisited node
corresponding to this path in the symbolic execution tree but if this is done,
the resulting path would no longer represent exactly the symbolic events hap-
pening when the execution path is followed. This is because when l1 and l2
are set to point to the same object, the lazy initialisation of the latter object
will not happen anymore as it is already initialised. Based on the first test run,

4 GENERATING INPUTS 31

it is expected that the third input value (input3) will be used during lazy ini-
tialisation but on the second test run, the third input value may be assigned at
some later point if the program continues beyond the code presented in our
example. This can lead to giving input values to the test executor in a wrong
order. Moreover, in the general case the lazy initialisation process may add
new constraints and branches to the symbolic execution tree depending on
whether the user has implemented a custom initialisation method and this
can cause further inconsistencies to the symbolic execution tree.

To solve this problem, a new branching point is added to the symbolic
execution tree when the initialization of a new input object with symbolic
value obji is reported to have happened. This special branch point will be
refered to as initialization point of obji. The initialization points have two
child nodes. The first child corresponds to the execution path where the ini-
tialization does happen and it is given a reference constraint that fixes the
logical address of the input object to an unique value (e.g., obj2 = 2). The
other child node is given a negation of the reference constraint and the sub-
tree starting from this node is intended to contain all the symbolic execution
paths where the input object at hand is the same as some other input ob-
ject created earlier during the execution. However, this second branch is
not marked as unvisited when a new initialization point is created as it is not
known to which input objects the current object reference might point to.

Example 6 Let us consider the following code snippet:

1: List l1 = input();

2: List l1 = input();

3: l1.value = l2.value;

4: if (l1 == l2)

5: ...

6: else

7: ...

The program takes two List objects as input and uses them on line 3 caus-
ing the lazy initialization of both input objects to occur. After executing
line 3 and line 4 the symbolic execution tree of the program will contain two
branches as shown in Figure 13. The initialization points are marked with
gray colour in the picture.

As can be seen from the previous example, the fixed values assigned at ini-
tialization cause that the path constraint obj1 = 1 ∧ obj2 = 2 ∧ obj1 = obj2
is unsatisfiable. However, it is possible to follow the true branch at line 4
of the example if the two input objects are the same. Therefore, whenever a
path constraint is found to unsatifiable due to a conflict caused by a reference
constraint of the form obji = objj , the symbolic execution tree is searched
for the initialization points of the two objects named in the constraint. The
initialization point located deeper in the symbolic execution tree is then ex-
tended with a new branch to a node that contains the constraint obji = objj .

32 4 GENERATING INPUTS

Figure 13: Symbolic execution tree and input objects

If the path constraint corresponding to this new node is satisfiable, the exe-
cution paths where the two objects are equal are explored. Figure 14 shows
the symbolic execution tree of the previous example that contains satisfiable
symbolic execution paths for both outgoing branches of the if-statement at
line 4.

It is also possible to create the initialization points when the input ob-
jects are created. For example, at lines 1 and 2 in the example above. The
approach used in jCUTE can be seen to fit in this category, although the
construction of symbolic execution trees there is different due to not using
lazy initialization and limiting the search strategies to depth-first search. It
is however, beneficial to postpone the branching caused by the initialization
points to the point where the object are used for the first time. To see this,
let us consider the example program in Figure 12. If the false branch of the
if (x == 5) statement at line 5 would contain a large portion of code that
does not use the input objects l1 and l2, creating branches at lines 1 and 2
would cause this portion of code to explored multiple times with the same
symbolic values. By postponing the branching after the if-statement at line 5,
the subtree corresponding to the code behind the false branch is explored
only once.

Failing to Follow a Predicted Execution Path
When a new test run is started, one of the nodes in the tree corresponding
to an unexplored branch is selected and the tree is expanded from that node
onwards based on the event messages the test executor sends as explained
in the previous subsection. Before the tree can be expanded, it is necessary
to check that only those messages are used that are received after the test

4 GENERATING INPUTS 33

Figure 14: Symbolic execution tree and input objects

1 i n t example (i n t x , i n t y)
2 {
3 i f (y > x)
4 i f (x > b lackBox (y))
5 . . .
6 e l s e
7 . . .
8 e l s e
9 . . .

10 }

Figure 15: Example of execution failing to follow the correct path

run has reached the point where the execution of an unexplored part of the
execution path has started. It is also necessary to check that the test run will
in fact follow the predicted execution path. The reason why this check is
needed is that our tool approximates black box methods and operators not
supported by the constraint solver with concrete values and also because it
does not create exact path constraints with aliasing as shown in Chapter 3.

Example 7 Let us consider the method in Figure 15. Assume that the method
blackBox is uninstrumented and returns the same value as it gets as an ar-
gument. Because the method is uninstrumented, it will only return con-
crete values. In other words, the symbolic value associated with variable y
is stripped away by the method. Now if the example method is tested with
input values x = 5 and y = 10, the program will end up executing code from
line 7 onwards and at the same time get a path constraint y > x∧x > 10 that
is assumed to correspond to inputs that lead to executing line 5. A possible
solution of x = 11 and y = 12 to this constraint will, however, end up also

34 4 GENERATING INPUTS

executing line 7 and if this deviation from the expected path is not noticed,
the test selector ends up expanding a wrong node in the symbolic execution
tree.

To make sure that a test run follows the expected execution path the bit-
vectors corresponding to the branches taken during concrete execution as
explained in Chapter 3 are used. When a node corresponding to an unvisited
branch is added to the symbolic execution tree, a bit-vector containing the
path to the node is stored to it. When a node is selected to be expanded,
the test selector checks whether the start of the bit-vector created by the test
run matches the stored bit-vector. If it does, the node can be expanded with
messages received after the bit-vectors match. Otherwise the test run has
chosen a different branch at some point of the execution. In this case the
target node is set to be finished and the user is notified that the tool has failed
to do precise symbolic execution and some possible execution paths may be
left untested as a result.

4.3 Search Strategies

As each test run can potentially add multiple new branches that can be ex-
plored to the symbolic execution tree, the test selector has the possibility to
choose which of these unexplored branches is to be tested next. When the
aim is to explore all of the execution paths of a given program, the order in
which the execution paths are tested makes little difference1 except that the
time to find the first error might differ. However, when the number of execu-
tion paths is too large in order to explore them all within a feasible time limit,
different search strategies and heuristics will perform differently. In this sec-
tion we will look at the three search strategies that have been implemented
in our tool.

Depth-first and Breadth-first Searches
One of the simplest ways of selecting an unvisited node from the symbolic
execution tree is to use classical depth-first (DFS) or breadth-first (BFS)
searches. In both of these cases the symbolic execution tree is traversed ac-
cording to the search strategy and the first unvisited branch located is selected
and new input values are computed by solving the path constraint associated
to that branch.

DFS has the positive side that when only one test executor is run at a
time, the search strategy will systematically explore one subtree of any node
before exploring the other and once a subtree has been fully searched it can
be deleted from memory. This makes DFS very memory efficient. The fact
that one subtree is systematically explored before other possible execution
paths is also a weakness of DFS as the strategy will get stuck exploring only
a small local part of a program under test if it has a large enough number
of execution paths so that only a small amount of them are tested. Another
downside with DFS is that as it aims to select nodes that are deep in the
symbolic execution tree, the path constraints for these are longer than for the

1If some execution path reduction methods are used, their performance may also depend
on the search order but this fact is not discussed further here.

4 GENERATING INPUTS 35

nodes closer to the root node and as such more difficult for a constraint solver
to solve.

BFS, on the other hand, requires most of the symbolic execution tree that
has been generated during test runs to be kept in memory but at the same
time avoids many of the weaknesses of DFS. The strategy does not get stuck in
the same way as DFS does and it also aims to solve the easiest path constraints
first. One downside with BFS is that if the program, for example, is a parser
and it does some input filtering as it expects to read input strings with correct
syntax, BFS concentrates its effort on exploring these early paths and finds
all the possible ways of creating incorrect inputs to the system. This is usually
uninteresting if the aim is to test that the parser works correctly with correct
input values. In otherwords, BFS explores systematically the early branches
in the control flow of a program and for this reason often misses bugs deep in
the symbolic execution tree if the whole tree is not explored.

Both of these strategies search the symbolic execution tree in a fixed order
without taking the structure of the program under test into account which
could increase the possibility on finding errors on large programs. Also both
of these strategies work in their intended way only when no more than one
test executor is running at a time. It is, of course, possible to use these strate-
gies with many test executors running concurrently by normally searching
the symbolic execution tree (which might get modified during the search).
This requires that each branch that is being expanded currently by some
test executor is marked as such so that they cannot be given to be tested by
another test executor. With DFS this means that the memory efficiency ad-
vantage is somewhat diminished as the subtrees of nodes might not be strictly
tested in a fixed order. In the BFS case running tests concurrently does not
introduce any new disadvantages.

Selecting Unvisited Nodes Based on Priorities

The third search strategy in our tool is designed to be used easily with a vary-
ing number of test executors running concurrently and to avoid the localisa-
tion problem of DFS and the preference of BFS to concentrate on covering
the branches near the root of the symbolic execution tree first. In this search
strategy each new unvisited branch that is added to the symbolic execution
tree is given a priority value on some predefined value range and when new
input values are required the branch with the highest priority is selected to
be tested next. To be able to get the branch with the highest priority without
searching the whole symbolic execution tree, a priority queue is maintained
as an auxiliary data structure that contains pointers to the branch nodes.

The priorities for the unvisited branches can be given randomly or based
on some heuristic that tries to guide the testing process. An example of such
a heuristic is discussed in Section 5. If priorities are assigned randomly it
has a downside that it can ignore some branches if they get low priorities.
For example, if at the first branch added to the symbolic execution tree the
unvisited branch gets the lowest possible priority, the whole subtree of the
branch that was taken during the first test run is explored before testing any
of the symbolic execution paths on the other subtree.

36 4 GENERATING INPUTS

Selecting Unvisited Nodes Randomly
To address the problems with the search strategy based on random priorities,
we have also implemented a search that simply selects one of the unvisited
branches randomly.

4.4 Reporting Errors

As the aim of testing is to search for errors in a given program, the errors found
during test runs are reported to the user. When an error is found, the input
values used to reach the error state are stored so that the same execution can
be repeated at a later time if this is desired. Naturally, if the aim is to generate
test inputs for a later use, the concrete input values for all distinct execution
paths can be stored and given to the user.

If the program contains an error that can be reached by multiple different
execution paths, our tool will report an error for each of these paths unless
the user selects a limit to the number of errors after which the search is ter-
minated. This can in worst case lead to reporting a large number of errors
because of one bug in the implementation. For example, if a program throws
an exception if a null element is added to an input data structure, our tool
might generate all possible variants of the data structure where the null ele-
ment is added.

4.5 Solving Path Constraints

It has been described so far how an unvisited branch is selected from the sym-
bolic execution tree and how the path constraint for that branch in obtained.
In this section a closer look is taken at how the input values for new test runs
are computed with the help of a constraint solver.

Local and Reference Constraints
To obtain inputs from a path constraint it is first divided into two parts that
are solved separately. The first part consists of all the local constraints and
the second part of all the referece constraints. Solving the first part is simple.
The conjunction of all local constraints are given to a constraint solver and
if this conjunction is satisfiable, the concrete values for each symbol in it are
obtained. From these symbols the input symbols and their respective values
are picked (the other symbols are the intermediate identifiers s0, s1 and so
on) and given to the test executor.

Solving the second part of the path constraint requires more steps. The
conjunction of reference constraints is first given to the constraint solver that
consideres the symbols in it to be integer variables. If the conjunction is
unsatisfiable, so is the whole path constraint and if it is satisfiable, the con-
straint solver could give some concrete integer values to the object symbols
that can be considered to be the object identifiers. However, the satisfy-
ing assignment from the constraint solver is not used. The reason for this is
that there are additional requirements for the identifier values that are not
expressed explicitly in the path constraint. For example, consider a path con-
straint obj1 6= obj2 ∧ obj3 = obj4. One possible satisfying assignment is
obj1 = 1, obj2 = 2, obj3 = 3 and obj4 = 3 but the constraint is also satisfied

4 GENERATING INPUTS 37

if obj1 = 3, obj2 = 0, obj3 = 3 and obj4 = 3. There are two problems shown
by this example. Firstly, we have an assumption that symbolic objects will be
initialised as null references only is there is a reference constraint requiring
this. In the second solution the assignment obj2 = 0 breaks this assumption.
This has the effect that as we do not have symbolic values associated with
null input objects, some possible branches could be left out of the symbolic
execution three if this input object is compared with non-symbolic objects
or null references. Further more, there are no quarantees that the constraint
solver used will always return the same concrete values for a same kind of
constraint. If on the first test run the constraint solver gives an assignment
obj2 = 0 and on the second test run assignment obj2 = 2, the test runs might
follow different execution path prefix if some branches were left out during
the first test run as explained above.

The second problem is that we also assume that two symbolic objects will
be the same only if there is a requirement for this in the path constraint. In
the second assignment the first, third and fourth input objects are set to be
the same. This could, for example, lead to a case where a system is only
tested with an input linked list that has only one element that points back to
itself. This, of course, is a valid input structure but as in this case only one
concrete input object is created, our tool might not be able create other kind
of inputs as all the input objects now have the same symbolic value.

Because of the problems discussed above the constraint solver is used only
to check if the constraint is satisfiable and if it is, identifiers are assigned to
the object symbols in the following way. Our tool first builds an equivalence
graph based on the reference constraints. This is done by adding each ob-
ject symbol to the graph as nodes with null as a special node and adding an
undirected edge between nodes if the there is a reference constraint that re-
quires the corresponding object symbols to be equal. Because the constraint
is satisfiable, there is no need to worry about disequalities that could make
the constraint unsatisfiable, that is, all reference constraints with disequalities
are ignored while constructing the graph. The graph constructed this way di-
vides the node into equivalence classes. To the get the identifier values for the
symbolic objects, one node is picked from the graph, all nodes that are reach-
able from that node are collected and all the object symbols corresponding
to these nodes are given the same value. If the set of object symbols collected
this way is N , the value given to all symbols in N is determined in the follow-
ing way. If the path constraint contains an assignment for one of the object
symbols in N , the value in that assignment is used. Otherwise the value is
a logical address that has not been used before on the symbolic execution
path in question. After the values are given, the nodes corresponding to the
symbols in N are removed from the graph and the process is repeated until
the all the nodes have been removed from the graph. The object identifiers
computed this way are then given to the test executor.

Solving Constraints Concurrently
The alert reader might already have noticed that there is a problem on how
to solve path constraints when the tool is used with multiple test runs exe-
cuting concurrently. If the test selector solves path constraints when input
values are required to start a new test run, all the calls to the constraint solver

38 4 GENERATING INPUTS

happens in one centralised place and this can become a performance bottle-
neck. To avoid this problem a way to distribute constraint solving to different
computation nodes is required. We have considered two alternatives for this:
the testing system can be connected to a pool of dedicated constraint solvers
running on different nodes or the path constraints can be given to the test
executor to solve before it starts the actual test run.

The first approach has a problem with load balancing. Ideally we want to
start a test run on one node immediately after the previous test run has ended.
If the pool of constraint solvers is too small, the test runs have to wait until a
solver becomes available. On the other hand, too large a pool will only waste
resources that could be, for example, used for executing test runs. For these
reasons we have used the second approach in our implementation where the
test executors solve the path constraints on demand. This partially blurs the
division of the testing system to separate test selector and test executors but
solves the load balancing problem and makes the testing system easier to set
up for the end user as there is no additional pool of solvers involved.

Optimisations
The approach described above on how path constraints are constructed and
solved can be improved in various ways. We have implemented two opti-
misation for solving path constraints. The first is called fast unsatisfiability
check [16] where before giving a path constraint to the constraint solver it is
checked if the last constraint is a syntactic negation of any of the preceding
constraints. If it is, we can be sure that the path constraint is unsatisfiable
without having to call the constraint solver. Checking the last constraint this
way is based on the observation that the path constraint without the last con-
straint must be satisfiable as it has been used to compute the input values for
the test run that caused the last constraint to be added.

The second optimisation is to store concrete input values used during cur-
rent test run to unvisited branches in the symbolic execution tree. If the
branch is created due to adding a local constraint, then the current object
identifiers are stored and when adding a reference constraint, the concrete
input values are stored. Now when a path constraint must be solved, we need
solve only either the local or object part and use the concrete values from the
previous run for the other part. This can be done because, as discussed above,
only the last constraint can make the path constraint unsatisfiable and as the
local and object parts are solved separately, the last constraint can affect only
one of them.

The first optimisation is severely limited in our current implementation
due to the fact that we always introduce new symbolic identifiers (e.g., s0

and s1) when a symbolic value changes. For example, if we have a path
constraint ending with s7 > 0 ∧ s7 ≤ 0, we can use the optimisation. But
if the variable having the symbolic value s7 is first summed with some value
(s8 = s7 + c) and then subtracted the same value (s9 = s8 − c), we have
a new symbolic identifier for this value even though it represents the same
value. With these symbolic values the fast unsatisfiability check fails on a
path constraint ending s7 > 0 ∧ s9 ≤ 0. It would be possible to improve this
situation by not creating a new symbolic identifier each time a value changes
but to simplify the symbolic values (e.g., s0 +5+2 = s0 +7). Simplifications

4 GENERATING INPUTS 39

based on folding constants and symbols is just one technique that can be
used. In [17] additional simplification approaches based on using BDD [3]
representations of logical connectives and hash-consing [9] among others as
discussed.

In CUTE [16] the idea of our second optimisation is taken even further by
an optimisation that allows path constraints to be solved incrementally. Note
that taking advantage of incremental constraint solvers is difficult especially
with search strategies such as the random priority search as the constraints
solved consecutively can have few constraints common in them. The ap-
proach used in CUTE can be used without an incremental solver and it can
be utilised with any search strategy. The optimisation based on the notions
of dependency between different constraints in a path constraint. According
to [16], two constraints c and c′ are dependent if either

• c and c′ have any common symbols in them, or

• there exists a constraint c′′ in the path constraint such that c and c′′ are
dependent and c′ and c′′ are dependent.

As discussed before, if the last constraint is removed from the path con-
straint C, it is quaranteed to be satisfiable. We can now go though all the
constraints in C and collect the ones that are dependent with the last con-
straint. The conjunction of these constraints is then given to the constraint
solver and in case it is satisfiable, the satisfying assignment is augmented with
the concrete values used by a previous test run to obtain all the input values.
By using this optimisation, it was reported in [16] that the constraints given
to the constraint solver were reduced on average to one-eight the size of the
original path constraint in many cases.

5 TEST GENERATION FOR PROGRAMS WITH SPECIFICATIONS

The testing method described in the earlier sections reports uncaught ex-
ceptions as errors (i.e., it generates tests to see if the program can crash).
Dynamic symbolic execution can be greatly enhanced if it is combined with
runtime monitoring to check if given specifications hold during the test runs.
In the LIME project a specification language has been developed together
with a runtime monitoring tool [11] that allows the user to use propositional
linear temporal logic (PLTL) and regular expressions to specify both external
usage and internal behavior of a software component.

The LIME interface specification language allows the user to write speci-
fications that are not complete models of the system and to target the speci-
fications to those parts of the systems that are seen as important to be tested.
This means that only a portion of the execution paths in the program may
cause the specifications to be monitored. Also, the specifications provide ad-
ditional information about the system that could be used to indicate when
the program is close to a state that violates the specifications. Therefore we
have extended the dynamic symbolic execution method to take LIME in-
terface specifications into account so that the testing can be guided towards

40 5 TEST GENERATION FOR PROGRAMS WITH SPECIFICATIONS

those execution paths that cause specifications to be monitored and espe-
cially towards those paths that can potentially cause the specifications to be
violated.

To guide the testing, the LIME Interface Monitoring Tool (LIMT) [14]
was extended to provide a method to compute a heuristic value to indicate
how close the current execution is to violating the monitored specifications.
The details of computing the heuristic values is given in [15]. On dynamic
symbolic execution side the instrumentation described in Section 2 is aug-
mented with a call to LIMT to obtain the heuristic value at every branching
statement in the execution where symbolic values are used. The test selector
is then notified about the heuristic value and it can use the value to assign a
priority to the unvisited branch resulting from executing the branching state-
ment. In otherwords, the heuristic value is used as the priority for unvisited
branches in the symbolic execution tree. By using the priority based search
strategy described in Section 4, those execution paths are explored first that
have the highest probability to lead to a state that violates the specifications
according to the heuristic used to compute the priority values.

The described approach to guide the testing process has the following
weakness. It is likely that when the top most branch in the symbolic execu-
tion tree is created, the execution is still far from a state that can potentially
violate a specification. Therefore the top most branch that was not followed
by the first concrete test run is likely to get a low priority value. This can
cause the search strategy to ignore the second half of the symbolic execu-
tion tree until the first one has been explored. To address this problem, the
test selector can use a combination of the priority based search and random
search to select the next branch to be explored. For a user specified fraction
of times, the next branch to be explored is selected randomly instead of based
on the priority values. This way the problems of greedily choosing the most
promising executions paths is alleviated at least partly.

6 IMPLEMENTATION

In this chapter the implementation details of our tool called LIME Concolic
Tester (LCT) that is based on the methods described in Chapters 3 and 4 are
discussed. The limitations in the tool that the users should be aware of are
also discussed.

6.1 Structure of the Testing System

The structure of LCT is shown in Figure 16 and it can be seen as consisting
three main parts: the instrumenter, the test selector and the test executors.
The instrumenter is based on a tool called Soot [18], that can be used to
analyse and transform Java byte code. Before a program is given to the in-
strumenter, the input locations in the source code are marked so that the
instrumenter knows how to transform the code. Our tool provides a static
class that is used for this in the following fashion:

• int x = LCT.getInteger() is used to get an int type input value for
a variable x, and

6 IMPLEMENTATION 41

Figure 16: Structure of the testing system

• List l = LCT.getObject(�List�) indicates that an object l is an
input object.

Our tool has support for all primitive data types in Java as symbolic inputs
with the exception of float and double data types as most constraint solvers
do not provide native support for floating point variables.

After the input variables have been marked in the source code, the pro-
gram is given to the instrumenter that transforms the code into an intermedi-
ate representation called Jimple and adds the statements necessary for sym-
bolic execution into it. When the instrumentation is finished, the code is
transformed into byte code that can be run over a standard Java Virtual Ma-
chine (JVM).

The instrumented program can be seen as a test executor. The test execu-
tors communicate with the test selector to report the collected constraints
and to receive new input values. This communication is implemented by us-
ing TCP/IP connections. The test input selector builds a symbolic execution
tree to maintain the symbolic information about different execution paths.
Our tool uses either Yices [7] or Boolector [4] as a constraint solver and it
is easy to modify the tool to add support for other constraint solvers as well
because the solvers are called though a single class that separates them from
the rest of the implementation.

The system can be also seen as a client/server architecture, where the test
input selector acts like a server and the test executors as clients. As different
test runs do not depend on each other, it is possible to have multiple test runs
executing concurrently and reporting to the test input selector. This allows
the tool to take advantage of multicore processors and networks of computers.

As the test input selector and test executors are separate, it is possible to
use a different kind of instrumentation, possibly even for a different program-
ming language, to obtain a runnable test executor and still use the same test
input selector provided that the new test executors use the same communica-
tion protocol with the implemented test input selector. The same goes also
the other way around, it is possible to replace a test input selector with an

42 6 IMPLEMENTATION

alternative implementation without the need to modify how the test execu-
tors are constructed. The implemented tool is also designed to be modular
with respect to the search strategies. Adding new strategies for the test input
selector requires only writing classes that implement the symbolic execution
tree and the functionality that operates on the tree based on the messages
received from the test executors. Rest of the tool needs little modification for
new strategies except in the case that additional information is needed to be
collected during test runs which can require additional instrumentation.

6.2 Generating JUnit Test Cases

The tool also provides the possibility to generate JUnit tests based on the
input values generated during dynamic symbolic execution. The support for
JUnit tests is limited to unit testing methods that take argument values that
can be generated by LCT. To generate JUnit tests for a selected method, the
tool first creates automatically a test driver that calls the method with input
values computed by LCT. The generated input values are then stored and
used to generate JUnit tests that can be executed even without LCT.

6.3 Computing Branch Coverage

The tool computes also branch coverage obtained during the testing. This
implemented by assigning a unique static identifier to each of the branching
statements in the program during the instrumentation. It is then recorded
whether all the true and false branches of these statements have been exer-
cised. As the branching statements are identified during instrumentation, the
branch coverage reported describes the coverage over all the instrumented
parts of the program. If the program uses large libraries, the branch coverage
of these libraries is included in the result. Also if LIME interface spefica-
tions are monitored using LIMT, the monitoring does some instrumentation
to the program code as well and the the branch coverage of this modified
version is displayed. However, the tool identifies some of the code inserted
by LIMT and ignores them in the branch coverage computation. This iden-
tification is not fully accurate and therefore the branch coverage should be
seen as approximate when LIME interface specifications are used.

6.4 Limitations

LCT has currently some limitations regarding the use of core classes in Java
(e.g., classes in java.lang package) and by default it does not instrument them.
The reason for not instrumenting core classes is that in many Java Virtual Ma-
chines (JVM) they cannot be modified freely as most Java Virtual Machines
are very sensitive to modifications to the core system classes (e.g., the load
order of classes during bootstrapping may change due to instrumentation)
and this can cause the JVM to crash. Furthermore, instrumenting the core
classes means that the instrumented code that also uses core classes would
use their rewritten versions which can cause complications.

To address this limitation, we have implemented custom versions of Inte-
ger, Long, Byte, Boolean and Short classes that can be instrumented freely.

6 IMPLEMENTATION 43

The program under test is then modified to use the custom versions of these
classes instead of the original counterparts. This approach can be seen as a
lightweight counterparts of twin class hierarchy approach presented in [8].

Currently instrumenting other classes is not supported but new custom
implementations of different classes can be added in the future. If the system
under test uses classes that are not instrumented, they are executed only con-
cretely. This prevenets tracking symbolic values of variables inside the unin-
strumented code and can cause some execution paths to be left untested. The
core class replacement approach used in LCT introduces one additional lim-
itation. If the system under test contains uninstrumented code that expects
one of the core class instances that have been replaced to be received from
the instrumented code, the type of the instances is not the same (i.e., the re-
plamecement of Integer class is LCTInteger) and this can cause the program
under test to crash. Therefore, it is recommended that the core class replace-
ment is used only with programs that can be fully instrumented or where it
can be guaranteed that the replacement approach does not cause illegal type
convertions.

7 CONCLUSIONS

Dynamic symbolic execution is a promising approach for generating test in-
puts that will exercise distinct execution paths of a given program. In this
report an instrumentation process has been developed that allows a program
to be executed both concretely and symbolically at the same time. It is also
described how the symbolic execution can be used to generate test inputs
to a system under test by utilizing off-the-shelf constraint solvers. The de-
scribed method can also be used in conjunction with specifications written
with LIME interface specification language and monitored by LIME Inter-
face Monitoring Tool.

–

REFERENCES

[1] Saswat Anand, Alessandro Orso, and Mary Jean Harrold. Type-
dependence analysis and program transformation for symbolic execu-
tion. In 13th International conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2007.

[2] David L. Bird and Carlos Urias Munoz. Automatic generation of ran-
dom self-checking test cases. IBM Systems Journal, 22(3):229–245,
1983.

[3] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient im-
plementation of a bdd package. In DAC, pages 40–45, 1990.

[4] Robert Brummayer and Armin Biere. Boolector: An efficient smt solver
for bit-vectors and arrays. In Stefan Kowalewski and Anna Philippou,

44 REFERENCES

editors, TACAS, volume 5505 of Lecture Notes in Computer Science,
pages 174–177. Springer, 2009.

[5] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. EXE: automatically generating inputs of death. In
CCS ’06: Proceedings of the 13th ACM conference on Computer and
communications security, pages 322–335, New York, NY, USA, 2006.
ACM Press.

[6] Lori A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Trans. Software Eng., 2(3):215–222, 1976.

[7] Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic
Solver for DPLL(T). In Proceedings of the 18th Computer-Aided Ver-
ification conference, volume 4144 of LNCS, pages 81–94. Springer-
Verlag, 2006.

[8] Michael Factor, Assaf Schuster, and Konstantin Shagin. Instrumenta-
tion of standard libraries in object-oriented languages: the twin class
hierarchy approach. In John M. Vlissides and Douglas C. Schmidt,
editors, OOPSLA, pages 288–300. ACM, 2004.

[9] Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular
hash-consing. In Andrew Kennedy and François Pottier, editors, ML,
pages 12–19. ACM, 2006.

[10] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed
automated random testing. In Vivek Sarkar and Mary W. Hall, editors,
PLDI, pages 213–223. ACM, 2005.

[11] Kari Kähkönen, Jani Lampinen, Keijo Heljanko, and Ilkka Niemelä.
The LIME Interface Specification Language and Runtime Monitoring
Tool. In Proceedings of the 9th Internatinal Workshop on Runtime Ver-
ification, volume 5779 of Lecture Notes in Computer Science, pages
93–100, 2009.

[12] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. General-
ized symbolic execution for model checking and testing. In Hubert
Garavel and John Hatcliff, editors, TACAS, volume 2619 of Lecture
Notes in Computer Science, pages 553–568. Springer, 2003.

[13] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, 1976.

[14] Jani Lampinen, Sami Liedes, Janne Kauttio, Kari Kähkönen, and Keijo
Heljanko. Incremental specification of software components and inter-
faces. Technical Report TKK-ICS-R25, Helsinki University of Technol-
ogy, 2009.

[15] Olli Saarikivi. Design and implementation of a heuristic for directing
dynamic symbolic execution, 2009. LIME project deliverable.

REFERENCES 45

[16] Koushik Sen. Scalable automated methods for dynamic program anal-
ysis. Electronic version of doctoral thesis, University of Illinois, 2006.

[17] Nikolai Tillmann and Jonathan de Halleux. Pex-white box test gener-
ation for .net. In Bernhard Beckert and Reiner Hähnle, editors, TAP,
volume 4966 of Lecture Notes in Computer Science, pages 134–153.
Springer, 2008.

[18] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren,
Patrick Lam, and Vijay Sundaresan. Soot - a java bytecode optimiza-
tion framework. In Stephen A. MacKay and J. Howard Johnson, editors,
CASCON, page 13. IBM, 1999.

[19] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test input
generation with Java PathFinder. In ISSTA, pages 97–107, 2004.

46 REFERENCES

TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-R16 Antti E. J. Hyvärinen

Approaches to Grid-Based SAT Solving. June 2009.

TKK-ICS-R17 Tuomas Launiainen

Model checking PSL safety properties. August 2009.

TKK-ICS-R18 Roland Kindermann
Testing a Java Card applet using the LIME Interface Test Bench: A case study.
September 2009.

TKK-ICS-R19 Kalle J. Palomäki, Ulpu Remes, Mikko Kurimo (Eds.)

Studies on Noise Robust Automatic Speech Recognition. September 2009.

TKK-ICS-R20 Kristian Nybo, Juuso Parkkinen, Samuel Kaski

Graph Visualization With Latent Variable Models. September 2009.

TKK-ICS-R21 Sami Hanhijärvi, Kai Puolamäki, Gemma C. Garriga

Multiple Hypothesis Testing in Pattern Discovery. November 2009.

TKK-ICS-R22 Antti E. J. Hyvärinen, Tommi Junttila, Ilkka Niemelä

Partitioning Search Spaces of a Randomized Search. November 2009.

TKK-ICS-R23 Matti Pöllä, Timo Honkela, Teuvo Kohonen
Bibliography of Self-Organizing Map (SOM) Papers: 2002-2005 Addendum.
December 2009.

TKK-ICS-R24 Timo Honkela, Nina Janasik, Krista Lagus, Tiina Lindh-Knuutila, Mika Pantzar, Juha Raitio

Modeling communities of experts. December 2009.

TKK-ICS-R25 Jani Lampinen, Sami Liedes, Kari Kähkönen, Janne Kauttio, Keijo Heljanko

Interface Specification Methods for Software Components. December 2009.

ISBN 978-952-248-280-8 (Print)

ISBN 978-952-248-281-5 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

