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ABSTRACT: In this paper, the moments of nearest neighbor distance distri-
butions are examined. While the asymptotic form of such moments is well-
known, the boundary effect has this far resisted a rigorous analysis. Our goal
is to develop a new technique that allows a closed-form high order expansion,
where the boundaries are taken into account up to the first order. The result-
ing theoretical predictions are tested via simulations and found to be much
more accurate than the first order approximation obtained by neglecting the
boundaries.

While our results are of theoretical interest, they definitely also have im-
portant applications in statistics and physics. As a concrete example, we men-
tion estimating Renyi entropies of probability distributions. Moreover, the
algebraic technique developed may turn out to be useful in other, related
problems including estimation of the Shannon differential entropy.

KEYWORDS: nearest neighbor, boundary, asymptotics, renyi entropy
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1 INTRODUCTION

In this paper, we examine the moments of nearest neighbor distance distri-
butions. We assume that (Xi)

M
i=1 is an independent identically distributed

(i.i.d.) sample on a probability space (Ω,F , P ) taking values in an open set
C ⊂ ℜm with the common distribution given by a density p. Denoting by dk

the distance between Xi (for some i > 0) and its k-th nearest neighbor in the
Euclidean metric, we consider E[dα

k ].
The starting point of our work is [2], where it is shown that

Mα/mE[dα
k ] → V −α/m

m

Γ(k + α/m)

Γ(k)

∫

C

p(x)1−α/mdx (1)

under some regularity conditions as M → ∞. The result was obtained by
showing that the effect of points close to the boundary of C can be neglected
in the asymptotic limit if a term of order O(M−1/m−α/m+ρ) (for an arbitrarily
small ρ > 0) is accepted. In this paper, our goal is to show that actually
the approximation (1) can be improved by taking the boundary effect into
account. Our technique leads to predictions that are one order of magnitude
more accurate than (1) at the expense of additional regularity assumptions.
Moreover, the technique proposed here can probably be applied in other
contexts as for example in the analysis of particles in thin plates and films
[10].

In addition to [2], there exists a rather large amount of literature on near-
est neighbor distances. For example, in [8, 7, 14], asymptotic results were
obtained for nearest neighbor graphs as a special case of a more abstract set-
ting. More specific results can be found in [9] and in the aforementioned
[2]. The nearest neighbor graph is an important topic of research on com-
putational geometry; often it is analyzed as a special case of a more abstract
framework.

In addition to being of mathematical interest, results of the form (1) have
some rather concrete applications. One of these follows from the fact that
the term

∫

C

p(x)1−α/mdx

is closely related to the Renyi entropies of p. Thus it is not a surprise that
E[dα

k ] has been used to estimate such entropies, see for example [4, 13] on
methods exploiting the theory of nearest neighbor (and more general) graphs.

Another important functional is the Shannon differential entropy
∫

C

p(x) log p(x)dx.

The differential entropy is a widely discussed topic in the literature and near-
est neighbor estimators have turned out to be useful [5]. We believe that our
results and proof techniques will be useful for researchers working on the
Shannon entropy as well.

In addition to entropy estimators, nearest neighbors distributions are closely
related to other nonparametric estimators like the Gamma test [3] and non-
parametric statistics in general. Finally, we mention that nearest neighbor
distributions have received some attention in physics as well [12, 11].
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The paper is divided into 4 sections. In Section 2 we present our main
result and some numerical simulations to test our theoretical predictions. In
Sections 3 and 4 we prove some auxiliary results. The theory in this part is
of technical nature, but stays at an intuitive and concrete level. Finally, in
Section 5 we give proofs to the theorems in Section 2.

2 MAIN RESULTS

2.1 Basic Definitions

To fix some notation, AT will denote the transpose of a matrix A. The inner
product between two vectors u, v is denoted by 〈u, v〉. We will constantly use
the standard O(·) notation typically to denote higher order terms that do not
need to be analyzed accurately. By B(x, r) we will denote the open ball with
center x, radius r and volume Vmrm. As a general notation, 0 means the zero
element of a vector space.

The concept of nearest neighbors is common in the literature on com-
putational geometry, machine learning and statistics. The nearest neighbor
of the point Xi is defined simply as the point closest to it with respect to a
similarity measure. Using the Euclidean metric, the formal definition is

N [i, 1] = argmin1≤j≤M,j 6=i‖Xi − Xj‖.

The k-th nearest neighbor is defined recursively as

N [i, k] = argmin1≤j≤M,j 6=i,N [i,1],...,N [i,k−1]‖Xi − Xj‖,

that is, the closest point after removal of the preceeding neighbors. The cor-
responding distances are defined as

di,k = ‖Xi − XN [i,k]‖.

Because our sample is i.i.d., we may fix i = 1 and use the shorthand dk for
d1,k.

Let H be the half-plane of points with a positive first coordinate, that is,

H = {(s, sm−1)|s > 0, sm−1 ∈ ℜm−1}

and set (λ denotes the Lebesgue measure)

h(r) = λ(B((1, 0, . . . , 0), r) ∩H).

The function h has a rather complicated form due to the cutoff at the bound-
ary. For r < 1, h(r) is simply Vmrm; for r > 1 this is not true but we still
have

1

2
Vmrm ≤ h(r) ≤ Vmrm. (2)

h is increasing and Lipschitz continuous; thus it is almost everywhere differ-
entiable with the derivative h′.
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For any x ∈ ℜm, the distance between x and and the boundary of C
(denoted by ∂C in the standard notation), is given by

ρ(x, ∂C) = inf
y∈∂C

‖x − y‖.

For future use, we define ∂rC as the set of points for which ρ(x, ∂C) ≤ r and
x ∈ C.

We will need some basic concepts from differential geometry. A nonempty
subset M ⊂ ℜm is called a twice differentiable manifold, if for each x ∈ M
there exists δ > 0 and a twice differentiable homeomorphism

φ : U → M∩ B(x, δ)

with U an open subset of ℜm−1 such that the Jacobian Jyφ has linearly inde-
pendent columns for any y ∈ U . Recall that a homeomorphism is a bijection
with both φ and φ−1 continuous.

We will constantly need surface integrals over smooth manifolds. An in-
finitesimal surface element is denoted by dS, thus the integral over a surface
M looks like

∫

M

f(x)dS.

2.2 Expansions of Nearest Neighbor Distances

Our main result is based on the following assumptions that require regularity
both from p and the boundary ∂C. To ensure that there is no boundary points
inside C, we state the condition

interior[C̄] = C, (3)

where C̄ = C ∪ ∂C is the closure of C.

A1) C is a bounded open set, Equation (3) holds and the boundary ∂C is a
closed m − 1 dimensional twice continuously differentiable manifold
with m ≥ 2 (consequently, ∂C is also a compact set).

A2) There exists a constant cp > 0 such that c−1
p < p(x) < cp on the

closure C̄. Moreover, we assume that for a constant L > 0 and some
1 < ξ ≤ 2, the gradient ∇p satisfies

‖∇p(x) −∇p(y)‖ ≤ L‖x − y‖ξ−1

for all x, y ∈ C and

|p(x) − p(y)| ≤ L‖x − y‖

for x, y ∈ C̄.

Our main result is the following asymptotic expansion of E[dα
k ].

viii 2 MAIN RESULTS



Theorem 1. Suppose that (A2) holds and alternatively C is a polytope or (A1)
holds. Then for 0 < γ < 1, M > 2k and α > 0,

E[dα
k ] = V −α/m

m

Γ(k + α/m)Γ(M)

Γ(k)Γ(M + α/m)

∫

C

p(x)1−α/mdx

+(D − V −α/m−1/m
m )

Γ(k + α/m + 1/m)Γ(M)

Γ(k)Γ(M + α/m + 1/m)

∫

∂C

p(x)1−α/m−1/mdS

+R (4)

with

D =
1

m

∫ 1

0

a−α−2h(a−1)−α/m−1/m−1h′(a−1)da.

The remainder term is bounded by (c,K > 0 are constants independent of
M,γ and k)

|R| ≤ cMke−KγmM + c(γ2+α + γ2+α+mM + γξ+α + γ2kα/mM−α/m).

With the choice γ = M−1/m log M we have (for a fixed k)

R = O(M−ξ/m−α/m log2+α+m M).

It is worth noticing that for any σ > 0,

Γ(M)

Γ(M + σ)
= M−σ(1 + O(M−1))

as demonstrated in [2]. The expansion of Theorem 1 has a rather interesting
form. The boundary correction is contained in the second term at the right
side of Equation (4), whereas the first term is the lower order approximation
of Theorem 5.4 in [2]. Consequently, the remainder term is one order of
magnitude smaller than that in [2]. The correction term is surprisingly sim-
ple, as one would have expected highly complicated correction terms due to
the nonlinear cutoff at the boundary.

By requiring (A1), we ensure that the boundary ∂C can be approximated
locally by a plane. The proof proceeds by examining planar boundaries and
using (A1) to transfer such results to sets with more general boundaries. It
seems likely that (A1) and (A2) could be weakened considerably. One draw-
back of our assumptions is that sets with a non-smooth boundary are ex-
cluded. Intuitively it seems that in many cases such singularities do not pose
a real problem if they are asymptotically neglible in the limit M → ∞. To
demonstrate the application for non-smooth sets, the theorem is stated also
for polytopes.

From the practical point of view, the main problem of Theorem 1 is the
evaluation of h, h′ and the term D. Luckily, numerical evaluation is not too
difficult as long as m is not too large.

Example 1. When m = 3, the function h is given by

h(r) =
4

3
πr3
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when r < 1 and

h(r) =
2

3
πr3 −

1

3
π + πr2

otherwise. As a concrete example, let us analyze uniformly distributed points
in the unit ball. In such a case p = V −1

3 and a numerical evaluation gives

D ≈ 0.42.

Setting k = 1, Equation (4) takes the form

E[dα
1 ] ≈ Γ(1 + α/3)M−α/3 + 3DV

α/3+1/3
3 Γ(4/3 + α/3)M−α/3−1/3

−3Γ(4/3 + α/3)M−α/3−1/3. (5)

Correspondingly, we may calculate the expansion for the unit cube.

Example 2. If C = (0, 1)3 and p = 1, we may approximate

E[dα
1 ] ≈ V −α/3Γ(1 + α/3)M−α/3 + 6DΓ(4/3 + α/3)M−α/3−1/3

−6V
−α/3−1/3
3 Γ(4/3 + α/3)M−α/3−1/3. (6)

2.3 Simulations

We demonstrate the expansions in Examples 1 and 2 via a numerical simu-
lation. The number of samples is increased from 100 to 5000 in steps of 100.
For each number of samples, 1000 different configurations are generated and
the expected first nearest neighbor distance is estimated as the average of the
1000 different values.

The first experiment involves points uniformly distributed on the unit ball,
whereas in the second one, the points are uniform on the unit cube (Exam-
ples 1 and 2 respectively). As we want to investigate the effect of the higher
order terms, we compare the experimental result also to the approximation

E[d1] ≈ V −1/m
m

Γ(k + 1/m)

Γ(k)

∫

C

p(x)1−1/mdxM−1/m (7)

in Equation (1).
The results of the unit ball experiment are in Figure 1, whereas those of

the second are plotted in Figure 2. As a measure of performance, we use

eM = M |Eexperimental[d1] − Etheory[d1]|.

The results support our theoretical analysis well despite some random fluc-
tuation. The higher order approximation yields estimates that are one order
of magnitude more accurate than those predicted by Equation (7), whereas
the predictions of Theorem 1 seem to have an error of order O(M−1) in this
case.
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Figure 1: Results for uniformly distributed points on the unit ball: the pre-
diction error of the approximation (1) in Figure (a) and those of Equation (5)
in Figure (b).
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Figure 2: Results for uniformly distributed points on the unit cube: the pre-
diction error of the approximation (1) in Figure (a) and those of Equation (6)
in Figure (b).
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3 PROPERTIES OF THE SET C

3.1 Linearization of the Boundary

We need some additional notation from differential geometry. For x ∈ ∂C,
we denote by n(x) the normal of the manifold ∂C, orthogonal to the plane
spanned by the columns of the Jacobian Jφ−1(x)φ of some parametrization
φ. Notice that there are two possible directions for the normal; later in this
section we will show that an outer normal is a meaningful concept when
(A1) holds solving the orientation problem. Meanwhile, the notation means
either of the two possibilities. In any case the normal is continuous in the
sense that regardless of the orientation,

min{‖n(x) − n(xn)‖, ‖n(x) + n(xn)‖} → 0 (8)

when xn → x.
We define the sets

Tx = {x + y : yT n(x) = 0}

and

Ux = {x + y : yT n(x) ≤ 0}

corresponding to the tangent plane and the corresponding half-space. Fi-
nally, we need the line segments

A(x, r) = {x − sn(x) : s ∈ (0, r]}, (9)

where x ∈ ∂C is a point on the boundary and r is a (possibly negative) real
number.

Under Assumption (A1), it is intuitively clear that in a small neighborhood
of a point on ∂C, ∂C can be linearized and thus viewed as a plane. Here our
goal is to use this idea to show that when y = x− rn(x) for some x ∈ ∂C and
r small enough, the set C in the expression

B(y, r) ∩ C

can be replaced by Ux. Later in Section 4 this observation is necessary to
analyze the nearest neighbor distribution close to the boundary as the exact
shape of ∂C is unknown.

Before proceeding to the main result of this section, we need to prove
some auxiliary results. The use of them will become clear later; however, the
statements are quite intuitive.

Lemma 1. Suppose that Assumption (A1) holds and let (xn)∞n=1 ⊂ ∂C be a
sequence converging to some x ∈ ∂C. Then for any local parametrization
φ : U → B(x, δ) ∩ ∂C, there exists a constant cx > 0 and an integer n0 such
that

‖φ−1(xn) − φ−1(x)‖ ≤ cx‖xn − x‖

when n > n0.
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Proof. Choose a parametrization φ : U → B(x, δ) ∩ ∂C with φ(0) = x.
There exists ǫ1 > 0 such that the closure B̄(0, ǫ1) is a subset of U . Notice
that

(Jyφ)T Jyφ

is a continuous matrix valued function with eigenvalues strictly above zero
for each fixed y ∈ U because the columns are linearly independent. This
implies that there exists a constant c > 0 such that

inf
y∈B̄(0,ǫ1),‖z‖=1

‖(Jyφ)z‖ ≥ c. (10)

Because φ is a homeomorphism, φ(B(0, ǫ1)) contains a set of the form
B(x, ǫ2) ∩ S for some ǫ2 > 0 and consequently φ−1(xn) ∈ B(0, ǫ1) for some
n0 and all n > n0. Thus by equation (10) and the mean value theorem,

‖xn − x‖ = ‖φ(φ−1(xn)) − φ(φ−1(x))‖ ≥ c‖φ−1(xn) − φ−1(x)‖

finishing the proof.

Next we show that for any sequence (xn)∞n=1 converging to a point x ∈ ∂C,
the normal n(xn) is approximately orthogonal to the tangent plane at the
point x once xn is close to x.

Lemma 2. For any sequence (x
(1)
n , x

(2)
n )∞n=1 ⊂ ∂C ×∂C with ‖x

(1)
n −x

(2)
n ‖ →

0, Assumption (A1) implies that

sup
n>0

n(x
(1)
n )T (x

(1)
n − x

(2)
n )

‖x
(1)
n − x

(2)
n ‖2

< ∞. (11)

Proof. Let us make the counterassumption, that Equation (11) goes to infin-

ity for the sequence (x
(1)
n , x

(2)
n )∞n=1. By compactness, we may assume that

(x(1)
n , x(2)

n ) → (x, x)

for some x ∈ ∂C. Choose φ : U → ∂C ∩ B(x, δ) as a local parametrization
around x and set

u(i)
n = φ−1(x(i)

n ).

By Lemma 1,

u(1)
n , u(2)

n → φ−1(x)

and using the fact that (J
u
(1)
n

φ)T n(x
(1)
n ) = 0, we have

n(x
(1)
n )T (x

(1)
n − x

(2)
n )

‖x
(1)
n − x

(2)
n ‖2

= n(x(1)
n )T

J
u
(1)
n

φ(u
(1)
n − u

(2)
n ) + O(‖u

(1)
n − u

(2)
n ‖2)

‖Jφ−1(x)φ(u
(1)
n − u

(2)
n ) + o(‖u

(1)
n − u

(2)
n ‖)‖2

= O(1),

leading to a contradiction.
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Recall the definition of A(x, r) in Equation (9). We want to show that
A(x, r) and A(y, r) are disjoint when x 6= y assuming that r is smaller than
some threshold. Intuitively, one would expect this to be true, as the normals
n(x) and n(y) become more and more parallel the closer the points x and
y are to each other. It turns out that a formal proof is not too difficult as
demonstrated by

Lemma 3. Suppose that (A1) holds. Then there exists a constant c1 > 0 such
that

A(x, r) ∩ A(y, r) = ∅

when y 6= x, x, y ∈ ∂C and |r| < c1. Moreover, when r < c1, n(x) can be
chosen in such a way that A(x, r) ⊂ C and A(x,−r) ⊂ CC .

Proof. Let us make the counterassumption that there exists sequences

(xn, yn)∞n=1 ⊂ ∂C × ∂C

and (rn,1, rn,2)
∞
n=1 → (0, 0) such that

xn − yn = rn,1n(xn) − rn,2n(yn)

and xn 6= yn. But then we would have

1 =
rn,1n(xn)T (xn − yn)

‖xn − yn‖2
−

rn,2n(yn)T (xn − yn)

‖xn − yn‖2

leading to a contradiction, because by Lemma 2, the right side should go to
zero.

By the previous part, we know that A(x, r) must be either a subset of C or
the complement of its closure C̄C = (C ∪ ∂C)C because otherwise it would
contain points from ∂C. To see that this would be contradictory, one should
observe that the first part of the proof holds for A(x, r) ∪ {x} as well.

Let us make the counterassumption that

A(x, r) ∪ A(x,−r) ⊂ C̄C

for some x ∈ ∂C. Choose arbitrarily small 0 < δ < 1, define the pair of
points (y(1), y(2)) by

y(i) = x +
(−1)i

4 + |r|−1
δn(x)

and choose ǫ > 0 in such a way that B(y(i), ǫ) ⊂ C̄C . Moreover, there exists
a sequence (xn)∞n=1 ⊂ C approaching x (when n → ∞) and nδ such that the
set

{xnδ
− sn(x) : s ∈ [0, δ]} ∪ {xnδ

− sn(x) : s ∈ [−δ, 0]} (12)

contains two distinct points (z
(1)
δ , z

(2)
δ ) on ∂C approaching to (x, x) when δ →

0. This follows from the fact that for nδ large enough, the set (12) intersects
both B(y(1), ǫ) and B(y(2), ǫ) with xnδ

∈ C thus containing points from C
and C̄C . But this is in contradiction with Lemma 2 because by definition

|
n(x) · (z

(1)
δ − z

(2)
δ )

‖z
(1)
δ − z

(2)
δ ‖2

| =
1

‖z
(1)
δ − z

(2)
δ ‖
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and

|
(n(x) − n(z

(1)
δ )) · (z

(1)
δ − z

(2)
δ )

‖z
(1)
δ − z

(2)
δ ‖2

| ≤ ‖n(x) − n(z
(1)
δ )‖

1

‖z
(1)
δ − z

(2)
δ ‖

the latter being asymptotically neglible because we may choose the normals
in such a way that

‖n(x) − n(z
(1)
δ )‖ → 0

as δ → 0.
To finish, we must examine the opposite case

A(x, r) ∪ A(x,−r) ⊂ C.

By Equation (3) we can find (xn)∞n=1 ⊂ C̄C approaching x. As in the previous
step, it can be seen that again

{xn − sn(x) : s ∈ [0, δ]} ∪ {xn − sn(x) : s ∈ [−δ, 0]}

contains at least two distinct points from ∂C for arbitrarily small δ > 0 when
n is large enough. Analogously to the previous case, this leads to a contradic-
tion.

From now on, we will always choose n(x) as the outer normal of C, that is,
to point outwards from C. Such a function is necessarily continuous and thus
measurable by the second part of Lemma 3. Even though the concept of an
outer normal is intuitively rather clear, we still needed Lemma 3 to verify the
existence of such a normal.

The following lemma is the main result of this section. The idea is sim-
ply to linearize the boundary so that locally it can be viewed as a plane by
neglecting higher order terms.

Lemma 4. Choose any x ∈ ∂C and define the sets Ξ1 = B(y, r2) ∩ C and
Ξ2 = B(y, r2) ∩ Ux. Then if (A1) holds, there exists constants c2, c3 > 0
(depending only on C and not on x, r1 and r2) such that for 0 < r1, r2 < c2

and y = x − r1n(x), we have

λ(Ξ1 \ Ξ2) + λ(Ξ2 \ Ξ1) ≤ c3(r
m+1
1 + rm+1

2 ). (13)

Proof. Let us make the counterassumption that there exists a sequence

(xn, yn, r1,n, r2,n)∞n=1

with r1,n, r2,n → 0 such that the left side of inequality (13) exceeds c3r
m+1
1,n +

c3r
m+1
2,n for any c3 > 0 when n is big enough. By compactness we may assume

that xn → x for some x ∈ ∂C and by Lemma 1,

‖φ−1(xn) − φ−1(x)‖ ≤ cx‖xn − x‖ (14)

for some constant cx > 0 and a local parametrization φ : U → B(x, δ)∩ ∂C.
For each n > 0, choose an arbitrary point zn ∈ B(xn, r1,n + r2,n) ∩ ∂C.
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When n is large enough, the fact that B(xn, r1,n + r2,n) ⊂ B(x, δ), a Taylor
expansion and (14) yield

zn = xn + Jφ−1(xn)φ(φ−1(zn) − φ−1(xn)) + O(‖zn − xn‖
2).

The first sum in the right side is a point on the plane Txn , thus

ρ(zn, Txn) = O(‖zn − xn‖
2). (15)

Set dn = supz∈∂C∩B(xn,r1,n+r2,n) ρ(z, Txn) and define the sets (the sum of a
vector and a set being defined in the standard way)

Gn = ∪−dn≤r≤dn(Txn + rn(xn)).

Then it is clear that

∂C ∩ B(yn, r2,n) ⊂ Gn ∩ B(xn, r1,n + r2,n) (16)

and by Equation (15)

λ(Gn ∩ B(xn, r1,n + r2,n)) = O(rm+1
1,n + rm+1

2,n ). (17)

We may divide B(yn, r2,n) \ Gn into the sets

A1 = (B(yn, r2,n) \ Gn) ∩ Uxn

and
A2 = (B(yn, r2,n) \ Gn) ∩ UC

xn
,

both of which are open and convex. Now for n big enough,

yn −
1

2
r2,nn(xn) ∈ C ∩ A1.

Thus A1∩C is non-empty and consequently A1 must be a subset of C because
it does not contain points from ∂C (as stated in Equation (16)). On the other
hand, by Lemma 3 and the same argument as previously, A2 is in CC when
n is big enough and A2 6= ∅. Thus, inevitably

A2 ∩ C = ∅.

We may conclude that

(B(yn, r2,n) ∩ C) \ Gn = (B(yn, r2,n) ∩ Uxn) \ Gn

and Equation (17) leads to a contradiction finishing the proof.

3.2 The Set ∂rC

∂rC was defined in Section 2.1 to consist of those points in C for which the
distance from the boundary is at most r. Our goal is to reparametrize this set
as

(x, r) 7→ x − rn(x), (18)

where x ∈ ∂C. It turns out that such a parametrization is possible as shown
by the following lemma.
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Lemma 5. There exists a constant c4 > 0 depending only on C such that for
0 < r < c4,

∂rC = ∪x∈∂CA(x, r).

Proof. Suppose that (xi)
∞
i=1 is a sequence with di = ρ(xi, ∂C) → 0 and

xi ∈ C. By compactness we may assume that xi → x ∈ ∂C.
Choose a local parametrization φ : U → ∂C ∩ B(x, ǫ) (φ(0) = x) at the

point x and define the injective mapping g : U × [−ǫ, ǫ] → ℜm (similar
considerations as in Lemma 3 can be applied here for small ǫ > 0) by

g(y, r) = φ(y) − rn(φ(y)).

To see that g is continuously differentiable at the origin, let (vi(φ(y)))m−1
i=1

be an orthonormal basis for the tangent space at the point φ(y) obtained
by Gram-Schmidt orthonormalization of the columns of Jyφ. Then each
vi(φ(y)) is a continuously differentiable function on U . For y close to 0, we
obtain

n(φ(y)) =
n(x) −

∑m−1
i=1 〈n(x), vi(φ(y))〉 vi(φ(y))

‖n(x) −
∑m−1

i=1 〈n(x), vi(φ(y))〉 vi(φ(y))‖
.

Clearly n(φ(y)) is continuously differentiable with respect to y, because the
denominator is bounded away from zero when y is close enough to 0. More-
over, the Jacobian of g at (0, 0) is

J(0,0)g = [J0φ,−n(0)] ,

which is non-singular. Thus by the implicit function theorem, the set

g(B((0, 0), δ))

is open for any small δ > 0 and it contains x. Consequently there exists an
integer i such that xi belongs to the range of g.

Now assume that (zi, ti) is the pair with g(zi, ti) = xi. For any ǫ > 0, we
may choose a point yi,ǫ ∈ ∂C such that ‖yi,ǫ −xi‖ ≤ di + ǫ. Then by Lemma
2,

(di + ǫ)2 ≥ ‖xi − yi,ǫ‖
2 = ‖φ(zi) − tin(φ(zi)) − yi,ǫ‖

2

= t2i + ‖φ(zi) − yi,ǫ‖
2 + O(ti‖φ(zi) − yi,ǫ‖

2),

because φ(zi) − yi,ǫ is approximately parallel to the tangent plane at φ(zi).
The remainder term O(ti‖φ(zi) − yi,ǫ‖

2) is actually due to second order ef-
fects; again we applied a linearization argument. Now, because δ can be
chosen as arbitrarily small (and thus ti as well), the error term can be essen-
tially neglected (we assumed it is at most half of ‖φ(zi) − yi,ǫ‖

2 in absolute
value). But such an argument implies that ti ≤ di.

To summarize, for any choice (xi)
∞
i=1, xi belongs to the set ∪x∈∂CA(x, di)

for large i. In other words, for small r

∂rC ⊂ ∪x∈∂CA(x, r).

The other direction is easier rather trivially:

∪x∈∂CA(x, r) ⊂ ∂rC.
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The mapping of Equation (18) has a rather complex Jacobian due to the
nonlinearity of n(x). This poses some problems when doing a change of
variable in integrals over ∂rC. However, it turns out that such difficulties
only affect higher order terms and can be neglected in our nearest neighbor
analysis.

Lemma 6. Set Ξ = ∪x∈∂CA(x, r). Then for any function f : C → ℜ with
|f | ≤ 1, we have for r > 0

∫

Ξ

f(x)dx =

∫

∂C

∫ r

0

f(x − r̃n(x))dr̃dS + O(r2),

where the outer integral is the surface integral over ∂C. The remainder term
O(r2) can be bounded by c5r

2 with the constant c5 depending only on C.

Proof. Choose x0 ∈ ∂C and a local parametrization φ : U → B(x0, δ) ∩ ∂C.
Then g(y, r) = φ(y) − rn(φ(y)) is an injection. It has the Jacobian

J(y,r)g = [Jyφ − rJyn(φ(y)),−n(φ(y))] .

Because all submatrices in the expression are bounded (φ can be chosen in
such a way by restricting it into a subset of U if necessary, see the proof of
Lemma 1), we may use (for the L2-matrix norm)

sup
‖D‖,‖E‖≤1

det(D + ǫE) − det(D) = O(ǫ),

when ǫ approaches zero to conclude that the determinant of J(y,r)g is

|J(y,r)g| = | [Jyφ, n(φ(y))] | + O(r) =
√

|(Jyφ)T Jyφ| + O(r).

Thus by a change of variables we obtain

∫

∪x∈B(x0,δ)∩∂CA(x,r)

f(x)dx

=

∫

U

∫ r

0

f(φ(y) − r̃n(y))
√

|(Jyφ)T Jyφ|dr̃dy + O(r2)

=

∫

∂C∩B(x0,δ)

∫ r

0

f(x − r̃n(y))dr̃dS + O(r2).

To finish the proof, notice that by compactness, ∂C can be divided into a
finite number of sets ∂C∩B(xi, δi) with corresponding local parametrizations
φi. One can examine each ball separately by replacing f by

fi(x) = I(x /∈ ∪i−1
j=1 ∪z∈B(xj ,δj)∩∂C A(z, r))f(x)

to take into account the overlap between the sets.
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4 AUXILIARY RESULTS FOR NEAREST NEIGHBORS

4.1 Nearest Neighbor Distributions

Let us define the probability mass function

ωx(r) = P (X1 ∈ B(x, r))

corresponding to the probability that a point belongs to the open ball B(x, r).
For any bounded function f , it is well-known [2] that the distribution of the
k-nearest neighbor distance conditional on X1 is given by

E[f(dk)|X1 = x] = k

(

M − 1

k

)
∫ ∞

0

f(r)ωx(r)
k−1(1−ωx(r))

M−k−1dωx(r);

(19)
here dωx(r) corresponds to the Lebesgue-Stieltjes measure. The derivation
of this relation proceeds (informally) by observing that

P (dk ∈ [r, r + dr]|X1 = x)

is equal to the probability that one vector belongs to B(x, r + dr) \ B(x, r),
k − 1 vectors to B(x, r) and M − k − 1 to the complement B(x, r + dr)C .
Then (19) follows by combinatorics.

4.2 Uniformly Distributed Points in the Unit Cube

Here we will analyze points uniformly distributed in the unit cube [0, 1] ×
[−1/2, 1/2]m−1. It turns out that the more general case is not much different
to the one analyzed here. As a first step, we examine the situation, where the
boundary effect can be neglected.

Consider a point x far from the boundaries of the cube. Then, because
p = 1, ωx(r) takes the simple form

ωx(r) = Vmrm, (20)

or equivalently
r = V −1/m

m ωx(r)
1/m.

Using the relation between ωx(r) and r, a good approximation would be (see
Equation 19)

E[dα
k |X1 = x]

≈ V −α/m
m k

(

M − 1

k

)
∫ ∞

0

ωx(r)
α/m+k−1(1 − ωx(r))

M−k−1dωx(r)

= V −α/m
m k

(

M − 1

k

)
∫ 1

0

zα/m+k−1(1 − z)M−k−1dz. (21)

Of course, this approximation is never exact as Equation (20) does not hold
for large values of r due to the boundary effect. Even though Equation (21)
looks complex, it can actually be written in terms of Gamma functions. The
interesting part in such a representation is the approximation

Γ(M)

Γ(M + δ)
= M−δ + O(M−1−δ),
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which becomes very accurate even for relatively small values of M and thus
one can write the right side of Equation (21) in the following intuitive form.

Lemma 7. For any α > 0, the integral in Equation (21) can be represented
using the Gamma function as

k

(

M − 1

k

)
∫ 1

0

zα/m+k−1(1 − z)M−k−1dz =
Γ(k + α/m)Γ(M)

Γ(k)Γ(M + α/m)

=
Γ(k + α/m)

Γ(k)
M−α/m + O(kα/mM−α/m−1).

Proof. Denoting by β the Beta function,

∫ 1

0

zα/m+k−1(1 − z)M−k−1dz = β(α/m + k,M − k); (22)

on the other hand,

β(α/m + k,M − k) =
Γ(k + α/m)Γ(M − k)

Γ(M + α/m)
(23)

and

k

(

M − 1

k

)

=
Γ(M)

Γ(k)Γ(M − k)
. (24)

The proof is finished by combining Equations (22), (23) and (24).

Problems arise once x is close to the boundaries, because the approxima-
tion in (21) is not valid as the relation between ωx(r) and r becomes much
more complicated than (20). One idea would be to assume that the num-
ber of such points in a sample is asymptotically neglible and thus neglect
the boundary effect in the analysis, see [2]. Here we show the rather surpris-
ing result that actually the effect of the boundaries can be estimated in an
analytic way.

When points close to the corners of the cube are neglected, we can restrict
ourselves to vectors of the form

x = (s, 0, . . . , 0). (25)

Recalling the function h defined in Section 2.1, for r < 1/2 we have (the
notation (s, 0) is a shorthand for (25))

ω(s,0)(r) = smh(
r

s
) (26)

and
dω(s,0)(r) = sm−1h′(

r

s
)dr. (27)

Given x close to the boundary, ωx(r) has a rather complicated form and at
first sight it seems that evaluating E[dα

k |X1 = x] is rather difficult. This is
indeed the case if X1 is held fixed. Here we propose another approach: we
let the first coordinate x(1) vary and thus instead of a single integral, we obtain
a double integral, which can be represented in a simple form.
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Before stating the main result of this section, we define the function g by

gγ(z) = 1 if z < γ

and 0 otherwise. We will replace dk by dkgγ(dk); in the next section we will
analyze the additional error caused by adding gγ .

Theorem 2. Let us define the constant

D =
1

m

∫ 1

0

a−α−2h(a−1)−α/m−1/m−1h′(a−1)da.

If the variables (Xi)
M
i=1 are uniform on the cube [0, 1] × [−1/2, 1/2]m−1, we

have for any α > 0 and γ < (2 + V
1/m
m )−1,

∫ γ

0

E[gγ(dk)d
α
k |X1 = (s, 0, . . . , 0)]ds = V −α/m

m

Γ(k + α/m)Γ(M)

Γ(k)Γ(M + α/m)
γ

+ (D − V −α/m−1/m
m )

Γ(k + α/m + 1/m)Γ(M)

Γ(k)Γ(M + α/m + 1/m)
+ R1.

The remainder term is bounded by

|R1| ≤ Mke−Vmγm(M−k−1)(D + V −α/m
m + V −α/m−1/m

m ).

Proof. Recalling the nearest neighbor distribution in Equation (19) and ap-
plying Equation (27) we obtain

k

(

M − 1

k

)
∫ γ

0

∫ γ

0

rαω(s,0)(r)
k−1(1 − ω(s,0)(r))

M−k−1dω(s,0)(r)ds

= k

(

M − 1

k

)
∫ γ

0

∫ γ

0

t(s, r)drds (28)

with the definition

t(s, r) = rαsm−1ω(s,0)(r)
k−1(1 − ω(s,0)(r))

M−k−1h′(
r

s
).

The integral (28) can be divided into two parts by considering sets with s > r
and s < r separately. We use Equation (20) and the identity (valid for s > r)

h′(
r

s
) =

mVmrm−1

sm−1

to write the contribution from the first set as

I1 = k

(

M − 1

k

)
∫ γ

0

∫ γ

r

t(s, r)dsdr

= mkV k
m

(

M − 1

k

)
∫ γ

0

∫ γ

r

rα+km−1(1 − Vmrm)M−k−1dsdr

= mkV k
m

(

M − 1

k

)
∫ γ

0

rα+km−1(γ − r)(1 − Vmrm)M−k−1dr.
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By making the change of variable y = Vmrm, I1 can be written as

I1 =V −α/m
m γk

(

M − 1

k

)
∫ Vmγm

0

yα/m+k−1(1 − y)M−k−1dy

− V −α/m−1/m
m k

(

M − 1

k

)
∫ Vmγm

0

yα/m+1/m+k−1(1 − y)M−k−1dy.

The integrals from 0 to Vmγm can be extended to integrals from 0 to 1 at the
expense of an error term roughly bounded by

|R
(a)
1 | ≤ Mk(V −α/m

m + V −α/m−1/m
m )

∫ 1

Vmγm

yα/m+k−1(1 − y)M−k−1dy

≤ Mk(V −α/m
m + V −α/m−1/m

m )e−Vmγm(M−k−1).

Applying Lemma 7, we obtain the final form of I1:

I1 = V −α/m
m γ

Γ(k + α/m)Γ(M)

Γ(k)Γ(M + α/m)
− V −α/m−1/m

m

Γ(k + α/m + 1/m)Γ(M)

Γ(k)Γ(M + α/m + 1/m)

+ R
(a)
1 .

Next we proceed to the slightly more difficult case r > s. One possible
approach is to make the change of variable (s, r) = (ar, r) to obtain

I2 = k

(

M − 1

k

)
∫ γ

0

∫ r

0

t(s, r)dsdr = k

(

M − 1

k

)
∫ 1

0

r

∫ γ

0

t(ar, r)drda

= k

(

M − 1

k

)
∫ 1

0

akm−1h(a−1)k−1h′(a−1)

×

∫ γ

0

rα+mk(1 − amh(a−1)rm)M−k−1drda

= k

(

M − 1

k

)
∫ 1

0

a−α−2h(a−1)−α/m−1−1/mh′(a−1)

×

∫ amh(a−1)γm

0

yα/m+k+1/m−1(1 − y)M−k−1dyda.

By Equation (4),

amh(a−1)γm >
1

2
Vmγm

and consequently

I2 = Dk

(

M − 1

k

)
∫ 1

0

yα/m+k+1/m−1(1 − y)M−k−1dy + R
(b)
1

= D
Γ(k + α/m + 1/m)Γ(M)

Γ(k)Γ(M + α/m + 1/m)
+ R

(b)
1

the error term being bounded by

|R
(b)
1 | ≤ DMk

∫ 1

1
2
Vmγm

yα/m+k+1/m−1(1 − y)M−k−1dy

≤ DMke−
1
2
Vmγm(M−k−1).
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4.3 General Distributions

Analyzing points distributed according to more general measures than the
uniform distribution on a cube is rather challenging. However, when the
boundary effect can be neglected, the problem simplifies considerably as in
such a situation the techniques for uniform random variables can be applied
in a straightforward manner.

Lemma 8. Assume that (A2) holds. Then there exists a constant c6 indepen-
dent of M,k, x and γ, such that for any γ > 0 and x ∈ C \ ∂γC,

E[dα
kgγ(dk)|X1 = x] = V −α/m

m p(x)−α/m Γ(k + α/m)Γ(M)

Γ(k)Γ(M + α/m)
+ R2,

with
|R2| ≤ c6γ

ξ+α + Mke−c−1
p Vmγm(M−k−1).

Proof. Let ∇xp be the gradient of p which exists by (A1). Then by symmetry
we know that

∫

B(x,r)

〈y − x,∇xp〉 dy = 0.

Thus we may find a constant c > 1 such that

|ωx(r) − Vmrmp(x)| ≤ crm+ξ.

Because p is bounded from below and the previous inequality holds for any
choice x ∈ C \ ∂γC, we have on the event X1 ∈ C \ ∂γC (I refers to the
indicator function)

gγ(dk)I(X1 ∈ C \ ∂γC)|
V

α/m
m p(X1)

α/mdα
k

ωX1(dk)α/m
− 1| ≤ cγξ.

Consequently, we only need to examine W = E[ωX1(dk)
α/mgγ(dk)|X1 = x]

which can be evaluated using Equation (19):

W = k

(

M − 1

k

)
∫ γ

0

ωx(r)
α/m+k−1(1 − ωx(r))

M−k−1dωx(r)

= k

(

M − 1

k

)
∫ ωx(γ)

0

zα/m+k−1(1 − z)M−k−1dz.

Because ωx(γ) ≥ c−1
p Vmγm,

k

(

M − 1

k

)
∫ 1

ωx(γ)

zα/m+k−1(1 − z)M−k−1dz ≤ Mke−c−1
p Vmγm(M−k−1)

and we may finish the proof by the approximation

W ≈ k

(

M − 1

k

)
∫ 1

0

zα/m+k−1(1 − z)M−k−1dz

and Lemma 7.
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For points close to ∂C the shape of the boundary plays an important role
in a higher order expansion. It turns out that under sufficient regularity, a
local linearization can be used for a reduction to a simpler case with the
expense of some higher order terms. In contrary to Lemma 8, both ∂C and p
are linearized.

Let (Xi,unif )
M
i=1 be a set of uniformly distributed random variables as in

Section 4.2. The corresponding nearest neighbor distances are denoted by
dk,unif . The proof of the following theorem is based on a coupling argu-
ment for the total variation distance [1, 6], which has turned out to be rather
powerful.

Lemma 9. Assume that (A1)-(A2) hold. Then there exists a constant c7 > 0
depending only on C, α, and p but not on M,k, y or γ, such that for all
x ∈ ∂C, 0 < r < γ < 1 and y = x − rn(x),

|p(x)1−α/mE[dα
k,unifgγ(dk,unif )|X

unif
1 = (p(x)1/mr, 0, . . . , 0)]

− E[dα
kgγ(dk)|X1 = y]p(y)| ≤ c7(γ

α+1 + Mγm+α+1).

Proof. By rotation and translation, we may assume without losing generality
that

x = (0, 0, . . . , 0)

and similarly n(x) = (−1, 0, . . . , 0). We will use the notation Ξ1 for the set
B(y, γ) ∩ Ux and Ξ2 for B(y, γ) ∩ C. Define a new density p̃ by setting

p̃(z) = p(x)I(z ∈ Ξ1)

for z ∈ B(y, γ) and

p̃(z) =
(1 − p(x)λ(Ξ1))p(z)

1 − P (X1 ∈ Ξ1)

otherwise. Lemma 4 and Assumption (A2) ensure the existence of a constant
c̃ > 0 such that

∫

B(y,γ)

|p̃(z) − p(z)|dz ≤ Lγm+1 + p(x)λ(Ξ1 \ Ξ2) + p(x)λ(Ξ2 \ Ξ1)

≤ c̃γm+1.

Moreover, for γ small enough to ensure P (X1 ∈ Ξ1) ≤ 1/2, we have

|1 −
1 − p(x)λ(Ξ1)

1 − P (X1 ∈ Ξ1)
| ≤ 2c̃γm+1.

This gives us
∫

ℜm

|p̃(z) − p(z)|dz ≤ cγm+1,

which is a bound on the total variation distance between the two probability
measures. By a classical coupling argument (see [1] or [6]), there exists an

i.i.d. sample (X̃
(1)
i )M

i=1 distributed according to the density p̃ (we may of
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course extend the probability space (Ω,F , P ) in an appropriate way) such
that for each i > 1,

P (Xi 6= X̃
(1)
i ) ≤ 2cγm+1

and consequently

P ((Xi)
M
i=2 6= (X̃

(1)
i )M

i=2) ≤
M

∑

i=2

P (Xi 6= X̃
(1)
i ) ≤ 2cMγm+1. (29)

The new sample has a convenient uniformity property in the neighborhood

of y. Taking X1 = X̃
(1)
1 independent of (Xi, X̃

(1)
i )M

i=2, we obtain by Equation
(29)

|E[dα
kgγ(dk)|X1 = y] − E[d̃α

k,1gγ(d̃k,1)|X̃
(1)
1 = y]| ≤ 2cMγm+α+1, (30)

because on the event (Xi)
M
i=2 = (X̃i)

M
i=2 the nearest neighbor distances are

the same for both samples.
Fixing the notation ∆ = [0, p(x)−1/m] × [−p(x)−1/m/2, p(x)−1/m/2]m−1,

we introduce a third sample, (X̃
(2)
i )M

i=1:

When X̃
(1)
i ∈ B(y, γ), set X̃

(1)
i = X̃

(2)
i .

Otherwise choose X̃
(2)
i uniformly from the set ∆ \ B(y, γ).

Conditional on X̃
(1)
1 = y, the variable d̃α

k,1gγ(d̃k,1) depends only on points in
the ball B(y, γ). Thus the nearest neighbors in the second and third samples
are the same:

E[d̃α
k,1gγ(d̃k,1)|X̃

(1)
1 = y] = E[d̃α

k,2gγ(d̃k,2)|X̃
(2)
1 = (r, 0)]. (31)

The proof is finished by combining Equations (30) and (31) because (X̃
(2)
i )M

i=1

is uniformly distributed and (A2) implies the bound

E[dα
kgγ(dk)|X1 = y]|p(y) − p(x)| ≤ Lγ1+α.

This far we have used the threshold function gγ to bound the largest near-
est neighbor value. The probability of the event gγ(dk) = 1 can be bounded
in a rather straightforward way.

Lemma 10. Suppose that (A1) and (A2) hold. Then there exists a constant
c8 > 0 independent of M and k such that

P (dk > γ|X1) ≤ Mke−c8γm(M−k−1).

Proof. As a consequence of Lemma 4 we obtain

λ(B(x, r) ∩ C) ≥ crm

for some c > 0 and all x ∈ C. Using the nearest neighbor distribution (21)
we obtain the result

P (d1,k > γ|X1 = x) =

(

M − 1

k

)
∫ ∞

γ

ωx(r)
k−1(1 − ωx(r))

M−k−1dωx(r)

≤ Mke−(M−k−1)ωx(γ) ≤ Mke−cγm(M−k−1),

which finishes the proof.
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5.1 Smooth Sets

(Proof of Theorem 1 for sets satisfying (A1) and (A2)). By Lemma 10, there
exists a constants c > 0 such that

|R(a)| = |E[dα
k ] − E[dα

kgγ(dk)]| ≤ Mke−cγmM .

The expectation of dα
kgγ(dk) can be divided into an integral over the set of

points close to the boundary and its complement:

E[dα
kgγ(dk)] =

∫

∂γC

E[dα
kgγ(dk)|X1 = x]p(x)dx

+

∫

C\∂γC

E[dα
kgγ(dk)|X1 = x]p(x)dx

= I1 + I2.

As a first step to solve I1, we reparametrize it using Lemma 6 to obtain

I1 =

∫

∂C

∫ γ

0

E[dα
kgγ(dk)|X1 = x − rn(x)]p(x − rn(x))drdS + R(b)

with R(b) ≤ c5γ
2+α. An application of Lemma 9 and a change of variables

leads to

I1 =

∫

∂C

p(x)1−α/m−1/m

∫ p(x)1/mγ

0

E[dα
k,unifgγ(dk,unif )|X

unif
1 = (r, 0)]drdS

+R(c)

with
|R(c)| ≤ c5γ

2+α + c7(γ
α+2 + Mγm+α+2).

To apply Theorem 2 for solving the inner integral, one more observation is
required:

|E[dα
k,unifgγ(dk,unif )|X

unif
1 = (r, 0)] − E[dα

k,unifgp(x)1/mγ(dk,unif )|X
unif
1 = (r, 0)]|

≤ (cα/m
p + 1)γαP (dk,unif > (1 + c1/m

p )−1γ|Xunif
1 = (r, 0))

≤ Mk(cα/m
p + 1)γαe−

1
2
Vm(1+c

1/m
p )−mγm(M−k−1).

Now Theorem 2 can be applied to obtain

I1 = V −α/m
m

Γ(k + α/m)Γ(M)

Γ(k)Γ(M + α/m)
γ

∫

∂C

p(x)1−α/mdS

+(D − V −α/m−1/m
m )

Γ(k + α/m + 1/m)Γ(M)

Γ(k)Γ(M + α/m + 1/m)

∫

∂C

p(x)1−α/m−1/mdS

+R(d)

with

|R(d)| ≤ |R
(c)
3 | + Mke−Vmc−1

p γm(M−k−1)(D + V −α/m
m + V −α/m−1/m

m )

+Mk(cα/m
p + 1)γαe−

1
2
Vm(1+c

1/m
p )−mγm(M−k−1).
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By assumption (A2) and Lemma 6, we find a constant c > 0 such that

|γ

∫

∂C

p(x)1−α/mdS −

∫

∂γC

p(x)1−α/mdx|

≤ |γ

∫

∂C

p(x)1−α/mdS −

∫

∂C

∫ γ

0

p(x − rn(x))1−α/mdrdS|

+ |

∫

∂C

∫ γ

0

p(x − rn(x))1−α/mdrdS −

∫

∂γC

p(x)1−α/mdx| ≤ cγ2 (32)

and thus

I1 = V −α/m
m

Γ(k + α/m)Γ(M)

Γ(k)Γ(M + α/m)

∫

∂γC

p(x)1−α/mdx

+(D − V −α/m−1/m
m )

Γ(k + α/m + 1/m)Γ(M)

Γ(k)Γ(M + α/m + 1/m)

∫

∂C

p(x)1−α/m−1/mdS

+R
(e)
3 .

Lemma 8 allows a straightforward estimation of I2 by

I2 = V −α/m
m

Γ(k + α/m)Γ(M)

Γ(k)Γ(M + α/m)

∫

C\∂γC

p(x)1−α/mdx + R(f)

with
|R(f)| ≤ c6γ

ξ+α + Mke−c−1
p Vmγm(M−k−1).

The proof is finished by setting

R = R(a) + R(e) + R(f).

5.2 Polytopes

Proof. (Proof of Theorem 1 for polytopes) The proof for polytopes is simpler
than that for more general sets as the boundary is piecewise linear. As there
is no need for a detailed derivation, a sketch is given here.

Again, we need to examine dα
kgγ(dk) as λ(B(x, r)) ≥ crm for a constant

c > 0 and all x ∈ C validating Lemma 10. We only need to examine the term
I1 defined in the first part of the previous proof as I2 takes a similar form as
before. Moreover, it can be shown that if x ∈ A(y, γ) for some y ∈ ∂C, then

B(x, γ) ∩ C = B((‖x − y‖, 0, . . . , 0), γ) ∩H (33)

assuming that x does not belong to a set of volume O(γ2). The points where
Equation (33) does not hold are contained close to the m − 2 dimensional
planes where two faces intersect. Thus Lemma 9 is valid except in a neglible
set and also

∫

∂γC

f(x)dx =

∫

∪y∈∂CA(y,γ)

f(x)dx

=

∫

x∈∂C

∫ γ

0

f(x − rn(x))drdx + O(γ2)
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for any bounded measurable function f including E[g(dk)d
α
k |X1 = x]. No-

tice that here the sets A(x, r) and A(y, r) cannot be assumed to be disjoint
or contained in C; however, the overlap is neglible as again problems arise
only close to intersections of the faces. We obtain

I1 = V −α/m
m

Γ(k + α/m)Γ(M)

Γ(k)Γ(M + α/m)
γ

∫

∂C

p(x)1−α/mdS

+(D − V −α/m−1/m
m )

Γ(k + α/m + 1/m)Γ(M)

Γ(k)Γ(M + α/m + 1/m)

∫

∂C

p(x)1−α/m−1/mdS

+R(a)

= V −α/m
m

Γ(k + α/m)Γ(M)

Γ(k)Γ(M + α/m)

∫

∂γC

p(x)1−α/mdS

+(D − V −α/m−1/m
m )

Γ(k + α/m + 1/m)Γ(M)

Γ(k)Γ(M + α/m + 1/m)

∫

∂C

p(x)1−α/m−1/mdS

+R(b)

for a remainder term R(b) of the same order as in the first part.
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