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ABSTRACT: In natural language processing many practical tasks, such as
speech recognition, information retrieval and machine translation depend
on a large vocabulary and statistical language models. For morphologically
rich languages, such as Finnish and Turkish, the construction of a vocabulary
and language models that have a sufficient coverage is particularly difficult,
because of the huge amount of different word forms. In Morpho Challenge
2010 unsupervised and semi-supervised algorithms are suggested to provide
morpheme analyses for words in different languages and evaluated in vari-
ous practical applications. As a research theme, unsupervised morphological
analysis has received wide attention in conferences and scientific journals
focused on computational linguistic and its applications. This is the pro-
ceedings of the Morpho Challenge 2010 Workshop that contains one intro-
duction article with a description of the tasks, evaluation and results and
six articles describing the participating unsupervised and supervised learn-
ing algorithms. The Morpho Challenge 2010 Workshop was held at Espoo,
Finland in 2-3 September, 2010.

KEYWORDS: morpheme analysis, unsupervised learning, semisupervised learn-
ing, information retrieval, statistical machine translation
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Overview and Results of Morpho Challenge 2010

Mikko Kurimo, Sami Virpioja and Ville T. Turunen
Adaptive Informatics Research Centre, Aalto University School of Science and Technology

P.O.Box 15400, FIN-00076 Aalto, Finland
Mikko.Kurimo@tkk.fi

Abstract

In Morpho Challenge 2010 unsupervised
and semi-supervised algorithms are sug-
gested to provide morpheme analyses for
words in different languages that can
be used in various practical applications.
Morpheme analysis is particularly use-
ful in speech recognition, information re-
trieval and machine translation for mor-
phologically rich languages where the
amount of different word forms is very
large. The evaluations in Morpho Chal-
lenge consist of: 1. comparisons to gram-
matical morphemes, 2. information re-
trieval experiments based on morphemes
instead of words, and 3. machine trans-
lation experiments where morpheme and
word based systems are combined. The
evaluation languages are: Finnish, Turk-
ish, German, and English. This overview
paper describes the goals, data, tasks, par-
ticipants, evaluations, and obtained re-
sults. The Morpho Challenge is part of
the EU Network of Excellence PASCAL2
Challenge Program.

1 Introduction

A common task in applications such as speech
recognition, machine translation and information
retrieval is to construct a vocabulary and a sta-
tistical language model for all words that will be
used. For many languages, particularly the mor-
phologically rich ones, the vast amount of various
inflected forms in which the words appear poses
an important challenge. By using a rule-based
morphological analyzer that exist already for quite
many languages, most word forms can be returned
to their base forms. However, these analyzers do
not cover the whole language and leave out many
word forms that are either rare, foreign, or un-

grammatical. While the frequency of the unana-
lyzed types maybe small in running text or speech,
they might still be meaningful for the application.
A special challenge is posed by less resourced lan-
guages for which the available morphological an-
alyzers are particularly poor.

The series of the Morpho Challenge competi-
tions, started in 2005, has supported the research
for unsupervised morpheme analysis by providing
annual evaluations for shared tasks using shared
training data for various languages. The goal has
been to develop unsupervised and language inde-
pendent machine learning algorithms that could
discover morphemes from large amount of given
raw text data. The algorithms have been evaluated,
not only by comparing the obtained morphemes to
the linguistic ones, but by testing them in real NLP
applications using state-of-the-art technology. The
achieved results show which algorithms produce
the most useful morpheme analysis and how use-
ful they are compared to rule-based systems and
other state-of-the-art solutions in the task.

In the Morpho Challenge 2010, both unsu-
pervised and semi-supervised learning algorithms
have been evaluated. The semi-supervised learn-
ing is allowed to utilize the provided small amount
of labeled data to enhance or classify the anal-
ysis obtained by unsupervised learning from the
large unlabeled data. Alternatively, the core anal-
yses obtained first from the limited labeled data
can be extended by using the large unlabeled data.
For Morpho Challenge the semi-supervised task
has become particularly interesting, because small
samples of morphologically labeled words can al-
ready be obtained for many languages. From the
point of view of the machine learning research,
the semi-supervised learning task in Morpho Chal-
lenge is an opportunity to develop and evaluate
methods for morphology modeling and more gen-
erally, sequence segmentation and labeling, which
have not yet been extensively studied.
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The evaluation tasks in 2010 are essentially the
same as in 2009: comparison to grammatical mor-
phemes, information retrieval from text and ma-
chine translation. All the analysis languages in
2010 were also used in 2009: Finnish, Turkish,
German, and English. However, the amount of
training data was substantially increased by in-
cluding all the information retrieval and machine
translation data into the shared word list. This sim-
plified the comparison of all methods in all tasks,
but made the learning of the morpheme analysis
more data intensive.

2 Data and tasks

2.1 Data sets

The word list for each language has been con-
structed by collecting word forms occurring in text
corpora. The text corpora have been obtained by
combining collections from the Wortschatz collec-
tion1 at the University of Leipzig, CLEF2, and the
Europarl corpus (Koehn, 2005). The total size is
18.8 million sentences for English, 6.6 million for
Finnish, 9.7 million for German, and 1 million for
Turkish. The corpora have been preprocessed for
the Morpho Challenge (tokenized, lower-cased,
some conversion of character encodings).

For strictly unsupervised learning, only the
word list were to be used. For semi-supervised
training, the desired correct analyses, based on lin-
guistic gold standards, were supplied for a random
sample of 1000 words per each language. The par-
ticipants could use either the gold standard seg-
mentations (available only for English, Finnish,
and Turkish) or directly the gold standard labels
(for any language). In addition, independent de-
velopment sets of circa 700 words were provided.
They could be used for obtaining a rough estimate
of the performance and tuning some parameters of
the learning method. If either the training or the
development sets were not needed by the partic-
ipants, they could use a combined set as a larger
training or development set. Neither the training
sets nor the development sets contained any of the
word forms in the final test sets of Competition 1.

2.2 Competition 1

In Competition 1, for each language, the proposed
morpheme analyses are compared against a lin-

1http://corpora.informatik.
uni-leipzig.de/

2http://www.clef-campaign.org/

guistic gold standard. Since the learning task
is unsupervised or semi-supervised, it cannot be
expected that the algorithm comes up with mor-
pheme labels that exactly correspond to the ones
designed by linguists. That is, no direct compari-
son will take place between the labels in the pro-
posed analyses and the labels in the gold standard.

What can be expected, however, is that two
word forms that contain the same morpheme ac-
cording to the proposed analysis also have a mor-
pheme in common according to the gold stan-
dard. For instance, in the English gold stan-
dard, the words “foot” and “feet” both contain
the morpheme “footN”. It is thus desirable that
also the applied algorithm discovers a morpheme
that occurs in both these word forms, be it called
“FOOT”, “morpheme784”, “foot” or something
else.

The gold standard reference analyses were the
same as in the Morpho Challenges 2007–2009
(Kurimo et al., 2008; Kurimo et al., 2009; Ku-
rimo et al., 2010b) and the evaluation method is
the same as in Morpho Challenge 2009 (Kurimo
et al., 2010b). The test sets included 10000 (En-
glish), 200000 (Finnish), 50000 (German), and
50000 (Turkish) random words from the gold stan-
dards.

In practice, the evaluation is done by sampling a
large number of word pairs, such that both words
in the pair have at least one morpheme in common.
Then theprecision is calculated as the proportion
of morpheme sharing word pairs in the partici-
pant’s sample that really has a morpheme in com-
mon according to the gold standard. Correspond-
ingly, therecall is calculated as the proportion of
morpheme sharing word pairs in the gold standard
sample that also exist in the participant’s submis-
sion. As the evaluation measure, we will useF-
measure, which is the harmonic mean of precision
and recall:

F-measure= 1/(1/Precision+ 1/Recall) . (1)

As exemplified by Spiegler and Monson (2010),
the evaluation method applied in Morpho Chal-
lenges has some drawbacks. Most importantly, it
is prone to artificial boosting of recall by giving
several alternative analyses per word or adding a
unique shared morpheme for the analysis of each
word. Spiegler and Monson (2010) propose a
new evaluation method, EMMA, which applies
a graph-based assignment algorithm. In EMMA,
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each proposed morpheme is matched for each
morpheme in the gold standard. This matching
allows direct calculation of precision (how many
morphemes in the proposed analysis are in the
gold standard analysis) and recall (how many mor-
phemes in the gold standard analysis are in the
proposed analysis) for each word.

Although the official results of Competition 1
are calculated with the Morpho Challenge 2009
metric, we have evaluated all the submissions also
with EMMA and give the results of both evalua-
tions in Section 4. Due to the computational com-
plexity of the EMMA method, the full test sets ap-
plied in the standard evaluation could not be used.
Instead, the evaluation is performed by sampling
10 random subsets of 1000 words from the test sets
and calculating the scores for each subset.

2.3 Competition 2

In Competition 2, the submitted morpheme anal-
yses were evaluated by using them in an Infor-
mation Retrieval (IR) task. IR evaluation corpora
were available for English, German and Finnish
and were provided by the Cross-Language Evalu-
ation Forum (CLEF). To evaluate the algorithms,
the IR experiments were run after replacing all
word forms in the corpora and the queries by the
submitted analyses. Morpheme analysis is im-
portant in IR, since the user will want to retrieve
all relevant documents irrespective of which word
forms are used to describe the contents. Espe-
cially, for highly inflective language like Finnish,
retrieval performance will be very bad if mor-
phology is not taken into account. Tradition-
ally, language dependent rule based methods like
two-level morphological analysis or stemming are
used. These type of methods were also tested for
comparison.

The task, the data and the evaluation tools are
the same as used in Morpho Challenge 2009 (Ku-
rimo et al., 2010b). The Lemur Toolkit (Ogilvie
and Callan, 2002) with Okapi BM25 ranking was
used. The evaluation criterion was Mean Average
Precision (MAP). For each submission, a stop list
was generated, since Okapi BM25 suffers greatly
if the corpus contains terms that are very common.
The morpheme segmentation algorithms introduce
such terms when they e.g. separate suffixes. Any
term that has a collection frequency higher than
75000 (Finnish) or 150000 (German and English)
was added to the stop list and thus excluded from

indexing. In this year’s challenge, all three tasks
used the same combined word list. While con-
structing the new word lists, some small prepro-
cessing issues were fixed. All reference method
experiments were repeated with the new word lists
and the effect of the changes was found to be min-
imal. The results are comparable to the results of
previous challenges.

The performance of the participating algorithms
was compared to a number of reference methods,
some of which are commonly used in IR. The ref-
erence methods are the same as used in Morpho
Challenge 2009 (Kurimo et al., 2010b).

1. Morfessor Categories-MAP: The Morfessor
Categories-MAP was used for the unsuper-
vised morpheme analysis. The stem vs. suf-
fix tags were kept, but did not receive any
special treatment in the indexing.

2. Morfessor Baseline: Morfessor Baseline al-
gorithm was used to split words into smaller
pieces without any real morpheme analysis.

3. dummy: No segmentation or analysis was
performed and words were used as index
terms as such. Hyphens were replaced by
spaces so that hyphenated words were in-
dexed as separate words.

4. Grammatical: The words were analyzed us-
ing the same gold standard analyses in each
language that were utilized as the “ground
truth” in the Competition 1. Either only the
first interpretation was used (“Grammatical
First”) or all of them (“Grammatical All”).
Words that were not in the gold standard were
indexed as such. Because our gold stan-
dards are quite small, 60k (English) - 600k
(Finnish), compared to the amount of words
that the unsupervised methods can analyze,
we did not expect “Grammatical” to perform
particularly well.

5. snowball: No real morpheme analysis was
performed, but the words were stemmed by
language specific stemming algorithms pro-
vided by Snowball libstemmer library3. Hy-
phenated words were first split to parts that
were then stemmed separately.

3http://snowball.tartarus.org/
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6. TWOL: Two-level morphological analyzer
TWOL from Lingsoft Inc.4 was used to find
the normalized forms of the words which
were then used as index terms. Some words
may have several alternative interpretations
and either all alternatives were used (“TWOL
all”) or only the first one (“TWOL first”).
Compound words were split to parts. Words
not recognized by the analyzer were indexed
as such.

7. Best Prev.: This is the algorithm in each task
that provided the highest average precision in
previous Morpho Challenges.

2.4 Competition 3

In Competition 3, the morpheme analyses pro-
posed by the algorithms were evaluated in a statis-
tical machine translation (SMT) framework. The
two source languages used in the competition were
Finnish and German. In principle, the evaluation
is simple: We train a translation system that can
translate the morphologically analyzed Finnish or
German sentence to English. Then, we use it to
translate new sentences, and compare the trans-
lation results to the reference translations. If the
morphological analysis is good, it reduces the
sparsity of the data and helps the translation task.
If the analysis contains many errors, it degrades
the translation results.

The basic setup is similar to the one proposed
for Finnish-to-English translation by de Gispert et
al. (2009): The translation models were trained to
translate from a morphologically complex source
language to English. The words of the source
language were replaced by their morpheme anal-
yses before training the translation models. The
morpheme-based models are combined to a stan-
dard word-based model by generating n-best lists
of translation hypotheses from both models, and
finding the best overall translation with the Min-
imum Bayes Risk (MBR) decoding (Kumar and
Byrne, 2004).

The final SMT systems were evaluated by mea-
suring the similarity of the translation results
to a human-made reference translation using the
BLEU metric (Papineni et al., 2002). BLEU is
based on the co-occurrence ofn-grams: It counts
how manyn-grams (forn = 1, . . . , 4) the pro-
posed translation has in common with the refer-
ence translations and calculates a score based on

4http://www.lingsoft.fi/

this. Although BLEU is a very simple measure, it
usually corresponds well to human evaluations if
the compared translation systems are similar.

While the basic setup in the evaluation is the
same as in Morpho Challenge 2009 (Kurimo et al.,
2010b), one change was made to make the com-
petition more fair: As the alignment tool used in
training the SMT system has a limitation of 100 to-
kens per sentence, we discarded all sentences that
had more than 100 letters. This way, all systems
had, in practice, the same amount of training data.

For training and testing the SMT systems, the
Europarl data sets were divided into three subsets:
training set for training the models, development
set for tuning the model parameters, and test set
for evaluating the translations. For the Finnish-
English systems, we had 325 561 sentences for
training, 2 849 for tuning, and 3 000 for testing.
For the German-English systems, we had 317 137
sentences for training, 2 665 for tuning, and 3 000
for testing. Note that the word lists given for par-
ticipants for learning morphology included all the
word forms in the Europarl corpus.

3 Submitted algorithms

Research groups from four different universities
and institutions submitted the results of their al-
gorithms. The authors and the names of their
algorithms are listed in Table 1. Sample anal-
yses from the submissions (100 words per lan-
guage) are available from the Morpho Challenge
web pages5.

Statistics of the output of the submitted algo-
rithms are presented in Tables 2–5 for each of
the languages. The column “Type” shows how
the methods exploit the provided labeled data sets:
“S” denotes a semi-supervised algorithm, “P” de-
notes an unsupervised algorithm with supervised
parameter tuning (i.e., only the development sets
were used), and “U” denotes a fully unsupervised
algorithm (i.e., only the word lists were used). The
average amount of analyses per word is shown
in the column “#a/w” and the average amount of
morphemes per analysis in the column “#m/w”.
Only the DEAP algorithm provided alternative
analyses. The total amount of morpheme types is
given in the column “#lexicon”.

As baseline results for unsupervised mor-
pheme analysis, the organizers provided mor-

5http://www.cis.hut.fi/
morphochallenge2010/samples/
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Table 1: The participants and the names of their algorithms.

Author Affiliation Algorithm name
Golénia et al. University of Bristol, UK MAGIP
Kohonen et al. Aalto University, FI Morfessor S+W
Kohonen et al. Aalto University, FI Morfessor S+W+L
Kohonen et al. Aalto University, FI Morfessor U+W
Lignos University of Pennsylvania, USA Base Inference
Lignos University of Pennsylvania, USA Aggressive Compounding
Lignos University of Pennsylvania, USA Iterative Compounding
Nicolas et al. UNSA + CNRS, FR & Univ. de A Corũna, ES MorphAcq
Spiegler et al. University of Bristol, UK DEAP MDL-CAT
Spiegler et al. University of Bristol, UK DEAP MDL-NOCAT
Spiegler et al. University of Bristol, UK DEAP PROB-CAT
Spiegler et al. University of Bristol, UK DEAP PROB-NOCAT
Spiegler et al. University of Bristol, UK Promodes
Spiegler et al. University of Bristol, UK Promodes-H
Spiegler et al. University of Bristol, UK Promodes-E

pheme analysis by a publicly available unsu-
pervised algorithm called “Morfessor Categories-
MAP”developed at Helsinki University of Tech-
nology (Creutz and Lagus, 2005a). Analysis by
the original Morfessor Baseline (Creutz and La-
gus, 2002; Creutz and Lagus, 2005b), which pro-
vides only a surface-level segmentation, was also
provided for reference. Additionally, the refer-
ence results were provided for “letters”, where the
words are simply split into letters.

4 Results

4.1 Competition 1

Tables 6, 7, 8 and 9 show the results of the linguis-
tic evaluation with the Morpho Challenge metric.
The best result is obtained by a different algorithm
for each of the languages: Morfessor S+W for En-
glish, DEAP MDL-NOCAT for Finnish, Morfes-
sor U+W for German, and Morfessor S+W+L for
Turkish. Overall, strong performance is measured
for the semi-supervised Morfessor algorithms by
Kohonen et al., semi-supervised DEAP algorithms
by Spiegler et al., and all unsupervised algorithms
by Lignos.

The results are somewhat different with our al-
ternative evaluation method, EMMA, as shown in
Tables 10, 11, 12 and 13. The most evident differ-
ence is that the DEAP submissions that included
alternative analyses for the words, do not perform
as well. Also the algorithms that applied parame-
ter optimization with the Morpho Challenge eval-

uation, such as Morfessor U+W, often lose their
positions. The best overall results are obtained by
Morfessor S+W+L by Kohonen et al., which gets
top score for every language for which it was eval-
uated. For German, unsupervised MorphAcq by
Nicolas et al. is the best among the submissions,
but the reference method Morfessor Categories-
MAP gets even higher scores. All three unsuper-
vised algorithms Lignos are again strong, but now
Base Inference is clearly outperforms the other
two.

4.2 Competition 2

Tables 14, 15 and 16 show the obtained MAP val-
ues for the submissions in English, Finnish and
German respectively. For English and Finnish,
Base Inference and Aggressive Compounding
methods by Lignos gave the best performance re-
spectively and for German Morfessor U+W by
Kohonen et al. Overall, these algorithms, espe-
cially Aggressive Compounding, gave good re-
sults for all languages. The best performance for
all three languages, was achieved by one of the
reference algorithms. The rule based word nor-
malizer, TWOL, gave best performance in German
and Finnish. In the English task, TWOL was only
narrowly beaten by the traditional Porter stemmer.

Compared to previous years, the best result
for Finnish was very slightly improved, but the
Paramor+Morfessor algorithm from 2008 (Mon-
son et al., 2009) was still unbeaten for English and
German. However, the comparison is not com-
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Table 2: Statistics of the analyses forEnglish words. Type indicates the level of supervision used in the
method, #a/w is the average amount of analyses per word, #m/w is the average amount of morphemes
per analysis, and #lexicon is the size of the morph lexicon.

Author Method Type #a/w #m/w #lexicon
Golénia et al. MAGIP S 1.00 3.87 173204
Kohonen et al. Morfessor S+W S 1.00 2.80 33759
Kohonen et al. Morfessor S+W+L S 1.00 2.70 52323
Kohonen et al. Morfessor U+W P 1.00 2.96 14677
Lignos Aggressive Compounding U 1.00 2.30 275340
Lignos Base Inference U 1.00 2.11 302911
Lignos Iterative Compounding U 1.00 2.10 309887
Nicolas et al. MorphAcq U 1.00 1.51 617531
Spiegler et al. DEAP MDL-CAT S 4.29 3.86 780699
Spiegler et al. DEAP MDL-NOCAT S 1.76 3.88 414247
Spiegler et al. DEAP PROB-CAT S 4.71 3.23 1459539
Spiegler et al. DEAP PROB-NOCAT S 1.76 3.38 557190
Spiegler et al. Promodes P 1.00 4.21 119854
Spiegler et al. Promodes-E P 1.00 3.51 185814
Spiegler et al. Promodes-H P 1.00 4.91 71610
- Morfessor Baseline U 1.00 2.30 72752
- Morfessor Categories-MAP U 1.00 2.34 256686
- letters - 1.00 9.83 64

pletely fair since Paramor+Morfessor was a com-
bination of two separate algorithms, Paramor and
Morfessor. Combining any two methods from this
year would likely offer better performance than ei-
ther of the methods alone.

Statistical testing was performed by transform-
ing the obtained Average Precision values with
the f(x) = arcsin(

√

x) function to make them
more normally distributed. Significances were
computed using Two-way ANOVA and 95% con-
fidence level. For more details, see Morpho Chal-
lenge 2009 overview (Kurimo et al., 2010b). The
“top group” or the submissions that have no signif-
icant difference to the best result of each language
are marked with X (Tables 14-16).

4.3 Competition 3

In Competition 3, we calculated the BLEU scores
both for the individual systems, including a word-
based system, and for MBR combination with
the word-based system. The statistical signifi-
cances (p < 5%) of the results were inspected
with Wilcoxon signed-rank test on ten subsets of
the test data. In addition to the submitted algo-
rithms, we have the reference Morfessor meth-
ods, word-based baseline, and grammatical mor-
phemes based on the gold standards. The gold

standards did not include analyses for all the words
in the data; unknown word forms were left unpro-
cessed. In the case of several alternative analyses,
we selected the one with the least number of mor-
phemes.

Tables 14 and 15 show the machine translation
results for Finnish and German, respectively. In
Finnish translation, the best individual system was
based on Morfessor Baseline, outperforming also
word-based translation. Base Inference by Lignos
was the best among the submissions. Also Mor-
fessor Categories-MAP, grammatical morphemes,
Iterative Compounding by Lignos and Morfes-
sor U+W by Kohonen et al. were not signifi-
cantly worse than the word-based model. With
MBR combination, Morfessor Baseline was still
the best. The only one not significantly worse
than it was another Morfessor method, Categories-
MAP. Also grammatical morphemes, Base Infer-
ence and Iterative Compounding by Lignos, and
Morfessor S+W by Kohonen et al., and DEAP
MDL-CAT by Spiegler et al. could significantly
improve the results of the word-based model.

In German translation, the best individual sys-
tem was again based on Morfessor Baseline. The
best among the submitted methods was Morfes-
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Table 3: Statistics of the analyses forFinnish words. Type indicates the level of supervision used in the
method, #a/w is the average amount of analyses per word, #m/w is the average amount of morphemes
per analysis, and #lexicon is the size of the morph lexicon.

Author Method Type #a/w #m/w #lexicon
Golénia et al. MAGIP S 1.00 4.43 983445
Kohonen et al. Morfessor S+W S 1.00 4.27 14133
Kohonen et al. Morfessor S+W+L S 1.00 4.34 20589
Kohonen et al. Morfessor U+W P 1.00 4.07 3716
Lignos Aggressive Compounding U 1.00 3.49 450668
Lignos Base Inference U 1.00 2.64 674204
Lignos Iterative Compounding U 1.00 2.80 738489
Spiegler et al. DEAP MDL-CAT S 5.33 3.22 3374816
Spiegler et al. DEAP MDL-NOCAT S 3.29 3.41 2320673
Spiegler et al. DEAP PROB-CAT S 5.34 2.17 9739221
Spiegler et al. DEAP PROB-NOCAT S 2.36 2.30 4287514
Spiegler et al. Promodes P 1.00 5.55 294957
Spiegler et al. Promodes-E P 1.00 5.29 329206
Spiegler et al. Promodes-H P 1.00 6.01 239557
- Morfessor Baseline U 1.00 2.20 187194
- Morfessor Categories-MAP U 1.00 2.92 284560
- letters - 1.00 13.94 67

sor U+W, but none the differences between them
was significant. With MBR combination, Morfes-
sor Categories-MAP outperformed Baseline, but
not with a statistical significance. Also the results
of Iterative Compounding and Aggressive Com-
pounding by Lignos, as well as grammatical mor-
phemes, had no statistically significant difference
to the results of Categories-MAP. Moreover, none
of the submitted methods could improve the word-
based baseline significantly.

4.4 Discussion

As the winners of the competitions varied, some-
times even within the same language, we stud-
ied the correlations of the different scores. Ta-
ble 19 shows average correlations of the scores
over the languages. In addition to the two linguis-
tic evaluations—Morpho Challenge (MC) evalua-
tion and EMMA—information retrieval evalation,
and the two machine translation evaluations (sin-
gle and combined systems), we included precision
and recall of the linguistic evaluations and three
statistics shown also in Tables 2–5. Although the
number of algorithms (7–17) and the number of
languages (1–4) is quite small, the strongest posi-
tive or negative correlations with a small deviation
across the languages can provide us some insight
on this variance.

Considering the linguistic evaluations, MC
evaluation has a strong negative correlation
(−0.67) between precision and recall. Recall has
stronger correlation to the F-measure, likely due
to that the variance in recall is usually larger than
the variance in precision. In EMMA, precision
and recall seem to be almost uncorrelated, and F-
measure correlates better with precision than re-
call. Another interesting phenomenon is that the
average number of morphs per word has a strong
positive correlation (+0.59) to the recall value of
the MC evaluation, and even stronger negative cor-
relation (−0.76) to the precision value. In EMMA,
precision has a negative correlation, although not
as large (−0.46), but recall is almost uncorrelated.
Thus, it seems that while F-measure of the MC
evaluation can be improved by extensive segmen-
tation, the same does not help with EMMA.

The amount of alternative analyses has a pos-
itive correlation (+0.40) to MC evaluation, but a
negative one (−0.67) to EMMA. This corresponds
to what has been observed before (Kurimo et al.,
2009; Kurimo et al., 2010a; Spiegler and Monson,
2010): The recall in MC evaluation can be easily
improved by including alternative analyses. This
year, the DEAP algorithms had this advantage.

Comparing the information retrieval results of
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Table 4: Statistics of the analyses forGerman words. Type indicates the level of supervision used in the
method, #a/w is the average amount of analyses per word, #m/w is the average amount of morphemes
per analysis, and #lexicon is the size of the morph lexicon.

Author Method Type #a/w #m/w #lexicon
Kohonen et al. Morfessor U+W P 1.00 3.37 10902
Lignos Aggressive Compounding U 1.00 3.21 436916
Lignos Base Inference U 1.00 2.99 544704
Lignos Iterative Compounding U 1.00 3.05 549902
Nicolas et al. MorphAcq U 1.00 1.32 1888651
- Morfessor Baseline U 1.00 2.30 142352
- Morfessor Categories-MAP U 1.00 3.11 297425
- letters - 1.00 14.03 59

Competition 2 to Competition 1 results, it seems
that good F-measure in Competition 1 linguistic
evaluation does not necessarily mean good MAP
in Competition 2 IR task. Algorithms with rela-
tively high recall but relatively low precision score
high in terms of F-measure but do not seem to
perform well for IR. Good precision in the lin-
guistic evaluation is more important for IR than
good recall. Further, the methods that have large
morph lexicon have a strong negative correlation
to MAP (−0.65). The best predictor of IR perfor-
mance is the F-measure using the EMMA evalua-
tion method with correlation of+0.66.

The two scores in the machine translation eval-
uation of Competition 3 have naturally a high cor-
relation. The BLEU score without system com-
bination has a strongest correlation,+0.84, to the
precision in the MC evaluation. Also the correla-
tion to the precision in EMMA is high (+0.59).
With system combination, the correlations de-
crease somewhat, but the strongest,0.64, is still
to the precision in MC evalution. However, the
correlation to the F-measure in MC evalation is
negative (−0.30), whereas the correlation to the
F-measure in EMMA is positive (+0.48). Thus,
also the machine translation evaluation indicates
that the EMMA is more relevant evaluation with
respect to the applications than the original Mor-
pho Challenge evaluation.

In the information retrieval task of Competition
2, several algorithms could beat the word based
“dummy” baseline and some algorithms were very
close to the language specific word normalizers
and stemmers. This indicates that semi-supervised
and unsupervised methods are usable approaches
for IR.

It is hard to achieve statistically significant dif-
ferences in the IR task with only 50–60 queries
for each language. However, as the Competition 1
metrics do not always completely reflect the per-
formance of the algorithms, it is important to test
them in a real life application as well. The IR
task is designed to treat all participant algorithms
equally. One problematic issue is the automatic
stop list generation that is needed to achieve de-
cent IR performance when there is high frequency
terms in the corpus. Using one fixed threshold for
all submissions is quite simplistic, but in practice
seems to work well. To keep the results compa-
rable to previous years, the stop list method has
not yet been revised. Removing morphs that are
labeled as affixes did not offer any improvements
(with or without stop list) for any method with
such labels. Further, the results are robust with
respect to the threshold parameter.

In Competition 3, the differences between the
final results after the MBR-based system com-
bination were very small. In the Finnish-to-
English task, seven algorithms could improve
the word-based baseline with a statistical signifi-
cance. In the German-to-English task, only two
algorithms—the Morfessor methods provided for
reference—could do the same. Moreover, they
were the two best also in the Finnish task. Espe-
cially Morfessor Baseline seems to be surprisingly
hard to beat in machine translation, as it provided
the best results also in Morpho Challenge 2009.

5 Conclusions

The Morpho Challenge 2010 has successfully col-
lected and evaluated the latest developments in un-
supervised and semi-supervised learning methods
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Table 5: Statistics of the analyses forTurkish words. Type indicates the level of supervision used in the
method, #a/w is the average amount of analyses per word, #m/w is the average amount of morphemes
per analysis, and #lexicon is the size of the morph lexicon.

Author Method Type #a/w #m/w #lexicon
Golénia et al. MAGIP S 1.00 4.99 99549
Kohonen et al. Morfessor S+W S 1.00 3.58 9398
Kohonen et al. Morfessor S+W+L S 1.00 3.56 14713
Kohonen et al. Morfessor U+W P 1.00 4.57 595
Lignos Aggressive Compounding U 1.00 3.08 212291
Lignos Base Inference U 1.00 2.00 285196
Lignos Iterative Compounding U 1.00 2.42 248172
Nicolas et al. MorphAcq U 1.00 2.31 180709
Spiegler et al. DEAP MDL-CAT S 4.88 2.59 891260
Spiegler et al. DEAP MDL-NOCAT S 3.17 2.67 631500
Spiegler et al. DEAP PROB-CAT S 4.68 2.30 1169357
Spiegler et al. DEAP PROB-NOCAT S 3.49 2.34 1023903
Spiegler et al. Promodes P 1.00 4.50 42277
Spiegler et al. Promodes-E P 1.00 4.97 20512
Spiegler et al. Promodes-H P 1.00 4.25 58742
- Morfessor Baseline U 1.00 2.14 53473
- Morfessor Categories-MAP U 1.00 2.64 114834
- letters - 1.00 9.99 33

for morpheme analysis. The participants of the
challenge included 5 research teams that submit-
ted a total of 15 algorithms for the evaluations. As
in Morpho Challenge 2005–2009, the morpheme
analyses were tested in several languages (Finnish,
Turkish, English and German) and tasks (compar-
isons to grammatical morphemes and information
retrieval and machine translation experiments). In
addition to the large amount of unlabeled data in
each language available for unsupervised learn-
ing, this year new labeled data was made avail-
able to enable semi-supervised learning. Two new
ways were provided to analyse the results in ad-
dition to the main evaluation metrics used already
in the previous Morpho Challenges (F-measure in
linguistic evaluations, mean average precision in
information retrievalt tasks, and BLEU in machine
translation tasks): EMMA (Spiegler and Monson,
2010) is an alternative measure to make compar-
isons to grammatical morphemes. The correlation
table (see Table 19) reveals which measures actu-
ally correlate best to the application specific mea-
sures and, more generally, which measures corre-
late with each other.
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Table 9: The submitted morpheme analyses compared to the gold standard inTurkish (Competition 1).

Author Method Type Precision Recall F-measure
Kohonen et al. Morfessor S+W+L S 0.7169 0.5997 0.6531
Spiegler et al. DEAP MDL-NOCAT S 0.6893 0.5612 0.6187
Spiegler et al. DEAP MDL-CAT S 0.7275 0.5349 0.6165
Spiegler et al. DEAP PROB-CAT S 0.6886 0.5581 0.6165
Spiegler et al. DEAP PROB-NOCAT S 0.6571 0.5804 0.6163
Kohonen et al. Morfessor S+W S 0.6571 0.4715 0.5490
Spiegler et al. Promodes P 0.4659 0.5167 0.4900
Spiegler et al. Promodes-E P 0.4075 0.5239 0.4584
- Morfessor Categories-MAP U 0.7938 0.3188 0.4549
Kohonen et al. Morfessor U+W P 0.4071 0.4676 0.4352
Spiegler et al. Promodes-H P 0.4788 0.3937 0.4321
Golénia et al. MAGIP S 0.3200 0.6580 0.4306
Lignos Aggressive Compounding U 0.5551 0.3436 0.4245
Lignos Iterative Compounding U 0.6869 0.2144 0.3268
Nicolas et al. MorphAcq U 0.7902 0.1978 0.3164
- Morfessor Baseline U 0.8968 0.1778 0.2967
Lignos Base Inference U 0.7281 0.1611 0.2638
- letters - 0.0866 0.9913 0.1593

Table 10: The submitted morpheme analyses compared to the gold standard inEnglish using EMMA.

Author Method Type Precision Recall F-measure
Kohonen et al. Morfessor S+W+L S 0.8208 0.8450 0.8327
Lignos Base Inference U 0.8744 0.7682 0.8178
Lignos Iterative Compounding U 0.8736 0.7641 0.8152
Kohonen et al. Morfessor S+W S 0.7939 0.8176 0.8056
Lignos Aggressive Compounding U 0.8217 0.7588 0.7890
- Morfessor Baseline U 0.8686 0.7226 0.7889
- Morfessor Categories-MAP U 0.9209 0.6815 0.7833
Nicolas et al. MorphAcq U 0.7851 0.7759 0.7804
Kohonen et al. Morfessor U+W P 0.7313 0.7673 0.7489
Spiegler et al. Promodes-E P 0.6573 0.6977 0.6769
Spiegler et al. Promodes P 0.5658 0.7382 0.6406
Spiegler et al. DEAP MDL-NOCAT S 0.5233 0.8159 0.6376
Spiegler et al. DEAP PROB-NOCAT S 0.5618 0.7314 0.6355
Golénia et al. MAGIP S 0.4876 0.7083 0.5775
Spiegler et al. Promodes-H P 0.4016 0.6298 0.4904
Spiegler et al. DEAP MDL-CAT S 0.2579 0.8503 0.3957
Spiegler et al. DEAP PROB-CAT S 0.2229 0.7730 0.3460
- letters - 0.0942 0.2953 0.1429
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Table 11: The submitted morpheme analyses compared to the gold standard inFinnish using EMMA.

Author Method Type Precision Recall F-measure
Kohonen et al. Morfessor S+W+L S 0.6717 0.7573 0.7119
Lignos Base Inference U 0.7990 0.5605 0.6588
Lignos Iterative Compounding U 0.7733 0.5692 0.6557
Lignos Aggressive Compounding U 0.6691 0.6004 0.6329
Kohonen et al. Morfessor S+W S 0.5914 0.6533 0.6208
- Morfessor Categories-MAP U 0.7005 0.5425 0.6114
- Morfessor Baseline U 0.7614 0.4742 0.5844
Kohonen et al. Morfessor U+W P 0.5358 0.5571 0.5462
Spiegler et al. Promodes P 0.4493 0.5947 0.5118
Spiegler et al. Promodes-E P 0.4423 0.5555 0.4925
Golénia et al. MAGIP S 0.4349 0.5364 0.4803
Spiegler et al. DEAP PROB-NOCAT S 0.3936 0.5622 0.4629
Spiegler et al. Promodes-H P 0.3589 0.5273 0.4271
Spiegler et al. DEAP MDL-NOCAT S 0.2960 0.6645 0.4095
Spiegler et al. DEAP MDL-CAT S 0.2101 0.6426 0.3166
Spiegler et al. DEAP PROB-CAT S 0.2106 0.5095 0.2979
- letters - 0.0929 0.3046 0.1424

Table 12: The submitted morpheme analyses compared to the gold standard inGerman using EMMA.

Author Method Type Precision Recall F-measure
- Morfessor Categories-MAP U 0.7826 0.5583 0.6517
Nicolas et al. MorphAcq U 0.7611 0.5126 0.6125
Lignos Base Inference U 0.7498 0.5084 0.6059
- Morfessor Baseline U 0.8128 0.4806 0.6040
Kohonen et al. Morfessor U+W P 0.6571 0.5560 0.6023
Lignos Iterative Compounding U 0.7155 0.5035 0.5910
Lignos Aggressive Compounding U 0.6875 0.5117 0.5867
- letters - 0.0834 0.2397 0.1237
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Table 13: The submitted morpheme analyses compared to the gold standard inTurkish using EMMA.

Author Method Type Precision Recall F-measure
Kohonen et al. Morfessor S+W+L S 0.7532 0.5779 0.6539
Kohonen et al. Morfessor S+W S 0.5734 0.4425 0.4994
- Morfessor Categories-MAP U 0.6468 0.4004 0.4946
Lignos Base Inference U 0.7131 0.3530 0.4722
Nicolas et al. MorphAcq U 0.6310 0.3744 0.4699
Lignos Iterative Compounding U 0.6607 0.3602 0.4662
Lignos Aggressive Compounding U 0.5709 0.3733 0.4513
- Morfessor Baseline U 0.6543 0.3430 0.4500
Spiegler et al. DEAP MDL-NOCAT S 0.3590 0.5554 0.4360
Spiegler et al. Promodes P 0.4471 0.4117 0.4286
Spiegler et al. DEAP PROB-NOCAT S 0.3203 0.5223 0.3971
Spiegler et al. Promodes-H P 0.4123 0.3581 0.3833
Spiegler et al. Promodes-E P 0.3722 0.3664 0.3693
Golénia et al. MAGIP S 0.3479 0.3541 0.3509
Spiegler et al. DEAP MDL-CAT S 0.2390 0.5564 0.3344
Spiegler et al. DEAP PROB-CAT S 0.2417 0.5206 0.3301
Kohonen et al. Morfessor U+W P 0.2959 0.2627 0.2783
- letters - 0.1121 0.2092 0.1459

Table 14: The obtained mean average precision (MAP) in the information retrieval task forEnglish.
Submissions with no statistically significant difference to the top performer aremarked with X.

Author Method Type MAP
- snowball porter - 0.4092 X
- Best Prev. (2008 Monson P+M) U 0.4022 X
- TWOL first - 0.4020 X
- TWOL all - 0.3994 X
- Morfessor Baseline U 0.3835 X
Lignos Base Inference U 0.3832 X
Kohonen et al. Morfessor S+W+L S 0.3820 X
Lignos Aggressive Compounding U 0.3784 X
- Grammatical Morphemes (First) - 0.3777 X
Kohonen et al. Morfessor S+W S 0.3776 X
Lignos Iterative Compounding U 0.3776 X
- Morfessor Categories-MAP U 0.3754 X
Kohonen et al. Morfessor U+W P 0.3690 X
Nicolas et al. MorphAcq U 0.3680 X
- Grammatical Morphemes (All) - 0.3567 X
Spiegler et al. Promodes-E P 0.3379
- dummy - 0.3304
Spiegler et al. Promodes P 0.3286
Spiegler et al. DEAP PROB-NOCAT S 0.3141
Spiegler et al. DEAP MDL-NOCAT S 0.2916
Spiegler et al. DEAP MDL-CAT S 0.2409
Golénia et al. MAGIP S 0.2257
Spiegler et al. DEAP PROB-CAT S 0.2186
Spiegler et al. Promodes-H P 0.2034
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Table 15: The obtained mean average precision (MAP) in the information retrieval task forFinnish.
Submissions with no statistically significant difference to the top performer aremarked with X.

Author Method Type MAP
- TWOL first - 0.4973 X
Lignos Aggressive Compounding U 0.4914 X
- Best Prev. (2008 McNamee four) - 0.4911 X
- TWOL all - 0.4801 X
- Morfessor Categories-MAP U 0.4754 X
Kohonen et al. Morfessor S+W S 0.4750 X
Kohonen et al. Morfessor S+W+L S 0.4465 X
- Grammatical Morphemes (First) - 0.4317 X
- snowball finnish - 0.4275 X
- Morfessor Baseline U 0.4235 X
Lignos Iterative Compounding U 0.4229 X
Spiegler et al. DEAP MDL-NOCAT S 0.4160 X
Lignos Base Inference U 0.4151 X
- Grammatical Morphemes (All) - 0.4093 X
Kohonen et al. Morfessor U+W P 0.4042 X
Golénia et al. MAGIP S 0.3871 X
Spiegler et al. DEAP MDL-CAT S 0.3725 X
Spiegler et al. Promodes P 0.3721 X
- dummy - 0.3529
Spiegler et al. Promodes-E P 0.3213
Spiegler et al. DEAP PROB-NOCAT S 0.3174
Spiegler et al. Promodes-H P 0.3109
Spiegler et al. DEAP PROB-CAT S 0.2843

Table 16: The obtained mean average precision (MAP) in the information retrieval task forGerman.
Submissions with no statistically significant difference to the top performer aremarked with X.

Author Method Type MAP
- TWOL first - 0.4836 X
- TWOL all - 0.4745 X
- Best Prev. (2008 Monson P+M) U 0.4734 X
Kohonen et al. Morfessor U+W P 0.4666 X
- Morfessor Categories-MAP U 0.4657 X
Lignos Base Inference U 0.4434 X
- Morfessor Baseline U 0.4391 X
Lignos Aggressive Compounding U 0.4379 X
Lignos Iterative Compounding U 0.4200 X
Nicolas et al. MorphAcq U 0.3862
- snowball german - 0.3859
- dummy - 0.3508
- Grammatical Morphemes (First) - 0.3350
- Grammatical Morphemes (All) - 0.3008
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Table 17: The results of the submitted morpheme analyses used in machine translation from Finnish.
Results with no statistically significant difference to the top performer are marked with X. Results with
no statistically significant difference to those of the word-based model aremarked with Y.

Author Method Type BLEU
MBR combination with word-based model
- Morfessor Baseline U 0.2665 X
- Morfessor Categories-MAP U 0.2634 X
- Grammatical Morphemes - 0.2623
Lignos Base Inference U 0.2619
Lignos Iterative Compounding U 0.2605
Lignos Aggressive Compounding U 0.2597 Y
Kohonen et al. Morfessor S+W S 0.2594
Spiegler et al. DEAP MDL-CAT S 0.2590
Spiegler et al. DEAP PROB-CAT S 0.2589 Y
Kohonen et al. Morfessor S+W+L S 0.2582 Y
Spiegler et al. Promodes-E P 0.2579 Y
Spiegler et al. Promodes P 0.2564 Y
Spiegler et al. DEAP MDL-NOCAT S 0.2562 Y
Kohonen et al. Morfessor U+W P 0.2561 Y
Spiegler et al. DEAP PROB-NOCAT S 0.2555 Y
Spiegler et al. Promodes-H P 0.2535 Y
Golénia et al. MAGIP S 0.2533 Y
Individual systems
- Morfessor Baseline U 0.2614 X
- words - 0.2543 X Y
Lignos Base Inference U 0.2504 Y
- Morfessor Categories-MAP U 0.2493 Y
- Grammatical Morphemes - 0.2492 Y
Lignos Iterative Compounding U 0.2463 Y
Kohonen et al. Morfessor U+W P 0.2456 Y
Lignos Aggressive Compounding U 0.2444
Spiegler et al. DEAP MDL-NOCAT S 0.2404
Spiegler et al. DEAP PROB-NOCAT S 0.2383
Kohonen et al. Morfessor S+W S 0.2376
Kohonen et al. Morfessor S+W+L S 0.2339
Spiegler et al. DEAP PROB-CAT S 0.2316
Spiegler et al. DEAP MDL-CAT S 0.2303
Spiegler et al. Promodes-E P 0.2251
Spiegler et al. Promodes P 0.2192
Spiegler et al. Promodes-H P 0.2107
Golénia et al. MAGIP S 0.2027
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Table 18: The results of the submitted morpheme analyses used in machine translation fromGerman.
Results with no statistically significant difference to the top performer are marked with X. Results with
no statistically significant difference to those of the word-based model aremarked with Y. In addition,
a group of methods with no statistically significant differences between any of their results are marked
with Z.

Author Method Type BLEU
MBR combination with word-based model
- Morfessor Categories-MAP U 0.3008 X
- Morfessor Baseline U 0.2994 X
Kohonen et al. Morfessor U+W P 0.2986 Y
Nicolas et al. MorphAcq U 0.2986 Y
Lignos Iterative Compounding U 0.2985 X Y
Lignos Aggressive Compounding U 0.2980 X Y
- Grammatical Morphemes - 0.2970 X Y
Lignos Base Inference U 0.2952 Y
Individual systems
- Morfessor Baseline U 0.2963 X Y
- words - 0.2955 X Y
- Morfessor Categories-MAP U 0.2862
Kohonen et al. Morfessor U+W P 0.2817 Z
Lignos Base Inference U 0.2803 Z
Lignos Aggressive Compounding U 0.2788 Z
- Grammatical Morphemes - 0.2782 Z
Lignos Iterative Compounding U 0.2770 Z
Nicolas et al. MorphAcq U 0.2751 Z
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Table 19: Correlations between evaluation measures and some statistics of themethods. The included
methods are all those submitted to the competition and the reference methods Morfessor Baseline and
Morfessor Categories-MAP. Correlations were calculated separately for each language, and the average
over the languages is shown. The number in parentheses is the corresponding standard deviation, and the
subscript shows the number of languages that could be applied. MC-P, MC-R, and MC-F are the preci-
sion, recall and F-measure of the standard linguistic evaluation. EMMA-P,EMMA-R, and EMMA-F are
the precision, recall and F-measure of the EMMA evaluation. IR-MAP is themean average precision in
the information retrieval task. S-BLEU is the BLEU score of the single systemin machine translation
task, and C-BLEU is the BLEU score of the combined system. The last three are statistics: size of the
morpheme lexicon (#lexicon), average number of morphemes per word (#m/w), and average number of
analyses per word (#a/w).

MC-P MC-R MC-F EMMA-P EMMA-R EMMA-F
MC-P +1.00 (0.00)4 −0.67 (0.14)4 −0.17 (0.56)4 +0.73 (0.19)4 +0.02 (0.34)4 +0.54 (0.11)4
MC-R −0.67 (0.14)4 +1.00 (0.00)4 +0.74 (0.33)4 −0.69 (0.11)4 +0.61 (0.11)4 −0.29 (0.17)4
MC-F −0.17 (0.56)4 +0.74 (0.33)4 +1.00 (0.00)4 −0.35 (0.45)4 +0.82 (0.04)4 +0.06 (0.27)4
EMMA-P +0.73 (0.19)4 −0.69 (0.11)4 −0.35 (0.45)4 +1.00 (0.00)4 −0.16 (0.18)4 +0.82 (0.21)4
EMMA-R +0.02 (0.34)4 +0.61 (0.11)4 +0.82 (0.04)4 −0.16 (0.18)4 +1.00 (0.00)4 +0.29 (0.20)4
EMMA-F +0.54 (0.11)4 −0.29 (0.17)4 +0.06 (0.27)4 +0.82 (0.21)4 +0.29 (0.20)4 +1.00 (0.00)4
IR-MAP +0.42 (0.46)3 −0.03 (0.54)3 +0.40 (0.27)3 +0.48 (0.59)3 +0.39 (0.17)3 +0.66 (0.32)3
S-BLEU +0.84 (0.11)2 −0.51 (0.10)2 −0.33 (0.15)2 +0.59 (0.01)2 −0.12 (0.10)2 +0.37 (0.13)2
C-BLEU +0.64 (0.38)2 −0.44 (0.36)2 −0.30 (0.20)2 +0.45 (0.25)2 +0.07 (0.37)2 +0.48 (0.07)2
#lexicon +0.04 (0.17)4 +0.02 (0.30)4 +0.11 (0.37)4 −0.39 (0.39)4 +0.13 (0.40)4 −0.42 (0.33)4
#m/w −0.76 (0.17)4 +0.59 (0.14)4 +0.13 (0.54)4 −0.46 (0.25)4 +0.02 (0.37)4 −0.27 (0.31)4
#a/w −0.02 (0.22)3 +0.37 (0.08)3 +0.40 (0.27)3 −0.72 (0.05)3 +0.38 (0.32)3 −0.67 (0.23)3

IR-MAP S-BLEU C-BLEU #lexicon #m/w #a/w
MC-P +0.42 (0.46)3 +0.84 (0.11)2 +0.64 (0.38)2 +0.04 (0.17)4 −0.76 (0.17)4 −0.02 (0.22)3
MC-R −0.03 (0.54)3 −0.51 (0.10)2 −0.44 (0.36)2 +0.02 (0.30)4 +0.59 (0.14)4 +0.37 (0.08)3
MC-F +0.40 (0.27)3 −0.33 (0.15)2 −0.30 (0.20)2 +0.11 (0.37)4 +0.13 (0.54)4 +0.40 (0.27)3
EMMA-P +0.48 (0.59)3 +0.59 (0.01)2 +0.45 (0.25)2 −0.39 (0.39)4 −0.46 (0.25)4 −0.72 (0.05)3
EMMA-R +0.39 (0.17)3 −0.12 (0.10)2 +0.07 (0.37)2 +0.13 (0.40)4 +0.02 (0.37)4 +0.38 (0.32)3
EMMA-F +0.66 (0.32)3 +0.37 (0.13)2 +0.48 (0.07)2 −0.42 (0.33)4 −0.27 (0.31)4 −0.67 (0.23)3
IR-MAP +1.00 (0.00)3 +0.49 (0.03)2 +0.32 (0.23)2 −0.65 (0.22)3 −0.04 (0.80)3 −0.52 (0.10)2
S-BLEU +0.49 (0.03)2 +1.00 (0.00)2 +0.60 (0.29)2 −0.33 (0.36)2 −0.33 (0.53)2 −0.07 (0.00)1
C-BLEU +0.32 (0.23)2 +0.60 (0.29)2 +1.00 (0.00)2 −0.11 (0.02)2 −0.35 (0.36)2 −0.07 (0.00)1
#lexicon −0.65 (0.22)3 −0.33 (0.36)2 −0.11 (0.02)2 +1.00 (0.00)4 −0.47 (0.33)4 +0.89 (0.05)3
#m/w −0.04 (0.80)3 −0.33 (0.53)2 −0.35 (0.36)2 −0.47 (0.33)4 +1.00 (0.00)4 −0.18 (0.37)3
#a/w −0.52 (0.10)2 −0.07 (0.00)1 −0.07 (0.00)1 +0.89 (0.05)3 −0.18 (0.37)3 +1.00 (0.00)3
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Abstract

This paper presents a language-
independent supervised word de-
composition algorithm called MAGIP
(Morphological Analysis by morpheme
Graph and mixed-Integer Programming).
MAGIP proceeds in two steps. First, a
morpheme graph is created using a train-
ing set of 1,000 morpheme sequences and
parses are generated for a second large set
of words. Secondly, parses are selected
through the computation of stable models
by minimising inference of new mor-
phemes. We evaluated MAGIP on three
languages (English, Turkish and Finnish)
using the Morpho Challenge evaluation
scripts and obtained an F-measure around
0.37 for each language, with precision
around 0.26 and recall around 0.69 for
English and Turkish and 0.53 for Finnish.

1 Introduction

Morphological analysis is concerned with the pro-
cess of segmenting and labeling a given corpus of
words into a set of morphemes. Morphemes are
the smallest units bearing a meaning in a word.
In a corpus, the quantity of different morphemes
is usually smaller than the quantity of different
words. Labeling a morpheme provides informa-
tion on the role of the morpheme in a word (eg.
verb, noun, plural and so forth). In this paper, we
are focusing on the segmentation of large corpus
(English, Turkish and Finnish). To do so, we as-
sume that a small dataset of words with their label
sequences of morphemes is given. We divide this
dataset into a training and a development dataset.
Using the training dataset, we create a morpheme
graph to generate potential parses. Then, we select
a parse for each word by computing stable models
using the development dataset. The computation

of stable models is carried out by the reduction to
integer programming. The remainder of the paper
is structured as follows. Firstly, the generation of
morphemes using a morpheme graph is presented.
Secondly, the selection of parses by computing
stable models is introduced. Finally, we show the
results and we conclude.

2 Generate Parses Using a Morpheme
Graph

In order to generate parses of a given word, we
decided to use a morpheme graph to represent
morphemes and their relationship (Golénia et al.,
2010). We will refer to the training dataset of mor-
pheme sequences in which only segmentation in-
formation is taken in consideration as M-corpus.
The morpheme graph is defined as follows:

Definition 1 LetM = {mi|1 ≤ i ≤ z} be a set of
morphemes, let fi be the frequency (total number
of times) with which morpheme mi occurs in the
M-corpus, let vi = (mi, fi) for 1 ≤ i ≤ z, and let
fi,j denote the frequency in the M-corpus in which
morpheme mi is followed by morpheme mj . The
morpheme graphGm = (V,E) is a directed graph
with vertices V = {vi|1 ≤ i ≤ z} and edges
E = {(vi, vj)|fi,j > 0}. We treat fi,j as the label
of the edge from vi to vj .

To select parses of a given word in a corpus,
we use the morpheme graph with the formula
MGraph developed in (Shalonova and Golénia,
2010) for generating prefix sequences and suffix
sequences during the test phase of the algorithm
GBUSS. MGraph is defined as follows:

Definition 2 We define MGraph of a morpheme
sequence without boundaries x as follows:

MGraph(x) = arg max
t⊆x

1
Nt − Ct

∑
m∈t

Lmlog(fm+1)

(1)
where
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• t is a morpheme sequence with boundaries of
x,

• m is a morpheme of t,

• fm is the frequency of the morpheme m,

• Nt is the number of morphemes taken in the
graph,

• Ct is the number of morphemes taken and
contiguous in the graph.

Note that MGraph does not use the frequency
of the neighborhood. We leave it as future work.
In the next section, we present an optimisation
procedure to compute stable models in order to se-
lect a set of parses in a corpus.

3 Selecting Parses by Computing Stable
Models

Currently, we have selected a set of parses for
each unseen word using a morpheme graph de-
rived from training set of morpheme sequences.
Now, the problem is to select which parse is poten-
tially good for each word of a corpus by inferring
the existence of new morphemes. We are focus-
ing on selecting the parses which introduce as few
new morphemes as possible. Thus, for each parse
selected by MGraph, we are taking into account
only the morphemes not taken in the graph. Sub-
sequently, we show how this problem can be seen
as computing stable models of a normal logic pro-
gram which can then be transformed into an inte-
ger program. We propose a generalisation of Bell
et al.’s method to compute stable models adapted
to the selection of parses from a corpus. This sec-
tion is contains two parts. Firstly, we give the
necessary logical background and define the sta-
ble model semantic. Secondly, we describe Bell et
al.’s method and our generalisation of it.

3.1 Normal Logic Programming
In this part, we introduce the usual notation used
in normal logic programming. We call atom
p(t1, ..., tn) a predicate p consisting of n terms
(n ≥ 0). A term is either a variable, a constant
or a function of terms. We define a ground atom
as an atom without variables. A literal l is an
atom a (positive literal) or the negation of an atom
not a (negative literal). Here, not is the Nega-
tion As Failure (NAF) (K. Clark, 1977). A clause
h← l1∧...∧lq is composed of two parts (head and

body) where the head is a positive literal h and the
body is a set of literals l1∧ ...∧ lq. In our notation,
∧ means the conjunction, ← the implication and
q the number of body literals. A fact is a clause
without body (q = 0). An integrity constraint is a
clause without head.

Definition 3 (Normal logic program) A normal
logic program P is a finite set of clauses of the
following form

h← p1 ∧ ... ∧ pl ∧ not d1 ∧ ... ∧ not dk

where

• p1 ∧ ... ∧ pl and d1 ∧ ... ∧ dk are atoms,

• l ≥ 0 and k ≥ 0.

To interpret a normal logic program P , we use
Herbrand interpretations. A Herbrand interpreta-
tion I is a set of ground atoms. The set of all
ground atoms of P is called the Herbrand base
HB(P ). The Herbrand universe HU(P ) is set of
all ground terms of P . A model M is an interpre-
tation that satisfies P . A model M is a minimal
model if and only there is no model N such that
N ⊂ M . The definition of stable model model is
described as follows:

Definition 4 (Stable model) A model M is sta-
ble if M is the minimal model for the Gelfond-
Lifschitz reduction obtained by deleting from P
(M. Gelfond and V. Lifschitz, 1988):

• each rule where at least a di is in M ,

• all not di from the remaining rules.

3.2 Mixed-Integer Programming
In this part, we present Bell et al.’s method to com-
pute stable models. Then, we generalise Bell’s
method in three ways. Bell et al. defined an op-
timisation problem to compute minimal models
based on an integer program as follows (C. Bell,
A. Nerode, R. Ng and V. Subrahmanian, 1994):

Definition 5 (Minimisation model optimisation problem)
Given a logic program P , a minimisation model
optimisation problem Π(P ) is the optimisation of
an integer program with the following objective
function:

min
∑

a∈HB(P ) xa

w.r.t the following constraint:

xhi
− (

∑ki
f=1 xpif

) + (
∑li

f=1 xdif
) ≥ 1− ki

for each clause
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hi ← pi1 ∧ ... ∧ piki
∧ not di1 ∧ ... ∧ not dili

Now, we generalise Bell et al.’s formalism to “if
and only if” clauses. Those rules are useful to ex-
press that a parse is possible if and only if all of its
morphemes (not taken in the graph) are possible.
A “if and only if” clause i is defined as follows:

hi ⇐⇒ pi1 ∧ ... ∧ piki
∧ not di1 ∧ ... ∧ not dili

A “if and only if” clause i can be formulated for
an optimisation problem Π(P ) as follows:

qixhi
− (

∑ki
f=1 xpif

) + (
∑li

f=1 xdif
) ≤ li

We now introduce a clause with “disjunctive body
literals”. Those rules permit to indicate that a word
is possible if at least one parse is possible. A
clause i with ”disjunctive body literals” is repre-
sented as follows:

hi ←
∨yi

j=1 pj1∧ ...∧pjkj
∧not dj1∧ ...∧not djlj

Here, yi defines the number of disjunctions in the
body. This clause is represented in Π(P ) by the
following inequality:

yixhi
− (

∑yi
j=1

∑kj

f=1 xpjf
) +

(
∑yi

j=1

∑lj
f=1 xdif

) ≥ yi −
∑yi

j=1 kj

Now, in order to give priority on the stable models,
we introduce the minimisation rules which allows
us to give some preferences on the search of so-
lutions. Thus, a minimisation rule permits to find
stable models with as few of the given literals as
possible. This is quite useful since the amount of
solutions is intractable. Those rules change just
the coefficients of the objective function in an inte-
ger program. A Minimisation rule i is represented
as follows:

minimize {αi1pi1, ..., αiki
piki

,
βi1not di1, ..., βilinot dili}

Here αi1, ..., αiki
and βili ... βili are weights value

> 0 which can be real or integer. To keep con-
sistency of the meaning of the minimisation rule
in the integer programming statement, we need to
avoid weights between ]0, 1[. For instance for αi,
we take the lowest value αi1, ..., αiki

> 0 and mul-
tiply all αi1, ..., αiki

by the inverse of its value. We
do the same for βi if ∃ βili , ..., βili ∈ ]0, 1[. Let
OPTSET = {HB(P ) \ {∪li

f=1xdif
∪ki

f=1 xpif
}}

the set difference between the variables in the ob-
jective function and the minimisation rule i. Let
Bi =

∑li
f=1 βif the sum of coefficients in the neg-

ative part of the minimisation rule i. Let {ca|a ∈
HB(P )} the coefficients of the objective function,
initialised at 1 and Ci =

∑
a∈OPTSET ca the sum

of coefficients for the set difference. The new ob-
jective function with respect to the minimisation
rule i is:

min
∑

a∈OPTSET (Bi + 1)caxa +
∑ki

f=1(Bi +
1)(Ci + 1)αifcifxpif

+
∑li

f=1 βifcifxdif

Note that this transformation can be simplified if
li = 0 or ki = 0. Also, note that the coef-
ficients αi and βi can be non-integer and there-
fore the problem may be a mixed-integer program.
Similarly, the maximisation rule can be derived di-
rectly. Nevertheless, afterwards we will not serve
of the maximisation rule. As it can be remarked
the minimisation rules can be incorporated into
a hierarchy which is quite powerful and even be
mixed with maximisation rules. However, multi-
ple minimisation/maximisation rules in a hierar-
chy can create an overflow due to too large value
for the coefficients. Finally, to select parses for all
unseen words, we defined a normal logic program.
Here, we provide an example with 2 words having
each of them at most 2 parses:

Example 3.1 p1 ⇐⇒ m1 ∧m2

p2 ⇐⇒ m1 ∧m3

p3 ⇐⇒ m2 ∧m3

p4 ⇐⇒ m4

w1 ← p1 ∨ p2

w2 ← p3 ∨ p4

false← not w1

false← not w2

minimize{1/(f(m1)Lm1)m1, 1/(f(m1)Lm2)m2,
1/(f(m3)Lm3)m3, 1/(f(m4)Lm4)m4}
Here p stands for parse, m for morpheme.
Then, f(mi) and Lmi stands for the frequency
and length respectively of the morpheme i in
the optimisation problem. The idea behind the
minimisation rule is to have preferences on
morphemes witch have a high length and high
frequency.

We call MAGIP (Morphological Analysis by mor-
pheme Graph and mixed-Integer Programming)
the algorithm which combines the selection of
parses using the morpheme graph presented in the
previous section and the optimisation of a mixed-
integer program presented in this section.

4 Related Work

Learning in natural language processing using
logic programming techniques is not new. In-
ductive Logic Program (ILP) systems such as
GOLEM (Muggleton and Feng, 1990), FOIL
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(Quinlan and Mostow, 1990) and then FOIDL
learnt the past tense for English verb (Mooney and
Califf, 1996) (Sameh et al., 1999). For the past
tense, the dataset was small. However, one of the
major problem of ILP is dealing with large dataset.
This is a current research area. A different work
using logic programming is the one by Abramson
(1992) where Abramson described the relation be-
tween the lexical and surface levels of a language
using Prolog.

5 Results

In order to test MAGIP, we used the Morpho
Challenge dataset of 2010 which contains English,
Finnish and Turkish. We used a training set of
1000 morpheme sequences to learn a morpheme
graph for every language. For a test set, we used
2928030 words for Finnish, 617298 words for
Turkish and 878036 words for English. We se-
lected 2 parses for each word of the test set. Then,
we split each test set of parses into subsets of
10000 words. To select a stable model, we gen-
erated parses of words from a development set in
which we know the morpheme sequences. The de-
velopment set was of size 694, 763 and 835 for En-
glish, Turkish and Finnish respectively. Therefore,
we could use the F-measure locally of those sub-
sets, from this we selected a stable model with the
highest F-measure among the first thousand sta-
ble models if there exists. The results are detailed
for English, Turkish and Finnish in the (Table 5).
As seen, the F-measure is quite similar among the
three languages (.3751 in average). Interestingly,
the recall is high with more than 50%. For the
Morpho Challenge, the evaluation script needed
the label of each morpheme, we decided to label
the morpheme by itself.

Language Precision Recall F-Measure
English .2408 .7133 .3601
Finnish .2837 .5344 .3706
Turkish .2776 .6829 .3947

Table 1: Results from the Morpho Challenge
2010.

6 Conclusion

We presented MAGIP (Morphological Analysis
by morpheme Graph and mixed-Integer Program-
ming), an algorithm which decomposes words

into morphemes for any language. As presented,
MAGIP works in two steps, selecting parses and
then computing stable models. Our results showed
.3751 of F-measure in average for three languages
(English, Turkish and Finnish). For future work,
we are going to improve the selection of parses by
including the notion of frequency in the neighbor-
hood of MGraph. Then, we intend to study the
size of the mixed-integer program used. Also, we
are going to explore others morphological prob-
lems where the computation of stable models can
be applied.
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Abstract

We have extended Morfessor Baseline,
which is a well-known method for unsu-
pervised morphological segmentation, to
semi-supervised learning. As submission
to Morpho Challenge 2010, we provide re-
sults from three methods: The first one is
based on the unsupervised algorithm, but
includes a weight parameter that can be
used to control the amount of segmenta-
tion. The second one applies the semi-
supervised extension, where the labeled
training data is used also during the learn-
ing. The third one is based on the sec-
ond, but as an additional step we label the
segments using a Hidden Markov Model
trained on the labeled data.

1 Introduction

This work is based on Kohonen et al. (2010),
where the Morfessor Baseline method (Creutz and
Lagus, 2002; Creutz and Lagus, 2005; Creutz and
Lagus, 2007) was extended to the semi-supervised
case. Morfessor is a family of generative prob-
abilistic models designed for modeling highly-
inflecting and compounding languages (Creutz
and Lagus, 2007). It induces a lexicon of word
segments, called morphs, from the data. In the
semi-supervised version, the training data contains
labeled words with known gold standard segmen-
tations. The lexicons that include those segments
are favored if the words are added to the data like-
lihood function. In addition, a small set of word
forms with gold standard analyzes can be used for
tuning the respective weights of the annotated and
unannotated data.

Kohonen et al. (2010) made also a simple ex-
periment on labeling the segmentations provided
by the Morfessor to the morpheme labels given
in the training data. The results were encourag-
ing considering the trivial labeling method. Here,

we extend this line of research by training Hid-
den Markov Models (HMM) suitable for the task.
This results not only in segmentation, but a full
morphological analysis of the words.

2 Semi-supervised Morfessor Baseline

Let θ be the parameters of the model,DW be the
set of word forms used for training the model and
DW→A be a subset of words for which we know
the correct morphs. Each wordwj in DW has
a corresponding variableZj that denotes how it
is segmented. That is, its value is a sequence of
morphs,zj = (mj1, . . . , mj|zj |). The set ofZj :s,
Z = (Z1, . . . , Z|DW |) is a hidden variable that we
want to estimate.

A generative model gives the joint distribution
P (W = w, Z = z |θ) of words and their segmen-
tations. Assuming that the sequence of morphs
in z can produce only one word type, the proba-
bility is simply P (Z = z |θ) for that word, and
zero otherwise. Instead of determining aposte-
riori probability distributionP (θ|DW , DW→A)
over model parametersθ as in Bayesian model-
ing, we try to find a point estimate ofθ given a
cost function to minimize. The three main aspects
in this framework are:

• What is the family of the model, i.e., how
probabilitiesP (Z = z |θ) andP (θ) are de-
fined?

• What is the cost function to minimize for se-
lectingθ?

• How to minimize the cost function, i.e., what
is the training algorithm?

Next, we shortly describe the applied solution for
each of them. Only the cost function differs from
the unsupervised Morfessor Baseline.
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2.1 Model family

The model family in Morfessor Baseline is rela-
tively simple: The model parametersθ encode a
morph lexicon, which includes the properties of
the morphs. Each morphm in the lexicon has
a probability of occurring in a word,P (M =
m |θ), and these probabilities are assumed to be
independent.

During training, each wordwj is assumed to
have only one possible analysis. Thus, instead
of using the joint distributionP (DW , Z |θ), we
need to use the likelihood function only condi-
tioned on the analyses of the observed words,
P (DW |Z, θ). The conditional likelihood is

P (DW |Z = z, θ)

=

|DW |∏
j=1

P (W = wj |Z = z, θ)

=

|DW |∏
j=1

|zj |∏
i=1

P (M = mji |θ), (1)

wheremij is thei:th morph in wordwj .
The problem of using Equation 1 for the known

segmentations inDW→A is that there can be alter-
native segmentations for each word. As a solution,
we select only the segmentation that has the high-
est probability according to the model, and discard
the others from the likelihood function. Due to
practical reasons, the selection is done only after
each training epoch (see Sec. 2.3).

The parametersθ of the model are:

• Morph type count, or the size of the morph
lexicon,µ ∈ Z+

• Morph token count, or the number of morphs
tokens in the observed data,ν ∈ Z+

• Morph strings(σ1, . . . , σµ), σi ∈ Σ∗

• Morph counts(τ1, . . . , τµ), τi ∈ {1, . . . , ν},∑
i τi = ν. Normalized withν, these give

the probabilities of the morphs.

In principle, each parameter has a prior proba-
bility. However, with MDL-inspired and non-
informative priors, morph type count and morph
token counts can be neglected as insignificant. The
morph string prior is based on length distribution
P (L) and distributionP (C) of characters over the

character setΣ, both assumed to be known:

P (σi) = P (L = |σi|)

|σi|∏
j=1

P (C = σij) (2)

We applied the implicit length prior (Creutz and
Lagus, 2005), where instead of determiningP (L),
an end-of-word symbol is used as an additional
character inP (C). For morph counts, we used
the non-informative prior

P (τ1, . . . , τµ) = 1/

(
ν − 1

µ− 1

)
(3)

that gives equal probability to each possible com-
bination of the counts whenµ andν are known.

2.2 Cost function

The unsupervised Morfessor algorithms try to find
the maximum a posteriori estimate of the parame-
ters. The equivalent cost function to minimize is

L(θ, z, DW ) = − lnP (θ)− lnP (DW | z, θ).
(4)

In the semi-supervised version, we add the nega-
tive log-likelihood of the known segmentations in
DW→A. Furthermore, we weight the data likeli-
hoods with parametersα > 0 andβ > 0:

L(θ, z, DW , DW 7→A) =

− lnP (θ)

− α × lnP (DW | z, θ)

− β × lnP (DW 7→A | z, θ) (5)

The data likelihood weights control both the level
of segmentation, as increasing the weight has to
be compensated by a larger morph lexicon, and
how large an effect the known segmentations have
compared to the unsupervised segmentations.

2.3 Training algorithm

The training algorithm of Morfessor Baseline
(Creutz and Lagus, 2005) tries to minimize the
cost function by testing local changes toz, mod-
ifying the parameters according to each change,
and selecting the best one. The training algorithm
is directly applicable to the semi-supervised case.

The initial parameters are obtained by adding
all the words into the morph lexicon. Then, one
word is processed at a time, and the segmentation
that minimizes the cost function with the optimal
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model parameters is selected and the parameters
are updated respectively:

z
(t+1)
j = arg min

zj

{
min

θ

L(θ, z(t), DW )
}

(6)

θ
(t+1) = arg min

θ

{
L(θ, z(t+1), DW )

}
(7)

Because a probability of a morph does not depend
on its context, the segmentations inz can be en-
coded as a tree-like graph, where the words are
the top nodes and morphs the leaf nodes. In one
training epoch, each top node is processed once.
A node can either be left as it is or split into two
parts. If the case of a split, the same test is applied
recursively to its parts. As the changes cannot in-
crease the cost function, the parameters will con-
verge to a local optimum. In practice, the training
is stopped when the average change in cost func-
tion per word in an epoch is smaller than 0.005.

3 Morpheme labeling

We use a first-order Hidden Markov Model
(HMM) to label the induced morphs (segments of
words) to morphemes. The unobserved states are
the morpheme labels, and the observations are the
segments. We construct the emission alphabetΣ
by picking out all the morphs from both the train-
ing set and the segmented data that is to be labeled.
The set of possible labels (states) is collected from
the training data. When the training set does not
provide labels for some morphs—as is the case
for a large part of the morphs found in the Turk-
ish training set—we group these morphs together
under a separate label.

Labels of non-observable morphs, such as the
plural morph in the word “men”, are combined
with the label of the preceding morph to create a
compound label. In the case of the word “men”
the compound label would be N+PL. Such com-
pound labels are separated as post-processing. The
resulting labeling would thus be “menN +PL”.
Non-observable morphs that start a word are ig-
nored altogether, since they are usually peculiar-
ities in the gold standard labeling. For example,
the English gold standard segmentation for the
word “propjet” includes a non-observable prefix
“turbo”, which is clearly unnecessary.

Hyphens at the beginning or end of a morph
such as the one in “-inspired”, the second morph
in a segmentation of the word “abba-inspired”, are
removed. I.e. “-inspired” is treated as the same

morph as “inspired” without the hyphen. Hyphens
that are segmented as morphs of their own are
taken into account during the calculation of the
Viterbi paths but are left out of the result files.
Thus, the segmentation “educator - scientist” be-
comes “educatorN scientistN” in the results.

Finally, we handle stem allomorphy by replac-
ing morphs with their respective morphemes when
provided by the training set. This is done as post-
processing. For example, the segmentation “cari-
catur ish” becomes “caricatureN ish s”.

3.1 Transition and emission probabilities

After the sets of emissions and labels are collected,
maximum likelihood estimation is applied to cal-
culate state transition and emission probabilities
from the training data. The probability of a transi-
tion from statel1 to statel2 is

P (l2 | l1) =
C(l1, l2)

C(l1)
, (8)

whereC(l1, l2) is the number of timesl2 follows
l1 in the training set andC(l2) is the total number
of occurrences ofl2 in the training set.

Similarly, we can estimate that the probability
that statel emits morphm is C(m, l)/C(l), where
C(m, l) is the number of timesm is tagged with
l in the training set. However, to accommodate
previously unseen morpheme emissions, we apply
smoothing to emission probabilities. Smoothing is
applied only for labels that represent open classes
of morphs, that is, morph classes that can be ex-
panded with new items. For Finnish and English
these are nouns, verbs and adjectives. Because the
gold standard does not provide labeling for Turk-
ish nouns, verbs and adjectives, we have used the
class of morphs that were unlabeled in the gold
standard as the only open class when labeling the
Turkish data.

As a smoothing method, we use absolute dis-
counting. That is, we subtract a constant value
δ = 0.1 from all emission countsC(m, l) greater
than zero, and the remaining probability mass is
then divided between the previously unseen emis-
sions. Thus, ifN0(l) is the number of emissions
for labell with C(m, l) = 0, we get

P (m | l) =


C(m, l)− δ

C(l)
if C(m, l) > 0

(|Σ| −N0(l))δ

N0(l)C(l)
otherwise.

(9)
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4 Experiments

We compare four different variants of the Morfes-
sor Baseline algorithm:

• Unsupervised (U): The classic, unsuper-
vised Morfessor baseline.

• Unsupervised + weighting (U+W):A devel-
opment set is used for adjusting the weight of
the likelihoodα. Whenα = 1, the method is
equivalent to the unsupervised baseline.

• Semi-supervised + weighting (S+W):The
semi-supervised method trained with both
annotated and unannotated data. The param-
etersα andβ are optimized using the devel-
opment set.

• Semi-supervised + weighting + labeling
(S+W+L): As above, but the obtained
morphs are labeled with a HMM tagger
trained on the annotated training data.

All variants were trained for English, Finnish,
and Turkish. Only the unsupervised models were
trained for German, as there was no gold stan-
dard segmentations available for it. Only the data
sets are from the Morpho Challenge 2010 web
site1 were applied. The provided development sets
were used for optimizingα andβ. The training
sets of gold standard segmentations were used in
training the semi-supervised segmentation models
and the labeling models.

Table 1 shows the values for the optimal weights
α andβ that were chosen for different languages
using the development set in both unsupervised
and semi-supervised cases, as well as the re-
spective results. The unsupervised method with
weighting (U+W) results in more balanced preci-
sion and recall values than the unsupervised base-
line method (U), thus clearly increasing the F-
measures. The amount of increase is especially
large for Finnish and Turkish languages due to the
very low recall of the baseline.

The semi-supervised method (S+W) results in
a considerable increase in recall and a somewhat
more modest increase in precision for English and
Finnish. For Turkish, however, we get the oppo-
site result: a large improvement in precision and
a small increase in recall. In both cases, the ob-
tained F-measures are clearly better than the ones
obtained with the unsupervised training.

1www.cis.hut.fi/morphochallenge2010

Model α β P % R % F %
English
U - - 84.75 44.28 58.17
U+W 0.25 - 67.32 60.73 63.86
S+W 0.5 1000 68.46 70.40 69.42
S+W+L 0.5 1000 73.05 68.12 70.50
Finnish
U - - 84.48 17.45 28.92
U+W 0.01 - 59.26 47.00 52.42
S+W 0.01 2000 63.71 60.25 61.93
S+W+L 0.01 500 65.77 67.07 66.41
German
U - - 70.85 22.32 33.95
U+W 0.05 - 56.40 48.53 52.17
Turkish
U - - 94.18 16.85 28.58
U+W 0.01 - 44.91 47.10 45.98
S+W 0.1 1000 73.07 47.95 57.90
S+W+L 0.005 2500 76.95 60.59 67.80

Table 1: The optimal values for the weightsα and
β and the respective precision (P ), recall (R) and
F-measure (F ) on the development set.

The morpheme labeling (L) should improve re-
call by solving allomorphy, i.e., finding common
labels for the different surface forms, and preci-
sion by disambiguating surface forms of differ-
ent morphemes. In our experiments, the largest
increase in F-measure—nearly 10% absolute—is
obtained for Turkish, for which the recall increases
considerably. For Finnish, the increase is about
4.5% absolute. Both the Finnish and Turkish data
sets include a large number of suffixes that have al-
lomorphy, which explains the large improvements.
English benefits less from the labeling, gaining
slightly over 1% to the F-measure. The increase
in precision is larger than for the other languages,
but recall is, in fact, decreased by the labeling.

5 Conclusions

We have presented a semi-supervised extension to
the Morfessor Baseline method, which performs
morphological segmentation using maximum a
posteriori estimation. Using gradually more of the
information provided by the annotated data sets,
we improve the F-measure results on the develop-
ment set, e.g., for Finnish, from 29% to 52% by
optimizing a weight parameter for the data likeli-
hood, to 61% by using the annotated training data
in the likelihood function, and finally to 66% by
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using a Hidden Markov Model to label the seg-
mentations. The method could be improved fur-
ther by using the HMM probabilities directly when
segmenting the words. The downside of our ap-
proach is that it requires word annotations with
both the segmentations (morphs) and their labels
(morphemes).
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Abstract

The learner of Lignos et al. (2009) at-
tained excellent performance in English in
Morpho Challenge 2009, but its reliance
on minimal word pairs in the input to
learn which words a rule applies to led
to poor performance in other languages.
We demonstrate that this learner can per-
form well across a broader set of lan-
guages if it works to infer word forms un-
seen in the data. We evaluate approaches
to compounding and base word inference
to accomplish this goal, improving the
learner’s performance greatly in Turkish
and Finnish.

1 Introduction

Data sparsity, as best quantified by Zipf’s law, is
a defining characteristic of language and its im-
pact is felt in unsupervised morphology learning.
The pervasive sparsity both between and within
lemmas (Chan, 2008) suggests that learners that
rely on identifying paradigms will face significant
difficulties while learners that learn independent
rules can more reliably succeed with less data.

The learner developed by Chan (2008) and ex-
tended by Lignos et al. (2009) embraces sparsity
by learning independent morphological rules and
using characteristics of the distribution of inflected
forms to guide the learner’s design. This learner
was evaluated in Morpho Challenge 2009 (Kurimo
et al., 2009) in English and German, but it was
not able to model agglutinative languages as the
learner reached the limitations of learning rules
by minimal pairs of words present in the corpus.
While it effectively avoided the difficulty of learn-
ing a paradigm representation, it struggled with
the sparsity caused by languages in which words
consist of many morphemes and there are rarely
corresponding minimal pairs for each one.

We extend that learner in this paper by adding
features that allow the learner to infer words not
present in the corpus, allowing it to succeed with-
out changes to the core minimal pair-based learn-
ing model.

2 The Learning Framework

We present a brief summary of the Base and Trans-
forms model and the core operations of the learn-
ing algorithm. For further details, see Lignos et al.
(2009) and Chan (2008).

2.1 The Base and Transforms Model

A morphologically derived word is modeled as a
base word with an accompanying transform that
changes the base to create a derived form. A trans-
form is an orthographic modification made to a
base to create a derived form. It is defined by
two affixes (s1, s2), where s1 is removed from the
base before concatenating s2. A null suffix is rep-
resented as $. A transform also has a correspond-
ing word set, which is the set of base-derived pairs
that the transform accounts for.

Word Sets. Each word in the corpus belongs to
one of three word sets at any point in execution:
Base, Derived, or Unmodeled. The Base set con-
tains the words that are used as bases of learned
transforms but are not derived from any other
form. The Derived set contains words that are de-
rived forms of learned transforms; these words can
also serve as bases for other derived forms. All
words begin in the Unmodeled set and are moved
into Base or Derived as transforms are learned.

2.2 The Learning Loop

Each iteration, the learner does the following:

1. Counts the affixes that appear in each word
set, ignoring low frequency words.
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2. Hypothesizes transforms between pairs of the
most frequent affixes and scores each trans-
form using the number of word pairs it mod-
els and the amount it changes the base word.
For example, the transform ($, s) can model
the pair paper/papers.

3. Selects the highest scoring transform and
moves the words modeled by that transform
into the Base and Derived sets as appropriate.

The learning loop continues until none of the
highest ranked transforms meet the criteria for an
acceptable transform. After learning is complete,
each word is analyzed using its base word and any
transforms required to derive it from the base.

3 Additions to the Framework

While the innovations introduced by Lignos et
al. (2009) addressed the largest gaps between the
cognitive model proposed by Chan (2008) and
the requirements of a morphological analyzer,
as shown in the results of Morpho Challenge
2009 (Kurimo et al., 2009) the algorithm’s suc-
cess was primarily limited to English. Modest re-
sults were reported in German, but the algorithm
was not submitted for other languages because it
was unable to handle languages with many mor-
phemes per word. We add the following features
to allow the learner to maintain its core learning
process while adding additional words to the lex-
icon as it models the corpus. We show how our
features integrate with the algorithm of Lignos et
al. (2009) in Figure 1.

3.1 Base Inference

As an example of the limitations of applying rules
based on minimal pairs, consider three words ap-
pearing in the Brown corpus (Francis and Kucera,
1967): adjoins, adjoined, adjoining. Even though
the transforms ($, s), ($, ed), and ($, ing) are
learned, they cannot be used to model these three
words because the required base, adjoin, is not
present in the corpus. This results in lower recall
because these three words remain unmodeled de-
spite the fact that the rules required to model them
have been learned.

To address situations of this type, we introduce
base inference to infer the existence of an un-
seen word when more than one learned transform
suggests that it should exist. After each rule is
learned, the learner iterates over every word with

the transform’s s2 affix that was not successfully
modeled by the transform and notes the base that
would have been required to model that word. If
a later transform requires the same base to model
another word, the learner infers the existence of
that base and then attempts to use that base in all
transforms learned to that point and those learned
later.

For example, consider the learner’s operation
when learning the transforms ($, s), ($, ed), and
($, ing) in order while adjoins, adjoined, and ad-
joining are present in the corpus but adjoin is not.
After the transform ($, s) is learned, the learner it-
erates over all words containing the suffix -s that
were not modeled, including adjoins, and notes
the required base, adjoin. In the next iteration, the
learner selects the transform ($, ed) and similarly
notes that the required base for adjoined is adjoin.
Because two different rules have indicated the pos-
sible existence of adjoin, the learner infers its ex-
istence. The learner adds it to the lexicon with the
frequency of the word that caused it to be inferred
and marks it for the transforms ($, s) and ($, ed),
thus modeling adjoins and adjoined. In the next
iteration, since adjoin is now in the Base word set,
when the transform ($, ing) is learned, adjoining
can be modeled as if adjoin were present in the
input corpus.

3.2 Compounding

The model presented by Lignos et al. (2009) per-
forms a simple n-gram based compounding as a
post-processing step on the learner’s output. But
as with base inference, it would be beneficial for
the algorithm to be able to use the components of
a compound word during learning instead of only
breaking compounds after analysis.

We adopt the compounding model of Koehn and
Knight (2003) where a word is broken down into
the set of component words present in the lexicon
with the highest geometric mean of frequencies.
Thus the splitter selects a split using the follow-
ing equation for a split S comprised of wi . . . wn

component words:

arg max
S

(
∏

wi∈S

count(wi))
1
n

The null hypothesis is also considered where S
contains only the word being split, thus a word is
only split if the geometric mean of its component
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1. Add all words in the corpus to the Unmodeled set.

2. Until a stopping condition is met, perform the main learning loop:

(a) Score suffixes and transforms and select the best transform.
(b) Move the words used in the selected transform.
(c) Optionally perform Base Inference, inferring new bases and adding them to learned transforms as appropriate.
(d) Optionally perform compounding for the current iteration.

3. Optionally perform compounding after learning is complete.

Figure 1: An overview of the learning algorithm, integrating compounding and inference features

words’ frequencies is greater than the word’s fre-
quency. Koehn and Knight also use “filler,” char-
acter sequences that can be placed between com-
ponent words of a compound. Rather than spec-
ifying the filler sequences by hand, we allow the
filler to be the application of a previously learned
transform to a word in the lexicon when includ-
ing it in the compound. The learner only allows
component words from the Base or Derived sets to
have filler added to them; this helps in excluding
morphologically unproductive words from having
transforms applied to them for the purpose of com-
pounding.

If a compound word is split using a transform
applied to a word in the lexicon, the derived form
is added to the lexicon and marked as derived
from the word the transform was applied to. For
example, consider an example from Koehn and
Knight (2003) where we are splitting Aktionsplan.
Assume that Aktion and plan are in the lexicon but
Aktions is not and that the learner has learned the
transform ($, s). Assuming the correct frequency
requirements are met, the learner would break the
compound as Aktions and plan, where Aktions was
derived by applying ($, s) to Aktion. The learner
would add Aktions to the lexicon, noting the rela-
tionship to Aktion. This provides the companion
to Base Inference for derived words; the learner
infers the existence of a derived form by its pres-
ence in a compound. The learner is then able to
learn words derived from Aktions if needed, a cru-
cial ability in agglutinative languages which typi-
cally contain many compounds where the compo-
nent words can take a large number of suffixes but
may not be observed elsewhere in the corpus.

We apply the compounding approach in three
variants:

Basic Compounding. Compounding is applied
to words in the Base and Unmodeled sets after all

learning is complete, and no transforms are sup-
plied as fillers for the compounding system.

Iterative Compounding. Compounding is ap-
plied to words in the Base set after every itera-
tion and to the Unmodeled set after all learning
is complete. The transforms learned up to the cur-
rent iteration are always supplied as fillers for the
compounding system.

Aggressive Compounding. Compounding is
applied to words in the Base and Unmodeled sets
after every iteration. As in Iterative Compounding,
the transforms learned up to the current iteration
are always supplied as fillers for the compound-
ing system, but the key difference is that they are
applied to the words in Unmodeled every itera-
tion, not just when learning is complete. This is
more aggressive because it introduces many more
words during the learning process than if unmod-
eled words are only split after learning is com-
plete.

4 Results

The learner’s performance on the development set
of Morpho Challenge 2010 is given in Table 1.
The Base condition gives the performance of the
learner without any compounding or word infer-
ence features active. The Basic Compounding
condition gives the performance of the learner
with Basic Compounding in use but without Base
Inference. The Base Inference condition builds
on the Basic Compounding condition, adding the
Base Inference feature. The Iterative Compound-
ing and Aggressive Compounding conditions build
on the Base Inference condition, with their forms
of compounding superseding Basic Compound-
ing.

The results show that while the features intro-
duced lead to mixed results on the F-score for En-

37



Precision Recall F-score
English
Base 60.56 50.47 55.05
+Basic Compounding 59.26 52.82 55.85
+Base Inference 59.26 54.21 56.62
+Iter. Compounding 57.80 52.07 54.79
+Aggr. Compounding 46.57 51.81 49.05
Finnish
Base 69.19 09.89 17.30
+Basic Compounding 65.55 26.32 37.55
+Base Inference 76.40 26.84 39.72
+Iter. Compounding 72.85 29.32 41.81
+Aggr. Compounding 54.36 44.49 48.93
German
Base 57.72 28.03 37.73
+Basic Compounding 42.17 34.08 37.70
+Base Inference 44.74 34.22 38.78
+Iter. Compounding 46.69 32.78 38.52
+Aggr. Compounding 38.52 35.02 36.69
Turkish
Base 70.00 9.73 17.08
+Basic Compounding 61.68 12.78 21.17
+Base Inference 50.33 13.74 21.59
+Iter. Compounding 49.45 19.56 28.03
+Aggr. Compounding 35.19 31.63 33.31

Table 1: Learner performance on the Morpho
Challenge 2010 development sets

glish and German, they improve F-score greatly
in Turkish and Finnish. The Basic Compound-
ing feature results in little change in English and
German but moderate improvement in Turkish and
a dramatic improvement in Finnish. Both Turk-
ish and Finnish benefit especially from Aggres-
sive Compounding, but while German sees a very
small performance drop as compared to Iterative
Compounding, the drop in English precision and
F-score is large.

While in all languages the Base Inference fea-
ture led to a small gain in F-score, the impact of
the feature was less than was expected. The likely
cause is that the conditions that motivate the base
inference feature are rare; the algorithm’s design
leads to the base words of a transform being more
frequent on average than the derived words, so
Base Inference only handles a small number of ex-
ceptions that are unlikely to be evaluated by the
small development set. We expected Base Infer-
ence to provide a gain in recall with little impact
to precision, but the Finnish and German results
puzzlingly show precision improvements with al-
most no recall improvements.

Based on these results, we are submitting the
analyses of the Base Inference, Iterative Com-
pounding, and Aggressive Compounding condi-
tions to be evaluated in Morpho Challenge 2010.

5 Discussion

The features present here succeed in transform-
ing the learner into one better suited for aggluti-
native languages. The strongest improvement in
agglutinative languages, however, comes at the ex-
pense of precision, most notably when Aggressive
Compounding is used. Ideally, a single technique
would result in the greatest performance across
all languages, but as evaluated with the Morpho
Challenge 2010 development set Aggressive Com-
pounding results in the best results for Turkish
and Finnish, near-best results for German, and the
worst results for English.

As the name implies, Aggressive Compound-
ing applies any transform learned to a word in the
Base or Derived sets without any further criteria
or any penalty for applying the transform. Given
the significant drops in precision caused by using
Aggressive Compounding, it appears that a restric-
tion or regularization of some form is required.
This points out a fundamental shortcoming of this
learner: the learner does not understand the con-
dition for applying a transform beyond suffixes on
the base word. Learning part of speech informa-
tion would likely help the learner decide whether
a word can take a transform or not as a word’s part
of speech can determine what morphemes can be
used with it.

The improvements to the learner for Morpho
Challenge 2010 further support our position that
a non-statistical approach to morphology learning
can succeed in a variety of languages.

References
E. Chan. 2008. Structures and distributions in morphology

learning. Ph.D. thesis, University of Pennsylvania.

S. Francis and H. Kucera. 1967. Computing analysis of
present-day American English.

P. Koehn and K. Knight. 2003. Empirical methods for
compound splitting. In Proceedings of the tenth confer-
ence on European chapter of the Association for Computa-
tional Linguistics-Volume 1, pages 187–193. Association
for Computational Linguistics.

Mikko Kurimo, Sami Virpioja, Ville T. Turunen, Graeme W.
Blackwood, and William Byrneg. 2009. Overview and re-
sults of Morpho Challenge 2009. In Working Notes of the
10th Workshop of the Cross-Language Evaluation Forum,
Corfu, Greece, September 30–October 2. CLEF2009.

Constantine Lignos, Erwin Chan, Mitchell P. Marcus, and
Charles Yang. 2009. A Rule-Based Unsupervised Mor-
phology Learning Framework. In Working Notes of the
10th Workshop of the Cross-Language Evaluation Forum,
Corfu, Greece, September 30–October 2. CLEF2009.

38



Unsupervised learning of concatenative morphology based on
frequency-related form occurrence

Lionel Nicolas
Team RL, Laboratory I3S

UNSA + CNRS,
Sophia Antipolis, France

lnicolas@i3s.unice.fr

Jacques Farré
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Abstract

We describe an unsupervised approach to
acquire from raw data a data-orientated
representation of a concatenative morphol-
ogy. This approach takes advantage of
various phenomena and, among them, it
exploits the fact that the more frequent a
form is, the more chances there are to find
its morphologically related forms.

Since its implementation is based on
straightforward statements and rather sim-
ple computations, its efficiency tend to
rely more on the size of the input corpus
and the adequation between the statements
and the language studied than it relies on
the intern formulas or parameters. The ex-
pert work required to apply it to various
languages is thus greatly reduced.

1 Introduction

Among the numeric linguistic resources formal-
izing a language (grammar, lexicon, etc.), mor-
phological rules are considered as one of the eas-
iest to create. Nevertheless, the construction of
such resource still requires a lot of linguistic ex-
pertise and the fact is that, for many major lan-
guages, such resources are not always available
and, for languages with smaller communities, they
barely exist. Therefore, the automatized acquisi-
tion of morphology is still an open topic which
interest is confirmed by its dedicated annual chal-
lenge (Mikko Kurimo and Turunen, 2009).

In this abstract, we introduce an approach to
compute, from a raw corpora, a data-orientated de-
scription of the concatenative morphology used in
the input corpora. This approach presents the ben-
efit of taking advantage of phenomena that are ob-
servable for concatenative morphologies. Among
them, a frequency-related occurrence of the forms

belonging to a same lemma, be it derivated or in-
flected, is highlighted and intensively exploited in
a way that has not been considered so far.

The implementation works as a set of filters
that refines sequentially a list of candidate af-
fixes and a list of sets of affixes. Since these fil-
ters are implemented with mostly straightforward
and parameters-free formulas, applying this ap-
proach to a varied set of concatenative languages
is achieved with few expert work.

In sect. 2, we introduce general definitions and
informations while in sect. 3, we discuss the
frequency-related phenomenon. In sect. 4, we ex-
pose other techniques available. We then describe,
in sect. 5, 6 and 7, the various steps of our ap-
proach and finally, we expose the data submission
details (sect. 8) and conclude (sect. 9).

2 General definitions and informations

General definitions So as to ensure a good un-
derstanding, central notions, as we understand and
use them, are briefly reminded. A lemma is a set
of morphologically related forms1. We consider
the stem of a form as the substring shared by all
the related forms of its lemma. Affixes are the sub-
strings added to the stems in order to create forms.
Affix is here used as a shortcut for prefix and suf-
fix. Morphological rules are string operations con-
verting a stem or a canonical form into a related
lexical form. In this paper, a morphological rule
consists in adding an affix to a given stem with no
character deletion or substitution. Linguistic phe-
nomena which can alter the stem or the affix are
acquired as different morphological rules than the
ones they are originally derivated from. A mor-
phological family is a set of morphological rules.

General information Some of the computa-
tions described are done thanks to “letter trees”,
i.e, trees with letter-labeled branches, where every

1Each lemma is designed by a “canonical” form;
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form is introduced letter by letter and spread over
the different sub-parts. When looking for suffixes,
a tree is built by introducing the forms from their
first letter and oppositely when looking for pre-
fixes. An affix is said to occur on a given node if
it has been combined with a stem which letters la-
bel a path from the root to this node2. A frequent
form is a form which frequency is above the aver-
age frequency computed over all the forms of the
input corpus. Finally, even thought we abstractly
refer to the lemmas of the forms, we do not know
them since only raw text is provided as input.

3 Frequency-related phenomenon

Since their semantic meaning, be it general or not,
matches better the content of some texts, some
lemmas are more frequent than others. When con-
sidering a given lemma, the probabilities for its
inflected or derivated forms to occur in a text in-
crease with the frequency of the lemma. In other
words, the more a lemma is “used” in a corpus, the
more probable it is to encounter a more diversified
sample of its related forms. This applies to most
kind of text3, be it specialized or general, except
those describing exhaustively the lexical forms re-
lated to some particular lemmas. Of course, the
style affects the ratio between related forms4, but
the chances for related forms to occur still globally
increase with the frequency of the lemma.

4 Related work

In this section, we focus on approaches related
to ours. Techniques inspired by (Harris, 1954)
measure the probabilities of word-internal char-
acter transitions to identify morpheme bound-
aries (Hafer and Weiss, 1974; Déjean, 1998; Dem-
berg, 2007). Some of them also use letter-trees,
but their computations are done over the nodes
when ours are done over substrings occurring on
a node, i.e, we only use trees as convenient data-
representations to know which forms share sub-
strings. Other approaches rely on the minimum
description length (MDL) principle to exhibit a set
of descriptive morphemes in order to efficiently
encode a corpus (Goldsmith, 2001; Creutz and
Lagus, 2002; Snover and Brent, 2002; Bernhard,
2006; Monson et al., 2007). In particular, Gold-

2An affix combined with n stems will occur on n nodes.
3e.g, the forms of to talk are easier to encounter in general

texts than the ones of to orate.
4E.g, an autobiography enhance the first person singular.

smith groups morphemes into paradigm-like sets
of suffixes which are close to our morphological
families (see sect. 6). Techniques relying on for-
mal analogy (Stroppa and Yvon, 2005; Hathout,
2008; Lavallée and Langlais, 2009) identifies pairs
of morphologically related form that are com-
parable with our pairs of candidate affixes (see
sect. 5.1). At last, the approach described in (Das-
gupta and Ng, 2007) is similar to ours since it se-
quentially refines a list of candidate affixes.

Most of these existing approaches share similar-
ities with ours. Nevertheless, the main differences
can be globally summarized as: (1) it sequentially
applies several complementary strategies while the
others mostly focus on one or two, (2) it takes ad-
vantage of a frequency-related phenomenon in a
fashion that has not been considered before, (3) it
is developed towards the aim of avoiding param-
eters or sophisticated formulas in order to ease its
application to other languages.

5 Identifying candidate affixes

Generating candidate affixes This step aims
at establishing a rough list of candidate affixes
for the later steps that are more computationally-
intensive. This first list is obtained by identifying
the substrings fulfilling these voluntarily “permis-
sive” conditions: (1) it occurs in at least one sub-
tree that is present at least twice in the whole tree,
(2) it occurs in at least one node covering a fre-
quent word, (3) it is globally combined with more
substrings than the various “candidate” stems it is
combined with, (4) it occurs more frequently on
nodes with other substrings than it occurs alone,
and finally, (5) it co-occurs with at least another
candidate affix on at worst two nodes.

5.1 Identifying pairs of candidate affixes

This step relies on two observations. First, a
morphological family covers at least two affixes5.
The second is based on the frequency-related phe-
nomenon (see sect. 3). Contrarily to other kind
of morphology which can use infixes, concatena-
tive morphologies do not alter the stems. Thus, the
forms of a lemma follow a same path in the tree
until they pass the last letter of the stem. There-
fore, in order to find the related candidate affixes
of a candidate affix aff, one only needs to pay at-
tention to the nodes where aff occurs.

5The empty string is considered as an affix
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If the candidate affix studied truly belongs to a
family, the more frequent the form containing it
is, the more probable the affix occurs on the cor-
responding node with other affixes of the family.
Thus, by sorting by frequency the nodes where
a correct candidate affix occurs, we observe a
progressively increasing co-occurrence rate with
other members of the family. Oppositely, incor-
rect candidate affixes have chaotic/non-coherent
co-occurrence rates with other candidate affixes.

In order to establish if a candidate affix aff
presents an increasing co-occurrence rate with an-
other one, we divide the sorted list of the nodes
where aff occurs in sublists for which the av-
erage frequency of a sublist si is mult times
higher (mult > 1) than the previous sublist si−1

6.
We then compute for each candidate affixes co-
appearing with aff a co-occurrence rate ratei over
each sublist and a score inc = sumpos + mult ∗
sumneg where sumpos is the sum of the positive
value ratei−ratei−1, whereas sumneg is the sum
of the negative ones. The co-occurrence is consid-
ered as increasing if inc is positive. Candidates
with no increasing co-occurrence are discarded.

One must note that this filter identifies pairs
of incorrect candidate affixes because of correct
ones. Indeed, any affix X related to an affix Y often
allows the candidate affixes subX and subY start-
ing with a string sub to be considered as related
since their co-appearance rate will also be an in-
creasing one7. The same applies for two incorrect
affixes Z and W and two correct and related affixes
subZ and subW that start with a string sub8.

6 Morphological families

6.1 Building morphological families

Once pairs are identified, we recursively process
the tree with the remaining candidates. Every can-
didate affix occurring on a given node “vote” for
its pairs also present on the node. A family is then
built with the pairs of the candidate affix that has
received most votes. The voting is done several
times with the candidates non-included in a fam-
ily until all are included in one9. For each family,

6The first sublist is the set of nodes corresponding to the
forms with the lowest frequency.

7E.g, the english suffixes “ing#”/“ed#” can allow the in-
correct ones “ming#”/“med#” to be considered as related.

8E.g, the pair of english suffixes “es#”/“ed#” can allow
the pair “s#”/“d#” to be identified.

9This method has been designed to avoid merging to-
gether two different families present on a same node. E.g,

we record the nodes where they have been found.

6.2 Filtering morphological families

The previous step generates three kinds of fami-
lies: some incorrect ones composed of incorrect
affixes, correct but incomplete ones and correct
and complete ones. The first set is mainly com-
posed composed of families which members en-
globe correct affixes (see end of sect. 5.1). The
second set is essentially composed of correct sub-
families of bigger families: as explained in sect. 3,
depending on the lemma, more or less related
forms are found in the input corpus and thus, more
or less complete families are generated.

We thus apply sequentially three filters to the
families. The first aims at discarding the biggest
incorrect families and most of the incomplete
ones. It relies on the following idea: a correct fam-
ily composed of n members shall appear in sub-
families with n, n-1, n-2,...,1 of its members (see
sect. 3). A family with n members is thus kept if
“validated” by the occurrence of at least one fam-
ily with n-1 of its members10. All families vali-
dating another one are discarded (essentially sub-
families) as well as families that have not been val-
idated (essentially the biggest incorrect families).
One must notice that if two equivalent families
with n+1 members sharing n of their members are
generated, this filter will keep both unless a family
with n+2 members covering them appears. The
second filter relies on the idea that morphological
families are frequency-independent, i.e, they ap-
ply on frequent or infrequent lemmas and should
thus cover, in one of the nodes where they have
been found, at least one of the frequent forms. The
third filter follows the idea that the letters com-
mon to all related forms belong to the stem (see
sect. 2) and tackles the incorrect families gener-
ated by pairs of incorrect affixes englobing correct
ones (like “med#/ming#”, see end of sect. 5.1) by
simply rejecting all families composed of affixes
starting with an unique first letter.

6.3 Splitting compound affixes

If an affix aff3 in a family fam1 is to be split as
two affixes aff1, aff211, we consider that aff3 is
obtained by refining an affix aff1 with a family

the spanish verbs “sentir”(to feel) and “sentar”(to sit) belong
to two different families but share the same stem “sent”.

10Families with two members are automatically validated.
11e.g, the english suffix “ingly#” is to be split as the suf-

fixes “ing#” and “ly#”
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fam2 containing the affix aff2. We thus consider
that aff1 is the reason for aff3 to exist and that aff1
provides of a context where fam2 can apply, i.e,
there can be other affixes in the family fam1 ob-
tained by refining aff1 with fam2. We thus list the
other affixes in fam that could be reason for aff3
to exist by following the idea that they should be
more present than absent on the nodes where aff3
occurs. We then add aff3 to the list and apply the
families obtained in the previous step. The family
that covers most of the elements of this list, includ-
ing aff3, is selected, aff1 is split as aff1+aff2 and
the process is recursively applied on aff2.

7 Cutting forms

Once the final set of families is obtained, we use
them to split every word as prefix(es) + stem +
suffix(es). This step is achieved by selecting for
each nodes the families that apply. A family is said
to apply on a node if it covers n (n > 2) substrings
occurring on the node and thus generate a set of n
possible cuts of the corresponding forms.

For each form, a choice among the various sets
of cuts covering it is achieved by selecting them
sequentially according to the following two crite-
ria: (1) the number of cuts of the set, (2) the cor-
responding node closest to the root (3) the size of
the corresponding family12. If more than one set
remains13, we simply select the first one.

7.1 Splitting compound stems

So as to split compound stems, one needs first
to determine what substrings can connect them,
be it the empty string or not. During our exper-
iments, we could observe that these connectors
act like double-affixes in the sense that they tend
to combine two surrounding stems the same way
suffixes are connected to the first stem and pre-
fixes are connected to the second one. We also ob-
served that, if enough data is provided, the most
frequent words tend to be identified along with
connectors in ”fake“ suffixes or prefixes14. In or-
der to extract these connectors, we first establish
two lists of starting and ending substrings corre-
sponding to the combination of all the stems found
previously (see sect. 7) with the prefixes and suf-

12the biggest families are the most correct ones
13some families can be sub-families of a bigger non-

detected one and thus compete often
14e.g, in English, the prefixes ”#grand“, ”#first-“ and the

suffixes ”-based#“, ”ship#“ are identified.

fixes they have been found with15. We then iden-
tify all the prefixes containing starting substrings
and all the suffixes containing ending substrings.
The substring part of these ”fake“ affixes that do
not belong to the starting or ending substrings are
considered as possible connectors. A connector is
kept if it is both found in one ”fake“ prefix and one
”fake“ suffix16. Finally, the stem of a given form
is recursively split if the form combines a starting
substring, a connector and an ending substring17.

8 Data submission

The morphological analysis achieved for English,
Turkish and German, have been produced by giv-
ing as input the basic corpora provided by the 2010
edition without any parameters or code adapta-
tions18. The process just differs in the size of the
input corpus. Especially since we limited, because
of a memory issue, the input to the forms with
a frequency greater than 1 for English and 2 for
German. For Finnish, we did not provide analysis
because the date processed was not enough data to
achieve an interesting result.

9 Partial Conclusion

The approach alredy achieves its original goal
by generating a set of the morphological families
present in the input corpus.

The preliminary results indicates a generally
good precision and a recall that lowers with the
complexity of the morphology. Nevertheless, this
drawback decreases when the size of the input cor-
pus increases. We also observe, from our analysis
over English, that an important loss in both recall
and precision is due to allomorphy. Indeed, we
are unable to recognize syntactically equivalent af-
fixes (loss of recall), or differentiate a same affix
shared by two syntactically non-equivalent fami-
lies (loss in precision).

Finally, the results obtained over various lan-
guages with no parameter or code adaptations tend
to indicate the relevance and interest of the ap-
proach.

15e.g, if the english stem ”appear“ is found with the pre-
fixes ”#re“ and ”#dis“ and the suffixes ”ing#“ and ”ed#“, the
substrings ”#reappear“ and ”#disappear“ are used as starting
ones and ”appearing#“ and ’appeared#“ as ending ones.

16e.g, in English, the connector ”-“ is found in the ”fake“
prefix ”#first-“ and in the ”fake“ suffix ”-based#“.

17e.g, ”speedboat“ has the stems of the forms ”speed“ and
”boat“ since it combines a starting substring ”#speed“, an
empty connector ” and an ending substring “boat#”.

18The parameter mult (see sect. 5.1) was set to 2.
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Abstract

In this paper we present a supervised al-
gorithm for deductive-abductive parsing,
called DEAP, which generates a set of
parse hypotheses for a given word, ranks
them probabilistically or by a minimum
description length heuristic and selects the
top k parses which describe the structure
of a word in terms of labelled morphemes.
The morphological grammar used by the
parser is attained through memory-based
learning from a small labelled training set.
For the Morpho Challenge 2010, we report
results on the languages English, Finnish
and Turkish.

1 Introduction

The Morpho Challenge (MC) 2010 is concerned
with semi- and supervised morpheme analy-
sis in terms of decomposing words into mor-
phemes, labelling morphemes according to gram-
matical categories and detecting morphophono-
logical changes. The goal is to develop a machine
learning algorithm which can build a morpholog-
ical model using a small word list of morphologi-
cally analysed words and then apply the model to
a large unlabelled list of words from the same lan-
guage to predict their morphological structure.

A morphological model is a simplified descrip-
tion of a language’s morphology and an instance
of a model class. The solution at hand is a hybrid
of rule-based, probabilistic and statistical models.
By exploiting the structure of the labelled train-
ing set, where for each word a single or multiple
analyses are given as a sequence of morphemes
and labels corresponding to a particular morpheme
category, we build a context-free grammar. This
grammar consists of rules describing possible la-
bel sequences and a dictionary which maps actual
morphemes to their labels or categories.

Such a grammar, which is learnt from a small
subset, however, is likely to be incomplete and
will not parse all unseen words. For this reason,
we apply the notion of open and closed morpheme
categories. The former corresponds to categories
whose morphemes cannot be enumerated entirely.
Examples are noun, verb and adjective roots or
stems. For the latter, in contrast, it is possible to
list most of the morphemes since they normally
mark certain grammatical properties which them-
selves are of finite nature.

DEAP, which stands for deductive-abductive
parsing, is a further development of the algorithm
described by Spiegler et al. (2010) incorporating
an automated parse selection. DEAP has been de-
veloped under the assumptions that instances of
the most important morpheme categories like pre-
fixes and suffixes have been seen in the training
set as well as most of the possible combinations of
different categories. Only certain morpheme cat-
egories, e.g. noun or verb roots, have to be hy-
pothesised. DEAP generates a parse hypothesis of
a word if either all or all but one morphemes are
known. A guessed morpheme must belong to a
predefined category whose members are allowed
to be inferred. DEAP then performs hypothesis
selection where it ranks parses probabilistically or
by a minimum description length-based heuristic
and selects the top k solutions.

In the remainder of the paper, we will present
the single steps of the DEAP algorithm and its re-
sults on the English, Finnish and Turkish dataset
of MC 2010.

2 DEAP: Deductive-abductive parsing

2.1 Datasets and pre-processing

For our approach, we need a training dataset which
assigns morphological analyses to each word con-
sisting of morphemes and their categories. This
type of dataset was provided for English, Finnish
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and Turkish. Apart from replacing certain spe-
cial characters like apostrophes and hyphens by
alphanumeric symbols, and changing the decod-
ing of Finnish from ‘latin-1’ to standard encoding
‘ascii’, we kept the gold standards as they were.

In contrast, the word lists which had to be anal-
ysed underwent a more extensive preprocessing.
Since the English training set consisting of 1000
words contained only 42 examples of hyphenated
word compounds, but the unlabelled list of almost
900k words more than one third, we decided to
process words in these compounds separately and
later recombine single analyses again. From the
lists of Turkish and Finnish we removed words
which did not comply with their original encod-
ing. Furthermore, the entire word list of Finnish
was transformed into standard ‘ascii’ encoding for
the subsequent processing steps.

2.2 Memory-based grammar induction

The first step of the DEAP algorithm is the in-
duction of a morphological grammar which will
be applied in the hypothesis generation step. We
represent the morphological grammar as a context-
free grammar consisting of rules where a single
symbol on the left-hand side is resolved into mul-
tiple symbols on the right-hand side. Furthermore,
the grammar contains a dictionary where symbols
are mapped to actual morphemes.

We are sharing the opinion of Daelemans and
Bosch (2005) that generalisation in morphological
analysis is harmful since artificial structures can be
created easily which do not occur in a natural lan-
guage. For this reason, we are inducing our mor-
phological grammar using a memory-based ap-
proach. Morphological analyses of words are di-
rectly transformed into rules and dictionary en-
tries. A new rule is a previously unseen sequence
of morpheme categories. Each category itself is
mapped to its actual morpheme in the dictionary.

Example 1. The analysis of ‘deciphering→ de:P
cipher:N ing:PCP1’ would yield the rule ‘w →
p, n, pcp1.’ and dictionary entries ‘p → [de].’,
‘n→ [cipher].’ and ‘pcp1→ [ing].’.

2.3 Grammar augmentation for abduction

Although we assume that the most important com-
binations of morpheme categories have been seen
and therefore transformed into an almost complete
rule set, it is unlikely that our morpheme dictio-
nary will be sufficient. We revert to an inference

method called abduction which is a type of logi-
cal inference where an explanatory hypothesis is
formed from an observation requiring explanation
(Peirce, 1958; Flach and Kakas, 2000). We are
trying to morphologically analyse a given word
where the most a single morpheme has to be hy-
pothesized from predefined morpheme categories.
We refer to these categories as abducibles. It is
not too difficult to find a set of abducibles for
a given language with sufficient linguistic back-
ground knowledge. However, we follow a more
objective approach which ranks morpheme cate-
gories by their number of distinct morphemes. We
then choose the top k categories with the highest
cardinality since they are likely to be instances of
open categories.

Having settled on a list of abducibles, we are
now returning to our grammar. So far, the rules
can only be applied if all morpheme categories can
be mapped to known morphemes. For rules con-
taining categories which are abducible, we want to
add modified rule versions to the grammar where
the most one abducible is labelled by a marker.
This marker allows that a morpheme can be hy-
pothesised for this category. If a rule contains
multiple abducibles, combinations with only one
marked abducible are added to the grammar.

Example 2. The analysis of the word ‘storerooms’
is given as ‘store:V room:N s:+PL’ and generates
the rule ‘w → v, n, pl.’. The morpheme cate-
gories ‘v’ and ‘n’ are listed as abducibles such
that the two rules ‘w → v∗, n, pl.’ and ‘w →
v, n∗, pl.’ will also be added to the rule list. Mor-
phemes for v∗ and n∗ can be hypothesised.

2.4 Hypothesis generation

For hypothesis generation we apply the formalism
of Definite Clause Grammars (DCGs) used in the
logic programming language Prolog. Since we do
not only want to accept or reject words based on
the grammar but get possible parses of the word
instead, we need to augment the DCG by adding
parse construction arguments illustrated below.

Example 3. The original DCG may look like:

w --> v, n, pl.
v --> [store].
n --> [room].
pl --> [s].

and with parse construction arguments like:

w((X, Y, Z)) --> v(X),n(Y),pl(Z).
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v(v(store)) --> [store].
n(n(room)) --> [room].
pl(pl(s)) --> [s].

The word ‘storerooms’ would be parsed as:

(v(store), n(room), pl(s)).

Having defined the grammar with additional
rules for abducible morpheme categories and parse
construction arguments, we now apply a logic pro-
gram for the hypothesis generation in terms of
morphological analyses for given words. The in-
built Prolog parser only performs deduction as
logical inference where the hypothesis is formed
from observations and known explanations – in
our case – a complete rule set and morpheme dic-
tionary. We therefore revert to an extension of the
meta-interpreter designed by Flach (1994) which
is able to perform deduction as well as abduc-
tion. The algorithm invokes rules top-down start-
ing with the most general until it reaches the level
where morpheme categories are resolved to actual
morphemes. It then matches categories to mor-
phemes from the left to the right of the word. A
word is parsed if either all morphemes are listed
in the dictionary or unknown morphemes belong
to abducible morpheme categories.

2.5 Hypothesis selection

In the previous step, we have enumerated all pos-
sible parses for a given word and a grammar. If a
word can be parsed deductively, we keep all anal-
yses since it is likely that they were caused by
the inherent ambiguity due to the lacking word
context. On the other hand, if we have abduced
parses only, we want to select the best hypotheses
by evaluating the possible explanations of a word.
Subsequently, we present two approaches for ab-
ductive hypothesis selection which are probabilis-
tic and minimum description length-based.

2.5.1 Probabilistic hypothesis selection
This approach utilises ideas from probabilistic
parsing of sentences or phrases (Jurafsky and Mar-
tin, 2000). It is assumed that rules and dictio-
nary entries are independent of each other such
that their probabilities can be multiplied. These
probabilities are estimated from the training set
by a maximum likelihood estimator. In general,
if α denotes the left-hand side and β the right-
hand side of a rule the probability is denoted as
Pr(α→ β|α). A parse t of a given word consists
of a sequence of morpheme categories c1, . . . , cn,

with n being the number of categories, and each
category ci maps to an actual morpheme mi the
probability of the parse Pr(t) is then defined as

Pr(w → c1, . . . , cn|w)
n∏

i=1

Pr(ci → mi|ci) (1)

where w is the left-hand side of the most general
rule. After having assigned a probability to each
parse returned for a given word, we rank all parses
by their probability. We do not limit ourselves to
a single best parse and return the top k parses in-
stead. We assume a certain degree of ambiguity
which cannot be resolved for a list of words with-
out syntactic context information.

2.5.2 MDL-inspired hypothesis selection
Our second approach for hypothesis selection
builds on the minimum description length (MDL)
principle. In general, MDL is applied in model se-
lection for a trade-off between goodness-of-fit and
complexity of the model given the data (Grunwald
et al., 2005). We apply this principle heuristically
by ranking parses using the frequency of their ab-
duced morphemes. By selecting the top k parses
we find new morphemes which occur in as many
other word analyses as possible. In this way, we
minimise the size of the updated dictionary. The
advantage of the MDL-inspired approach over the
probabilistic hypothesis selection is that the for-
mer selects parses based on a global evaluation
where the latter solely depends on the distribution
of rules and morphemes in the training set which
need to be representative.

2.6 Post-processing
The post-processing step is concerned with merg-
ing morphological analyses and the original word
list. Words which could not be parsed abductively
nor inductively are analysed as single morpheme
words. Previously replaced characters are substi-
tuted by their original ones. The list of Finnish
words and analyses is transformed into its initial
encoding again (‘latin 1’). Hyphenated words in
the original English word list are mapped to com-
binations of their single analyses.

3 Results and evaluation

We have applied the above described algorithm
DEAP on the languages English, Finnish and
Turkish. In Table 1 we show for each language
how many parses per word were generated, how
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Language Generated Hypothesis Selected MC metric EMMA metric
parses selection parses Prec. Rec. F-m. Prec. Rec. F-m.

English 12.81±13.81

Probabilistic, no categories 1.76±0.99 0.5519 0.6078 0.5785 0.5260 0.6577 0.5845
Probabilistic, categories 4.71±2.02 0.5196 0.5336 0.5265 0.2107 0.6498 0.3182
MDL, no categories 1.76±1.08 0.5317 0.8135 0.6431 0.5195 0.7939 0.6280
MDL, categories 4.29±2.17 0.5439 0.7402 0.6271 0.2653 0.7758 0.3954

Finnish 28.28±18.21

Probabilistic, no categories 2.36±0.83 0.6821 0.5289 0.5958 0.5733 0.6381 0.6039
Probabilistic, categories 5.34±1.59 0.6611 0.5117 0.5769 0.4972 0.6404 0.5598
MDL, no categories 3.29±1.48 0.7098 0.6703 0.6895 0.5642 0.7215 0.6332
MDL, categories 5.33±1.60 0.7683 0.6480 0.7030 0.5017 0.7262 0.5934

Turkish 11.09±7.94

Probabilistic, no categories 3.49±1.52 0.6913 0.5873 0.6350 0.3205 0.4881 0.3869
Probabilistic, categories 4.68±1.76 0.7352 0.5782 0.6473 0.2112 0.5403 0.3037
MDL, no categories 3.17±1.46 0.7463 0.5867 0.6570 0.4567 0.5576 0.5021
MDL, categories 4.88±1.74 0.8339 0.5636 0.6726 0.2093 0.5673 0.3058

Table 1: Results of DEAP with probabilistic and MDL hypothesis selection.

many were ultimately selected and the result in
terms of precision, recall and f-measure. Since the
MC metric possesses certain shortcomings we also
state the performance using the EMMA metric in-
troduced by Spiegler and Monson (2010).

As one can see from the number of gener-
ated hypotheses, words can have, for instance in
Finnish, up to 28.28 parses on average. This is
caused by the lack of syntactic information which
would limit the search space and by augmenting
the grammar for abductive parsing. The more ab-
ducibles are allowed, the more parses will be gen-
erated. For our experiments, we limited abduction
to at most 5 abducible morpheme categories.

The MDL hypothesis selection performed best
across all three languages. In contrast to the proba-
bilistic approach, it evaluates each new morpheme
globally by its frequency across the entire word
list which guarantees more sensible choices. The
probabilistic selection, in contrast, entirely de-
pends on the representativeness of the training set.

Our two hypothesis selection approaches ac-
cepted all deductively found parses where no mor-
phemes had to by hypothesised. If no parses could
be found deductively the top k abductively found
parses would be chosen. For k we used the value
6 which was determined by a cost-benefit analy-
sis on the development set. In case that neither
deductive nor abductive reasoning would find a
parse, the algorithm would return the word as a
morphemic singleton.

We also report results with and without mor-
pheme categories since we believe that an evalua-
tion should consider both perspectives separately.
The algorithmic performance regarding word de-
composition can be distorted by the algorithm’s
ability to label morphemes.

4 Related work

There are a number of approaches using induc-
tive logic programming (ILP). ILP is concerned
with learning rule-based concepts from examples
and background knowledge. Representatives are
FOIDL (Mooney and Califf, 1995) and CLOG
(Manandhar et al., 1998) as ILP systems for learn-
ing decision lists. There also exist general sys-
tems for abductive (Ray and Kakas, 2006) and
hybrid abductive-inductive inference (Ray, 2005).
The former finds explanations for examples and an
incomplete background knowledge and the latter
also inductively generalises the abductive explana-
tions. The algorithm described in this paper adds
two automatic hypothesis selection techniques to
the abductive method described in (Spiegler et al.,
2010).

5 Conclusions

We have presented the algorithm DEAP which
performs deductive-abductive parsing, generates a
set of morphological hypotheses and selects the
top k ones using either a probabilistic or an min-
imum description-based approach. We report the
best results in terms of f-measure for English with
0.6431, Finnish with 0.7030 and Turkish with
0.6726 based on the MC 2010 metric.
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Abstract

For the Morpho Challenge 2010 we
present an algorithm family consisting of
Promodes, Promodes-H and the ensem-
ble Promodes-E which we tested on the
languages English, Finnish and Turkish.
The algorithms are based on a probabilis-
tic generative model whose parameters are
estimated from a small labelled dataset us-
ing maximum likelihood estimates. The
algorithms are subsequently calibrated and
applied to a large word list.

1 Introduction

The Morpho Challenge (MC) is concerned with
morphological analysis in terms of decomposing
words into their morphemes and labelling mor-
phemes by their categories, if possible. In contrast
to previous challenges, MC 2010 provided a small
subset of 1000 decomposed and morphologically
labelled words for each of the languages English,
Finnish and Turkish. This data could be used to
train an algorithm for morphological analysis ei-
ther in a semi- or in a supervised manner.

Our participating algorithms called Promodes,
Promodes-H and Promodes-E used the above de-
scribed training sets to estimate their model pa-
rameters and were calibrated on a separate labelled
development set.

2 Background

The Promodes algorithm family follows a line
of algorithms for morphological analysis. Gold-
smith (2001) presented Linguistica which attains
signatures from an unlabelled word list without
further information and applies them to predict
a word’s morpheme structure. Monson (2008)
built a similar algorithm, called Paramor, which
learns paradigmatic structures as sets of mutually
substitutable morphological operations. Creutz

(2006) developed the unsupervised algorithm fam-
ily Morfessor which applies either minimum de-
scription length (MDL) or a probabilistic maxi-
mum a posteriori (MAP) framework.

More recent approaches are the following. Mor-
phoNet (Bernhard, 2009) discovers transformation
rules and builds a lexical network in order to clus-
ter related words. Can and Manandhar (2009)
induced paradigms from part-of-speech tagged
words. Lavallee and Langlais (2009) performed
morphological analysis based on formal analogies.
Ungrade (Golenia et al., 2009) decomposes words
by finding a pseudo-stem and analysing pre- and
suffix sequences in a morpheme graph. The cog-
nitive approach by Lignos et al. (2009) revisits
the base-and-transform model described by Chan
(2008). And Metamorph (Tchoukalov, 2009) is
an analysis algorithm based on multiple sequence
alignment.

The remainder of the paper is structured as fol-
lows. In Section 3 we give a brief introduction to
the Promodes algorithm family. More detailed de-
scriptions can be found in (Spiegler et al., 2010)
and (Spiegler and Flach, 2010). In Section 4 we
will state and interpret results on the languages
English, Finnish and Turkish. In Section 5 we will
draw our conclusions.

3 Promodes

The core of the Promodes family is a probabilis-
tic generative model. The intuition of the model
is that it describes the process of word genera-
tion from the left to the right by alternately us-
ing two dice. The first die decides whether a mor-
pheme boundary is placed in the current word po-
sition whereas the second one identifies the corre-
sponding letter transition. If all parameters of the
model are known this process can be reversed to
decode the underlying sequence of tosses which
determine the morphological structure of a word.

Model parameters can be estimated in an unsu-
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pervised fashion using the expectation maximisa-
tion algorithm (Dempster et al., 1979). This ap-
proach was put to test in the MC 2009 and de-
scribed in (Spiegler et al., 2010). Parameters can
also be obtained from a small labelled dataset and
then applied to a large unlabelled list of words
by reverting to maximum likelihood estimates. In
(Spiegler and Flach, 2010) we demonstrated the
performance of different Promodes versions on the
South African language Zulu in this setup.

The original Promodes algorithm uses a zero-
order model for morpheme boundaries and a first-
order model for letter transitions. Promodes-H
represents a further development with an increased
memory. Morpheme boundaries are modelled in
first-order fashion – a boundary in a certain posi-
tion also depends on the previous position. More-
over, letter transitions were extended to consider
the previous letter transition as well as the pre-
vious boundary or non-boundary (second-order).
For Zulu, we demonstrated that Promodes-H out-
performs Promodes in the default setting.

We also introduced Promodes-E as an ensemble
of the two algorithms above. In general, an en-
semble consists of individually trained classifiers
whose predictions are combined for new instances
(Opitz and Maclin, 1999). Initially, Promodes-E
averaged the probabilistic evidence given by Pro-
modes and Promodes-H to arrive at a decision.

In (Spiegler and Flach, 2010) we subsequently
performed experiments where we calibrated the
decision threshold of the three algorithms. This
was illustrated by precision-recall curves and hy-
perboles for constant f-measure values (isomet-
rics). The highest f-measure isometric, tangent to
the precision-recall curve, depicts the optimal de-
cision threshold.

For the MC 2010, we have deployed cali-
brated Promodes, Promodes-H and their ensem-
ble Promodes-E on the languages English, Finnish
and Turkish.

4 Results

After having estimated model parameters of Pro-
modes and Promodes-H on the labelled training
set, we calibrated the two algorithms and their
ensemble on the development sets of English,
Finnish and Turkish. In Table 1 we give the nu-
meric results for precision, recall and f-measure
using the MC evaluation metric on the develop-
ment set. We also state results using the EMMA

metric since it was shown in (Spiegler and Mon-
son, 2010) that the original MC metric lacks of
robustness under certain circumstances.

Based on the MC metric, it can be seen that Pro-
modes performs best and Promodes-E second best
on all three languages. The best f-measure results
are 0.5312 for English, 0.5121 for Turkish and
0.4412 for Finnish. Following the EMMA metric,
the ranking of the three algorithms only changes
for English where Promodes-E outperforms Pro-
modes. Nevertheless, for English and Finnish,
f-measure results increase by 0.0985 and 0.0344
on average whereas for Turkish the overall results
drop by 0.0684 on average. We believe that the
evaluation results for English and Finnish improve
with EMMA due to its hard morpheme assignment
and the fact that both languages have 1.10±0.35
and 1.21±0.52 analyses per word in the gold stan-
dard respectively. Each Promodes algorithm is re-
warded for predicting a single analyses per word.
Turkish, in contrast, has 2.07±1.53 analyses per
word in the gold standard and our algorithms are
punished for returning only one.

In Figure 1 we illustrate the algorithms’ per-
formances on each language across all decision
thresholds using the MC metric. We can see
that Promodes-H performs worst across all lan-
guages, especially on English. This suggests that
fewer morphological processes are captured with
our higher order model – in contrast to results of
the lower order model and oppositely to findings
on Zulu in (Spiegler and Flach, 2010).

Furthermore, we can see that on English and
Turkish Promodes-E follows Promodes relatively
closely, however, there is not much difference
in performance among all three algorithms on
Finnish.

5 Conclusions

For the Morpho Challenge 2010, we have per-
formed experiments with calibrated Promodes,
Promodes-H and Promodes-E on the languages
English, Finnish and Turkish.

In summary, although the algorithms of the
Promodes family have been developed language-
independently with as little structural and linguis-
tic assumptions as possible their performance dif-
fers across languages considerably. In (Spiegler
and Flach, 2010), the calibrated Promodes and
Promodes-H achieved similar results on Zulu but
both were outperformed by their calibrated ensem-
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Language Algorithm Decision MC metric EMMA metric
threshold Precision Recall F-measure Precision Recall F-measure

English
Promodes 0.32 0.4313 0.6912 0.5312 0.5363 0.7021 0.6081
Promodes-H 0.26 0.3006 0.6683 0.4147 0.4150 0.6417 0.5040
Promodes-E 0.32 0.4830 0.4843 0.4837 0.5947 0.6326 0.6131

Finnish
Promodes 0.35 0.4034 0.4869 0.4412 0.4270 0.5480 0.4800
Promodes-H 0.31 0.3421 0.5159 0.4114 0.3676 0.5233 0.4318
Promodes-E 0.34 0.4197 0.4429 0.4310 0.4333 0.5254 0.4749

Turkish
Promodes 0.35 0.4853 0.5419 0.5121 0.4592 0.4003 0.4277
Promodes-H 0.22 0.4498 0.3990 0.4229 0.4216 0.3446 0.3792
Promodes-E 0.25 0.4186 0.5563 0.4777 0.4139 0.3881 0.4006

Table 1: Results for different language-algorithm combinations.

ble. On the datasets provided by the Morpho Chal-
lenge 2010, on the contrary, the calibrated lower-
order version outperformed the higher-order and
the ensemble algorithm across all three languages.
This suggests that language characteristics which
the Promodes algorithm family is based on differ
across English, Finnish, Turkish in comparison to
Zulu.
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Figure 1: Precision-recall curves for different language-algorithm combinations on the development set
using the MC metric.
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