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Abstract: 

 

Value-at-Risk has become one of the most popular risk measurement techniques in 
finance. However, VaR models are useful only if they predict future risks accurately. 
In order to evaluate the quality of the VaR estimates, the models should always be 
backtested with appropriate methods. Backtesting is a statistical procedure where 
actual profits and losses are systematically compared to corresponding VaR 
estimates. 
 
The main contribution of this thesis consists of empirical studies. The empirical part 
of the thesis is carried out in close cooperation with a Finnish institutional investor. 
The primary objective of the study is to examine the accuracy of a VaR model that is 
being used to calculate VaR figures in the company’s investment management unit. 
As a secondary objective the empirical research tries to figure out which backtests 
are the most reliable, and which tests are suitable for forthcoming model validation 
processes in the company. 
 
The performance of the VaR model is measured by applying several different tests of 
unconditional coverage and conditional coverage. Three different portfolios (equities, 
bonds and equity options) with daily VaR estimates for one year time period are used 
in the backtesting process. 
 
The results of the backtests provide some indication of potential problems within the 
system. Severe underestimation of risk is discovered, especially for equities and 
equity options. However, the turbulent market environment causes problems in the 
evaluation of the backtesting outcomes since VaR models are known to be accurate 
only under normal market conditions. 
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1. Introduction 

 

 

1.1 Background 

 

During the past decade, Value-at-Risk (commonly known as VaR) has become one of 

the most popular risk measurement techniques in finance. VaR is a method which 

aims to capture the market risk of a portfolio of assets. Put formally, VaR measures 

the maximum loss in value of a portfolio over a predetermined time period for a given 

confidence interval.  

 

Despite the wide use and common acceptance of VaR as a risk management tool, the 

method has frequently been criticized for being incapable to produce reliable risk 

estimates. When implementing VaR systems, there will always be numerous 

simplifications and assumptions involved. Moreover, every VaR model attempts to 

forecast future asset prices using historical market data which does not necessarily 

reflect the market environment in the future. 

 

Thus, VaR models are useful only if they predict future risks accurately. In order to 

verify that the results acquired from VaR calculations are consistent and reliable, the 

models should always be backtested with appropriate statistical methods. Backtesting 

is a procedure where actual profits and losses are compared to projected VaR 

estimates. Jorion (2001) refers to these tests aptly as ‘reality checks’. If the VaR 

estimates are not accurate, the models should be reexamined for incorrect 

assumptions, wrong parameters or inaccurate modeling.  

 

A variety of different testing methods have been proposed for backtesting purposes. 

Basic tests, such as Kupiec’s (1995) POF-test, examine the frequency of losses in 

excess of VaR. This so called failure rate should be in line with the selected 

confidence level. For instance, if daily VaR estimates are computed at 99% 

confidence for one year (250 trading days), we would expect on average 2.5 VaR 

violations, or exceptions, to occur during this period. In the POF-test we would then 

examine whether the observed amount of exceptions is reasonable compared to the 
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expected amount. The Basel Committee (1996) has set up a regulatory backtesting 

framework in order to monitor the frequency of exceptions but, due to the simplicity 

of the test, there is hardly a reason to use it in internal model validation processes 

when there are more powerful approaches available.  

 

In addition to the acceptable amount of exceptions, another equally important aspect 

is to make sure that the observations exceeding VaR levels are serially independent, 

i.e. spread evenly over time. A good model is capable of avoiding exception 

clustering by reacting quickly to changes in instrument volatilities and correlations. 

These types of tests that take into account the independence of exceptions have been 

suggested, for instance, by Christoffersen (1998) and Haas (2001).  

 

Backtesting is, or at least it should be, an integral part of VaR reporting in today’s risk 

management. Without proper model validation one can never be sure that the VaR 

system yields accurate risk estimates. The topic is especially important in the current 

market environment where volatile market prices tend to make investors and more 

interested in portfolio risk figures as losses accumulate. On the other hand, VaR is 

known to have severe problems in estimating losses at times of turbulent markets. As 

a matter of fact, by definition, VaR measures the expected loss only under normal 

market conditions (e.g. Jorion, 2001). This limitation is one of the major drawbacks of 

VaR and it makes the backtesting procedures very interesting and challenging, as will 

be shown later in the thesis.  

 

 

1.2 Objective 

 

The main contribution of this thesis consists of empirical studies. However, in order to 

provide an exhaustive description about the backtesting process in the empirical part, I 

will first discuss VaR in general and the theory of different backtesting methods. The 

purpose of the theoretical part of the thesis is to familiarize the reader with some of 

the most common backtests by presenting the basic procedures for conducting the 

tests. The basics of VaR calculation and different approaches to VaR are discussed 

only briefly, to the extent that the fundamental ideas behind VaR are presented. 
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Emphasis is laid on the shortcomings of VaR methods while keeping in mind that the 

potential flaws give motivation for backtesting.  

 

The empirical research is conducted in close cooperation with a large Finnish 

institutional investor (to which I will refer as the Company from here on) who has 

lately acquired a new VaR calculation system. The software has not yet been 

backtested with appropriate statistical methods, so the need to validate the model is 

evident. The primary goal of this thesis is therefore to examine the accuracy of the 

software by applying several backtests, analyze the different reasons affecting the 

outcomes of the tests and to draw conclusions on the results. In short, the idea behind 

the backtesting process is to use three investment portfolios for which daily VaR 

estimates at three confidence levels, namely 90%, 95% and 99%, are calculated for a 

one year time period. These VaR figures are then compared to actual daily portfolio 

returns and analyzed with several frequency and independence tests.  

 

All of the backtests presented in the theoretical part cannot be applied in practice due 

to the nature and certain data requirements of the tests, but the conducted backtests do 

provide the necessary evidence in order to draw some meaningful conclusions. In 

addition, the study is limited due to some other technical restrictions. The backtests 

are applied using historical performance and position data from December 2007 to 

November 2008. The number of observations is thus limited to 250 trading days. Even 

though many backtests require a minimum of one year of data, preferably even longer, 

we are still able to obtain some statistically significant results with the right choice of 

relatively low confidence levels, such as 90% and 95%.  

 

Despite the fact that the primary purpose of the thesis is to evaluate the quality of the 

Company’s VaR model, one additional aspect is to compare the backtesting methods 

in such a manner that a solid view on the reliability of the different tests can be 

formed. Thus, as a secondary objective the empirical research tries to figure out 

which tests are the most accurate and powerful, and most importantly, which tests are 

suitable for forthcoming model validation processes in the Company.  

 

Methodological issues will not be covered in great detail in this paper, meaning that 

the reader is assumed to be familiar with statistical decision theory and related 
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mathematics to some extent. Moreover, thorough proofs for presented functions and 

formulae are not relevant from the perspective of this thesis, so they are left outside of 

the scope of this study. 

 

 

1.3 Structure of the Study 

 

The thesis consists of five chapters of which the first one is the introduction. The 

second chapter describes the basic idea behind VaR and gives some background and 

history on the subject. The chapter also discusses the criticism presented against VaR 

in general.  

 

The third chapter concentrates on the backtesting procedures. Several backtests are 

presented in detail, but the discussion is by no means exhaustive since it is impossible 

in this context to go through the variety of different methods and their applications. 

The aim is rather to focus on the most common backtests, and especially on those that 

will be applied in practice later in the study.  

 

The fourth chapter forms the empirical part of the thesis and, as such, can be 

considered to be the core of this study. Some of the tests presented in the preceding 

chapter are applied to actual VaR calculations. The results are discussed in detail and 

the factors affecting the outcome are analyzed thoroughly.  

 

The fifth chapter concludes and reviews the most significant results of both theoretical 

and empirical parts. In addition, some ideas regarding future backtesting processes in 

the Company are presented. 
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2. Value at Risk 

 

 

2.1 History in Brief 

 

Over the past few decades, risk management has evolved to a point where it is 

considered to be a distinct sub-field in the theory of finance. The growth of risk 

management industry traces back to the increased volatility of financial markets in 

1970’s. The breakdown of Bretton Woods system of fixed exchange rates and the 

rapid advance of new theory, such as adoption of Black-Scholes model, were among 

the important events that contributed to this ‘risk management revolution’. Another 

factor is simply the fact that trading activity increased significantly. (Linsmeier & 

Pearson, 1996, Dowd, 1998) For instance, the average number of shares traded per 

day grew from 3.5 million in 1970 to 40 million in 1990 (Dowd, 1998). At least 

equally impressive was the growth of the dollar value of outstanding derivatives 

positions; from $1.1 trillion in 1986 to $72 trillion in 1999 (Jorion, 2001). These 

elements combined with the unpredictable events in 1990’s, such as financial disasters 

in Barings Bank, Orange County, Daiwa and Metallgesellschaft, highlighted the need 

for improved internal risk management tools. (Dowd, 1998, Jorion, 2001) 

 

The mathematical roots of VaR were developed already in the context of portfolio 

theory by Harry Markowitz and others in 1950’s. Financial institutions began to 

construct their own risk management models in 1970’s and 1980’s, but it was not 

until the pioneering work from J.P. Morgan and their publication of RiskMetrics 

system1 in 1994 that made VaR the industry-wide standard. (Dowd, 1998, Jorion, 

2001) During this process, also regulators became interested in VaR. The Basel 

Capital Accord of 1996 played a significant role as it allowed banks to use their 

internal VaR models to compute their regulatory capital requirements. (Linsmeier & 

Pearson, 1996) Since then, VaR has been one of the most used measures of market 

                                                           
 
 
 
1 RiskMetrics was originally an Internet-based service with the aim to promote VaR as a risk 
management method. The service provided free data for computing market risk. Later, RiskMetrics 
became an independent consulting and software firm. (www.riskmetrics.com) 
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risk and it is likely to gain more acceptance in the near future as the methods are 

improved further.  

 

 

2.2 VaR Basics 

 

Firms face many different kinds of risks, including market risks, credit risks, liquidity 

risks, operational risks and legal risks. VaR was originally developed to measure 

market risk, which is caused by movements in the level or volatility of asset prices.2 

(Jorion, 2001) According to Dowd (1998), market risks can be subdivided into four 

classes: interest rate risks, equity price risks, exchange rate risks and commodity price 

risks. Linsmeier and Pearson (1996) give the following formal definition for VaR: 

 

“Using a probability of x percent and a holding period of t days, an entity’s 

value at risk is the loss that is expected to be exceeded with a probability of 

only x percent during the next t-day period.” 

 

The basic idea behind VaR is straightforward since it gives a simple quantitative 

measure of portfolio’s downside risk. VaR has two important and appealing 

characteristics. First, it provides a common consistent measure of risk for different 

positions and instrument types. Second, it takes into account the correlation between 

different risk factors. This property is absolutely essential whenever computing risk 

figures for a portfolio of more than one instrument. (Dowd, 1998) 

 

Assuming that asset returns are normally distributed, VaR may be illustrated 

graphically as in Figure 1. In mathematical terms, VaR is calculated as follows: 

 ���� = � ∗ � ∗ 	 

 

                                                           
 
 
 
2 Even though the original purpose of VaR was to gauge market risk, it was soon realized that VaR 
methodology may be applied to measure also other types of risks, e.g. liquidity risks and credit risks. 
(Dowd, 1998) 
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Here α reflects the selected confidence level,3 σ the standard deviation of the portfolio 

returns and W the initial portfolio value. (Jorion, 2001) As an example, consider a 

situation where initial portfolio value is €100 million and the portfolio returns have an 

annual volatility of 20%. Calculating a 10-day VaR at 99% confidence level for this 

portfolio gives us the following result: 

 

���

% = −2.33 ∗ 20% ∗ �� 10250� ∗ €100� ≈ −€9.3� 

 

The square root in this function represents the 10-day time horizon assuming 250 

trading days in a year. As can be seen, VaR computation is very straightforward if 

normality is assumed to prevail. However, this assumption has some severe 

drawbacks which will be discussed shortly. 

 

 

 
 

Figure 1: VaR for normal distribution. The graph illustrates Value at Risk for two different 
confidence levels when portfolio returns are normally distributed. 
 

 

                                                           
 
 
 
3 For instance, α is equal to -2.33 for 99% confidence level and -1.65 for 95% confidence level. These 
values can be read off from standard normal distribution tables.  
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When interpreting VaR figures, it is essential to keep in mind the time horizon and the 

confidence level since without them, VaR numbers are meaningless. Those investors 

who have actively traded portfolios, such as financial firms, typically use 1-day time 

horizon, whereas institutional investors and non-financial corporations prefer longer 

horizons. (Linsmeier & Pearson, 1996) Dowd (1998) suggests that firms should select 

the holding period according to the length of time it takes to liquidate the portfolio. 

On the other hand, one must also take into account the properties of the calculation 

method. For instance, if methods with normal approximations are used, then a 

relatively short time horizon should be applied. 

  

The choice of confidence level depends on the purpose at hand. If the objective is, as 

in this paper, to validate a VaR model, then high confidence levels should be avoided 

in order to be able to observe enough VaR violations. When assessing capital 

requirements, the confidence level depends on the risk aversion of senior 

management; risk averse managers choose higher confidence levels. One additional 

aspect is to consider the possibility of comparing VaR levels with estimates from 

other sources. (Dowd, 1998) 

 

 

2.3 Different Approaches to VaR 

 

VaR calculation methods are usually divided into parametric and non-parametric 

models. Parametric models are based on statistical parameters of the risk factor 

distribution, whereas non-parametric models are simulation or historical models 

(Ammann & Reich, 2001). 

 

In this section I will briefly present the basics of the three most common VaR 

calculation methods; variance-covariance approach, historical simulation and Monte 

Carlo simulation. The following discussion is meant to be mainly descriptive as the 

focus is on strengths and weaknesses of each method. Thorough mathematical 

presentations are beyond the scope of this short review. For more comprehensive 

approaches regarding different VaR methods please see, for instance, Dowd (1998) or 

Jorion (2001). 
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2.3.1 Variance-covariance Approach 

 

Variance-covariance approach is a parametric method. It is based on the assumption 

that changes in market parameters and portfolio value are normally distributed. 

(Wiener, 1999) The assumption of normality is the most basic and straightforward 

approach and is therefore ideal for simple portfolios consisting of only linear 

instruments (Dowd, 1998).4 

 

When implementing variance-covariance approach, the first step is to ‘map’ 

individual investments into a set of simple and standardized market instruments.5 

Each instrument is then stated as a set of positions in these standardized market 

instruments. For example, ten-year coupon bond can be broken down into ten zero-

coupon bonds. After the standard market instruments have been identified, the 

variances and covariances of these instruments have to be estimated. The statistics are 

usually obtained by looking at the historical data. The final step is then to calculate 

VaR figures for the portfolio by using the estimated variances and covariances (i.e. 

covariance matrix) and the weights on the standardized positions. (Damodaran, 2007) 

 

The advantage of variance-covariance approach is its simplicity. VaR computation is 

relatively easy if normality is assumed to prevail, as standard mathematical properties 

of normal distribution can be utilized to calculate VaR levels. In addition, normality 

allows easy translatability between different confidence levels and holding periods.6 

(Dowd, 1998)  

 

                                                           
 
 
 
4 Linearity means that portfolio returns are linear functions of risk variables. Returns of linear 
instruments are therefore assumed to be normally distributed. Nonlinear instruments, such as options, 
do not have this property of normality. (Dowd, 1998) 
5 The reason for the mapping procedure is that as the number of instruments increase, the variance-
covariance matrix becomes too large to handle in practice. Instead of calculating variances and 
covariances for potentially thousands of individual assets, one may estimate these statistics only for the 
general market factors which will then be used as risk factors for the assets. (Damodaran, 2007) 
6 VaR can be adjusted for different time horizons by rescaling by the ratio of the square root of the two 
holding periods:  ����� = ����� �����.   
Also translatability between confidence levels is simple, for example from 99% to 95%:  ����.

 = � .!!".#$% ����.
$. (Dowd, 1998) 
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Despite the ease of implementation of this method, the assumption of normality also 

causes problems. Most financial assets are known to have ‘fat tailed’ return 

distributions, meaning that in reality extreme outcomes are more probable than 

normal distribution would suggest. As a result, VaR estimates may be understated. 

(Jorion, 2001) Problems grow even bigger when the portfolio includes instruments, 

such as options, whose returns are nonlinear functions of risk variables. One solution 

to this issue is to take first order approximation to the returns of these instruments and 

then use the linear approximation to compute VaR. This method is called delta-

normal approach. However, the shortcoming of delta-normal method is that it only 

works if there is limited non-linearity in the portfolio. (Dowd, 1998) Britten-Jones and 

Scheafer (1999) have proposed quadratic Value at Risk methods, also known as delta-

gamma models, which go even further as they use a second order approximation 

rather than a first order one. The improvement over delta-normal method is obvious, 

but at the same time some of the simplicity of the basic variance-covariance approach 

is lost (Damodaran, 2007). 

 

 

2.3.2 Historical Simulation 

 

When it comes to non-parametric methods, historical simulation is probably the 

easiest approach to implement (Wiener, 1999). The idea is simply to use only 

historical market data in calculation of VaR for the current portfolio.  

 

The first step of historical simulation is to identify the instruments in the portfolio and 

to obtain time series for these instruments over some defined historical period. One 

then uses the weights in the current portfolio to simulate hypothetical returns that 

would have realized assuming that the current portfolio had been held over the 

observation period. VaR estimates can then be read off from histogram of the 

portfolio returns. The assumption underlying this method is that the distribution of 

historical returns acts as a good proxy of the returns faced over the next holding 

period. (Dowd, 1998) 
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Historical simulation has some undeniable advantages due to its simplicity. It does not 

make any assumptions about the statistical distributions nor does it require estimation 

of volatilities and correlations. Basically everything that is needed is the time series of 

portfolio returns. Most importantly, historical simulation can account for fat tails of 

the return distributions. The method also applies virtually to any type of instrument 

and uses full valuations.7 (Jorion, 2001) 

 

However, historical simulation is also flawed in many respects. A common problem 

with this method is that there is not enough data available. This complication arises 

when new instruments that have been in the market for a short time are introduced to 

the portfolio. Despite the fact that this could be a critique of any of the three 

approaches, it is most prominent in historical simulation method since VaR is 

calculated entirely on the basis of historical price data. (Damodaran, 2007) 

 

A more serious shortcoming is that historical simulation effectively assumes that the 

history will repeat itself. Even though this assumption is often reasonable, it may lead 

to severely distorted VaR estimates in some cases. (Dowd, 1998) For example, there 

may be potential risks that are not captured by the historical data set, such as times of 

very high volatility which may lead to extreme tail losses. 

 

In addition to the abovementioned disadvantages, the users of historical simulation 

face a challenging trade-off when choosing the time period for the historical market 

data. It is important to have a long run of data in order to have reliable estimates about 

the tails of the distribution. This is particularly necessary if high confidence levels are 

used. On the other hand, using long estimation period leads to a situation where old 

market data is emphasized too much compared to new information. As a consequence, 

VaR estimates react slowly to recent changes in market prices, causing estimates to 

become distorted. One more related problem is that every historical observation is 

given a weight of one if it is included in the time horizon and zero if it falls out of the 

                                                           
 
 
 
7 Full valuation means that the instruments in the portfolio are valued properly without any 
simplifications or approximations. An alternative for this is local valuation where the portfolio is 
valued only at the initial position and local derivatives are used to infer possible movements. (Jorion, 
2001) 
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horizon. This has an unpleasant effect on VaR estimates when big market jumps fall 

out of the data set. (Dowd, 1998, Wiener, 1999) A convenient solution to these issues 

is to use weighted historical simulation which gives lower weights on observations 

that lie further in the past (Dowd, 1998).   

 

 

2.3.3 Monte Carlo Simulation  

 

Monte Carlo simulation is another non-parametric method. It is the most popular 

approach when there is a need for a sophisticated and powerful VaR system, but it is 

also by far the most challenging one to implement. (Dowd, 1998)  

 

The Monte Carlo simulation process can be described in two steps. First, stochastic 

processes for financial variables are specified and correlations and volatilities are 

estimated on the basis of market or historical data. Second, price paths for all financial 

variables are simulated (thousands of times). These price realizations are then 

compiled to a joint distribution of returns, from which VaR estimates can be 

calculated. (Jorion, 2001) 

 

The strength of Monte Carlo simulation is that no assumptions about normality of 

returns have to be made. Even though parameters are estimated from historical data, 

one can easily bring subjective judgments and other information to improve 

forecasted simulation distributions. The method is also capable of covering nonlinear 

instruments, such as options. (Damodaran, 2007) In addition to these advantages, 

Jorion (2001) reminds that Monte Carlo simulation generates the entire distribution 

and therefore it can be used, for instance, to calculate losses in excess of VaR.  

 

The most significant problem with Monte Carlo approach is its computational time. 

The method requires a lot of resources, especially with large portfolios.8 As a 

                                                           
 
 
 
8 Monte Carlo simulation converges to the true value of VaR as 

"&', where N is the number of 

simulations. In order to increase the accuracy of the model by 10 times, one must run 100 times more 
simulations. (Wiener, 1999) Thus, Monte Carlo is subject to sampling variation, which is caused by 
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consequence, the implementation may turn out to be expensive. (Jorion, 2001) 

Nevertheless, Monte Carlo will most likely increase its popularity in the future as the 

costs of computer hardware continuously decrease. 

  

A potential weakness is also model risk, which arises due to wrong assumptions about 

the pricing models and underlying stochastic processes. If these are not specified 

properly, VaR estimates will be distorted. (Jorion, 2001) Moreover, Dowd (1998) 

points out that complicated procedures associated with this method require special 

expertise. Senior management may therefore have hard time keeping abreast of how 

VaR figures are calculated when Monte Carlo is being used.  

 

 

2.3.4 Comparing the Methods 

 

Linsmeier and Pearson (1996) suggest that the three methods differ roughly in four 

dimensions: 1) the ability to capture the risk of options and other nonlinear 

instruments, 2) the ease of implementation and ease of explanation to senior 

management, 3) flexibility in incorporating alternative assumptions and 4) reliability 

of the results. The choice of method ought to be made according to the importance of 

each of these dimensions and by looking at the task at hand. 

 

Nonlinearity of instruments causes problems for users of variance-covariance 

approach. This means that when portfolio includes derivative positions, simulation 

methods should be preferred over (delta-normal) variance-covariance models. 

(Linsmeier and Pearson, 1996) However, Dowd (1998) argues that if one had a simple 

portfolio that includes only linear instruments, there would be no point in using Monte 

Carlo approach since variance-covariance method should yield the same results 

cheaper and with less effort.  

 

                                                                                                                                                                      
 
 
 
limited number of simulation rounds. For example, VaR for portfolio of linear instruments is easily 
calculated by using variance-covariance approach. Monte Carlo simulation based on the same variance-
covariance matrix yields only an approximation and is therefore biased. Accuracy increases only when 
the simulation rounds are added. (Jorion, 2001) 



14 
 

Variance-covariance and historical simulation methods are known to be 

straightforward to implement. On the contrary, Monte Carlo has by far the most 

complicated implementation procedure. This problem is closely related to the issue of 

ease of explanation to senior management. While Monte Carlo may be difficult to 

infer, historical simulation is intuitively easy to understand. Variance-covariance 

approach falls somewhere in between of these two methods. (Linsmeier and Pearson, 

1996) 

 

Flexibility of a VaR model is an advantage whenever historical estimates of standard 

deviations and correlations do not represent the corresponding parameters adequately 

in the future. In Monte Carlo simulation and variance-covariance approach it is easy 

to bring in subjective views to the calculation. Historical simulation, on the other 

hand, does poorly here since the risk estimates are directly derived from historical 

returns. (Linsmeier and Pearson, 1996) 

 

The reliability of the results is probably the most important issue when comparing the 

different methods. This is also the dimension that is the most interesting in this 

context as the focus is on backtesting in the forthcoming chapters. Several studies 

have been conducted to compare the accuracy of the three approaches. Ammann and 

Reich (2001) studied the accuracy of linear approximation models (delta-normal 

approach) versus Monte Carlo simulation. They showed that linear approximation 

gives fairly accurate VaR estimates, but only to the extent where there is a very 

limited amount of nonlinear derivatives in the portfolio. Their studies also verified 

that Monte Carlo simulation yields superior results to linear models when confidence 

levels and time horizons are increased. Hendricks (1996) examined portfolios with 

linear instruments using delta normal and historical simulation methods. He found out 

that delta normal variance-covariance method tends to underestimate VaR, especially 

under high confidence levels. Historical simulation, on the other hand, performs well 

also under higher confidence levels. This observation is to be expected as variance-

covariance method assumes normality and most assets have fat tailed return 

distributions. 
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2.4 Criticism 

 

The previous sections discussed the common shortcomings of the different VaR 

methods. Let us now turn the focus towards the general criticism that has been raised 

against VaR as a risk management tool. 

 

The concept of VaR is very simple but this is also one of the main sources of critique. 

VaR reduces all the information down to a single number, meaning the loss of 

potentially important information. For instance, VaR gives no information on the 

extent of the losses that might occur beyond the VaR estimate. As a result, VaR 

estimates may lead to incorrect interpretations of prevailing risks. One thing that is 

particularly important to realize is that portfolios with the same VaR do not 

necessarily carry the same risk. (Tsai, 2004)  Longin (2001) suggests a method called 

Conditional VaR to deal with this problem. Conditional VaR measures the expected 

value of the loss in those cases where VaR estimate has been exceeded.  

 

VaR has also been criticized for its narrow focus. In its conventional form it is unable 

to account for any other risks than market risk (Damodaran, 2007). However, VaR has 

been extended to cover other types of risks. For instance, Monte Carlo simulation can 

handle credit risks to some extent (Jorion, 2001). VaR has also problems in estimating 

risk figures accurately for longer time horizons as the results quickly deteriorate when 

moving e.g. from monthly to annual measures. (Damodaran, 2007) Further criticism 

has been presented by Kritzman and Rich (2002) who point out that VaR considers 

only the loss at the end of the estimation period, but at the same time many investors 

look at risk very differently. They are exposed to losses also during the holding period 

but this risk is not captured by normal VaR models. To take into account for this, the 

authors suggest a method called continuous Value at Risk.  

 

Many economists argue that history is not a good predictor of the future events. Still, 

all VaR methods rely on historical data, at least to some extent. (Damodaran, 2007) In 

addition, every VaR model is based on some kinds of assumptions which are not 

necessarily valid in any circumstances. Due to these factors, VaR is not a foolproof 

method. Tsai (2004) emphasizes that VaR estimates should therefore always be 
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accompanied by other risk management techniques, such as stress testing, sensitivity 

analysis and scenario analysis in order to obtain a wider view of surrounding risks.  

 

 

 

 

 

3. Backtesting Methods 

 

 

“VaR is only as good as its backtest. When someone shows me a VaR 

number, I don’t ask how it is computed, I ask to see the backtest.” 

(Brown, 2008, p.20) 

 

In the last chapter different VaR calculation methods were discussed. The numerous 

shortcomings of these methods and VaR in general are the most significant reason 

why the accuracy of the risk estimates should be questioned. Therefore, VaR models 

are useful only if they predict future risks accurately. In order to evaluate the quality 

of the estimates, the models should always be backtested with appropriate methods.  

 

Backtesting is a statistical procedure where actual profits and losses are systematically 

compared to corresponding VaR estimates. For example, if the confidence level used 

for calculating daily VaR is 99%, we expect an exception to occur once in every 100 

days on average. In the backtesting process we could statistically examine whether the 

frequency of exceptions over some specified time interval is in line with the selected 

confidence level. These types of tests are known as tests of unconditional coverage. 

They are straightforward tests to implement since they do not take into account for 

when the exceptions occur. (Jorion, 2001) 

 

In theory, however, a good VaR model not only produces the ‘correct’ amount of 

exceptions but also exceptions that are evenly spread over time i.e. are independent of 

each other. Clustering of exceptions indicates that the model does not accurately 

capture the changes in market volatility and correlations. Tests of conditional 



17 
 

coverage therefore examine also conditioning, or time variation, in the data. (Jorion, 

2001) 

 

This chapter aims to provide an insight into different methods for backtesting a VaR 

model. Keeping in mind that the aim of this thesis is in the empirical study, the focus 

is on those backtests that will be applied later in the empirical part. The tests include 

Basel Committee’s (1996) traffic light approach, Kupiec’s (1995) proportion of 

failures-test, Christoffersen’s (1998) interval forecast test and the mixed Kupiec-test 

by Haas (2001). Some other methods are shortly presented as well, but thorough 

discussion on them is beyond the scope of this study. 

 

 

3.1 Unconditional Coverage 

 

The most common test of a VaR model is to count the number of VaR exceptions, i.e. 

days (or holding periods of other length) when portfolio losses exceed VaR estimates. 

If the number of exceptions is less than the selected confidence level would indicate, 

the system overestimates risk. On the contrary, too many exceptions signal 

underestimation of risk. Naturally, it is rarely the case that we observe the exact 

amount of exceptions suggested by the confidence level. It therefore comes down to 

statistical analysis to study whether the number of exceptions is reasonable or not, i.e. 

will the model be accepted or rejected. 

 

Denoting the number of exceptions as x and the total number of observations as T, we 

may define the failure rate as (/*. In an ideal situation, this rate would reflect the 

selected confidence level. For instance, if a confidence level of 99 % is used, we have 

a null hypothesis that the frequency of tail losses is equal to + = ,1 − -. = 1 −0.99 = 1%. Assuming that the model is accurate, the observed failure rate (/* 

should act as an unbiased measure of p, and thus converge to 1% as sample size is 

increased. (Jorion, 2001) 
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Each trading outcome either produces a VaR violation exception or not. This 

sequence of ‘successes and failures’ is commonly known as Bernoulli trial.9 The 

number of exceptions x follows a binomial probability distribution: 

 

/,(. = �*(� +0,1 − +.120 

 

As the number of observations increase, the binomial distribution can be 

approximated with a normal distribution:  

 3 = 024154,"24.1 ≈ 6,0,1. , 
 

where +* is the expected number of exceptions and +,1 − +.* the variance of 

exceptions. (Jorion, 2001) 

 

By utilizing this binomial distribution we can examine the accuracy of the VaR 

model.  However, when conducting a statistical backtest that either accepts or rejects a 

null hypothesis (of the model being ‘good’), there is a tradeoff between two types of 

errors. Type 1 error refers to the possibility of rejecting a correct model and type 2 

error to the possibility of not rejecting an incorrect model. A statistically powerful test 

would efficiently minimize both of these probabilities. (Jorion, 2001)  

 

Figure 2 displays these two types of errors. Consider an example where daily VaR is 

computed at 99% percent confidence level for 250 trading days. Assuming that the 

model is correct (that is, the actual coverage of the model is 99%), the expected 

number days when losses exceed VaR estimates is 250 ∗ 0.01 = 2.5. One may set the 

cut-off level for rejecting a model, for instance, to 5 exceptions. In this case, the 

probability of committing a type 1 error is 10.8%. On the other hand, if the model has 

an incorrect coverage of 97%, the expected number of exceptions is 250 ∗ 0.03 =7.5. 

                                                           
 
 
 
9 Bernoulli trial is an experiment where a certain action is repeated many times. Each time the process 
has two possible outcomes, either success or failure. The probabilities of the outcomes are the same in 
every trial, i.e. the repeated actions must be independent of each other. 
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There is now a 12.8% probability of committing a type 2 error, that is, accepting an 

inaccurate model. Appendix 1 displays the same probabilities for several model 

coverages and for different cut-off levels. 

 

 

 

Figure 2: Error types (Jorion, 2001): The upper graph describes an accurate model, where 8 = 9%. 
The probability of committing a type 1 error (rejecting a correct model), is 10.8%. The lower graph 

presents an inaccurate model, where 8 = :%. The probability for accepting an inaccurate model, i.e. 
committing a type 2 error is 12.8%.  

 
 
 
 
 
 

0 %

5 %

10 %

15 %

20 %

25 %

30 %

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
re

q
u

e
n

cy

Number of exceptions

Model is accurate (coverage 99%)

Type 1 error:

10.8%

0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %

16 %

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
re

q
u

e
n

cy

Number of exceptions

Model is inaccurate (coverage 97%)

Type 2 error: 

12.8%



20 
 

3.1.1 Kupiec Tests 

 

POF-Test 

 

The most widely known test based of failure rates has been suggested by Kupiec 

(1995). Kupiec’s test, also known as the POF-test (proportion of failures), measures 

whether the number of exceptions is consistent with the confidence level. Under null 

hypothesis of the model being ‘correct’, the number of exceptions follows the 

binomial distribution discussed in the previous section. Hence, the only information 

required to implement a POF-test is the number of observations (T), number of 

exceptions (x) and the confidence level (c). (Dowd, 2006) 

 

The null hypothesis for the POF-test is  

 

;�: + = += = (* 
 

The idea is to find out whether the observed failure rate += is significantly different 

from p, the failure rate suggested by the confidence level. According to Kupiec 

(1995), the POF-test is best conducted as a likelihood-ratio (LR) test.10 The test 

statistic takes the form 

 

?�@AB = −2CD E ,1 − +.120+0
F1 − �(*%G120 �(*%0H 

 

Under the null hypothesis that the model is correct, LRPOF is asymptotically χ² (chi-

squared) distributed with one degree of freedom. If the value of the LRPOF -statistic 

                                                           
 
 
 
10 Likelihood-ratio test is a statistical test that calculates the ratio between the maximum probabilities of 
a result under two alternative hypotheses. The maximum probability of the observed result under null 
hypothesis is defined in the numerator and the maximum probability of the observed result under the 
alternative hypothesis is defined in the denominator. The decision is then based on the value of this 
ratio. The smaller the ratio is, the larger the LR-statistic will be. If the value becomes too large 
compared to the critical value of χ² distribution, the null hypothesis is rejected. According to statistical 
decision theory, likelihood-ratio test is the most powerful test in its class (Jorion, 2001). 
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exceeds the critical value of the χ² distribution (see Appendix 2 for the critical 

values), the null hypothesis will be rejected and the model is deemed as inaccurate.  

 

According to Dowd (2006), the confidence level11 (i.e. the critical value) for any test 

should be selected to balance between type 1 and type 2 errors. It is common to 

choose some arbitrary confidence level, such as 95%, and apply this level in all tests. 

A level of this magnitude implies that the model will be rejected only if the evidence 

against it is fairly strong. 

 

 

 
 

Table 1: 	onrejection regions for POF-test under different confidence levels and sample sizes 

(Kupiec, 1995) 
 

 

Table 1 displays 95% confidence regions for the POF-test. The figures show how the 

power of the test increases as the sample size gets larger. For instance, at 95% 

confidence level with 255 observations the interval 
01 for accepting the model is 

 

I 6255 = 0.024;  21255 = 0.082N 
 

With 1000 observations the corresponding interval is much smaller: 

 

I 371000 = 0.037;  651000 = 0.065N 
                                                           
 
 
 
11 Note that the confidence level of the backtest is not in any way related to the confidence level used in 
the actual VaR calculation. 

T = 255 days T = 510 days T = 1000 days

0.01 99 % N < 7 1 < N < 11 4 < N < 17

0.025 97.5 % 2 < N < 12 6 < N < 21 15 < N < 36

0.05 95 % 6 < N < 21 16 < N < 36 37 < N < 65

0.075 92.5 % 11 < N < 28 27 < N < 51 59 < N < 92

0.1 90 % 16 < N < 36 38 < N < 65 81 < N < 120

Probability 

Level p

VaR 

Confidence 

Level 

Nonrejection Region for Number of Failures N
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Thus, with more data we are able to reject an incorrect model more easily. (Jorion, 

2001) 

 

Kupiec’s POF-test is hampered by two shortcomings. First, the test is statistically 

weak with sample sizes consistent with current regulatory framework (one year). This 

lack of power has already been recognized by Kupiec himself. Secondly, POF-test 

considers only the frequency of losses and not the time when they occur. As a result, 

it may fail to reject a model that produces clustered exceptions. Thus, model 

backtesting should not rely solely on tests of unconditional coverage. (Campbell, 

2005) 

 

 

TUFF-Test 

 

Kupiec (1995) has also suggested another type of backtest, namely the TUFF-test 

(time until first failure). This test measures the time (P) it takes for the first exception 

to occur and it is based on similar assumptions as the POF-test. The test statistic is a 

likelihood-ratio: 

 

?�1QBB = −2CD R +,1 − +.S2"
�1P% �1 − 1P%S2"T 

 

Here again, LRTUFF is distributed as a χ² with one degree of freedom. If the test 

statistic falls below the critical value the model is accepted, and if not, the model is 

rejected. The problem with the TUFF-test is that the test has low power in identifying 

bad VaR models. For example, if we calculate daily VaR estimates at 99% confidence 

level and observe an exception already on day 7, the model is still not rejected. 

(Dowd, 1998)  

 

Due to the severe lack of power, there is hardly any reason to use TUFF-test in model 

backtesting especially when there are more powerful methods available. Later in the 

study I will present empirical evidence to show that the test actually generates quite 
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misleading results compared other methods. As Dowd (1998) puts it, the TUFF-test is 

best used only as a preliminary to the POF-test when there is no larger set of data 

available. The test also provides a useful framework for testing independence of 

exceptions in the mixed Kupiec-test by Haas (2001). 

 

 

3.1.2 Regulatory Framework 

 

Banks with substantial trading activity are required to set aside a certain amount of 

capital to cover potential portfolio losses. The size of this market risk capital is 

defined by the bank’s VaR estimates. The current regulatory framework requires that 

banks compute VaR for a 10-day horizon using a confidence level of 99 % (Basel 

Committee, 2006). Under this framework, it is obvious that a strict backtesting 

mechanism is required to prevent banks understating their risk estimates. This is why 

backtesting played a significant role in Basel Committee’s decision allowing banks to 

use their internal VaR models for capital requirements calculation. (Jorion, 2001) 

 

The regulatory backtesting process is carried out by comparing the last 250 daily 99% 

VaR estimates with corresponding daily trading outcomes.12 The accuracy of the 

model is then evaluated by counting the number of exceptions during this period. 

(Basel Committee, 1996) 

 

The size of the risk capital requirement rises as portfolio risk increases. In addition, 

the risk capital requirement depends on the outcome of the model backtest (Campbell, 

2005) 13: 

                                                           
 
 
 
12 To align the official backtesting framework with the computation of market risk capital requirement, 
the Basel Committee has decided that the 99 % confidence should also be used in backtesting, although 
the Committee recognizes the fact that lower levels would be more suitable in model validation. On the 
other hand, the Committee insists that using the 10-day holding period in backtesting is not a 
meaningful exercise, and therefore a period of one day should be used instead. (Basel Committee, 
1996) 
 
13 Market risk capital requirement is formally defined as: ��U� = max F����,0.01.,   Y� "#� Z ����2[,0.01.$
[\� G + -  
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Y� = ^3                         3 + 0.2,( − 4.4                         _
`/ ( ≤ 4         `/  5 ≤ ( ≤ 9  `/ 10 ≤ (

    bcddD     edCCfgcdh  

 

Here St is the scaling factor of market risk capital requirement and x the number of 

exceptions over 250 trading days. Basle Committee (1996) classifies backtesting 

outcomes into three categories: green, yellow and red zones. These categories, which 

are presented in Table 2, are chosen to balance between type 1 and type 2 errors.  

 

 

 

Table 2: Traffic light approach (Basel Committee, 1996): Cumulative probability is the probability 
of obtaining a given number or fewer exceptions when the model is correct (i.e. true coverage is 99%) 
The boundaries are based on a sample of 250 observations. For other sample sizes, the yellow zone 
begins at the point where cumulative probability exceeds 95%, and the red zone begins at cumulative 
probability of 99.99% 

 

 

Assuming that the model is correct, the expected number of exceptions is 2.5. If there 

are zero to four exceptions observed, the model falls into green zone and is defined to 

be accurate as the probability of accepting an inaccurate model is quite low. (Basel 

Committee, 1996) 

 

                                                                                                                                                                      
 
 
 
The capital requirement is either the current VaR estimate or a multiple (St) of the bank’s average VaR 
over the last 60 trading days plus an additional amount of capital (c) set by portfolio’s underlying credit 
risk. (Campbell, 2005) 

Zone

0 0.00 8.11 %

1 0.00 28.58 %

2 0.00 54.32 %

3 0.00 75.81 %

4 0.00 89.22 %

5 0.40 95.88 %

6 0.50 98.63 %

7 0.65 99.60 %

8 0.75 99.89 %

9 0.85 99.97 %

Red Zone 10 or more 1.00 99.99 %

Green Zone

Yellow Zone

Number of 

exceptions

Increase in scaling 

factor

Cumulative 

probability
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Yellow zone consists of exceptions from five to nine. These outcomes could be 

produced by both accurate and inaccurate models with relatively high probability, 

even though they are more likely for inaccurate models. Backtesting results in the 

yellow zone generally cause an increase in the multiplication factor, depending on the 

number of exceptions. However, these increases are not purely automatic since yellow 

zone does not necessarily imply an inaccurate model. Thus, if the bank is able to 

demonstrate that the VaR model is ‘fundamentally sound’ and suffers, for example, 

from bad luck, supervisors may consider revising their requirements. Basel 

Committee (1996) therefore classifies the reasons for backtesting failures into 

following categories: 

• Basic integrity of the model: The system is unable to capture the risk of the 

positions or there is a problem in calculating volatilities and correlations. 

• Model’s accuracy could be improved: Risk of some instruments is not 

measured with sufficient precision. 

• Bad luck or markets moved in fashion unanticipated by the model: For 

instance, volatilities or correlations turned out to be significantly different than 

what was predicted. 

• Intra-day trading: There is a change in positions after the VaR estimates were 

computed. 

 

Red zone generally indicates a clear problem with the VaR model. As can be seen 

from Table 2, there is only a very small probability that an accurate model would 

generate 10 or more exceptions from a sample of 250 observations. As a result, red 

zone should usually leads to an automatic rejection of the VaR model. (Basel 

Committee, 1996) 

 

Haas (2001) reminds that the Basel traffic light approach cannot be used to evaluate 

the goodness of a VaR model because it does not, for instance, take into account the 

independence of exceptions. The framework has also problems in distinguishing good 

models from bad ones. These shortcomings were already recognized by the Basel 

Committee (1996) itself but the Committee has justified the framework as follows: 
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“However, the Committee does not view this limitation as a decisive 

objection to the use of backtesting. Rather, conditioning supervisory 

standards on a clear framework, though limited and imperfective, is 

seen as preferable to a purely judgmental, standard or one with no 

incentive features whatsoever.” 

 

Due to the severe drawbacks of the Basel framework, the method is probably best 

used as a preliminary test for VaR accuracy. In any kind credible model validation 

process the traffic light approach is simply inadequate, and more advanced tests 

should also be applied. 

 

 

3.2 Conditional Coverage 

 

The Basel framework and unconditional coverage tests, such as the POF-test, focus 

only on the number of exceptions. In theory, however, we would expect these 

exceptions to be evenly spread over time. Good VaR models are capable of reacting to 

changing volatility and correlations in a way that exceptions occur independently of 

each other, whereas bad models tend to produce a sequence of consecutive 

exceptions. (Finger, 2005)  

 

Clustering of exceptions is something that VaR users want to be able to detect since 

large losses occurring in rapid succession are more likely to lead to disastrous events 

than individual exceptions taking place every now and then. (Christoffersen & 

Pelletier, 2003) Tests of conditional coverage try to deal with this problem by not 

only examining the frequency of VaR violations but also the time when they occur. In 

this section I will present two conditional coverage tests: Christoffersen’s (1996) 

interval forecast test and the mixed Kupiec-test by Haas (2001). 
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3.2.1 Christoffersen’s Interval Forecast Test 

 

Probably the most widely known test of conditional coverage has been proposed by 

Christoffersen (1998). He uses the same log-likelihood testing framework as Kupiec, 

but extends the test to include also a separate statistic for independence of exceptions. 

In addition to the correct rate of coverage, his test examines whether the probability of 

an exception on any day depends on the outcome of the previous day. The testing 

procedure described below is explained, for example, in Jorion (2001), Campbell 

(2005), Dowd (2006) and in greater detail in Christoffersen (1998). 

 

The test is carried out by first defining an indicator variable that gets a value of 1 if 

VaR is exceeded and value of 0 if VaR is not exceeded:  

 

i� = j1             `/ P`fC�k`fD f--lcm      0             `/ Df P`fC�k`fD f--lcm_ 
 

Then define nij as the number of days when condition j occurred assuming that 

condition i occurred on the previous day. To illustrate, the outcome can be displayed 

in a 2 x 2 contingency table: 

 

 

 

In addition, let πi represent the probability of observing an exception conditional on 

state i on the previous day: 

 

n� = D�"D�� + D�" , n" = D""D"� + D""        �Dh       n = D�" + D""D�� + D�" + D"� + D""  
 

If the model is accurate, then an exception today should not depend on whether or not 

an exception occurred on the previous day. In other words, under the null hypothesis 

the probabilities π0 and π1 should be the equal. The relevant test statistic for 

independence of exceptions is a likelihood-ratio: 

I t-1 = 0 I t-1 = 1

I t = 0 n 00 n 10 n 00 + n 10

I t = 1 n 01 n 11 n 01 + n 11

n 00 + n 01 n 10 + n 11 N
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?�[op = −2CD q ,1 − n.orrso�rnor�so��,1 − n�.orrn�or�,1 − n".o�rn"o��t 

 

By combining this independence statistic with Kupiec’s POF-test we obtain a joint 

test that examines both properties of a good VaR model, the correct failure rate and 

independence of exceptions, i.e. conditional coverage: 

 ?�uu = ?�@AB + ?�[op 

 

LRcc is also χ² (chi-squared) distributed, but in this case with two degrees of freedom 

since there are two separate LR-statistics in the test. If the value of the LRcc -statistic is 

lower than the critical value of χ² distribution (Appendix 2), the model passes the test. 

Higher values lead to rejection of the model. 

 

Christoffersen’s framework allows examining whether the reason for not passing the 

test is caused by inaccurate coverage, clustered exceptions or even both. This 

evaluation can be done simply by calculating each statistic, LRPOF and LRind, 

separately and using χ² distribution with one degree of freedom as the critical value 

for both statistics.  Campbell (2005) reminds that in some cases it is possible that the 

model passes the joint test while still failing either the independence test or the 

coverage test. Therefore it is advisable to run the separate tests even when the joint 

test yields a positive result. 

 

 

3.2.2 Mixed Kupiec-Test 

 

Christoffersen’s interval forecast test is a useful backtest in studying independence of 

VaR violations but unfortunately it is unable to capture dependence in all forms 

because it considers only the dependence of observations between two successive 

days. It is possible that likelihood of VaR violation today does not depend whether a 

violation occurred yesterday but whether the violation occurred, for instance, a week 

ago. (Campbell, 2005) Indeed, the empirical part of this study provides some evidence 
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that the Christoffersen’s test is perhaps inadequate method in capturing dependence 

between exceptions. 

 

Haas (2001) argues that the interval forecast test by Christoffersen is too weak to 

produce feasible results. He therefore introduces an improved test for independence 

and coverage, using the ideas by Christoffersen and Kupiec. Haas proposes a mixed 

Kupiec-test which measures the time between exceptions instead of observing only 

whether an exception today depends on the outcome of the previous day. Thus, the 

test is potentially able to capture more general forms of dependence.14  

 

According to Haas (2001), the Kupiec’s TUFF-test, which measures the time until the 

first exception, can be utilized to gauge the time between two exceptions. The test 

statistic for each exception takes the form 

 

?�[ = −2CD R +,1 − +.Sv2"
� 1P[% �1 − 1P[%Sv2"T 

 

where P[ is the time between exceptions i and ` − 1. For the first exception the test 

statistic is computed as a normal TUFF-test. Having calculated the LR-statistics for 

each exception, we receive a test for independence where the null hypothesis is that 

the exceptions are independent from each other. With n exceptions, the test statistic 

for independence is 

 

                                                           
 
 
 
14 A similar test based on duration between exceptions has been proposed by Christoffersen and 
Pelletier (2004). The authors provide evidence that their test has power against more general forms of 
dependence but at the same time the test does not require any additional information compared to 
Christoffersen’s interval forecast test. The basic insight is that if exceptions are completely independent 
of each other, then the upcoming VaR violations should be independent of the time that has elapsed 
since the last exception (Campbell, 2005). To measure the duration between two exceptions, 

Christoffersen and Pelletier (2004) define the no-hit duration as w[ = k[ − k[2". A correct model with 

coverage rate + = ,1 − -. should have an expected conditional duration of 1/+ days and the no-hit 
duration should have no memory. (Christoffersen & Pelletier, 2004) 
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?�[op = x yzz
{−2CD R +,1 − +.Sv2"

� 1P[% �1 − 1P[%Sv2"T|}}
~ − 2CD R +,1 − +.S2"

�1P% �1 − 1P%S2"To
[\  

 

which is a χ² distributed with n degrees of freedom. Similarly to the Christoffersen’s 

framework, the independence test can be combined with the POF-test to obtain a 

mixed test for independence and coverage, namely the mixed Kupiec-test: 

 ?��[0 = ?�@AB + ?�[op 

 

The LRmix -statistic is χ² distributed with D + 1 degrees of freedom. Just like with 

other likelihood-ratio tests, the statistic is compared to the critical values of χ² 

distribution. If the test statistic is lower, the model is accepted, and if not, the model is 

rejected. 

 

 

3.3 Other Approaches 

 

3.3.1 Backtesting Based on Loss Function 

 

Information contained in the basic backtesting frameworks is somewhat limited. 

Instead of only observing whether VaR estimate is exceeded or not, one might be 

interested, for example, in the magnitude of the exceedance. (Campbell, 2005)  

 

Lopez (1998, 1999) suggests a method to examine this aspect of VaR estimates. The 

idea is to gauge the performance of VaR models by how well they minimize a loss 

function that represents the evaluator’s concerns. Unlike most other backtesting 

methods, loss function approach is not based on hypothesis-testing framework. Dowd 

(2006) argues that this makes loss functions attractive for backtesting with relatively 

small amount of observations. 
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The general form of the loss functions is such that an exception is given a higher score 

than nonexception. For example, the loss function may take the following quadratic 

form: 

 

?�����,�., (�,�s"� = �1 + �(�,�s" − �����           `/  (�,�s" ≤ −����,�.                   0                            `/  (�,�s" > −����,�._ 
 

where (�,�s" is the realized return and ���� the corresponding VaR estimate. The 

numerical score of the model is calculated by plugging the data into this loss function. 

The score increases with the magnitude of the loss. A backtest based on this approach 

would then be conducted by calculating the sample average loss (with T 

observations): 

 

?� = 1* x ?�����,�., (�,�s"�1
�\"  

 

In order to determine whether the average loss ?� is too large compared to “what it 

should be”, one needs to have some kind of a benchmark value. In practice, this 

means that the backtest makes an assumption about the stochastic behavior and 

distribution of the returns. Once the distribution has been determined, an empirical 

distribution can be generated by simulating portfolio returns. The benchmark value 

can then be obtained from this distribution. If the sample average loss ?� is larger than 

the benchmark value, the model should be rejected. (Campbell, 2005) 

 

The loss function approach is flexible. The method can be tailored to address specific 

concerns of the evaluator since the loss function may take different forms. On the 

other hand, the loss function approach relies on the correct assumption about the 

return distribution. In case the distribution is defined incorrectly, the results of the 

backtest become distorted. Observing a score that exceeds the benchmark value could 

imply either an inaccurate VaR model or wrong assumptions about the stochastic 

behavior of profits and losses. (Campbell, 2005) 
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Lopez (1999) recognizes some of the problems associated with the loss function based 

backtesting. Due to the nature of this backtest, the method cannot be used to 

statistically classify a model accurate or inaccurate. Rather, it should be used to 

monitor the relative accuracy of the model over time and to compare different models 

with each other. If the purpose is to validate a VaR model, the loss function backtest 

should be accompanied with hypothesis-testing methods.  

 

 

3.3.2 Backtests on Multiple VaR Levels 

 

All the backtests discussed so far focus solely on VaR estimates at one single 

confidence level. However, there is no particular reason to examine only one VaR 

level since properties of unconditional coverage and independence of exceptions 

should hold for any confidence level. Several backtests have been proposed to test the 

entire forecast distribution. 

 

One test of this type has been presented by Crnkovic and Drachman (1997). Their 

insight is that if the model is accurate, then 1% VaR should be violated 1% of the 

time, 5% VaR should be violated 5% of the time, and 10% VaR should be violated 

10% of the time and so on. In addition, a VaR violation at any confidence level should 

be independent on violations at any other level. (Campbell, 2005) 

 

The test is set up as follows. Each day we forecast a probability density function for 

portfolio returns. On the following day when the portfolio return is known we 

determine the percentile of the forecasted distribution in which the actual return falls. 

Assuming that the model is calibrated correctly, we expect that each percentile occurs 

with the same probability and they are independent of each other. These hypotheses 

can then be tested with several statistics. (Crouchy et. al., 2000)  

 

The advantage of this kind of test is that it provides additional power in identifying 

inaccurate models (Campbell, 2005). However, the problem with the approach is its 

data intensity. According to Crnkovic and Drachman (1997), their test requires 

observations of at least four years in order to obtain reliable estimates. In practice, 



33 
 

there is rarely a chance to use such an extensive set of data, which makes it 

challenging to use this method in actual backtesting processes. 

 

 

3.4 Conclusions 

 

Backtesting provides invaluable feedback about the accuracy of the models to risk 

managers and the users of VaR. This chapter has presented some of the most popular 

approaches to VaR model validation. A good VaR model satisfies two equally 

important properties. First, it produces the ‘correct’ amount of exceptions indicated by 

the confidence level. Second, the exceptions are independent of each other. The 

simplest tests focus only on the number of exceptions, whereas more advanced 

methods take into account the dependence between exceptions. Many of the tests are 

based on one single confidence level but more recent methods are capable of testing 

the whole distribution, providing the test with more power. 

 

The most common test is the Kupiec’s POF-test, which measures the number of 

exceptions over some specified time interval. If statistically too many or too few 

exceptions are observed, the model is rejected. The regulatory framework by Basel 

Committee is based on the same assumptions as the POF-test. Independence of 

exceptions can be examined with Christoffersen’s interval forecast test. However, as 

the empirical research will show, a better alternative is to use the mixed Kupiec-test 

by Haas since it is capable of capturing more general forms of dependence.  

 

Hypothesis-based backtesting always involves balancing between two types of errors: 

rejecting an accurate model versus accepting an inaccurate model. A statistically 

powerful test efficiently minimizes both of these probabilities. In order to increase the 

power of the test, one may choose a relatively low confidence level in VaR 

calculation so that enough exceptions are observed. For example, in the empirical part 

of this thesis I will apply lower VaR levels of 90% and 95% to enhance the power of 

the tests. One should also use as large set of data as possible. However, in practice 

there rarely is a sufficient amount of observations available. 
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In the model validation process, careful attention should be paid to the selection of the 

backtests. A too narrow perspective, such as relying only on the unconditional 

coverage tests, could potentially lead to a situation where we accept a model that does 

produce the ‘correct’ amount of exceptions but is generally unable to react to changes 

in correlations and volatilities, yielding some closely bunched exceptions.  According 

to Haas (2001), one backtest is never enough and a good result in some test should 

always be confirmed with another type of test. This argument will be kept in mind in 

the empirical section. 

 

 

 

 

 

4. Empirical Backtesting 

 

 

The empirical part of the thesis is carried out in close cooperation with a large Finnish 

institutional investor, the Company. The objective of the study is to examine the 

accuracy of a VaR model that is currently being used to calculate VaR figures in the 

Company’s investment management unit.  

 

The backtesting procedures are conducted by comparing daily profits and losses with 

daily VaR estimates using a time period of one year, i.e. 250 trading days. The 

performance of the software is measured by applying the Basel framework and tests 

by Kupiec (1995), Christofferssen (1998) and Haas (2001). Due to some technical 

limitations which will be discussed later, it is not possible to apply all the tests 

presented in the previous chapter. Nevertheless, the backtesting process here is 

thorough enough for the Company’s purposes and provides a satisfactory view on the 

accuracy of the VaR software at this point. Ideas for further backtesting are presented 

in the concluding chapter of the thesis. 

 

The purpose of this chapter is not only to present the backtesting process and results 

in detail, but also to analyze the outcome and the factors that may have affected the 
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outcome. First, I will give describe the case at hand and the setup for the backtesting 

process. After that, each of the backtests will be separately conducted with some 

numerical examples. Finally, the results are interpreted at portfolio level and the 

concluding section evaluates the performance of the model from a more general 

perspective. 

 

 

4.1 VaR Calculation and Backtesting Process 

 

4.1.1 Background 

 

VaR computation process has lately been reorganized in the Company. New VaR 

calculation software was purchased from an outside vendor in early 2008. The idea 

behind this transaction was to acquire a system that could calculate VaR estimates for 

every instrument, including derivatives, in the company’s portfolio. This objective has 

been achieved and the program is currently being used as the primary tool for VaR 

reporting and stress testing.  

 

The software is based on full Monte Carlo valuation, meaning that no approximations 

are used in market value calculations. The main factor that we may expect to have an 

adverse effect on the reliability of the results is model risk. A good presentation 

regarding the sources of model risk can be found, for example, in Dowd (2006). These 

issues will be discussed also later in this paper as I analyze the backtesting results. 

 

Even though during the short preliminary testing period the VaR estimates seemed to 

be in line with benchmarks (i.e. with calculations acquired from other sources), the 

need for systematical and controlled backtesting was evident in order to make sure 

that the results are valid and consistent in every respect. Before this study, no proper 

testing of any kind had been performed on the software. The software itself has an 

elementary backtesting module installed, but it cannot be considered to be of any use 

in credible model validation, since it is unable to compare the VaR estimates with 

actual portfolio performance. 
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4.1.2 Portfolio Setup and Performance Data 

 

The Company has investment activity in all kinds of financial instruments, including 

equities, funds, fixed income securities, real estate, commodities and derivatives. 

Even though VaR reporting will be conducted on the whole portfolio in the near 

future, it is not possible to include all of the Company’s positions into the backtesting 

process, for several reasons.  

 

First, many instruments do not have consistent daily price quotations available. Daily 

pricing is absolutely essential since if one calculated performance figures for 

instruments with price updating rarely, e.g. once a month, there would be long times 

of zero returns and then once a month high jumps in profits and losses. These figures 

would not be in line with corresponding VaR estimates which are calculated on the 

basis of some daily valued market risk factor. As a result, backtesting results would 

become severely distorted and in practice useless. The lack of daily pricing rules out, 

for instance, credit bonds, private equities, funds and many types of derivatives from 

our analysis. 

 

Second, there are also other technical obstacles, such as manual updating of the 

instrument properties (input data for computing VaR), associated with some 

instrument types. This issue concerns most notably floating rate bonds, which have to 

be excluded as well. 

 

Third, because of time restrictions it is simply impossible in this context to produce 

the position data for the whole portfolio for 250 days. It takes approximately 20-30 

minutes to calculate daily VaR estimates for the whole portfolio. By using a smaller 

portfolio in the backtesting process, computational time can easily be reduced to 5-10 

minutes.  

 

Because of these limitations, serious attention has to be paid to the selection of 

appropriate testing portfolios. Therefore, we have to construct a top portfolio solely 

for the purposes of this study. The portfolio consists of three subportfolios: an equity 

portfolio, a fixed income portfolio and a derivative portfolio, including Finnish quoted 

equities, government bonds, and equity options, respectively. The portfolios in the 
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study represent actual positions of the Company. With these portfolios we are able to 

examine the model’s ability to capture interest rate risk, equity risk and the risk of 

nonlinear instruments. This kind of diversified portfolio structure enables us to 

effectively identify potential problems in different asset and risk classes.  

 

Altogether there are about 30 to 60 instruments included in each VaR calculation, 

depending on the day of reporting.  Development of portfolio market values over time 

is displayed in Figure 3. The most significant issue to pay attention to is the change in 

bond portfolio market value over the one year time horizon. This is caused by major 

transactions as the Company altered its fixed income allocation by selling government 

bonds and purchasing credit bonds. Ideally, we would also like to include credit bonds 

in the backtesting process but unfortunately, due to the reasons already discussed, this 

is not possible. The decrease in bond portfolio market value should not have an effect 

on the backtesting results because position data is calculated on a daily basis. This is 

rather merely an issue that is good to keep in mind when evaluating the different 

graphs presented in this paper. 

 

 

 
 

Figure 3: Portfolio market values over time: Derivative portfolio is excluded from this graph since 
the positions are relatively small with portfolio market value ranging from -2m€ to 6m€ over time. 
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Daily performance data for the positions is obtained from the investment management 

systems which are directly connected to market data providers, such as Bloomberg 

and Reuters. Daily return distributions for each portfolio are presented in Appendix 3. 

 

One issue regarding the performance data has to be recognized at this point. VaR 

methods are generally unable to capture intra-day trading. In other words, the 

portfolio is assumed to remain stable during the holding period, which is one day in 

this case. If there are significant trades made during this period, portfolio returns 

become “contaminated” and VaR estimates are not directly comparable to profits and 

losses. (Jorion, 2001) Basel Committee (1996) therefore suggests that banks should 

develop “uncontaminated” backtests to deal with this issue. In practice, this would 

mean using hypothetical changes is portfolio value that would occur if portfolio was 

assumed to remain the same.  

  

Intra-day trading is not a significant problem in this empirical study. The portfolios 

under examination tend to remain relatively stable within the one day period and 

therefore it is unnecessary to calculate hypothetical returns. Moreover, the procedure 

of calculating hypothetical returns would be technically too cumbersome to handle in 

this context. 

 

 

4.1.3 VaR Calculation 

 

As was discussed earlier, the choice of parameters in VaR calculations is not arbitrary 

whenever backtesting is involved. To construct a solid view on the validity of the 

model, relatively low confidence levels should be used. According to Jorion (2001), a 

confidence level of 95% suits well for backtesting purposes. With this approach, it is 

possible to observe enough VaR violations within the one year time period. However, 

since the software in this case yields VaR estimates under different confidence levels 

without any additional simulation, I am able to use levels of 90%, 95% and 99% and 

test each one individually. Having more than one level of confidence in the 

backtesting process makes the testing more effective. 
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The software allows choosing between two estimation methods: exponentially 

weighted moving average (EWMA) and ordinary least squares (OLS). In this case, I 

choose to use EWMA which is a more useful estimation method in forecasting 

financial phenomena as it puts more weight to recent market developments. In 

addition, the user can define the weight that will be used in the estimation process. 

Figure 4 displays three different weights for EWMA estimation. 

 

 

 
 

Figure 4: EWMA weights 
 

 

In this study I will set the EWMA decay factor at 0.94, according to RiskMetrics 

(1996) recommendation for daily data (Jorion, 2001). Compared to using a decay 

factor of 0.97 (which probably will be normally used in the Company as the VaR 

calculations are based on longer time horizons), this method has relatively more 

emphasis on recent developments of market prices. It is important to realize that the 

choice of this parameter has a significant effect on the outcome of the estimation. For 

example, using a decay factor 0.94 leads to a situation where the last observation (t-1) 

is given a 6% weight and an observation one month ago (t-21) only 1.74% weight. As 

can be seen from the above figure, observations over 2 or 3 months ago have very 

little effect on the outcome of the estimation. In practice, if the market experiences 

0 %

1 %

2 %

3 %

4 %

5 %

6 %

t-1 t-51 t-101 t-151 t-201

EWMA Weights

0.94

0.97

0.99



40 
 

sudden jumps in volatility, VaR estimates react faster to these changes when using a 

lower decay factor. The downside of a low decay factor is that the short period does 

not necessarily capture all the potential events that should be included in the 

estimation process. There are no standards determining the ‘correct’ decay factor, as 

the recommendation by RiskMetrics was also found out by empirically testing 

different factors. It may even be that some other choice of decay factor would perform 

better in the current market environment. 

 

The VaR estimates are obtained by computing daily VaR levels for a time period of 

one year, ranging from December 3th 2007 to November 26th 2008. The number of 

trading days (observations) totals 250, which is enough to produce some statistically 

significant backtests and is as well in line with the Basel backtesting framework.15 

Simulation rounds are set to 10 000, which is the most that can be used under these 

circumstances but still should be enough to obtain fairly accurate estimates.  

 

 

4.1.4 Backtesting Process 

 

Figure 5 below illustrates the backtesting process. After calculating daily profits and 

losses and simulating VaR estimates, it is time to perform the actual backtests.  

 

Throughout the backtesting process daily trading outcomes are compared to daily 

VaR estimates. Let xt,t+1 denote profit or loss of the portfolio over one day time 

interval. Corresponding VaR estimate is then defined as VaRt, which is calculated at 

the beginning of the period, i.e. using the closing prices of day t. For example, the first 

VaR estimate is calculated with the closing prices of 3rd of December. This estimate is 

                                                           
 
 
 
15 The time period used in this study includes the last twelve months of data (at the time of the 
calculation). In an ideal situation we would prefer to have a significantly larger data set. The VaR 
estimates are calculated using a historical data of one year, with larger weights on recent market 
developments. Since the database of the software does not include historical data beyond 2007, we do 
not have a chance to calculate VaR estimates for positions in early 2007, for instance. Technically it 
would be possible to feed the historical data into the system but in this context the amount of additional 
work is so extensive that I do not consider it to be worth the effort. 
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then compared to the trading outcome (profit or loss) that is realized at the end of 4th 

of December.  

 

 

 

 

 

Figure 5: VaR calculation and backtesting process 

 

 

Table 3 presents the results of consolidating the performance data with corresponding 

VaR estimates. The column that mainly draws the attention here is the observed 

number of exceptions. On the basis of this data only we can already perform several 

different backtests. 

 

 
 

Table 3: Backtesting data 
 

Market Info 

providers (e.g. 

Bloomberg)

Investment

Management 

System

VaR calculation

software

Backtesting

Position dataMarket data

Daily portfolio

performance data
Daily VaR 

estimates

Confidence 

Level

Number of 

Observations

Expected  

Number of 

Exceptions

Observed 

Number of 

Exceptions

Time Until 

First 

Exception

Top Portfolio

99 % 250 2.5 10 70

95 % 250 12.5 25 23

90 % 250 25 36 23

Equity Portfolio

99 % 250 2.5 10 9

95 % 250 12.5 33 1

90 % 250 25 50 1

Bond Portfolio

99 % 250 2.5 7 33

95 % 250 12.5 18 3

90 % 250 25 30 3

Equity Option Portfolio

99 % 236 2.36 12 33

95 % 236 11.8 20 2

90 % 236 23.6 29 2
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4.2 Backtests 

 

As was discussed earlier, single backtests can never be enough to evaluate goodness 

of a VaR model. If one test yields a decent outcome, the result should always be 

confirmed with another test. (Haas, 2001) Following this argument, I will apply Basel 

framework and Kupiec’s POF-test to examine the frequency of exceptions, as well as 

Christoffersen’s interval forecast test and mixed Kupiec-test to study the 

independence of exceptions. These tests represent a fairly traditional approach to 

backtesting since they can be applied virtually in every case where VaR figures are 

computed. Using these tests requires only the number of total observations, number of 

VaR violations and the time when the violations occur.  

 

Percentile test by Crnkovic and Drachman (1997) will not applied because the 

framework is based on testing the whole distribution, and this data is not available in 

this case. Also the loss function approach by Lopez (1999) will not be used. The 

reason for this is that the method requires strong assumptions about the stochastic 

behavior and distribution of profits and losses, and this is something I do not want to 

do in this case. Moreover, Lopez’s approach is more suited to comparing different 

VaR models, rather than to statistically classify a model either good or bad.  

 

 

4.2.1 Frequency of Exceptions 

 

Basel Traffic Light Approach 

 

The Basel backtesting framework applies only to banks. It should be noted that the 

Company is not involved in banking business and therefore is not obliged to conduct 

any kind of official backtesting for regulatory purposes. Nevertheless, the Basel 

framework provides a useful exercise as a preliminary test before moving towards 

statistical hypothesis-based backtests.  

 

Basel backtesting framework uses 99% confidence level and a period of 250 trading 

days. With these settings daily returns are expected to exceed VaR estimates 2.5 times 
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on average. According to Basel Committee (1996), an accurate model would fall into 

green zone with 0 to 4 exceptions. Yellow zone, which consists of 5 to 9 exceptions, 

indicates a potential problem with the model. If 10 or more exceptions are observed, 

the model falls into the red zone, and this should generally lead to an automatic 

assumption that the model is false.  

  

From purely statistical point of view, model validation should be conducted with 

lower confidence levels (e.g. Jorion, 2001). Therefore we ought to find out the cut-off 

points for other confidence levels as well. Recalling that the yellow zone begins at the 

cumulative probability of 95% and the red zone begins at 99.99% (see Table 2), we 

can utilize the binomial distribution to calculate the cut-off points for confidence 

levels 95% and 90% with 250 observations: 

 

 

 

Since the equity option portfolio includes only 236 observations, the corresponding 

values are slightly different: 

 

 

 

It should be recognized that outcomes close to zero at lower confidence levels also 

indicate a problem within the model even though the green zone represents an 

accurate model. For example, if we observed zero exceptions at 90% level over 250 

days, we would define the model to be overly conservative and in fact quite useless. 

However, since regulators are only interested in identifying models that systematically 

underestimate risk, these outcomes, even if clearly false, are acceptable from 

regulators’ point of view.  

 

The results of fitting our data into the three classes of Basel traffic light approach are 

displayed in Table 4. The chart suggests severe underestimation of risk in majority of 

Zone 90 % 95 % 99 %

Green Zone 0 - 32 0 - 17 0 - 4

Yellow Zone 33 - 43 18 - 26 5 - 9

Red Zone 44 or more 27 or more 10 or more

Zone 90 % 95 % 99 %

Green Zone 0 - 30 0 - 17 0 - 4

Yellow Zone 31 - 41 18 - 25 5 - 9

Red Zone 42 or more 26 or more 10 or more
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cases, most notably in equities. The bond portfolio performs best as it is the only 

portfolio avoiding the red zone.  

 

 

 
 
Table 4: Basel traffic light test results 

 

 

At 99% confidence level the model produces the most worrying results. For example, 

for the top portfolio the VaR model generated 10 exceptions out of 250 observations. 

As we already know, there is only a very small probability (less than 0.01%) that an 

accurate model with a correct coverage of 99% would produce as much as 10 or more 

exceptions. The results at the 99% confidence level therefore raise a concern whether 

the model is able to estimate extreme tail losses with enough precision.  

 

Despite these quite alarming results, not too hasty conclusions should be drawn based 

on this test only. More comprehensive analysis is required in order to judge the 

quality of the model. 

 

 

 

Confidence 

Level

Number of 

observations

Number of 

Exceptions

Test          

Outcome

Top Portfolio

99 % 250 10 Red Zone

95 % 250 25 Yellow Zone

90 % 250 36 Yellow Zone

Equity portfolio

99 % 250 10 Red Zone

95 % 250 33 Red Zone

90 % 250 50 Red Zone

Bond portfolio

99 % 250 7 Yellow Zone

95 % 250 18 Yellow Zone

90 % 250 30 Green Zone

Equity option portfolio

99 % 236 12 Red Zone

95 % 236 20 Yellow Zone
90 % 236 29 Green Zone
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Kupiec Tests 

 

Kupiec’s POF-test is used in this case to examine whether the amount of exceptions is 

too large in statistical terms, as was suggested by the Basel traffic light approach. 

Although the number of observations is limited to one year, the POF-test should yield 

some significant results, especially with lower confidence levels.  

 

The test statistics for each portfolio and confidence level are calculated by plugging 

the data (number of observations, number of exceptions and confidence level) into the 

test statistic function: 

 

?�@AB = −2CD E ,1 − +.120+0
F1 − �(*%G120 �(*%0H 

 

Throughout the backtesting process I will use 95% percentile of the χ² distribution 

(Appendix 2) as the critical value for all the likelihood-ratio tests. This means that 

reasonably strong evidence is required in order to reject the model. 

 

As an example, consider the top portfolio for which we observed 36 exceptions at 

90% confidence level over 250 trading days. The Basel traffic light approach 

indicated a result in the yellow zone. The corresponding LR-statistic is calculated as 

 

?�@AB = −2CD R ,1 − 0.10. $�2!#0.10!#
F1 − � 36250%G $�2!# � 36250%!#T ≈ 4.80 

 

Compared to the critical value of 3.84, the test statistic is slightly larger and the model 

is rejected. By calculating the statistics for the other portfolios and confidence levels 

with similar fashion, we obtain results in Table 5 below.  
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Table 5: POF-Test Results 
 

 

For all confidence levels the test more or less confirms the results obtained from the 

traffic light approach. This is the obvious outcome, since the Basel traffic light 

framework is directly derived from the failure rate test. All portfolios perform poorly, 

and in some cases the critical value is exceeded with a very large margin. Equity 

portfolio performs the worst, whereas the fixed income portfolio is the only one to 

avoid the most severe underestimation of risk. Despite the fact that POF-test has been 

criticized for having low statistical power in distinguishing bad models from good 

ones, the results can be considered to be fairly reliable with one year of data and lower 

confidence levels of 95% and 90%. 

 

As an additional backtest for failure rates I also conducted Kupiec’s TUFF-test, for 

which the results are presented in Appendix 4. Since the statistical significance of this 

test is very limited, no conclusions regarding the quality of a VaR model should be 

drawn from it. On the contrary, the test generates quite misleading outcomes 

compared to POF-test and the Basel traffic light approach.  

 

 

Confidence 

Level
Test statistic 

LRPOF

Critical Value 

χ²(1) Test Outcome

Top Portfolio

99 % 12.96 3.84 Reject

95 % 10.33 3.84 Reject

90 % 4.80 3.84 Reject

Equity portfolio

99 % 12.96 3.84 Reject

95 % 24.89 3.84 Reject

90 % 22.20 3.84 Reject

Bond portfolio

99 % 5.50 3.84 Reject

95 % 2.26 3.84 Accept

90 % 1.05 3.84 Accept

Equity option portfolio

99 % 20.15 3.84 Reject

95 % 5.01 3.84 Reject

90 % 1.29 3.84 Accept

Kupiec's POF-Test
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4.2.2 Independence of Exceptions 

 

Christoffersen’s Independence Test 

 

Failure rate tests suggested that the VaR model understates risk, especially for equity 

and equity option portfolios. To examine whether the exceptions are spread evenly 

over time or are they occurring in clusters, I conduct Christoffersen’s interval forecast 

test. However, at this point I will calculate only the LRind -statistics in order to focus 

on the independence property:  

 

?�[op = −2CD q ,1 − n.orrso�rnor�so��,1 − n�.orrn�or�,1 − n".o�rn"o��t 

 

As an example, consider again the top portfolio at 90% confidence level. The 

contingency table can be presented as follows: 

 

 

 

In addition, we need to solve the probabilities π0, π1 and π: 

 

n� = D�"D�� + D�" = 28186 + 28 = 13.08%  
 

 n" = D""D"� + D"" = 828 + 8 = 22.22% 

 

 n = D�" + D""D�� + D�" + D"� + D"" = 28 + 8186 + 28 + 28 + 8 = 14.40%  
 

Plugging this data into the likelihood-ratio statistic we obtain the test value: 

 

I t-1 = 0 I t-1 = 1

I t = 0 186 28 214

I t = 1 28 8 36

214 36 250



48 
 

?�[op = −2CD q ,1 − 0.144."�#s � ∗ 0.144 �s�,1 − 0.1308."�# ∗ 0.1308 � ∗ ,1 − 0.2222. � ∗ 0.2222�t ≈ 1.88 

 

The critical value is the 95% percentile of the χ² distribution with one degree of 

freedom, 3.84. As the test statistic value remains below the critical value, the model is 

accepted.  

 

Table 6 shows the input data for calculating the LRind -statistics for each portfolio and 

confidence level.  

 

 

 

Table 6: Data for the independence test: nij is the number of days where state j occurred conditional 
on state i occurring on the previous day (0 = no exception, 1 = exception). Thus, n11 presents the 
number of consecutive exceptions. πi is the probability of an exception assuming a state i on the 
previous day, and π is the probability of an exception regardless of the previous day’s state. The 
probabilities are calculated from the observed data. 
 

 

Results are displayed in Table 7. Apart from the equity portfolio at 90% confidence 

level, no dependence between exceptions according to Christoffersen’s test occurs, at 

least not in statistically significant terms.  

 

Number of 

Exceptions n00 n01 n10 n11 π0 π1
π

 Top Portfolio

99 % 10 230 10 10 0 4.2 % 0.0 % 4.0 %

95 % 25 204 21 21 4 9.3 % 16.0 % 10.0 %

90 % 36 186 28 28 8 13.1 % 22.2 % 14.4 %

 Equity portfolio

99 % 10 230 10 10 0 4.2 % 0.0 % 4.0 %

95 % 33 188 29 29 4 13.4 % 12.1 % 13.2 %

90 % 50 161 39 39 11 19.5 % 22.0 % 20.0 %

 Bond portfolio

99 % 7 236 7 7 0 2.9 % 0.0 % 2.8 %

95 % 18 215 17 17 1 7.3 % 5.6 % 7.2 %

90 % 30 195 25 25 5 11.4 % 16.7 % 12.0 %

 Equity option portfolio

99 % 12 227 11 11 1 4.6 % 8.3 % 5.1 %

95 % 20 213 17 17 3 7.4 % 15.0 % 8.5 %

90 % 29 199 22 22 7 10.0 % 24.1 % 12.3 %

Backtesting Data for the Independence Test
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Table 7: Christoffersen’s independence test results 
 

 

Despite the good outcome of the independence test, no instant conclusions should be 

drawn from it. Nevertheless, it is fair to say that for the most part the model seems to 

avoid at least the most severe type of independence, namely multiple exceptions 

occurring on consecutive days.  

 

 

Independence Test of the Mixed Kupiec-Test 

 

The problem with the Christoffersen’s independence test is that it considers only two 

successive observations. As was already previously discussed, the test has low power 

in capturing dependence between exceptions since it effectively ignores all other 

forms of dependence. To overcome this shortcoming, I will use the independence test 

suggested by Haas (2001). The test statistic for each exception is: 

 

Test Statistic 

LRind

Critical Value 

χ²(1) Test Outcome

 Top Portfolio

99 % 0.83 3.84 Accept

95 % 0.98 3.84 Accept

90 % 1.88 3.84 Accept

 Equity portfolio

99 % 0.83 3.84 Accept

95 % 0.04 3.84 Accept

90 % 0.15 3.84 Accept

 Bond portfolio

99 % 0.40 3.84 Accept

95 % 0.08 3.84 Accept

90 % 0.65 3.84 Accept

 Equity option portfolio

99 % 0.33 3.84 Accept

95 % 1.27 3.84 Accept

90 % 4.25 3.84 Reject

Independence Test (Christoffersen's Test)
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?�[ = −2CD R +,1 − +.Sv2"
� 1P[% �1 − 1P[%Sv2"T 

 

For the sake of simplicity, let us use the top portfolio at 99% confidence level as an 

example, instead of the 90% level in previous tests. At 99% confidence level we 

observed 10 exceptions for the top portfolio with the following durations measured 

between the exceptions: 

 

 

 

Inserting this data into the function above, we can calculate the independence 

statistics for every exception: 

 

 

 

Summing up the LR-statistics we obtain: 

 

?�[op = x yzz
{−2CD R +,1 − +.Sv2"

� 1P[% �1 − 1P[%Sv2"T|}}
~ − 2CD R +,1 − +.S2"

�1P% �1 − 1P%S2"T ≈ 20.83o
[\  

 

The test statistic is distributed as χ² with n degrees of freedom equal to the number of 

exceptions, 10. The critical value at 95% percentile is 18.31. Because LRind exceeds 

the critical value, the model is rejected. This indicates that the independence property 

is not satisfied. 

 

Test results for other portfolios and confidence levels are displayed in Table 8 below. 

Critical values are not the same in every case because the value is determined 

according to the number of exceptions in each case. The most important thing to 

notice here is that the test outcomes differ significantly from the Christoffersen’s 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Time between the exceptions 70 21 23 15 14 31 4 13 21 7

Number of the exception

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

LR-statistic 0.11 1.57 1.43 2.14 2.27 0.98 4.77 2.40 1.57 3.59

Number of the exception
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independence test. While the Christoffersen’s test accepted all but one of the test 

statistics, this test suggests that only the fixed income portfolio produces exceptions 

that are independent of each other. 

 

 

 
 

Table 8: Results of the independence test of mixed Kupiec-test 
 

 

4.2.3 Joint Tests of Unconditional Coverage and Independence 

 

Christoffersen’s Interval Forecast Test 

 

Now that we have conducted the tests for coverage and independence separately, the 

Kupiec’s POF-test and Christoffersen’s independence test can be combined into a 

joint test of conditional coverage. The test statistic can be derived directly from the 

results of the previous backtests as follows: 

 ?�uu = ?�@AB + ?�[op 

 

Test statistic     

LRind

Critical Value 

χ²(x)

Test          

Outcome

Top Portfolio

99 % 20.83 18.31 Reject

95 % 46.54 37.65 Reject

90 % 59.96 51.00 Reject

Equity portfolio

99 % 25.30 18.31 Reject

95 % 67.98 47.40 Reject

90 % 89.03 67.50 Reject

Bond portfolio

99 % 10.76 14.07 Accept

95 % 19.92 28.87 Accept

90 % 36.48 43.77 Accept

Equity option portfolio

99 % 43.79 21.03 Reject

95 % 42.32 31.41 Reject

90 % 51.43 42.56 Reject

Independence Test (Mixed Kupiec-Test)
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Now the LR-statistic has a critical value with two degrees of freedom, 5.99. Again, 

consider the top portfolio at 90% confidence level. The result from the POF-test was 

4.80, and the result from the Christoffersen’s independence test was 1.88. Summing 

up these two statistics we obtain the test value for the conditional coverage test:  

 ?�uu = 4.80 + 1.88 ≈ 6.69 

 

which slightly exceeds the critical value of 5.99, resulting in rejection of the model. 

 

Table 9 presents the joint test results. Since we already know that the POF-test 

produced results where critical values were exceeded significantly, the results from 

the joint test are not surprising. Also in this case the fixed income portfolio performs 

best as it passes the test at all confidence levels. 

 

 

 
 

Table 9: Joint test results 
 

 

 

 Test statistic 

LRCC

Critical Value 

χ²(2) Test Outcome

 Top Portfolio

99 % 13.79 5.99 Reject

95 % 11.30 5.99 Reject

90 % 6.69 5.99 Reject

 Equity portfolio

99 % 13.79 5.99 Reject

95 % 24.93 5.99 Reject

90 % 22.35 5.99 Reject

 Bond portfolio

99 % 5.90 5.99 Accept

95 % 2.34 5.99 Accept

90 % 1.70 5.99 Accept

 Equity option portfolio

99 % 20.48 5.99 Reject

95 % 6.28 5.99 Reject

90 % 5.54 5.99 Accept

Joint Test of Unconditional Coverage and 

Independence
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Mixed Kupiec-Test 

 

Mixed Kupiec-test can be considered to be more informative and reliable than the 

joint test by Christoffersen, since the mixed test is capable of capturing more general 

forms of dependence between exceptions instead of just two consecutive days. 

 

Similarly to the Christoffersen’s interval forecast test above, the mixed Kupiec-test 

can also be conducted in a straightforward fashion since we already have the results of 

the POF-test and the independence test (of mixed Kupiec-test): 

  ?��[0 = ?�@AB + ?�[op 

 

For the example case of top portfolio at 90% confidence level the LRcc –statistic is 

calculated as: 

 ?��[0 = 4.80 + 59.96 ≈ 64.76 

 

Now the critical value is the 95% percentile of χ² distribution with n+1 degrees of 

freedom, where n is the number of exceptions. Thus, the critical value of 52.19 in this 

case is obtained from χ² distribution with 37 degrees of freedom. Due to the clear 

violation of the critical value, the model is again rejected. This outcome was to be 

expected, as the failure resulted also from the Christoffersen’s test which is 

statistically weaker than the mixed Kupiec-test. 

 

All the results of the mixed Kupiec-test are displayed in Table 10. Apart from the 

fixed income portfolio at lower levels of confidence, the model is rejected. The results 

are worrying by anyone’s standards. 
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Table 10: Mixed Kupiec-test results 

 

 

 

4.3 Evaluation of Backtesting Results 

 

4.3.1 Equity Portfolio 

 

In 2008, equity markets all over the world performed poorly. The market was 

characterized by high volatility, especially in autumn 2008 when macroeconomic 

events seemed to affect stock prices more than company-specific news. In bear 

markets it is not unusual that correlations between equities increase. For example, 

Longin and Solnik (2001) and Campbell et al. (2002), among others, have shown 

evidence of significant increased correlation in equity returns during bear markets. 

This kind of sudden increase in correlations makes it very challenging to forecast 

future portfolio performance since all VaR models rely on historical market data in 

one way or another.  

 

Test statistic 

LRmix

Critical Value 

χ²(1) Test Outcome

Top Portfolio

99 % 33.79 19.68 Reject

95 % 56.87 38.89 Reject

90 % 64.76 52.19 Reject

Equity portfolio

99 % 38.26 19.68 Reject

95 % 92.88 48.60 Reject

90 % 111.23 68.67 Reject

Bond portfolio

99 % 16.25 15.51 Reject

95 % 22.18 30.14 Accept

90 % 37.53 44.99 Accept

Equity option portfolio

99 % 63.94 22.36 Reject

95 % 47.32 32.67 Reject

90 % 52.72 43.77 Reject

Mixed Kupiec-Test
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The economic downturn also affected the test portfolio which consisted of quoted 

Finnish equities. Over the 250-day period, the portfolio return was -36%. This 

performance is quite well in line with overall market performance, as can be seen 

from Figure 6.  

 

 

 
 

Figure 6: Equity portfolio performance 
 

 

Figure 7 presents a summary of the backtesting results and a graph where daily 

returns are displayed with VaR estimates at three different confidence levels over the 

one year time period. It is advisable to present backtesting results in this manner since 

graphical illustration provides a very good overall view of the results already at the 

first look. For instance, we can see that the unusually high volatility, and perhaps 

increased correlation, is reflected in portfolio returns especially during the last two or 

three months of the observation period. 
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Figure 7: Backtesting results for equity portfolio 
 

 

The backtesting results are very poor for the equity portfolio. VaR estimates at all of 

the tested confidence levels are violated many times more than what was expected. 

For instance, at 95% confidence level we observed 33 exceptions, which is nearly 

three times more than the expected value of 12.5. As a result of this severe systematic 

underestimation of equity risk, POF-test indicated a rejection at all confidence levels. 

 

Christoffersen’s test for independence of exceptions produced decent results. 

However, since the test does not capture dependence in all forms, we cannot conclude 

that the exceptions are totally independent. Looking at the results from the other 

independence test, namely the mixed Kupiec-test, we notice that the model is rejected 

at all confidence levels. The exceptions thus exhibit some kind of dependence, even 

though we can see in Figure 7 that rising volatility of portfolio returns caused also 

significant increases in VaR estimates. Perhaps laying even more emphasis on recent 
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market data, i.e. choosing a lower EWMA weight, could result in better outcome in 

independence tests. 

 

We may conclude that the model does not estimate equity risks with satisfactory 

precision. As such, it is obvious that the model is rejected. A totally different topic of 

discussion then is whether we can judge the model to be inadequate or should we 

accept the fact that the turbulent equity markets of 2008 is simply outside of what any 

VaR model is able to capture. I will return to this issue later in this chapter. 

 

 

4.3.2 Fixed Income Portfolio 

 

The fixed income portfolio consists of government bonds, which are usually 

considered to be very secure investments. In practice, there is no credit risk in 

government bonds and the only type of risk arises from changes in interest rates. As a 

matter of fact, despite the fairly low return expectation, government bonds were the 

best performers in the Company’s investment portfolio in 2008. The return of the test 

portfolio was 9% during the observation period. 

 

Due to significant selling transactions, the portfolio’s market value dropped from 1.1 

billion to 0.14 billion over the one year observation period. This intra-day trading 

could have potentially distorted the VaR estimates, but in this case notable problems 

did not occur. 

 

Out of the three test portfolios used in the study, the fixed income portfolio performs 

best in terms of backtesting results. The portfolio passes all other tests except the 

frequency test at 99% confidence level. Seven exceptions are more than expected and 

the same outcome is also suggested by the Basel traffic light approach. For other 

confidence levels there are a few exceptions more than expected but still the backtests 

confirm these outcomes to be acceptable. 
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Figure 8: Backtesting results for fixed income portfolio 
 

 

Portfolio returns and VaR levels remained stable until September when the market 

started to experience higher volatility and the portfolio lost some of its diversification 

effect. The higher portfolio volatility in autumn is fairly well captured by the VaR 

model, as can be seen from Figure 8. Some successive VaR violations occurred 

during this period of rising volatility. In addition, 4 out of 7 exceptions under 99% 

confidence level took place in just 40 days, which raises some concern about the 

models ability to estimate interest rate risk. However, both tests of independence 

produced positive results and suggested acceptance of the model. 

 

As a conclusion, we can argue that the VaR model captures interest rate risk fairly 

accurately, at least at lower confidence levels. Additional testing with a new set of 

data or another type of fixed income securities, such as credit bonds or derivatives, 

still deserves consideration. 
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4.3.3 Equity Option Portfolio 

 

The VaR model in this case should be able to capture the market risk of any derivative 

instrument, as long as the properties and pricing models of the instruments are defined 

correctly in the system. Our test portfolio consists of equity options. Under the period 

of 250 days there are 14 days when the portfolio is empty, and no VaR figures are 

computed. Thus, the data set reduces to 236 observations, which should still be 

enough to obtain statistically significant results, especially with lower confidence 

levels. 

  

 

 

 
 

Figure 9: Backtesting results for equity option portfolio 
 

 

Failure rate test yields quite interesting results. At 90% confidence level the number 

of exceptions totals 29, which is an acceptable amount as we would expect on average 

24 exceptions. At 95% level with 20 exceptions the model is only slightly rejected. 
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But on the contrary, 99% level produces 12 exceptions, which is approximately five 

times the expected amount. 

 

The equity option portfolio is also the only one of the three subportfolios to fail the 

Christoffersen’s test for independence. At 90% confidence level the test indicates 

rejection of the model. On the other hand, the independence statistics of mixed 

Kupiec-test suggest rejection of the model at all confidence levels. Joint tests also 

produce negative results. It is therefore easy to say that a problem exists in the model. 

 

The problem in the model is at least partly caused by the calculation of volatility. The 

algorithm is unable to compute volatility for some instruments and in these cases the 

software uses a standard approximation that does not necessarily represent the true 

volatility. An undeniable evidence of this problem is reflected in the last one and a 

half months of the observation period, where 6 exceptions at 99% confidence level are 

observed in just 20 days. This is a result that an accurate model would generate only 

with an extremely low probability, and it is a clear sign of exception clustering, even 

though at 99% level the Christoffersen’s independence test failed to capture this 

correlation. Since these closely bunched exceptions did not go unnoticed in the mixed 

Kupiec-test we can also without hesitation argue that the Christoffersen independence 

test is occasionally misleading and unreliable. 

 

Strange behavior of VaR levels is also occurring at other times, causing additional 

VaR violations. This is direct evidence of model risk which is specifically associated 

with Monte Carlo-based VaR systems. 

 

Without the problem of volatility calculation, there is a reason to assume that the 

model would yield fairly reliable results. Nevertheless, additional backtesting of 

derivatives, also other than equity options, is strongly recommended in order to 

identify potential problems. Before this study, the derivative VaR estimates were only 

compared against static results obtained from an external VaR model. The evidence 

presented here proves that this kind of model validation is simply inadequate and 

occasionally even fallacious. 
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4.3.4 Top Portfolio 

 

Combining the subportfolios under one top portfolio is a useful exercise because it 

gives some indication about the accuracy of the model when different asset classes are 

included in the VaR estimates. 

 

Figure 10 displays the VaR levels with daily returns. For the sake of simplicity, the 

data in this case is presented in two graphs because the allocation and market value of 

the portfolio changes dramatically during the observation period (due to drop in fixed 

income portfolio market value). The upper graph shows the returns and the VaR 

levels as percentages, and the lower one shows the same information in euros.  

 

VaR estimates clearly adapt to changes in portfolio allocation and market volatility, 

but the model seems to systematically understate risks. This result is to be expected 

since the magnitude of equity risk underestimation is so large. The positive results of 

fixed income portfolio are not enough to compensate the bad equity risk estimation. 

As a consequence, all joint tests reject the model. 
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Figure 10: Backtesting results for top portfolio 
 

 

 

4.4 Discussion 

 

Backtesting results for all of the test portfolios are presented as a summary sheet in 

Appendix 5. Out of the several backtests conducted in this study, we should focus our 

attention on those tests that are considered to be the most reliable. Therefore, we 

ought to be cautious when interpreting backtesting results, for instance, from the 

TUFF-test by Kupiec.16 Similarly, one should recognize the shortcomings of 

Christoffersen’s independence test. The most informative and reliable test in this 

context is the mixed Kupiec-test by Haas. 

                                                           
 
 
 
16 The purpose of using the TUFF-test in this backtesting process is not to validate our VaR model, but 
rather to provide evidence of the fact that the test may produce very misleading results compared to 
other test procedures. 
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The evidence from the backtests is undeniable; most statistical failure rate tests 

indicate rejection of the model. The model appears to underestimate risk, especially 

for equity and equity option portfolios. The fixed income portfolio performs much 

better in this respect even though at the higher confidence level of 99% there is some 

signal of underestimation as well.  

 

For the most part, the model avoids the most severe type of dependence between 

exceptions, namely VaR violations occurring on successive days. However, the mixed 

Kupiec-test, which should tell us if the model exhibits more general type of 

dependence, yields worse results. Apart from the fixed income portfolio, the model is 

rejected at all confidence levels. Hence, because of bad results from both 

independence and coverage tests, it comes as no surprise that most joint tests of 

conditional coverage reject the model for equities and equity options. 

 

Despite these somewhat alarming results we should take a minute and consider the big 

picture. As it is commonly recognized, VaR has been developed to measure portfolio 

market risk under normal market conditions. VaR is known to be fairly accurate 

during normal market conditions but even a good model may perform poorly if the 

market suddenly experiences times of high volatility or changes in asset correlations. 

As Basel Committee (1996) points out, if the market is subjected to a major regime 

shift, volatilities and correlations may shift substantially. When the economy 

experiences major macroeconomic shocks, usual correlations may even break down, 

causing a dramatic change in potential portfolio losses. No VaR model will be 

immune from this problem since all models rely on past data in predicting future 

market movements. 

 

The time period under observation was exceptional, at least compared to the previous 

few years. Equity prices were affected by macroeconomic events more than usually, 

especially during the autumn of 2008. Also fixed income securities experienced 

abnormally high volatility but apparently not to the extent that the model would have 

had major difficulties in capturing interest rate risk. Taking into account these 

circumstances, it is reasonable to argue that one of the most fundamental assumptions 

underlying any VaR model, namely the normal market conditions (whatever the 
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definition for ‘normal’ is), does not hold for equity markets during the observation 

period from December 2007 to November 2008. 

 

 

 
 

Figure 11: OMX Helsinki Cap-index volatility: The annual volatility is calculated as a rolling 
volatility from daily index returns. This type of calculation is not directly equivalent to the algorithm of 
the VaR model since it does not give weights to the historical observations but it still provides a useful 
illustration of the development of volatility. 
 

 

To investigate the reasons for the excess amount of observed exceptions a bit closer, 

consider the OMX Helsinki Cap-index which reflects the performance of our equity 

test portfolio quite accurately. The annual one year rolling volatility in Figure 11 

gives some indication about the underlying problem. During the one year observation 

period (on blue background), we can see remarkable increase in market volatility, 

from 17% in December 2007 to 33% in November 2008. At some points, especially in 

autumn 2008, this increase is very rapid. In a situation like this it is evident that the 

VaR estimates, which are simulated on the basis of historical market data, are 

systematically too low because the ‘true’ volatility at each point of time is higher than 

the volatility estimated by the model.  

 

The backtesting results of the equity portfolio are direct evidence of this problem. We 

therefore in one way confirm the claim that VaR works only under normal market 
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conditions. Note that this is not to say that the model would perform any better in 

other circumstances, since we do not have evidence to prove this. However, there is a 

justifiable reason to believe that additional backtests with a new set of data, i.e. in a 

more stable market environment, would produce better results.  

 

Having concluded that our VaR model clearly does not capture equity risk under 

exceptional market conditions, there are some general issues that deserve attention.  

The ongoing financial crisis raises a question whether risk management methods, such 

as VaR, have failed to describe the prevailing risks adequately. One may argue that at 

least to some extent risk management models are not as sound as they should be. 

Some studies regarding the flaws of VaR models have been conducted, for example 

by Beder (1995), who applied eight different calculation methods to three different 

portfolios, and found out that VaR estimates differed significantly between the 

methods. Berkowicz and O’Brien (2002) investigated VaR models of six financial 

institutions and concluded that the models were too conservative while being 

inaccurate in capturing changes in volatility. These results indicate that real life VaR 

models are often inaccurate. Unfortunately, empirical evidence concerning the 

performance of VaR models under exceptional market conditions is somewhat limited 

at the moment. It is very likely that the accuracy of VaR models will be a topic of 

very critical discussion in the near future. 

 

The purpose of this thesis is not to question the validity of VaR as a risk measurement 

method but it evidently becomes a topic of great interest as we look at the backtesting 

results presented here and consider the current financial environment. According to 

Einhorn (2008), the financial crisis has shown that extreme losses have been much 

more likely than the backtested models predicted. He does not present any direct 

evidence to back his statement but it would be more or less hair-splitting to claim 

anything else. Einhorn (2008) goes on to argue: 

 

“This (Value-at-Risk) is like an airbag that works all the time except 

when you have a car accident.” (Einhorn, 2008, p.12) 

 

Of course, this statement is quite extreme but in some sense there is a legitimate point 

in it. One could indeed, perhaps provocatively, ask what is the purpose of having a 



66 
 

risk management system that performs well only when there is no real danger of 

extreme events even though that is exactly what VaR should be designed to measure? 

Specifically, in a situation such as the empirical case of this paper where there should 

be a fairly sophisticated VaR system in place, we would expect backtesting results to 

be at least decent. Since this clearly is not the case, we have arrived to a situation 

where we should decide whether to reject our VaR model or just recognize the fact 

that sudden turbulent market movements are simply beyond of what any VaR system 

is intended to capture? 

 

The easiest explanation would be to rely on the quoted claim by Einhorn above. 

However, since we do not have any evidence of the model’s performance under 

normal market conditions and I do not want to draw this kind of conclusion purely on 

the basis of this data, I recommend further backtesting to be performed. 

 

 

 

 

 

5. Conclusions 

 

 

“In short, we ought to be able to identify most bad VaR models, but 

the worrying issue is whether we can find any good ones.” (Dowd, 

2006, p.37) 

 

VaR has become one of the most popular methods in measuring market risks. Every 

VaR model uses historical market data to forecast future portfolio performance. In 

addition, the models rely on approximations and assumptions that do not necessarily 

hold in every situation. Since the methods are far from perfect, there is a good reason 

to question the accuracy of estimated VaR levels. 

 

The theoretical part of this thesis discussed different approaches to computing VaR, 

and evaluated specifically the shortcomings of these models. Some of the most 
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common backtests that are being used to measure the accuracy of VaR models were 

presented. Early tests, such as Kupiec’s POF-test or Christoffersen’s interval forecast 

test are statistically weak, at least with insufficient number of observations and high 

confidence levels. Tests that have been developed more recently are much more 

powerful and they take into account the dependence between exceptions. As Dowd 

(2006) points out, the state of the art in backtesting is improving all the time, and the 

current tests should already be relatively powerful in identifying bad models.  

 

The empirical part of the thesis studied the accuracy of a new Monte Carlo-based VaR 

model acquired by a Finnish institutional investor. Using three different confidence 

levels and a data set of one year, I conducted several backtests in order to evaluate the 

performance of the model. The tests included the Basel traffic light approach, 

Kupiec’s POF-test, Christoffersen’s interval forecast test and the mixed Kupiec-test 

by Haas. The test portfolio consisted of three subportfolios; equities, bonds and equity 

options. 

 

The outcomes of the backtests provided some indication of potential problems within 

the system. The results from unconditional coverage tests suggested underestimation 

of risk, especially for equities and equity options. In addition, a potential flaw 

regarding the volatility calculation for equity options was discovered. Christoffersen’s 

independence test indicated more positive results. An exception yesterday did not 

seem to have an effect on whether an exception occurred today or not. However, the 

mixed Kupiec-test which captures also more general forms of dependence produced a 

different outcome, suggesting that the exceptions are not totally independent of each 

other. 

 

The backtesting results raise concerns about the model’s ability to estimate equity risk 

in satisfactory precision. However, the turbulent market of 2008 and especially the 

rising volatility during the autumn inevitably cause problems in estimating parameters 

that should describe future market movements. Since all VaR models rely on 

historical market data, this issue not only concerns the case at hand but VaR systems 

in general. Abnormal market behavior is simply beyond of what any VaR model is 

intended to capture. Hence, with this amount of data I do not find it necessary to reject 

the VaR model even though the evidence against it is very strong. On the contrary, 
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now that we have discovered that the model is somewhat inaccurate during turbulent 

markets, we should at least confirm that the model works under normal market 

conditions. 

 

As a byproduct of the empirical investigation, I provided some evidence that few of 

the testing frameworks may produce false results and are therefore unable to 

distinguish good VaR models from bad ones. Specifically, the backtests indicated that 

the Christoffersen’s framework is incapable of capturing exception dependence, at 

least with sample size of only one year. In addition, the TUFF-test by Kupiec 

produced very misleading results compared to the POF-test. 

 

In order to find out whether the model systematically understates risk, addition testing 

is required. Once the market volatility has settled down, it would be a very useful 

exercise to reexamine the model’s performance with a different and perhaps longer 

observation period. The problem is, as it is indeed with any kind of backtesting, that 

we have to wait a long time in order to acquire a new set of data. A minimum of one 

year, preferably even longer, time horizon is required. Alternatively, one could utilize 

historical data from 2007 and beyond but there are some technical difficulties 

associated with this approach. 

 

It ought to be recognized that parameter choices can make a significant difference in 

the outcome of the results. Therefore, it remains to be tested whether different choice 

of parameters would yield better results. For instance, using a different decay factor is 

a potential idea for future testing. In this study, I used EWMA weight of 0.94, which 

is recommended by RiskMetrics for daily data. However, the unusual circumstances 

of 2008 could perhaps require a slightly different approach. Laying even more 

emphasis on recent developments, i.e. using a lower decay factor, would make the 

model more sensitive to changes in volatilities and correlations.  

 

This empirical study tested only equities, government bonds and equity options. In 

addition to these instrument classes, we should at some point consider testing other 

types of instruments as well, such as commodity and interest rate derivatives, floating 

rate notes and perhaps credit bonds, if possible. However, there are practical 

difficulties associated also with some of these cases. 
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Systematic backtesting should be a part of regular VaR reporting in order to 

constantly monitor the performance of the model. However, the problem is that the 

inflexibility and slowness of data processing makes it challenging to conduct any 

regular daily-based backtesting in the Company. Nevertheless, the issue of future 

backtesting, whether it will be continuous or random testing, ought to be thoroughly 

considered. 

 

Even though I used several different backtests in this thesis, the purpose is not to 

apply the wide scale of tests in forthcoming testing. Rather, the focus should be on the 

most efficient tests and, of course, more than only one single test. When it comes to 

potential future backtesting processes in the Company, Haas (2001) provides an 

appealing strategy for optimal backtesting. Following loosely his ideas, one 

alternative is to use the process below in model validation:  

 

 

       

Mixed Kupiec-

Test

KupiecPOF

Problem: VaR too 

low / high-> 

Independence 

test

Problem: VaR 

underestimated / 

overestimated

Check: Calculate 

test statistics 

separately

Problem: 

Exceptions 

correlated 

Problem:

Incorrect 

coverage and 

correlation

Good

Good

Bad

Bad

Everywhere

Clustered
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The testing process starts with mixed Kupiec-test. A positive result should be 

confirmed with separate coverage and independence tests since we know that joint 

tests may not always detect the violation of these properties alone. Also in the case 

where the mixed Kupiec-test rejects the model, we should investigate whether the 

failure is due to incorrect coverage, dependence between exceptions, or both. These 

statistical tests should be incorporated with visual presentations, such as in this paper. 

 

Whatever the framework for future backtesting will be, the most important lesson to 

learn from this paper is to understand the weaknesses of VaR calculation. As the 

empirical research proves, VaR figures should never be considered to be 100 percent 

accurate, no matter how sophisticated the systems are. However, if the users of VaR 

know the flaws associated with VaR, the method can be a very useful tool in risk 

management, especially because there are no serious contenders that could be used as 

alternatives for VaR.  
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Appendix 2: Critical Values for the Chi-Squared Distribution 

 

 

 

f 0.995 0.99 0.975 0.95 0.9 0.75 0.5 0.25 0.1 0.05 0.025 0.01 0.005

1 0.00 0.00 0.00 0.00 0.02 0.10 0.45 1.32 2.71 3.84 5.02 6.63 7.88

2 0.01 0.02 0.05 0.10 0.21 0.58 1.39 2.77 4.61 5.99 7.38 9.21 10.60

3 0.07 0.11 0.22 0.35 0.58 1.21 2.37 4.11 6.25 7.81 9.35 11.34 12.84

4 0.21 0.30 0.48 0.71 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 14.86

5 0.41 0.55 0.83 1.15 1.61 2.67 4.35 6.63 9.24 11.07 12.83 15.09 16.75

 

6 0.68 0.87 1.24 1.64 2.20 3.45 5.35 7.84 10.64 12.59 14.45 16.81 18.55

7 0.99 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.02 14.07 16.01 18.48 20.28

8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.22 13.36 15.51 17.53 20.09 21.95

9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.39 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.55 15.99 18.31 20.48 23.21 25.19

 

11 2.60 3.05 3.82 4.57 5.58 7.58 10.34 13.70 17.28 19.68 21.92 24.72 26.76

12 3.07 3.57 4.40 5.23 6.30 8.44 11.34 14.85 18.55 21.03 23.34 26.22 28.30

13 3.57 4.11 5.01 5.89 7.04 9.30 12.34 15.98 19.81 22.36 24.74 27.69 29.82

14 4.07 4.66 5.63 6.57 7.79 10.17 13.34 17.12 21.06 23.68 26.12 29.14 31.32

15 4.60 5.23 6.26 7.26 8.55 11.04 14.34 18.25 22.31 25.00 27.49 30.58 32.80

 

16 5.14 5.81 6.91 7.96 9.31 11.91 15.34 19.37 23.54 26.30 28.85 32.00 34.27

17 5.70 6.41 7.56 8.67 10.09 12.79 16.34 20.49 24.77 27.59 30.19 33.41 35.72

18 6.26 7.01 8.23 9.39 10.86 13.68 17.34 21.60 25.99 28.87 31.53 34.81 37.16

19 6.84 7.63 8.91 10.12 11.65 14.56 18.34 22.72 27.20 30.14 32.85 36.19 38.58

20 7.43 8.26 9.59 10.85 12.44 15.45 19.34 23.83 28.41 31.41 34.17 37.57 40.00

 

21 8.03 8.90 10.28 11.59 13.24 16.34 20.34 24.93 29.62 32.67 35.48 38.93 41.40

22 8.64 9.54 10.98 12.34 14.04 17.24 21.34 26.04 30.81 33.92 36.78 40.29 42.80

23 9.26 10.20 11.69 13.09 14.85 18.14 22.34 27.14 32.01 35.17 38.08 41.64 44.18

24 9.89 10.86 12.40 13.85 15.66 19.04 23.34 28.24 33.20 36.42 39.36 42.98 45.56

25 10.52 11.52 13.12 14.61 16.47 19.94 24.34 29.34 34.38 37.65 40.65 44.31 46.93

 

26 11.16 12.20 13.84 15.38 17.29 20.84 25.34 30.43 35.56 38.89 41.92 45.64 48.29

27 11.81 12.88 14.57 16.15 18.11 21.75 26.34 31.53 36.74 40.11 43.19 46.96 49.64

28 12.46 13.56 15.31 16.93 18.94 22.66 27.34 32.62 37.92 41.34 44.46 48.28 50.99

29 13.12 14.26 16.05 17.71 19.77 23.57 28.34 33.71 39.09 42.56 45.72 49.59 52.34

30 13.79 14.95 16.79 18.49 20.60 24.48 29.34 34.80 40.26 43.77 46.98 50.89 53.67

31 14.46 15.66 17.54 19.28 21.43 25.39 30.34 35.89 41.42 44.99 48.23 52.19 55.00

32 15.13 16.36 18.29 20.07 22.27 26.30 31.34 36.97 42.58 46.19 49.48 53.49 56.33

33 15.82 17.07 19.05 20.87 23.11 27.22 32.34 38.06 43.75 47.40 50.73 54.78 57.65

34 16.50 17.79 19.81 21.66 23.95 28.14 33.34 39.14 44.90 48.60 51.97 56.06 58.96

35 17.19 18.51 20.57 22.47 24.80 29.05 34.34 40.22 46.06 49.80 53.20 57.34 60.27

36 17.89 19.23 21.34 23.27 25.64 29.97 35.34 41.30 47.21 51.00 54.44 58.62 61.58

37 18.59 19.96 22.11 24.07 26.49 30.89 36.34 42.38 48.36 52.19 55.67 59.89 62.88

38 19.29 20.69 22.88 24.88 27.34 31.81 37.34 43.46 49.51 53.38 56.90 61.16 64.18

39 20.00 21.43 23.65 25.70 28.20 32.74 38.34 44.54 50.66 54.57 58.12 62.43 65.48

40 20.71 22.16 24.43 26.51 29.05 33.66 39.34 45.62 51.81 55.76 59.34 63.69 66.77

41 21.42 22.91 25.21 27.33 29.91 34.58 40.34 46.69 52.95 56.94 60.56 64.95 68.05

42 22.14 23.65 26.00 28.14 30.77 35.51 41.34 47.77 54.09 58.12 61.78 66.21 69.34

43 22.86 24.40 26.79 28.96 31.63 36.44 42.34 48.84 55.23 59.30 62.99 67.46 70.62

44 23.58 25.15 27.57 29.79 32.49 37.36 43.34 49.91 56.37 60.48 64.20 68.71 71.89

45 24.31 25.90 28.37 30.61 33.35 38.29 44.34 50.98 57.51 61.66 65.41 69.96 73.17

46 25.04 26.66 29.16 31.44 34.22 39.22 45.34 52.06 58.64 62.83 66.62 71.20 74.44

47 25.77 27.42 29.96 32.27 35.08 40.15 46.34 53.13 59.77 64.00 67.82 72.44 75.70

48 26.51 28.18 30.75 33.10 35.95 41.08 47.34 54.20 60.91 65.17 69.02 73.68 76.97

49 27.25 28.94 31.55 33.93 36.82 42.01 48.33 55.27 62.04 66.34 70.22 74.92 78.23

50 27.99 29.71 32.36 34.76 37.69 42.94 49.33 56.33 63.17 67.50 71.42 76.15 79.49

p value
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Appendix 3: Daily Return Distributions 
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Appendix 4: Results of Kupiec’s TUFF-Test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence 

Level

Number of 

Observations

Observed 

Number of 

Exceptions

Time Until 

First 

Exception

Test 

statistic     

LRTUFF

Critical 

Value χ²(1)

Test          

Outcome

Top Portfolio

99 % 250 10 70 0.11 3.84 Accept

95 % 250 25 23 0.02 3.84 Accept

90 % 250 36 23 1.01 3.84 Accept

Equity Portfolio

99 % 250 10 9 3.09 3.84 Accept

95 % 250 33 1 5.99 3.84 Reject

90 % 250 50 1 4.61 3.84 Reject

Bond Portfolio

99 % 250 7 33 0.89 3.84 Accept

95 % 250 18 3 2.38 3.84 Accept

90 % 250 30 3 1.21 3.84 Accept

Equity Option Portfolio

99 % 236 12 33 0.89 3.84 Accept

95 % 236 20 2 3.32 3.84 Accept

90 % 236 29 2 2.04 3.84 Accept

Kupiec's TUFF-Test
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Appendix 5: Summary of the Backtesting Results 

 
 

 

TOP PORTFOLIO

Traffic Light

TUFF-

test POF-test

Christof-

fersen

Mixed 

Kupiec

Christof-

fersen

Mixed 

Kupiec

99 % 10 / 250 Red Zone Accept Reject Accept Reject Reject Reject

95 % 25 / 250 Yellow Zone Accept Reject Accept Reject Reject Reject

90 % 36 / 250 Yellow Zone Accept Reject Accept Reject Reject Reject

EQUITY PORTFOLIO

Traffic Light

TUFF-

test POF-test

Christof-

fersen

Mixed 

Kupiec

Christof-

fersen

Mixed 

Kupiec

99 % 10 / 250 Red Zone Accept Reject Accept Reject Reject Reject

95 % 33 / 250 Red Zone Reject Reject Accept Reject Reject Reject

90 % 50 / 250 Red Zone Reject Reject Accept Reject Reject Reject

FIXED INCOME PORTFOLIO

Traffic Light

TUFF-

test POF-test

Christof-

fersen

Mixed 

Kupiec

Christof-

fersen

Mixed 

Kupiec

99 % 7 / 250 Yellow Zone Accept Reject Accept Accept Accept Reject

95 % 18 / 250 Yellow Zone Accept Accept Accept Accept Accept Accept

90 % 30 / 250 Green Zone Accept Accept Accept Accept Accept Accept

EQUITY OPTION PORTFOLIO

Traffic Light

TUFF-

test POF-test

Christof-

fersen

Mixed 

Kupiec

Christof-

fersen

Mixed 

Kupiec

99 % 12 / 236 Red Zone Accept Reject Accept Reject Reject Reject

95 % 20 / 236 Yellow Zone Accept Reject Accept Reject Reject Reject

90 % 29 / 236 Green Zone Accept Accept Reject Reject Accept Reject
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