
HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Electrical and Communications Engineering

Laboratory of Acoustics and Audio Signal Processing

Martti Rahkila

Agent-based Method for Self-study Interactive Web-

based Education

Thesis submitted in partial fulfillment of the requirements for the degree of Licentiate of

Science in Technology.

Espoo, May 17th, 2006

Supervisor: Professor Matti Karjalainen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80699951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HELSINKI UNIVERSITY ABSTRACT OF THE

OF TECHNOLOGY LICENTIATE’S THESIS

Author: Martti Rahkila

Name of the thesis: An Agent-based Method for Self-study Interactive Web-based

Education

Date: May 17th, 2006 Number of pages: 67

Department: Electrical and Communications Engineering

Professorship: S-89

Supervisor: Prof. Matti Karjalainen

This thesis deals with computer-based education of acoustics and digital signal processing. The

focus throughout the thesis is on interactive, self-study web-based applications even though

many issues are of more general nature as well. The emphasis is especially on describing

interactivity while using educational applications and the use of log information for evaluation

of learning.

The goal for the thesis has been to develop a web-based solution for audio signal processing

education with emphasis on advanced, intelligent interactivity.

The basis for this interactivity is the double agent architecture for web applications. The archi-

tecture allows the control of the interaction process by means of logs and using them as a basis

for content adaptation. Furthermore, the novelty of this method is its applicability to evaluation

of learning. The log information, provided by the architecture, can be used for on-line evalu-

ation of users’ requests and thus provides means for content adaptation. Furthermore, the log

information can also be post-processed and used for off-line evaluation of the learning process

by both teachers as well as students themselves. The latter has also pedagogical importance

supporting the development of self-reflection and metacognitive skills.

Keywords: World Wide Web (WWW), Computer Based Education (CBE), interactive web ap-

plications, software agents, audio technology, digital signal processing, evaluation of learning,

content adaptation

i

TEKNILLINEN KORKEAKOULU LISENSIAATINTYÖN TIIVISTELMÄ

Tekijä: Martti Rahkila

Työn nimi: Ohjelmistoratkaisu vuorovaikutteisiin WWW-pohjaisiin

itseopiskelusovelluksiin

Päivämäärä: 17.05.2006 Sivuja: 67

Osasto: Sähkö- ja tietoliikennetekniikka

Professuuri: S-89

Työn valvoja: Prof. Matti Karjalainen

Työ käsittelee akustiikan ja digitaalisen signaalinkäsittelyn tietokonevusteista opetusta. Paino-

piste on kautta linjan vuorovaikutteisissa, itseopiskeluun tarkoitetuissa WWW-sovelluksissa,

vaikka työssä käsitellään aihepiiriä laajemminkin. Työ keskittyy erityisesti vuorovaikutteisuu-

den kuvaamiseen ohjelmistoa käytettäessä sekä käytön yhteydessä saatavan lokitiedon hyödyn-

tämiseen oppimisen arvioinnissa.

Työn tavoitteena on ollut kehittää etenkin audiosignaalinkäsittelyyn soveltuva ohjelmistorat-

kaisu hyödyntämällä nykyaikaista WWW-teknologiaa. Avainasemassa on ollut pyrkiä kehittä-

mään nimenomaan älykkään vuorovaikutteisuuden kuvaamiseen sopiva ratkaisu.

Vuorovaikutteisuuden perustana toimii WWW-sovelluksille suunniteltu ns. kaksoisagentti-

arkkitehtuuri. Arkkitehtuuri mahdollistaa vuorovaikutusprosessin ja sisällön ohjaamisen loki-

tiedon avulla. Menetelmän keskeisin uusi oivallus on tämän lokitiedon käyttö oppimisen ar-

viointiin. Lokitiedot mahdollistavat sekä reaaliaikaisen käyttäjien toimien analysoinnin ja si-

sältömateriaalin muokkaamisen tämän mukaisesti, että jälkikäteen tapahtuvan oppimisproses-

sin arvioinnin. Arviointia voivat jälkikäteen tehdä sekä oppimateriaalin tuottajat (opettajat) että

oppimateriaalin käyttäjät (opiskelijat) itsearviointina. Tällä on oppimisen kannalta tärkeä mer-

kitys ns. metakognitiivisten taitojen kehittymiselle.

Avainsanat: World Wide Web (WWW), tietokoneavusteinen opetus, vuorovaikutteiset www-

sovellukset, ohjelmistoagentit, ääniteknologia, digitaalinen signaalinkäsittely, oppimisen ar-

viointi

ii

Preface

So, it took a little longer than I expected... This project dates back all the way to the mid

1990’s. At the time, the web was something new but already showed great potential as a

tool that might bring the Internet to homes and offices. Which it certainly did. But back

then, it was wild frontiers and nobody knew what kind of technologies would evolve and

survive within the next decade or what purposes would this marvelous tool be used for.

The development has been rapid ever since. However, amazingly, I’m still facing some of

the same technical problems as ten years ago. But to me, it just proves the value of this

research: the goals have been high and the technical problems challenging enough for these

questions to survive the technological revolution that has changed the world around it.

To me personally, the path has been fruitful: like all good research, it has answered questions

but also opened up new questions. I have been able to watch and study the development

of the web both in technical terms as well as contents wise. But most importantly, my

knowledge and understanding of learning itself has grown and become deeper throughout

the project. Which was the reason I got interested in this work in the first place.

I wish to thank the Helsinki University of Technology as well as Tekniikan Edistämissäätiö

for supporting this work during the first four years. Furthermore, I’d like to thank Petter ja

Margit Forsströmin säätiö for their scholarship.

Furthermore, I’d like to express my warmest thanks to my supervisor, professor Matti Kar-

jalainen. I have had a pleasure working with him for several years, not only on this project

but in many others as well. I truly admire his enthusiasm and open mind.

I’d also like to thank professor Lauri Savioja, who has been of help especially during the

last few months of finalizing this thesis. I have known Lauri for several years as well and

he is one of kindest persons I have ever met. His comments have been most valuable and

encouraged me to try to improve the thesis.

There are numerous wonderful people that I have met during the years at the TKK Acoustics

lab. It would be meaningless to try to list all your names: the list would be longer than this

iii

thesis and, besides, you know who you are anyway. You have all taught me a lot for which

I thank you for. The same goes for my loved ones as well.

But it is not over yet! There are still many problems to be solved, many questions to be

answered. Hopefully, the project continues.

Helsinki, May 17th, 2006

Martti Rahkila

iv

Contents

List of Abbreviations ix

1 Introduction 1

1.1 Project background. 1

1.2 Goals . 2

1.3 Structure of the thesis. 3

2 Pedagogical Background 4

2.1 Theories of Learning. 4

2.2 Computer Based Education. 5

2.2.1 CBE History . 5

2.2.2 Classifications of CBE. 6

2.2.3 Internet and Studying. 7

2.2.4 Self-studying. 7

2.2.5 Interactivity. 8

2.2.6 Usability . 8

2.3 Evaluation of Learning. 8

2.3.1 "Semi-automatic" Evaluation. 9

3 Acoustics and Audio Signal Processing 10

3.1 Special Requirements. 10

3.1.1 Use of Sound. 10

v

3.1.2 Transferring Audio. 11

3.1.3 DSP. .11

3.1.4 User Interfaces. 11

3.2 Tools. .12

3.2.1 Programming oriented tools. 12

3.2.2 Laboratory tools . 12

3.2.3 On-line demonstrations. 13

3.2.4 Others. 14

4 Web Technologies 16

4.1 Web Architecture. 16

4.1.1 URL /URI . 17

4.2 Methods for Interactivity. 17

4.2.1 Server-side Technologies. 18

4.2.2 Server-side programming techniques. 21

4.2.3 Client-side Technologies. 25

4.2.4 Hybrid Models . 29

4.2.5 Content Management Systems. 30

4.3 Control .31

4.3.1 User Management. 31

4.3.2 Session Control. 32

4.4 Logs .34

4.5 Content Adaptation. 34

4.6 Personalization. 35

4.7 Agents and Distributed Computing. 35

4.7.1 Learning Metadata. 36

4.8 Security Considerations. 36

5 Proposal for a System Architecture 37

5.1 Requirements and Design Goals. 37

vi

5.2 The Double-Agent Architecture. 38

5.2.1 Functional Description. 38

5.2.2 Operational Description. 40

5.2.3 Operation with Interactive CBE-applications. 41

5.2.4 Designing Interactive Content. 43

5.3 Log-based Evaluation. 43

5.4 Implementation. 44

6 A Case Discussion 46

6.1 Case: Introduction to Signal Processing. 46

6.1.1 Application Description . 47

6.2 Discussion of Implementation Issues. 48

6.2.1 Content and Interaction Modeling. 48

6.2.2 Navigation and On-line Adaptation. 49

6.2.3 User Interfaces. 50

6.2.4 Acoustics and Digital Signal Processing. 51

6.2.5 Mathematics. 52

6.2.6 Logs and Evaluation of Learning. 53

7 Conclusions 55

References 67

vii

List of Abbreviations

AH Adaptive Hypermedia

AJAX Asynchronous JavaScript and XML

API Application Program Interface

ASP Active Server Pages

CAI Computer Assisted Instruction

CBE Computer Based Education

CBI Computer Based Instruction

CBL Computer Based Learning

CBT Computer Based Training

CGI Common Gateway Interface

CMI Computer Managed Information

CMS Content Management System

CSCL Computer Supported Collaborative Learning

CSLR Computer Supported Learning Resources

CSS Cascading Style Sheets

DAML Darpa Agent Markup Language

DHTML Dynamic HTML

DOM Document Object Model

DSP Digital Signal Processing

ECMA European Computer Manufacturers Association

GUI Graphical User Interface

viii

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPR Reliable HTTP

J2EE Java2 Enterprise Edition

JRE Java Runtime Environment

JSP Java Server Pages

JVM Java Virtual Machine

MP3 MPEG-1 Layer III

MPEG Moving Pictures Expert Group

PDF Portable Document Format

RDF Resource Description Framework

RFC Request For Comments

SMIL Synchronized Multimedia Integration Language

SQL Structured Query Language

SVG Scalable Vector Graphics

UML Unified Modeling Language

URI Unified Resource Identificator

URL Unified Resource Locator

W3C World Wide Web Consortium

WBE Web Based Education

WBT Web Based Training

WSDL Web Service Definition Language

WS-RM Web Services Reliable Messaging

WWW, web World Wide Web

XML Extensible Markup Language

XMLP XML Protocol

ix

Chapter 1

Introduction

This thesis discusses web-based education in acoustics and digital signal processing. The

focus throughout the thesis is on the technical design of interactive self-study applications

even though many issues discussed are also of more general nature. The key issue and

novelty of the thesis is the evaluation of learning based on logging of users’ actions. In

order to do this, an intelligent, agent-based system architecture is presented.

The thesis is largely based on conference articles written by the author [95] [94] [93] [97]

[96].

1.1 Project background

The background of this project dates all the way back to years 1996-1997. At the time, the

web was something completely new: a hypermedia platform showing great promise but yet

immature both technically and contents wise. The number one browser was Netscape 2.0

which presented many technological innovations [84], later to become more or less open

web standards. Examples of such technologies are JavaScript [49] and support for Java

Applets [106].

Technologically this was the beginning era of the Internet revolution. Nobody could

tell which of these new technologies would be useful and what they would be used for

eventually. Every new browser version included new features and technologies and the de-

velopment of server-side software was equally fast. It took about 5 years until the situation

stabilized technologically and W3C (World Wide Web Consortium) and other open stand-

ards became the real backbone of the web. During that time, also the new media business

was born, and almost destroyed as well by the wild market expectations. However, dur-

ing that time the Internet grew out from universities and research institutes conquering the

business world as well as homes and ordinary consumers.

1

CHAPTER 1. INTRODUCTION 2

Back in 1996, I had just finalized my Master’s Thesis [92] introducing a stand-alone CBE

(Computer Based Education) application for the fundamentals of digital signal processing

(DSP). The application was built with the Common Lisp based QuickSig [58] DSP envir-

onment developed at the Helsinki University of Technology Laboratory of Acoustics and

Audio Signal Processing. The practical setup included an Apple Macintosh workstation

located at the laboratory and students reserved time for using the application.

Therefore, the obvious starting point for this project was to investigate, if a similar ap-

plication could be implemented and distributed using the web instead of the stand-alone

workstation. Also higher goals were set, for instance independence of the browsers and

platforms as well as building an architecture that would allow development of different

kinds of acoustics and DSP related CBE applications like the QuickSig environment had

done.

1.2 Goals

The goal for the thesis was to develop a solution for computer-based education of digital

signal processing using the World Wide Web (WWW, web) as a platform. The emphasis is

on the process of interaction between the user (student) and the application. Understanding

and supporting learning has been the key driving factor and goal for the solution.

Content:
Acoustics, Audio, DSP

Platform: WWW

Scope of the thesis

Goal: Education

Figure 1.1: The background and scope of the thesis

CHAPTER 1. INTRODUCTION 3

1.3 Structure of the thesis

Figure1.1 represents the background and scope of the thesis. Three major areas are con-

sidered: pedagogical background to provide a solid ground for learning and studying,

acoustics and audio signal processing as the content of the educational material with dis-

cussion of their special requirements and, finally, web technology as the platform for im-

plementation. Based on all three, a method for creating and providing such content is

proposed.

Therefore, the thesis first presents the pedagogical background followed by discussion

of acoustics and audio signal processing as educational content and technical requirements.

After these, the field of web technology is introduced and discussed from the point of view

of interactive applications. Lastly, a solution proposal is presented with discussion of im-

plementation issues as well as conclusions and guidelines for future work.

The thesis has been written with university level education in mind. Especially teachers

of acoustics, digital signal processing and similar fields hopefully will find this work of

interest. However, even though the proposed architecture has been designed primarily for

educational applications, similar features such as log-driven content adaptation may be of

interest in other application areas as well.

Chapter 2

Pedagogical Background

Education: teaching, studying and learning is in itself a wide area of research and practice.

There are numerous ways to teach and study, but learning is the ultimate key and goal for

which they all aim for. This thesis deals with only a narrow field, web-based self-study

education.

2.1 Theories of Learning

Throughout the years, many theories of learning have been developed [63]. These the-

ories emphasize and explore different psychological aspects: after all, learning is indeed

fundamental to the human nature. However, learning is still somewhat a mystery, at least

philosophically speaking.

Based on pedagogical studies and several years of teaching experience, the so-called

cognitive-constructive view of learning [23], [71] has been the guideline for this work.

This theory claims that learning is constructing: new things are constructed using previous

knowledge as "building blocks". The learner tries to analyze, describe and evaluate a new

concept by searching for already learned things and using them to construct the new one.

This learning process inside one’s head is the cognitive part of the theory, and the goal for

all types of education is to start and maintain this process.

However, in the cognitive-constructive view of learning, also social contacts play an im-

portant role. The construction process is fed and accelerated by discussing the topic with

others because this way one can reflect his/her thoughts. In fact, the theory of construc-

tionism asserts that constructivism occurs especially well when the learner is engaged in

constructing something for others to see [31].

Naturally, learning theories have an important role in the development of Computer

Based Education (CBE). In many cases, CBE has been a useful test method for learning

4

CHAPTER 2. PEDAGOGICAL BACKGROUND 5

theories. Recently, the use of web-based learning environments and collaborative learning

tools have been used for exploring especially the social constructivistic theory of learning.

In fact, in the field of Computer Supported Collaborative Learning (CSCL) many tools such

as Moodle [32] have been designed especially that in mind. CBE has also influenced the

development of learning theories. For example, the development of the FLE3 [117] tool has

resulted also in a pedagogic model of progressive inquiry learning (PI model) [51]. Discus-

sion of the constructivistic learning theory and CBE can be found in an article by Gance

[45].

In this work, the focus is on self-study material and the human-computer interaction.

Therefore, the social aspects of constructivistic learning theory have been slightly neg-

lected. On the other hand, more emphasis has been put on the content design questions and

evaluation of learning.

2.2 Computer Based Education

Computer Based Education (CBE) can be defined as the use of computers to help people

learn. However, this definition is too broad for most practical purposes. The commonly

used terms include Computer Assisted Instruction (CAI) which is typically limited to the

use of computers in the actual instructional process. Computer Managed Information (CMI)

includes for example testing and Computer Supported Learning Resources (CSLR) is a

common name for learning resources such as databases as well as collaborative learning en-

vironments. Distance learning covers all of these as long as physical presence of the learner

is not required, however, nowadays the term is mostly used for on-line learning resources,

collaborative tools and making audio and video recordings of lectures and exercises.

Synonyms for CBE include Computer Based Training (CBT), Computer Based Learning

(CBL) and Computer Based Instruction (CBI). Nowadays also the terms Web Based Educa-

tion (WBE), Web Based Training (WBT) etc. are used. The term eLearning is an umbrella

term for all Internet-based education.

2.2.1 CBE History

The history of computer-based education (CBE) is almost as long as the history of com-

puters. Ever since the early days in the history of computers, educational applications have

been developed [78], [63]. For instance in the 1960’s Patrick Suppes developed various

CAI applications for mathematics and other subjects. He designed highly structured sys-

tems featuring learner feedback, lesson branching and student record keeping [28].

In the 1970’s, the era of the mainframe computers, the PLATO system developed at the

University of Illinois grew to become an online community and offered hundreds of tutorials

CHAPTER 2. PEDAGOGICAL BACKGROUND 6

and drill-and-practice programs [28] through simple text terminals.

In the 1980’s, the invasion of personal computers into homes and offices allowed also

the growth of multimedia-based CBE. Numerous tools and applications were developed for

various purposes [57],[104]. Hypertext and hypermedia [26] became reality. Design meth-

ods for educational applications were developed and CD-ROMs became the most popular

media for distributing these applications.

However, the growth of the Internet and especially the World Wide Web (WWW, web)

in the mid 1990’s, launched a new era in CBE. Compared to earlier, the Hypertext Markup

Language (HTML) [121] was an easy way to start developing hypermedia applications and

the Internet made it possible to distribute and access those applications from anywhere.

However, the CD-ROM-based approach allowed more control over the computer resources

and stable run-time environments compared to Internet technologies. Even today the web

still does not provide similar technical establishment for CBE than CD-ROM-based solu-

tions, but despite these limitations, the web has become a de-facto hypermedia platform due

to its easiness of use and sharing of resources over the network.

2.2.2 Classifications of CBE

One way of classifying CBE is through the educational field of interest. Because the ways

how computer technology can be used for educational purposes, depend on the content, it

is natural that these methods have been developed and studied within this field of interest.

Therefore, we may talk about computer-based mathematics education, computer-based lan-

guage education etc. In this case, the term does not classify the CBE methods themselves

but restricts the methods to ones appropriate in that field. For instance the CBE methods

and their requirements for mathematics education are quite different from those of lan-

guage education. Another example: this thesis deals with acoustics and DSP education,

both fields presenting their own requirements for meaningful use of CBE. This classifica-

tion by the content field is especially important, because in CBE, the content defines which

methods, content types and, most importantly, what kind of interaction is appropriate and

needed.

Another classification is to categorize the CBE by type or method such as drill, game,

modeling, simulation, problem solving etc. This categorization is independent of the topic

and methods can be used in various fields of interest. However, typically some methods are

more suitable for some topics than the others. For instance drill and practice have a long

tradition in the language education whereas simulations, modeling and problem solving are

standard methods engineering education, computer-based or not.

Another way to classify CBE is by purpose or goal. For instance we can divide CBE into

self-study applications and learning resources and collaborative learning environments and

CHAPTER 2. PEDAGOGICAL BACKGROUND 7

tools. Or we can divide the use of CBE into basic study material and testing, for example

computer exams. In the case of basic study material, CBE allows the power of multimedia

to be used for providing animations or perhaps audible examples together with text and

pictures. Nevertheless, the goal is somewhat the same as for text books. In computer

exams, the purpose is to evaluate learning regardless of the source used.

Naturally, we can also classify CBE-based on numerous technical criteria such as the

software requirements etc. One of the most important technical categorizations is whether

network, especially the Internet, is used or not and if so, to what extent. Furthermore, like

all education, the Bloom’s classic taxonomy [20] can be applied for CBE classifications as

well!

2.2.3 Internet and Studying

The Internet and World Wide Web can be used for teaching and studying in many ways.

For instance, the learners can use the web search engines for finding information and study

material either for self-study purposes or as course tasks. Nowadays it is common that all

courses have their own home pages with lecture material, instructions etc. Some universities

have even decided to start putting all course material available on the web [68].

The development of interactive technologies for web has allowed various collaborative

applications and learning environments. Moodle [32] and FLE3 [117] are examples of tools

that emphasize the social aspects of learning. With the help of chat applications, message

boards and other collaboration tools it is easy to form study groups even with long distances.

Besides the above mentioned free tools there are also various commercial tools for building

these learning environments, for example WebCT [132] and Hyperwave [52].

Another form of distance learning is making audio and video recordings of lectures and

making them available on the Internet, either on-line or off-line. This kind of systems

require special software tools such as media players and streaming applications. Video-

conferencing has become quite popular though, not only for educational purposes but for

general purpose meetings as well.

2.2.4 Self-studying

Self-studying is a special form of distance learning. There are two different ways to explore

the Internet. Firstly, the learner may browse and find information when needed. With the

help of fast and intelligent search engines, and on-line encyclopedia such as Wikipedia [9]

it is fairly easy to find answers to questions. However, when thinking of learning, this

approach has some limitations. For example, currently it is quite difficult to evaluate the

reliability and origin of the information. Therefore, there is a risk of studying and learning

CHAPTER 2. PEDAGOGICAL BACKGROUND 8

wrong information. Also the easiness of jumping onto sidepaths may lead into losing of

focus: after the study session the learner has learned quite a lot but not necessarily what

he/she was looking after in the first place.

Another approach is to collect information onto ready-to-use packages. Browsing through

a list of previously chosen resources makes the learning process more compact. A simple

practical example would be a set of course pages or a link list.

2.2.5 Interactivity

Just browsing through static material on the web is not so far from reading and studying

a book. At least multimedia demonstrations such as audio examples, images, video and

animation should be used when appropriate to enhance the adaptation of material.

However, for many purposes, interactive content is desired. Interactivity means that the

learner is able to affect and control the content in some way. A typical example would be

a multiple-choice question or evaluation of simple mathematical equations. As presented

later, acoustics, audio and digital signal processing are areas where interactivity plays a

great role in deeper understanding of educational content.

Another viewpoint is that interactive multimedia content is the benefit of using CBE

instead of regular group-oriented teaching methods such as lectures and exercises.

2.2.6 Usability

Usability is always one of the most important issues that should be taken into account when

designing web applications or software in general. Educational applications are especially

vulnerable to this. One have to remember that in human-computer interaction, the computer

cannot use any of the additional, multimodal cues such as facial gestures or variations of

speech that people constantly use in their everyday life. Therefore, under this limited in-

teraction scenario, bad usability can easily ruin the whole learning process. Unfortunately,

usability is not an exact science but very much application dependent [86]. Therefore, it

is vital to recognize the importance of usability already in the design phase of educational

applications and evaluate usability throughout the implementation process. Naturally, one

should also familiarize oneself with some known principles and characteristics of good us-

ability [85].

2.3 Evaluation of Learning

Without doubt, one of the most difficult educational questions is the evaluation of learning.

Whether someone has actually learned something, and what might that be, is unique to each

CHAPTER 2. PEDAGOGICAL BACKGROUND 9

learner.

From the teacher’s point of view, evaluation of learning aims to determine whether the

students have achieved the goals set for a particular topic or course. Typically this is tested

somehow and based on the test results, evaluation is performed. This kind of method is al-

ways restricted to the test, however. Many times the students may actually learn something

completely different from those that are tested. Furthermore, testing does not necessarily

take the students’ individual needs into account. However, when properly designed, the

testing method is a practical and even fairly reliable way of evaluating learning.

From student’s point of view, taking a test is only a small part of the learning. For

example during a course, the students may adapt and understand various things that are

not key goals or even related to the core contents of the course. Therefore self-evaluation

and self-reflection are important parts of learning. This requires metacognitive skills which

may be achieved by experience and with the help of studying methods such as the learning

diary, portfolio etc. Whereas the testing focuses on measuring whether certain goals have

been reached or not, self-evaluation aims for deeper understanding of what and how one

has actually learned.

Still, the testing method is important to students as well. The test results are an important

feedback channel and have great effect on how students will go on with their studies.

2.3.1 "Semi-automatic" Evaluation

Computer-based education makes it possible to automatize, at least partly, the testing pro-

cess. If the test questions are limited to simple, unambiguous answers, it is possible to

directly evaluate the results. This kind of approach is fast and gives the students immediate

feedback. However, the applicability of this kind of tests is somewhat questionable since in

most cases, the test would be too limited with respect to the course or topic.

Another approach is to use computers for gathering the results and allow the teacher to

evaluate the answers. This method allows wide selection of question types to be used in the

test, but it only helps in getting the answers in a compact way. Otherwise, the method is

similar to standard exams.

Somewhere in between is a "semi-automatic" approach, where software is used for gath-

ering the results as well as partially evaluating them. This kind of approach is nowadays

perhaps the most popular in the field of computer assisted testing and exams.

This thesis presents a method for semi-automatic evaluation of learning, which is based

on monitoring and evaluating the users’ path and actions when studying a self-study applic-

ation. This method provides a view of the studying process thus giving also some insight

on the learning process itself, not only the results. Additional information can be found in

chapter5.

Chapter 3

Acoustics and Audio Signal

Processing

In this chapter acoustics and audio signal processing are presented as educational fields of

interest in general and as content topics for CBE and web-based education. The goal is to

provide background information on what kind of requirements they present to educational

applications and what kind of tools are commonly used for educational purposes in these

fields.

3.1 Special Requirements

Acoustics and audio signal processing are fields of special interest to education. First of all,

it is obvious that the use of sound is involved in all education in these areas. Along with

mathematics, figures and text, audible examples are needed. With the web platform, use of

sound presents special technical challenges and requirements that are discussed in the later

chapters [93].

Secondly, in any practical work related to these areas, digital signal processing (DSP)

is used as a tool. Therefore, in universities all over the world various DSP and numerical

tools are used not only for research work but also for education as well. In fact, for many

university students, learning DSP or audio signal processing actually means writing code

and trying it out in addition to standard lectures and textbooks. This means that also basic

programming skills are needed.

3.1.1 Use of Sound

In order to teach and learn sound, one must use sound. This practical fact should be taken

into account in all education of acoustics and audio signal processing. However, it also

10

CHAPTER 3. ACOUSTICS AND AUDIO SIGNAL PROCESSING 11

means that appropriate audio hardware has to be available. For most purposes, the modern

computers have sufficient audio capabilities but adequate loudspeakers or headphones are

also needed. In order to record signals, microphones are needed as well. For more advanced

educational purposes, the quality aspects for these components should also be investigated.

3.1.2 Transferring Audio

In order to provide audio content over the network, one also needs to take transfer require-

ments into account. Similar to video and high quality images, audio also requires consider-

ably more network bandwidth than for example text transfers. In fact, raw CD-quality audio

requires44100 ∗ 16 ∗ 2 = 1411200 bit/s which can be reduced to approximately 1:7 - 1:10

by proper encoding. Furthermore, streaming technology solutions [91] can be applied for

reducing the delay experienced by the user. Nowadays, the audio streaming technology has

become established technology and is widely used for listening and purchasing music over

the Internet. Even the home Internet connections have enough bandwidth to allow encoded

audio data, for example MP3 music, to be downloaded with reasonable speed.

3.1.3 DSP

One of the most difficult technical problems with audio and digital signal processing is the

requirement for computational power. In order to perform the actual processing, one needs

enough computational power and tools. Even though the DSP operations basically involve

only summations and multiplications, the amount of them as well as the calculation speed

needed for practical applications is considerable. Therefore, despite that modern computers

are very powerful and adequate also for DSP, complex algorithms easily become too de-

manding for real-time processing. Luckily, strict real-time requirement is not necessarily

an issue for educational purposes: as long as the processing delay is tolerable in practice, it

is enough.

For web applications the situation is more difficult. If there are many simultaneous users,

the server-side DSP processing may eat up the server’s computational power. Client-side

technologies, however, usually have only a limited support for DSP operations and audio

I/O due to computational and security limitations.

3.1.4 User Interfaces

Audio signal processing education also requires multimodal user interfaces. One should

be able to play and control audio as well as easily access visualizations such as time and

frequency domain presentations of signals. Furthermore, in many cases controlling and

CHAPTER 3. ACOUSTICS AND AUDIO SIGNAL PROCESSING 12

manipulating audio and graphical elements is needed: examples include simple volume

adjustment as well as graphical select and zoom operations.

For more advanced level engineering education, one should be able to use mathematical

expressions or algorithms as an input, not to mention audio as input. Especially in terms of

the web interfaces, implementation of any of these is a challenging task.

3.2 Tools

The power of multimedia for DSP education has been a topic of interest for quite some time

now. Throughout the years various software tools and packages have been developed in

order to provide the students more "hands-on" experience with DSP. Out of these numerous

tools, only a small set has been selected to be presented, categorized and discussed here.

3.2.1 Programming oriented tools

One of the most popular tools for DSP is MatlabR© by Mathworks [69]. It is used not only

for education but for research and development throughout the world. A wide selection

of Toolboxes (programming libraries) makes it a general purpose environment for numer-

ical analysis and mathematics oriented tasks. Several toolboxes include ready-to-use DSP

functionality allowing rapid testing and simulation of algorithms. Matlab also includes sup-

port for GUI design and various multimedia file formats including audio, image, video and

animation.

For educational purposes Matlab is suitable for programming exercises, simulations and

interactive demonstrations. Quite a few DSP textbooks include Matlab exercises or soft-

ware, for example [72], [88], [55], [67].

Other similar tools include Octave [35] and MathematicaR© [133], the former being open

source. All these tools require some programming skills and basic knowledge of their own

programming languages.

3.2.2 Laboratory tools

Laboratory experiments are an important part of all engineering education. They give the

students a chance to practice with special hardware and software adding a true "hands-on"

feel to their studies. In a typical case the students perform predefined tasks in a laborat-

ory equipped with appropriate hardware and software. Naturally, for acoustics and audio

signal processing education, the laboratory space needs to be equipped with special audio

hardware. Also practical acoustical problems such as noise need to be considered.

Examples of stand-alone laboratory-oriented educational applications include the psy-

CHAPTER 3. ACOUSTICS AND AUDIO SIGNAL PROCESSING 13

choacoustical measurements [60] and the loudspeaker response measurements [115], both

built with the QuickSig DSP environment [58]. A more general purpose tool for technical

laboratory experiments is LabViewR© [81]. It includes both software and hardware to per-

form measurements and analyze the measured data. MatlabR© [69] can also be used for

similar purposes, provided that there are appropriate toolboxes and hardware.

3.2.3 On-line demonstrations

In this classification, on-line demonstrations refer to demonstrations that illustrate a single

topic or only a few topics. Combined they may form a more complete educational package,

or may be included in a larger educational context, but from the content point of view,

their purpose is to demonstrate a single concept compared to larger goals of educational

applications. In other words, even combined into larger collections, etc., they do not provide

the contextual relationships between one and another.

An on-line demonstration can be simply audio files, images, animations or more ad-

vanced interactive demonstrations such as Java Applets or Flash applications, discussed

more in chapter4. They may differ in various respects such as educational goals, edu-

cational levels or implementation. In fact, the only common nominator is that they are

available on the web.

An example of an on-line demonstration is a Java Applet allowing the user to interactively

try out some simple digital filtering effects [96]. In this demo, the user can choose an audio

sample and define some filtering parameters. After doing so, the audio sample is filtered and

the user can investigate the processing as a time and frequency domain presentation as well

as listen to the processed sample. The demonstration was implemented as a Java Applet,

which is a client-side technology thus relying on the capabilities of the web browser.

Another audio-related example is the WWWVbap demonstration available on the Hel-

sinki University of Technology Laboratory of Acoustics and Audio Signal Processing web

pages [98]. The demonstration illustrates the VBAP method [90] used for multichannel

audio reproduction. This demonstration is implemented using server-side technology only.

Therefore, it can be operated with any web browser, but for the demo to be contentwise

meaningful, the user should have an appropriate multichannel audio reproduction system to

try it out.

In engineering education and research this kind of demonstrations are very popular and

useful for both self-study and classroom purposes.

CHAPTER 3. ACOUSTICS AND AUDIO SIGNAL PROCESSING 14

Virtual laboratories

As a special case of on-line demonstrations, the rapid growth of Internet has made virtual

laboratories popular during the last few years. A virtual laboratory is a software, possibly

a web-based simulation of a real laboratory. Typically they include a set of interactive

on-line demonstrations that can be used for self-study education or to "dry runs" before

actual laboratory experiments [48]. Some of these virtual laboratories may include on-line

measurement data or even on-line control of laboratory equipment ("remote laboratory")

[41].

3.2.4 Others

QuickSig [58] is a signal processing environment and tool written in the Common Lisp

[101] language. It has been used also for creating stand-alone educational applications

including hands-on signal processing experiments and hypermedia-like navigation.

"Introduction to Signal Processing" ([92], [60]) is an example of a stand-alone CBE ap-

plication made with QuickSig. It included some tutorial level DSP material accompanied

with interactive audio signal processing experiments. The practical setup included a com-

puter and headphones located in the laboratory premises, otherwise there were no other

requirements for placement or hardware. The application was also capable of keeping track

of timing when students worked with it and producing a log file for later investigation. The

CBE application was used in a course as additional material for a couple of years. A more

detailed description of this application can be found in chapter6.

Another example of a CBE application is a "Software Teacher for Loudspeaker Meas-

urements" [115]. It is written using the same QuickSig environment. The stand-alone CBE

application includes some basic theory of response measurements and related hardware and

a real measurement. The theory part includes small questions that the users need to answer,

followed by a measurement simulation and finally a real measurement. The practical setup

involves constructing a real measurement into an anechoic chamber with real loudspeakers

and microphones. In addition to provided equipment, the students are able to measure their

own loudspeakers with the help of this application. The CBE application is actively used

in a course at the Helsinki University of Technology, Laboratory of Acoustics and Audio

Signal Processing.

BlockCompiler [59] is a tool for advanced real-time modeling purposes. QuickSig is

used as a higher level modeling platform but the actual DSP processing is done by creating

C-code, compiling it on-the-fly and running the created "block" in realtime. The system can

be used for especially for creating interactive demonstrations for educational and research

purposes.

CHAPTER 3. ACOUSTICS AND AUDIO SIGNAL PROCESSING 15

Pd (Puredata) [89], Max/MSP [29] and JMax [34] are visual programming tools that

allow the user to create audio signal processing algorithms by using visual blocks and in-

teractively control and run these patches. These tools can be used for various educational

purposes. Being completely free and ported to various operating systems, Pd has become

very popular in just a couple of years.

An interesting way to utilize Pd is through a browser plugin such as [44] and [5].The plu-

gin allows Pd to be operated by using the web browser as an interface. The system requires

that Pd, the browser plugin and some libraries are installed, but given those prerequisites,

one can create advanced interactive demos and applications.

Finally, there are numerous code libraries and code examples available on the Web that

can be utilized in education as well, for instance [6] and [70].

Chapter 4

Web Technologies

In this chapter, the principles of web technologies are introduced and explained in detail.

The purpose of this is to give technological insight of the web-based education also to read-

ers who might not be familiar with application development for the web and to provide

necessary background information for anyone interested in developing their own web ap-

plications. Furthermore, the chapter tries to show why the web is not necessarily the optimal

platform for applications regarding high level management of interactivity and users.

Please note that the HTML code in all the examples is simplified in order to demonstrate

the programming technique in question and is not valid HTML for real life use.

4.1 Web Architecture

The web (World Wide Web, WWW), like Internet services in general, is based on a client-

server architecture (see Figure4.1). The client (i.e. the browser) sends a request to the

server using the HTTP protocol [40]. The server processes the request and returns a re-

sponse using the same protocol. Typically the response is HTML [123] [121] data, but it

can be some other type of multimedia content like images, audio etc. In fact, the HTTP

protocol can be used for transferring various forms of data.

However, the key nature of this transaction process is that it is strictly request-based. All

requests are served one at a time and therefore, each request is unique and has no history.

The basic web architecture does not support any kind of grouping or evaluation of multiple

requests. This has a strong impact on implementation of interactive services and, especially,

produces various security issues.

Another fundamental characteristic of the web architecture is that it has no real support

for interactivity. The HTTP protocol is capable of transferring data in two directions and

it has built-in features for simple transfer of textual parameters, but other than those, any

16

CHAPTER 4. WEB TECHNOLOGIES 17

HTTP

Server Client
HTML Forms
DHTML
Scripting languages
Plugins

Cookies
(HTTP State

Management)

Client pull /
Server push

WWW Architecture

CGI
SSI
Integrated
technologies
Custom servers

Figure 4.1: Basic web architecture

interactivity relies on the capabilities of browsers and servers. To overcome this limitation,

numerous server and client-side technologies have been developed, some of which have

indeed become de-facto standards.

4.1.1 URL /URI

Unified Resource Locator (URL) and Unified Resource Identificator (URI) [16] are address-

ing standards that describe resources on the web. In standard web operation, the browser

sends a request containing the resource URI to the server. The server then interprets the

URI and provides appropriate response. In a simple case, the URI defines a path to the

desired HTML file. In many cases the URIs do not actually refer to any distinct file but

to a program creating the desired response on-the-fly utilizing databases etc. On the other

hand, the URI is an important tool for finding information, especially by means of saving

the addresses for later use.

4.2 Methods for Interactivity

Interactivity means that the user has a way of giving input-based on which the response is

created dynamically. A simple example is a search engine: first the user types in search

CHAPTER 4. WEB TECHNOLOGIES 18

words and sends it to the server. The server does a database lookup and returns matching

data (note, however, that the internal structure of the search engine can be very complex,

think about for example Google, http://www.google.com). For users, this is a simple and

natural way of finding information. However, things get more complicated when the user

would like to choose items graphically or continue the search process by performing addi-

tional searches etc. The method of describing an interactive process only as textual input

and request-based operation, is very limited and not sufficient for advanced applications.

Due to the lack of underlying support for interactivity in the basic web architecture, a

number of methods have been developed to overcome this shortage. These can be categor-

ized in many ways, but perhaps the most fundamental distinction is the one between client

and server side processing (see Figure4.1) discussed in this chapter. With server-side tech-

nologies, the server produces the desired output based on parameters given at the request. In

client-side technologies the situation is the opposite, the browser receives programmatical

instructions and processes them. For many practical applications, a hybrid is needed: both

server-side and client-side technologies are used.

Further divisions can be made based on, for example, how the program code is processed

or located with respect to normal HTML data.

4.2.1 Server-side Technologies

The principle of operation for server-side technologies is that, rather than simply reading

contents of predefined files and sending them over to the browser, the web server produces

the content dynamically. Therefore, instead of having to create all the web content be-

forehand, web authors can write program code to handle varying requests. For interactive

services, the requests may include input parameters given by the user, but this is not always

the case. Server-side technologies can also be used for producing dynamic content without

any user input. All and all, server-side technologies make it possible to control how re-

sources are used and distributed in complex program structures. Therefore, it is no surprise

that these technologies are widely used for almost all kinds of web sites.

One of the major benefits of the server-side approach is the independency from various

browser capabilities other than HTML. The browsers need not to have any special features

besides regular viewing and requesting web content. Furthermore, the server-side operation

allows content providers to fully control the content.

Common Gateway Interface (CGI)

The first and still widely used server-side technology is the CGI (Common Gateway In-

terface) [82]. It defines how and what kind of parameters the web server transfers to a

CHAPTER 4. WEB TECHNOLOGIES 19

program ("CGI script"). It also defines how this program is called, but this does not affect

the interaction process itself. It does have a substantial influence on the server performance,

though.

The CGI programs can be written in any programming language, but some of them are

more suitable to this purpose than others. C and Perl are perhaps the most popular ones.

For well known security reasons, shell scripts should be avoided. The CGI specification is

also server-independent and supported by most web servers.

From the client-side, the CGI program expects parameters. Typically, these are given in

HTML forms [121]. The HTML specification includes a number of input-type elements

which can be used for giving textual input. These parameters are then delivered to a CGI

program using special environment variables. Note, however, that the HTML input ele-

ments can be used together with any server-side technology, not only CGI, even though

they originally appeared in the HTML specification together with the development of the

CGI. In fact, the HTML forms are the basic user interface elements for delivering paramet-

ers to the server regardless of the technology used for handling these parameters.

A special type of input is the file upload mechanism [83]. Instead of sending just textual

parameters, the user can specify a file that the browser uploads to the server. With CGI the

file is handled through standard input and some additional parameters are given specified in

environment variables. The file itself may contain whatever kind of data (text, binary etc.),

it is up to the CGI program to decide what to do with it.

After running the CGI program, the web server captures its output and sends it back to

the browser.

It was soon discovered that the CGI is not very efficient in its way of using external pro-

grams to process data. Also the method for providing parameters in environment variables

is a little clumsy, although it does serve the purpose. Furthermore, the CGI programs are

somewhat limited in terms of accessing the server internal or other resources.

Server modules

Apache [10], one of the most widely used server software, has a modular architecture.

It allows additional modules to be created to enhance the core server functionality. Ex-

amples of such modules are mod_perl [11] and mod_php [113], which tie Perl [131] and

PHP [65] run-time environments closely into the server. This reduces the server load dra-

matically with the expense of increased memory usage though. These modules also allow

new methods for accessing parameters (for example with PHP, the input parameters can be

automatically associated with program variables) and also allow direct processing of pro-

gram code within HTML documents. This makes it possible to divide the program into

smaller segments, components, inside a regular HTML page. Currently there are various

CHAPTER 4. WEB TECHNOLOGIES 20

Apache modules available for different purposes. Even the core operation is actually based

on modules.

Other server integration solutions

Other examples of server-side integrated solutions are Java Servlets and Java Server Pages

(JSP) [50], originally developed by Sun for the Java Web Server product [110]. Nowadays

there are various implementations for a number of server products including a module for

Apache. Being Java-based technologies, JSP and Servlets require the Java Runtime En-

vironment (JRE) [108]. However, they also allow the use of numerous Java libraries and

programming APIs having made them popular and flexible solutions for many complex web

services.

Microsoft has also developed their own solution called Active Server Pages (ASP) [79].

This is similar to the others mentioned except that it is available for Windows server plat-

forms. There are also server specific custom programming languages, for example Lasso

[87]. All of these have their pros and cons from the developers point of view.

Application servers

The application server concept introduces a higher level solution for building web applica-

tions. An application server provides ready-to-use components that can be used as building

blocks for web services. Typically, some database functionality is also included in the

server. This way the needed services can be easily built and customized for different pur-

poses and content providers can buy or rent those components. Many web stores utilize this

kind of services for example with the processing of credit card transactions etc.

Technically, application servers are web servers with integrated functionality for fre-

quently needed web programming tasks and customization. Typically, they utilize XML

[119] and/or SQL [62] databases for inner representation of data and provide programming

libraries or proprietary programming languages for developing applications. The J2EE

framework [105] seems to be quite popular in terms of implementations.

Later Content Management Systems (CMS) will be discussed. In the last couple of

years, these have became popular especially for small-scale non-commercial web service

development.

Specialized servers

Because the basic HTTP functionality is fairly easy to implement, a web interface has been

built into a number of other server software. A typical example would be a modern printer

which can be configured and monitored using a web browser over the Internet. Typically

CHAPTER 4. WEB TECHNOLOGIES 21

these kind of solutions cannot be used as general purpose web servers but only introduce

functionality for limited tasks.

Another type of specialized server is a server that has been programmed to provide only

a certain functionality. They are usually very efficient but of course, content cannot be

easily added or modified. From the point of view of acoustics and digital signal processing,

these might be of interest for example in tasks such as audio streaming, providing DSP

computation etc.

Complete web programming frameworks

J2EE [105] and .NET [80] are programming frameworks for developing web applications

and services. These frameworks provide extensive libraries, programming APIs, program-

ming tools etc. for complex, distributed applications and content presentations. For simple

tasks and web applications these might be too heavy as such, but especially for commer-

cially targeted and complex distributed web services, these frameworks provide many use-

ful solutions and programming practices. For J2EE the programming language is Java, for

.NET C# (pronounced C sharp).

4.2.2 Server-side programming techniques

The various server-side technologies have also affected the programming techniques. These

techniques typically aim for one goal which is to separate the content and the programmat-

ical logic. If successfully implemented, this separation allows the appearance of web pages

to be changed and designed separately from the programmatical logic and vice versa. In

practice, the separation cannot be fully implemented because in many cases, the changes

are not only cosmetic but affect both the appearance and the programmatical logic of the

application. Such separation can also be questioned philosophically, but nevertheless, the

goal for many web programming techniques is to technically separate the HTML design and

the program logic. Later on, Cascading Style Sheets (CSS) [18] have provided additional

means for controlling the appearance of the web pages.

The distinction between the program logic and the HTML design is emphasized by the

fact that many different browsers are used for accessing the services. Especially many older

browsers do not support all the latest HTML or CSS specifications. As a matter of fact,

many browsers accessing the web material are not actually interactive browsers but search

robots and spiders. This makes the technical use of HTML and CSS a challenging task and

further emphasizes the need for separating the content and its appearance. The concept of

machine-understandable data on the Web is further investigated by the W3C Semantic Web

working groups [122], [17].

CHAPTER 4. WEB TECHNOLOGIES 22

Templating

The very first CGI scripts produced HTML code directly as such. It was soon realized that

this is not very convenient if changes were needed. Therefore, a natural solution was to use

a template instead of hard coding all HTML into the script. The template is a special HTML

file that has markings for programmatical content. When the script is called, the template

is read in, the markings are replaced with program results and finally, the constructed page

is returned to the user.

This way the templates provide an easy and natural way to separate the page design

and the programmatical content such as a database query etc. Furthermore, it allows easy

modification of the page layout, because it means only editing of the corresponding template

file.

A practical "bonus" for using templates is that the template files do not need to be placed

available for the public web area. Instead, only the script needs to be accessed. This can

also be considered a drawback: the output of the script depends on 1 to N template files

which may or may not be accessible at the time.

Here is an example of the templating technique using Perl and the HTML::Template-

module [116].

The contents of the template file (template.tmpl):

<html>

<head>

<title>Test Template</title>

</head>

<body>

Today is <TMPL_VAR NAME=DATE>

<p>

The time is now <TMPL_VAR NAME=TIME>

</body>

</html>

A simple CGI script (template-example.cgi):

#!/usr/bin/perl -w

use HTML::Template;

open the html template

my $template = HTML::Template->new(filename => ’template.tmpl’);

fill in some parameters

CHAPTER 4. WEB TECHNOLOGIES 23

my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

localtime(time);

my $date = $mday . "." . ($mon + 1) . "." . ($year + 1900);

my $time = $hour . ":" . $min . ":" . $sec;

$template->param(DATE => $date);

$template->param(TIME => $time);

send the obligatory Content-Type and print the template output

print "Content-Type: text/html\n\n", $template->output;

Output of the script when requested by a browser (http://someserver/path/template-example.cgi):

Today is 29.11.2005

The time is now 14:36:01

Embedding code into HTML

As a contrast to the templating techniques, PHP programming language was perhaps the

first to include the program code directly into the HTML files. This allows a similar separa-

tion of HTML and program logic, but instead of having just markings on the template, code

snippets can be used. When requested, the server reads the code, evaluates their results and

joins them with the rest of the content. This method logically separates the HTML and the

program code, but still keeps them in the same file. Furthermore, the embedding method

keeps the logical connection between the file and its URL.

PHP, JSP and ASP are all based on embedding and there are several solutions for other

languages as well, Perl in particular. The following PHP example clarifies the embedding

method in practice.

The contents of the PHP file (embedded.php):

<html>

<head>

<title>Test Template</title>

</head>

<body>

Today is <?php echo date("d.m.Y");?>

<p>

The time is now <?php echo date("H:i:s");?>

</body>

</html>

CHAPTER 4. WEB TECHNOLOGIES 24

Output of the script when requested by a browser is similar to the previous example

(http://someserver/path/embedded.php):

Today is 29.11.2005

The time is now 14:36:01

Components

In the template method, the HTML code contained special markers to include programmat-

ical content and with embedding, these markers were replaced by program blocks. With

both methods either the markers or the program blocks can be thought also as calls to sep-

arate functional blocks. This is the idea of components. Rather than controlling the overall

page contents all the time, the program logic is divided into smaller functional components.

For example, there might be a component that provides a navigation bar to each page. When

the site structure changes, it is handy to have each page call a component, a subroutine etc.

to provide the navigation bar instead of updating the code in all pages. Typically, the com-

ponents are packed into a library which is then used in all scripts/pages.

Even more advanced solutions include higher level programming languages and APIs for

constructing the pages from skeletons containing only calls to components. Mason [111] is

an example of such advanced system written in Perl.

In practice, the distinction between these techniques is somewhat blurry. Many sites use

templates, embedding and components regardless of the actual programming language and

even multiple techniques together. The following PHP example clarifies the components in

practice.

The contents of the PHP file (component-library.php):

<?php

function htmlheader() {

echo "

<html>

<head>

<title>Test Template</title>

</head>

<body>";

}

function printtime() {

echo "Today is " . date("d.m.Y");

echo " <p>"

CHAPTER 4. WEB TECHNOLOGIES 25

echo "The time is now " . date("H:i:s");

}

function htmlfooter() {

echo "

</body>

</html>";

}

?>

The contents of the PHP file (components.php):

<?php

require("component-library.php");

htmlheader();

printtime();

htmlfooter();

?>

Output of the script when requested by a browser is similar to the previous examples

(http://someserver/path/components.php):

Today is 29.11.2005

The time is now 14:36:01

4.2.3 Client-side Technologies

Another approach for developing interactive applications is to use client-side technologies.

The idea is that program code is sent to the browser, which then evaluates and runs the code.

Typical examples of this kind of solutions are Javascript [49] and Java Applets [106]. With

the first, source code is sent to the browser and with the latter, compiled bytecode is used

and the browser starts a virtual machine to run the code.

In terms of security, this kind of approach is problematic. Downloading program code

from an unknown source and running that code involves major security concerns for the

user. Therefore with most client-side technologies, the functionality is restricted or special

security mechanisms have been built into the solutions.

Another major consideration with client-side technologies is that they are all browser-

specific. Whether the code runs successfully or does what it was intended to do, depends

on the capabilities of the browser used. For application developers and service providers,

this is a major concern, especially with usability issues.

CHAPTER 4. WEB TECHNOLOGIES 26

Javascript

Perhaps the most common client-side technology is Javascript, which is also one of the

oldest. Today, there are several versions and variations available. With newer browsers, the

most widely accepted specification is called ECMAscript [36] which is based on Javascript

version 1.3. It attempts to reach stability and overcome the differences between browsers.

ECMAscript is not a new language, only a specification for Javascript. That is why the name

Javascript is commonly used even if the language used would be ECMAscript conformant.

Through the Document Object Model (DOM) [120], Javascript provides methods for ac-

cessing different parts of the HTML document and modifying them. We have to remember

that basic HTML does not provide us any means for interaction. Therefore Javascript is a

natural choice for simple user interface tasks. However, Javascript is somewhat limited in

terms of computational capabilities and, furthermore, the operation is strictly limited to the

browser to ensure safety of the user.

Javascript, DOM and Cascading Style Sheets together form a technology commonly

known as Dynamic HTML (DHTML). Unlike it’s components, DHTML is not a specifica-

tion but rather just a practical method for developing user interfaces with web browsers.

From security point of view, one should realize that Javascript source code is always

visible to the user. Furthermore, together with web servers that dynamically generate web

pages based on unvalidated input, Javascript can be used for so called cross site scripting

attacks [27].

The date and time example written in Javascript using two different styles (javascript-

example.html):

<html>

<head>

<title>Test Template</title>

<script type="text/javascript">

var now=new Date();

function currentdate() {

document.writeln(now.getDate() + "." +

(now.getMonth() + 1) + "." + now.getFullYear());

}

</script>

</head>

<body>

Today is <script type="text/javascript">currentdate();</script>

<p>

CHAPTER 4. WEB TECHNOLOGIES 27

The time is now <script type="text/javascript">document.writeln(

now.getHours() + ":" + now.getMinutes() + ":" + now.getSeconds());

</script>

</body>

</html>

Java Applets

Java Applets, also one of the oldest client-side technologies, gives developers more control

over the appearance and application behavior. With Applets, compiled bytecode is down-

loaded after which the Java Virtual Machine (JVM) is loaded and runs the code. In the

HTML document, special tags are used to define a certain space that the Applet may use

[106].

Securitywise, Applets operate in a sandbox. With this model, the Applets are allowed to

do pretty much anything inside the sandbox, but have only a restricted access to the outside

world. This makes them quite secure, but also presents problems with certain operations

such as accessing the audio hardware in the local computer. Particularly, an Applet running

with the Applet security manager can play, but not record, audio [109]. However, the user

may configure his/her local Java environment to allow recording of audio with Applets.

Despite being one of the oldest and well documented client-side technologies, the Ap-

plets have suffered from unstability between browsers. Both the available Java Virtual

Machines and the methods for using them in different browsers have been changing quite

often, resulting in browser crashes when loading Applets etc. Recently a study and test-

ing application was created to test Java Applets in practice. The results of this study were

not too promising, in fact from the developers point of view, achieving a stable, browser

independent Applet seems somewhat impossible in practice [15].

The date and time example written as a Java Applet (DateExample.html):

<html>

<head>

<title>Test Template</title>

</head>

<body>

<applet code="DateExample.class" width=150 height=25>

</body>

</html>

And the java source file for compiling the class-file (DateExample.java):

CHAPTER 4. WEB TECHNOLOGIES 28

import java.applet.Applet;

import java.awt.Graphics;

import java.util.*;

import java.text.*;

public class DateExample extends Applet {

public void paint(Graphics g) {

Date now = new Date();

DateFormat df = DateFormat.getDateInstance(DateFormat.SHORT);

String datestr = df.format(now);

DateFormat tf = DateFormat.getTimeInstance(DateFormat.SHORT);

String timestr = tf.format(now);

g.drawString("Today is " + datestr, 10, 10);

g.drawString("The time is now " + timestr, 10, 25);

}

}

Plugins

Perhaps the first client-side technology was the plugins [76]. The idea originated in a fact

that including all necessary functionality for handling various multimedia elements would

result in huge and heavy browsers. The plugins API [74] allows small software components

to be used for interacting with the operating system and other software. Examples of such

plugins are the QuickTime plugin [13] which provides a player for various audio and video

formats and the PDF plugin [1] (Portable Document Format) which interacts with Acrobat

software in order to view PDF documents directly with the browser. Also Java Applets are

often used through a plugin [107].

A popular and interesting plugin is the Macromedia Flash plugin [2], which allows Flash

applications to be included in the web content. The plugin is freely available for a number

of platforms. Flash applications have good support for many multimedia elements such

as audio, video and images. Therefore it has become quite popular for building advanced

user interfaces, small games etc. The technology is also quite robust which has made Flash

replace Java Applets in many cases.

The plugins are platform dependent and problematic securitywise. The plugins API does

not provide any security whatsoever and plugins may use any operating system resources

CHAPTER 4. WEB TECHNOLOGIES 29

Client (Browser)
User Interface:
HTML, CSS, Javascript (DHTML)
Plugin technologies (Applets, Flash)

Server-side technologies:
CGI, SSI, PHP, JSP, Mason etc.

Databases, Information management
systems, computing engines etc.

Web server

Backend systems

HTTP
Request

HTML, CSS,
Javascript,
media...

DBI, LDAP...

Figure 4.2: Hybrid web applications

freely.

Modular browsers

One of the more recent approaches was taken by the developers of open-source Mozilla

and Firefox browsers. These browsers have a modular architecture making it possible to

implement features as extensions [75]. This way the core operation of the browser can be

kept fairly lightweight and the browser can be customized for individual needs. For this,

a special user interface language called XUL [77] was developed and included in the core

browser functionality. Unlike plugins, the extensions are by default platform independ-

ent thus making them an interesting alternative for adding advanced functionality to the

browser.

4.2.4 Hybrid Models

In practice, most web services nowadays use hybrid technologies, i.e. both server- and

client-side technologies. This is a technical reality because for advanced applications neither

approach alone provides the tools necessary for implementing the desired interactivity. Typ-

ically, Javascript and DHTML are used for building the graphical user interface whereas

core application logic is built with server-side technologies. For more advanced user in-

CHAPTER 4. WEB TECHNOLOGIES 30

terfaces, Java Applets or Flash may be used. Figure4.2presents a typical web application

architecture.

Ajax [46] is a more advanced technology for building web applications. It extends the

classic hybrid model by XML-technologies and, especially, asynchronous interaction pat-

tern by using its own Ajax engine for both rendering the user interface as well as commu-

nicating with the server. Implementation requires some technologies (particularly XML-

HttpRequest [73]) only available in the recent browsers but no additional software like

plugins, extensions etc.

4.2.5 Content Management Systems

In the last few years an interesting field of web applications has arisen to help the growing

need of various interactive and community services. These are called Content Management

Systems (CMS) and they are typically based on free and/or open source web technologies

and products such as PHP, Java, SQL databases and Apache. The basic idea is that the

CMS systems offer users tools for updating the content. This way it is easy to distribute the

webmaster duties and keep sites up-to-date.

There are numerous CMS software available ([7], [112]) varying in complexity, features

and requirements. Many of them are open source projects themselves and have evolved

from a simple set of scripts to huge database driven systems with their own component

programming and templating languages. Some of these systems are targeted for group and

community services, some for eCommerce, some for WiKi systems [8], for instance Wiki-

pedia [9]. Examples of education oriented open source CMS systems are Moodle [32] and

Fle3 [117], which both focus on Computer Supported Collaborative Learning (CSCL). Like

discussed earlier, Moodle emphasizes the pedagogical concept of constructionism, i.e. that

making it visible enhances the learning process. Fle3 on the other hand emphasizes pro-

gressive inquiry learning. Also a wide variety of commercial content management systems

for educational purposes, i.e. eLearning tools are available, for instance WebCT [132],

Hyperwave [52] etc.

For many practical purposes the CMS systems are an alternative well worth investigating.

However, one usually needs to study the CMS specific features, requirements and operation

before making decisions, which might be a time-consuming task. Luckily, there are web

sites, which present product comparison tools and example installations, for example the

CMSMatrix [7] and Open Source CMS [112].

CHAPTER 4. WEB TECHNOLOGIES 31

4.3 Control

Due to the nature of the web being request-based, one of the key issues for many advanced

web applications is to how to identify and control a set of requests. Also managing users is

essential in order to control access to resources.

4.3.1 User Management

User management stands for methods used and needed for distinguishing various users from

each other. Typically user management involves a registration service and authentication of

users. There are a number of ways to implement the authentication, perhaps the oldest and

most popular being HTTP Basic Authentication [43]. With this method, the user is asked

for a username and password, which are then kept in browsers memory and added to every

HTTP request that is addressed to the service that asked for them in the first place. This

method is easy to use and implement but it has a few drawbacks. First of all, the method is

insecure in a way that the username and password information is frequently sent over the

network without any encryption. Secondly, the browser keeps the username and password

in memory until explicitly asked to forget them or the browser is closed. This means that

with this authentication method, there is no control over time once the authentication is

successfully accomplished.

The first problem, plain text passwords, can be overcome by using a so called secure

server. A secure server is a regular web server but the browser and server first change keys

that are used for encrypting all traffic between them. This technology is known as Transfer

Layer Security [19] and it can be used with a number of other protocols other than HTTP

as well. For web services that use basic authentication or otherwise sensitive information

(such as personal details, credit card numbers etc.) it is recommended that a secure server

is used instead of a regular web server.

Even the simplest user management schema involves of course also a database of valid

usernames and passwords. A more advanced solution would be to use a separate authen-

tication service. How well such a service can be integrated into web services or web ap-

plications varies in practice. Nevertheless, from both usability and security points of view,

the authentication process should be done only once per session. This is simply a matter

of implementation: there is no need to exchange authentication data all the time, a better

solution is to authenticate once and let the rest be taken care by session control, discussed

next.

CHAPTER 4. WEB TECHNOLOGIES 32

4.3.2 Session Control

One of the most challenging areas of web programming is the session control. A session

is a set of requests and responses that together form a group. A web application typically

uses one or more sessions. Session control stands for methods needed to start and end

a session, identify requests, keep track of the session, calculate unique ids etc. Session

control is needed for content adaptation, personalization and reliable processing of state-

based applications. Session control always requires server-side technologies to be used.

PATH_INFO

The oldest solution to implement session control was set in the CGI specification: the

PATH_INFO-environment variable [82]. This variable can be given a unique value which

is then attached to all requests as part of the URL. However, the id is visible to the users

as well, which makes it unreliable because the user may easily modify the id value. In the

worst case with too simple ids, the user may even gain access to a session by another user.

Still, the PATH_INFO-variable is a useful tool for session control, provided that the unique

ids are really unique and difficult enough for users to guess. Typically, the unique id is

formed using the IP address of the browser sending the request, time and random numbers.

With this method, like typically in all web programming, the possibility of users modifying

the id’s has to be taken into consideration beforehand.

Cookies

Perhaps the most popular single method for session control is to use HTTP cookies [64]. A

cookie is a small textual information that is set by the server, stored to a disk by the browser

and attached to all requests addressed to the service that set it in the first place. Cookies may

have a time limit and valid address space, but they are also limited in size. Similar to HTTP

Basic Authentication, cookies are transparent to the user and travel in the HTTP headers.

This makes them a practical solution. With session control, a unique id is given as a cookie

and then read back with each request to identify requests. Thus the cookie identifies the

browser unambiguously.

Cookies have some unfortunate side effects and can be misused by service providers.

The life time of a cookie can be set freely, allowing them to be set for a long time. This

makes it possible for service providers to use cookies for tracking users, without users even

knowing about it [47]. This has given cookies a very bad name, even though the cookies

are harmless as such. Therefore, for session control purposes, the lifetime of the cookies

should be set to current session only. Modern browsers also include advanced control of

cookies that may make the cookies completely unusable to web developers.

CHAPTER 4. WEB TECHNOLOGIES 33

Other methods

Other methods for session control include the use of the HTTP_REFERER environment

variable [82] and hidden form fields. The former can be used for determining what was the

referring page and the latter can be used for complete navigation provided that one script

handles all the requests.

IBM developed a so called reliable HTTP (HTTPR) [114] to solve the session control

and other problems related to stateless HTTP. However, HTTPR never received sufficient

industry agreement around it. Therefore, IBM has continued with a new protocol, Web

Services Reliable Messaging (WS-RM) [53] together with some industry partners.

Discussion

All of the above methods are somehow unreliable or suffer from limitations. That is why

implementation of a reliable session control requires use of many methods combined. First

of all, the PATH_INFO-method together with cookies ensures a fairly good control. Even

better way is to use two unique ids instead of just one. This way they can be compared and

proceed only if they both match, However, the crucial element in these methods is in fact

the unique id used. To ensure reliability, the unique ids have to be long enough and random

enough so that they cannot be easily guessed. For example the Apache web server has

a module (mod_unique_id) [12] that generates a unique id for each request using various

methods for making it random, yet safely alphanumeric. Secondly, the use of authentication

and secure server with strong encryption ensures that the information cannot be modified

easily. Modern Internet banking services utilize all of these techniques to ensure reliable

operation.

One interesting technical problem related to session control is what information should

be saved and how to store it. For storing the information, typical solutions are temporary

files and/or database. In both cases, the information is stored so that it can be accessed with

unique id. Also to prevent denial-of-service attacks one has to use time-based control for the

session information and regularly clean up old session information. Otherwise the server

disks may become full or database capacity limits reached resulting in a non-functional

service.

What information should be stored, depends on the application itself. For some cases it

is enough to store only the current state of the web application, for example the page that

the user is currently exploring. Sometimes the state itself can be quite complicated making

it difficult to design the session data structure and verification of the data.

However, many applications require also earlier information, i.e. that the history of usage

of the application is stored as well as the current state. This is the case for example for

CHAPTER 4. WEB TECHNOLOGIES 34

applications using session control for content adaptation.

4.4 Logs

All general purpose web servers keep log files of the requests that they have received and

processed. This is necessary so that the server resources such as disk capacity, network

bandwidth, computational power etc can be efficiently used and prevent problem situations.

Furthermore, in terms of security, the logs are essential in detecting and solving hacking

attempts etc. [94]

A typical web server stores at least the date and time, IP address and the request into

the log file. Additionally, the browser (User Agent) and referring page (HTTP_REFERER)

might be stored. For busy servers, the log files easily become large and special log analyzer

software is needed for parsing the files efficiently. If session control is used, session iden-

tifiers can also be stored in log files. When using any server side technologies, information

similar to log files is accessible to each request. However, parsing log files directly during

processing of requests is both inefficient and impractical.

It should be noted that the log files are of special interest also with privacy concerns. Even

though the information stored in log files does not reveal any privacy information as such,

they might be useful for finding such later, especially the IP address. However, the privacy

concerns should always be taken into account when developing applications, especially if

also user authentication is used.

4.5 Content Adaptation

Content adaptation means that each request and response are adapted based on user’s earlier

choices. A simple example would be a narrowed down search and another a survey, where

upcoming choices are determined based on answers in earlier questions. In this field, known

as adaptive hypermedia (AH) [25], active research is being done on adaptation algorithms

and user modeling techniques [24] as well as systems and frameworks such as AHA! [22].

The AHA! [3] is an open-source, Java-based adaptive hypermedia engine, which has

been developed at the Eindhoven University of Technology, in the Database and Hyper-

media group. AHA! provides content adaptation by conditionally including fragments or

objects and through link adaptation by conditionally changing the color of link anchors.

The adaptation is performed each time a page is requested from the server. Furthermore,

AHA also includes possibilities for the adaptation of the presentation of the content and

even a possibility for the end users to change their user model.

The adaptation in AHA! is a two-stage process. Authors can define rules that translate

CHAPTER 4. WEB TECHNOLOGIES 35

user interactions (page accesses) into user model updates. The user model instance is then

used to determine how the presentation is adapted. There are three ways to author the

adaptation rules: by generating the rules from concept relationships using the graph author

tool, by manually creating the rules using the concept editor tool or by manually editing an

XML file containing the concepts and adaptation rules.

However, even though the AHA! system is a sophisticated tool for implementing adaptive

web content, it has not been designed for educational applications particularly in mind. For

educational applications, there is a possibility to present and evaluate adaptive multiple-

choice tests, which can even be randomized to avoid circulation of lists of answers among

students. However, the user interaction is still somewhat limited to simple link following

or multiple choice questions, which limit the applicability of the system for educational

purposes.

Further discussion of content adaptation can be found in the later chapters.

4.6 Personalization

Personalization can be understood as a certain type of content adaptation, but the term

personalization usually refers to allowing users explicitly set some preferences with respect

to the application [21]. The preferences can include layout related options such as "plain

HTML" vs. "Flash content" etc. This kind of preferences are sometimes critical because of

limited bandwidth or browser capabilities. Ketamo [61] has studied this kind of user and

platform adaptation in web-based learning environments.

Especially in the case of users with disabilities, personalization is necessary. For example

a blind person needs to browse the web with the help of a speech synthesizer and "fancy

animations" etc. serve no purpose for the user. The World Wide Web Consortium (W3C)

has released special accessibility guidelines for developers and service providers [118].

4.7 Agents and Distributed Computing

An agent is a piece of software that operates between the user and resources. The classic

definition says that the agent has to be independent and aware of itself [39]. For this work,

however, the concept of agent is understood in a simpler manner: it is simply a software

construct that represents and models both the user and the teacher.

Furthermore, this thesis does not focus on multi-agent systems [39], currently an active

research topic in the field of distributed computing and information systems. Examples

of such topics include the Semantic Web [122] and the DARPA Agent Markup Language

(DAML) [30]. Basically these define specifications for presenting data and metadata in

CHAPTER 4. WEB TECHNOLOGIES 36

a way that would allow computers to understand information and deal with information

relations. This would allow much more advanced searches, a cornerstone for the future

web infrastructure.

Distributed computing is also an interesting topic regarding this work. Basically it means

accessing computational resources over the network. Together with the methods for access-

ing information, also methods for calling software routines in other computers have been

developed as well as methods for defining web services in a way allowing programmat-

ical access to the services. Specifications such as SOAP/XMLP [130] and XML-RPC [99]

are examples of the former. The Web Services Description Language (WSDL) [124] is a

recommendation for describing an interface to a web service such as an internet store, a

search engine etc.

4.7.1 Learning Metadata

Even if metadata would be technically defined in a standard way like XML and RDF [126],

the metadata content is always application specific. In order to exchange information, vari-

ous metadata standards have been developed. These define what information should be

included in the metadata. From educational applications point of view at least the IMS

Learning Resource Metadata [56], Dublin Core Metadata [33], IEEE Standard for Learning

Object Metadata [54] specifications as well as information collectives such as Ariadne [14]

and Globe [37] are of interest.

4.8 Security Considerations

When developing any Internet service, security is always an issue. Interactive web applica-

tions are no exception to this.

The golden rule for any web programmer is that because of the stateless nature of the

web, each request has to be verified every time. No information that comes from the browser

can be trusted at any stage of processing, even if session control techniques were used for

identifying requests. For advanced web applications, this verification process might become

one of the key technical challenges in implementation because they involve a number of

layered technologies. Further discussion can be found for example in the W3C Security

resources [103] and Lincoln D. Stein’s book [102].

Furthermore, no information received from the user should be passed on unfiltered even

if it would not be needed for the actual processing on the server side. There are various

examples of so called cross-site scripting attacks [27] where unwanted scripting information

have been passed through a badly written web service.

Chapter 5

Proposal for a System Architecture

The previous chapters have presented and discussed the educational and technical back-

ground for interactive web-based CBE applications. Based on that background, there is a

need for a system level architecture that takes the special requirements of educational ap-

plications into account. This chapter presents a proposal for such system level architecture,

originally presented in [95]. The architecture tries to address the needs for interaction and

adaptation required by educational applications and, even though the proposed architecture

itself is abstract and general purpose, its origins and motivation lie in the fields of acoustics

and audio signal processing. Furthermore, the question of semi-automatic evaluation of

learning using this architecture is discussed.

Even though the solution proposal itself is not application- or platform-dependent, such

an architecture can be implemented in numerous ways. The most appropriate methods of

implementation do depend on the desired application or applications but also on available

resources in terms of server software and hardware, amount of users, level of computational

load etc. More discussion can be found in the next chapter.

5.1 Requirements and Design Goals

The most important requirements and goals for the design of the architecture have been

• Session control: Capability of identifying the user and his/her activities during a

session

• Control of interactivity

• Independence of platforms and applications

• Support for multiple simultaneous users

• Support for multiple CBE applications

37

CHAPTER 5. PROPOSAL FOR A SYSTEM ARCHITECTURE 38

Control + Data

ServerClient

Application
Control

Communications
Server

Content
Database /

Engine

Double
Agent

User
Interface

Presentation
Control

Figure 5.1: An overview of the architecture

• Compliance with existing technologies

• Extendability to future technologies

Many of these design principles are common to any advanced software design or Internet

services. Therefore, it is obvious that the architecture can be used for purposes other than

education as well. Still, the primary background and design goal has been to provide a

system suitable for self-study CBE applications.

5.2 The Double-Agent Architecture

The solution, a double-agent architecture tries to match the above mentioned criteria. It is

based on a software agent which is responsible for both analyzing users’ requests as well as

providing appropriate content, hence the name "Double-Agent architecture".

5.2.1 Functional Description

A functional description of the architecture is presented in Figure5.1. From a high-level

point of view the architecture consists of the user interface, the double agent and content.

The essential idea is that every request made by the user is verified and processed by the

agent first. Therefore, the user can only see the agent and all functionality is hidden behind

the agent. Furthermore, the agent is responsible for all responses sent back to the user.

Therefore, the agent also has control over what the user sees. This dual nature of the agent

gave the name “double agent” and basically simulates an educational process similar to the

one between a student and a teacher.

CHAPTER 5. PROPOSAL FOR A SYSTEM ARCHITECTURE 39

However, behind the scenes, plenty of details are needed. First of all, the agent needs

a session control mechanism to identify and verify the request and evaluate it with respect

to earlier requests. A basic session control functionality requires authentication, request

identification mechanisms, request history and logging. Attention is needed also for certain

computer security considerations. As discussed before, there are several ways to implement

session control.

Some additional parameters related to user’s personal preferences or available technical

environment are also needed. For example, the user’s browser software may only support

certain features or the user may want to set some accessibility options. A special case of

interest to educational use is the level of foreknowledge: the user may be a beginner or an

advanced user. If supported by the application, this would certainly affect its behavior.

The most challenging component in the architecture is the application control block. It

is responsible for finding or creating a suitable response for the request. In a simple case, it

could be a list of pages that together form the CBE application accompanied with a control

logic that describes the order of the pages. In other words, it defines the application with

respect to the current request and request history. For example, if the application has been

divided into several topics, and one topic consists of several web pages, the application

control block makes sure that pages within a topic, and topics themselves, are given in the

correct order.

With interactive applications, that is, when users provide parameters or data along with

their requests, it is up to the application control component to validate that information.

Technically, this is a very challenging question and it is discussed in more detail in the next

section.

The content itself is either stored in a database or created on-the-fly. In any case, the

response is always created on-the-fly, but at least parts of the content can be stored in a

database. The application control block contains the necessary indexing keys for getting the

content from a database or rules for creating the content. Additional information, metadata,

can be used for making a search in the content, for example finding additional material or

similar pages to previous ones.

Finally, the presentation control block transforms the content into suitable form with

respect to user’s preferences and capabilities of his/her current browser. The agent also

adds session parameters etc. to the response so that for instance links point back to correct

session and so on.

From functional point of view, it is a matter of opinion whether the double agent is

defined as a structure containing all the described functional blocks or are the application

control block and presentation block considered to be separate blocks. With implementa-

tion, separation would be useful in any case, but from the user’s point of view, the whole

CHAPTER 5. PROPOSAL FOR A SYSTEM ARCHITECTURE 40

Control + Data

ServerClient
(Browser)

Application
Control Logic /

Metadata

Identification /
Verification /

Input Validation

Presentation

Double
Agent

Content
Database /

Engine

User
Interface

Figure 5.2: Request operation chain

functionality appears to be done by the agent.

Another interesting way to describe the functionality of the system is to think that it

consists of two or more agents. For example dividing the functional agent structure into two

separate agents, the user agent and application agent, gives another meaning to the double

agent definition. Even more agents can be included: the error agent, presentation agent etc.

Still, the multi-agent formalism doesn’t change the basic dual nature of the system that is

experienced by the user.

5.2.2 Operational Description

A typical operation chain of the architecture is presented in Figure5.2. It starts with the

agent receiving a request from the user. The request is identified, verified and passed on

to the application control level. Based on the information given by the agent, appropriate

content is fetched from a database or created on-the-fly. Finally, the response is created by

transforming the content into appropriate presentation.

Furthermore, there are three special cases of operation: logging into the system, logging

out of the system and errors. Logging into the system requires additional functionality for

authenticating the user and preparing the session control. This information forms the basis

for later operations. In addition, mechanisms for creating a new user account, changing

passwords or closing a user account are needed as well as defining what the user is allowed

to do, in other words, what is the current role of the user.

The logging out phase is another special case of interest: a mechanism is needed for

terminating the session and saving the current status of the user. In a normal situation it

would be expected that the user explicitly logs out from the system. However, this can’t be

trusted and, therefore, a timing criteria etc. is needed for determining whether the user is

still using the application or not.

CHAPTER 5. PROPOSAL FOR A SYSTEM ARCHITECTURE 41

Server

Double
Agent

User
Interface

Client
(Browser)

Step 1:
Getting / creating content

Step 2:
Presentation / session

 transformation

Step 3:
Identification / validation

of input

Step 4:
Evaluation of input

Figure 5.3: Process chain for interactive operation

Error situations are particularly difficult because there are two basic kinds of errors: sys-

tem level errors and content-oriented errors. System level errors include errors such as

session control violations, security attacks and server malfunctions. Content-oriented or

application level errors are related to the content: malformed input parameters are a typical

example. In a usual operation, it would be the responsibility of the application control block

to provide the agent with means for determining content-oriented errors.

Many of these operations are application-specific. For instance, verifying the input or

saving the status of the user when logging out, requires operations strictly dependent of the

application that is used. This makes the implementation of the system quite demanding. On

the other hand, session control and authentication can be implemented in a generic way and

in fact, such operations are often included in existing development tools.

5.2.3 Operation with Interactive CBE-applications

Interactive operation requires some further explanation due to various implementation tech-

nologies. As discussed earlier, there are three different possibilities for creating interactiv-

ity: server-side, client-side or a combination of both server- and client-side technologies.

The most widely used solution is to use server-side technologies and limit client-side

operations to input fields such as HTML forms. This approach has the advantage that the

application provider has complete control over the interaction process. Another benefit is

that the processing does not depend on the client software properties. In this case, the

interaction is based on and limited to rather simple parameter transfer. However, in many

applications this would be sufficient.

The basic server-side interactive operation involves four steps (Figure5.3): creation of

interactive content, modifying it to match current presentation and session requirements,

sending the content to the user, receiving another request, validation of incoming parameters

CHAPTER 5. PROPOSAL FOR A SYSTEM ARCHITECTURE 42

and evaluation of the actual content sent by the user. Note that process actually starts with

the first request made by the user. The numbering of steps in figure5.3 is only used to

underline that the content defines the possibilities for interactivity. The process is actually

circular.

An example will clarify the situation: A CBE-application includes predefined true/false

or multiple-choice questions. First the questions are fetched from a database. Secondly,

they are inserted into HTML template file and it is verified that the links point back to the

agent. Possibly, some session control parameters are added. In the third step, the user

sends the answer back. The input is then first checked that it matches the current session

parameters and secondly that the parameters are indeed true/false-answers or valid choices.

Finally, the input needs to be evaluated with respect to the content: are the answers correct

and how to respond, if they are not.

A more challenging situation is when the question parameters are created on-the-fly. In

that case, the operation chain is the same except that the questions are not fetched directly

from a database but instead created or varied on-the-fly using some rule-based or similar

processing.

Sometimes this kind of interaction is not satisfactory, however. The use of client-side

solutions provides additional functionality that can be of interest. Typical examples are

animations, simulations and graphical games. If this kind of interactivity is wanted, client-

side technologies are needed. This requires even more operations from the architecture,

because not all clients provide the necessary capabilities and the client-side elements need

to communicate with the agent.

An example illustrates the situation: The content is a standard web page with a simulation

made as a Java Applet as part of it. Now, the operation chain requires an additional step,

verification that the client-software actually is capable of presenting Java Applets [15]. If

it is not, the user has to be informed or alternative content created instead. Of course, the

testing of browser’s capabilities can and should be included in the logging in phase.

Another difficulty with the client-side technologies relates to getting and transferring in-

put from the user. Basically, client-side technologies do not transfer any input back to the

server unless specifically programmed to do so. This is not even possible in all situations.

Even if they would, the communication needs to go through the agent. This requires that

the client-side element can be adjusted with an interface between the element and the agent.

Once again, an example illustrates the issue. A Java Applet simulation is programmed to

send information about the user’s operations back to the server. Because all communic-

ations go through the agent, the Applet needs to be adjusted with the agent address and

session parameters. Furthermore, a specific interface needs to be created so that the agent

understands that the input comes from the Applet. In the case of Java Applets and Flash

CHAPTER 5. PROPOSAL FOR A SYSTEM ARCHITECTURE 43

applications this can be done using initialization parameters located inside the appropriate

object/embed/applet-tags or use the built-in networking routines to fetch parameters separ-

ately, but other client-side technologies might not have these capabilities. If so, the only

choice would be to create the whole active element on-the-fly. In practice, this might be

impossible.

5.2.4 Designing Interactive Content

Thinking of the discussion above, it is obvious that even though the proposed architecture

provides guidelines for design and implementation, it has to be taken into consideration

already in designing interactive content.

Perhaps the most difficult task is to describe the internal logic of the CBE application in

a way that the double agent can use it. In a design phase this requires detailed modeling of

the interaction processes.

Another tedious design problem is to cope with various content-related error situations.

For example for any question-like task there has to be a clear understanding of how to

evaluate the answer and what to do if the answer is correct or not.

The use of metadata is also an important question already in the design phase. Should

the material be accessible through metadata-based search and if so, what metadata would

be needed to describe the content in a sufficient manner?

Despite of these problematic issues, one needs to realize that they are more of a systemat-

izing factor rather than a hindrance. In fact, to some extent, the architecture allows software

tools to be built for helping with the content design, after all, any content module needs to

be described internally in the system anyway. All and all, taking these issues into account

already in the design phase will result in clear and robust content modules.

5.3 Log-based Evaluation

One of the benefits of the proposed architecture is the ability to use log information for

content adaptation and evaluation of learning [94], see Figure5.4.

As a built-in feature of the architecture, it is continuously monitoring user’s request his-

tory and logging that information. In fact, the session history is used for on-line content

adaptation by using it partly for determining what content is provided next. This way, the

user can be guided throughout the learning process. For example, if the content is divided

into blocks that can be studied separately but still maintain certain hierarchy, the user can

be proposed to study certain blocks before moving onto others. A more advanced example

would be the use of tests before allowing the user to access more advanced material. Other

criteria such as timing, can also be used.

CHAPTER 5. PROPOSAL FOR A SYSTEM ARCHITECTURE 44

Server

Double
Agent

User
Interface

Client
(Browser)

Log data

On-line control
Content adaptation

Student record
Self-evaluation

Teacher record
Evaluation and guidance

Figure 5.4: The log information can be used for three kinds of learning evaluation

The log can also be given to the user after the session. Not only it provides the user

with statistical information but helps identifying content that has taken longer to go through

and a picture of the whole session and navigation structure. Thus the architecture provides

also a valuable tool for self-evaluation, an important part of learning as mentioned before.

In fact, the user may automatically be given a report or certificate that he/she has studied

the following content. Such a report could include even quite detailed information such as

content descriptions, usage of time and navigation path through the material.

Furthermore, the log can be used by a teacher for exactly the same purpose. This way

the teacher can get a picture of the students’ learning process and be able to provide further

guidance and instructions for students. By analyzing the logs, the teacher will also get

details and statistical information that will help developing the material further on.

From learning point of view, the use of logs for describing and evaluating the learning

process is the strongest benefit of the proposed architecture.

5.4 Implementation

There are various solutions and ways to implement self-study CBE applications. The pro-

posed architecture is only an abstraction that emphasizes the interaction process between

user and CBE application. To some extent, it makes the implementation more complex, on

the other hand it provides a systematic approach for design and implementation.

Questions such as what would be the best way to implement the architecture or what

tools should be used, are large and complex issues. The implementation problematics can

be divided at least into the following categories:

• Modeling of educational content and content relations

CHAPTER 5. PROPOSAL FOR A SYSTEM ARCHITECTURE 45

• Modeling of interaction processes

• Web-based User interface

• DSP computation

• Audible and visual presentation of sound

• Presentation of mathematics

• Combined use of different technologies

• Security considerations

Discussion of these topics can be found next in chapter6.

Chapter 6

A Case Discussion

This chapter discusses the applicability and implementation of the architecture in general

and in a particular case of a tutorial level CBE application regarding digital signal pro-

cessing concepts. The goal is to point out and emphasize the application specific require-

ments and implementation problematics through a case study.

6.1 Case: Introduction to Signal Processing

"Introduction to Signal Processing" was a tutorial level CBE application developed by the

author as a Master’s Thesis project in 1995-1996 [92]. The CBE application was designed

for 1st to 3rd year university-level engineering students. A background with mathematics

and physics was assumed but the students were not expected to have any prior knowledge

of signal processing. The application was used in a course "Fundamentals of Acoustics

I" at the Helsinki University of Technology, Laboratory of Acoustics and Audio Signal

Processing. The application was additional material and was not an obligatory part of the

course requirements. During two years time, the application was used by 40-50 students.

The "Introduction to Signal Processing" was a stand-alone application running on top of

Macintosh Common Lisp software and QuickSig DSP environment [92]. It was running

on a single Apple Macintosh computer located in the laboratory. No network connections

or resources were used. The graphical user interface was also completely Lisp-based, even

though it included basic hypermedia functionality such as hyperlinks within the application.

The starting point for this project was to investigate if the application could be used and

distributed through the web instead of a stand-alone workstation. However, it turned out to

be more difficult than expected. As discussed in this chapter, even today we are still facing

some of the same technical questions that we had when the project started.

46

CHAPTER 6. A CASE DISCUSSION 47

Figure 6.1: Main view of the "Introduction to Signal Processing" CBE application

6.1.1 Application Description

The "Introduction to Signal Processing" CBE application covered some fundamental topics

in digital signal processing such as signal properties and presentations, analog-to-digital

(A/D)- and digital-to-analog (D/A)-conversion and digital filters. The user interface of the

application was a block diagram presented in Figure6.1. Each block represented a topic

(e.g "chapter") that the student could choose by clicking on the block. After going through

a content block, the student returned to the same view allowing he/she to continue with

another topic. Furthermore, a default path was made available so that the students could

also navigate using only back- and forth-buttons.

Each content block consisted of several pages of text, figures and audio samples along

with simple questions and interactive tasks such as filtering examples etc. After studying

through all the topics, the student was allowed to enter the "Grand Finale", an interactive

experiment summarizing most of the application content (see Figure6.2). This experiment

allowed the student to perform digital filtering with different basic filter types, adjust the

filter parameters, see both time and frequency domain representations of the signals and

listen to the signals before and after the filtering operation.

The "Introduction to Signal Processing" CBE application was designed using the design

method for computer-based learning environment by Lifländer [66], which was based on

pedagogical theory by Engeström [38]. This theory is focused only on the cognitive learning

CHAPTER 6. A CASE DISCUSSION 48

Figure 6.2: Final view of the "Introduction to Signal Processing" CBE application

process and does not take social aspects of learning into account. Nowadays, the theory has

been superseded with the constructivistic view of learning, but at the time, it was a valid

and useful model especially for self-study CBE applications.

6.2 Discussion of Implementation Issues

There are several possibilities and technologies to implement the double-agent architecture.

Based on my personal experiences, I would choose some commonly used web program-

ming language and server-based solution as the basis of implementation. One of the most

important requirements is a large availability of programming libraries or modules, which

make Perl, PHP and Java candidates of special interest. For information storage, databases

are needed. SQL or other relational databases would be of interest, because they are widely

supported in web application development. In addition, XML would probably be needed

for the representation of internal data structures.

6.2.1 Content and Interaction Modeling

With the implementation, perhaps the most difficult question is how an educational ap-

plication and its internal structure should be described in terms of software. In other

words, how to model and describe the interaction processes and related control mechan-

isms. After all, the internal structure and the interaction processes are very content-oriented

CHAPTER 6. A CASE DISCUSSION 49

Figure 6.3: Navigation history for the "Introduction to Signal Processing" CBE application

and application-dependent. In a simple case such as an interactive demo, the internal struc-

ture is fairly easy but the more content there is, the more complex will the internal relations

get. Also coping with error situations is a true challenge for complex interactive material.

At the moment, there seems to be no appropriate specifications for describing advanced

content structures and interaction that would be directly applicable here. The Unified Mod-

eling Language (UML) [4] is a commonly used tool for describing interaction processes

and even business models. However, UML was designed specifically as a design language,

not implementation, which would be needed here.

AHA! [3] presents a model and tools for creating concepts and rules. Whether this would

be suitable for more advanced interaction processes, would probably be worth investigating.

In comparison, the internal structure of the "Introduction to Signal Processing" CBE

application was defined by Lisp objects and functions. When the last page of each content

block was reached, it was checked if all pages of that block had been visited and the whole

block could be marked as visited. Every time the student returned to the main view, a

function was used for determining which blocks were left to study or if they all had been

already visited and the student allowed to continue to the "Grand Finale".

6.2.2 Navigation and On-line Adaptation

The "Introduction to Signal Processing" CBE application continuously kept a record of vis-

ited pages in memory. The navigation history was also available to the user (see Figure6.3).

The user could return to any visited page by choosing the page from a list. This function-

ality is similar to the "Back" and "Forward"-navigation of web browsers. In addition, the

application included a navigation map similar to "sitemaps" available on many websites.

CHAPTER 6. A CASE DISCUSSION 50

The internal structure of the application was so simple that there was no real challenge

in terms of on-line adaptation: the simple "chapter"-checks, the default path, which was a

list of pages in predefined order and the navigation history, which kept record of the visited

pages were more than enough to cover the users’ needs to navigate within the application.

Furthermore, all pages had been designed so that they were unique in terms of content, in

other words, each page could be accessed only within one content block and there were no

conflicting paths to pages. In addition, the number of pages and topics was so small that

the whole application structure and content relations could be described as a simple list of

pages, chapters and visited-flags and kept in memory the whole time the application was

used.

Similar functionality could be achieved with a web-based implementation as well. How-

ever, because of the request-based nature of the web, one needs to use session control tech-

niques to ensure that each request can be mapped correctly with the internal structure of

the application and navigation works expectedly. Because, by default, multiple users could

access the application simultaneously, user identification needs to be combined with the

session control. Furthermore, in a multi-user environment, one needs to control and limit

memory resources with respect to the amount of users. Therefore, even though a simple

content structure and navigation rules could be kept in active memory using session control

and persistent server-side techniques, one also needs to identify errors and orphan sessions

and clean up the memory respectively. In a general case, one needs to write the whole ses-

sions and application state into a database or file and read it back in when needed. In fact,

this is one of the core functionalities of the double-agent.

6.2.3 User Interfaces

Even though the structure for pages in the "Introduction to Signal Processing" CBE applica-

tion was quite simple, it’s user interface included some advanced signal processing oriented

functionality. For instance one could make selections, zoom and scale every signal view on

a page. In case of time domain signal representations, one could also listen to audio signals

or selections of signals. This type of functionality is impossible to implement using only

standard HTML and web browser capabilities. As a matter of fact, this kind of intelligent

views require vector-based graphics whereas the standard web graphics are just bitmaps.

Therefore, the question of implementing this kind of user interfaces is dependent of the

client-side technologies and features of web browsers. Flash [2] or Java Applets [106]

would provide necessary capabilities for manipulating the views and possibly playing audio.

However, even though both of these plugin-based technologies are widely used and freely

available, the user needs to have them installed and might experience strange problems due

to his/her own browser setup [15].

CHAPTER 6. A CASE DISCUSSION 51

Also the W3C Scalable Vector Graphics (SVG) [127] technology would be of special

interest as a tool for user interface graphics such as signal presentations etc. SVG not

only provides a vector-based presentation of graphics but also allows Javascript to be used

for manipulating the graphical elements. Unfortunately, the browser support to SVG and

related Javascript functionality varies a lot.

Recently, the Ajax [46] technology has gained a lot of popularity in a short time. The

technology allows parts of a web page to be dynamically updated without the need for creat-

ing the whole page again, which is a typical case with server-side technologies. Ajax utilizes

a number of technologies for doing this, especially Javascript [49] and XML-HttpRequest

[73].

The W3C has some interesting related work going on at the moment: the Web APIs

Working Group [128] and the Web Application Formats Working Group [129] are working

on specifications and languages for client-side web application development. At this point,

however, it is too early to say how this work will affect server-side driven technology such

as the proposed architecture.

6.2.4 Acoustics and Digital Signal Processing

One should not forget the technical challenges related to audio and signal processing con-

tent. Meaningful educational content will require actual digital signal processing performed

within a reasonable response time and delivery of audible content. Because the "Introduc-

tion to Signal Processing" CBE application was built on top of the QuickSig DSP envir-

onment, any audio signal processing task could be mapped directly with the user interface.

In terms of response time, the only limitation was the computational power of the Apple

Macintosh workstation. For that particular application, all the DSP calculations could be

done with reasonable delay (reasonable meaning not real-time but not disturbing either).

Therefore, interactive DSP experiments such as "Grand Finale" (Figure6.2) were easy and

straightforward to implement.

On the web, implementing a similar experiment is far from being easy and straightfor-

ward. One could use only client-side technologies such as Flash or Java Applets, but this

approach would lack the integration and contextual relations to larger CBE material, not to

mention the technical problems of client-side technologies as mentioned before.

The server-side technologies have their own challenges and problems as well. First of all,

one needs to have access to computational resources. There are, for example, DSP libraries

available for several programming languages that could be accessed through server-side

programming. But in order to do this, one needs to map the user interface operations into

application tasks and further on into appropriate subroutine calls. Furthermore, one needs

to take care of possible temporary files needed for the DSP operations etc. On the other

CHAPTER 6. A CASE DISCUSSION 52

hand, this way the DSP operations can be tightly integrated into the application and the

agent.

From the beginning of this project, one particular question has been problematic: the

use of audio input. For audio signal processing education, the use of the student’s own

audio samples such as speech, would definitely be beneficial in terms of understanding

what is going on. Currently, there is no web browser that would support recording of

audio directly. This is not only a technical question, but it also has important security and

privacy concerns. However, some plugin-operated technologies such as Java Applets [106],

especially JSyn [100] and Flash [2] would be able to record sound through the web browser,

if the user allows it by adjusting some security settings and preferences. Otherwise, the

only possibility would be to guide the user to use separate software for recording sound or

preparing their own sound samples and use the file upload mechanism of the web browser

in the web application.

6.2.5 Mathematics

Another DSP-related problem is the presentation and use of mathematics with a web browser.

Mathematics are a fundamental part of university-level engineering education and, there-

fore, the use of mathematics has an important role also in CBE. The "Introduction to Signal

Processing" CBE application included some mathematical formulas and calculation tasks,

but only on an introductionary level. The formulas were presented as figures and used spe-

cial fonts. No interactive operations were linked to formulas or mathematical expressions.

For the web implementation, the first problem is how to present mathematical expres-

sions on a web page. For publications etc. the most common way has been to use bitmap

graphics. Unfortunately, this approach lacks all interaction capabilities making it suitable

only for viewing formulas. What is needed, is a browser-independent way of defining and

presenting mathematics. The Mathematical Markup Language (MathML) [125], a W3C re-

commendation, tries to do exactly this. The XML-based MathML is also natively supported

by many of the recent browsers making it a very interesting candidate for CBE purposes as

well. Furthermore, the specification is also supported by many manufacturers of mathem-

atical software.

The second step would be to edit and evaluate mathematics within the CBE application.

Once again, simple demonstrations etc. could be implemented with client-side only tech-

nologies. However, a more flexible solution would include the use of mathematical compu-

tations on the server-side. Similarly to the DSP computations, this could be done with the

help of various mathematical programming libraries. One needs to keep in mind though that

in DSP, it is often needed to provide graphical presentations or audio signals as responses

to input given as mathematical expressions. Therefore, additional DSP, visualization and

CHAPTER 6. A CASE DISCUSSION 53

Figure 6.4: Status screen for the "Introduction to Signal Processing" CBE application

audio libraries need to be used together.

Another interesting approach would be to use an external server for mathematical com-

putations. At least MatlabR© [69] and MathematicaR© [133] have also developed server-

oriented computational tools and APIs for using them over the network. However, integrat-

ing that technology into the architecture or CBE applications might be a tedious task.

Discussion of the use of mathematics on the web can be found in an article by Foster

[42].

6.2.6 Logs and Evaluation of Learning

The "Introduction to Signal Processing" CBE application included a simple logging mech-

anism that was mostly created for debugging purposes. However, it turned out to be a

valuable source of information when the use of the application was later analyzed. The log

system recorded the time when a page was loaded together with the page title. With such a

simple log, it was possible to calculate the use of time for the whole application as well as

for each page. Furthermore, the log showed the route that the student had used in order to

reach the "Grand Finale", i.e. the order of chapters.

The log information was not available to the student directly, but instead, the student was

able to monitor how much time they had spent using the application and which chapters

they had already studied and which not (see Figure6.4).

On the web, logs can be created and accessed with any server-side technology. In fact,

most web servers are configured to log requests and errors for system administration pur-

CHAPTER 6. A CASE DISCUSSION 54

poses. However, these standard logs are not directly suitable for CBE evaluation purposes.

Instead, more specific logs are needed.

First of all, the requests need to be mapped against the context in order to get a picture

of the navigation path. In practice, unique identifiers are needed already for accessing

the pages with the agent, which makes logging them quite straightforward. Secondly, the

session information needs to be logged together with the content identifiers in order to

combine the requests and users and, finally, a timestamp is needed for keeping the log in

the correct order and calculating the time usage.

However, one needs to understand that calculating the use of time is not completely

reliable due to the request-based nature of the web. There is no way of knowing for sure

if the user visits some other pages during the session, even though some clever client-side

techniques can be used for identifying if the user leaves a page. Typically, modern web

browsers allow users to use multiple windows or tabs for surfing making it impossible

to know if they have visited other pages. Therefore, the use of time should be carefully

considered if used as an evaluation criteria.

An interesting trade-off is how much and what information is logged? As discussed

earlier, small and compact navigation history is needed for on-line adaptation. On the other

hand, for off-line evaluation, the more information is logged, the more advanced analysis

and evaluation can be performed. From a practical point of view, the logs can be kept fairly

simple and compact with proper session control mechanism.

When we think about evaluation of learning, the key is to be able to map the log inform-

ation to the educational content. Obviously, this is very application dependent and requires

knowledge of the content, but providing the information for doing this mapping is exactly

what the double-agent architecture does!

Chapter 7

Conclusions

This thesis has discussed web-based interactive self-study applications for acoustics and

audio signal processing. Background for learning and education in general, special require-

ments of acoustics and signal processing education and finally web technology has been

presented. Furthermore, evaluation of learning was discussed.

Based on this background, a system level architecture for web-based interactive applic-

ations was proposed and explained. The double-agent architecture, as it is called, uses a

software agent to act as an interface between the user and the content. Not only does the

agent represent the user by taking care of each request, it uses various methods for evaluat-

ing requests and providing content thus representing a teacher as well as the user.

The benefits of this architecture include a controlled interaction process, necessary for

self-study educational applications and a built-in log feature which is utilized for intelligent

content adaptation. Furthermore, these logs may be used by both learners and teachers for

evaluation of learning.

The on-going and partly rapid development of web technologies has affected the project

from the very beginning. One of the key factors is the development of the web browsers.

From user’s point of view, the browser is the key tool for accessing resources and using the

applications. The browser is also a personal tool with many personal settings and prefer-

ences. Therefore, the use of additional software in a web application (for instance plugins),

should be considered and evaluated carefully beforehand. In some cases it might not even

be possible to use plugins etc. for technical reasons. After all, nowadays there is a wide

variety of platforms and operating systems that are used for running web browsers, game

consoles and mobile phones, just to mention a couple of examples. However, one needs to

realize that there is no "standard" web browser that could be used as a reference. All web

browsers are different, both in terms of versions as well as platforms. Some of the browsers

are simply more popular than others.

55

CHAPTER 7. CONCLUSIONS 56

It is clear that for implementing advanced interactive applications and web user inter-

faces, not one but many technologies need to be used together. In fact, in my opinion the

most difficult technical problems with implementation would be the cooperative use of dif-

ferent client-side technologies and how to use them in a controlled fashion together with

the server side architecture.

All and all, the double-agent architecture provides interesting possibilities in terms of

evaluation of learning and content adaptation but further research is still needed for solving

many practical implementation questions.

Bibliography

[1] Adobe Systems Inc. Adobe PDF Technology Center, 2005.http://partners.

adobe.com/public/developer/pdf/topic.html .

[2] Adobe Systems Inc. Flash Developer Center, 2005.http://www.macromedia.

com/devnet/flash/ .

[3] AHA Project. AHA! project: Adaptive Hypermedia for All, 2006.http://aha.

win.tue.nl/ .

[4] Sinan Si Alhir. Understanding the Unified Modeling Language.Methods &

Tools, 7(1):11–18, Spring 1999.http://home.comcast.net/~salhir/

UnderstandingTheUML.PDF .

[5] Marcos Alonso, Günter Geiger, and Sergi Jordá. An Internet Browser Plug-in for

Real-time Sound Synthesis using Pure Data. InProceedings of the International

Computer Music Conference (ICMC 2004), Miami, Florida, USA, November 1-6

2004.

[6] Anon. Music-DSP Source Code Archive.http://www.musicdsp.org/ .

[7] Anon. The CMS Matrix, 2005.http://www.cmsmatrix.org/ .

[8] Anon. Wiki software, 2005. http://en.wikipedia.org/wiki/Wiki_

software .

[9] Anon. Wikipedia, the Free Encyclopedia, 2006.http://www.wikipedia.

org .

[10] Apache Software Foundation. Apache HTTP Server Project, 1999-2005.http:

//httpd.apache.org/ .

[11] Apache Software Foundation. Mod_perl, 2005.http://perl.apache.org/ .

57

http://partners.adobe.com/public/developer/pdf/topic.html
http://partners.adobe.com/public/developer/pdf/topic.html
http://www.macromedia.com/devnet/flash/
http://www.macromedia.com/devnet/flash/
http://aha.win.tue.nl/
http://aha.win.tue.nl/
http://home.comcast.net/~salhir/UnderstandingTheUML.PDF
http://home.comcast.net/~salhir/UnderstandingTheUML.PDF
http://www.musicdsp.org/
http://www.cmsmatrix.org/
http://en.wikipedia.org/wiki/Wiki_software
http://en.wikipedia.org/wiki/Wiki_software
http://www.wikipedia.org
http://www.wikipedia.org
http://httpd.apache.org/
http://httpd.apache.org/
http://perl.apache.org/

BIBLIOGRAPHY 58

[12] Apache Software Foundation. Mod_unique_id, 2005.http://httpd.apache.

org/docs/1.3/mod/mod_unique_id.html .

[13] Apple Computer Inc. Documentation: QuickTime Internet & Web, 2005.

http://developer.apple.com/documentation/QuickTime/

InternetWeb-date.html .

[14] Ariadne Foundation. ARIADNE Foundation for the European Knowledge Pool,

2004.http://www.ariadne-eu.org/ .

[15] Eduardo Garcia Barrachina. Interactive On-line Testing of Java and Audio Support

on Web Browsers. Master’s thesis, Helsinki University of Technology, Faculty of

Electrical Engineering, Laboratory of Acoustics and Audio Signal Processing, 2003.

[16] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):

Generic Syntax, January 2005.ftp://ftp.rfc-editor.org/in-notes/

rfc3986.txt .

[17] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web, A

new form of Web content that is meaningful to computers will unleash a

revolution of new possibilities. Scientific American, May 2001. http:

//www.scientificamerican.com/linktous.cfm?articleID=

00048144-10D2-1C70-84A9809EC588EF21 .

[18] Bert Bos. Cascading Style Sheets Home Page, 2005.http://www.w3.org/

Style/CSS/ .

[19] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright. Transport

Layer Security (TLS) Extensions, June 2003.ftp://ftp.rfc-editor.org/

in-notes/rfc3546.txt .

[20] Benjamin S. Bloom and David R. Krathwohl.Taxonomy of Educational Objectives:

The Classification of Educational Goals, by a committee of college and university

examiners. Handbook I: Cognitive Domain. Longmans, Green, New York, USA,

1956.

[21] Monica Bonett. Personalization of Web Services: Opportunities and Chal-

lenges.Ariadne, (28), June 2001.http://www.ariadne.ac.uk/issue28/

personalization/ .

[22] Paul De Bra, Natalia Stash, and David Smits. Creating Adaptive Applications with

AHA!, Tutorial for AHA! version 3.0. InInternational Conference on Adaptive Hy-

http://httpd.apache.org/docs/1.3/mod/mod_unique_id.html
http://httpd.apache.org/docs/1.3/mod/mod_unique_id.html
http://developer.apple.com/documentation/QuickTime/InternetWeb-date.html
http://developer.apple.com/documentation/QuickTime/InternetWeb-date.html
http://www.ariadne-eu.org/
ftp://ftp.rfc-editor.org/in-notes/rfc3986.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3986.txt
http://www.scientificamerican.com/linktous.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.scientificamerican.com/linktous.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.scientificamerican.com/linktous.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
ftp://ftp.rfc-editor.org/in-notes/rfc3546.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3546.txt
http://www.ariadne.ac.uk/issue28/personalization/
http://www.ariadne.ac.uk/issue28/personalization/

BIBLIOGRAPHY 59

permedia (AH2004), Eindhoven, Netherlands, August 2004.http://www.win.

tue.nl/~debra/ah2004/tutorial.pdf .

[23] Jerome Bruner.The Process of Education. Harvard University Press, Cambridge,

MA, USA, 1960.

[24] Peter Brusilovsky. Methods and techniques of adaptive hypermedia.User Modeling

and User Adapted Interaction, 6(2-3):87–129, 1996.http://www2.sis.pitt.

edu/~peterb/papers/UMUAI96.pdf .

[25] Peter Brusilovsky. Adaptive hypermedia. User Modeling and User Ad-

apted Interaction, Ten Year Anniversary Issue (Alfred Kobsa, ed.), 11

(1/2):87–110, 2001. http://www2.sis.pitt.edu/~peterb/papers/

brusilovsky-umuai-2001.pdf .

[26] Vannevar Bush. As We May Think.The Atlantic Monthly, July 1945. http:

//www.theatlantic.com/doc/194507/bush .

[27] CERT. CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in Cli-

ent Web Requests, February 2000.http://www.cert.org/advisories/

CA-2000-02.html .

[28] P. Coburn, P. Kelman, N. Roberts, T.F.F. Snyder, D.H. Watt, and C. Weiner.Practical

guide to computers in education. Addison-Wesley, USA, 1982.

[29] Cycling ’74 Inc. Max/MSP, 2005. http://www.cycling74.com/

products/maxmsp.html .

[30] DARPA. The DARPA Agent Markup Language Homepage, 2005.http://www.

daml.org .

[31] Martin Dougiamas. A journey into Constructivism, November 1998.http://

dougiamas.com/writing/constructivism.html .

[32] Martin Dougiamas. Moodle, 2005.http://moodle.org/mod/resource/

view.php?id=3849 .

[33] Dublin Core Metadata Initiative. Dublin Core Metadata, 2005.http://

dublincore.org/ .

[34] François Déchelle, Riccardo Borghesi, Maurizio de Cecco, Enzo Maggi, Joseph B.

Rovan, and Norbert Schnell. jMax: a new JAVA-based editing and control system

http://www.win.tue.nl/~debra/ah2004/tutorial.pdf
http://www.win.tue.nl/~debra/ah2004/tutorial.pdf
http://www2.sis.pitt.edu/~peterb/papers/UMUAI96.pdf
http://www2.sis.pitt.edu/~peterb/papers/UMUAI96.pdf
http://www2.sis.pitt.edu/~peterb/papers/brusilovsky-umuai-2001.pdf
http://www2.sis.pitt.edu/~peterb/papers/brusilovsky-umuai-2001.pdf
http://www.theatlantic.com/doc/194507/bush
http://www.theatlantic.com/doc/194507/bush
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.cycling74.com/products/maxmsp.html
http://www.cycling74.com/products/maxmsp.html
http://www.daml.org
http://www.daml.org
http://dougiamas.com/writing/constructivism.html
http://dougiamas.com/writing/constructivism.html
http://moodle.org/mod/resource/view.php?id=3849
http://moodle.org/mod/resource/view.php?id=3849
http://dublincore.org/
http://dublincore.org/

BIBLIOGRAPHY 60

for real-time musical applications. InICMC: International Computer Music Confer-

ence, Ann Arbor, USA, Octobre 1998.http://freesoftware.ircam.fr/

rubrique.php3?id_rubrique=14 .

[35] John W. Eaton. GNU Octave, 1998.http://www.octave.org .

[36] ECMA. Standard ECMA-262: ECMAScript Language Specification, 3rd

edition, December 1999. http://www.ecma-international.org/

publications/standards/Ecma-262.htm .

[37] education.au limited. The Global Learning Objects Brokered Exchange

(GLOBE), 2004. http://globe.edna.edu.au/globe/go/cache/

offonce/pid/2 .

[38] Yrjö Engeström. Learning by Expanding: An Activity - Theoretical Approach to

Developmental Research. Helsinki, 1987. http://lchc.ucsd.edu/MCA/

Paper/Engestrom/expanding/toc.htm .

[39] Jacques Ferber.Multi-Agent Systems. Addison-Wesley, 1 edition, 1999.

[40] R. Fielding, J. Gettys, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hy-

pertext Transfer Protocol – HTTP/1.1, June 1999.ftp://ftp.rfc-editor.

org/in-notes/rfc2616.txt .

[41] Bjarne A. Foss, Kjell E. Malvig, and Tor I. Eikaas. Remote Experimentation - New

Content in Distance Learning. InInternational Conference on Engineering Educa-

tion (ICEE2001), Oslo, Norway, August 6-10 2001. IEEE.

[42] Kenneth R. Foster. Math on the Internet.IEEE Spectrum, 36(4):36–40, April 1999.

[43] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and

L. Stewart. HTTP Authentication: Basic and Digest Access Authentication, June

1999. ftp://ftp.rfc-editor.org/in-notes/rfc2617.txt .

[44] Christopher Frauenberger and Winfried Ritsch. A Real-time Audio Rendering Sys-

tem for the Internet (iARS), Embedded in an Electronic Music Library (IAEM). In

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK,

September 8-11 2003.http://iem.iaem.at/doku/iARS/ .

[45] Stephen Gance. Are constructivism and computer-based learning environments in-

compatible?Journal of the Association for History and Computing, V(1), May 2002.

http://mcel.pacificu.edu/JAHC/JAHCV1/K-12/gance.html .

http://freesoftware.ircam.fr/rubrique.php3?id_rubrique=14
http://freesoftware.ircam.fr/rubrique.php3?id_rubrique=14
http://www.octave.org
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://globe.edna.edu.au/globe/go/cache/offonce/pid/2
http://globe.edna.edu.au/globe/go/cache/offonce/pid/2
http://lchc.ucsd.edu/MCA/Paper/Engestrom/expanding/toc.htm
http://lchc.ucsd.edu/MCA/Paper/Engestrom/expanding/toc.htm
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2617.txt
http://iem.iaem.at/doku/iARS/
http://mcel.pacificu.edu/JAHC/JAHCV1/K-12/gance.html

BIBLIOGRAPHY 61

[46] Jesse James Garrett. Ajax: A New Approach to Web Applications, Febru-

ary 2005. http://www.adaptivepath.com/publications/essays/

archives/000385.php .

[47] Dean Gaudet. Cookies, Dialogues and Tracking, 1996.http://www.arctic.

org/~dean/cookies.html .

[48] George S. Georgiev, Hubert Roth, Silvia Stefanova, Georgi T. Georgiev, Emil Stoy-

anov, and Otto Rösch. How and why to build and use virtual laboratories.World

Transactions on Engineering and Technology Education, 1(2):191–196, 2002.

[49] Danny Goodman.JavaScript Bible 4th ed.Hungry Minds, USA, 2001.

[50] Marty Hall and Larry Brown. Core Servlets and JavaServer Pages, Vol. 1: Core

Technologies. Sun Microsystems Press/Prentice Hall, USA, 2 edition, 2004.http:

//volume1.coreservlets.com/ .

[51] Helsinki University Centre for Research on Networked Learning and Knowledge

Building. Development of Learning Theories, 2004.http://www.helsinki.

fi/science/networkedlearning/eng/delete.html .

[52] Hyperwave AG. HyperWave, 2005. http://www.hyperwave.com/e/

solutions/horizontal/elearning/ .

[53] IBM Corporation. Web Services Reliable Messaging, 2005.http://www.ibm.

com/developerworks/library/specification/ws-rm/ .

[54] IEEE Learning Technology Standards Committee. IEEE Standard for Learning Ob-

ject Metadata, 2002.http://grouper.ieee.org/groups/ltsc/wg12/

index.html .

[55] Emmanuel C. Ifeachor and Barrie W. Jervis.Digital Signal Processing: A Practical

Approach. Pearson, USA, 2 edition, 2001.

[56] IMS Global Learning Consortium Inc. IMS Learning Resource Meta-data Specific-

ation, 2005.http://www.imsglobal.org/metadata/index.html .

[57] Leander Kahney. HyperCard Forgotten, but Not Gone.Wired News, 2002. http:

//www.wired.com/news/mac/0,2125,54365,00.html .

[58] Matti Karjalainen. DSP Software Integration by Object-Oriented Programming: A

Case Study of QuickSig.IEEE ASSP Magazine, pages 21–31, April 1990.

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.arctic.org/~dean/cookies.html
http://www.arctic.org/~dean/cookies.html
http://volume1.coreservlets.com/
http://volume1.coreservlets.com/
http://www.helsinki.fi/science/networkedlearning/eng/delete.html
http://www.helsinki.fi/science/networkedlearning/eng/delete.html
http://www.hyperwave.com/e/solutions/horizontal/elearning/
http://www.hyperwave.com/e/solutions/horizontal/elearning/
http://www.ibm.com/developerworks/library/specification/ws-rm/
http://www.ibm.com/developerworks/library/specification/ws-rm/
http://grouper.ieee.org/groups/ltsc/wg12/index.html
http://grouper.ieee.org/groups/ltsc/wg12/index.html
http://www.imsglobal.org/metadata/index.html
http://www.wired.com/news/mac/0,2125,54365,00.html
http://www.wired.com/news/mac/0,2125,54365,00.html

BIBLIOGRAPHY 62

[59] Matti Karjalainen. BlockCompiler - A research Tool for Physical Modeling and

DSP. InProc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), pages

264–269, London, UK, September 8-11 2003.

[60] Matti Karjalainen and Martti Rahkila. Learning signal processing concepts and psy-

choacoustics in the QuickSig DSP environment. InInternational Conference on

Acoustics, Speech and Signal Processing (ICASSP95), pages 1125–1128, Detroit,

Michigan, USA, May 9-12 1995. IEEE.

[61] Harri Ketamo.User and Platform Adaptation in Web-based Learning Environments.

PhD thesis, Tampere University of Technology, 2002. Tampere University of Tech-

nology Publications 381.

[62] Kevin Kline, Daniel Kline, and Brand Hunt.SQL in a Nutshell. O’Reilly, USA, 2

edition, 2004.http://www.oreilly.com/catalog/sqlnut2/ .

[63] Marja Kopponen.CAI in CS. PhD thesis, University of Joensuu, 1997. Computer

Science Dissertations 1.

[64] D. Kristol and L. Montulli. HTTP State Management Mechanism, October 2000.

ftp://ftp.rfc-editor.org/in-notes/rfc2965.txt .

[65] Rasmus Lerdorf and Kevin Tatroe.Programming PHP. O’Reilly, USA, 1 edition,

2002.http://www.oreilly.com/catalog/progphp/ .

[66] Veli-Pekka Lifländer. A designing method for a computer-based learning environ-

ment. InADCIS 30th Conference, Philadelphia, USA, 1988.

[67] Miroslav D. Lutovac, Dejan V. Tosic, and Brian L. Evans.Filter Design for Signal

Processing using MATLABR©and MathematicaR©. Prentice-Hall, USA, 2000.

[68] Massachusetts Institute of Technology. MIT OpenCourseWare, 2005.http://

ocw.mit.edu/OcwWeb/Global/AboutOCW/about-ocw.htm .

[69] Mathworks Inc. Matlab, 1994-2005. http://www.mathworks.com/

products/matlab/ .

[70] Mathworks Inc. Mathtools.net - Link Exchange for the Technical Computing Com-

munity, 2001-2005.http://www.mathtools.net/ .

[71] M.R. Matthews. Constructivism in Science and Mathematics Education. In Denis C.

Phillips, editor,National Society for the Study of Education, 99th Yearbook, pages

161–192. University of Chicago Press, Chigago, USA, 2000.http://wwwcsi.

unian.it/educa/inglese/matthews.html .

http://www.oreilly.com/catalog/sqlnut2/
ftp://ftp.rfc-editor.org/in-notes/rfc2965.txt
http://www.oreilly.com/catalog/progphp/
http://ocw.mit.edu/OcwWeb/Global/AboutOCW/about-ocw.htm
http://ocw.mit.edu/OcwWeb/Global/AboutOCW/about-ocw.htm
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.mathtools.net/
http://wwwcsi.unian.it/educa/inglese/matthews.html
http://wwwcsi.unian.it/educa/inglese/matthews.html

BIBLIOGRAPHY 63

[72] James H. McClellan, Ronald W. Schafer, and Mark A. Yoder.DSP First - A Multi-

media Approach. Prentice-Hall, USA, 1998.

[73] Drew McLellan. Very Dynamic Web Interfaces, 2005.http://www.xml.com/

pub/a/2005/02/09/xml-http-request.html .

[74] MDC Project. Gecko Plugin API Reference, 2005.http://developer.

mozilla.org/en/docs/Gecko_Plugin_API_Reference .

[75] MDC Project. Mozilla Developer Center: Extensions, 2005.http://

developer.mozilla.org/en/docs/Extensions .

[76] MDC Project. Mozilla Developer Center: Plugins, 2005.http://developer.

mozilla.org/en/docs/Plugins .

[77] MDC Project. Mozilla Developer Center: XUL, 2005.http://developer.

mozilla.org/en/docs/XUL .

[78] Barbara Means, John Blando, Kerry Olson, Teresa Middleton, Catherine Cobb Mo-

rocco, Arlene R. Remz, Judith Zorfass, Richard W. Riley, Sharon P. Robinson, and

Joseph C. Conaty. Using technology to Support Education Reform, 1993.http://

www.ed.gov/pubs/EdReformStudies/TechReforms/index.html .

[79] Microsoft Corporation. Active Server Pages, 2005.http://msdn.microsoft.

com/library/default.asp?url=/library/en-us/dnanchor/

html/activeservpages.asp .

[80] Microsoft Corporation. Microsoft .NET, 2005.http://www.microsoft.

com/net/default.mspx .

[81] National Instruments Inc. LabView, 2005.http://www.ni.com/labview/ .

[82] NCSA HTTPd Development Team. The Common Gateway Interface, 1996.http:

//hoohoo.ncsa.uiuc.edu/cgi/ .

[83] E. Nebel and L. Masinter. Form-based File Upload in HTML, November 1995.

ftp://ftp.rfc-editor.org/in-notes/rfc1867.txt .

[84] Netscape Inc. Netscape Navigator 2.0 for Windows Release Notes,

1996. http://wp.netscape.com/eng/mozilla/2.0/relnotes/

windows-2.0.html .

[85] Jakob Nielsen.Designing Web Usability. New Riders Publishing, USA, 1999.

http://www.xml.com/pub/a/2005/02/09/xml-http-request.html
http://www.xml.com/pub/a/2005/02/09/xml-http-request.html
http://developer.mozilla.org/en/docs/Gecko_Plugin_API_Reference
http://developer.mozilla.org/en/docs/Gecko_Plugin_API_Reference
http://developer.mozilla.org/en/docs/Extensions
http://developer.mozilla.org/en/docs/Extensions
http://developer.mozilla.org/en/docs/Plugins
http://developer.mozilla.org/en/docs/Plugins
http://developer.mozilla.org/en/docs/XUL
http://developer.mozilla.org/en/docs/XUL
http://www.ed.gov/pubs/EdReformStudies/TechReforms/index.html
http://www.ed.gov/pubs/EdReformStudies/TechReforms/index.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/activeservpages.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/activeservpages.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/activeservpages.asp
http://www.microsoft.com/net/default.mspx
http://www.microsoft.com/net/default.mspx
http://www.ni.com/labview/
http://hoohoo.ncsa.uiuc.edu/cgi/
http://hoohoo.ncsa.uiuc.edu/cgi/
ftp://ftp.rfc-editor.org/in-notes/rfc1867.txt
http://wp.netscape.com/eng/mozilla/2.0/relnotes/windows-2.0.html
http://wp.netscape.com/eng/mozilla/2.0/relnotes/windows-2.0.html

BIBLIOGRAPHY 64

[86] Jakob Nielsen. Usability 101: Introduction to Usability, 2003.http://www.

useit.com/alertbox/20030825.html .

[87] OmniPilot Software, Inc. Lasso Professional Server, 2005.http://www.

omnipilot.com/Lasso.1541.lasso .

[88] Sophocles J. Orfanidis.Introduction to Signal Processing. Prentice-Hall, USA, 1995.

[89] Miller Puckette. Pure Data: another integrated computer music environment. InPro-

ceedings of the Second Intercollege Computer Music Concerts, pages 37–41, Tachi-

kawa, Japan, 1996.http://puredata.info/ .

[90] Ville Pulkki. Virtual Sound Source Positioning Using Vector Base Amplitude Pan-

ning. Journal of the Audio Engineering Society, 6(45), June 1997.

[91] Marti Rahkila and Jyri Huopaniemi. Real-time Internet Audio - Problems and Solu-

tions. InAudio Engineering Society 102nd International Convention, Munich, Ger-

many, March 22-25 1997. IEEE. Preprint 4477. 32 p.

[92] Martti Rahkila. A Computer Based Education System for Signal Processing. Mas-

ter’s thesis, Helsinki University of Technology, Faculty of Electrical Engineering,

Laboratory of Acoustics and Audio Signal Processing, 1996.

[93] Martti Rahkila. Considerations of Computer Based Education of Acoustics and Sig-

nal Processing. InFronties in Education (FIE98), pages 679–684, Tempe, Arizona,

USA, November 12-15 1998. IEEE.

[94] Martti Rahkila. Evaluation of Computer Based Education Using Logsystems. In

Fronties in Education (FIE99), San Jose, Puerto Rico, November 10-13 1999. IEEE.

[95] Martti Rahkila. A Double Agent Architecture for eLearning Applications. InInter-

national Conference on Engineering Education (ICEE2001), Oslo, Norway, August

6-10 2001. IEEE.

[96] Martti Rahkila and Matti Karjalainen. An Interactive DSP Tutorial on the Web. In

International Conference on Acoustics, Speech and Signal Processing (ICASSP97),

pages 2253–2256, Munich, Germany, April 20-26 1997. IEEE.

[97] Martti Rahkila and Matti Karjalainen. An Experimental Architecture for Interactive

Web-based DSP Education. InInternational Conference on Acoustics, Speech and

Signal Processing (ICASSP98), pages 1857–1860, Seattle, Washington, USA, May

12-15 1998. IEEE.

http://www.useit.com/alertbox/20030825.html
http://www.useit.com/alertbox/20030825.html
http://www.omnipilot.com/Lasso.1541.lasso
http://www.omnipilot.com/Lasso.1541.lasso
http://puredata.info/

BIBLIOGRAPHY 65

[98] Martti Rahkila and Ville Pulkki. WWWVbap, 2000.http://www.acoustics.

hut.fi/demos/wwwvbap/ .

[99] Scripting News Inc. XML-RPC Homepage, 2005.http://www.xmlrpc.com/ .

[100] Softsynth Inc. JSyn, 1997-2005.http://www.softsynth.com/jsyn/ .

[101] Guy L. Steele.Common Lisp the Language. Digital Press, USA, 2 edition, 1990.

http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html .

[102] Lincoln D. Stein.Web Security: A Step-by-Step Reference Guide. Addison-Wesley,

USA, 1997.

[103] Lincoln D. Stein. W3C Security Resources, 1999.http://www.w3.org/

Security/ .

[104] SumTotal Systems Inc. Toolbook, August 2005.http://www.toolbook.com .

[105] Sun Microsystems Inc. Java 2 Platform, Enterprise Edition (J2EE), 1994-2005.

http://java.sun.com/j2ee/ .

[106] Sun Microsystems Inc. Java Applets, 1994-2005.http://java.sun.com/

applets/ .

[107] Sun Microsystems Inc. Java Plug-in Technology, 1994-2005.http://java.

sun.com/products/plugin/ .

[108] Sun Microsystems Inc. Java Runtime Environment (JRE), 1994-2005.http://

java.sun.com/j2se/desktopjava/jre/index.jsp .

[109] Sun Microsystems Inc. JavaSound API Programmer’s Guide, 2001.http:

//java.sun.com/j2se/1.5.0/docs/guide/sound/programmer_

guide/ .

[110] Sun Microsystems Inc. Java Web Server, 2005.http://www.sun.com/

software/products/web_srvr/home_web_srvr.xml .

[111] Jonathan Swartz, Dave Rolsky, Ken Williams, and John Williams. Mason, 1998-

2005.http://www.masonhq.com/ .

[112] The Open Source Collective Inc. Open Source CMS, 2005.http://www.

opensourcecms.com/ .

[113] The PHP Group. PHP, 2001-2005.http://www.php.net/ .

http://www.acoustics.hut.fi/demos/wwwvbap/
http://www.acoustics.hut.fi/demos/wwwvbap/
http://www.xmlrpc.com/
http://www.softsynth.com/jsyn/
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://www.w3.org/Security/
http://www.w3.org/Security/
http://www.toolbook.com
http://java.sun.com/j2ee/
http://java.sun.com/applets/
http://java.sun.com/applets/
http://java.sun.com/products/plugin/
http://java.sun.com/products/plugin/
http://java.sun.com/j2se/desktopjava/jre/index.jsp
http://java.sun.com/j2se/desktopjava/jre/index.jsp
http://java.sun.com/j2se/1.5.0/docs/guide/sound/programmer_guide/
http://java.sun.com/j2se/1.5.0/docs/guide/sound/programmer_guide/
http://java.sun.com/j2se/1.5.0/docs/guide/sound/programmer_guide/
http://www.sun.com/software/products/web_srvr/home_web_srvr.xml
http://www.sun.com/software/products/web_srvr/home_web_srvr.xml
http://www.masonhq.com/
http://www.opensourcecms.com/
http://www.opensourcecms.com/
http://www.php.net/

BIBLIOGRAPHY 66

[114] Stephen Todd, Francis Parr, and Michael Conner. A Primer for HT-

TPR, 2005. http://www.ibm.com/developerworks/webservices/

library/ws-phtt/ .

[115] Ila Tokola, Matti Karjalainen, and Martti Rahkila. A software “teacher” for acous-

tical measurements. InInternational Conference on Acoustics (ICA98), pages 2077–

2078, Seattle, Washington, USA, June 20-26 1998. ASA.

[116] Sam Tregar. HTML::Template - Perl module to use HTML Templates

from CGI scripts, 2000-2002.http://search.cpan.org/~samtregar/

HTML-Template-2.7/Template.pm .

[117] UIAH Media Lab. Fle3 Future Learning Environment, 2005.http://fle3.

uiah.fi/ .

[118] W3C. Web Accessibility Initiative (WAI), 1994-2005.http://www.w3.org/

WAI/ .

[119] W3C. Extensible Markup Language (XML), 1996-2003.http://www.w3.org/

XML/.

[120] W3C. Document Object Model, 1997-2005.http://www.w3.org/DOM/ .

[121] W3C. HTML 4.01 Specification, December 1999.http://www.w3.org/TR/

html4/ .

[122] W3C. Semantic Web Activity, 2001.http://www.w3.org/2001/sw/ .

[123] W3C. XHTML? 1.0 The Extensible HyperText Markup Language (Second Edition),

August 2002.http://www.w3.org/TR/xhtml1/ .

[124] W3C. Web Services Description Working Group, 2002-2005.http://www.w3.

org/2002/ws/desc/ .

[125] W3C. Mathematical Markup language (MathML) 2.0 Specification, October 2003.

http://www.w3.org/TR/MathML2/ .

[126] W3C. Resource Description Framework (RDF), 2005.http://www.w3.org/

RDF/.

[127] W3C. Scalable Vector Graphics (SVG), 2005.http://www.w3.org/

Graphics/SVG/ .

http://www.ibm.com/developerworks/webservices/library/ws-phtt/
http://www.ibm.com/developerworks/webservices/library/ws-phtt/
http://search.cpan.org/~samtregar/HTML-Template-2.7/Template.pm
http://search.cpan.org/~samtregar/HTML-Template-2.7/Template.pm
http://fle3.uiah.fi/
http://fle3.uiah.fi/
http://www.w3.org/WAI/
http://www.w3.org/WAI/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/DOM/
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/
http://www.w3.org/2001/sw/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/desc/
http://www.w3.org/TR/MathML2/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/

BIBLIOGRAPHY 67

[128] W3C. Web APIs Working Group, 2005. http://www.w3.org/2006/

webapi/ .

[129] W3C. Web Application Formats Working Group, 2005.http://www.w3.org/

2006/appformats/ .

[130] W3C. XML Protocol Working Group, 2005.http://www.w3.org/2000/xp/

Group/ .

[131] Larry Wall, Tom Christiansen, and Jon Orwant.Programming Perl. O’Reilly, USA,

3 edition, 2000.http://www.oreilly.com/catalog/pperl3/ .

[132] WebCT Inc. WebCT, 2005.http://www.webct.com .

[133] Wolfram Research Inc. Mathematica, 2005.http://www.wolfram.com/

products/mathematica/ .

http://www.w3.org/2006/webapi/
http://www.w3.org/2006/webapi/
http://www.w3.org/2006/appformats/
http://www.w3.org/2006/appformats/
http://www.w3.org/2000/xp/Group/
http://www.w3.org/2000/xp/Group/
http://www.oreilly.com/catalog/pperl3/
http://www.webct.com
http://www.wolfram.com/products/mathematica/
http://www.wolfram.com/products/mathematica/

	Martti Rahkila: Agent-based Method for Self-study Interactive Web-based Education
	Abstract
	Tiivistelmä
	Preface
	Table of Contents
	List of Abbreviations
	Introduction
	Project background
	Goals
	Structure of the thesis

	Pedagogical Background
	Theories of Learning
	Computer Based Education
	CBE History
	Classifications of CBE
	Internet and Studying
	Self-studying
	Interactivity
	Usability

	Evaluation of Learning
	"Semi-automatic" Evaluation

	Acoustics and Audio Signal Processing
	Special Requirements
	Use of Sound
	Transferring Audio
	DSP
	User Interfaces

	Tools
	Programming oriented tools
	Laboratory tools
	On-line demonstrations
	Others

	Web Technologies
	Web Architecture
	URL /URI

	Methods for Interactivity
	Server-side Technologies
	Server-side programming techniques
	Client-side Technologies
	Hybrid Models
	Content Management Systems

	Control
	User Management
	Session Control

	Logs
	Content Adaptation
	Personalization
	Agents and Distributed Computing
	Learning Metadata

	Security Considerations

	Proposal for a System Architecture
	Requirements and Design Goals
	The Double-Agent Architecture
	Functional Description
	Operational Description
	Operation with Interactive CBE-applications
	Designing Interactive Content

	Log-based Evaluation
	Implementation

	A Case Discussion
	Case: Introduction to Signal Processing
	Application Description

	Discussion of Implementation Issues
	Content and Interaction Modeling
	Navigation and On-line Adaptation
	User Interfaces
	Acoustics and Digital Signal Processing
	Mathematics
	Logs and Evaluation of Learning

	Conclusions
	References

