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Abstract

Artificial neural systems for computation were first proposed three quarters of
a century ago and the concepts developed by the pioneers still shape the field
today. The first generation of neural systems was developed in the nineteen forties
in the context of analogue electronics and the theoretical research in logic and
mathematics that led to the first digital computers in nineteen forties and fifties.
The second generation of neural systems implemented on digital computers was
born in the nineteen fifties and great progress was made in the subsequent half
century with neural networks being applied to many problems in pattern recognition
and machine learning. Through this history there has been an interplay between
biologically inspired neural systems and their implementation by engineers on
digital machines. This thesis concerns the third generation of neural networks,
Spiking Neural Networks, which is making possible the creation of new kinds of
brain inspired computing architectures that offer the potential to increase the level
of realism and sophistication in terms of autonomous machine behaviour and
cognitive computing. This thesis presents the development and demonstration of a
new theoretical architecture for third generation neural systems, the Integrate-and-
Fire based Spiking Neural Model with extended Neuro-modulated Spike Timing
Dependent Plasticity capabilities. This proposed architecture overcomes the lim-
itation of the homosynaptic architecture underlying existing implementations of
spiking neural networks that it lacks a natural spike timing dependent plasticity
regulation mechanism, and this results in ‘run away’ dynamics. To overcome this
ad hoc procedures have been implemented to overcome the ‘run away’ dynam-
ics that emerge from the use of spike timing dependent plasticity among other
hebbian-based plasticity rules. The new heterosynaptic architecture presented,
explicitly abstracts the modulation of complex biochemical mechanisms into a
simplified mechanism that is suitable for the engineering of artificial systems with
low computational complexity. Neurons work by receiving input signals from other
neurons through synapses. The difference between homosynaptic and heterosy-
naptic plasticity is that, in the former the change in the properties of a synapse
(e.g. synaptic efficacy) depends on the point to point activity in either of the send-
ing and receiving neurons, in contrast for heterosynaptic plasticity the change in
the properties of a synapse can be elicited by neurons that are not necessary
presynaptic or postsynaptic to the synapse in question. The new architecture is
tested by a number of implementations in simulated and real environments. This
includes experiments with a simulation environment implemented in Netlogo, and
an implementation using Lego Mindstorms as the physical robot platform. These
experiments demonstrate the problems with the traditional Spike timing dependent
plasticity homosynaptic architecture and how the new heterosynaptic approach
can overcome them. It is concluded that the new theoretical architecture provides
a natural, theoretically sound, and practical new direction for research into the role
of modulatory neural systems applied to spiking neural networks.
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Chapter 1

Introduction

The emergence of Spiking Neural Networks (SNN) as a control mechanism for robots and

autonomous self-adaptive systems and the development of other novel machine-learning

technologies makes it possible to create brain-inspired computational architectures with the

potential to increase the level of sophistication in terms of autonomous machine behavior

and cognitive computing.

Artificial neural systems for computation were first proposed as computational systems

by McCulloch and Pitts in 1943 [1]. In the nineteen forties there was great interest in

the modelling of neural systems, including the mathematical theory developed by von

Neumann [2]. A particularly important innovation was the learning theory proposed by

Hebb [3]. This first generation of neural systems was developed in the nineteen forties in

the context of analogue electronics and the theoretical research in logic and mathematics

that led to the first digital computers in nineteen forties and fifties. The second generation

of neural systems was implemented on digital computers as they began to be available

in the nineteen fifties. Great progress was made over the next half century with neural

networks being applied to many problems in pattern recognition and machine learning.

Throughout this history there has been an interplay between biologically inspired neural

systems and their implementation by engineers on digital machines. For example, in

the 1980s Aleksander et al. [4] developed the Wisard pattern recognition system that

could recognise faces using a biologically inspired associative memory. In contrast, the

multilayer perceptron based on non-biological mathematical principles proved to be a

powerful engineering solution to a wide range of classification tasks.
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The third generation of neural networks, Spiking Neural Networks, which makes

possible the realisation of new kinds of brain inspired computing architectures. These have

the potential to increase the level of realism and sophistication of neural systems in terms

of autonomous learning behaviour and cognitive computing.

The details of all this are given in the following chapters. Put simply, neurons work by

receiving input signals from other neurons through joins or synapses (Figure 2.1). If suffi-

cient pulses are received in a given time the potential of the neuron increases sufficiently

for it to fire and transmit an output pulse to other neurons.

This thesis presents a completely new theoretical architecture for third generation neu-

ral systems, the Integrate-and-Fire based Spiking Neural Model with extended Neuro-

modulated Spike Timing Dependent Plasticity. This system has capabilities that enable it to

be used in autonomous agents and robots where learning and adaptation to the environment

must occur without human intervention. Beyond developing the theory of this new system,

the thesis demonstrates that it can be implemented in both simulated and real robotic

systems.

This proposed architecture overcomes the limitation of the homosynaptic architecture

of existing implementations of spiking neural networks, namely that they lack a natural

spike timing dependent plasticity regulation mechanism, and this results in ‘run away’ or

‘out of control’ dynamics in their implementation of the hebbian-based plasticity rules. The

ad hoc procedures implemented to overcome these problems have had limited success, and

the conventional theory has become fragmented and lacking in coherence and generality.

The difference between homosynaptic and heterosynaptic plasticity is that, in the former

the change in the properties of a synapse (e.g. synaptic efficacy) depends on the point to

point activity in either of the sending and receiving neurons, in contrast for heterosynaptic

plasticity the change in the properties of a synapse can be elicited by neurons that are not

necessary presynaptic or postsynaptic to the synapse in question. The new heterosynaptic

architecture presented here explicitly abstracts the modulation of complex biochemical

mechanisms into a simplified mechanism that is suitable for the engineering of artificial

neural systems with low computational complexity. The new architecture is tested by a

number of implementations as simulated and real environments. This includes experiments
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with a simulation environment implemented in Netlogo, and an implementation using Lego

Mindstorms as the physical robot platform. These experiments demonstrate the problems

with the traditional Spike timing dependent plasticity homosynaptic architecture and how

the new heterosynaptic approach can overcome them.

It is concluded that the new theoretical architecture provides a natural, theoretically

sound, and practical new direction for research into the role of modulatory neural systems

in spiking neural networks and their application in machine learning and autonomous

control.

1.1 Motivation and research contribution

Compared to well established artificial neural architectures such as multilayer perceptrons,

the dynamics of Spiking Neural Networks are based locally on the ‘membrane potential’

of each neuron, where this is the potential difference between the electrical charge inside

the neuron and the electrical charge of its surrounding environment ( Figure 1.1(a)). Apart

from neurons responding individually according to changes in their membrane potential,

spiking neural networks are dynamic in the patterns of discrete electrical ‘spikes’ produced

through time as neurons fire, and in the time-dependent nature of the membrane potential.

Understanding the global behaviour of spiking neural networks is a research goal, and this

thesis suggests a new approach for the interactions between pre-synaptic and post-synaptic

neurons (Figure 1.1(b)) by making them heterosynaptic.

The standard Spike Timing Dependent Plasticity rule (STDP rule) is an implementation

of Hebbian learning that describes the evolution of the synaptic efficacy between a pre

and a post-synaptic neurons in terms of the relative timings of the incoming excitatory

postsynaptic potentials (EPSP) and inhibitory postsynaptic potentials (IPSP) elicited by

the presynaptic neuron and the generated action potential in the postsynaptic neuron. This

mechanism allows the postsynaptic neuron to recognize the incoming pulses as causal or

acausal of its activation and consequently reinforce or weaken the corresponding synapses,

respectively.

In terms of Neuro-engineering, STDP has demonstrated to be successfully implemented

as a learning mechanism in autonomous systems in both simulated and real environments

11



(a) Membrane potential: voltimeter showing the potential difference (-70mv) when one

of its electrodes is inside the neuron and the other outside of it.

(b) Presynaptic and postsynaptic neurons: the neuron shown in green extends its axon to

a dendrite of the blue neuron. Thus the green neuron is presynaptic to the blue one.

Figure 1.1

(e.g.[5, 6, 7, 8]). STDP has been used as the underlying neural learning mechanism for

reinforcement learning and classical conditioning in bio-inspired robots. However, in

spite of its success, STDP has the disadvantage that the learning mechanism does not

contain any information about the nature of the incoming pulses [9], i.e. a pure STDP-

based neural system cannot differentiate between pulses from several presynaptic neurons

apart from their arriving times and synaptic efficacies. In contrast, in biological neurons,

neurotransmitter systems as well as other neurochemicals allow the differentiation and

modulation of different types of information and the way neurons behave under certain

conditions. For instance, as observed in the sea slug Aplysia Californica (see figure 1.2

below), the activation of a nociceptive pathway triggers the activation of modulatory

interneurons releasing serotonin which enhances the synaptic plasticity between sensory

neurons (siphon and upper mantle) and motor-neurons (gill withdrawal reflex) [10, 11, 12].

This facilitation of synaptic plasticity between sensory and motor neurons results into

what is called sensitization, characterized by a strengthen response of motoneurons to

stimulation at sensory neurons.
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http://upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Aplysia-1.jpg/440px-Aplysia-1.jpg

Figure 1.2: Modulatory serotonergic interneurons (shown in orange) in the Aplysia califor-
nica enhance synaptic plasticity in motor neurons (shown in lila) leading to stronger motor
responses when stimuli is applied to sensory neurons (shown in green) e.g. touching the
Siphon.

The Aplysia Californica is a well studied case of heterosynaptic modulation (e.g.

[10, 11, 12]) in invertebrates. Here, plasticity modulatory signals are transmitted by

serotonergic interneurons to motor neurons. These modulatory signals increase temporarily

the plasticity of their target neurons. Therefore, the synaptic efficacy of the input synapses

carrying pulses during the transient modulatory activity will have a stronger potentiation

or depression at the modulated neurons. This biological mechanism of neural modulation

has served as inspiration for the development of this work and is explained in detail in the

following chapters.

Through the modulation of synaptic transmission and plasticity, a neural system acquires

the ability to react in different ways according to the originating type and site of stimulation.

The stimulation can be exogenous (i.e. activation of a sensory neuron or a nociceptive

pathway by an external stimulus) and endogenous (i.e. (1) Homeostatic plasticity [13,

14, 15] emerging from the neural activity. (2) Activation of interoceptors by visceral

homeostatic mechanisms). Thus, the modulation of synaptic plasticity plays a significant

role in the discrimination and prioritization of the neural activity. For instance, stimuli

associated with pain or other threatening conditions may elicit higher synaptic plasticity

and neural activation (EPSP/IPSP) than non-nociceptive (or not threatening) input stimuli.

Several mechanisms of neuromodulation in both short and long term plasticity have
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been studied (e.g. [10, 12, 16]), especially in invertebrates given their relatively lower

neural complexity when compared to vertebrates. In recent years the understanding of these

mechanisms is improving through the development of new theoretical and experimental

models. However, most of the complex emergent dynamics resulting from the interaction

among the constituent parts of a hetero-synaptical plasticity system (including presynaptic,

postsynaptic, inter-neurons and neurotransmitters) are still not fully understood.

In an artificial spiking neural network system without embedded neuro modulatory

capabilities, some parts of the learning process have to be separately adjusted through

the addition of artifacts (i.e. modifying the learning rate after certain set conditions or

normalizing the synaptic weights) in order to help the system to converge to the desired

solution. While it serves to the purpose of finding a solution to a specific problem it has

the drawback that the system is limited to the restrictions imposed by the set parameters.

The modulation of neural behavior through heterosynaptic plasticity mechanisms in

biological systems involves complex interactions between neurochemicals and neural

dynamics. These interactions allow the nervous system to adapt rapidly to the ever-

changing environment while preventing the out-of-control runaway dynamics that emerge

during ongoing Hebbian plasticity [17]. This makes plasticity modulation not only a

desired feature but a necessary one in artificial neural systems that are aimed to show self

adaptation characteristics.

1.2 Methodological Overview

This thesis proposes a system inspired by the biological literature [10, 11, 12] for the

modulation of neuronal excitability and synaptic plasticity in spiking neural networks.

The modulation mechanisms involved in the proposed system are performed through a

heterosynaptic architecture where artificial modulatory neurons induce changes in the

dynamics of other neurons in the network.

This thesis starts with the description of the biological and artificial theoretical background

that motivates and underlies the development of the proposed system. The description of

the system is done in 2 parts: (1) The first part describes how the system is built and how

it works by defining and explaining its different building blocks (e.g. neurons, synapses,
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modulatory substances) and their corresponding dynamics. (2) The second part of this work

proceeds with the implementation of the proposed system in different experimental set-ups

including a simulation scenario and the use in real hardware using a robotic platform.

The development of the proposed system has the objective to develop a new theory and

architecture of spiking neural networks that

• abstracts the biological complexity while recreates the characteristics of neuromodu-

lated plasticity and excitability of real neural systems

• overcomes the problem of chaotic dynamics and associated non-generalisable ad-hoc

procedures in previous spiking neural systems

• can be demonstrated to work in practical applications involving the control of

autonomous agents and self-adapting systems.

1.3 Research Hypothesis

The Research Hypothesis of this thesis is:

The conventional homosynaptic neural model is unsatisfactory but

• (i) can be extended to heterosynaptic models that explicitly represent chemical

regulation of the electrical spiking dynamics that

• (ii) overcome the weaknesses of the homosynaptic model, and

• (iii) can be implemented in practical systems

This hypothesis is developed through a new theoretical architecture and its implementation

in simulated and real robots.

1.4 Organization of the Thesis

This thesis starts with Chapter 2 by introducing the theoretical background of Spiking

Neural Networks and summarizes the way in which the different dynamics of biological
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neurons are recreated in the artificial models. Chapter 3 deals with the current literature

regarding hebbian learning, neuromodulation and heterosynaptic plasticity in biological

neurons and its modeling and implementation in artificial systems. Chapter 4 describes

the theory and design of the proposed novel SNN system with plasticity and efficacy

modulation capabilities. This sets the groundwork for the experimental setup described in

the Chapters 6 and 7. Chapter 5 describes a strategy for the implementation in software

of the proposed SNN system. This strategy includes the description of data structures,

processes and their interactions for the representation of the system. Chapters 6 further

explores the theoretical and practical applications of the system by comparing two neural

circuits applied to a virtual insect brain: traditional non modulated neural dynamics versus

Plasticity and Efficacy modulated dynamics. The experimental setup of both neural circuits

is described and the results are summarized. Chapter 7 validates the proposed system

through the implementation of a neural circuit based on visual pattern recognition and

associative learning that is able to control the navigation of a robot. Chapter 8 summarizes

the research work presented in this thesis and considers further theoretical and practical

applications of the presented system.
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Chapter 2

Artificial Spiking Neurons

This chapter provides an overview of the biological neuron, and of first and second

generation artificial neural networks. It then introduces and describes the characteristics of

Spiking Neural Networks which are the underlying bio-inspired computational mechanisms

used for the proposed systems and experimental investigations within this thesis.
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2.1 The Biological Neuron

Before studying in depth the third generation ANNs, it is worth briefly summarizing the

biological mechanisms taking place in the communication process between real neurons.

Biological neurons (see figure 2.1) use short and sudden increases in their membrane

voltage to trigger their activation or firing (action potential) and consequently send out

electro-chemical signals, also known as spike trains or pulses, which ultimately represent

‘information’ sent out by neurons and provide action responses to incoming stimuli. When

the spike has been triggered by a sudden increase in voltage (i.e. a threshold potential

has been reached), the action potential occurring in the cell body of the neuron (or soma)

will then traverse down the axon of the neuron, the axon being a long signal carrier that

branches out and terminates in the synapse(s).

synapsis

https://www.studyblue.com/notes/note/n/biological-foundations-neuron-communication-/deck/1025438

Figure 2.1: A biological neuron

On the presynaptic side of the synapse (the side of the firing neuron) voltage-gated

channels (see figure 2.2) open in reaction to the generated action potential, consequently

allowing the release of neurotransmitter molecules in the synaptic cleft (the gap between

the pre- and the postsynaptic endings). In order for the transmission of information to

occur, the released neurotransmitter molecules have to reach their matching receptors on

the postsynaptic ending of the gap which can be at any of the following: (1) the dendrites

(axodendritic synapse); (2) the soma (axosomatic synapse); or (3) the axon (axoaxonic

synapse) of the receiving neuron(s). The incoming neurotransmitters elicit changes in the

membrane potential (voltage) of the postsynaptic neuron. This change or perturbation of

voltage also known as postsynaptic potential (PSP) can either be positive and excitatory

(EPSP) or negative and inhibitory (IPSP). In the human brain a single neuron will receive
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postsynaptic potentials from thousands of synapses and when the sum of all these potentials

reaches a given threshold value again the neuron will send out a new spike or pulse down

its axon. It is also worth noting that after a spike has been sent the neuron will enter a short

time period (generally between 1ms and 10ms) in which it cannot send spikes again, this is

known as the refractory period.

synapsis

https://ehumanbiofield.wikispaces.com/file/view/F02_04.gif/41855553/F02_04.gif

Figure 2.2: The synapse

2.2 Artificial Neural Networks

Artificial Neural Networks (ANN) consist of a simplified simulation of the computational

features observed in biological neural systems, using mathematical models that are recre-

ated by artificial mechanisms such as algorithms implemented in software, VLSI and

digital logic circuits. In other words, ANN are simplified computerized neurons, which

ideally will replicate the biological dynamics of real neurons as closely as possible whilst

still being practical from a computational perspective.

The main objective of the ANN is to build machines capable of showing abilities

similar to those observed in the brain, including the following: learning, fault tolerance,

generalization of knowledge, self-organization, flexibility in handling fuzzy information

and parallel processing [18]. In addition, from a biological point of view, ANNs (especially

third generation models) which are accurate enough to describe the neurons in animal

brains are not only valid computational models which have found a variety of applications,

they have also aided the research for understanding brain functions and the information

processing mechanisms in biological nerve cells.
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Needless say, the modelling of the neural activity that takes place in the human brain

has proven an incredibly challenging as well as fascinating task. There are millions and

millions of neurons interconnected with each other and sending output signals to each

other in order to process incoming input signals and decide on an appropriate response

action. The road to attempt to replicate through computer modelling the neural activity of

the human brain started several decades ago and is certainly no where near its end, however

big steps have been taken towards more powerful and biologically accurate models which

are able to incorporate appropriate responses to given stimuli in artificial agents: a key

component of future artificial intelligence.

The first generation of ANN consists of a simple model by which a neuron sends out

a binary ‘high’ signal if the sum of its weighted incoming signals rises above a given

threshold value. Neurons modelled in such way have found several applications including

multi-layer perceptron and Hopfield nets. However, there are several limitations with the

first generation models, above all the fact that they only give binary outputs.

ANN of second generation are suitable for analogue input and output as they replace

the threshold (step) function to compute their output signals with a continuous activation

function (e.g. sigmoid or hyperbolic tangent). Neurons modelled through continuous

activation functions have been applied in feed-forward and recurrent ANN. Neurons of the

first two generations do not model the neuron based on its individual pulses but calculate a

“rate coding” for the neuron instead. Basically the output signals from a neuron typically

lie between 0 and 1, which is a normalized firing rate or frequency for that neuron, within

a given time period. This is the rate coding, where a higher rate of firing correlates with a

higher output signal. In other words the rate coding for a neuron is an averaging of its spikes

over a time window, which can therefore be calculated by computing a sufficient number

of iterations. Second generation ANN are more biologically realistic as the continuous

activation functions that characterize them are better able to model the base firing-rate (the

intermediate frequency of pulsing) of real neurons. However they still hold the limitation

that the ‘answer’ (or response action) of the network of neurons to the input values can

only be known after a sufficient number of computer iterations are run, hence the temporal
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dimension of communication cannot be incorporated.

The third generation of ANN (also known as spiking or pulsed neural networks) raises

once again the level of realism by incorporating the spatial-temporal response in the neural

communication dynamics, which represents a huge step closer to how real (biological)

neurons work. This is possible as the third generation on ANN supersedes the concept of

rate coding by modelling the actual individual spikes of a neuron.

2.3 Spiking Neural Networks

The third generation of neural networks is mainly based on Threshold-Fire models (e.g.,

Integrate and Fire model [19] [20]) and the pulsed neuron model of Hodgkin-Huxley

(1952)[21]. The latter was proposed in order to incorporate the neurobiological properties

of nerve cells and also to describe the generation and propagation of the action potential

and explain its main properties from a mathematical point of view in terms of differential

equations. Spiking Neurons, also known as pulse-generating neurons, are mainly known

for their ability to encode information in the form of pulses or spikes over time. This neuron

model, in a similar fashion to its predecessors of the first and second generation, is able

to process multiple input signals (stimuli) from other neurons, and when the membrane

potential of a stimulated (post-synaptic) neuron reaches a given threshold, its output

generates an electric potential (pulse) or a train of pulses.

As stated above, the key conceptual feature of third generation ANN is the fact that they

model the individual pulses or spikes of neurons and thus take a huge leap closer to

approximating the biologically complexity of real neurons. Networks of spiking neurons

are much more powerful than the previous ANN, which were characterized by networks

that were not spiking, since the firing rate could only be averaged over a given period of

time. With Spiking Neural Networks (SNN) the modelling of individual spikes enables

computer models - and the artificial agents operated by those models - to incorporate a

spatial-temporal dimension into their behaviour, a huge step closer to the communication

and behaviour of artificially intelligent robots. However, by modelling individual spikes,

SNN require a much more accurate understanding and implementation of the synaptic

plasticity, i.e., the way two neurons actually communicate and associate with each other,
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which forms the basis of most models of learning and development of ANN. A brief

overview of the different types of SNN models is presented in Section 2.6.

2.4 Rate and Pulse Codes

The representation of information based on pulses or spikes can occur in different ways

taking into account the following factors: the average rate at which pulses are generated;

the specific firing time (the delay between spikes is used to represent information); groups

of pulses in a neuronal population and the synchronization of pulses between neurons

(phase locking). Based on experimental evidence from the study of biological neurons,

two generalized information coding mechanisms have been proposed in SNN, known as

’rate code’ and ’pulse code’ [22]. The rate code refers to the representation of information

according to the average number of spikes generated in a given time interval. Gerstner and

Kistler (2002) [22] differentiate between three types of average: average over time, average

through several experimental repetitions, and average over a neuronal population. On the

other hand, the pulse code uses the time between each spike to represent the information

that is transmitted from one neuron to another. In the case of biological neural networks,

there is some controversy regarding the type of code used for signalling between neurons.

Signalling through the rate code has been observed in laboratory since the beginning of

the 20th century (e.g. stretch receptor in a muscle spindle [23], touch receptor in the leech

[24]). However, there are sufficient arguments to believe that the rate code mechanism

does not offer sufficient computational speed required for processing information in the

central nervous system (CNS), where certain perceptual (e.g. facial recognition [25]) and

complex cognitive processes require a much faster reaction time than the duration involved

in computing the average of a set of spikes in a period of time.

2.5 The Spatio-temporal Dimension of SNN

As mentioned above, a neuron is activated when its membrane potential reaches a certain

depolarization or firing threshold. This principle is modelled by all the three generations

of ANN. However, in the ANN of first and second generation the activation of a neuron
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is modelled through computer iterations each representing an independent and complete

potential scenario in which a given firing rate (represented through the connection weights)

is computed. The computed firing rate may or may not be high enough to reach the

activation threshold of the neuron. By contrast with ANN of third generation, the evolution

of the membrane potential over time is modelled as a continuous process in which neurons

can be stimulated and may reach the firing state at any time. That is, there is no state in

which all inputs are first computed and then compared against the activation threshold; the

activation function can be triggered at any time as a result of the continuous summation of

the continuously incoming spikes.

The summation of the spikes can occur either in space or time. The Spatial summation

occurs when two or more incoming spikes reach the activation area of the post-synaptic

neuron (known as axon hillock in biological neurons) at almost the same time, jointly

affecting the neuron membrane potential. Temporal summation occurs when the spikes

arrive at different times but close enough so that the group of sub-threshold spikes (i.e.

EPSP) contributes to the generation of the same action potential. The generation of an

action potential is considered as an all-or-nothing activation mechanism, meaning that this

will only be triggered once the membrane potential reaches a certain threshold because of

the depolarization elicited by the incoming spikes.

2.6 SNN Models

This Section presents a brief overview of the different types of SNN models.

2.6.1 Threshold-Fire models

Threshold-Fire models are based on the temporal and spatial summation of incoming

synaptic potentials in the membrane potential of the postsynaptic neuron. If the membrane

potential reaches a firing threshold, then the neuron is set to fire (an action potential is

triggered) and the membrane potential is reset to its resting value. Within the most used

and well known Threshold-Fire models are the Leaky-Integrate-and-Fire (LI&F) and the

Spike-Response model (SRM) [26][20]. The dynamics of Threshold-Fire models are much
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simpler than other third-generation ANN models. For instance the LI&F uses a single

linear differential equation to describe the evolution of the membrane potential, while in

the SRM the membrane potential at time t is calculated as an integral over the past. This

makes it possible to implement SNN in computing applications of practical use without

compromising the performance of the system due to high processing requirements.

Given that the system proposed in this thesis is based on the LI&F model, a detailed

explanation of the formulae describing the LI&F model, as well as a comparison with the

proposed system, are included in Appendix A.

2.6.2 Conductance-Based models

Conductance based models are based on the simulation of the behaviour of ionic channels in

biological nerve cells. The activation/deactivation of these channels (opening and closing)

determines the conductance of the cell membrane and consequently of the membrane

potential of the cell, influencing the triggering of an action potential when reaching a

threshold value. The mechanism of activation by ionic currents is described by a set of

differential equations. The complexity of these varies according to the number of ion

channels which are taken into account. The most well known conductance based model is

the one proposed by Hodgkin and Huxley in 1952[21], which was awarded with the Nobel

Prize in Physiology or Medicine in 1963.

Hodgkin-Huxley model

It is known that the cell membrane has a given electrical capacitance and that it separates

solutions of different ionic concentrations. Consequently, there is an electric potential

difference (voltage) between the inside and outside of the cell: The concentration of

potassium is greater inside than outside the cell. The opposite occurs with sodium, where

the concentration is greater outside than inside the cell. Hodgkin and Huxley demonstrated

that sodium and potassium make important contributions to the ionic currents. They

predicted and proved that the initiation and propagation of the action potential depends on

the external concentration of sodium. The Hodgkin-Huxley model is based on the idea

that the electrical properties of a nerve cell membrane can be modelled by an equivalent
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electrical circuit. By using Kirchoff’s Laws, the behaviour of the equivalent electric circuit

can be described by a set of differential equations for the total current flowing through the

cell membrane [21].

2.6.3 Compartmental models

In a similar way to Conductance-Based models, compartmental models take into account

the behaviour of ion channels to determine the conductance of the cell membrane. How-

ever, these models extend the level of detail in the simulation of biological neurons, by

taking into account the structure of the dendritic-tree and calculating the propagation of

each postsynaptic potential from the receiving dendrite to the Axon Hillock. The system

of equations describing this model is more complex than in conductance models and

requires high computing capacity in order to carry out a simulation. Given their level of

accuracy in the simulation of biological neurons, compartmental models are more suitable

for simulations of brain processes, nerve cell biology and related research in the field of

neuroscience. However, given the mathematical complexity involved in calculating the

current potential transmitted through each ion channel, it is necessary to use specialized

hardware in order to implement these SNN models.

2.7 Summary

Inspired by the behaviour of biological neurons and their connections (synapses) the

research on neural networks has been a very important and long-standing field within

computer science. This chapter has provided an overview of the biological neuron and arti-

ficial neural networks of first and second generation. In addition, various third generation

(Spiking Neural Networks) models have been described. This constitutes the beginning of

the theoretical framework required for the investigation carried out in the next chapters.
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Chapter 3

SNN: Learning Mechanisms and

Neuromodulation in Artificial Neural

Systems

This chapter introduces the concepts of hebbian-based plasticity in biological and arti-

ficial neural systems. It then describes one of the key implementations of this concept,

known as the spike timing dependent plasticity rule. A description of architectures for

associative learning is then presented, which constitutes the foundation of the experimental

investigations carried out.
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3.1 The Hebb Rule: a theory of synaptic learning

In his book titled "The Organization of Behaviour" (1949)[27], Donald Hebb postulated

a theory of synaptic plasticity widely known today as the Hebb rule or hebbian learning.

In his theory, Hebb describes how the synaptic strength or efficacy between a presynaptic

neuron A and a postsynaptic neuron B is strengthened if the firing activity of A contributes

to the firing activity of B. In other words, if the spikes transmitted by A tend to activate

or are temporarily close to (preceding) the firing of B, then the efficiency (strength) of A

activating B is increased.

Since its postulate, the Hebb rule became a new paradigm for theories of learning in both

biological and artificial neural systems where synaptic plasticity is driven by the joint

activation between pre- and postsynaptic neurons [28, 29].

From a machine learning perspective, hebbian learning is an algorithm that changes the

weights of the connections between interconnected artificial neurons. The change that

is applied to the weight of the link (or pairwise connection) between a sending and a

receiving neuron, is computed according to a given interval in which both neurons need to

be activated. The agent and robot described in chapters 6 and 7 of this thesis are examples

of the implementation of hebbian learning in autonomous systems.

The hebb rule is considered an unsupervised learning mechanism given that the system

does not explicitly receive any feedback indicating whether or not the resulting synaptic

change is useful [30, 31, 9]. Instead, the connectivity strength (synaptic efficacy) in a

neural network implementing hebbian learning, will emerge according to the coincidences

between the firing patterns of the neurons that are interconnected i.e. the resulting synaptic

efficacy will depend on the statistical correlations between neurons [32, 31, 9].

3.2 Spike Timing Dependent Plasticity: An

implementation of hebbian learning for SNN

Spike Timing Dependent Plasticity (STDP) [20, 33, 34] is considered a temporally precise

implementation of hebbian learning for synaptic plasticity [9]. It has been hypothesised
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that STDP is one of the underlying mechanisms for memory formation and that it plays a

role in the refinement and consolidation of weight dynamics and structure in neural circuits

during brain development [35, 36].

In this thesis, the STDP model proposed by Gerstner et al. [20] has been used as the

underlying plasticity mechanism for the proposed heterosynaptic system described in

chapter 4 and is also at the core of the implementation of the experimental neural circuits

in chapters 5 and 6. For this reason, this chapter focuses on the STDP rule and the learning

mechanisms associated with it.

In STDP, the synaptic efficacy is adjusted according to the relative timing of the incoming

presynaptic spikes and the action potential triggered at the postsynaptic neuron [20, 32, 37,

38, 39, 40].

This can be expressed as follows:

1. The pre-synaptic spikes that arrive shortly before (within a given range or learning

window) the post-synaptic neuron fires are considered as contributors to the depolar-

ization of the post-synaptic neuron. Consequently, these spikes reinforce the efficacy

(weights in terms of artificial neurons) of their respective synapses. This is known as

pre-before-post-timing.

2. The pre-synaptic spikes that arrive shortly after (within a given range or learning

window) the post-synaptic neuron fires are not considered as contributors to the

action potential of the post-synaptic neuron. Consequently, these spikes weaken the

efficacy of their respective synapses. This is known as pre-after-post timing

The following formula [20] describes the weight change ∆ωj of a synapse through the

STDP model for pre-synaptic and post-synaptic neurons represented with j and i respec-

tively. The arrival times of the pre-synaptic spikes at the post-synaptic neuron are indicated

by tfj where f = 1, 2, 3, ...N enumerates the pre-synaptic spikes. tni with n = 1, 2, 3, ...N

counts the firing times of the post-synaptic neuron i:

∆wj =
N∑
f=1

N∑
n=1

W (tni − tfj ) (3.1)
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Let ∆t = tni − tfj .The connection weight resulting from the combination of a pre-synaptic

spike with a post-synaptic action potential is given by the function [20, 34, 37]:

W (∆t) =


A+ exp(−∆t/τ+), if ∆t > 0

−A− exp( ∆t/τ−), if ∆t < 0

(3.2)

The parameters A+ and A− indicate the amplitude of the potentiation and depression

of the synaptic weights respectively. τ+ and τ− are the time constants that describe the

exponential shape of the learning window.

The form of the learning window between neurons i and j, wij , not only determines

whether the time difference between a presynaptic and a postsynaptic pulse results in

potentiation or depression of the synapse but also the amplitude of its change ∆wij . Figure

3.1 illustrates a STDP learning window showing the time intervals in which long term

potentiation (LTP) and long term depression (LTD) 1 occur.

tfj − tfi

Figure 3.1: Learning window with symmetrical LTP and LTD intervals.

1LTP and LTD: are terms used in neuroscience to refer to the persistent increase and decrease of the synaptic
strength (synaptic weight) respectively.
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As seen in Figure 3.1 at the LTP interval, the presynaptic spike at time tfj precedes a

postsynaptic action potential at time tfi . The opposite occurs at the LTD interval where tfj

arrives after tfi . In both LTP and LTD cases, the time difference between the presynaptic

and postsynaptic spikes must be within the intervals set by the parameters of the learning

function.

3.3 STDP Applied at the Network Level Using

Associative and Classical Conditioning

Learning

There is increasing research (e.g., [41, 42, 43, 44, 45]) demonstrating that the third genera-

tion of artificial neural networks is emerging as a potential computational tool to control

autonomous systems which exhibit intelligent behaviour in terms of learning and adapta-

tion to the environment.

Experimental results have demonstrated that different types of associative learning includ-

ing operand and classical conditioning (i.e. Pavlovian extinction, partial conditioning,

inhibitory conditioning) can be implemented successfully using SNN. [41, 46]. Given that

the experimental setups presented in the following chapters of this thesis are based on

associative learning and STDP, this Section will introduce the building blocks necessary

for the implementation of the experiments.

3.3.1 Associative Learning Based on STDP

Associative learning is understood as a learning process by which a stimulus is associated

with another. In terms of classical conditioning, learning can be described as the association

or pairing of a conditioned or neutral stimulus with an unconditioned (innate response)

stimulus, where association means that the neutral or conditioned stimulus acquires the

ability to elicit the same response or behaviour produced by the unconditioned stimulus.

The pairing of two unrelated stimuli usually occurs by repeatedly presenting the neutral

stimulus shortly before the unconditioned stimulus that elicits the innate response. When
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talking about classical conditioning [47] in animals, the word ’shortly’ refers to a time

interval of a few seconds (or in some cases a couple of minutes). On the other hand, at the

cellular level and in terms of STDP, the association of stimuli encoded as synaptic spikes

occurs in short milliseconds intervals [20].

The simplest form of associative learning at the spike level occurs pair wise between a

pre- and a postsynaptic neuron. This is illustrated below in Figure 3.2:

(a) (b)

Figure 3.2: a) The spike emitted by the presynaptic neuron j arrives at the synapse at time
tfj . b) A spike is generated at the postsynaptic neuron i at time tfi .

Taking the spikes depicted in Figure 3.2, the function W (tfi − tfj ) determines whether

the spike at tfj contributed or not to the generation of the postsynaptic spike tfi . According

to formula 3.2 in this chapter, if (tfj < tfi ) the weight change of presynaptic neuron j will

be positive and relative to the difference between tfj and tfi . In contrast, if tfj > tfi the

weight or efficacy of the presynaptic neuron j will be decreased.

3.3.2 Associative Topologies for Classical Conditioning

In order to create a neural circuit of Spiking neurons that allows the association of an

innate response to a neutral stimulus, it is necessary to have at least the following elements:

1. A receptor or sensory input for the unconditioned stimulus U .

2. A receptor or sensory input for the conditioned or neutral stimulus C.

3. The motoneuron or actuator, which is activated by the unconditioned stimulus M .

For U the unconditioned stimulus must be able to elicit an immediate reflex-response

(action potential) in the postsynaptic motoneuron. Thus the synapse efficacy of the presy-

naptic neuron U (unconditioned input neuron) must be greater or equal to the activation
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threshold Thm of the motoneuronM , i.e. (Wu ≥ Thm), in order to elicit a postsynaptic

action potential with a single presynaptic spike.

For C the conditioned stimulus must be able to elicit a PSP (postsynaptic potential)

in the postsynaptic motoneuron M . Thus a synapse between the presynaptic neuron C

(conditioned input neuron) and the postsynaptic motoneuron M must exist.

Given the elements U , C and M , the following topology illustrated in Figure 3.3 could

be used for a simple associative neural circuit:

(a) (b)

Figure 3.3: a) Spikes emitted by input neurons C and U reaching the synapse with
postsynaptic motoneuron M at time tfc and tfu respectively. b) The spike emitted by C
elicits an EPSP (excitatory postsynaptic potential) of amplitude wc (left dashed line) at time
tfc . At time tfu the spike emitted by U elicits an EPSP of amplitude wu (right dashed line)
that reaches the threshold ϑ triggering an action potential (thick line) at the postsynaptic
Motoneuron M .

The neural circuit in Figure 3.3(a) illustrates the two input neurons C and U each

transmitting a pulse to postsynaptic neuron M . As shown in 3.3(b) the unconditioned

stimulus transmitted by U triggers an action potential at time tfm shortly after the EPSP

elicited by C at time tfc . According to eq. 3, tfm > tfc (EPSP elicited by C preceding

spike at M ) with ∆t > 0 the synaptic efficacy between C and M , i.e. (∆wc), would be

increased relative to the difference tfc < tfm - and the parameters τ+, τ−, +A, −A set in eq.

3, which represents the learning interval or learning window [20, 34, 37] of STDP. Given

that the STDP learning window allows both LTP and LTD, the simple topology illustrated

in Figure 3.3(a), can be extended giving it the ability to associate stimuli (either as causal

or acausal) from multiple input neurons with an unconditioned or innate response.
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The following topology illustrated in Figure 3.4 includes three input neurons A, B and

U . Neurons A and B receive input from two different neutral stimuli, while U receive

input from a unconditioned stimulus.

(a) (b)

Figure 3.4: a) Spikes emitted by input neurons A, U and B reaching the synapse with
postsynaptic motoneuron M at time tfa , tfu and tfb respectively. b) The spike emitted by A
elicits an EPSP of amplitude wa, which is followed a few milliseconds later (tfu − tfa) by
an action potential triggered by U at time tfu. The pulse emitted by B arrives shortly after
the action potential in M at time tfb .

The circuit in Figure 3.4(a) is able to associate two neutral input stimuli with Motoneu-

ron M . As shown in Figure 3.4(b) the unconditioned stimulus transmitted by U triggers an

action potential at time tfm shortly after the EPSP elicited by A at time tfa . Following eq.(3)

with tfm > tfa (EPSP elicited by A preceding spike at M ) with ∆t > 0 the synaptic efficacy

between A and M , i.e. (∆wa), is potentiated in terms of tfa − tfm. On the other hand, the

EPSP elicited by B at time tfb occurs during the relative refractory period that followed the

action potential triggered in M . Since tfb − tfm is on the LTD side of the learning window,

the synaptic efficacy between B and M , i.e. (∆wb), is depressed in terms of tfb − tfm. In

Figure 3.4(b), if the incoming spikes in M continue following the same timing pattern, in

the long term the synaptic efficacy of wa and wb would reach their maximum and minimum

values respectively (values boundaries depending on the implementation).
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3.4 Characteristics and limitations of STDP

As seen so far, the traditional STDP plasticity rule provides an interesting bio-inspired

mechanism for unsupervised learning in neural circuits. The use of STDP as an underlying

plasticity mechanism has been extensively and successfully tested in several experimental

setups [20, 32, 37, 48]; demonstrating that with STDP, a neuron is able to discriminate

through the time dimension between the real contributors to its activation and the noisy

neurons whose firing patterns are not synchronized or correlated with its own activation.

In other words, STDP allows a neuron to decide which presynaptic neurons are worth

listening to and which ones should be given less priority or possibly be completely ignored

[49]. Moreover, through the combination of associative network architectures as described

above, a SNN system implementing STDP is able to create associations between multi-

modal stimuli (i.e., from different types of sensory inputs). This allows the engineering of

sophisticated neural circuits that can be applied to control the behaviour of autonomous

systems (as will be demonstrated in the next chapters).

Nevertheless, in spite of these desirable features, STDP also has some limitations that need

to be considered when implementing neural circuits on a greater scale. This thesis will

focus on two known issues found in STDP based systems:

1. Runaway dynamics.

2. Timing as single source of spike information.

3.4.1 Runaway dynamics

Out of control or runaway dynamics [17] refer to the positive feedback loop that emerges

from the mechanisms that rule the induction and amplification of synaptic changes in

hebbian based plasticity. As already explained, in order for the induction of synaptic change

to take place, it is required that the presynaptic spikes arrive shortly before the activation of

the postsynaptic neuron. These presynaptic spikes elicite excitatory postsynaptic potentials

that keep adding to the postsynaptic membrane potential as they arrive. Therefore, the

presynaptic spikes coming from a synapse with stronger synaptic efficacy will have a

higher probability of bringing the membrane potential of the postsynaptic neuron to reach
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its firing threshold and make it fire. Consequently, the already stronger synapse that

contributed to the activation will be reinforced and hence its probability of activating again

the postsynaptic neuron is increased. Over time, the synaptic efficacy (or weight) will

reach its maximum value or ceiling.

A similar situation occurs with the long term depression of synapses. The synapses with

lower synaptic efficacy have a lower probability of activating a postsynaptic neuron given

that the elicited postsynaptic spikes are mostly not large enough to make a significant

contribution to the postsynaptic membrane potential and to elicite a postsynaptic action

potential. Therefore, over time the already weaker synapses tend to be depressed to a

minimum or floor value as their spikes do not have the chance to activate the postsynaptic

neuron.

One of the critical issues with the runaway dynamics in hebbian plasticity is that not

only does it affect the system at the level of individual synapses, but it creates chains

or cascades affecting the entire neural circuit [50]. For instance, as it is observed in

some of the experimental setups carried out in this thesis, in neural circuits implementing

associative and classical conditioning architectures, the stronger over-potentiated synapses

originating from conditioned sensory (neutral) neurons gain the ability to activate their

associated motoneurons (behaviour) acting as unconditioned sensory neurons. Whilst this

is an expected behaviour in a conditioned system, the issue arises when the conditioned

neurons in addition to acting as stronger activators of motor behaviour acquire the ability

to reinforce other neutral sensory neurons creating new conditioning behaviour between

neutral stimuli.

As described so far, runaway dynamics may render the behaviour of a neural circuit

unpredictable or unstable. Moreover, it may have a negative impact on the computational

abilities of the system [17].

3.4.2 Timing as single source of spike information

As mentioned before, a neuron implementing STDP is able to identify the coincidences

between its own firing time and the firing time from presynaptic neurons. However, apart

from the timing of the spikes there is no other information about the event that triggered
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the firing of the incoming spike or about the neuron that originated the incoming

spike. For instance, the standard STDP implementation neglects any information regarding

reward, success, punishment and novelty [9].

This limitation is not only specific to STDP but it is a general characteristic of hebbian-

based plasticity systems. The reason for this is that the canonical hebbian postulate is solely

focused on the relationship between pre- and post-synaptic activity whilst neuromodulation

is completely out of the scope of its implementation.

From a neuro-engineering perspective, having a plasticity system that is solely based on

timing information brings along some technical challenges that arise when designing and

implementing an artificial neural system. One of these key challenges is the undesirable

reinforcement of a synapse resulting from the hebbian coactivation between two temporar-

ily coinciding spikes. This is an issue that emerges from the lack of a feedback signal in

response to the synaptic change (e.g. reward, punishment, error). The missing feedback in

response to the change in the system is an inherent characteristic of unsupervised learning

systems that in certain cases requires complex workarounds in order to guide or regulate

the learning of the system.

3.5 Homosynaptic Plasticity and the Need of a

Heterosynaptic Approach

The STDP dynamics and the architecture of neural circuits described so far, are based

on a type of synaptic plasticity known as homosynaptic plasticity. This form of synaptic

learning is the most widely observed in biological systems and has been extensively studied

in biological and artificial models.

In homosynaptic plasticity the changes that occur in the synapse between a presynaptic

neuron and a postsynaptic neuron are induced by the firing activity of the presynaptic

neuron only. In other words, if a postsynaptic neuron fires, only the synapses that were

active (i.e. transmitting spikes from a presynaptic neuron) shortly before (inducing hebbian

potentiation) or after the activation (inducing hebbian depression), will be changed.
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Therefore, this type of synaptic modification is also known as input specific plasticity.

Homosynaptic plasticity by definition is related to hebbian learning and is considered to

be the neural basis for associative learning and memory formation in the nervous system

[17]. As previously described, there are issues associated with hebbian learning systems

which are inherent to homosynaptic plasticity. These issues pose questions about the

mechanisms used by the nervous system to maintain stability of neuronal activity and

to regulate the formation and consolidation of memories without the degradation caused

by runaway dynamics [50, 51, 52]. Heterosynaptic plasticity has been identified as a

potential mechanism for the homeostasis of hebbian plasticity through the normalization

and regulation of synaptic changes [53, 54, 55] and for its ability to prevent runaway

dynamics [56, 17]. Heterosynaptic plasticity also known as Heterosynaptic modulation

[57, 52] refers to the changes in the synaptic behaviour between a presynaptic neuron and

its postsynaptic target induced by another (modulatory) neuron.

In contrast to the homosynaptic mechanism where plasticity results from the joint spiking

activity between the presynaptic and the postsynaptic neurons, the heterosynaptic form does

not necessarily require the activity of both presynaptic and postsynaptic neurons in order

to trigger changes in a synapse. Heterosynaptic modulation has different characteristics

depending on: (1) The site of action that the modulatory signal is targeting (i.e. pre- or

postsynaptic), (2) The neurotransmitters that serve as modulatory signal and (3) the effect

of the modulatory signal on the target site [57].

1. At the presynaptic side, modulation occurs when the modulatory signal reaches the

presynaptic neuron affecting the dynamics underlying neurotransmitter release in response

to action potentials [57]. Early experimental evidence has demonstrated that heterosynaptic

modulation is involved in presynaptic inhibition (i.e. reduction of the amount of released

neurotransmitter) in invertebrates via Gabaergic pathways [58] and Dopaminergic pathways

combined with FMRF [59], as well as in vertebrates via the regulation of voltage-dependent

calcium channels [60] and through GABA and opioid receptors in nociceptive pathways in

the spinal cord [57]. Heterosynaptic plasticity at the presynaptic side is also considered to

be one of the cellular mechanisms underlying synaptic facilitation (i.e. sensitization and

dishabituation) in Aplysia Californica [61] via serotonergic pathways [62, 63].
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2. At the postsynaptic side, heterosynaptic modulation occurs when the modulatory

signal reaches the postsynaptic neuron affecting its mechanisms of response to presynaptic

spiking activity [57]. Postsynaptic modulation of hebbian LTP (via noradrenergic pathways

[64] and LTD (via Muscarinic receptors) has been observed in some neuronal popula-

tions in the hippocampus [65] and in the neocortex [66]. Heterosynaptic modulation of

postsynaptic neurons is also the mechanism underlying the implementation of the system

presented in this thesis. This will be introduced in the next Section.

3.6 Modelling SNN with Heterosynaptic Activity

Advances in neuroscience are making it possible to overcome the difficulties that arise

when studying the dynamics of pre- and postsynaptic spiking activity combined with the

effects of different types of neuromodulators on synaptic plasticity. Along with increasing

experimentation in the biological field, theoretical and mathematical models of neuro

modulated hebbian plasticity are being hypothesized. The majority of these theoretical

plasticity models and rules make use of modulatory signals to represent reward or in some

models, novelty or surprise. The use of rewards as a mechanism of regulated hebbian

plasticity [67, 68, 69] is characterized by the implementation of a success or reward signal

which is triggered on the completion of an action (e.g. finding food) during a trial. In

reward based systems the reward signal always arrives with a certain delay after a given

success action has been completed (e.g. Reward-modulated STDP or R-STDP [70]). This

affects the plasticity in the synapses where neural activity occurred before the triggering

of the reward signal. Because of the delay between the signal and the preceding spiking

activity, this modulatory approach has the difficulty involved in keeping a record or tagging

of the synaptic activity (for time intervals that can sometimes last several milliseconds)

which must be processed after the subsequent reward signal has arrived. Solutions to

overcome the difficulties associated with the retroactive modulation [71] mechanism also

called ’the distal reward problem’ [70] have been proposed in several studies (e.g. Sutton
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and Barto (1998) [72], Baxter and Bartlett (2001)[73], izhikevich (2007)[70]) using

different hypothetical and experimental approaches.

On the other hand, in systems where learning is driven by novelty [74], the synaptic change

is modulated by the introduction of a novelty signal that triggers the activation of the

hebbian mechanism at the time when the signal arrives. In contrast to the reward based

approach, the novelty or surprise signal does not impose the restriction that is has to always

arrive after the input activity that caused the hebbian activation. Instead, the signal works

as a novelty-gated learning mechanism that is sensitive to the timings between the hebbian

activation and the arrival of the novelty signal which makes the plasticity mechanism

effective.

The use of reward and novelty signals as a modulation mechanism of hebbian plasticity

has been inspired and corroborated by research in the nervous system where experimental

evidence has shown the association of neuromodulators (e.g. dopamine, acetylcholine,

serotonine and noradrenaline) with the reward-related reinforcement of actions and the

creation of new memories [75, 76, 77, 78, 79, 80]. However, despite the fact that several

neurotransmitters have been associated with different neuromodulatory functions through

experimental observations, at this stage it is not possible to map specific one-to-one

functionalities to each neurotransmitter given that their elicited behaviour may vary (and

the same neurotransmitter can sometimes even have opposite effects) between different

types of neurons and synapses. Therefore, a standard unified computational model of

neuromodulated hebbian plasticity is still not available in the current state of the literature

[9].

3.7 A Novel SNN system with embedded

Heterosynaptic capabilities

The system proposed in this thesis presents a novel approach for the modulation of

two mechanisms which are at the core of the dynamics of spiking neural networks: (1)

modulation of synaptic plasticity and (2) Modulation of neuron excitability. In contrast to

reward and novelty based learning models, the mechanism described in this research
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does not explicitly involve the use of reward or novelty signals for the regulation of

the plasticity process. Instead, the neuron excitability as well as the amplitude of change

in the synapses is determined by individual and local neuronal-homoeostatic processes

that are manipulated through the introduction of non-spiking modulatory neurons. The

modulatory neurons in this system are capable of inducing changes in the behaviour of their

target neurons through the transmission of modulatory signals. Whilst the hypothetical

modulatory signals do not induce any change in the membrane potential of the target

neurons, they tell the affected neurons how to respond to incoming presynaptic spikes

and to what extent hebbian plasticity is effective in the synapses that obey (have affinity)

to the modulation process. The novel system is heterosynaptic by definition because the

mechanisms of excitability and plasticity in a given synapse are affected by a modulatory

neuron that is not at either presynaptic or postsynaptic end of the affected synapse. The

next chapter will describe this proposed system in much deeper detail.

In summary, the novelty of the proposed system includes the implementation of the

following features:

• A modulatory factor representing a Plasticity Modulatory Substance that is individual

(concentration varies from neuron to neuron) and self-regulated (homeostatic). The

hypothetical and non-specific substance (not related to a specific neurotransmitter

and neuromodulator) controls the amplitude of change in induced hebbian plasticity

(STDP).

• A modulatory factor representing an Excitability Modulatory Substance that is also

individual and self-regulated. This hypothetical and non-specific substance controls

the amplitude of induced postsynaptic potentials.

• Selective modulation of synapses: The modulation of plasticity and excitability

in target synapses is subject to their affinity with the corresponding modulatory

substance.

• Modulatory neurons with embedded membrane dynamics (as regular spiking neu-

rons) that send plasticity and excitability modulatory signals.
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The applicability of the proposed system is demonstrated by two experiments which

have been carried out and are described in chapters 6 and 7.

3.8 Summary

This chapter started with the introduction of the Hebb postulate of synaptic plasticity

better known as ’Hebbian learning’ or ’Hebb rule’. The Hebb rule was described as a

learning mechanism in biological neural systems that determines the change of efficacy in

a synapse. In computational terms the Hebb rule was described as an unsupervised learning

mechanism for the change of the connectivity strength in artificial neural networks.

Consecutively, the STDP rule was introduced as an important model of synaptic plasticity

that is based on Hebbian learning. The implementation of STDP was described along

with some of its applications in artificial systems (e.g. Spiking Neural Networks used

in autonomous systems). This chapter also described some of the issues that arise when

STDP is used as the underlying learning mechanism in SNN. Most of the issues mentioned

in this chapter were related to the ’traditional’ homosynaptic neural architecture and the

emergent runaway dynamics which are an inherent property from the underlying hebbian

learning mechanism.

Given the afore mentioned, an overview of the approaches to overcome runaway dynamics

in STDP was presented. This included the use of reward and novelty signals as an

extended mechanism to control the learning activity in SNN. Finally, the heterosynaptic

approach of neuro-modulatory activity developed in this thesis was introduced as a novel

bio-inspired solution to overcome the weaknesses of hebbian learning and homosynaptic

neural architectures.
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Chapter 4

Theory and Design of a Spiking

Neural System with Heterosynaptic

Capabilities

This chapter develops the theory for the proposed mechanisms of Heterosynaptic modula-

tion of synaptic plasticity and neural excitability in Spiking Neural Networks. The first

part of this chapter briefly describes the dynamics of both plasticity and excitability modu-

lation. The second part focuses on plasticity modulation starting with the introduction and

implementation of an extended 3-factor rule for hebbian learning. This is followed by the

description of the mechanisms of up and down modulation of plasticity using modulatory

signals. The third part of this chapter describes the mechanism of excitability modulation

starting with the introduction of a new excitatory factor that is embedded in the proposed

neuron model. This is followed by the description of the mechanisms of up and down

modulation of neural excitability using modulatory signals. The fourth part of this chapter

describes the neuron’s self-regulation or homeostatic processes for both plasticity and

excitability modulation. The fifth and final part describes the types of synapses used by the

artificial neurons to communicate with each other.
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As already seen in the previous chapter, not only does heterosynaptic plasticity con-

tribute to the homeostasis of neural activity in the nervous system, it also enhances its

computational capabilities by extending its dynamics beyond the neuron-to-neuron or input

specific activation which characterizes the most observed and studied form: Homosynap-

tic plasticity. The properties that emerge from the synergy between homosynaptic and

heterosynaptic plasticity (for instance, modulation of synaptic change in hebbian-type

plasticity, discrimination and prioritization of input stimuli) deserve further theoretical and

experimental research [81]. The system presented in this chapter describes an artificial

spiking neural network with heterosynaptic plasticity and heterosynaptic mediated neural

excitability. This system is not aimed at creating an accurate model to reproduce the

dynamics observed in biological systems. Instead, the proposed model aims at simulating

some of the mechanisms involved in heterosynaptic plasticity in order to take advantage of

the emerging dynamics and use them in the design and implementation of autonomous

systems.

4.1 Introduction

This thesis describes a novel heterosynaptic modulation system in Spiking Neural Net-

works (SNN). The proposed modulation system is applied to two mechanisms of neural

interaction, namely:

1. Hebbian based synaptic plasticity.

2. Neuronal excitability.

1. Synaptic Plasticity refers to the change in the strength or efficacy of a synapse as a

result of neuronal activity in the presynaptic or the postsynaptic ends of the synapse. In

hebbian-based plasticity the change in the synaptic strength is caused by the joint spiking

activity between a presynaptic and a postsynaptic neuron. The process that regulates the

amount of change in synaptic efficacy by means of an external input (i.e. a modulatory

signal that is not originated from either end of the affected synapse) is known as modulation

of synaptic plasticity. Not only does modulation of synaptic plasticity affect the amplitude
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of change in synaptic efficacy, it may also elicit or inhibit plasticity in the synapse of the

target neurons.

In the proposed hebbian-based synaptic plasticity system, each single neuron has an inter-

nal and independent plasticity modulatory factor which represents a hypothetical Plasticity

Modulatory Substance (PMS) in the cell environment. The concentration or value of PMS

at a given time determines the amplitude of the synaptic change as a result of the hebbian

coactivation elicited by presynaptic and postsynaptic spike activity. The modulatory effect

is subject to the affinity of the carrier synapse with the modulatory substance. For instance,

if synaptic plasticity is triggered in a synapse with affinity to the PMS, then the amplitude

of change of synaptic strength will be modulated by the current PMS concentration in the

postsynaptic neuron. By contrast, if there is no affinity on the carrier synapse, the elicited

synaptic plasticity is computed without the PMS modulatory factor.

The PMS in each individual neuron has its own equilibrium concentration or value. There-

fore some neurons may have a high plasticity factor while other neurons may have a

much lower or nil plasticity factor. The property that allows this system to be considered

heterosynaptic is the presence of modulatory neurons that are able to increase or decrease

the concentration of PMS inside individual neurons. This change in the internal behaviour

of the target neurons caused by an external signal is referred to as ’modulation’.

The modulation from a modulatory neuron to a target neuron occurs through synapses

where the modulatory neuron is presynaptic to its target. Thus, modulation occurs as

a point-to-point mechanism. In order to induce changes in the behaviour of the target

neurons, modulatory neurons send signals through synapses with the corresponding target

neurons. The signal sent by the modulatory neuron is binary and is subject to the axonal

(synaptic) delay of the carrier synapse. Given that the transmitted signal is binary, the

information about the amplitude and polarity (increasing or decreasing) of the modula-

tory signal, and its effect on the target neuron, depends on the synaptic strength of the

modulatory carrier synapse. The concentration of PMS inside each neuron is regulated

by a homeostatic process that aims to maintain the PMS at its equilibrium value (which

varies from neuron to neuron). Consequently the modulatory effect described above is tran-

sient since the target neuron will eventually revert its PMS to the equilibrium concentration.
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2. Neuronal excitability refers to the way in which a neuron behaves in response to

an incoming spike. In other words, the excitability describes the effect that an incoming

presynaptic spike has on the postsynaptic membrane potential. Similar to the process of

synaptic plasticity described above, in the proposed neuron excitability system, each single

neuron has an internal and independent excitability modulatory factor which represents a

hypothetical Excitability Modulatory Substance (EMS) in the cell environment.

The concentration or value of EMS at a given time determines the amplitude of the exci-

tatory or inhibitory postsynaptic potential (i.e. the perturbation caused in the membrane

potential by an incoming spike). However, the modulatory effect is subject to the affinity

of the carrier synapse with the modulatory substance. Therefore, if an incoming spike

arrives from a carrier synapse with affinity to the EMS, then the amplitude of the incoming

spike will be modulated by the current EMS concentration in the postsynaptic neuron. By

contrast, if there is no affinity on the carrier synapse, the elicited postsynaptic spike is

computed without the EMS modulatory factor.

The EMS in each individual neuron follows the same dynamics described above with

regard to PMS in the context of hebbian based synaptic plasticity. This includes the

modulation of the EMS in target neurons by presynaptic modulatory neurons. Again, the

signal sent by the modulatory neuron is binary and is subject to the axonal (synaptic) delay

of the carrier synapse. Given that the transmitted signal is binary, the information about the

amplitude and polarity (increasing or decreasing) of the modulatory signal, and its effect

on the target neuron, depends on the synaptic strength of the modulatory carrier synapse.

Similarly to the homeostatic regulation of PMS, the concentration of EMS inside each

neuron is also regulated by a homeostatic process that aims to maintain the EMS at its

equilibrium value, which varies from neuron to neuron. Consequently, the modulatory

effect is again transient, as the target neuron will eventually revert its EMS to the equilib-

rium concentration.

The following Sections in this chapters describe in detail the underlying technical

background of the heterosynaptic system for both plasticity and excitability modulation.
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4.2 Plasticity Modulation

Plasticity Modulation (PM) is used as a mechanism to attenuate or amplify the amplitude

of synaptic plasticity resulting from the application of the STDP rule which computes the

synaptic change according to the relative timing between a presynaptic input current and a

postsynaptic action potential (see Section 3.2). The PM in each Pulse Driver (PD) neuron

1 is determined by its internal (local) concentration of the Plasticity Modulatory Substance

(PMS). The concentration and decay rate of the PMS may be different in each PD neuron

allowing different neuro modulatory characteristics between neural sub circuits. The effect

of the PMS on the plasticity of a given synapse depends on whether or not that synapse

has affinity to the PMS.

4.2.1 A 3-factor STDP rule

The STDP model presented in chapter 3 section 3.2 is illustrated below as a 2 factor rule

[9] where the change of synaptic efficacy (weight) W ′
ij depends on: (1) the arrival time of

the presynaptic spikes tfj and (2) the firing time at the postsynaptic neuron tfi :

W ′
ij = fSTDP (tfi , t

f
j ) (4.1)

This 2 factor rule was implemented in section 3.2 as a formula to compute the change

of synaptic efficacy resulting from the pairing of presynaptic and postsynaptic firing times.

The implementation of the 2 factor rule is illustrated below as fSTDP function:

fSTDP (tfi , t
f
j ) =


A+ exp(−(tfi − tfj )/τ+), if (tfi − tfj ) > 0

−A− exp( (tfi − tfj )/τ−), if (tfi − tfj ) < 0

(4.2)

As this thesis proposes the use of plasticity modulation through a heterosynaptic

architecture, the 2 factor form of the STDP rule must be extended in order to support the

new modulating factor in the computation of the efficacy or weight change.

1In order to avoid ambiguity, in this chapter the (regular) spike firing neurons are referred to as PD neurons
while modulatory neurons are referred to as NM neurons.
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The extension of STDP as a 3 factor rule [9] is performed through the incorporation

of a plasticity modulatory factor PMS (see figures 4.1(b), 4.2(b) and formula 4.3 of this

chapter). The complete implementation of the 3 factor STDP formula proposed for the

heterosynaptic architecture in this thesis is presented below:

fSTDP (tfi , t
f
j , PMS) =


PMS.A+ exp(−(tfi − tfj )/τ+), if (tfi − tfj ) > 0

PMS.− A− exp( (tfi − tfj )/τ−), if (tfi − tfj ) < 0

(4.3)

In formula 4.3 the extended function fSTDP receives 3 parameters: (1) the firing time

of the postsynaptic neuron tfi ; (2) the arriving time of the incoming presynaptic spike tfj

and (3) the current concentration of the plasticity modulatory substance Pms. Compared

to the original implementation of the STDP rule (formula 4.2) the only difference in the

extended 3 factor implementation is the incorporation of PMS as a scaling factor for the

exponential curve that describes the learning window (see figure 3.1). Thus, modulation of

plasticity in the proposed artificial neural system occurs through the increase or decrease

of the neuron embedded scaling factor PMS. Through plasticity modulation, the learning

behavior of a PD neuron can be dynamically tuned through the firing activity of presynaptic

Neuro-modulatory (NM) neurons. The mechanism of PMS modulation in a neuron by

means of external modulatory signals is explained in the following sections of this chapter.

4.2.2 Up-modulation of PMS

In Figure 4.1 (a) A spike train with 5 spikes is transmitted from presynaptic PD neuron A

to postsynaptic PD neuron B. tfa1 and tfa5 represent the firing times of the first and the last

spike respectively. +Wa represents the synaptic efficacy between neurons A and B with

the + sign indicating that the synapse is excitatory.

Presynaptic PM neuron M transmits a modulatory signal at time tfm1. +Wm represents

the amplitude or efficacy of the signal with the + sign indicating that the synapse is

up-regulating the PMS at the postsynaptic neuron B.
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Figure 4.1 (b) illustrates the behaviour of the membrane potential of postsynaptic

neuron B during the arrival time of the presynaptic spike train sent by A. The first spike

tfa1 elicits an excitatory postsynaptic potential (EPSP) of amplitude Wa which corresponds

to the actual efficacy of the carrier synapse.

(b)

(a)

Figure 4.1: Up-modulation of PMS in PD neuron B affecting its synaptic plasticity with
presynaptic neuron A.

The EPSP slightly decays until the second spike at time tfa2 arrives, producing once

again an EPSP of amplitude Wa.
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Through the second spike, the depolarization of the membrane potential reaches the

firing threshold consequently triggering an action potential in B. The generation of the

action potential activates the plasticity mechanism which involves the application of the

STDP rule over the previous spikes that arrived at neuron B.

For the synapse between A and B the new efficacy W ′
a is calculated by the 3-factor

STDP function:

W ′
a = fSTDP (tf ,~ta, Pms) (4.4)

The parameters of the formula are shown as follows: (1) the firing time in neuron B, tf ;

(2) the arriving time of the previous incoming EPSPs (tfa1 and tfa2) represented with ~t; and

(3) the current concentration of the plasticity modulatory substance PMS as Pms. The

implementation of the 3-factor plasticity rule will be further explained in section 4.2.3 of

this chapter.

The synaptic efficacy between A and B is updated with W ′
a which has been potentiated

with respect to the previous efficacy (W ′
a > Wa). The signal transmitted at time T fm1 by

neuron M arrives at postsynaptic neuron B at time t3. The concentration of PMS in B is

increased according to the synaptic efficacy between M and B which is represented by

Wm. As response to the incoming modulatory signal at time t3 the increase of the PMS in

neuron B is defined by:

PMS = PMS +Wm (4.5)

PMS is the concentration of the plasticity modulatory substance in the target neuron (B)

and is used as the modulatory factor in the implementation of the 3-factor STDP formula

illustrated previously in 4.3. Wm represents the efficacy of the modulatory carrier synapse

with the + sign indicating that the weight is positive, thus increasing the concentration of

PMS.

The third spike sent by A at time tfa3 reaches the postsynaptic neuron B at time t4 eliciting
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an EPSP of amplitude W ′
a. The difference between W ′

a and Wa, i.e. (W ′
a −Wa), indicates

the plasticity of the synapse that occurred during the triggering of the previous action

potential. The EPSP slightly decays until the fourth spike sent by A at tfa4 reaches B at

time t5, producing again an EPSP of amplitude W ′
a which brings the membrane potential

to reach the firing threshold, consequently triggering a new action potential in B .

The STDP plasticity mechanism 2 is activated taking into account: (1) the new firing

time, (2) the arriving time of the presynaptic spikes at times t4 and t5, (3) the current

concentration of PMS which is now represented by PMS ′ 3 . The synaptic efficacy

between A and B is updated with W ′′
a which again has been potentiated with respect to

the previous efficacy (W ′′
a > W ′

a). As shown in Figure 4.1 (b) the amplitude of the EPSP

at time t6 (caused by the presynaptic spike sent by A at time tfa5) demonstrates that the

change of efficacy from W ′
a to W ′′

a is significantly higher than the change from W to W ′
a,

i.e. (W ′
a −W < W ′′

a −W ′
a). The strong potentiation of W ′′

a through the up-regulation

of plasticity in neuron B triggered by M , allowed the presynaptic neuron A to activate

neuron B with a single spike.

2The membrane potential behaviour shown in Figure 4.1 (b) does not take into account the pre-after-post
timing dynamics for the STDP rule in order to keep the illustration as simple as possible.

3Although PMS′ describes the latest value after modulation activity, it does not take into account the process
of homeostatic regulation which brings the modulatory substance towards its equilibrium concentration.
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4.2.3 Down-modulation of PMS

In a similar way to Figure 4.1 (a), in Figure 4.2 (a) A spike train with five spikes is

transmitted from presynaptic PD neuron A to postsynaptic PD neuron B. tfa1 and tfa5

represent the firing times of the first and the last spike respectively. +Wa represents the

synaptic efficacy between neurons A and B with the + sign indicating that the synapse is

excitatory.

(b)

(a)

Figure 4.2: Down-modulation of PMS in PD neuron B affecting its synaptic plasticity with
presynaptic neuron A.
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Presynaptic PM neuron M transmits a modulatory signal at time tfm1. −Wm represents

the amplitude or efficacy of the signal with the − sign indicating that the synapse is

down-regulating the PMS at the postsynaptic neuron B.

Figure 4.2 (b) illustrates the behaviour of the membrane potential of postsynaptic neuron

B during the arrival time of the presynaptic spike train sent by A. The first spike tfa1 elicits

an excitatory postsynaptic potential (EPSP) of amplitude Wa which corresponds to the

current efficacy of the carrier synapse. The EPSP slightly decays until the second spike

fired at time tfa2 arrives, producing once again an EPSP of amplitude Wa. Through the

second spike, the depolarization of the membrane potential reaches the firing threshold

consequently triggering an action potential in B. The generation of the action potential

activates the plasticity mechanism which involves the application of the 3-factor STDP

rule (see formula 4.3) over the previous spikes that reached neuron B.

For the synapse between A and B the new efficacy W ′
a is calculated by the function fSTDP

with the following parameters: (1) The neuron firing time tf , (2) the arrival time of the pre-

vious incoming EPSPs (tfa1 and tfa2) represented with ~t. (3) the current concentration of the

plasticity modulatory substance PMS. The synaptic efficacy between A and B is updated

with W ′
a which has been potentiated with respect to the previous efficacy (W ′

a > Wa). The

signal transmitted at time tfm1 by neuron M arrives at postsynaptic neuron B at time t3.

The concentration of PMS in B is decreased according to the synaptic efficacy between M

and B which is represented by Wm:

PMS = PMS −Wm (4.6)

Wm represents the efficacy of the modulatory carrier synapse with the − sign indicating

that the weight is negative, thus decreasing the concentration of PMS in the target neuronB.

The third spike sent by A at time tfa3 reaches the postsynaptic neuron B at time t4 eliciting

an EPSP of amplitude W ′
a. The difference between W ′

a and Wa, i.e. (W ′
a −Wa), indicates

the plasticity of the synapse that occurred during the triggering of the previous action

potential. The EPSP slightly decays until the fourth spike sent by A at time tfa4 reaches B

at time t5, producing again an EPSP of amplitude W ′
a which brings the membrane potential
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to reach the firing threshold, consequently triggering a new action potential in B .

The STDP plasticity mechanism is activated taking into account: (1) the new firing time,

(2) the arrival time of the presynaptic spikes at times t4 and t5, (3) the current concentration

of PMS which is now represented by PMS ′ .

The synaptic efficacy between A and B is updated with W ′′
a which again has been potenti-

ated with respect to the previous efficacy (W ′′
a > W ′

a).

As shown in Figure 4.2 (b) the amplitude of the EPSP at time t6 (caused by the presynaptic

spike sent by A at time tfa5) demonstrates that the change of efficacy from W ′
a to W ′′

a is

significantly lower than the change from Wa to W ′
a, i.e. (W ′

a −Wa > W ′′
a −W ′

a). The

lower potentiation of W ′′
a through the down-modulation of plasticity in neuron B triggered

by M , prevents the rapid growth of the synaptic efficacy from neuron A to B.

4.3 Excitability Modulation

Excitability Modulation (EM) is used as a mechanism to attenuate or amplify the amplitude

of EPSPs and IPSPs originated from incoming presynaptic spikes. The EM in each PD

neuron is determined by its internal (local) concentration of the EMS. Similarly to PMS,

the decay rate of the EMS may be different on each PD neuron allowing different neuro

modulatory characteristics between neural sub circuits. The up and down-modulation of

the EMS in the postsynaptic neuron depends on the nature of the carrying synapse which

can be either excitatory or inhibitory.

Through EM, the firing activity of a postsynaptic PD neuron can be dynamically tuned so

that it can discriminate the incoming presynaptic inputs and react differently to each of

them according to the affinity expressed by their carrying synapses.

Figures 4.3 and 4.4 illustrate the mechanisms of up and down-modulation of the EMS in

a postsynaptic PD neuron (B) and its effect on the incoming synapse from a presynaptic

neuron (A).
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4.3.1 Up-modulation of EMS

(b)

(a)

Figure 4.3: Up-modulation of EMS in PD neuron B increasing the amplitude of EPSPs
originated from presynaptic neuron A.

In Figure 4.3 (a) A spike train with two spikes is transmitted from presynaptic PD

neuron A to postsynaptic PD neuron B. tfa1 and tfa2 represent the firing times of the first

and the second spike respectively. +Wa represents the synaptic efficacy between neurons

A and B with the + sign indicating that the synapse is excitatory.
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Presynaptic EM neuron M transmits a modulatory signal at time tfm1. +Wm represents

the amplitude or efficacy of the signal with the + sign indicating that the synapse is up-

regulating the EMS at the postsynaptic neuron B. Figure 4.3 (b) illustrates the behaviour of

the membrane potential of postsynaptic neuron B during the arrival time of the presynaptic

spike train sent by A.

The first spike tfa1 elicits an excitatory postsynaptic potential (EPSP) of amplitude

f(Wa, EMS) which takes into account two parameters: (1) the efficacy of the carrier

synapse indicated by Wa. (2) The current concentration of EMS in the neuron.

The signal transmitted at time tfm1 by neuron M arrives at postsynaptic neuron B at time

t2. The concentration of EMS in B is increased according to the synaptic efficacy between

M and B which is represented by Wm. The new concentration of EMS is now represented

by EMS ′.

Shortly after the EPSP elicited at time t1, the postsynaptic membrane potential decays

almost reaching its resting potential until the second spike tfa2 arrives at time t3, eliciting

once again an EPSP of amplitude f(Wa, EMS ′). The difference between EPSP1 and

EPSP2, where (EPSP1 < EPSP2), indicates the increase in the synaptic efficacy after

the modulatory signal received at time tfm1.

4.3.2 Down-modulation of EMS

In Figure 4.4 (a) A spike train with two spikes is transmitted from presynaptic PD neuron

A to postsynaptic PD neuron B. tfa1 and tfa2 represent the firing times of the first and the

second spike respectively. +Wa represents the synaptic efficacy between neurons A and B

with the + sign indicating that the synapse is excitatory.

Presynaptic EM neuron M transmits a modulatory signal at time tfm1. −Wm represents

the amplitude or efficacy of the signal with the − sign indicating that the synapse is

down-regulating the EMS at the postsynaptic neuron B.

Figure 4.4 (b) illustrates the behaviour of the membrane potential of postsynaptic neuron

B during the arrival time of the presynaptic spike train sent by A.
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(b)

(a)

Figure 4.4: Down-modulation of EMS in PD neuron B decreasing the amplitude of EPSPs
originated from presynaptic neuron A.

The first spike tfa1 elicits an excitatory postsynaptic potential (EPSP) of amplitude

f(Wa, EMS) which takes into account two parameters: (1) the efficacy of the carrier

synapse indicated by Wa. (2) The actual concentration of EMS in the neuron. The signal

transmitted at time tfm1 by neuron M arrives at postsynaptic neuron B at time t2. The

concentration of EMS in B is decreased according to the synaptic efficacy between M and

B which is represented by Wm.
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The new concentration of EMS is now represented by EMS ′. Shortly after the

EPSP elicited at time t1, the postsynaptic membrane potential decays almost reaching

its resting potential until the second spike tfa2 arrives at time t3, eliciting once again an

EPSP of amplitude f(Wa, EMS ′). The difference between EPSP1 and EPSP2, where

(EPSP1 > EPSP2), indicates the decrease in the synaptic efficacy after the modulatory

signal received at time tfm1.

4.4 PMS and EMS Homeostasis

In the proposed neural system the concentrations of the modulatory substances PMS and

EMS have their corresponding equilibrium concentration (EC) values in each individual

PD neuron. Thus, in the absence of incoming modulatory signals the equilibrium con-

centrations of PMS and EMS serve as default modulatory factors inside a PD neuron.

Moreover, the role of the EC parameters is not just limited to serve as default modulatory

factors but also to regulate the concentration of PMS and EMS inside each neuron. The

artificial PD neuron aims to maintain both PMS and EMS at its corresponding equilibrium

concentrations, thus resembling a biological homeostatic process where the concentration

of a substance is up or down regulated in order to reach an stable equilibrium [82]. The

homeostatic mechanism of both PMS and EMS is presented in the next sections of this

chapter.

4.4.1 PMS Homeostasis

In a PD neuron, the mechanism of regulation of PMS works by verifying whether the

concentration of PMS is different from its equilibrium concentration (EC). If the PMS

concentration is higher or lower than the equilibrium value, the system proceeds to increase

or decrease the PMS towards the EC value. This is implemented through the formula:

PMS = PMS + ∆PMS (4.7)

Where ∆PMS indicates the change of PMS towards EC. ∆PMS is implemented as follow:
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∆PMS =


−Apms exp((t− tf )/τpms), if PMS > EC (a)

Apms exp((t− tf )/τpms), if PMS < EC (b)

0, otherwise (c)

(4.8)

In formula 4.8 above, Apms and −Apms are the scaling increments of the PMS over time. t

is the current time and tf is the time of the last incoming plasticity-modulatory signal. τpms

is a time constant which determines the shape of the exponential function that describes

the evolution of PMS. Figure 4.5 illustrates with an example the behaviour of the PMS

concentration and its mechanism of regulation or homeostasis:

(b)(a)

Figure 4.5: Behaviour of PMS in a PD neuron that receives a modulatory signal from an
plasticity modulatory neuron.

In figure 4.5 (a) the presynaptic modulatory neuron M sends a modulatory signal of

amplitude Wm that arrives at time tfm at the postsynaptic PD neuron B. (b) The behaviour

of the PMS in neuron B shows that PMS is in its equilibrium concentration during the time

interval [ t0, t
f
m) until the incoming presynaptic signal arrives at tfm increasing the PMS

concentration by an amplitude of Wm. As shown in (b) the increase of PMS is followed by

a period of slow decay where the duration is determined by τPms. The slow decay period

serves to keep the modulatory effect at a relatively steady amplitude before entering in a
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fast decay phase towards the EC. As shown above, the modulatory effect is transient, as

the target neuron will eventually revert its PMS to the equilibrium concentration.

4.4.2 EMS Homeostasis

The homeostatic regulation of EMS occurs in a similar way to the mechanism shown

before for PMS. There is also an equilibrium concentration (EC) which the PD neuron tries

to maintain. Thus, if the EMS is higher or lower than the EC, the regulation mechanism

will decrease or increase the EMS concentration towards its EC. This is implemented

through the formula:

EMS = EMS + ∆EMS (4.9)

Where ∆EMS indicates the change of EMS towards EC. ∆EMS is implemented as follow:

∆EMS =


−Aems exp((t− tf )/τems), if EMS > EC (a)

Aems exp((t− tf )/τems), if PMS < EC (b)

0, otherwise (c)

(4.10)

In formula 4.10 above, Aems and −Aems are the scaling increments of the EMS over

time. t is the current time and tf is the time of the last incoming excitability-modulatory

signal. τems is a time constant which determines the shape of the exponential function

that describes the evolution of EMS. The behaviour of the EMS concentration curve is the

same as the PMS curve shown in figure 4.5.

4.4.3 Synapses

In the proposed SNN system, the type of synapse determines the type of information that

is transmitted between 2 neurons. A synapse can be a carrier for 2 types of information,
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these can be either: (1) pulses or (2) modulatory signals.

Pulse carrier synapses

Pulse carrier synapses transmit pulses that elicit changes in the membrane potential

of the receiving (postsynaptic) neuron. The postsynaptic potentials elicited by a pulse

can be either excitatory (EPSP) or inhibitory (IPSP) depending of the efficacy of the

synapse. Pulse carrier synapses may be sensitive (express affinity) to plasticity (PMS) and

excitability (EMS) modulation. Synapses with affinity to PMS are highly dependent on the

concentration of PMS in the postsynaptic neuron. In this case synaptic plasticty based on

STDP evolves following the dynamics of a three factors rule [9] as described in formula

4.3 of chapter 4. Synapses without affinity to PMS do not depend on the concentrations of

the PMS and their synaptic efficacy evolves following the traditional STDP two factor rule

[9] described in formula 4.2 of chapter 4. In a similar way to PMS, synapses with affinity

to EMS are highly dependent on the concentration of EMS in the postsynaptic neuron.

Thus, incoming postsynaptic potentials are affected according to the concentration of EMS

as described in section 4.3.

Modulatory synapses

Incoming synapses from modulatory neurons allow the increase or decrease of EMS and

PMS concentrations in postsynaptic neurons. Incoming synapses from modulatory neurons

may carry the signal to perform one of the following processes:

• Change of PMS in the postsynaptic neuron.

• Change of EMS in the postsynaptic neuron.

In the proposed system, an incoming synapse from a modulatory neuron will always

carry one and the same type of signal. The amplitude of the increasing or decreasing effect

of the signal depends on the efficacy of the incoming NM synapse in a similar way to an

incoming synapse carrying a pulse.

60



4.5 Summary

This chapter has described the theory behind the proposed mechanisms of Heterosynaptic

modulation of synaptic plasticity and neural excitability for SNN. In the first part of this

chapter the dynamics of both plasticity and excitability modulation via a heterosynaptic

architecture were described. The second part was devoted to the mechanism of plasticity

modulation which started with the description of an extended 3-factor rule for hebbian

learning. This was followed by the definition of the mechanisms of up and down modulation

of plasticity through the use of modulatory signals. The next part of the chapter described

the mechanism of excitability modulation which introduced a new built-in excitatory

factor in the proposed neuron model. This was followed as well by the definition of their

corresponding mechanisms of up and down modulation of neural excitability through

modulatory signals. The fourth part of this chapter described the homeostatic processes in

the neuron for both plasticity and excitability modulation mechanisms. The last part of

this chapter defined the types of synapses used for the transmission of modulatory signals

and regular pulses between neurons. The implementation of this theoretical system will be

explored experimentally in the following chapters of this thesis.
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Chapter 5

Implementation of the Proposed

Spiking Neural System with

Heterosynaptic Capabilities

This chapter suggests a set of data structures and algorithms for the implementation in

software of the SNN system described in the preceding chapter. The architecture of the

system is presented through simplified schematics and pseudocode that implement the

behaviour of the components of the system.
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5.1 Neurons

In order to allow a neural network to make use of heterosynaptic modulation, it requires

the implementation of an architecture that includes both pulse-driver (regular) neurons and

modulatory neurons. Therefore, in the proposed SNN model an artificial neuron will be

implemented as either one of the following types:

• Pulse driver neuron.

• Neuro-Modulatory neuron.

5.1.1 Pulse driver neuron (PD)

A PD neuron is based on the classical dynamics of a threshold fire Spiking Neuron. The

reaching of a threshold by the neuron’s membrane potential produces a pulse (action

potential) which is propagated to the postsynaptic neurons eliciting excitatory (EPSP) or

inhibitory (IPSP) postsynaptic potentials, according to the efficacy of the synapses.

The implementation of the PD neuron proposed in this thesis is a simplification of

Integrate-and-fire (I&F) models which recreate to some extent the phenomenological

dynamics of neurons while abstracting the biophysical processes behind them. In the

simplest terms, the implemented PD neuron assumes that the only inputs come from pulses

of presynaptic neurons and there are no imposed external currents. The PD neuron also

implements the embedded plasticity (PMS) and excitability (EMS) modulatory factors

which are sensitive to external plasticity and excitability modulatory-signals respectively

(as described in sections 4.2 and 4.3). As part of the modulatory mechanisms, the PD

neuron implements as well the homeostatic processes (described in section 4.4) that

regulate the concentrations of EMS and PMS.

5.1.2 Neuro-modulatory neuron (NM)

A NM neuron refers to an artificial neuron which transmits modulatory signals instead

of electrical pulses. In terms of implementation, all the internal dynamics including the

membrane potential, plasticity and homeostatic processes of a NM neuron are implemented
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in the same way as for the PD neuron. However, the difference is in the outgoing signals

that are transmitted as a result of an action potential or firing event. The type of transmitted

information which can be either an electrical pulse or a modulating signal is indicated

by the carrier synapse. Thus, a NM neuron is implemented as a PD neuron but with the

difference imposed by the constraint that all its outgoing synapses are of modulatory type.

5.1.3 The underlying Threshold and Fire Model

In order to gain a better understanding of the differences between the implemented neuron

model and the canonical I&F model, a comparison is shown below:

Integrate and Fire Model (I&F) Proposed

Membrane The canonical Integrate-and-Fire [19] The evolution of the memb-

Potential represents the evolution of the rane potential over time is

neurone membrane potential through described by the variable u.

the time derivative of the Law of The behaviour of u(t) depends

Capacitance: on: (1) the machine state at

time t, (2) the applied currents

I(t) = Cm
dVm(t)
dt

from incoming spikes and (3)

the membrane potential

‘Integrate’ refers to the behaviour leakiness (see below).

of the model when input currents are

applied resulting in the increase

of the membrane voltage until it

reaches a set threshold which initiates

a spike (fire event). The I & F model

does not implement the decay of the

membrane voltage towards its resting

potential. Thus the membrane will

keep a sub-threshold voltage indefinit-

ely until new input currents make
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the membrane cross the firing threshold.

Leakiness The decay or leakiness of the The decay of the membrane

membrane potential is implemented potential u is implemented as:

as an extension of the I & F model: du = [vres−u]
τm

The Leaky-Integrate-and-Fire Model if vres < u then

(LI & F) recreates the dynamics of a u = u− du

neuron by means of a current I flowing else if vres > u then

through the parallel connection of a u = u+ du

resistor with a capacitor in an electrical where vres is the resting

circuit [26][20]. The current I splits potential and τm is the

in the resistor R and capacitor C, as membrane time constant.

follows:

I(t) = IR + IC = u(t)
R

+ C du
dt

Where the voltage across the capacitor

C is depicted with u and represents the

neuron membrane potential. By intro-

ducing the membrane time constant

Tm = RC, the above equation can be

rewritten as:

Tm
du
dt

= −u(t) +RI(t)

with Tm quantifying the rate at

which u decays to its resting potential.

Spike The mechanism of spike initiation is Same as I & F.

Initiation established through a threshold Fixed firing threshold.
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condition: u(t) = θ. Thus, if a given

threshold θ is reached at t = t(f)

then the neuron is said to fire a spike

at time t(f) .

Action The form of the generated action Same as I & F.

Potential potential is not described explicitly in During the generation of

the LI&F model [26]. Following the action potential the system

fire event, the potential is reset: ureset initializes the

< θ. Then, when t > t(f) the dynamic absolute_refractory_period

behaviour continues as described by timer.

the membrane time constant Tm.

Refractoriness The absolute refractory period is Same as I & F.

generally implemented by temporarily The state of the system

stopping the dynamics immediately remains as absolute_refractory

after the threshold conditions have as long as the

been reached. After the stop time absolute_refractory_period timer

the membrane potential dynamics is still alive.

start again with u = ureset where

ureset < θ.

Synapses Following the framework of the I & F Similarly to I & F, the total

model, given a neuron i, its total input input current is also expressed

current is defined as the sum of all its as:

incoming current pulses:

Ti(t) =
∑

j wij
∑

f α(t− t
(f)
j )

Ti(t) =
∑

j wij
∑

f α(t− t
(f)
j )

However, in contrast with the

Where α(t− t
(f)
j ) describes the time I & F framework, in the proposed model
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course from the presynaptic firing time the postsynaptic current only

t(f) at neuron j and the arrival time takes into account the efficacy

t at postsynaptic neuron i. Wij repre- Wij of the synapses but not the

sents the synaptic weight or efficacy conductance of the post-

between neuron j and the postsynaptic synaptic membrane.

neuron i. The postsynaptic current

generated by an incoming spike depends

on the elicited change in the conductance

of the postsynaptic membrane [20].

From the comparison above it can be seen that similarly to the I&F model the neuronal

system implemented in this thesis is also based on the threshold and fire framework, thus

sharing similar mechanisms for the handling of the membrane potential, spike initiation,

action potential and refractoriness. However, so far these characteristics can be considered

part of the ’essential’ neuronal dynamics in SNN. The extended modulatory capabilities

presented in the previous chapter will be implemented on top of the underlying threshold

and fire model. The following section of this chapter will start by describing the imple-

mentation of the ’essential’ characteristics followed by a proposed process architecture

with the corresponding algorithms for the implementation of the whole SNN system with

extended modulatory capabilities.

5.1.4 A 2-state Clock-driven Neuron

The artificial neurons are simulated according to the clock driven SNN implementation by

Jimenez et al. [83]. Following this approach, the time in the simulation is represented by

an iteration-counter which increases at discrete steps or ticks. The value of the time step or

tick determines the time granularity of the simulation and consequently the time dynamics

of the neurons and their internal mechanisms.
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For the simulation of the neuronal dynamics, a similar approach to Upegui et al. [84]

has been adopted, modelling the artificial neuron as a finite-state machine where the states

transitions depend mainly on a variable representing the membrane potential of the cell.

This has the advantage of reducing the consumption of computational resources given that

most of the internal processes of the artificial neuron are implemented in either one of

the two possible operational states of the system: ’open’ and ’absolute-refractory’. The

processes or internal mechanisms that take place within the 2 states are: (1) membrane

potential leakiness, (2) resting potential, (3) spike threshold, (4) excitatory and inhibitory

postsynaptic response and (5) refractoriness.

In the open-state the neuron is receptive to input pulses coming from presynaptic

neurons. The amplitude of postsynaptic potentials elicited by presynaptic pulses is given

by the function psp(wij) (see Figure 5.1) where wij is the synaptic efficacy between

presynaptic neuron j and postsynaptic neuron i . The membrane perturbations reported

by psp(wij) are added (excitatory postsynaptic potential EPSP) or subtracted (inhibitory

postsynaptic potential IPSP) to the actual value of the membrane potential u.

If the neuron firing threshold θ is not reached by u, then u begins to decay (see decay(u)

in Figure 5.1) towards a fixed resting potential rp. On the other hand, as it occurs in other

Integrate-and-Fire implementations, if the membrane potential reaches a given threshold,

an action potential or spiking process is initiated. In the presented model, when u reaches

the firing threshold θ, this triggers a state transition from the open to the absolute-refractory

state. During the latter, u is set to a fixed refractory potential value av (see Figure 5.2) and

all incoming presynaptic pulses are neglected by u.

When the absolute-refractory state is initiated, an iteration counter ic is set to a value nr

representing the number of iterations during which the absolutely-refractory state continues.

Once the nr iterations are completed, a state transition to the open-state is triggered by the

condition ic = 0 .
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Figure 5.1: Model state transition represented with a Harel state chart.

As shown in Fig. 5.1 the membrane dynamics of the simulated neuron are encapsulated

within the two states Open and Absolute-refractory, while the entire states transition

depends on the two variables u and ic corresponding to the membrane potential and

refractory period counter respectively.

Figure 5.2 illustrates the behaviour of the membrane potential in response to incoming

presynaptic spikes according to the simulation approach explained above:

Figure 5.2: Modeling of the membrane potential in the implemented SNN model
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5.1.5 Data Structures for Simulation, Neuron and Synapse

Objects

So far it has been said that the threshold-and-fire dynamics of the artificial neuron presented

in this thesis will be implemented based on 2 operational states (open and absolute refrac-

tory). The next step towards implementation involves the definition of the data structures

which represent the main entities that build up a SNN system. These entities include: the

simulation, neurons and synapses. This thesis adopted an Object-oriented programming

(OOP) approach given that the use of classes provides an easier and more understandable

way [85] to represent the above mentioned entities as objects that encapsulate their own

attributes and behaviours.

The description of these entities as OOP classes is presented through UML class diagrams

which are non specific to any particular programming language. Figure 5.3 below illustrates

the relationship among the 3 main classes Simulation, Neuron and Synapse:

Figure 5.3: The 3 main entities: Simulation, Neuron and Synapse.

In figure 5.3, following the UML 2.x specification, the classes are depicted as boxes

with 2 or 3 compartments depending on the level of detail at which the system is being

described. The top compartment indicates the name of the class, the middle one shows the

attributes, and the third one lists the class operations or behaviours.
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The class ’Simulation’ contains the parameters required to carry out the execution of

the SNN simulation. These include a ’running’ or execution flag, the elapsed simulation

time represented by ’time’ and the time step ’time_step’ (or the time granularity) at which

the clock driven simulation increases the ’time’ attribute. As will be shown in the next

sections of this chapter, the time and time_step attributes are used by the instantiated

Neuron and Synapse objects as reference time for their internal dynamics.

Simulation also contains the attributes ’neurons’ and ’synapses’ where both attributes are

followed by [∗] indicating multiplicity (a collection of elements) of unspecified length. A

multiplicity may refer to a string, array, list or other collections of data, depending on the

programming language and implementation approach. The multiplicity is followed by

’:’ and the name of a class or type which indicates the data type of the attribute. In this

case the collections ’neurons’ and ’synapses’ are of type Neuron and Synapse respectively.

Figure 5.3 illustrates the composition relationship between classes. The arrows pointing

with a black diamond shape indicate that both Neuron and Synapse are ’part of’ Simulation.

The ’0..*’ at the other end of the arrows indicate the multiplicity of both attributes going

from 0 to an unspecified number.

Figure 5.3 also shows a relationship between classes Neuron and Synapse. The type of

this relationship is not explicit at this stage, however the numbers at each other end of the

connecting line indicates that a Neuron may be associated with an unspecified number of

Synapse objects while a Synapse may be associated with only 2 Neuron objects. For the

sake of simplicity, the attributes and behaviours of Neuron and Synapse have been omitted

in figure 5.3. A more detailed description of the composition and relationships of classes

Neuron and Synapse is show next in figure 5.4.

The classes Neuron and Synapse are shown in figure 5.4 including all its attributes and

operations. At the same time, from the class diagram it can be observed that some of the

attributes are classes (or defined data structures) themselves.

In the class Neuron, the attributes shown in black correspond to the parameters of the

fundamental threshold-and-fire SNN system described before. These attributes are: (1)

’state’ which indicates the current machine state of the neuron, (2) ’membrane_potential’

which was previously described in figures 5.1 and 5.2 as ’u’, (3) ’resting_potential’ which
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indicates the membrane potential when the neuron is at rest (Rp in figure 5.2), (4)

’absolute_refractory_potential’ which corresponds to the membrane potential of the neuron

during its absolute refractory state, (5) the ’firing_threshold’ which was described as ’θ’ in

figures 5.1 and 5.2, (6) the ’refractory_counter’ which indicates the elapsed time of the

absolute-refractory period (ic in figure 5.2) and (7) ’last_firing_time’ which stores the time

of the neuron’s last firing event.

Figure 5.4: Neuron and Synapse data structures.

The next group of attributes in class Neuron is depicted in figure 5.4 with blue font.

These attributes are: (1) ’outgoing_synapses’ which is a collection of objects of the type

’OutgoingSynapse’. The later is used as a data structure to store the address of a ’Synapse’

object. Thus ’outgoing_synapses’ is a collection of data that contains the addresses of all

the outgoing synapses in an artificial neuron. (2) ’dendritic_input_queue’ is a collection of

objects of the type ’InputQueue’. At the same time, ’InputQueue’ is a data structure with

2 attributes: ’in_synapse_address’ and ’pulse_arrival_time’. The first, serves to store the

address of a ’Synapse’ object. The second attribute stores time in the given time units used
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by the implementation. Thus, ’dendritic_input_queue’ is used to store the information

from the presynaptic incoming pulses. This information includes the address of the pulse

carrier synapse and its arrival time. (3) ’preprocessed_input_queue’ is also a collection of

objects of the type ’InputQueue’. However, it is used to store the incoming pulses where

the plasticity rule has been applied. This will be further explained in the next sections

of this chapter. (4) ’axonal_output_queue’ is a collection of objects of the type ’Axon-

alOutputQueue’. The later is a data structure with 2 attributes: ’out_synapse_address’ and

’pulse_delay_timer’. The first attribute stores the address of a ’Synapse’ object while the

second one stores a value representing time units. Thus, ’axonal_output_queue’ is used to

store the information (synapse address and scheduled time) of the outgoing pulses that are

scheduled to be transmitted to postsynaptic neurons.

The third group of attributes depicted in green contain the data structures for the mod-

ulatory mechanisms of the extended neuron model. Both attributes ’ems_parameters’

and ’pms_parameters’ are of type ’ModulatingSubstance’. The later data structure

contains the following parameters: (1) ’current_concentration’ which represents the

current concentration of the modulatory substance (modulatory factor), (2) ’equilib-

rium_concentration’ indicates the homeostatic concentration value of the modulatory

substance. (3) ’last_incoming_signal’ stores the arrival time of the last incoming modula-

tory signal.

The class ’Synapse’ is also shown above in figure 5.4. This class is used to represent the

synapses in the SNN. The attributes: (1) ’presynaptic_neuron_address’ and (2) ’postsy-

naptic_neuron_address’ are both of data type ’Neuron’. These two attributes store the

memory address of the presynaptic and postsynaptic neurons respectively. In other words

a synapse knows the address of the neuron at each one of its ends.(3) The attribute ’type’

indicates the nature of the carried information, whether it is a pulse, an efficacy modulating

signal or a plasticity modulating signal. (4) ’efficacy’ (or weight) represents the strength

at which the presynaptic neuron can affect the postsynaptic (receiving) neuron. (5) At-

tributes ’ems_affinity’ and (6) ’pms_affinity’ indicate whether the respective mechanisms

of excitability modulation and plasticity modulation are applicable to pulses carried by the

synapse. (7) The attribute ’delay’ represents the time that a pulse or modulatory signal
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needs to travel through the synapse before reaching the postsynaptic neuron.

The relationships depicted in figure 5.4 between ’Synapse’ and the three data structures

’OutgoingSynapse’, ’InputQueue’ and ’AxonalOutputQueue’ indicates that a ’Synapse’

object can be referenced in one ’OutgoingSynapse’, multiple ’InputQueue’ and multiple

’AxonalOutputQueue’ elements. The way in which ’Neuron’ and ’Synapse’ objects interact

with each other in order to behave as a network will be described in the next section.

5.1.6 Memory Organization and Interaction between Neuron

and Synapse objects

As illustrated in figure 5.3, all the neuron entities in the simulation are contained in the

data structure ’neurons’ which is a collection of instantiated objects of type ’Neuron’. this

collection can be either an array or list of objects where each individual object can be

accessed through its corresponding memory address. Similarly, all the synapse entities

in the simulation are contained in the collection ’synapses’. This, again, can be an array

or list of instantiated ’Synapse’ objects where each object can be accessed through its

corresponding memory address.

As occur in biological as well as in artificial models, in this implementation ’Neuron’

objects communicate with each other through synapses. As show in figure 5.5 each

’Neuron’ object contains a list of outgoing synapses (as addresses of ’Synapse’ objects).

At the same time, each ’Synapse’ object contains the address of a presynaptic and a

postsynaptic neuron.

In figure 5.5 neuron ’N1’ depicted as a blue rectangle, has 3 outgoing synapses:

S21, S32 and S38 represented with dashed lines leaving neuron ’N1’ from its right hand

side. Inside ’N1’ the list ’outgoing_synapses’ contains the addresses of the outgoing

synapses. The address of synapse S21 is shown enclosed within a green ellipse inside the

”outgoing_synapses’ list in ’N1’. At the same time the synapse S21 inside the ’synapses’

list contains the addresses of its corresponding presynaptic and postsynaptic neurons (N1

and N2) shown at the top surrounded by a blue and red ellipse.

In this way, each neuron can access each one of its outgoing synapses whilst each outgoing

synapse can access its corresponding neurons.

74



Figure 5.5: Memory organization in the implemented SNN.

5.1.7 The Neuron Components Architecture

Having the data structures, the next step is to implement the different dynamics of the

artificial neuron, this includes the processing of presynaptic inputs including both pulses

and modulatory signals, the evolution of the membrane potential, neuronal plasticity, firing

events and the homeostatic processes described in section 4.4. This Characteristics of the

neuron are implemented as different process components that interact within the neuron.

Figure 5.6 shows these component and the way they communicate with each other:
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Figure 5.6: Internal Neuron components and their relationships.

76



Each one of the components shown in figure 5.6 is implemented as a function or

methode encapsulated in the class Neuron. In the following sections the pseudocode

implementation of each one of this components is described.

Run

The methode Run implemented below in figure 5.7 contains the main implementation of

the Neuron object. From here all the different components are executed. The methode

receives as parameters the current time (given in simulation iteration cycles) and the time

increment ’time_step’ at which the time of the simulation increases at each iteration. From

here 5 process components are executed sequentially.

1   begin Neuron.Run(time, time_step)
2   //… Call procedure that handles the inputs from
3   //…  incoming synapses in ‘Neuron’
4   ProcessPresynapticInputs()
5   //… Call procedure that handles the state machine dynamics
6   //… in ‘Neuron’
7   MachineStateDynamics(time, time_step)
8   //… Call procedure that handles the propagation of outgoing pulses
9   //…  in ‘Neuron’

10   AxonalSynapticDynamics()
11   //… Call procedure that handles EMS regulation in ‘Neuron’
12   EMSHomeostasis()
13   //… Call procedure that handles PMS regulation in ‘Neuron’
14   PMSHomeostasis()
15   end
16   

Figure 5.7: Pseudocode of Neuron component: Run

ProcessPresynapticInputs

The first component ’ProcessPresynapticInputs’ implemented below in figure 5.8 is re-

sponsible for the processing of the incoming inputs from presynaptic neurons. The

inputs are processed in their order of arrival until there are no more entries in the ’den-

dritic_input_queue’. Each input is processed according to the type of their carrier synapse

indicated by ’synapse_type’. Inputs originated from PD neurons are processed as pulses.

As mentioned before, if the neuron state is open, a pulse will elicit a change in ’mem-

brane_potential’. Otherwise, if the neuron state is absolute-refractory any incoming pulse

is discarded. On the other hand, inputs originated from NM neurons are processed as

modulatory signals according to their type.
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1   begin Neuron.ProcessPresynapticInputs(time)
2   //… Iterate through ‘dendritic_input_queue’ processing each element as ‘input’
3   foreach input in dendritic_input_queue do
4   //… Use the address ‘in_synapse_address’ in ‘input’ to access the
5   //… corresponding carrier synapse through the pointer ‘p_current_synapse’
6   p_current_synapse ← input.in_synapse_address
7   //… Store the synapse type (pulse driver or modulatory) in  synapse_type:
8   synapse_type ← p_current_synapse.type
9   //… if the carrier synapse is of pulse driver type then:

10   if synapse_type = pulse_driver_type then
11   //… Apply the STDP rule for long term depression (LTD) using the 
12   //… information in ‘input’
13   PlasticityDynamics(input, LTD)
14   //… if the neuron machine state is open:
15   if state = open then
16   //… Store ‘input’ in the list of inputs where the STDP rule
17   //… for LTD has been applied:
18   AppendTo(preprocessed_input_queue, input)
19   //… Get strength of the elicited postsynaptic potential (PSP)
20   psp ← p_current_synapse.efficacy
21   //… If carrier synapse has affinity to EMS modulation
22   if p_current_synapse.ems_affinity = true then
23   //… Apply the EMS modulatory factor to ‘psp’
24   psp ← psp * EMS_parameters.current_concentration
25   endif
26   //… Perturbate the neuron’s membrane potential with
27   //… the computed postsynaptic potential in ‘psp’
28   membrane_potential ← membrane_potential + psp
29   //… Once processed, eliminate ‘input’ from dendritic_input_queue
30   DeleteFrom(dendritic_input_queue, input)
31   else
32   //… Neuron machine state is absolute_refractory. ‘input’ will 
33   //… not elicit any change in neuron membrane potential and
34   //… should be ignored (eliminated) from  dendritic_input_queue
35   DeleteFrom(dendritic_input_queue, input)
36   endif
37   else
38   //… The carrier synapse is of modulatory type:
39   //… Store the synaptic efficacy (weight) in modulating_weight:
40   modulating_weight ← p_current_synapse.efficacy
41   //… If synapse modulation type is of ‘excitability modulating’ type 
42   if synapse_type.subtype = excitability_modulating_type then
43   //… change the concentration of excitability modulating
44   //… substance (EMS) according to the modulating weight
45   EMS_parameters.current_concentration ←
46   EMS_parameters.current_concentration + modulating_weight
47   //… Store the time of the last incoming EMS modulatory signal
48   EMS_parameters.last_incoming_signal ← time
49   else
50   //… If synapse type is of ‘plasticity modulating’ type then
51   //… change the concentration of plasticity modulating substance
52   //… (PMS) according to the modulating weight
53   PMS_parameters.current_concentration ←
54   PMS_parameters.current_concentration + modulating_weight
55   //… Store the time of the last incoming PMS modulatory signal
56   PMS_parameters.last_incoming_signal ← time
57   endif
58   //… Eliminate ‘input’ from  dendritic_input_queue:
59   DeleteFrom(dendritic_input_queue, input)
60   endif
61   endfor
62   end
63   

Figure 5.8: Pseudocode of Neuron component: ProcessPresynapticInput
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MachineStateDynamics

The next component in the sequence of execution is ’MachineStateDynamics’ implemented

below in figure 5.9 which is responsible for the handling and state transitions of the 2

machine states (open and absolute refractory) in the artificial neuron. In the ’open’ state the

procedure verifies if the neuron is prepared to fire, in which case the component procedure

’InitiateActionPotential’ is called. Otherwise, if the membrane potential of the neuron has

not reached its firing threshold then the leakiness or decay of the membrane is computed

by the component procedure ’MembranePotentialDecay’.

1   begin Neuron.MachineStateDynamics(time, time_step)
2   //… If the machine state of Neuron is open then
3   if state = open then
4   //… If the membrane potential of Neuron is not at resting then
5   if membrane_potential != resting_potential then
6   //… If the membrane potential of Neuron reached the firing
7   //… threshold then:
8   if membrane_potential >= firing_threshold then
9   //… Call procedure that handles the action potential

10   //…  process in Neuron:
11   InitiateActionPotential(time)
12   //… Set the machine state of Neuron to
13   //… absolute_refractory
14   state ← absolute_refractory
15   //… Initialize the refractory timer with the duration
16   //… of the refractory period
17   refractory_counter ← REFRACTORY_PERIOD_DURATION
18   else
19   //… If membrane potential of Neuron is not at resting
20   //… and is not firing then call procedure that handles
21   //… the decay of the membrane potential in Neuron
22   MembranePotentialDecay()
23   endif
24   endif
25   else
26   //… If machine state of Neuron is not open then it is 
27   //… absolute_refractory.
28   //…  Decrease the refractory counter(timer)  of Neuron 
29   //…  by ‘time_step’ units
30   refractory_counter ← refractory_counter – time_step
31   //… Keep the membrane potential of ‘neuron’ equal to its absolute
32   //…  refractory potential
33   membrane_potential ← absolute_refractory_potential
34   //… If the Neuron refractory_counter reaches the end of the
35   //…  refractory period then
36   if refractory_counter <= 0 then
37   //… Set machine state of Neuron to open
38   state ← open
39   endif
40   endif
41   end
42   

Figure 5.9: Pseudocode of Neuron component: MachineStateDynamics
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InitiateActionPotential

The component ’InitiateActionPotential’ implemented below in figure 5.10 starts by calling

the component ’PlasticityDynamics’ (see figure 5.11 for implementation) which applies

the STDP plasticity rule to the presynaptic input pulses that arrived at the neuron before

the triggering of the firing event. After that, the method proceeds with the scheduling of

outgoing pulses (or modulating signals) in the ’axonal_output_queue’. The scheduling of

outputs is done for each outgoing synapse stored in the list ’outgoing_synapses’. Each

scheduled output is added to the ’axonal_output_queue’ providing information about their

corresponding output synapse and the transmission (synaptic) delay (given as time units).

1   begin Neuron.InitiateActionPotential(time)
2   //… Store the current time as last firing time of Neuron
3   last_firing_time ← time
4   //… Apply the STDP rule for long term potentiation (LTP) to the 
5   //… preceding incoming spikes stored in ‘preprocessed_input_queue’.
6   //… NULL is given as first parameter since function is not
7   //… processing a single input (LTD case) but the whole queue instead 
8   PlasticityDynamics(NULL, LTP)
9   //… Empty ‘preprocessed_input_queue’ Since all its entries have been

10   //… processed by the LTP plasticity function 
11   Empty(preprocessed_input_queue)
12   //… for each outgoing synapse schedule a new pulse to be sent:     
13   //… Iterate through ‘outgoing_synapses’ processing each element
14   //… as ‘out_synapse’
15   foreach out_synapse in outgoing_synapses do
16   //… Use the address ‘out_synapse_address’ in ‘out_synapse’ to access
17   //… the carrier synapse through pointer variable ‘p_current_synapse’ 
18   p_current_synapse ← out_synapse.out_synapse_address
19   //… Instantiate a new outgoing pulse to be added (scheduled)
20   //… in the ‘AxonalOutputQueue’
21   AxonalOutputQueue outgoing_pulse
22   //… Provide information about the carrier synapse and synaptic delay
23   //… to the new pulse
24   outgoing_pulse.out_synapse_address ← p_current_synapse
25   outgoing_pulse.pulse_delay_timer ← current_synapse.delay
26   //… Add ‘outgoing_pulse’ to the queue of scheduled outgoing pulses
27   //… named ‘axonal_output_queue’
28   AppendTo(axonal_output_queue, outgoing_pulse)
29   endfor
30   end
31   

Figure 5.10: Pseudocode of Neuron component: ActionPotentialInitiation

PlasticityDynamics

The component ’PlasticityDynamics’ implemented below in figure 5.11 is responsible for

applying the STDP rule (see section 3.2 and 4.2.1 for reference) to the incoming pulses

sent by presynaptic neurons.
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The provided parameter ’stdp_window_interval’ indicates whether STDP will be

applied to an input with pre-after-post timing (LTD window interval) or to inputs with

pre-before-post timing (LTP window interval) as described previously in section 3.2 and

illustrated in figure 3.1.

1   begin Neuron.PlasticityDynamics(input, stdp_window_interval)
2   //… If timing of ‘input’ is on the LTD interval of the STDP window then 
3   if stdp_window_interval = LTD then
4   //… get the elapsed time between the neuron’s last firing event
5   //… and the arrival time of the incoming spike stored in ‘input’
6   delta_time ← last_firing_time – input.pulse_arrival_time
7   //… If the elapsed time is in a valid range for processing then 
8   if LTD_MIN_RANGE < delta_time and delta_time <= LTD_MAX_RANGE then
9   //…Use the address ‘in_synapse_address’ in ‘input’ to access the

10   //… carrier synapse through pointer variable ‘p_current_synapse’
11   p_current_synapse ← input.in_synapse_address
12   //… If the carrier synapse is excitatory then
13   if p_current_synapse.efficacy >= 0 then
14   //… Compute STDP rule according to 2-factor formula 4.2 LTD
15   //… store the efficacy change into ‘nw’
16   nw ← -a_plst * exp((last_firing_time –
17   input.pulse_arrival_time) / Tau_pms_neg)
18   //… If carrier synapse has affinity to PMS modulation:
19   if p_current_synapse.pms_affinity = true then
20   //… Apply the modulatory factor to the new efficacy
21   //… according to formula 4.3 
22   nw ← nw * PMS_parameters.current_concentration
23   endif
24   //… Update the synaptic efficacy of the carrier synapse with
25   //… the computed efficacy change in ‘nw’
26   p_current_synapse.efficacy ← p_current_synapse.efficacy + nw
27   endif
28   endif
29   else
30   //… If timing of ‘input’ is on the LTP interval of the STDP window then
31   //… Iterate through ‘preprocessed_input_queue’ processing each element
32   //… as ‘prep_input’ 
33   foreach prep_input in preprocessed_input_queue do
34   //… get the elapsed time between the neuron’s last firing event
35   //… and the arrival time of the incoming spike in ‘prep_input’
36   delta_time = last_firing_time – prep_input.pulse_arrival_time
37   //… If the elapsed time is still in a valid range for processing then
38   if LTP_MIN_RANGE < delta_time and delta_time <= LTP_MAX_RANGE then
39   //… Use address ‘in_synapse_address’ in ‘prep_input’ to access the
40   //… carrier synapse through pointer variable ‘p_current_synapse’ 
41   p_current_synapse ← prep_input.in_synapse_address
42   //… If the carrier synapse is excitatory then
43   if p_current_synapse.efficacy >= 0 then
44   //… Compute STDP rule according to 2-factor formula 4.2 LTD
45   //… store the efficacy change into ‘nw’
46   nw ← a_plst * exp(- (last_firing_time –
47   input.pulse_arrival_time) / Tau_pms_pos)
48   //… If carrier synapse has affinity to PMS modulation
49   if p_current_synapse.pms_affinity = true then
50   //… Apply the modulatory factor to the calculated
51   //… efficacy change ‘nw’ according to formula 4.3 
52   nw ← nw * PMS_parameters.current_concentration
53   endif
54   //… Update the synaptic efficacy of the carrier synapse with
55   //… the computed efficacy change in ‘nw’
56   p_current_synapse.efficacy ← p_current_synapse.efficacy + nw
57   endif
58   endif
59   endfor
60   endif
61   end
62   

Figure 5.11: Pseudocode of Neuron component: PlasticityDynamics
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MembranePotentialDecay

The component ’MembranePotentialDecay’ implemented below in figure 5.12 handles

the leakiness of the membrane potential towards its resting potential value. When the

current value of the membrane potential represented by ’membrane_potential’ is higher or

lower than the value indicated by ’resting_potential’ then the change towards the neuron

resting potential is computed in ’delta_membrane’ and added or subtracted to the current

membrane potential value in ’membrane_potential’.

1   begin Neuron.MembranePotentialDecay(time_step)
2   //… Calculate the leakiness of the neuron membrane potential
3   //… according to the difference between the resting potential 
4   //… and the current membrane potential 
5   delta_membrane ← (abs(resting_potential – membrane_potential) /
6   membrane_time_constant) * time_step
7   //… If membrane potential is higher than the resting potential
8   if membrane_potential > resting_potential then
9   //… Decrease membrane_potential by delta_membrane

10   membrane_potential ← membrane_potential - delta_membrane
11   else if membrane_potential < resting_potential then
12   //… Else if membrane potential is lower than resting potential
13   //… Increase membrane_potential by delta_membrane
14   membrane_potential ← membrane_potential - delta_membrane
15   endif
16   end
17   

Figure 5.12: Pseudocode of Neuron component: MembranePotentialDecay

AxonalSynapticDynamics

The component ’AxonalSynapticDynamics’ implemented below in figure 5.13 is responsi-

ble for the transmission of the pulses (or modulating signals) scheduled for transmission

in ’axonal_output_queue’. For each scheduled output, this procedure decreases the delay

timer which was previously initialized by the component ’InitiateActionPotential’ accord-

ing to the delay of the output carrier synapse. When the timer of the scheduled output

reaches its end, the component AxonalSynapticDynamics calls the receiving postsynaptic

neuron through its provided component interface ’ReceivePulse’.
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1   begin Neuron.AxonalSynapticDynamics(time, time_step)
2   //… Iterate through ‘axonal_output_queue’ processing each element
3   //… as ‘outgoing_pulse’
4   foreach outgoing_pulse in axonal_output_queue do
5   //… If it is time to send the pulse indicated by ‘outgoing_pulse’ then
6   if outgoing_pulse.pulse_delay_timer <= 0 then
7   //… Use the address ‘out_synapse_address’ in ‘outgoing_pulse’ to
8   //… access the carrier synapse through pointer ‘p_current_synapse’
9   p_current_synapse ← outgoing_pulse.out_synapse_address

10   //… Use the address ‘postsynaptic_neuron_address’ in 
11   //… ‘p_current_synapse’ to access the postsynaptic (receiving)
12   //… neuron through the pointer ‘p_postsynaptic_neuron’
13   p_postsynaptic_neuron ← p_current_synapse.postsynaptic_neuron_address
14   //… Deliver pulse to the postsynaptic target neuron providing
15   //… the address of the carrier synapse and pulse arrival time
16   p_postsynaptic_neuron.ReceivePulse(p_current_synapse, time)
17   //… Once the pulse has been sent, eliminate ‘outgoing_pulse’ from
18   //… ‘axonal_output_queue’
19   DeleteFrom(axonal_output_queue, outgoing_pulse)
20   else
21   //… If it is not the time to send the pulse indicated by
22   //… ‘outgoing_pulse’ then continue decreasing the pulse delay timer
23   outgoing_pulse.pulse_delay_timer ← outgoing_pulse.pulse_delay_timer
24   - time_step
25   endif
26   endfor
27   end
28   

Figure 5.13: Pseudocode of Neuron component: AxonalSynapticDynamics

ReceivePulse

The component ’ReceivePulse’ implemented below in figure 5.14 is a methode that the

neuron provides as an interface to receive incoming pulses and modulating signals from

presynaptic neurons. The information of the incoming input (synapse address and input

time) is passed as parameters by the presynaptic (sending) neuron to the component. The

received input is then stored in ’dendritic_input_queue’ for further processing by the

receiving neuron.

1   begin Neuron.ReceivePulse(input_synapse_address, pulse_arrival_time)
2   //… Instantiate a new input pulse to be added in the 
3   //… dendritic_input_queue of the receiving neuron
4   DendriticInputQueue queue_input
5   //… Provide information about the carrier synapse and pulse arrival time
6   queue_input.in_synapse_address ← input_synapse_address
7   queue_input.pulse_arrival_time ← pulse_arrival_time
8   //… Add ‘queue_input’ to the queue of input pulses named
9   //… ‘dendritic_input_queue’ in the receiving neuron

10   AppendTo(dendritic_input_queue, queue_input)
11   end
12   

Figure 5.14: Pseudocode of Neuron component: ReceivePulse
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EMSHomeostasis

The component ’EMSHomeostasis’ implemented below in figure 5.15 handles the regula-

tion of the excitabiliy modulating substance (EMS) according to the dynamics described in

section 4.3. When the current concentration of EMS represented by ’ems_parameters.current_

concentration’ is higher or lower than the EMS equilibrium concentration in ’ems_parameters.

equilibrium_concentration’ then the change towards the equilibrium concentration is com-

puted in ’delta_ems’ and added or substracted to the current EMS value.

1   begin Neuron.EMSHomeostasis(time)
2   //… If the current concentration of the neuron excitability
3   //… modulatory substance (EMS) is different to the excitability
4   //… equilibrium concentration
5   if ems_parameters.current_concentration !=
6   ems_parameters.equilibrium_concentration then
7   //… Calculate the change of the EMS towards its equilibrium
8   //… concentration according to formula 4.10
9   delta_ems ← (time – ems_parameters.last_incoming_signal) /

10   ems_time_constant * ems_parameters.a_mod
11   //… If EMS is lower than its equilibrium concentration
12   if ems_parameters.current_concentration <
13   ems_parameters.equilibrium_concentration then
14   //… Increase EMS by delta_ems
15   ems_parameters.current_concentration ←
16   ems_parameters.current_concentration + delta_ems
17   else
18   //… Else if EMS is higher than its equilibrium concentration
19   //… Decrease EMS by delta_ems 
20   ems_parameters.current_concentration ←
21   ems_parameters.current_concentration - delta_ems
22   endif
23   endif
24   end
25   

Figure 5.15: Pseudocode of Neuron component: EMSHomeostasis

PMSHomeostasis

The component ’PMSHomeostasis’ implemented below in figure 5.16 handles the regula-

tion of the plasticity modulating substance (PMS) according to the dynamics described in

section 4.4. When the current concentration of PMS represented by ’pms_parameters.current_

concentration’ is higher or lower than the PMS equilibrium concentration in ’pms_parameters.

equilibrium_concentration’ then the change towards the equilibrium concentration is com-

puted in ’delta_pms’ and added or substracted to the current PMS value.
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1   begin Neuron.PMSHomeostasis(time)
2   //… If the current concentration of the neuron plasticity
3   //… modulatory substance (PMS) is different to plasticity
4   //… equilibrium concentration
5   if pms_parameters.current_concentration !=
6   pms_parameters.equilibrium_concentration then
7   //… Calculate the change of the PMS towards its equilibrium
8   //… concentration according to formula 4.08
9   delta_pms ← (time – pms_parameters.last_incoming_signal) /

10   pms_time_constant * pms_parameters.a_mod
11   //… If PMS is lower than its equilibrium concentration
12   if pms_parameters.current_concentration <
13   pms_parameters.equilibrium_concentration then
14   //… Increase PMS by delta_ems
15   pms_parameters.current_concentration ←
16   pms_parameters.current_concentration + delta_pms
17   else
18   //… Else if PMS is higher than its equilibrium concentration
19   //… Decrease PMS by delta_pms 
20   pms_parameters.current_concentration ←
21   pms_parameters.current_concentration - delta_pms
22   endif
23   endif
24   end
25   

Figure 5.16: Pseudocode of Neuron component: PMSHomeostasis

5.1.8 Summary

This chapter suggested a software implementation approach for the heterosynaptic SNN

system proposed in this thesis. A set of data structures to represent the different entities

and components of the system were described and illustrated through UML diagrams.

The architecture of the system was illustrated through components schematics with the

corresponding pseudo-code implementation of each system component.
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Chapter 6

Traditional non Modulated Neural

Dynamics vs Plasticity and Efficacy

Modulated Dynamics

This chapter explores the theoretical and practical applications of the propossed system by

comparing two neural circuits: traditional non modulated neural dynamics vs Plasticity

and Efficacy modulated dynamics. The experimental setup of both neural circuits applied

to a virtual insect brain is described and the results are summarised.
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6.1 A Bio-inspired experimental setup

Despite their lower neural complexity compared to vertebrates, the capabilities shown by

insects to interact and cope with the environment are being considered as key features

for implementation in the design of autonomous systems [42]. These capabilities include:

exploration, reliable navigation, pattern recognition and interactions with each other. Based

on the fact that SNN are able to reproduce to some extent the computational characteristics

of biological neural systems, they are a potential computational instrument to achieve

the above mentioned capabilities in artificial systems. There is increasing research (e.g.,

[41], [42], [86], [44] ) on the use of SNN to control autonomous systems which exhibit

insect-like intelligent behaviour in terms of learning and adaptation to the environment.

Given the aforementioned, this chapter will explore the application of the proposed het-

erosynaptic system as an artificial neural controller for an autonomous ’insect-like’ agent

moving in a simulated environment. This will be performed with the purpose to test the

research hypothesis (see section 1.3) specifically the first statement which states that the

conventional homosynaptic architecture can be extended to heterosynaptic models that are

able to regulate their electrical spiking dynamics.

Section 3.3 described some of the existing underlying architectures for the design of

artificial neural circuits using associative-learning and classical conditioning as a learning

mechanism in autonomous systems. This chapter will use these architectures to setup an

experiment where two neural circuits are implemented and compared as follows:

A simplified insect-like neural controller will be design based on the associative topologies

described in chapter 3 and illustrated in Figure 3.4 . This neural controller (virtual brain)

will be implemented in two different ways in order to test and compare the following two

experimental conditions:

1. Using a traditional threshold fire SNN model.

2. Using the hereby proposed mechanism of heterosynaptic-modulation of plasticity

and excitability.

In both cases the simulated insect should be able to learn to identify and avoid noxious

stimuli while moving towards perceived rewarding stimuli.
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At the beginning of the training phase, the insect will not be aware of which stimuli

are to be avoided or pursued. Learning occurs through reward-and-punishment classical

conditioning [47]. The experiment will compare the learning behaviour of the virtual brain

in both systems and its ability to adapt to the changing environment.

6.2 Designing the associative neural circuit

The neural circuit presented in Figure 3.4 can be used to implement a simple neural circuit

to control the movement of the artificial insect, in such a way that it would learn that

whenever a neutral stimulus in neurons A or B is presented, a given action associated to

M will be performed. For instance: after learning the association between the stimulus

perceived from A and the conditioned action performed by M , if A was connected to a

proximity sensor and M was connected to a motor (actuator), then the activation of the

proximity sensor would produce a response in the actuator connected to M. Thus, a simple

system to avoid obstacles could be implemented using the pair wise association between

the two neurons. Although, on its own, this circuit only allows a limited margin of actions

(trigger reflex or not) in response to input stimuli, it can be taken as a single building

block which implemented within a larger neural topology can produce more sophisticated

behaviours.

Connecting A and B from the circuit in Figure 3.4 with a second motoneuron R will

allow the initially neutral stimuli perceived by neurons A and B, to be associated (or

dissociated) with the corresponding actions elicited by R and M. The new neural circuit

with two motoneurons is illustrated below in Figure 6.1.
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Figure 6.1: Neural circuit having two input neurons A and B both connected to motoneu-
rons R and M . U1 and U2 are input neurons for the unconditioned stimuli eliciting reflex
responses in R and M respectively.

As seen in Figure 6.1, the new neural topology is built using two instances of the

associative neural circuit shown in Figure 3.4 The top part a) contains the sub-circuit

which creates the association between the input stimuli received in A, B and the action

elicited by R (Action 1). The bottom part b) contains the sub-circuit which creates the

association between the input stimuli received in A, B and the action elicited by M

(Action 2). Although both sub-circuits share the same input neurons A and B, the elicited

behaviour in R and M will depend on the firing-times correlation between the neutral

(conditioned) inputs A, B and the unconditioned neurons U1 and U2, e.g.: input in A

could be highly excitatory for M resulting in the execution of Action 2 but have little or

no effect in R, hence with no effect on Action 1.

In Figure 6.1 both sub-circuits a) and b) are concurrent meaning that both Action

1 and Action 2 can be performed at the same time if the same inputs in a) and b) are

reinforced as excitatory in both sub-circuits. This behaviour however can be inconvenient

if the system is expected to perform one action at the time. Inhibitory synapses between

sub-circuits provide a control mechanism in cases where actions are mutually exclusive.

Figure 6.2 below illustrates how the inhibition mechanism can be applied in the neural

circuit described so far.
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Figure 6.2: Neural circuit with two mutually inhibitory sub-circuits.

The mutually inhibitory synapses in motoneurons R an M work as a winner-take-all

mechanism where the first firing neuron elicits its corresponding action while avoiding the

concurrent activation of the other sub-circuit(s).

6.3 From a neural-circuit model to a virtual insect

brain

In this Section the neural circuit in Figure 6.2 will be used as a model to implement a simple

micro-brain to control the motion of the virtual insect in a simulated two-dimensional

environment. The micro-brain of the virtual insect is able to process three types of

sensorial information: (1) visual, (2) pain and (3) pleasant or rewarding sensation. The

visual information is acquired through three receptors (see Figure 6.3) where each one

of them is sensitive to one specific colour (red, black or green). Each visual receptor

is connected with one afferent neuron which propagates the input pulses towards the

motoneurons. Pain is elicited by a nociceptor whenever the insect collides with a wall

(black patches) or a predator (red patches). Finally, a rewarding or pleasant sensation is

elicited when the insect gets in direct contact with a food source (green patches).
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Neurons
R M

Membrane Resting
Potential

-65 -65

Membrane Firing
Threshold

-55 -55

Equilibrium Concentration
of EMS

1.0 1.0

Equilibrium Concentration
of PMS 0.001 0.001

Initial Synaptic weight
from Neuron A 5.0 5.0

Initial Synaptic weight
from Neuron B 5.0 5.0

Initial Synaptic weight
from Neuron C 5.0 5.0

Synaptic weight from
Modulatory Neuron EM -1.0 -1.0

Synaptic weight from
Modulatory Neuron PM 1.0 1.0

Minimum synaptic weight
from PD Neurons 1.0 1.0

Maximum synaptic weight
from PD Neurons 9.0 9.0

Table 6.1: Experimental parameters for motoneurons R and M

Neuronal Parameters

Table 6.1 shows the parameters for membrane potential, plasticity (learning) and heterosy-

naptic modulation in both motoneurons R and M. The first two parameters: ’Membrane

Resting Potential’ and ’Membrane Firing Threshold’ are set according to what is considered

the typical voltages in biological neurons [82].
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The equilibrium concentration of EMS is set to 1 as the default factor of excitability.

The equilibrium concentration of PMS (default plasticity factor) is set to 0.001 in both

neurons in order to reduce the plasticity (learning) in the absence of modulatory signals.

The initial synaptic weights from neurons A, B and C are initialized with 5 as an inter-

mediate value between the minimum (1.0) and maximum (9.0) allowed synaptic weights.

These minimum and maximum values are determined considering the following: (1) the

number of incoming synapses arriving from different neurons at each motoneuron and (2)

the required change in the membrane potential to make the neuron fire. This is given by

FiringThreshold−RestingPotential (which is 10.0 in neurons M and R). Given that,

a synapse with a weight of 1.0 will have a very low probability of activating a postsynaptic

neuron on its own even when firing multiple spikes. On the other hand, a synapse with a

weight of 9.0 will have a high probability of activating the postsynaptic neuron with just a

few pulses.

The experiments described in the next sections of this chapter use these parameters for the

implementation of the neural circuits.

6.3.1 Non-Heterosynaptic / Non-modulated case

Sensory - Motor Architecture

Figure 6.3 illustrates the complete neural architecture of the virtual insect without using

the heterosynaptic mechanisms of plasticity and excitability modulation. There are three

photoreceptors, one for each colour (red, black and green) synapsing with neurons A,

B and C, respectively. A B and C work as afferent neurons carrying the visual sensory

information towards the layer of motoneurons. The nociceptor (P) and reward-related

sensor (F) elicit the immediate activation of motoneurons R and M respectively. Both

neurons R and M execute the reflex behaviour through the activation of Actuator_1 and

Actuator_2 for the actions of rotation and moving-forward respectively.
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Figure 6.3: Neuro-inspired controller of the virtual insect with the traditional homosynaptic
implementation.

The number of rotation degrees as well as the number of movement units are set in the

simulation to 5◦ and 1 patch respectively. In order to keep the insect moving even in the

absence of external stimuli, the Actuator_2 is connected to a neural oscillator sub-circuit

composed of two neurons H1 and H2 performing the function of a pacemaker which sends

a periodic pulse to the actuator neuron. The pacemaker is initiated by a pulse from an

input neuron which represents an external input current (i.e. intracellular electrode). An

inhibitory synapse from motoneuron R to Actuator_2 prevents the activation of the move

actuator when the counteraction of rotation has been triggered shortly before.
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6.3.2 Heterosynaptic / Modulated case

Sensory - Motor Architecture

Figure 6.4 below illustrates the neural architecture of the virtual insect using heterosynaptic

plasticity and excitability modulation:

Figure 6.4: Neuro-inspired controller of the virtual insect with the proposed heterosynaptic
implementation.

Excitability Modulatory Subcircuit

Compared to the previous circuit in Figure 6.3 the topology of the sub-network made up

from PD neurons and receptors is still the same in Figure 6.4. The change in the dynamics

of the system is mostly introduced by the modulatory effect of the neurons EM and PM.

The neuron EM is an excitability modulatory neuron which is connected to motoneurons

R and M through inhibitory synapses. The activation of EM leads to the transmission of a

modulatory signal that decreases the concentration of the EMS in the postsynaptic neurons

R and M. The amplitude of the excitability-inhibition effect is given by the weights WEMr
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and WEMm for neurons R and M respectively. During the strong inhibition effect the

motoneurons become significantly unresponsive to the pulses coming (from PD neurons)

through synapses with affinity to the EMS. Given that the synapses with EMS affinity

(illustrated with dashed lines in Figure 6.4) originate from the afferent neurons A, B and

C, it implies that the perceived visual stimuli will have a weakened effect (or not effect

at all) on the motor behaviour during a certain period of time after the activation of the

modulatory neuron EM.

The rationale for the unresponsive motor interval is to allow the artificial insect to ex-

plore its surrounding environment for a short period of time without the bias of already

learned conditioned stimulus-response behaviour. This should allow the insect to unlearn

already acquired behaviour while learning to associate new stimulus-reflex behavioural

pairs. As shown in Figure 6.4, neuron EM has an incoming synapse from PD neuron H1

which delivers periodic pulses acting as a hearthbeat. Because of the low synaptic weight

WH1em from H1 to EM, the activation of EM requires the arrival of several pulses during

a long period of time in order to occur. In this way, the activation of EM is triggered

periodically by H1 unless EM receives inputs from other incoming synapses. Neuron

EM has an incoming inhibitory synapse from receptor F. This means that any encounter

with a rewarding stimulus will disrupt or possibly reset the otherwise periodic activation

behaviour of neuron EM.

The function of neuron EM including its incoming and outgoing synapses is to allow the

system to change its behaviour in the absence of rewarding stimuli during a given period

of time. Thus, for this experimental setup, the modulatory subsystem works as a "take

the risk or starve" mechanism that temporarily allows the artificial insect to explore its

surrounding world ignoring the previously learnt associations. This mechanism is inspired

by the behaviour observed in nature where animals under extreme survival conditions

(for instance, starvation, escaping from a predator or competing for mating opportunities)

will try taking again certain routes that have already been associated with danger or other

aversive responses. In other words, they give a second chance to an already failed or

dangerous solution.
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Plasticity Modulatory Subcircuit

The neuron PM is a plasticity modulatory neuron which is connected to motoneurons R

and M through excitatory synapses. The activation of PM leads to the transmission of a

modulatory signal that increases the concentration of the PMS in the postsynaptic neurons

R and M. As shown in Table 6.1 the equilibrium concentration of PMS in motoneurons

R and M is set at a very low value in order to ensure that plasticity in both neurons is

almost neglected in the absence of a plasticity modulatory signal. As shown in Figure 6.4,

neuron PM has incoming excitatory synapses from receptors P and F. Hence, any noxious

or rewarding stimulus will trigger the activation of the PM neuron and consequently allow

plasticity in the motoneurons R and M.

From the point of view of the behaviour of the artificial insect, the reason for the low

equilibrium concentration of PMS in R and M is to allow the insect to only learn the

association between noxious and rewarding stimuli with their corresponding elicited

reflexes when the reflex action is triggered by a receptor associated with an unconditioned

stimulus input (i.e. nociceptive or rewarding) and not by previously conditioned neurons

(for instance, visual afferent neurons). This is to prevent the positive plasticity feedback

loop that emerges when the activation of the afferent neurons (A, B or C) reinforces their

own synapses producing runaway dynamics in the long term.

In order for neuron PM to elicit plasticity in the postsynaptic motoneurons R and M, it

is necessary that the modulatory signal arrives at R and M before they become activated

(initiate an action potential). This is because in a PD neuron the STDP processing of

spikes with pre-before-post timing occurs during the initiation of the action potential

(see InitiateActionPotential component in figure 5.10 of chapter 5). Otherwise, if the

modulatory signal arrives just after the activation of the postsynaptic neuron, then all the

incoming spikes from synapses with PMS affinity that preceded the postsynaptic action

potential are processed with a lower PMS concentration. In contrast, the spikes that arrive

after the modulatory signal will be processed with a significantly higher plasticity factor.

This would result in an asymmetric processing of the STDP learning window, leading to a

continuous LTD in the affected synapses.
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To satisfy the timing constraints the synaptic (axonal) delays are adjusted in such

a way that the modulatory signal reaches the target neurons before the spike potentials

(transmitted by the activated receptors). Figure 6.5 illustrates the required timings for the

synapses between neuron PM, nociceptor P and motoneuron R.

Figure 6.5: Timing constraints for the subcircuit formed by motoneuron R, modulatory
neuron PM and receptor P.

Figure 6.5 shows that the synaptic delay tPr from Nociceptor P to motoneuron R is

larger than the synaptic delay tPpm from Nociceptor P to neuron PM added to the synaptic

delay tPMr from PM to motoneuron R. This topology assumes that there is no delay inside

neuron PM (during the activation and firing process). Otherwise the synaptic delay tPr

would have to take neuronal delays into account.

The same timing constraints must be taken into account for the subcircuit involving the

neuron PM, receptor F and motoneuron M. This is illustrated below in Figure 6.6.
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Figure 6.6: Timing constraints for the subcircuit formed by motoneuron M, modulatory
neuron PM and receptor F.

Figure 6.6 shows that the synaptic delay tFm from the reward-related sensor F to

motoneuron M is larger than the synaptic delay tFpm from receptor F to neuron PM added

to the synaptic delay tPMm from PM to motoneuron M. Again, as in Figure 6.5 this

topology neglects any processing delay inside neuron PM.

6.4 Design of the Experiment

In order to test the proposed artificial insect controlled by a heterosynaptic SNN system,

the following characteristics will be measured and compared with a non-heterosynaptic

(non-modulated) implementation:
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1. The association of a conditioned (neutral) input with a reflex response will be mea-

sured in terms of the evolving synaptic efficacy between afferent and motoneurons

and the resulting motion behaviour (number of observed collisions as a measurement

of error).

2. The unlearning of previous acquired input-response associations, for instance stimuli

that were noxious become rewarding and vice versa. This will also be measured

in terms of synaptic efficacy between afferent and motoneurons and the resulting

motion behaviour.

In order to measure the characteristics mentioned in (1) and (2) the following two

experimental conditions have been employed:

1. Associating visual neutral inputs with reflex responses in both heterosynaptic and

non-heterosynaptic SNN System. Patches with the colours black and red will be

associated with a noxious effect following a contact or collision with one of them.

Patches with the colour green will be associated with a reward (or pleasant) effect

after contact. The reflex behaviour for the activated nociceptor is the activation of

actuator R (rotation). The reflex behaviour for the activated reward sensor is the

activation of actuator M (move forward).

2. Unlearning of previous acquired visual-input with reinforced reflex-response asso-

ciations in both heterosynaptic and non-heterosynaptic SNN System. In the first

phase, patches with the colours black and red will be associated with a noxious effect

following a contact or collision with one of them. Patches with the colour green

will be associated with a reward (or pleasant) effect after contact. After training

(first phase completed), in the second phase, patches with the colour green will be

associated with a noxious effect following contact or collision. The reflex behaviours

are the same as in experimental condition 1.

3. Unlearning of previous acquired visual-input with aversive response associations in

both heterosynaptic and non-heterosynaptic SNN System. In the first phase, patches

with the colours black and red will be attached with a noxious effect following a
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contact or collision with one of them. Patches with the colour green will be attached

with a reward (or pleasant) effect after contact. After training (first phase completed),

in the second phase, patches with the colour red will be attached with a rewarding

effect following contact or collision. The reflex behaviours are the same as in the

experimental condition 1.

6.5 Implementation in Netlogo

A SNN engine was created in order to implement the SNN model described in this chapter

as well as other experiments described in this thesis. The coding of the engine was done

entirely in Netlogo language as a Netlogo model (See sample code in the appendix). Netl-

ogo is a software application that provides an integrated environment for the simulation

and programming of multi-agent models and the study of emergent behavior in complex

systems [87]. The netlogo programming language provides a set of primitives which allows

the agents to perceive and modify their virtual world and also to communicate and interact

with other agents. Apart from its simplicity, one of the main advantages of using Netlogo

in this work, is that it allows to monitor and manipulate on each single simulation iteration

the state of each element of the neural circuit including: (1) neurons and their internal

variables, (2) synapses and their parameters (efficacy and delay) and (3) ongoing pulses.

Manipulation of the neural circuit can be done with commands given through the observer

prompt or by using the agent monitoring tool provided by the Netlogo GUI.

6.5.1 Modelling with Agents and Patches

In Netlogo (version 5.3 at the time) there are four main types of agents. These agents are:

Turtles, patches, links and the observer [87]. The turtles are motile individual agents from

where other user-defined agents can be derived. Turtles can be created or destroyed at any

time during the simulation. Different ’breeds’ (user defined types) of turtles can be defined,

each one having its own attributes and behaviours. Patches are non motile agents. Each

patch has fix coordinates corresponding to a unique position in the virtual
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2-dimensional plane of the simulated world. Patches can have their own user-defined

attributes and behaviours in a similar way to turtles, however, with the difference that

they can not move. A link is a type of agent that represents an association between two

turtles-agents. Thus, a link has two main attributes each one representing a turtle-agent at

each one of its ends. Similarly to turtles and patches a link may have its own user defined

attributes and behaviours. The link is non motile and is shown as a line connecting the two

turtles. The observer, is a single and unique agent (no agents can be derived from it) that

can create, observe and command other type of agents.

In this experimental setup the simulated insect-like agent is represented by a turtle agent.

Neurons are implemented as turtle agents using a defined ’breed’ that implement the at-

tributes and dynamics of the artificial neuron. Synapses on the other hand are implemented

as agents of type link. All simulated entities including the artificial insect, neurons and

synapses have their own variables and functions that can be manipulated using standard

Netlogo commands. The Netlogo virtual world consists of a two dimensional grid of

patches where each patch corresponds to a point (x; y) in the plane. In a similar way

to the turtles, the patches own a set of primitives which allow the manipulation of their

characteristics and also the programming of new functionalities and their interaction with

other agents. The visualization of the insect and its environment is done through the

Netlogo’s world-view interface. The virtual world of the insect is an ensemble of patches

of four different colours, where each one of them is associated with a different type of

stimulus. As described before, black and red patches are both used to represent harmful

stimulus. Thus, if the insect is positioned on a black or red patch, this will trigger a reaction

in the insect’s nociceptor (pain sensor) and its corresponding neural pathway (see figure

6.3). On the other hand, green patches trigger a reaction in the reward sensor of the insect

whenever it is positioned on one of them. White patches represent empty spaces and do

not trigger any sensory information in the insect.
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6.5.2 The Simulated Insect’s World

Timing and Movement

The simulation follows a clock-driven approach where the elapsed time is given by a

counter whose value is increased at a discrete time step (Netlogo ’tick’) in every cycle

or iteration when the simulation is executed. The movement of the insect is not only

determined by its neural controller but it also depends on the rotation degrees and number

of patches at which the insect moves on each iteration or tick. For the experiments

described in this chapter, in one iteration or tick the number of patches that the insect can

move in response to the activation of motoneuron ’M’ is 1-patch. On the other hand the

amount of rotation in response to the activation of motoneuron ’R’ is 5 degrees.

Space and Stimuli

As mentioned before the Netlogo virtual world consists of a two dimensional grid of

patches where each patch corresponds to a point (with coordinates x; y) in the plane [87].

The virtual world of the insect is an ensemble of patches of four different colours, where

each one of them is associated with a different type of stimulus.

During the first experiment black and red patches are both used to represent harmful

stimulus (e.g. walls and predators). Thus, if the insect is positioned on a black or red

patch, the simulation will activate the insect’s nociceptor (activating pain sensor) and its

corresponding neural pathway. On the other hand, green patches trigger the activation of

the reward sensor whenever the insect is positioned on one of these patches. White patches

represent empty spaces and do not trigger any sensory information in the insect. The type of

stimulus associated to each colour can be changed any time during the simulation allowing

to carry out the different experimental conditions. This is done using the implemented

GUI interface for switching on and off the association between colours and the type of

stimulus elicited on the insect. (See Figure 6.19).

The visualisation of the simulation is divided in two areas inside the Netlogo’s world-view

interface: (1) The Neural circuit topology which is shown on the left half of the screen.

And (2) the insect and its environment which are shown on the right half side of the screen.

This is shown in Figure 6.7 as follows:
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Figure 6.7: Visualization area in the simulation environment

The topology screen reflects any change (adding or removing components) done to the

neural circuit in each iteration. The world screen on the right side, shows the simulated

virtual world including patches of four different colours; white, black, red and green

representing empty spaces, walls, harmful and rewarding stimuli respectively. The virtual

insect is represented with an ant shaped agent that starts moving once the simulation is

initiated. In addition to the simulated world, Netlogo provides several interface objects for

plotting and monitoring agents behaviour. In the presented simulation, two plots have been

implemented in order to visualize the change over time of the membrane potential of any

two neurons selected by the experimenter.
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6.6 Results

This Section describes the observed behaviour of both experimental heterosynaptic and

non-heterosynaptic implementations in the previously presented experimental conditions:

6.6.1 Experiment 1: Associating visual neutral inputs with

reflex responses in both heterosynaptic and

non-heterosynaptic SNN system.

As illustrated below in Figure 6.8, for this experiment, in the simulation environment

black and red colours patches were associated with harmful or noxious stimuli while green

colour patches were associated with reward.

Figure 6.8: Switches in the control area of the simulation environment: The green switch
set to Off indicates that no pain stimuli will be triggered in case of collision with a patch
of this colour.

The efficacy (weight) of each one of the synapses from the afferent visual neurons A,

B and C with the motoneurons R and M was initialized with a value of 5.0 as illustrated in

Figure 6.9 for both neurons R (on the left) and M (on the right).

At the beginning of the training phase (see 6.10) the insect moves along the virtual-world

colliding indiscriminately with all types of patches. The insect is repositioned in its initial

coordinates every time it reaches the virtual-world boundaries. As the training phase

progresses it can be seen that the trajectories lengthen as the insect learns to associate the

red and black patches with harmful stimuli and consequently to avoid them (See 6.11).
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(a) Synaptic weights from neurons A,B and C
with postsynaptic neuron R

(b) Synaptic weights from neurons A,B and C
with postsynaptic neuron M

Figure 6.9

Figure 6.10: Short trajectories at the beginning of the training phase. The insect collides
and escapes the world repeatedly. Each blue arrow indicates the movement of the insect on
a patch at one tick.
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After approximately 25000 iterations in both non-heterosynaptic and heterosynaptic

cases, the insect moves collision free most of the time, avoiding red and black patches

while accelerating when a green patch is in front of its sight line. Figure 6.11 illustrates

the motion behavior after training:

Figure 6.11: Long trajectory shows the insect avoiding red and black patches. Each blue
arrow indicates the movement of the insect on a patch at one tick.
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Figure 6.12: Average number of collisions during the simulation.

Figure 6.12 above illustrates the average number of collisions over time with red and

black patches. The three plot-lines represent the information as follow:

• The black line represents the non-heterosynaptic system.

• the red line represents the experimental heterosynaptic system with excitability and

plasticity modulation.

• The green line represents the experimental heterosynaptic system with plasticity

modulation but no excitability modulation.

As seen in Figure 6.12, the average number of collisions with noxious stimuli reaches its

minimum steady value at about 25000 simulation-iterations in both non-heterosynaptic

implementation (1.8 average collisions in 1000 iterations) and heterosynaptic implementa-

tion with excitability and plasticity modulation (3.6 average collisions in 1000 iterations).

The green line shows that at the same number of iterations the average number of colli-

sions is about 0.5 for the implementation with heterosynaptic plasticity but no excitability

modulation. At first glance it seems that the implementation represented by the black line

is performing better in terms of incurring in fewer collisions when compared to the red line.

However, the evolution of the green line, which shows the lowest number of collisions,

suggests that the increased error in the experimental heterosynaptic system (red line) is

related to the fact that the underlying system is characterized by a risk prone behaviour. As

explained before at the beginning of Section 5.2.2 the risk prone behaviour of the insect is

originated during the (down) modulation of the excitability in the motoneurons M and R.

It means that the insect will attempt to approach already known noxious (red and black)
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patches in its search for food when the conditions are met. For instance, after a given

period of time without finding food (green) patches. Thus, the occasional trial and error

behaviour explains the increased number of collisions. In order to gain a better picture of

the learning mechanism inside both neural circuits implementations, Figure 6.13 shows the

resulting synaptic weights between the visual afferent neurons A,B and C and motoneurons

R and M after 25000 iterations:

(a) Resulting synaptic weights from neurons
A, B and C to neuron R after 25000 itera-
tions in the non-heterosynaptic system.

(b) Resulting synaptic weights from neurons
A, B and C to neuron M after 25000 itera-
tions in the non-heterosynaptic system.

(c) Resulting synaptic weights from neurons
A, B and C to neuron R after 25000 itera-
tions in the heterosynaptic system.

(d) Resulting synaptic weights from neurons
A, B and C to neuron M after 25000 itera-
tions in the heterosynaptic system.

Figure 6.13

Figures 6.13(a) and (b) show the resulting synaptic weights in the motoneurons R an M

after running the simulation for 25000 iterations in the non-heterosynaptic implementation.

Figure 6.13(a) shows that the weights of the incoming synapses from the visual afferent

neurons A and B have been significantly potentiated in the motoneuron R. Since neurons A

108



and B are activated by black and red photoreceptors respectively, This indicates that

visual stimuli associated with these two colours may result in the activation of motoneuron

R, this by taking into account that the potentiated weights are above 80% of the maximum

value set for the incoming synapses in neuron R (see Table 6.1). On the other hand,

the weight of the incoming synapse from the visual afferent neuron C has been strongly

depressed almost reaching the minimum value for synaptic weights in neuron R. This

means that the activation of neuron R through incoming EPSPs from presynaptic neuron C

(only) is very unlikely. Thus, given that neuron C is activated by the green photoreceptor,

this indicates that visual stimuli associated with green will have little effect on the activation

of R.

Figure 6.13(b) shows that the weights of the incoming synapses from the visual afferent

neurons A and B have been strongly depressed in the motoneuron M. Thus, visual stimuli

associated with black and red colours will have little effect in the activation of M. In

contrast, the weight of the incoming synapse from the visual afferent neuron C has been

potentiated to its maximum value. Thus, green visual stimuli will likely result in the

activation of motoneuron M.

Figures 6.13(c) and (d) show the resulting synaptic weights in the motoneurons R an

M after running the simulation for 25000 iterations in the experimental heterosynaptic

implementation. Figures 6.13(c) and (d) show a synaptic weight distribution similar

to the ones shown in figure 6.13(a) and (b) respectively. It can be inferred from these

similarities that the resulting behaviour between the visual afferent neurons A,B and C and

the motoneurons R and M is consistent in both experimental implementations.

The similarities in the synaptic weight distribution also indicate that there are no significant

differences between the learning rates in both experimental systems. This confirms that

the increased number of collisions in the heterosynaptic implementation shown in Figure

6.12 is not the result of slower plasticity dynamics but is due to the reasons exposed before

(i.e. risk prone behaviour).
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6.6.2 Experiment 2: Unlearning of previous acquired

visual-input with reinforced reflex-response

associations in both heterosynaptic and

non-heterosynaptic SNN Systems.

Both implementations of the artificial insect were trained in the same way as indicated in

the previous experiment associating black and red patches with noxious stimuli and green

patches with a reward related stimulus. However, for this (second) experiment the simula-

tion was run for 500 thousand iterations in both experimental cases to ensure that there was

no further changes in the synaptic weights of the incoming synapses in the motoneurons

R and M. The reason for this is to allow both implementations to converge to the same

solution (i.e. the same synaptic weights) and thereby ensure that both systems have the

same initial conditions before starting the second phase of the experiment. Figure 6.14

below shows the resulting synaptic weights in the heterosynaptic and non-heterosynaptic

implementations:

(a) Resulting synaptic weights from neurons
A, B and C to neuron R in both experimen-
tal implementations.

(b) Resulting synaptic weights from neurons
A, B and C to neuron M in both experimen-
tal implementations.

Figure 6.14

The number of iterations required to reach the above illustrated synaptic weights (with-

out further significant change) was about 42000 and 50000 iterations for the heterosynaptic

and non-heterosynaptic implementations respectively.
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In the second phase of the experiment, the green patches were associated with noxious

stimuli in the simulation environment as illustrated next in Figure 6.15:

Figure 6.15: Switches in the control area of the simulation environment: Red, black and
green switches set on ’On’ indicate that pain stimuli will be triggered in case of collision
with these colours.

After setting the parameters as indicated above, the simulation was resumed and run

for another 1 million iterations in both experimental cases. This in order to observe the

behaviour of the artificial insects with the new environment condition (green patches

attached to noxious stimuli).

In the non-heterosynaptic implementation the artificial insect was able to associate the

green patches with the nociceptive reflex response after about 200000 iterations. The

resulting synaptic weights are illustrated in Figure 6.16 below:

(a) Resulting synaptic weights from neurons
A, B and C to neuron R in the non-hetero-
synaptic implementation.

(b) Resulting synaptic weights from neurons
A, B and C to neuron M in the non-hetero-
synaptic implementation.

Figure 6.16
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Figure 6.16(a) shows that the incoming synapses from the visual afferent neurons A,B

and C have been potentiated in motoneuron R reaching their maximum synaptic weight

allowed by the system. This indicates that red, black and green visual stimuli will elicit

a strong response in the action associated to motoneuron R.On the other hand, in the

motoneuron M the incoming synapse from the afferent neuron C (Figure 6.16(b)) did

not change with respect to the first phase of the experiment. Thus, the incoming synapse

from neuron C is still strongly potentiated in neuron M, meaning that green visual stimuli

will elicit strong responses in neuron M.The synapses from the (green) visual afferent

neuron C have been strongly potentiated in both motoneurons R and M, having almost

the same synaptic weights. Therefore, the resulting behaviour when green visual stimuli

are presented will be more stochastic than deterministic in nature since the competition

for activation between R and M will no longer depend on the synaptic efficacy but on the

timing of the pulses arriving first at the target motoneurons.

In summary, the artificial insect in the non-heterosynaptic implementation has learnt to

associate green visual stimuli with an aversive reflex response. However, it has failed to

unlearn the previous association between green visual stimulus and the reward related

response. In the heterosynaptic implementation the artificial insect was able to associate

the green patches with the nociceptive reflex response after about 80000 iterations. The

resulting synaptic weights are illustrated in Figure 6.17 below:

(a) Resulting synaptic weights from neurons
A, B and C to neuron R in the heterosynap-
tic implementations.

(b) Resulting synaptic weights from neurons
A, B and C to neuron M in the heterosynap-
tic implementations.

Figure 6.17
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Figure 6.17(a) shows that in the same way as occurred in the previous experimental

implementation, the incoming synapses from the visual afferent neurons A,B and C have

been potentiated in motoneuron R, also reaching their maximum synaptic weights. Again,

this indicates that red, black and green visual stimuli will elicit a strong response in the

motoneuron R.

For the case of motoneuron M, the incoming synapse from the afferent neuron C (Figure

6.17(b)) has been significantly depressed (from 9.0 to 5.12) with respect to the first phase

of the experiment. The resulting synaptic weight of 5.12 indicates that green visual stim-

uli will still eliciting a relatively strong response in neuron M. However, given that the

synaptic weight between C and motoneuron R is stronger than the synapse between C an

motoneuron M (9.0 vs 5.12), the resulting behaviour tends to favour the activation of R

when green visual stimuli is presented.

The resulting synaptic weights in both experimental conditions are reflected in the nav-

igation behaviour of their corresponding implementation of the artificial insect. This is

shown below in figure 6.18: In figure 6.18 the black line shows that after 200000 iterations

Figure 6.18: Average number of collisions after making green patches noxious.

the non-heterosynaptic system is still colliding permanently with noxious stimuli. On the

other hand, the heterosynaptic system represented by the green line stops colliding with

noxious stimuli after about 80000 iterations.

In summary, the artificial insect in the heterosynaptic implementation has learnt to

associate green visual stimuli with an aversive reflex response. The insect also shows

adaptation to the environment by avoiding the green patches most of the time. This

behaviour reflects the synaptic changes in the neural circuit where the synapses controlling
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the previous acquired association between green visual stimulus and the reward related

response have been weakened.

6.6.3 Experiment 3: Unlearning of previous acquired

visual-input with aversive response associations in

both heterosynaptic and non-heterosynaptic SNN

systems.

The first phase of this experiment was carried out in the same way to the first phase

of experiment 2. Both implementations of the artificial insect were trained until they

learnt to associate black and red patches with an aversive reflex response while green

patches were associated with a reward related action. The resulting synaptic weights in the

heterosynaptic and non-heterosynaptic experimental conditions were the same as shown

before in Figure 6.14.

In the second phase of the experiment, the red patches were attached with reward-related

stimuli in the simulation environment as illustrated below in Figure 6.19:

Figure 6.19: The red and green switches set on ’Off’ indicate that no pain stimuli will be
triggered in case of collision with these colours. On the other hand, the switch for black is
set on ’On’ indicating that pain stimulus will be triggered on contact with this colour.

After setting the parameters as indicated above, the simulation was resumed in order

to observe the behaviour of the artificial insects with the new environment condition (red

patches associated with reward-related stimuli).

In the non-heterosynaptic implementation the artificial insect did not approach the red

patches during the second phase of the experiment. This behaviour was expected because
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of the conditioning of the red patches with the aversive behaviour acquired during the

first phase of the experiment. In order to allow the insect to try approaching the already

known noxious patches, a programmatic risk prone behaviour was added in the neural

simulation by temporarily neglecting the inputs from the afferent visual neurons in the

motoneurons R and M. This allowed the artificial insect to try patches of different colours

without eliciting their corresponding conditioned response. The simulation was executed

for several thousand iterations without observing any significant change at the end in the

synaptic weights of the motoneurons. However, during the simulation it could be observed

that immediately after contact with a red patch the synapse from neuron B (visual afferent

for red colour) to motoneuron M was slightly potentiated. Nonetheless, after just a few

iterations the same synapse was rapidly depressed, reaching their minimum (original)

weight as shown in Figure 6.14.

The rapid depression of the incoming synapse from B in motoneuron M can be explained

by further incoming pulses (from neuron B) following the activation of motoneuron M

yielding to the pre-after-post-timing dynamics of the STDP learning window.

In summary, despite the added risk prone artefact, the system did not show adaptation to

the changed environment condition.

In the heterosynaptic implementation, it could be observed that the insect approached

the red patches after a time interval without finding food (green patches). This behaviour

was expected due to the neural circuit architecture described before in Section 5.2.2. At the

beginning of the second phase of this experiment, the learning occurred very slowly. This

is because the exploration of the red patches does not happen very frequently due to the

initial higher amount of green patches available which keep the artificial insect fed while

inhibiting the activation of its risk-prone mechanism. As the amount of green patches

decreased (eaten by the insect) the exploration of red patches became more frequent due to

the activation of the risk-prone behaviour. It was observed that the insect started looking for

red patches on its own, i.e. without the activation of the risk-prone-mechanism (neuron EM

in Figure 6.4 ) when the number of green patches fell under 25% of the initial quantity. This

behaviour indicates that the insect was able to unlearn the previously associated aversive

response to red patches while learning the opposite action (moving towards them). This
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was reflected in the resulting synaptic weights of the motoneurons R and M as illustrated

below in Figure 6.20:

(a) Resulting synaptic weights from neurons
A, B and C to neuron R in the heterosynap-
tic implementation.

(b) Resulting synaptic weights from neurons
A, B and C to neuron M in the heterosynap-
tic implementation.

Figure 6.20

Figure 6.20(a) shows that the weight of the incoming synapse from the visual afferent

neuron B (red) was significantly depressed in motoneuron R (from 9.0 to 5.56). The result-

ing weight of 5.56 is still relatively high and could possibly evoke an action potential in R if

a few pulses arrive shortly enough from each other. However, the activation of motoneuron

R through EPSPs from neuron B is unlikely given that the incoming synapse from B in

motoneuron M (Figure 6.20(b)) has been strongy potentiated, reaching its maximum value

(9.0). Since motoneurons R and M are mutually inhibitory, the neuron with the stronger

activation (in this case M) will fire first and prevent the opposite neuron to become activated.

6.7 Summary

This chapter presented three experiments that tested a simulated insect-like agent controlled

by two different implementations of a neural controller. The first implementation used a

homosynaptic architecture for associative learning while the second implementation used

the heterosynaptic modulatory architecture described in this thesis for the same purpose.

The first experiment tested the ability of the agent to learn associations between (initially
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neutral) visual stimuli with innate reflex responses. Through a trial and error process the

insect agent was able to successfully learn the association between visual inputs and reflex

responses in both homosynaptic and heterosynaptic implementations. This demonstrated

that the proposed system was able to perform associative learning as well as the original

homosynaptic implementation.

The second and third experiments tested the ability of the simulated insect-agent to adapt

to changing environment conditions which required the unlearn of previously acquired

associations between visual stimuli and reflex responses. This time the homosynaptic

implementation showed the following limitation: despite being able to recognize new pair-

wise associations between stimulus and behaviour, this implementation of the agent failed

to change the previously acquired memory (i.e. already reinforced synapses remained

unchanged). By contrast, the insect-agent in the heterosynaptic implementation was able to

adapt to the changes by avoiding the noxious stimuli that were initially related to rewards

(this is indicated in figure 6.18 which shows the number of collisions with noxious stimuli

in both implementations).

The results in the second and third experiments demonstrate that the modulation of neural

dynamics in the heterosynaptic system allowed the simulated insect-agent to adapt suc-

cessfully to the changing environment. This verifies the research hypothesis by showing

that the proposed system is able to extend the homosynaptic neural model to overcome

some of its weaknesses and also that it can be implemented in practical systems.

In conclusion, the proposed heterosynaptic system used as a controller for the artificial

insect allowed it to:

1. Explore previously known noxious stimulus under a simulated starvation condition.

2. Unlearn visual to aversive-response conditioning behaviour.

3. Adapt its behaviour according to the environment conditions by learning that some-

thing that was noxious in the past becomes the opposite (rewarding) and vice-versa
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Chapter 7

Implementing a Heterosynaptic

Neural Circuit to Control the

Navigation of a Robot.

This chapter validates the proposed system through the implementation of a neural circuit

based on visual pattern recognition and associative learning that is able to control the

navigation of a physical robot.
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In a similar way to the previous experiment described in chapter 6, the system described

in the following Chapter is able to associate visual stimuli with reflex responses. However,

in contrast with the system shown in the previous Chapter, the resulting motor behaviour is

associated with non-linear visual patterns (composed by multiple pixels) instead of single

inputs (one pixel colour).

Figure 7.1: Schematic of the robot.

A simplified neural circuit was implemented to control the navigation of the robot in

different types of environments allowing it to avoid obstacles while looking for rewarding

stimuli. The robot detected collisions with objects (anything that was closer than 10 cms)

using two infra-red sensors on the left and right sides at the front of the robot (see Figures

7.1 and 7.11).

The activation of the infra-red sensors fed the "pain" receptors of the neural circuit which

consequently activated the entire nociceptive pathway eliciting its corresponding reflex

response (rotating). As in the first experiment, the neural circuit also had a reward-related

pathway which, when activated, triggered the movement of the robot towards the source of

the stimulus.

The reward-related sensor was implemented in the hardware of the robot by using a

one-pixel light/colour sensor-camera which, when positioned over a pre-defined colour,

activated the reward-related sensor of the neural circuit (see Figure 7.12).
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The objective of this experiment was to observe and compare the learning behaviour of

a robot under two different experimental conditions, as follows:

1. Implementing the neural circuit that controls the robot based on a traditional thresh-

old fire SNN model.

2. Implementing the neural circuit that controls the robot based on the mechanism of

heterosynaptic-modulation for plasticity, as proposed in this thesis.

Based on the observation of the learning behaviour in both experimental conditions,

the answers to the questions listed below will verify the research hypothesis mentioned in

section 1.3 of chapter 1:

1. To what extent was the robot in both experimental conditions able to navigate au-

tonomously based on (unsupervised) learnt visual information from the environment?

2. Were the runaway dynamics emerging from the embedded STDP learning mecha-

nism overcome by the heterosynaptic modulatory architecture of the system?

In both experimental conditions the robot was expected to learn to identify and avoid

visual patterns and landmarks associated with noxious stimuli. The robot was intended

to move towards visual landmarks associated with rewarding stimuli. At the beginning

of the training phase, the robot was not expected to be aware of which stimuli were to

be avoided or pursued. Thus learning occurred through trial and error where the robot

learnt to associate collisions with visual information acquired shortly before the collision

sensor was triggered. The same learning mechanism was applied in the case of a rewarding

stimuli where the triggering of the reward-related sensor was associated with the visual

stimuli acquired shortly before.

In order to test the robot controlled by the heterosynaptic SNN system, the following

characteristics were measured and compared with the non-heterosynaptic implementation:

1. the association of neutral visual information with a reflex response was measured

in terms of the evolving synaptic efficacy between visual afferent neurons and

motoneurons.
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2. the resulting motion behaviour determined by the robot’s ability to predict and avoid

collisions with obstacles as well as to approach reward-related stimuli.

During the testing phase the infra-red (collision) sensors and the one-pixel colour

camera (reward-related sensor) were disconnected in order to let the robot navigate based

solely on visual information.

7.1 Methodology

7.1.1 Preprocessing of the Visual Input

Before feeding the neural circuit with visual information, this information was prepared to

enable the neural system to work with it efficiently while avoiding unnecessary processing

and greater computational overhead. In order to get a simplified but usable visual input the

following steps were performed in the preprocessing phase:

1. Acquiring the image from the camera in a grey scale of 8-bits depth (see Figure 7.2).

2. Applying the Canny algorithm [88] for edge detection and to produce a binarized

image (see Figure 7.3).

3. Enhancing the contours of the edges (see Figure 7.3).

4. Resizing the image according to the number of input receptors in the neural circuit

(see Figure 7.4).

For the first step, the settings of the video-capture software were adjusted to produce

a grey scale image of 256 shades (8 bits) with a resolution of 480 pixels width and 270

pixels height. For the rest of the preprocessing steps a capture interface application was

implemented in Microsoft Visual C# using the OpenCV [89] API to perform the Canny

filter, contours-enhancement and the downscaling of the target image. The details of the

used API-functions with their corresponding parameters are shown in the appendix A. The

visual-preprocessing application generated an ASCII file containing the pixel data of the

resulting image. This file was then used by the neural engine (implemented in Netlogo) to

extract the visual data in order to feed the neural circuit.
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Figure 7.2: Unprocessed image from the camera frame-buffer with a resolution of 480 x
270 pixels and 8 bits colour depth..

Figure 7.3: Resulting image after applying the Canny and edge detection filters.

Figure 7.4: Downscaled image with 64 x 36 pixels, ready to be processed by the neural
system.
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7.1.2 The Neural Circuit

Quads: Photo-receptors, Input Neurons and Classifiers

Figure 7.5: Visual input layer with 64 x 36 pairs of black and white receptors.

The visual input layer of the neural circuit is built up of several pairs of black and white

(or ON/OFF) receptors grouped into quadruplets (quads) which together form an input

matrix as shown in Figure 7.5. The input matrix has a resolution of 64 pairs width and 36

pairs height (or 32x18 quads).

Each black and white receptor-pair detects the absence or presence of light respectively.

The light information is provided by the colour (black or white) of the pixel corresponding

to that area in the preprocessed image.

Depending on the colour of the sensed pixel only one receptor can be activated within a

receptors-pair at the same time. Thus, a receptor for colour black is only activated if the

sensed pixel is black and a receptor for white is only activated if the sensed pixel is white.

Receptors are used by the SNN engine as an interface to translate numerical information

into spikes. For instance, if there is a black pixel in certain position the SNN engine feeds

with the number 1 the receptor for black corresponding to the position of the pixel. In

the implemented engine, numerical information can be only given as integer values. An

integer value n is translated by the receptor into a spike with a firing delay of n− 1 where
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n > 0. Thus, if a value of 1 is sent to a given receptor, this will generate and transmit a

spike or pulse immediately (with delay 0).

Each receptor is connected with one afferent neuron which is responsible to forward the

pixel information as a spike towards the next layer of the neural circuit. The architecture

of the quad group of receptors with their afferent neurons is illustrated in Figure 7.6:

Figure 7.6: Architecture of a quad subcircuit.
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In Figure 7.6 the black and white receptors are indicated with the letters B and W

respectively. The afferent neurons are represented with black and white squares, each one

with an incoming connection from its corresponding receptor.

Each afferent neuron is connected with the six neurons that comprise the next layer. These

are represented in Figure 7.6 with blue round shapes enumerated from 1 to 6. For the sake

of simplicity Figure 7.6 only shows the outgoing synapses from the top-left afferent pair

with the neurons 1, 2 and 6 of the next layer.

The function of the six-neurons layer is to perform the classification of primitive shapes

based on the four black and white pairs arrangement. As shown in Figure 7.6 there are

mutually inhibitory synapses between the six classifier neurons. This serves the purpose

of only one primitive shape being reported at a time by a group of quads to the following

layer of motoneurons.

The type of shapes that each classifier detects can be set up in advance by either:

1. manually hard-wiring the synapses and weights between afferent and classifier

neurons.

2. training the quad layers with the desired input-pattern to output-neuron mapping.

The first option is easier to implement and does not require the extra training phase.

However, it is less flexible for experimental purposes since every change in the type and

number of shapes would require a new adjustment of connections and their parameters.

The second option which is the one used in this work, requires the preparation of a short

dataset and the training of the quad layers in order to get the appropriate synaptic weights

between the afferent (black and white) neurons and the classifiers. This approach is not

only more sophisticated but also offers more flexibility when trying different shapes and

increasing or reducing the number of classifiers.

125



Figure 7.7 below illustrates the primitive shapes associated to each classifier neuron.

These 6 shapes were selected from the 16 possible patterns in a quad layout. The reason for

selecting this combination of 6 black and white patterns is because during the experiments

this combination shown the best results in terms of classification and pattern recognition

of the visual inputs.

Figure 7.7: Classifier neurons with their corresponding primitive-shapes.

Given their combination of black and white pixels, the primitives classified by neurons

1 to 4 are more prone to detect the presence of edges in the image. On the other hand, the

primitives classified by neurons 5 and 6 are mostly related to areas where the pixels colour

is homogeneous, i.e. indicating the absence of detectable features. For this reason, in order

to reduce the computational overhead in the neural circuit and to avoid the transmission of

spikes representing empty spaces, the neurons 5 and 6 do not have any outgoing synapses.

Nevertheless, despite having no connections with further layers, these neurons (5 and 6)

work as filters avoiding the wrong activation of the other classifier-neurons (1 to 4) in

homogeneous areas (all pixels black or white).

Figures 7.8(a),(b) and (c) illustrate with an example the visual processing within the layers

of the quad groups:
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(c)

(b)

(a)

Figure 7.8
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Figure 7.8(a) shows the binarized shape of a car. Figure 7.8(b) shows the activation of

the black and white receptors in the area where the shape in (a) is captured. The activation

of the black and white receptors is indicated with green and yellow squares respectively.

The absence of activity or non-activation in the black and white receptors is illustrated

with grey and white squares respectively. Figure 7.8(c) illustrates the detected primitives

based on the patterns of pixels presented to each quad.

Below, Figure 7.9(a) shows the activated classifier-neurons resulting from the detected

primitives in the group of quads. Figure 7.9(b) shows the classifier-neurons that will report

their activation (i.e. transmit spikes) to the layer of motoneurons. Note that neurons 5 and

6 have been filtered out.

(b)

(a)

Figure 7.9
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Sensory - Motor Architecture

The acquired visual information is propagated by each quad to the layer of motoneurons.

The propagation occurs through the spikes transmitted by the activated primitive-classifiers

(neurons labelled 1 to 4, see Figure 7.10). It is worth stressing, that because of the mutually

inhibitory synapses in the classifiers layer, there can be only one classifier neuron activated

at the time in each group of quads.

Given that there are 576 (32 x 18) quads and each quad group has 4 propagating classifier-

neurons, the number of visual-input synapses reaching each motoneuron is 2304. However,

as mentioned before, since each quad transmits one spike at the time, the maximum

theoretical peak is 576 incoming spikes at the same time in a motoneuron. This number

is an important indicator in order to establish the appropriate delimiter range (minimum

and maximum values) of the synaptic weights between the quads and motoneuron layers.

This is because the resulting conditioned behaviour on each motoneuron depends on the

combinatorial patterns of activation of the classifier layers. Thus, if the maximum allowed

synaptic-weight value is set too high it will make the motoneurons more prone to be

activated by a small (dominant) subset of visual inputs and in a shorter period of time,

reducing their combinatorial capabilities. Thus, it is more convenient to use small weights

delimiters in order to give the motoneurons the time to integrate as much information as

required before triggering their activation. The value of the synaptic weight delimiters as

well as other neural parameters are described in Table 7.1.
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Motoneurons with Plasticity Modulation

The weights (or synapse efficacy) of the synapses between the quads-classifiers and

motoneurons R and M are equally initialized with the lowest delimiter synaptic value (See

Table 7.1). This is to ensure that at the beginning of the experiment the visual inputs will

not have any effect on the motor behaviour (since visual information is meant to be a

neutral stimulus) and also, to guarantee that the initial conditions will be the same for each

one of the synapses leaving the quads-classifiers. These synapses are depicted in Figure

7.10 below with blue lines going from the classifier neurons (1, 2...) to motoneurons R and

M:

Figure 7.10: The architecture of the neural circuit shows the interaction between the
different components of the sensory-motor system, including the quads-layer, motoneurons
R and M, the nociceptive and reward-related pathway (receptors P and F respectively), the
plasticity modulatory neuron PM, the heartbeats system and actuators to execute the motor
behaviour.
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The blue synapses from the quads to the motoneurons implement the modulated

plasticity mechanism described in Chapter 4. Thus, the synaptic change in these synapses

is highly dependent on the PMS concentration in the target neurons (R and M). Given that

both motoneurons R and M are also innervated by the modulatory synapses originated in

neuron PM, the synaptic change in the visual-motor (blue) synapses is highly dependent on

the activity of the plasticity modulatory neuron PM. As seen in Table 7.1 the equilibrium

concentration of the PMS in R and M is set with a very low plasticity factor (0.001)

which means that in the absence of any modulating activity the plasticity in these synapses

is almost neglected. As shown in Figure 7.10 the modulatory neuron PM receives two

synapses from receptors P and F. Both synapses are strongly excitatory (as indicated in

Table 7.1) this in order to trigger the firing of neuron PM (i.e. releasing its modulatory

signal) whenever either one of the receptors is activated by its corresponding input stimulus.

The outgoing modulatory synapses from neuron PM depicted with green lines in Figure

7.10, have a strongly increasing effect on the PMS of the target neurons (a factor of 1.0

as shown in Table 7.1). The increased plasticity is sustained for a certain interval until it

begins to decay rapidly towards the PMS equilibrium concentration.

As described in the previous experiment in chapter 6, in order for the elicited plasticity

to be effective in both sides of the STDP learning-window (pre-before-post and post-

before-pre timings), it is necessary that the modulatory signal reaches the target neurons R

and M before they become activated by either one of the receptors P or F. As explained

before, this is because in a PD neuron (in this case R and M) the processing of the spikes

with pre-before-post timing will occur during the initiation of the action potential in the

motoneurons. Otherwise, if the modulatory signal arrives just after the activation of the

postsynaptic neuron, then all the previous incoming spikes from synapses with PMS affinity

preceding the modulatory signal and the postsynaptic action potential are processed with a

lower PMS concentration compared to the spikes that arrive after the modulatory signal.

Again, to satisfy the timing constraints the synaptic (axonal) delays are adjusted in such

a way that the modulatory signal from PM (delays tPMr and tPMm) reaches the target

motoneurons before the spike potentials transmitted by the activated receptors P (delays

tPr and tPpm) and F (delays tFm and tFpm) trigger the activation in R and M.
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Neurons
R M PM

Synaptic weight from
Receptor P

20.0 0.0 20.0

Synaptic delay from
Receptor P

20.0 0.0 20.0

Synaptic weight from
Receptor F

0.0 20.0 20.0

Synaptic delay from
Receptor F

20.0 0.0 20.0

Equilibrium Concentration
of PMS 0.001 0.001 N.A

Initial Synaptic weight
from Classifiers 0.01 0.01 N.A

Synaptic weight from
Modulating Neuron PM 1.0 1.0 N.A

Minimum synaptic weight
from PD Neurons 0.01 0.01 N.A

Maximum synaptic weight
from PD Neurons 0.4 0.4 N.A

Table 7.1: Experimental parameters for motoneurons R and M, and the plasticty modulatory
neuron PM
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7.1.3 Implementation in Hardware

The simulation environment (Netlogo) running the SNN engine was interfaced to Lego

Mindstorms EV3 robotic platform [90] which served as embodiment for the simulated

neural circuit described above (see Figure 7.10). The robot visual system was implemented

using the rear camera of a Samsung Galaxy Note 3 smartphone (see Figure 7.11). The

Samsung video output was captured in real time using the IP-Camera video driver [91]

and the OpenCV API [89]. As mentioned before in this chapter the preprocessing (edge

detection, binarizing and downscaling) of the captured video frames was done using

OpenCV in a separated piece of software written in Visual C#. Each preprocessed frame

was sent to the SNN engine as an ASCII file with a frequency of about 15 frames per

second.

Figure 7.11: Experimental robot built with Lego-Mindstorms (EV3) and smartphone
camera as visual system.
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The reward-related sensor was implemented using the EV3 colour sensor camera

(Figure 7.13(b)). This sensor is able to distinguish 8 different colours and has one pixel

resolution. The sensor was positioned in front of the robot looking downwards (Figure

7.12). The colour captured by the sensor was converted into a number and sent to the

simulation environment. In the experimental setup the colour selected to represent a

rewarding input stimulus was green, thus every time the colour-camera sensed a green

surface on the floor, the reward-related receptor in the neural circuit was activated by the

simulation environment.

Figure 7.12: Bottom view of the experimental robot.
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The nociceptive input was simulated using 2 EV3 Infrared sensors (Figure 7.13(a))

which were positioned on the right and left sides in front of the robot (Figure 7.11). Each

sensor reported the distance (expressed as centimetres (cm) with 1 cm resolution) to objects

located in front of it. The distance information was sent as a numerical value to the SNN

engine. Any value lower than 10 cms was considered to be a collision by the SNN engine

which consequently activated the nociceptor in the neural circuit.

(a) Infrared sensor (from the EV3 platform
used to detect proximity and collisions
with objects in front of it.

(b) Colour/light sensor (from EV3 platform
used to detect reward related stimuli du-
ring the experiments.

Figure 7.13

The movement and rotation of the robot was controlled by 2 servo motors. When the

motoneuron M (move forward) fired, the simulation environment sent a command to the

EV3 platform requesting the activation of both servo motors using the same direction and

power level for 500 milliseconds, hence moving forward. When the motoneuron R fired,

the simulation sent a command to the EV3 platform requesting the activation of both servo

motors rotating in opposite direction and same power level, resulting in a spinning of the

robot of about 10 degrees.
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The robot environment

The training of the robot was performed in an area of about 110 × 120 cms as shown

in Figures 7.14. Rectangular boxes were used to create obstacles and landmarks in the

experimental environment. Some areas of the floor were painted with green circles to

provide the robot with reward stimuli as illustrated in Figure 7.14 with the green areas

depicted with a smiley face.

Figure 7.14: Robot test area with obstacles (blue blocks) and reward stimuli (green smiley
faces) placed on the floor.

7.2 Results

This Section describes the observed behaviour of both experimental conditions: heterosy-

naptic and non-heterosynaptic implementations of the robot.
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7.2.1 Observed behaviour during the learning phase in both

experimental conditions.

At the beginning of the experiment the robot moved through the test environment driven

by the pacemaker sub-circuit and the reflex responses triggered by the collision infra-red

sensors and the one-pixel colour camera positioned at the bottom. Given that the SNN

engine was triggering the collision event in the neural circuit when obstacles were detected

at a proximity of 10 cms or less, real collisions with objects were avoided keeping the

robot moving smoothly and without the need of human intervention to resolve situations

where the robot was stuck.

As illustrated in Figure 7.15, in both experimental conditions, during the first 30 to 50

thousand iterations of the simulation the navigation of the robot was very close (on the edge

of the collision range) to the delimitation areas of the test environment and the obstacles

placed within the test area.

Figure 7.15: Trajectories of the robot during its learning phase.

After about 50 thousand iterations the robot in both experimental conditions started

to show obstacle-avoidance behaviour keeping in some cases distances larger than 10

cms from the objects to be avoided. This indicates that the navigation was starting to be
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driven by visual information instead of the collision sensors. Despite the increasingly

larger distances at which obstacles were detected and avoided, the infra-red sensors were

deactivated only after 100 thousand collision-free iterations. This was done in order to

ensure that the robot could rely completely on the visual based navigation. At 100 thousand

collision-free iterations, the pattern of navigation in both experimental conditions showed

some differences mostly regarded to the distance of object avoidance and the ability to

detect reward-related landmarks.

Observed navigation in the non-heterosynaptic implementation

In the non-modulated plasticity implementation at 100 thousand iterations, the avoidance

distance was between 15 to 30 cms with a tendency to increase as the experiment continued.

Movement towards the reward-related areas was also observed, with the robot showing a

slight increase of speed when these areas were in the visual field. However, as the robot

continued moving it was observed (see Figure 7.16) that while the aversive behaviour

towards obstacles landmarks was potentiated the opposite happened with the pursue

towards reward-related landmarks where, after approximately 130 thousand iterations, the

robot was not showing any approach behaviour towards the sites where the reward inputs

(green marks on the floor) were located. This indicated that the continuously potentiated

aversive response increasingly overrode the association between visual stimuli and the

reward-pursuing action in the robot.

In order to observe the long term behaviour of the robot, it was left running for 250

thousand iterations (ticks in the SNN simulation engine) taking approximately 2 hours to

complete. Figure 7.17 illustrates the behaviour observed in the long term test. It shows

that the avoidance distances increased to a point (between 30 to 50cms) where the robot

was able to move only a few centimeters before turning around creating a loop pattern of

movement.
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Figure 7.16: Trajectories of the robot after 100 thousand collision free iterations in the
non-heterosynaptic experimental condition.

Figure 7.17: Trajectories of the robot after 250 thousand collision free iterations in the
non-heterosynaptic experimental condition.
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Resulting synaptic weights in the non-heterosynaptic implementation

The motion behaviour described above can be better understood by looking at the resulting

synaptic weights between the classifier neurons in the quad-groups and the motoneurons R

and M. Given that there are 2304 incoming synapses on each motoneuron, for the sake of

simplicity only a section of the visual matrix will be described as illustrated in Figure 7.18.

Figure 7.18: The yellow highlighted area in Figure 7.18 indicates the set of Quads with the
analysed outgoing synapses.

The 4 rows with 32 quads each, highlighted in Figure 7.18 have 1024 outgoing synapses

(128 quads x 4 classifiers x 2 synapses) with 512 of these synapses ending in each of

the motoneurons R and M. This area of the visual matrix has been chosen taking into

account its high spiking activity (compared to the rest of the matrix) observed during the

experiments.

Figure 7.19(a) show the weights of the 512 synapses with motoneuron R after running the

experiment for 100 thousand collision-free iterations. Each bar shows the weight-value that

represents the strength at which the corresponding primitive classifier is associated with

the activation of motoneuron R. For instance, looking at the leftmost bar in Figure 7.19(a)

it indicates that in the first quad (the top leftmost of the highlighted rows) the classifier

neuron which have the strongest association with motoneuron R is the one corresponding
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to the visual-primitive class 1 (see Figure 7.7).

(b)

(a)

Figure 7.19

The synaptic weights shown in Figure 7.19(a) reached a minimum and maximum value

of 0.15 and 0.4 respectively. The average weight value was 0.25 with a median of 0.24 and

a standard deviation of 0.06.

Figure 7.19(b) illustrates the same synaptic weights after 250 thousand iterations. It can be

observed that most of the synaptic weights have increased with many of them reaching the

ceiling of 0.4. The minimum measured value of a synaptic weight at this stage was 0.17

with an average value of 0.31, a median of 0.31 and a standard deviation of 0.06.

In order to more clearly visualize the change in behaviour of the synaptic values shown in
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Figures 7.19 a and b The following two histograms show the number of synaptic weights

grouped within various ranges of synaptic strength.

(b)

(a)

Figure 7.20

This way of plotting the data shows that once the SNN simulation has reached 250

thousand iterations, the distribution of synaptic strength is skewed towards higher values

that are closer to the ceiling of 0.4. This skewed distribution of the synaptic weights in the

motoneuron R explains to some extent the motion behaviour described previously in the

non-heterosynaptic condition and illustrated in Figure 7.17. Having increasingly higher

synaptic weights in the entire synaptic population reduces the combinatorial capacity of

the neuron. For instance it can be seen that the number of neurons required to fire at the
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same time in order to elicit an action potential decreases over time, as more iterations

are run. The average synaptic weight after 100 thousand iterations is approximately 0.25.

Therefore the number of neurons required to fire at the same time in order to elicit an

action potential in the motoneuron R, assuming that its membrane potential is currently at

rest (65mv) and the firing threshold is (50mv), can be calculated as (65 − 50)/0.25 = 60

neurons.

On the other hand, the average synaptic weight after 250 thousand iterations is approxi-

mately 0.31; therefore the number of neurons required to fire at the same time in order

to elicit an action potential in the motoneuron R, assuming again that its membrane po-

tential is currently at rest (65mv) and the firing threshold is (50mv), can be calculated as

(65 − 50)/0.31 = 48 neurons.

As seen so far, the robot in the non-heterosynaptic implementation has been able to asso-

ciate visual landmarks with motor reflex responses. However, the SNN plasticity-system

is not able to stabilize or consolidate the already successfully established visual-motor

associations. This affects the combinatorial capacity of the neural system over time due to

the following:

• The learning dimensional space of the individual synapses is reduced since their

weight range becomes smaller as their lower weight delimiter (floor) increases in all

synapses.

• At population level, the existence of strongly potentiated synapses reduces the

number of presynaptic neurons that are able to contribute to the activation of the

postsynaptic neurons. The consequent premature activation, triggered by a small sub-

set of strongly potentiated synapses, results in a reduction of the overall integrative

capacity of the postsynaptic neurons.
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Observed navigation in the heterosynaptic plasticity-modulated

implementation

In the modulated plasticity implementation, after 100 thousand iterations, the observed

avoidance distance was between 12 to 25 cms. Movement towards the reward-related areas

was also noticed, with the robot showing a significant increase of speed (about twice the

moving forward speed) when these areas were in the visual field.

As in the previous experimental condition, in order to observe the long term behaviour

of the robot, it was left running for 250 thousand iterations taking again about 2 hours to

complete. Figure 7.21 illustrates the behaviour observed in the long term test:

Figure 7.21: Trajectories of the robot after 250 thousand collision free iterations in the
heterosynaptic experimental condition.

No significant change in behaviour was observed as the robot continued moving

(between 100 to 250 thousand collision free iterations). Both aversive behaviour towards

obstacles landmarks and pursue towards reward-related landmarks were still observed

without changes in the response distance.
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Resulting synaptic weights in the heterosynaptic implementation

The same section of the visual matrix described in the previous experimental condition

(see Figure 7.18) was used in this experiment in order to analyse the resulting synaptic

weights between the classifier neurons in the quad-groups and the motoneurons R and M.

Figure 7.22(a) show the weights of the 512 synapses with motoneuron R after running the

experiment for 100 thousand collision-free iterations.

(b)

(a)

Figure 7.22

As in the non-heterosynaptic experimental condition, each vertical bar shows the

weight-value that represents the strength at which the corresponding primitive classifier

is associated with the activation of motoneuron R. The synaptic weights shown in Figure
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7.22(a) reached a minimum and maximum value of 0.11 and 0.4 respectively. The average

weight value was 0.22 with a median of 0.22 and a standard deviation of 0.07.

Figure 7.22(b) illustrates the same synaptic weights after 250 thousand iterations. By

looking at the graphic both synaptic weights in (a) and (b) seems to have a similar behaviour.

The minimum measured value of a synaptic weight after 200 thousand iterations was 0.11

with an average value of 0.22, a median of 0.23 and a standard deviation of 0.07.

In order to more clearly visualize the change in behaviour of the synaptic values shown

in Figures 7.22(a) and (b) The following two histograms show the number of synaptic

weights grouped within various ranges of synaptic strength.

(b)

(a)

Figure 7.23
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The diagrams in Figures 7.23 (a) and (b) show that after more iterations are run, the dis-

tribution of the synaptic weights changes as it is expected, since the system is continuously

learning. However, the observed distribution of the synaptic weights does not show the

same characteristics as in the first experiment described in this chapter. The distribution of

values is not skewed towards higher values closer to the ceiling and in fact the distribution

of values across the entire weight range is not affected by the number of iterations, with an

unchanged mean and standard deviation.

7.3 Summary

As seen so far, the observed trend to general increase in the synaptic weights in the non-

heterosynaptic implementation is a result of mutually synaptic reinforcement that occurs

between the visual-classifier neurons. That is, when the stronger synapses from the visual

classifiers elicit the activation or firing in the motoneurons, this activation consequently

reinforce the weaker synapses that were trying to activate the target neuron shortly before

the firing event. In other words, the stronger visual synapses reinforce or recruit the

weaker synapses. Therefore, in the long term the synaptic population is entirely poten-

tiated leading the robot to the behavior previously described in the non-heterosynaptic

experimental condition. The evolution of the synaptic weights in this case coincides with

other experimental observations in the literature [92, 93], where the memory capacity of

traditional hebbian-based plasticity systems becomes saturated over time leading to the

loss of previously formed memories and a reduction in computational capacity.

On the other hand, the robot in the heterosynaptic implementation has been able to asso-

ciate visual landmarks with motor reflex responses. Moreover, the SNN plasticity-system

demonstrated that already established visual-motor associations are not degraded over

time by the continuous flow of information occurring whilst the robot is still exploring its

environment. Therefore, the heterosynaptic plasticity modulation successfully regulates

the formation of new associations while maintaining the consolidation and preservation of

previously acquired learning.
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With regard to the first question at the beginning of this chapter: To what extent

was the robot in both experimental conditions able to navigate autonomously based on

(unsupervised) learnt visual information from the environment?

whit respect to the non-heterosynaptic experimental condition the robot demonstrated that it

was able to learnt and navigate on its own however this was only the case for a limited period

of time. As the neural controller continued acquiring stimuli and consequently learning,

runaway dynamics degraded the previously acquired memories eventually completely

impairing the navigation of the robot as shown in figure 7.17. By contrast, the situation in

the heterosynaptic experimental condition demonstrated that the robot was able to learnt

and navigate on its own without showing any degradation of its memories and behaviour

during the entire execution of the experiment. This, also answers the second question

formulated at the beginning of this chapter: Were the runaway dynamics emerging from

the embedded STDP learning mechanism overcome by the heterosynaptic modulatory

architecture of the system? The behaviour of the synaptic weights at the beginning (figure

7.22(a)) and at the end (figure 7.22(b)) of the experiment demonstrates that there was no

degradation (weights were not skewed towards its maximum value) in the distribution of

the synaptic weights. Moreover, as mentioned before the robot behaviour was not impaired

over time. Thus, for the experiments described in this chapter, the proposed heterosynaptic

modulatory system was able to overcome hebbian related runaway dynamics.
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Chapter 8

Conclusions and Future Work
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This thesis briefly reviewed the history of neural network research and addressed the

problem that in third generation neural networks the conventional homosynaptic neural

model is unsatisfactory because it leads to chaotic behaviour which has, at best, been

addressed by ad-hoc approaches that do not generalize into a coherent theory.

The response to this problem described in these was to develop a new theory and model

of spiking neurons in which the homosynaptic approach is replaced by a completely new

heterosynaptic architecture. Apart from its superior theoretical properties this thesis has

shown that the approach works in practice by building a working simulation programs and

implementing the theory on a real robot.

8.1 The Research Hypothesis

The Research Hypothesis of this thesis was given as:

The conventional homosynaptic neural model is unsatisfactory but

(i) can be extended to heterosynaptic models that explicitly represent chemical regulation

of the electrical spiking dynamics that

(ii) overcome the weaknesses of the homosynaptic model, and

(iii) can be implemented in practical systems

This hypothesis has been demonstrated to be true by

(i) developing a new heterosynaptic theory and model that explicitly represents chemical

regulation of the electrical spiking dynamics;

(ii) implementing this model and showing that it does not have the ’runaway’ behaviour of

the homosynaptic model; and

(iii) the implementation of models within a NetLogo simulation environment, and the

implementation of a real Lego robot.
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8.2 Discussion

This thesis presented the development and experimental implementation of a novel SNN

system in which neuron excitability and synaptic plasticity are modulated by means of

heterosynaptic transmission. The proposed system implemented the two mechanisms

of excitability and plasticity modulation by embedding their dynamics into an extended

artificial neuron model that not only implements the traditional spike-based synaptic

transmission but also supports non-electrical signalling between modulatory neurons and

pulse-driver (traditional) neurons.

This thesis described the implementation of the system through an algorithmic and

systemic framework which explained the different components that intervene in the pro-

posed heterosynaptic approach. i.e. pulse driver neurons, modulatory neurons, modulatory

substances, synapses and their collective as a network.

Basic circuit topologies and spike timing constraints were explained and experimentally

tested in order to serve as guidelines for further research and engineering applications.

In the first experiment described in Chapter 6 a simple SNN circuit was implemented to

control a simulated insect in a two dimensional environment. Both non-heterosynaptic and

heterosynaptic implementations were compared in terms of the learning and adaptation

observed in the simulated insects.

The heterosynaptic implementation demonstrated the use of efficacy modulation as a

mechanism to encourage exploration and risk prone behaviour in autonomous systems by

temporarily inhibiting the conditioned motor responses elicited by associated (learned)

visual stimuli. This experiment demonstrated that it is possible to achieve more complex

and intelligent behaviour through the combination of efficacy and plasticity modulation

without the necessity to significantly increase the number of neurons and synapses in a

SNN circuit.

The second experiment described in chapter 7 demonstrated the implementation of the

proposed heterosynaptic system in order to avoid the emergence of ’runaway’ dynamics

in a STDP-based learning system. Two experimental conditions were implemented and

compared. In the first experimental condition, the non-heterosynaptic implementation

showed that without any weight normalization or control mechanism the system tended
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to degrade over time affecting the integrity of previous acquired memories. Moreover,

the runaway dynamics were reflected in the motion behaviour of the robot where it was

observed that after several iterations the system was not able to navigate successfully

along the test field due to the over-reinforced association between visual inputs and

the avoidance-reflex response. In contrast, the second experimental condition which

implemented plasticity modulation through the proposed heterosynaptic neural architecture,

was able to keep the integrity of the synaptic weights over time. The observed motion

behaviour of the robot in the second experimental condition was consistent during the

tests showing the robot ability to recognize landmarks associated to avoidance as well as

landmarks related to reward that encouraged the robot to approach them.

In both chapters 6 and 7 the architecture used in the experiments for the modulation

of synaptic plasticity required the modulatory signal to arrive before the triggering of the

hebbian coactivation. In other words the behaviour of the modulated target neurons was

changed a priori in relation to the input (stimuli) to be reinforced. This implementation

contrasts with traditional reward based learning where (as explained before in Section 3.6)

the modulatory signal arrives after the event that triggers the synaptic change. This shows

that the proposed system is not constrained by the requirements of a reward-based design.

However, the tuning of the timing between the modulatory signals and the spiking activity

triggering the hebbian plasticity is still a challenging task. In the proposed architecture of

the implemented experiments, the timing between the modulatory signals and the affected

spiking activity was controlled through the (axonal) synaptic delays of the modulatory

neurons, sensory neurons and receptors (see Figures 6.5, 6.6 and 7.10 ). Through the

addition of different synaptic delays between layers of pulse driver neurons and modulatory

neurons, it was possible to control the sequence in which the spike activity was propagated

among the neural circuit and thus the precedence of modulatory signals to plasticity events.

However, other control mechanisms for the timing between modulatory signals and spiking

activity need to be explored.
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8.3 Further research directions

After bringing the research reported in thesis to a conclusion there are many open questions

and possible new research directions. Some of these are discussed below.

Mathematical Theory

The research in this thesis adopted a systems approach in which the new heterosynaptic

mechanism was developed based on theoretical considerations that motivated the particular

mathematical formulae used. There is scope for further research into the general behaviours

of these mathematical formulae and variants of them.

This suggests the possibility of predicting the parameters for heterosynaptic systems

rather than using the empirical approach adopted in this research.

Massive spiking neural systems as larger neural circuits using evolutionary algo-

rithms

The research in this thesis has demonstrated the validity of the new heterosynaptic

architecture for a relatively small number of neurons. It remains an open question as to

how the approach scales up to thousands or millions of neurons.

An important research challenge is scaling up to very large systems using evolutionary

algorithms to determine connectivities and parameters. Evolutionary algorithms provide

an interesting research direction here.

More complicated environments

The simulations and real robot used to test the new theory developed in this thesis

were relatively simple. A next step in the research is to experiment with more complicated

environments with robots having few and many neurons.

Subsystem specialization and multilevel systems

In biological systems there is specialization at the macrolevel with neurons grouping,

for example, into brain regions. It is an open question as to how the new heterosynaptic

neurons may form specialized subsystems.

Implementation in hardware

In the longer term it is conceivable that standard heterosynaptic subsystems could be

implemented in hardware chips, greatly increasing the efficiency of the systems that can
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be built and increasing the scope of what they can learn.

8.4 Critical reflections on the research

Although the research reported in this thesis is a success in terms of identifying a weakness

in the current theory and suggesting an operational new architecture that over comes it, the

ideas given in the previous section show that there remain many research questions and

directions that were outside the scope of the study.

Scalability is the major open question to this research. Does the architecture developed

here only work on small example, or can it be extended to much larger systems and much

more demanding tasks? As suggested in the previous sections there are ways to address

this question, including new mathematical and empirical research.
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Appendix A

Sample Code of Insect Model

implemented in Netlogo
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1 ;; Spiking Neural Networks with STDP learning

2 ;; Author: Cristian Jimenez Romero - The Open University - 2015

3

4 breed [neurontypes neurontype]

5 breed [inputneurons inputneuron]

6 breed [normalneurons normalneuron]

7 directed-link-breed [normal-synapses normal-synapse]

8 directed-link-breed [input-synapses input-synapse]

9

10 neurontypes-own

11 [

12 neurontypeid

13 ;;;;;;;;;;Neuron Dynamics;;;;;;;;;;;

14 restingpotential

15 firethreshold

16 decayrate ;Decay rate constant

17 relrefractorypotential ;Refractory potential

18 intervrefractoryperiod ;Duration of absolute-refractory period

19 minmembranepotential ;lowest boundary for membrane potential

20 ;;;;;;;Learning Parameters;;;;;;;;;

21 pos_hebb_weight ;;Weight to increase the efficacy of synapses

22 pos_time_window ;; Positive learning window

23 neg_hebb_weight ;;Weight to decrease the efficacy of synapses

24 neg_time_window ;; negative learning window

25 max_synaptic_weight ;;Maximum synaptic weight

26 min_synaptic_weight ;;Minimum synaptic weight

27 pos_syn_change_interval ;;ranges of pre-to-post synaptic interspike intervals

28 ; over which synaptic change occur.

29 neg_syn_change_interval

30 neuronsystemtype ;type of neuron 0 - Spiking, 1 - Efficacy modulator,

31 ;2 - Plasticity modulator

32 ]

33

34 ;;; Create a neuron type

35 ;;; Parameters: Type-identifier, resting potential, firing threshold, decay

36 ; rate, refractory potential, duration of refractory period, lowest boundary for

37 ; membrane potential

38 to setup-neurontype [#pneurontypeid #prestpot #pthreshold #pdecayr #prefractpot

39 #pintrefrectp #minmembranepotential #pneuronsystemtype]

40 create-neurontypes 1

41 [

42 set shape "square"

43 set neurontypeid #pneurontypeid

44 set restingpotential #prestpot

45 set firethreshold #pthreshold

46 set decayrate #pdecayr
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47 set relrefractorypotential #prefractpot

48 set intervrefractoryperiod #pintrefrectp

49 set minmembranepotential #minmembranepotential

50 set neuronsystemtype #pneuronsystemtype

51 ]

52 end

53

54 ;;; Set learning parameters for neuron type pneurontypeid

55 ;;;

56 to set-neurontype-learning-params [ #pneurontypeid #ppos_hebb_weight

57 #ppos_time_window #pneg_hebb_weight #pneg_time_window #pmax_synaptic_weight

58 #pmin_synaptic_weight

59 #ppos_syn_change_interval

60 #pneg_syn_change_interval]

61

62 ask neurontypes with [neurontypeid = #pneurontypeid]

63 [

64 set pos_hebb_weight #ppos_hebb_weight

65 set pos_time_window #ppos_time_window

66 set neg_hebb_weight #pneg_hebb_weight

67 set neg_time_window #pneg_time_window

68 set max_synaptic_weight #pmax_synaptic_weight

69 set min_synaptic_weight #pmin_synaptic_weight

70 set pos_syn_change_interval #ppos_syn_change_interval

71 set neg_syn_change_interval #pneg_syn_change_interval

72 ]

73 end

74

75 ;;; Declare an existing neuron "pneuronid" as neuron-type "pneurontypeid"

76 ;;;

77 to set-neuron-to-neurontype [ #pneurontypeid #pneuronid ] ;Call by observer

78 ask neurontypes with [neurontypeid = #pneurontypeid]

79 [

80 ask normalneuron #pneuronid

81 [

82 set nrestingpotential [restingpotential] of myself

83 set nmembranepotential [restingpotential] of myself

84 set nfirethreshold [firethreshold] of myself

85 set ndecayrate [decayrate] of myself

86 set nrelrefractorypotential [relrefractorypotential] of myself

87 set nintervrefractoryperiod [intervrefractoryperiod] of myself

88 set nminmembranepotential [minmembranepotential] of myself

89 set nsystemtype [neuronsystemtype] of myself

90 ;;;;;;;;;;;;;;;;Learning Parameters;;;;;;;;;;;;;;;;;

91 set npos_hebb_weight [pos_hebb_weight] of myself

92 set npos_time_window [pos_time_window] of myself
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93 set nneg_hebb_weight [neg_hebb_weight] of myself

94 set nneg_time_window [neg_time_window] of myself

95 set nmax_synaptic_weight [max_synaptic_weight] of myself

96 set nmin_synaptic_weight [min_synaptic_weight] of myself

97 set npos_syn_change_interval [pos_syn_change_interval] of myself

98 set nneg_syn_change_interval [neg_syn_change_interval] of myself

99 ]

100 ]

101 end

102

103 normalneurons-own [

104 nlayernum

105 nneuronid

106 nneuronstate

107 nrestingpotential

108 nfirethreshold

109 nmembranepotential

110 ndecayrate

111 nrelrefractorypotential

112 nintervrefractoryperiod

113 nrefractorycounter

114 naxondelay

115 nsynapsesarray

116 nnumofsynapses

117 nlast-firing-time

118 nincomingspikes

119 nlastspikeinput

120 nneuronlabel

121 nminmembranepotential

122 nsystemtype

123 ;;;;;;;;;;;;;;;;Learning Parameters;;;;;;;;;;;;;;;;;

124 npos_hebb_weight ;;Weight to increase the efficacy of synapses

125 npos_time_window ;; Positive learning window

126 nneg_hebb_weight ;;Weight to decrease the efficacy of synapses

127 nneg_time_window ;; negative learning window

128 nmax_synaptic_weight ;;Maximum synaptic weight

129 nmin_synaptic_weight ;;Minimum synaptic weight

130 npos_syn_change_interval ;;ranges of pre-to-post synaptic interspike

131 ; intervals over which synaptic change occur.

132 nneg_syn_change_interval

133 ]

134

135 normal-synapses-own [

136 presynneuronlabel

137 possynneuronlabel

138 presynneuronid
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139 possynneuronid

140 synapseefficacy

141 exc_or_inh

142 synapsedelay

143 joblist

144 learningon?

145 efficacymodon?

146 modulated_learning?

147 ]

148

149 inputneurons-own [

150 layernum

151 neuronid

152 neuronstate

153 pulsecounter ;;Count the number of sent pulses

154 interspikecounter ;;Count the time between pulses

155 numberofspikes ;;Number of spikes to send

156 postsynneuron

157 encodedvalue

158 isynapseefficacy ;;In most cases should be large enough to activate

159 ; possynn with a single spike

160 neuronlabel

161 ]

162

163 to-report get-input-neuronid-from-label [#pneuronlabel]

164 let returned_id nobody

165 ask one-of inputneurons with [neuronlabel = #pneuronlabel][set returned_id neuronid]

166 report returned_id

167 end

168

169 to-report get-neuronid-from-label [#pneuronlabel]

170 let returned_id nobody

171 ask one-of normalneurons with [nneuronlabel = #pneuronlabel][set returned_id nneuronid]

172 report returned_id

173 end

174

175 ;;; Create a new synapse between pre-synaptic neuron: #ppresynneuronlabel and

176 ;;; post-synaptic neuron: #ppossynneuronlabel

177 ;;;

178 to setup-synapse [#ppresynneuronlabel #ppossynneuronlabel #psynapseefficacy

179 #pexc_or_inh #psyndelay #plearningon? #pefficacymodon? #modulated_learning?]

180 let presynneuid get-neuronid-from-label #ppresynneuronlabel

181 let possynneuid get-neuronid-from-label #ppossynneuronlabel

182 let postsynneu normalneuron possynneuid

183 ask normalneuron presynneuid [

184 create-normal-synapse-to postsynneu [
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185 set presynneuronlabel #ppresynneuronlabel

186 set possynneuronlabel #ppossynneuronlabel

187 set presynneuronid presynneuid

188 set possynneuronid possynneuid

189 set synapseefficacy #psynapseefficacy

190 set exc_or_inh #pexc_or_inh

191 set synapsedelay #psyndelay

192 set joblist []

193 set learningon? #plearningon?

194 set efficacymodon? #pefficacymodon?

195 set modulated_learning? #modulated_learning?

196 ifelse (#pexc_or_inh = inhibitory_synapse)

197 [

198 set color red

199 ]

200 [

201 set color grey

202 ]

203 ]

204 ]

205 end

206

207 ;;; Process incoming pulse from input neuron

208 ;;;

209 to receive-input-neuron-pulse [ #psnefficacy #pexcinh ];;called by Neuron

210 if ( nneuronstate != neuron_state_refractory )

211 [

212 ;;Adjust membrane potential:

213 ifelse ( #pexcinh = excitatory_synapse )

214 [

215 set nmembranepotential nmembranepotential + #psnefficacy ;;increase

216 ; membrane potential

217 ]

218 [

219 set nmembranepotential nmembranepotential - #psnefficacy ;;decrease

220 ; membrane potential

221 if (nmembranepotential < nminmembranepotential) ;; Floor for the

222 ; membrane potential in case of extreme inhibition

223 [

224 set nmembranepotential nminmembranepotential

225 ]

226 ]

227 ]

228 set nlastspikeinput ticks

229 end

230
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231 ;;; Neuron pstneuronid# processes incoming pulse from neuron #prneuronid

232 ;;;

233 to receive-pulse [ #prneuronid #snefficacy #excinh #plearningon? ];;called by neuron

234 if ( nneuronstate != neuron_state_refractory )

235 [

236 ;;Perturb membrane potential:

237 ifelse ( #excinh = excitatory_synapse )

238 [

239 set nmembranepotential nmembranepotential + #snefficacy ;;increase

240 ; membrane potential

241 ]

242 [

243 set nmembranepotential nmembranepotential - #snefficacy ;;decrease

244 ; membrane potential

245 if (nmembranepotential < nminmembranepotential) ;; Floor for the

246 ; membrane potential in case of extreme inhibition

247 [

248 set nmembranepotential nminmembranepotential

249 ]

250 ]

251 ]

252 ;;Remember last input spike:

253 set nlastspikeinput ticks

254 ;; If plasticity is activated then store pulse info for further processing and

255 ; apply STDP

256 if (#plearningon? and istrainingmode?)

257 [

258 let pulseinflist[] ;;Create list of parameters and populate it;

259 set pulseinflist lput #prneuronid pulseinflist ;;Add Presynaptic neuron Id

260 set pulseinflist lput #snefficacy pulseinflist ;;Add Synaptic efficacy

261 set pulseinflist lput #excinh pulseinflist ;;Add excitatory or inhibitory info.

262 set pulseinflist lput ticks pulseinflist ;;Add arriving time

263 set pulseinflist lput false pulseinflist ;;Indicate if pulse has been

264 ; processed as an EPSP following a Postsynaptic spike ( Post -> Pre,

265 ; negative hebbian)

266 ;;Add list of parameters to list of incoming pulses:

267 set nincomingspikes lput pulseinflist nincomingspikes

268 ;;Apply STDP learning rule:

269 apply-stdp-learning-rule

270 ]

271 end

272

273 ;;;

274 ;;; Neuron fires

275 ;;;

276 to prepare-pulse-firing ;;Called by Neurons
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277 ifelse (nsystemtype = 1) ;efficacy modulator

278 [

279 if (efficacy_modulation?) [ set syneff_down_reg_factor syneff_min_modulator ]

280 ]

281 [

282 ifelse (nsystemtype = 2) ;Plasticity modulator

283 [

284 set plasticity_modulator max_plasticity_modulator

285 ]

286 [

287 if (nsystemtype = 3) ;Efficacy and Plasticity modulator

288 [

289 if (efficacy_modulation?) [ set syneff_down_reg_factor syneff_min_modulator ]

290 set plasticity_modulator max_plasticity_modulator

291 ]

292 ]

293 ]

294 ;;if neuron has neuromodulatory properties then apply them:

295 ;if (nplasticity_modulating_factor > 0) [ set plasticity_modulator

296 ; nplasticity_modulating_factor ]

297 ;;Remember last firing time

298 set nlast-firing-time ticks

299 ;;Apply learning rule and after that empty incoming-pulses history:

300 apply-stdp-learning-rule

301 empty-pulse-history-buffer

302 ;;transmit Pulse to postsynaptic neurons:

303 propagate-pulses

304 ;;Set State to refractory

305 set nneuronstate neuron_state_refractory

306 ;;initialize counter of refractory period in number of iterations

307 set nrefractorycounter nintervrefractoryperiod

308 end

309

310 ;;; Kernel for inhibitory post-synaptic potential

311 ;;;

312 to-report ipsp-kernel ;;Called by Neurons

313 report 1

314 end

315

316 ;;; Kernel for excitatory post-synaptic potential

317 ;;;

318 to-report epsp-kernel ;;Called by Neurons

319 report 1

320 end

321

322 ;;;
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323 ;;; Kernel for membrane decay towards resting potential (If current membrane pot. > Resting pot.)

324 ;;;

325 to-report negative-decay-kernel ;;Called by Neurons

326 report (exp ( -( ticks - nlastspikeinput ) / 5 ) + ndecayrate)

327 end

328

329 ;;;

330 ;;; Kernel for membrane decay towards resting potential (If current membrane

331 ; pot. < Resting pot.)

332 ;;;

333 to-report positive-decay-kernel ;;Called by Neurons

334 report (exp (3 - ( ticks - nlast-firing-time ) ^ 0.8) + 0.3)

335 end

336

337 ;;;

338 ;;; Bring membrane potential towards its resting state

339 ;;;

340 to decay ;;Called by Neurons

341 ;;Move membrane potential towards resting potential:

342 ifelse (nmembranepotential > nrestingpotential )

343 [

344 let expdecay negative-decay-kernel ;

345 ifelse ((nmembranepotential - expdecay) < nrestingpotential)

346 [

347 set nmembranepotential nrestingpotential

348 ]

349 [

350 set nmembranepotential nmembranepotential - expdecay

351 ]

352 ]

353 [

354 let expdecay positive-decay-kernel ;

355 ifelse ((nmembranepotential + expdecay) > nrestingpotential)

356 [

357 set nmembranepotential nrestingpotential

358 ]

359 [

360 set nmembranepotential nmembranepotential + expdecay

361 ]

362 ]

363 end

364

365 ;;;

366 ;;; Process neuron dynamics according to its machine state

367 ;;;

368 to do-neuron-dynamics ;;Called by Neurons
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369 ifelse ( nneuronstate = neuron_state_open )

370 [

371 if (nmembranepotential != nrestingpotential )

372 [

373 ;;Check if membrane potential reached the firing threshold

374 ifelse( nmembranepotential >= nfirethreshold )

375 [

376 prepare-pulse-firing

377 set color red

378 ]

379 [

380 ;;Move membrane potential towards resting potential:

381 decay

382 ]

383 ;;Don’t let incoming-pulses history-buffer grow beyond limits (delete oldest spike):

384 check-pulse-history-buffer

385 ]

386 ]

387 [

388 ;;Not idle and not firing, then refractory:

389 set color pink ;;Restore normal colour

390 ;;Decrease timer of absolute refractory period:

391 set nrefractorycounter nrefractorycounter - system_iter_unit

392 ;;Set membrane potential with refractory potential:

393 set nmembranepotential nrelrefractorypotential

394 if ( nrefractorycounter <= 0) ;;End of absolute refractory period?

395 [

396 ;;Set neuron in open state:

397 set nneuronstate neuron_state_open

398 ]

399 ;;Don’t let incoming-pulses history-buffer grow beyond limits (delete oldest spike):

400 check-pulse-history-buffer

401 ]

402 ;;Continue with Axonal dynamics independently of the neuron state:

403 do-synaptic-dynamics

404 end

405

406 ;;;

407 ;;; Delete history of incoming spikes

408 ;;;

409 to empty-pulse-history-buffer ;;Called by neurons

410 set nincomingspikes[]

411 end

412

413 ;;;

414 ;;; Apply the Spike Timing Dependent Plasticity rule
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415 ;;;

416 to apply-stdp-learning-rule ;;Call by neurons

417 ;Apply rule: Ap.exp(dt/Tp); if dt < 0; dt = prespt - postspt

418 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

419 let currspikeinfo[]

420 let itemcount 0

421 let deltaweight 0

422 while [itemcount < ( length nincomingspikes ) ]

423 [

424 set currspikeinfo ( item itemcount nincomingspikes ) ;;Get spike info:

425 prneuronid[0], snefficacy[1], excinh[2], arrivaltime[3],

426 processedBynegHebb[4]

427

428 ifelse ( item 2 currspikeinfo ) = excitatory_synapse ;;Is the spike coming

429 ; from an excitatory synapsis?

430 [

431 let deltaspike ( item 3 currspikeinfo ) - nlast-firing-time

432 if ( deltaspike >= nneg_time_window and deltaspike <= npos_time_window)

433 ;;Is spike within learning window?

434 [

435 ;;Calculate learning factor:

436 ifelse ( deltaspike <= 0 ) ;;Increase weight

437 [

438 set deltaweight npos_hebb_weight * exp(deltaspike /

439 npos_syn_change_interval )

440 ask normal-synapse ( item 0 currspikeinfo ) nneuronid

441 [update-synapse-efficacy deltaweight [nmax_synaptic_weight] of

442 myself [nmin_synaptic_weight] of myself]

443 ]

444 [

445 if (( item 4 currspikeinfo ) = false) ;;if spike has not been

446 ;processed then compute Hebb rule:

447 [

448 set deltaweight (- nneg_hebb_weight * exp(- deltaspike /

449 nneg_syn_change_interval )) ;;Turn positive delta into a negative

450 ; weight

451 set currspikeinfo replace-item 4 currspikeinfo true ;Indicate that

452 ; this pulse has already been processed as a EPSP after

453 ; Postsyn neuron has fired (negative hebbian)

454 set nincomingspikes replace-item itemcount nincomingspikes currspikeinfo

455 ask normal-synapse ( item 0 currspikeinfo ) nneuronid

456 [update-synapse-efficacy deltaweight [nmax_synaptic_weight] of

457 myself [nmin_synaptic_weight] of myself]

458 ]

459 ]

460 ]
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461 ]

462 [

463 ;;Inhibitory Synapses: Plasticity in inhibitory synapses not implemented yet

464

465 ]

466 set itemcount itemcount + 1

467 ]

468 end

469

470 ;;;

471 ;;; Don’t store more pulses than the specified by PulseHistoryBuffSize

472 ;;;

473 to check-pulse-history-buffer ;;Call by neurons

474 if( length nincomingspikes > PulseHistoryBuffSize )

475 [

476 ;; Remove oldest pulse in the list

477 set nincomingspikes remove-item 0 nincomingspikes

478 ]

479 end

480

481 ;;;

482 ;;; Propagate pulse to all post-synaptic neurons

483 ;;;

484 to propagate-pulses ;;Call by neurons

485 ;; Insert a new pulse in all synapses having the current neuron as presynaptic

486 ask my-out-normal-synapses

487 [

488 add-pulse-job

489 ]

490 end

491

492 ;;;

493 ;;; Process synaptic dynamics of synapses with pre-synaptic neuron: presynneuronid

494 ;;;

495 to do-synaptic-dynamics ;;Call by neurons

496 ;; Process all synapses with presynaptic neuron = nneuronid and pulses in their job-list

497 ask my-out-normal-synapses with [ length joblist > 0 ]

498 [

499 process-pulses-queue

500 ]

501 end

502

503 ;;;

504 ;;; Enqueue pulse in synapse

505 ;;;

506 to add-pulse-job ;;Call by link (synapse)
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507 ;;Add a new Pulse with its delay time at the end of the outgoing-synapse joblist

508 set joblist lput synapsedelay joblist

509 end

510

511 ;;; Change synaptic weight

512 ;;;

513 to update-synapse-efficacy [ #deltaweight #pmax_synaptic_weight

514 #pmin_synaptic_weight] ;;Call by synapse

515

516 if (modulated_learning?)

517 [

518 set #deltaweight #deltaweight * plasticity_modulator

519 ]

520

521 ifelse ( synapseefficacy + #deltaweight ) > #pmax_synaptic_weight

522 [

523 set synapseefficacy #pmax_synaptic_weight

524 ]

525 [

526 ifelse ( synapseefficacy + #deltaweight ) < #pmin_synaptic_weight

527 [

528 set synapseefficacy #pmin_synaptic_weight

529 ]

530 [

531 set synapseefficacy synapseefficacy + #deltaweight

532 ]

533 ]

534 end

535

536 ;;;

537 ;;; For each traveling pulse in synapse check if pulse has already arrived at

538 ; the post-synaptic neuron

539 ;;;

540 to process-pulses-queue ;;Call by synapse

541 let efficacyfactor 1

542 if (efficacymodon?)

543 [

544 set efficacyfactor syneff_down_reg_factor

545 ]

546 set joblist map [ ? - 1 ] joblist ;;Decrease all delay counters by 1 time-unit

547 foreach filter [? <= 0] joblist

548 [

549 ;;Transmit Pulse to Postsyn Neuron:

550 ask other-end [receive-pulse [presynneuronid] of myself (([synapseefficacy] of

551 myself) * efficacyfactor) [exc_or_inh] of myself [learningon?] of myself]

552 ]
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553 ;;Keep only "traveling" pulses in the list :

554 set joblist filter [? > 0] joblist

555 end

556

557 ;;;

558 ;;; Create one input neuron and attach it to neuron with label

559 ; #ppostsynneuronlabel (input neurons have one connection only)

560 ;;;

561 to setup-input-neuron [#pposx #pposy #label #ppostsynneuronlabel

562 #psynapseefficacy #pcoding #pnumofspikes]

563 let postsynneuronid get-neuronid-from-label #ppostsynneuronlabel

564 set-default-shape inputneurons "square"

565 create-inputneurons 1

566 [

567 set layernum 0

568 set neuronid who

569 set neuronstate neuron_state_open

570 set pulsecounter 0

571 set interspikecounter 0

572 set numberofspikes #pnumofspikes

573 set postsynneuron postsynneuronid

574 set encodedvalue input_value_empty

575 set isynapseefficacy #psynapseefficacy

576 setxy #pposx #pposy

577 set color green

578 set label #label

579 set neuronlabel #label

580 setup-input-synapse

581 ]

582 end

583

584 ;;;

585 ;;; Process pulses in input neuron

586 ;;;

587 to do-input-neuron-dynamics ;;Called by inputneurons

588 if ( pulsecounter > 0 ) ;;process only if input-neuron has something to do

589 [

590 set interspikecounter interspikecounter + 1

591 if (interspikecounter > encodedvalue)

592 [

593 ;;Transmit pulse to Post-synaptic Neuron;

594 ask out-input-synapse-neighbors [receive-input-neuron-pulse [isynapseefficacy] of

595 myself [excitatory_synapse] of myself]

596 set interspikecounter 0

597 set pulsecounter pulsecounter - 1

598 ]
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599 ]

600 end

601

602 ;;;

603 ;;; Encode input value (integer number) into pulses

604 ;;;

605 to-report set-input-value [#pencodedvalue] ;;Called by inputneurons

606 ;;Check if input neuron is ready to receive input

607 let inputready false

608 if ( pulsecounter = 0 )

609 [

610 set encodedvalue #pencodedvalue

611 set pulsecounter numberofspikes ;;Initialize counter with the number of pulses to

612 ; transmit with the encoded value

613 set interspikecounter 0

614 set inputready true

615 ]

616 report inputready

617 end

618

619 ;;;

620 ;;; Ask input neuron with id = #pneuronid to accept and encode a new input value

621 ;;;

622 to feed-input-neuron [#pneuronid #pencodedvalue];;Called by observer

623 ask inputneuron #pneuronid

624 [

625 let inputready set-input-value #pencodedvalue

626 ]

627 end

628

629 ;;;

630 ;;; Ask input neuron with label = #pneuronlabel to accept and encode a new input value

631 ;;;

632 to feed-input-neuron_by_label [#pneuronlabel #pencodedvalue];;Called by observer

633 ask one-of inputneurons with [ neuronlabel = #pneuronlabel ]

634 [

635 let inputready set-input-value #pencodedvalue

636 ]

637 end

638

639 ;;;

640 ;;; Create link to represent synapse from input neuron to post-synaptic neuron: postsynneuron

641 ;;;

642 to setup-input-synapse ;;Call from inputneurons

643 let psnneuron postsynneuron

644 let postsynneu one-of (normalneurons with [nneuronid = psnneuron])
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645 create-input-synapse-to postsynneu

646 end

647

648 ;;;

649 ;;; Create and initialize neuron

650 ;;;

651 to setup-normal-neuron [#playernum #pposx #pposy #label #pneurontypeid]

652 set-default-shape normalneurons "circle"

653 let returned_id nobody

654 create-normalneurons 1

655 [

656 set nlayernum #playernum

657 set nneuronid who

658 set nneuronstate neuron_state_open

659 set nrefractorycounter 0

660 set nincomingspikes[]

661 set nnumofsynapses 0

662 set nlastspikeinput 0

663 setxy #pposx #pposy

664 set color pink

665 set label #label

666 set nneuronlabel #label

667 set returned_id nneuronid

668 ]

669 set-neuron-to-neurontype #pneurontypeid returned_id

670 end

671

672 ;;;

673 ;;; Process neural dynamics

674 ;;;

675 to do-network-dynamics

676 ask inputneurons [ do-input-neuron-dynamics ] ;with [pulsecounter > 0]

677 foreach sort-on [nlayernum] normalneurons [ ;;with [nneuronstate !=

678 neuron_state_open];; with [nmembranepotential != nrestingpotential]

679 ask ? [

680 do-neuron-dynamics

681 ]

682 ]

683

684 if (syneff_down_reg_factor < 1)

685 [

686 set syneff_down_reg_factor syneff_down_reg_factor + (syneff_down_reg_factor

687 * 0.016);0.012

688 ]

689

690 if ( plasticity_modulator > min_plasticity_modulator )
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691 [

692 set plasticity_modulator plasticity_modulator - ((1.03 - plasticity_modulator) * 0.018)

693 ]

694 end

695

696 ;;;

697 ;;; Show information about neuron with id: #srcneuron

698 ;;;

699 to show-neuron-info [#srcneuron] ;;Called by observer

700 ask normalneurons with [nneuronid = #srcneuron]

701 [

702 print ""

703 write "Neuron Id:" write nneuronid print ""

704 write "Layer " write nlayernum print ""

705 write "Membrane potential: " write nmembranepotential print ""

706 write "Spike threshold: " write nfirethreshold print ""

707 write "Resting potential: " write nrestingpotential print ""

708 write "Refractory potential: " write nrelrefractorypotential print ""

709 write "Last input-pulse received at:" write nlastspikeinput print ""

710 write "Last spike fired at: " write nlast-firing-time print ""

711 write "Current state: " write (ifelse-value ( nneuronstate =

712 neuron_state_open ) ["idle"] ["refractory"] ) print "" print ""

713 ]

714 end

715

716 ;;;

717 ;;; Show information about synapse with pre-synaptic neuron: #srcneuron and

718 ; post-synaptic neuron: #dstneuron

719 ;;;

720 to show-synapse-info-from-to [#srcneuron #dstneuron] ;;Called by observer

721 ask normal-synapses with [presynneuronid = #srcneuron and possynneuronid = #dstneuron]

722 [

723 print "Synapse from:"

724 write "Neuron " write #srcneuron write " to neuron " write #dstneuron print ""

725 write "Weight: " write synapseefficacy print ""

726 write "Delay: " write synapsedelay write "iteration(s)" print ""

727 write "Excitatory or Inhibitory: "

728 write (ifelse-value ( exc_or_inh = excitatory_synapse ) ["Excitatory"] ["Inhibitory"] )

729 print ""

730 ]

731 end

732

733 breed [testcreatures testcreature]

734 breed [visualsensors visualsensor]

735

736 testcreatures-own [
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737 creature_label

738 creature_id

739 reward_neuron

740 pain_neuron

741 move_neuron

742 rotate_neuron

743 creature_sightline

744 ]

745

746 ;;;

747 ;;; Create insect agent

748 ;;;

749 to-report create-creature [#xpos #ypos #creature_label #reward_neuron_label

750 #pain_neuron_label #move_neuron_label #rotate_neuron_label]

751 let reward_neuron_id get-input-neuronid-from-label #reward_neuron_label

752 let pain_neuron_id get-input-neuronid-from-label #pain_neuron_label

753 let move_neuron_id get-neuronid-from-label #move_neuron_label

754 let rotate_neuron_id get-neuronid-from-label #rotate_neuron_label

755 let returned_id nobody

756 create-testcreatures 1 [

757 set shape "bug"

758 setxy #xpos #ypos

759 set size 2

760 set color yellow

761 set creature_label #creature_label

762 set reward_neuron reward_neuron_id

763 set pain_neuron pain_neuron_id

764 set move_neuron move_neuron_id

765 set rotate_neuron rotate_neuron_id

766 set creature_id who

767 set returned_id creature_id

768 ]

769 report returned_id

770 end

771

772 visualsensors-own [

773 sensor_id

774 perceived_stimuli

775 distance_to_stimuli

776 relative_rotation ;;Position relative to front

777 attached_to_colour

778 attached_to_neuron

779 attached_to_creature

780 ]

781

782 ;;;
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783 ;;; Create photoreceptor and attach it to insect

784 ;;;

785 to create-visual-sensor [ #psensor_id #pposition #colour_sensitive

786 #attached_neuron_label #attached_creature] ;;Called by observer

787 let attached_neuron_id get-input-neuronid-from-label #attached_neuron_label

788 create-visualsensors 1 [

789 set sensor_id #psensor_id

790 set relative_rotation #pposition ;;Degrees relative to current heading -

791 Left + Right 0 Center

792 set attached_to_colour #colour_sensitive

793 set attached_to_neuron attached_neuron_id

794 set attached_to_creature #attached_creature

795 ht

796 ]

797 end

798

799 ;;;

800 ;;; Ask photoreceptor if there is a patch ahead

801 ;;; (within insect_view_distance) with a perceivable colour (= attached_to_colour)

802 ;;;

803 to view-world-ahead ;;Called by visualsensors

804 let itemcount 0

805 let foundobj black

806 ;;;;;;;;;;;;;;;Take same position and heading of creature:;;;;;;;;;;;;;;;

807 let creature_px 0

808 let creature_py 0

809 let creature_heading 0

810 ask testcreature attached_to_creature [set creature_px xcor set creature_py

811 ycor set creature_heading heading];

812 set xcor creature_px

813 set ycor creature_py

814 set heading creature_heading

815 rt relative_rotation

816 let view_distance insect_view_distance

817 let xview 0

818 let yview 0

819 while [itemcount <= view_distance and foundobj = black]

820 [

821 set itemcount itemcount + 1

822 ask patch-ahead itemcount [

823 set foundobj pcolor

824 set xview pxcor

825 set yview pycor

826 ]

827

828 ]
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829 update-creature-sightline-position attached_to_creature xview yview

830 ifelse (foundobj = attached_to_colour) ;;Found perceivable colour?

831 [

832 set distance_to_stimuli itemcount

833 set perceived_stimuli foundobj

834 ]

835 [

836 set distance_to_stimuli 0

837 set perceived_stimuli 0

838 ]

839 end

840

841 ;;;

842 ;;; Process Nociceptive, reward and visual sensation

843 ;;;

844 to perceive-world ;;Called by testcreatures

845 let nextobject 0

846 let distobject 0

847 let onobject 0

848 ;; Get color of current position

849 ask patch-here [ set onobject pcolor ]

850 ifelse (onobject = white)

851 [

852 ifelse (noxious_white) ;;is White attached to a noxious stimulus

853 [

854 feed-input-neuron pain_neuron 1 ;;induce Pain

855 if (istrainingmode?)

856 [

857 ;;During training phase move the creature forward to avoid infinite rotation

858 move-creature 0.5 ;;

859 set error_free_counter 0

860 ]

861 ]

862 [

863 feed-input-neuron reward_neuron 1 ;;induce happiness

864 ask patch-here [ set pcolor black ] ;;Eat patch

865 ]

866 ]

867 [

868 ifelse (onobject = red)

869 [

870 ifelse (noxious_red) ;;is Red attached to a noxious stimulus

871 [

872 feed-input-neuron pain_neuron 1 ;;induce Pain

873 if (istrainingmode?)

874 [
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875 ;;During training phase move the creature forward to avoid infinite rotation

876 move-creature 0.5

877 set error_free_counter 0

878 ]

879 ]

880 [

881 feed-input-neuron reward_neuron 1 ;;induce happiness

882 ask patch-here [ set pcolor black ] ;;Eat patch

883 ]

884 ]

885 [

886 if (onobject = green)

887 [

888 ifelse (noxious_green) ;;is Green attached to a noxious stimulus

889 [

890 feed-input-neuron pain_neuron 1 ;;induce Pain

891 if (istrainingmode?)

892 [

893 ;;During training phase move the creature forward to avoid infinite rotation

894 move-creature 0.5

895 set error_free_counter 0

896 ]

897 ]

898 [

899 feed-input-neuron reward_neuron 1 ;;induce happiness

900 ask patch-here [ set pcolor black ] ;;Eat patch

901 ]

902 ]

903 ]

904 ]

905 ask visualsensors [propagate-visual-stimuli]

906 end

907

908 ;;;

909 ;;; Move or rotate according to the active motoneuron

910 ;;;

911 to do-actuators ;;Called by Creature

912 let dorotation? false

913 let domovement? false

914 ;;Check rotate actuator

915 ask normalneuron rotate_neuron [

916 if (nlast-firing-time = ticks);

917 [

918 set dorotation? true

919 ]

920 ]
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921 ;;Check move forward actuator

922 ask normalneuron move_neuron[

923 if (nlast-firing-time = ticks);

924 [

925 set domovement? true

926 ]

927 ]

928 if (dorotation?)

929 [

930 rotate-creature 4

931 ]

932 if (domovement?)

933 [

934 move-creature 1

935 ]

936 end

937

938 ;;;

939 ;;; Photoreceptor excitates the connected input neuron

940 ;;;

941 to propagate-visual-stimuli ;;Called by visual sensor

942 if (attached_to_colour = perceived_stimuli) ;;Only produce an action potential

943 ; if the corresponding associated stimulus was sensed

944 [

945 feed-input-neuron attached_to_neuron distance_to_stimuli;

946 ]

947 end

948

949 ;;;

950 ;;; Move insect (#move_units) patches forward

951 ;;;

952 to move-creature [#move_units]

953 if (leave_trail_on?) [Leave-trail]

954 fd #move_units

955 end

956

957 ;;;

958 ;;; Rotate insect (#rotate_units) degrees

959 ;;;

960 to rotate-creature [#rotate_units]

961 rt #rotate_units

962 end

963 breed [sightlines sightline]

964 directed-link-breed [sight-trajectories sight-trajectory]

965

966 ;;;
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967 ;;; Show a sightline indicating the patch the insect is looking at

968 ;;;

969 to-report create-sightline

970 let sightline_id nobody

971 create-sightlines 1

972 [

973 set shape "circle"

974 set size 0.5

975 set color orange

976 set sightline_id who

977 ht

978 ]

979 report sightline_id

980 end

981

982 to update-creature-sightline-position [#creatureid #posx #posy]

983 ifelse (show_sight_line?)

984 [

985 let attached_sightline 0

986 ask testcreature #creatureid [set attached_sightline creature_sightline]

987 ask sightline attached_sightline [setxy #posx #posy]

988 ask sight-trajectories [show-link]

989 ]

990 [

991 ask sight-trajectories [hide-link]

992 ]

993 end

994

995 to attach-sightline-to-creature [#creature_id #sightline_id]

996 let sightline_agent sightline #sightline_id

997 ask sightline_agent [setxy [xcor] of testcreature #creature_id [ycor] of

998 testcreature #creature_id]

999 ask testcreature #creature_id [

1000 set creature_sightline #sightline_id

1001 create-sight-trajectory-to sightline_agent [set color orange set thickness 0.4]

1002 ]

1003 end

1004

1005 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

1006 breed [itrails itrail]

1007 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

1008 ;;;

1009 ;;; Leave a yellow arrow behind the insect indicating its heading

1010 ;;;

1011 to leave-trail ; [posx posy]

1012 hatch-itrails 1
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1013 [

1014 set shape "arrow"

1015 set size 1

1016 set color yellow

1017 set ttl 2000

1018 ]

1019 end

1020

1021 ;;;

1022 ;;; Check if it is time to remove the trail

1023 ;;;

1024 to check-trail

1025 set ttl ttl - 1

1026 if ttl <= 0

1027 [

1028 die

1029 ]

1030 end

1031

1032 itrails-own

1033 [

1034 ttl

1035 ]

1036

1037 globals [

1038 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SNN Module globals;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

1039 neuron_state_open;; describe state machine of the neuron

1040 neuron_state_firing;; describe state machine of the neuron

1041 neuron_state_refractory;; describe state machine of the neuron

1042 excitatory_synapse

1043 inhibitory_synapse

1044 system_iter_unit ;;time steps of each iteration expressed in milliseconds

1045 plot-list

1046 plot-list2

1047 PulseHistoryBuffSize ;;Size of pulse history buffer

1048 input_value_empty ;;Indicate that there is no input value

1049 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;Insect globals;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

1050 pspikefrequency ;;Number of spikes emitted by an input neuron in response to one stimulus

1051 error_free_counter ;;Number of iterations since the insect collided with a noxious stimulus

1052 required_error_free_iterations ;;Number of error-free iterations necessary to stop training

1053 syneff_down_reg_factor

1054 syneff_min_modulator

1055 syneff_down_reg_decay_rate

1056 plasticity_modulator

1057 max_plasticity_modulator

1058 min_plasticity_modulator
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1059 ;synplast_

1060 ]

1061

1062 ;;;

1063 ;;; Create neural circuit, insect and world

1064 ;;;

1065 to setup

1066 clear-all

1067 RESET-TICKS

1068 initialize-global-vars

1069 random-seed 47822

1070 ;;;;;;;;;;Draw world with white, green and red patches;;;;;;;;

1071 draw-world

1072 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

1073 ;;;;;;;;;;;;;; Setup Neuron types ;;;;;;;;;;;;;;

1074 ;;;;;;;;;;;;;;;;Neuron type1:

1075 setup-neurontype 1 -65 -55 0.5 -75 1 -75 0

1076 set-neurontype-learning-params 1 0.09 55 0.09 -35 9 1 8 18;15 ;[

1077 ;#pneurontypeid #ppos_hebb_weight #ppos_time_window #pneg_hebb_weight

1078 ;#pneg_time_window #pmax_synaptic_weight #pmin_synaptic_weight

1079 ;#ppos_syn_change_interval #pneg_syn_change_interval]

1080 ;;;;;;;;;;;;;;;;Neuron type2:

1081 setup-neurontype 2 -65 -55 0.5 -70 1 -70 0;(typeid restpot threshold decayr

1082 refractpot refracttime)

1083 set-neurontype-learning-params 2 0.09 55 0.09 -25 9 1 8 15

1084

1085 ;;;;;;;;;;;;;;;;Neuron type3: (Efficacy Modulator)

1086 setup-neurontype 3 -65 -55 0.2 -70 1 -70 1;(typeid restpot threshold decayr

1087 refractpot refracttime)

1088 set-neurontype-learning-params 2 0.09 55 0.09 -25 9 1 8 15

1089 ;;;;;;;;;;;;;;;;Neuron type4: (Plasticity Modulator)

1090 setup-neurontype 4 -65 -55 0.5 -75 1 -75 2;(typeid restpot threshold decayr

1091 refractpot refracttime)

1092 set-neurontype-learning-params 4 0.09 55 0.09 -25 9 1 8 15

1093 ;;;;;;;;;;;;;;;;Create the Neural circuit (brain) of the insect

1094

1095 ;;;;;;;;;;;;;;Layer 1: Afferent neurons with receptors ;;;;;;;;;;;;;;;

1096 setup-normal-neuron 1 15 10 11 1 ;;[layernum pposx pposy pid pneurontypeid]

1097 setup-input-neuron 5 10 1 11 20 1 pspikefrequency ;;[pposx pposy pid

1098 ppostsynneuron psynapseefficacy pcoding pnumofspikes]

1099 setup-normal-neuron 1 15 15 12 1 ;;setup-normal-neuron [pposx pposy pid

1100 pthreshold prestpot pdecayr prefractpot pintrefrectp]

1101 setup-input-neuron 5 15 2 12 20 1 pspikefrequency ;;[pposx pposy pid

1102 ppostsynneuron ipsynapseefficacy pcoding pnumofspikes]

1103 setup-normal-neuron 1 15 20 13 1 ;;setup-normal-neuron [pposx pposy pid

1104 pthreshold prestpot pdecayr prefractpot pintrefrectp]
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1105 setup-input-neuron 5 20 3 13 20 1 pspikefrequency ;;[pposx pposy pid

1106 ppostsynneuron ipsynapseefficacy pcoding pnumofspikes]

1107 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

1108

1109 ;;;;;;;;;;;;;;; Layer 2: First hidden layer ;;;;;;;;;;;;;;;;;;;;;;

1110 ;Motoneuron with rotate actuator:

1111 setup-normal-neuron 2 25 14 21 1

1112 setup-normal-neuron 1 25 10 51 4

1113 setup-input-neuron 25 5 4 51 20 1 pspikefrequency

1114 setup-synapse 51 21 20 excitatory_synapse 1 false false false

1115 ;Motoneuron with move actuator:

1116 setup-normal-neuron 2 25 19 22 1

1117 setup-normal-neuron 1 25 23 52 4

1118 setup-input-neuron 25 30 5 52 20 1 pspikefrequency

1119 setup-synapse 52 22 20 excitatory_synapse 1 false false false

1120 ;;;;;;;;;;;;;; Synapses from Layer 1 to Layer 2 ;;;;;;;;;;;;;;;;;;

1121 ;;Synapse from afferent neuron 1001 to Motoneurons:

1122 setup-synapse 11 21 5 excitatory_synapse 1 true true true

1123 setup-synapse 11 22 5 excitatory_synapse 1 true true true

1124 ;;Synapse from afferent neuron 1002 to Motoneurons:

1125 setup-synapse 12 21 5 excitatory_synapse 1 true true true

1126 setup-synapse 12 22 5 excitatory_synapse 1 true true true

1127 ;;Synapse from afferent neuron 1003 to Motoneurons:

1128 setup-synapse 13 21 5 excitatory_synapse 1 true true true

1129 setup-synapse 13 22 5 excitatory_synapse 1 true true true

1130 ;;;;;;;;;;;;;; Layer 3: Output layer ;;;;;;;;;;;;;;;;;;

1131 ;;Actuator move forward:

1132 setup-normal-neuron 3 35 19 31 1

1133 ;;Actuator rotate:

1134 setup-normal-neuron 3 35 14 32 1

1135 ;;;;;;;;;;;;; Synapses from Layer 2 to Layer 3 ;;;;;;;;;;;;;;;;;;;;

1136 ;;Mutual inhibitory synapses between Motoneurons:

1137 ;setup-synapse 21 22 22 inhibitory_synapse 1 false false false

1138 ;setup-synapse 22 21 8 inhibitory_synapse 1 false false false

1139 setup-synapse 31 21 12 inhibitory_synapse 1 false false false

1140 setup-synapse 32 22 12 inhibitory_synapse 1 false false false

1141 ;;Positive Synapsis from Nociceptive Motoneuron to rotate actuator (no plasticity):

1142 setup-synapse 21 32 11 excitatory_synapse 1 false false false

1143 ;;Positive Synapsis from Reward Motoneuron to move forward actuator (no plasticity):

1144 setup-synapse 22 31 11 excitatory_synapse 1 false false false

1145 ;;;;;;;;;;;;;;;;;;;; Oscillator (Pacemaker) ;;;;;;;;;;;;;;;;;;;;;;;

1146 setup-normal-neuron 2 16 25 23 2

1147 setup-normal-neuron 2 22 25 24 2

1148 setup-synapse 23 24 15 excitatory_synapse 2 false false false ;(no plasticity needed)

1149 setup-synapse 24 23 15 excitatory_synapse 3 false false false;(no plasticity needed)

1150 setup-input-neuron 11 25 6 23 20 1 pspikefrequency ;;Voltage clamp to start pacemaker
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1151 ;;Synapse from Pacemaker to Reward Motoneuron:

1152 setup-synapse 23 31 5.5 excitatory_synapse 3 false false false;4.62

1153 ;;;;;;;;;;;;;;;;;;;;Efficacy Modulatory Neuron ;;;;;;;;;;;;;;;;;;;;;

1154 setup-normal-neuron 2 30 25 41 3

1155 ;;Synapse from Pacemaker to Efficacy modulator Motoneuron:

1156 setup-synapse 23 41 3.5 excitatory_synapse 3 false false false;3.5;4.62

1157 ;;Inhibitory synapse from reward neuron to efficacy modulator:

1158 setup-synapse 22 41 22 inhibitory_synapse 1 false false false

1159 ;;Mutual inhibitory synapses between Motoneurons:

1160 setup-synapse 31 32 22 inhibitory_synapse 1 false false false

1161 setup-synapse 32 31 22 inhibitory_synapse 1 false false false

1162 ;; Start insect hearth

1163 feed-input-neuron_by_label 6 1

1164 ask patches with [ pxcor = 102 and pycor = 46 ] [set pcolor black]

1165 let creatureid create-creature 102 46 1 5 4 31 32;;[#xpos #ypos

1166 #creature_id #reward_neuron #pain_neuron #move_neuron #rotate_neuron]

1167 ;;;;;;;;;;Create Visual sensors;;;;;;;;;

1168 create-visual-sensor 1 0 white 1 creatureid;[ psensor_id pposition

1169 colour_sensitive attached_neuron attached_creature]

1170 create-visual-sensor 2 0 red 2 creatureid;[ psensor_id pposition

1171 colour_sensitive attached_neuron attached_creature]

1172 create-visual-sensor 3 0 green 3 creatureid;[ psensor_id pposition

1173 colour_sensitive attached_neuron attached_creature]

1174 ;;;;;;;;;;Create Sightline ;;;;;;;;;;;;;

1175 let sightlineid create-sightline

1176 attach-sightline-to-creature creatureid sightlineid

1177 ;; Activate training mode

1178 set istrainingmode? true

1179 end

1180

1181 ;;;

1182 ;;; Set gloval variables with their initial values

1183 ;;;

1184 to initialize-global-vars

1185 set system_iter_unit 1 ;; each simulation iteration represents 1 time unit

1186 set neuron_state_open 1 ;;State machine idle

1187 set neuron_state_firing 2 ;;State machine firing

1188 set neuron_state_refractory 3 ;;State machine refractory

1189 set excitatory_synapse 1

1190 set inhibitory_synapse 2

1191 set plot-list[] ;;List for spike history

1192 set plot-list2[] ;;List for spike history

1193 set PulseHistoryBuffSize 30

1194 set input_value_empty -1

1195 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;Insect globals;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

1196 set pspikefrequency 1
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1197 set error_free_counter 0

1198 set required_error_free_iterations 35000

1199 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;Modulation;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

1200 set syneff_down_reg_factor 1

1201 set syneff_min_modulator 0.01

1202 set syneff_down_reg_decay_rate 0.001

1203 ;;;;Plasticity:

1204 set plasticity_modulator 0.990

1205 set max_plasticity_modulator 0.990 ;1.01

1206 set min_plasticity_modulator 0.01

1207 end

1208

1209 ;;;

1210 ;;; Generate insect world with 3 types of patches

1211 ;;;

1212 to draw-world

1213 ask patches with [ pxcor >= 80 and pycor = 1 and pxcor <= 120 ] [ set pcolor

1214 white ]

1215 ask patches with [ pxcor >= 80 and pycor = 60 ] [ set pcolor white ]

1216 ask patches with [ pycor >= 1 and pxcor = 80 and pxcor <= 120] [ set pcolor

1217 white ]

1218 ask patches with [ pycor >= 1 and pxcor = 120 ] [ set pcolor white ]

1219 let ccolumns 0

1220 while [ ccolumns < 20 ]

1221 [

1222 set ccolumns ccolumns + 3

1223 ask patches with [ pycor >= 4 and pycor <= 75 and pxcor = 82 + ccolumns * 2

1224 ] [ set pcolor white ]

1225 ]

1226 ask patches with [ pxcor > 80 and pxcor < 120 and pycor > 1 and pycor < 60 ]

1227 [

1228 let worldcolor random(10)

1229

1230 ifelse (worldcolor = 1)

1231 [

1232 set pcolor red

1233 ]

1234 [

1235 if (worldcolor >= 2 and worldcolor <= 4)

1236 [

1237 set pcolor green

1238 ]

1239 ]

1240 ]

1241 end

1242
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1243 ;;;

1244 ;;; Don’t allow the insect to go beyond the world boundaries

1245 ;;;

1246 to check-boundaries

1247 if (istrainingmode?)

1248 [

1249 set error_free_counter error_free_counter + 1

1250 if(error_free_counter > required_error_free_iterations)

1251 [

1252 ;set istrainingmode? false

1253 ]

1254 ask testcreatures [

1255 if (xcor < 80 or xcor > 120) or (ycor < 1 or ycor > 60)

1256 [

1257 setxy 102 30

1258 ]

1259 ]

1260 ]

1261 end

1262

1263 ;;;

1264 ;;; Run simulation

1265 ;;;

1266 to go

1267 if (awakecreature?)

1268 [

1269 ask itrails [ check-trail ]

1270 ask visualsensors [ view-world-ahead ] ;;Feed visual sensors at first

1271 ask testcreatures [ perceive-world]; do-actuators]

1272 do-network-dynamics

1273 ask testcreatures [do-actuators]

1274 ]

1275

1276 check-boundaries

1277 tick

1278 end
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