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Abstract 

In mammals, the pregnane X receptor (PXR) is a transcription factor with a key 

role in regulating expression of several genes involved in drug biotransformation.  

PXR is present in fish and some genes known to be under its control can be up-

regulated by mammalian PXR ligands.  Despite this, direct involvement of PXR in 

drug biotransformation in fish has yet to be established.  Here, the full length PXR 

sequence was cloned from carp (Cyprinus carpio) and used in a luciferase 

reporter assay to elucidate its role in xenobiotic metabolism in fish.  A reporter 

assay for human PXR (hPXR) was also established to compare transactivation 

between human and carp (cPXR) isoforms.  Rifampicin activated hPXR as 

expected, but not cPXR.  Conversely, clotrimazole (CTZ) activated both isoforms 

and was more potent on cPXR, with an EC50 within the range of concentrations of 

CTZ measured in the aquatic environment.  Responses to other azoles tested 

were similar between both isoforms.  A range of pharmaceuticals tested either 

failed to activate, or were very weakly active, on the cPXR or hPXR.  Overall, 

these results indicate that the cPXR may differ from the hPXR in its responses 

and/or sensitivity to induction by different environmental chemicals, with 

implications for risk assessment because of species differences. 

Keywords: Pregnane X receptor; Common carp; Human; Transient transactivation 

assay; Pharmaceuticals; Azole fungicides 
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Introduction 

Aquatic species may be exposed to a wide range of xenobiotic compounds 

present in the environment, including human pharmaceuticals and personal care 

products.  As a means to combat these exposures, many species have evolved an 

inducible system for xenobiotic metabolism that comprises of a number of enzymes 

including the cytochrome P450 superfamily (notably members of CYP1, 2, 3 and 4 

subfamilies), conjugation enzymes (e.g. glutathione S transferases, UGTs, 

sulfotransferases), and transporter proteins such as P-glycoprotein and other 

multidrug resistance-associated proteins and organic anion transporter proteins.  The 

ultimate purpose of this system is the detoxification and subsequent excretion of 

xenobiotic compounds from the exposed organism in order to minimise cellular 

toxicity. 

Detoxification systems are conserved in vertebrates, and in mammals the 

pregnane X receptor (PXR; NR1I2) plays a major role.  The PXR is an orphan 

nuclear receptor that has a pivotal role in transcriptional regulation of downstream 

detoxification pathways in humans and other mammalian models.  CYP3A, an 

enzyme transcriptionally regulated by the PXR, is implicated in the metabolism of 

over 60% of pharmaceuticals in humans (Goodwin et al., 2002).  The PXR  has a 

large hydrophobic and flexible ligand binding domain (LBD, Kobayashi et al., 2004) 

and this enables its activation by a range of structurally diverse ligands.  There are, 

however, species differences in the inducible nature of the PXR, even within the 

mammals, and this is likely to extend to other vertebrate groups.  For example, 

whereas rifampicin (RIF) is a powerful activator of PXR in humans and rabbits, it fails 

to activate the rat or mouse PXR.  Similarly, pregnenolone 16α-carbonitrile (PCN) 

activates the PXR in rodents, but shows a much reduced activity on human or rabbit 

PXR (Blumberg et al., 1998; Jones et al., 2000; Lehmann et al., 1998; Savas et al., 
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2000).  The basis for this divergence is thought to be due to differences in the amino 

acid sequences in the ligand binding domain (Kliewer et al., 2002).  As a result this 

variability in detoxification efficiency is likely to be reflected in the ability of different 

species groups to successfully process xenobiotics encountered in the environment. 

The PXR pathway is well studied in mammals, but far less information is available 

on the role of this response pathway in fish.  The PXR is present in some fish species, 

including zebrafish (Danio rerio), pufferfish (Takafugu rubripes), fathead minnow 

(Pimephales promelas) and medaka (Oryzias latipes), and it has been shown to be 

activated by some human receptor ligands (Bainy and Stegeman, 2004; Maglich et 

al., 2003; Milnes et al., 2008; Moore et al., 2000).  The downstream effects of PXR 

activation in fish, however, are not well understood.  We have previously shown that 

expression of a number of biotransformation genes (cyp2k, cyp3a, gsta, gstp, mdr1 

and mrp2) are up-regulated after exposure to RIF in carp primary hepatocytes 

(Corcoran et al., 2012) and exposure of carp to the mammalian PXR-agonist CTZ in 

vivo (Corcoran et al., 2014).  Similarly expression of pxr, cyp3a and mdr1 has been 

shown to be elevated following PCN exposure in zebrafish in vivo (Bresolin et al., 

2005).  It has also been demonstrated that RIF exposure results in increased CYP3A 

enzyme activity in primary hepatocytes from grass carp (Ctenopharyngodon idellus) 

and largemouth bass (Micropterus salmoides), (Li et al., 2008) and in a fathead 

minnow (FHM) cell line (Christen et al., 2010).  However, direct involvement of the 

PXR in this response pathway in fish has yet to be established. 

To better understand the role of the PXR in xenobiotic metabolism in teleosts, 

cDNA incorporating the full-length PXR coding region in carp was isolated, and the 

transactivation function of the PXR determined by establishing a carp PXR (cPXR) 

luciferase reporter assay expressing this receptor in transiently transfected cultured 
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cells.  In vitro nuclear receptor reporter assays have been established for various 

nuclear receptors, including oestrogen, androgen, thyroid and glucocorticoid 

receptors in fish (e.g. Bury et al., 2003; Lange et al., 2012; Oka et al., 2013; Todo et 

al., 1999) and applied to establish the roles of specific nuclear receptors in hormone 

signalling in fish. They have also been used as efficient chemical screening systems.  

Here we established a transactivation assay for the common carp PXR (cPXR) and 

investigated its activation by known mammalian PXR ligands RIF, dexamethasone 

(DEX) and clotrimazole (CTZ) and further compared responses of the cPXR with 

hPXR for a range of azole fungicides and pharmaceuticals present in the aquatic 

environment.  

 

 

Materials and Methods 

Cloning of carp PXR sequence 

Total RNA was isolated from frozen carp liver using Tri-reagent (Chomczynski, 

1993) following the manufacturer’s instructions.  Following DNase treatment with 

RQ1 DNase (Promega, Southampton, UK), cDNA was synthesised from 1µg total 

RNA using random hexamers and MMLV reverse transcriptase (Promega), according 

to the manufacturer’s instructions.  This cDNA was used as template for the 

polymerase chain reaction (PCR) amplification of a partial cPXR sequence using the 

degenerate oligonucleotides 5’-TYTTCAGRMGKGCSATGAAR-3’ and 5’-

CCHGGVYGRTCTGGDGARAA-3’ designed in conserved regions from aligned PXR 

sequences in other, closely related species (zebrafish, grass carp, fathead minnow 

and rainbow trout).  The partial cPXR sequence was amplified using GoTaq DNA 

polymerase (Promega) and the following PCR conditions: 96˚C for 2 min, followed by 

35 cycles of denaturation at 94˚C for 1 min, annealing at 55˚C for 1 min and 
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elongation at 72˚C for 3 min.  A 865bp product was obtained, purified using 

NucleoSpin Extract II columns (Macherey-Nagel, Dϋren, Germany) according to the 

manufacturer’s instructions and sequenced (Eurofins Genomics, Ebersberg, 

Germany).  BLAST searches (National Centre of Biotechnology Information (Altschul 

et al., 1990)) of the obtained sequences confirmed similarity with known PXR 

sequences. 

The full cPXR sequence was obtained by rapid amplification of cDNA ends 

(RACE) using the SMARTer RACE cDNA Amplification Kit (Clontech, Mountain View, 

CA, USA) and gene specific primers Cc_GSP1: 5’-ACT ATG AAA GCT GGA GGA 

TGG GGA CGA G-3’ (antisense), Cc_GSP2: 5’-CTC ACT GCA CAT CAC AAG ACC 

TTC GAC A-3’ (sense) and Cc_GSP3: 5’-CCG CAA CCA GGA AAT AGT AGC ACT 

CAC C-3’ (sense) according to the manufacturer’s instructions.  Both 5’ and 3’ RACE 

products were purified as described previously, sequenced, and characterised using 

BLAST and Clustal W (Altschul et al., 1990; Larkin et al., 2007).  A neighbour-joining 

phylogenetic tree was constructed in MEGA7 (Kumar et al., 2016) using a 1000 

replicate bootstrap analysis. 

 

cPXR expression plasmid 

A full-length cPXR fragment was amplified using the primers 

Cc_PXR_F_K_BamHI: 5’-GCG GAT CCG CCA CCA TGT GCT TGC TTC AGC TCA 

GG-3’ and Cc_PXR_R_EcoRV: 5’-CCG ATA TCG TCC TCG CTG GTT TTG ACT G-

3’ designed at the extreme ends of the obtained 5’- and 3’-RACE sequences, 

incorporating restriction sites (BamHI and EcoRV) as well as the kozac sequence 

(which enhances ribosomal binding at the start codon during transcription) in the 

case of the 5’ primer.  For this, cDNA was reverse transcribed from 1 µg of carp liver 
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total RNA as described above and amplified using the Advantage 2 DNA polymerase 

mix (Clontech) according to the manufacturer’s instructions.  The resulting PCR 

product was purified and sequenced to confirm the full sequence length and sub-

cloned into pGEM-T Easy vector (Promega) following the manufacturer’s 

recommendations.  Plasmid DNA was isolated using the Wizard Plus SV minipreps 

DNA Purification system (Promega) according to manufacturer’s instructions.  Using 

the BamHI and EcoRV sites, the cPXR sequences was subsequently ligated into the 

eukaryotic expression vector pcDNA3.1(+) (Invitrogen) using the correspondent 

restriction enzymes (New England Biolabs, Hitchin, UK) and T4 DNA ligase 

(Promega). 

 

hPXR expression plasmid 

Human PXR (hPXR) clone cDNA was purchased from Promega.  1 ng cDNA was 

served as template to amplify the full hPXR sequence using PrimeStar Max DNA 

polymerase (Takara, Ohtsu, Japan) and the primers hPXR_F_BamHI: 5’-GGA TCC 

GCC ATG ACA GTC ACC AGG ACT C-3’ and hPXR_R_XbaI: 5’-TCT AGA TCA 

GCT ACC TGT GAT ACC GAA CAA-3’.  The following PCR protocol was employed: 

21 cycles of denaturation at 98˚C for 10 seconds, annealing at 60˚C for 5 seconds 

and elongation at 72˚C for 15 seconds.  The purified product was then ligated into the 

eukaryotic expression vector pcDNA3.1(+) (Invitrogen) using the correspondent 

restriction enzymes and T4 DNA ligase (Promega). 

 

Construction of pGL4.24-6xPXRE -reporter plasmid 

A reporter vector was constructed based on several variations of the PXR 

response element (PXRE; Figure 1).  The PXRE occurs either as a direct or everted 

repeat of the consensus motif AGTTCA, spaced by between 3 and 8 nucleotides.  
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The PXRE sequence created here was based on that reported in Xie et al. (2000).  

Initially, two complementary long chain oligos 5’-TGA GAG CTC TGA ACT TCA TCA 

AGG TCA GGG ACT GAA CTT TCC TGA CCT TGG CAC AGT GCC ACC ATG AAC 

TTG CCT GAC CTG CTG CAG TTC AAC AGA GTT CAC TCG AGG GT-3’ and 5’-

ACC CTC GAG TGA ACT CTG TTG AAC TGC AGC AGG TCA GGC AAG TTC ATG 

GTG GCA CTG TGC CAA GGT CAG GAA AGT TCA GTC CCT GAC CTT GAT GAA 

GTT CAG AGC TCT CA-3’ were annealed to create double stranded DNA, 

containing four PXRE motifs.  To maximise reporter efficiency, a further PXRE motif 

was added either side of the previously generated long chain oligo using PCR.   One 

ng of the annealed DNA served as template and was amplified using the primers 

PXRE_KpnI 5’-TGA GGT ACC TGA ACT TTT GAT GGG TCA TGA GAG CTC TGA 

ACT TCA TCA AGG-3’ and PXRE2_HindIII 5’-CCT AAG CTT TGA ACT CGA ATG 

AAC TGC ACC CTC GAG TGA ACT CTG TTG-3’ each containing one restriction 

enzyme site (KpnI and HindIII, respectively) and PrimeStar Max DNA polymerase 

(Takara).   The following PCR conditions were employed: 21 cycles of denaturation 

at 98˚C for 10 seconds, annealing at 60˚C for 5 seconds and elongation at 72˚C for 

30 seconds.  After purification, and using the appropriate restriction enzymes KpnI 

and HindIII, the obtained fragment was subsequently ligated into the 

pGL4.24[luc2P/minP] vector (Promega) which contains the firefly (Photinus pyralis) 

luciferase (luc2P) gene, to create the pGL4.24-6xPXRE reporter construct. 

 

Transactivation assays 

COS-7 cells (ATCC CRL-1651) were cultured in phenol-red free Dulbecco's 

modified Eagle's medium containing 1000 mg/L glucose (Life Technologies Ltd, 

Paisley, UK), supplemented with  2 mM L-glutamine (Life Technologies Ltd) and 10% 

charcoal/dextran treated foetal bovine serum (FBS; Hyclone, South Logan, UT, 
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USA).  The cells were maintained at subconfluent densities and sub-cultured when 

reaching 80% confluency. 

For transfection assays, cells were seeded in 24-well plates at 5x104 cells well-1 in 

phenol-red free DMEM (supplemented with 10% charcoal/dextran-treated foetal 

bovine serum (Hyclone).  After 24 h, the cells were transiently transfected with 200 

ng of either pcDNA3.1(+)/cPXR or pcDNA3.1(+)/hPXR, 400 ng of reporter construct 

(either MMTV/luc2/pGL4 (Promega) or pGL4.24-6xPXRE) and 100 ng of pRL-TK 

(driving the Renilla reniformis luciferase gene as an internal control to normalise for 

variations in transfection efficiency) using Fugene HD transfection reagent (Promega) 

in serum-free medium according to the manufacturer’s protocol.  Four hours after 

transfection, cells were treated with PXR agonists (see below).  Forty-eight hours 

after transfection, cells were lysed and the luciferase activities of the cells were 

measured by a chemiluminescence assay with Dual-Luciferase Reporter Assay 

System (Promega) according to the manufacturer’s instructions.  Luminescence was 

measured using an Infinite 200 Pro plate reader (Tecan, Grödig, Austria).  Promoter 

activity was calculated as firefly (Photinus pyralis)-luciferase activity/sea pansy (R. 

reniformis)-luciferase activity. All transfections were done at least three times, 

employing triplicate sample points in each experiment. 

 

Chemical Screening 

Initially, transcriptional assays were used to measure activation of both cPXR and 

hPXR by the prototypical human PXR ligands RIF and DEX at a concentration of 10-6 

M, comparing two separate reporter constructs in assessing for PXRE function.  In 

addition to the pGL4.24-6xPXRE reporter construct, a commercially available 

MMTV/luc2/pGL4 reporter vector (Promega) was tested as a reporter plasmid (i.e. for 
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PXRE function), as it is known to contain various nuclear receptor response elements 

in the promoter region.  

The pGL4.24-6xPXRE construct was subsequently used as the reporter construct 

in transcriptional assays to establish concentration-response curves for the receptor 

agonists RIF and CTZ in the concentration ranges of 10-11 M to 10-5 M for both cPXR 

and hPXR.  Subsequently, pharmaceuticals of different therapeutic classes were 

screened for their ability to activate hPXR and cPXR.  These were: the non-steroidal 

anti-inflammatory drugs (NSAIDs) diclofenac (DIC), ibuprofen (IBU) and ketoprofen 

(KTP); the fibrates clofibric acid (CFA) and gemfibrozil (GEM); the β–blockers 

propranolol (PRP) and atenolol (ATN); the (anti)oestrogens 17α-ethinyloestradiol 

(EE2) and tamoxifen (TAM); and the azole antifungal drugs ketoconazole (KTZ) and 

miconazole (MCZ).  Propiconazole (PCZ), an agricultural azole antifungal was also 

included in the analyses.  For all compounds, dose-response curves were 

established in the concentration ranges of 10-11 M to 10-5 M, for both cPXR and 

hPXR.   

All compounds (obtained from Sigma-Aldrich) were dissolved and diluted in DMSO 

and added to the medium.  The final solvent concentration in the transactivation 

assays was 0.1% DMSO and control wells were dosed with 0.1% DMSO only. 

 

Data Analysis 

Data are presented throughout as mean ± standard error of the mean (SEM).  All 

transfections were performed in triplicate and repeated three times on cells with 

different passage numbers.  Concentration–response data using a four-parametric 

curve fitting and EC50 (for agonists) were analysed using GraphPad Prism (Graph 

Pad Software Inc.).  Chemical responses were normalised against their relevant 
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respective controls.   Statistical analyses were carried out using SigmaPlot® software 

(Systat Software, Inc.) and p<0.05 was considered statistically significant.  

 

 

Results 

Cloning of full-length cPXR and sequence analysis 

Using 5’- and 3’-RACE PCR, the full-length cDNA sequence of cPXR was isolated 

from carp liver.  The fragment obtained was composed of 1696 nucleotides, 

containing 262 and 99 base pairs of the 5’- and 3’-untranslated regions, respectively.  

The open reading frame of the cPXR nucleotide sequence predicts a protein of 444 

amino acid residues. The full-length sequence obtained for cPXR has been 

deposited in the GenBank database (accession # KX241860).  Sequence analyses 

showed that cPXR has a highly conserved DNA binding domain (DBD) consisting of 

two C4-type zinc fingers and including a P-box motif (CEGCKG; a sequence 

essential for DNA-binding specificity) and a conserved ligand-binding domain (LBD) 

including the AF-2 motif (PLxxEx), essential for co-regulator interaction during ligand 

binding of transcription factors.  BLASTp analysis (Altschul et al., 1997) confirmed 

sequence identity and revealed a high homology between the amino sequence of the 

DBD of the cPXR with the zebrafish PXR (98%) and human PXR (74% ) (Figure 2).  

The overall amino acid identity of cPXR with other PXR sequences was between 46 

– 78 %.  In a phylogenetic analysis, the teleost PXR forms a distinct clade with the 

cPXR most similar to PXR of zebrafish (Figure 3). 

 

Comparison of reporter plasmids 

Initially, both cPXR and hPXR reporter assays were investigated using two 

different reporter vectors, namely the pGL4.24-6xPXRE  construct and the 
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commercial MMTV/luc2/pGL4 plasmid, to test for responses to PXR activation (i.e. 

for a functional PXRE) (Figure 4).  The test system transfected with pGL4.24-

6xPXRE showed significant activation of the hPXR in those cells exposed to 1 µM 

RIF compared with the control.  cPXR activity also appeared to be higher in cells 

exposed to 1 µM RIF compared with control cells, although this was not supported 

statistically (p>0.05).  The test system transfected with the MMTV/luc2/pGL4 plasmid 

in contrast showed no significant treatment-related activation with respect to either 

hPXR or cPXR.  pGL4.24-6xPXRE was used as the reporter plasmid in all 

subsequent transactivation concentration-response assays. 

 

Responses of PXRs to known PXR agonists 

Concentration-dependent transactivation of hPXR was observed after exposure to 

concentrations between 10 µM and 10 pM RIF (Figure 5).  RIF activated hPXR with a 

maximal effect (Emax) 6.4 times that of the control and an EC50 of 2.04 µM.  cPXR 

was not activated by RIF. 

CTZ activated both the hPXR and cPXR, but with different potencies.  For hPXR, 

the EC50 was 0.88 µM with an Emax of 4.8, and for cPXR, the EC50 was 0.024 µM with 

an Emax of 10.9. 

 

Activation of cPXR and hPXR by pharmaceuticals and fungicides 

All three NSAIDs (DIC, IBU and KTP), both fibrates (CFA and GEM) and the β-

blocker (ATN) did not induce transactivation of either cPXR or hPXR at any of the 

concentrations tested (Figure 6A-F).  Propranolol activated hPXR (EC50 = 44 nM), but 

had no effect on cPXR (Figure 6G). EE2 appeared to induce luciferase activity in 

both cPXR and hPXR, but did so only at high (10 μM) concentrations (Figure 6H).  

TAM had no effect on cPXR and only induced transactivation of hPXR at 10 µM 
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(Figure 6I).  This treatment level, however, would likely have been approaching a 

toxicity level; 100 µM TAM was toxic to COS-7 cells in both, cPXR and hPXR assays 

as established by an inhibited cell growth.  The azole antifungals MCZ and PCZ 

induced transactivational activity of both, cPXR and hPXR.  For cPXR, the estimated 

EC50s were 0.315 µM MCZ and 0.213 µM PCZ.  For hPXR, higher concentrations of 

MCZ and PCZ were required to induce transactivation of cPXR and hPXA and full 

dose-response curves were not obtained (Figure 6K, L).  KTZ had no effect on cPXR 

or hPXR transactivation (Figure 6J). 

 

 

Discussion 

In this study, we cloned a full-length PXR sequence from the common carp which, 

based on sequence analyses, was identified as an orthologue of human and mouse 

PXR.  The percent identities of the cPXR DBD and LBD reported here are in 

agreement with those published for other fish species, including the zebrafish, 

another cyprinid species (Bainy et al., 2013; Krasowski et al., 2005; Milnes et al., 

2008).  Of all of the nuclear receptors, vertebrate PXR sequences show the greatest 

sequence and functional differences between species. The amino acid sequence of 

the PXR LBD shows an unusually high sequence divergence between different 

orthologues (Handschin and Meyer, 2003; Iyer et al., 2006).  It is speculated that the 

varying degrees of sequence conservation of the vertebrate PXR LBD and resulting 

broad ligand specificity of PXR might reflect variation in exogenous PXR ligands as 

well as species physiology (Krasowski et al., 2011). 

Here, using the pGL4.24-6xPXRE construct as reporter plasmid, the hPXR was 

activated by RIF and by CTZ, both well-established PXR agonists in humans.  The 

hPXR was activated by RIF with an EC50 of 2.04 µM, and Emax of 6.4 µM, and CTZ 
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with an EC50 of 0.88 µM, both of which are comparable to those previously reported 

in humans (Bertilsson et al., 1998; Blumberg et al., 1998; Lemaire et al., 2004; Milnes 

et al., 2008; Moore et al., 2000; Sinz et al., 2006; Svecova et al., 2008).  DEX, 

conversely, failed to activate the hPXR.  Although DEX is a potent agonist of the 

rodent PXR, it is only a weak agonist of hPXR (Kliewer et al., 2002) and the response 

seen here is comparable with that reported previously for the hPXR following 

treatment with  2 µM DEX (Luo et al., 2002).  In summary, the activation of the hPXR 

in the transfection assay, established for RIF, CTZ and DEX, were consistent with 

previous reports on the responsiveness of the hPXR to these compounds. 

In this study, cPXR did not respond to RIF, supporting findings for the zebrafish 

PXR (Moore et al., 2000).  Contrasting with these cyprinid fish RIF (50 µM) has been 

shown to activate PXR from the pufferfish (Takifugu rubripes) (Milnes et al., 2008).  

Interestingly, RIF also shows species differences in mammals as a PXR ligand.  For 

example, RIF activates PXR strongly in humans and rabbits, but does so only 

relatively weakly in rodents (Kliewer et al., 2002).  This difference is thought to be 

due to sequence differences in the LBD.  This may also be the case for fish; carp and 

zebrafish PXR share high sequence similarity (79%) whereas Fugu Sp PXR shares 

only 52% and 51% sequence homology with carp and zebrafish PXR, respectively.  

In mammals, this species-specificity for PXR ligand activation parallels responses (or 

lack thereof) in expression of cyp3a to the same ligands (Kliewer et al., 2002; Luo et 

al., 2002); cyp3a is transcriptionally regulated directly by PXR.  The lack of a 

response of the cPXR to RIF seen here is, however,  contrasts with  previous gene 

expression profiles for cyp3a (Corcoran et al., 2012).  In carp, we have shown 

previously that cyp3 and a number of genes associated with the PXR in mammals 

were up-regulated in a concentration-dependent manner by RIF, and in some cases 

at concentrations as low as 0.1 µM.  Furthermore, this induction was inhibited by co-
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exposure to ketoconazole, which is known to antagonise the interaction of RIF with 

the PXR.  In other fish species too, RIF has been shown to induce CYP3A enzyme 

activity in vitro.  Examples include in  FHM cell line (Christen et al., 2010), and in 

primary hepatocytes from grass carp and largemouth bass, albeit at relatively high 

exposure levels (highest net increase in aminopyrine N-demethylase activity was 

reached at 52.43 and 45.28 µM, respectively (Li et al., 2008)).  The lack of response 

of the cPXR to RIF in the present study is, therefore, somewhat unexpected, and 

may suggest that the observed up-regulation of teleost biotransformation genes and 

enzymes by RIF may involve non-PXR mediated mechanism(s). 

In mammals, there is evidence for considerable crosstalk between PXR and other 

nuclear receptors and transcription factors, including farnesoid X receptor (FXR), 

glucocorticoid receptor (GR) and vitamin D receptor (VDR), in the regulation of 

biotransformation genes (Pascussi et al., 2008).  This sort of interaction may account 

for the discrepancy between the responses of teleost CYP3A at the gene and 

enzyme level previously observed and the PXR activation profile presented here.  

For example, in rodents GR has also been shown to regulate expression of cyp3a, 

possibly explaining  the inconsistencies between induction of cyp3a expression 

against a weak activation of the PXR by DEX (a GR ligand) (Quattrochi and Guzelian, 

2001).  

It is also the case that PXR activation may require various co-factors, co-

repressors, transcription factors and/or complexes that interact with the PXR or the 

response element (Quattrochi and Guzelian, 2001), as is common for other nuclear 

receptors.  Whether all of the required factors for the activation of cPXR by RIF are 

present in the transfection assay cell systems is not known.  
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The cPXR was more sensitive to CTZ compared with the human isoform and this 

is consistent with findings in other fish species where PXR has been shown to be 

highly responsive to CTZ.  Examples include the zebrafish PXR  shown to be up 

regulated in transfection assays by 8-fold (above controls) for exposure 

concentrations between 0.5 and 50 µM (Bainy et al., 2013; Milnes et al., 2008; Moore 

et al., 2000) and in the FHM PXR by up to 35-times for exposure to 50 µM CTZ 

(Milnes et al., 2008). 

CTZ concentrations in effluent and surface waters are generally in the low ng l-1 

range, but in sewage effluent have been reported at concentrations up to 1.8 µg l-1  

(Peng et al., 2012) which are approaching the lowest effect concentration reported 

here.  Moreover, CTZ has been shown to bio-concentrate in fish (Corcoran et al., 

2014), with a plasma bioconcentration factor (BCFplasma) of between 20 and 45, 

leading to the possibility of higher target tissue concentrations of this compound in 

exposed fish. 

The PXR activation by CTZ demonstrated in fish does not always parallel 

expression of some PXR-associated genes, in particular cyp3a, either in vivo or in 

vitro (Bresolin et al., 2005; Corcoran et al., 2012; Crago and Klaper, 2011; Wassmur 

et al., 2013).  We have though previously demonstrated up-regulation in the 

expression of a number of biotransformation genes, (including cyp3a) in carp 

exposed in vivo for 10 days to measured water concentrations of 17 µg CTZ l-1 

(Corcoran et al., 2014).  Some inconsistencies between PXR activation and gene 

responses in the different carp studies, however, are still apparent.  In this study 

cPXR was activated in vitro by CTZ at concentrations 100 times lower than those 

shown to induce expression of biotransformation genes in vivo.  It is possible that a 

certain threshold level of PXR activation is required to subsequently induce activation 
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of downstream gene targets.  Equally, it is possible that the PXRE construct does not 

reflect the sensitivity of carp PXRE motifs in target genes in vivo.  An alternative 

explanation is that activation of the teleost PXR does not lead to induction of 

biotransformation genes, as is known to occur in mammals. 

Globally, pharmaceuticals have been detected in surface waters and wastewater 

treatment work effluents (reviewed in Aus der Beek et al., 2016) and are of concern 

to receiving biota due to their biological specificity and potency (reviewed in Corcoran 

et al., 2010).  In mammals, PXR is known to play a significant role in regulating drug 

biotransformation (Liddle and Goodwin, 2002) whereas in fish, very limited 

information is available on the involvement of PXR in drug biotransformation.  

Various pharmaceuticals have been described as CYP3A inducers in human through 

their ability to activate PXR (Sinz et al., 2006).  Previous studies have also indicated 

a potential involvement of PXR in regulating selected genes involved in drug 

metabolism in fish (Corcoran et al., 2012).  Five out of 11 pharmaceuticals we tested 

(PRP, EE2, TAM, KTZ and MCZ) were found to activate hPXR, albeit only partially 

and some were very weak in their capacity to do so.  cPXR, on the other hand, was 

activated by EE2 and MCZ.  The lack of hPXR transactivation by IBU is consistent 

with previous findings, but for DIC contrasts with that reported previously for the 

hPXR (Creusot et al., 2010; Sinz et al., 2006).  Contrasting with our findings here that 

IBU and CFA had no effect on cPXR transactivation, previously using carp 

hepatocyte cultures, we found that these compounds induce an up-regulation in 

expression of the biotransformation genes cyp2k, cyp3a, gsta, gstp, mdr1 and mrp2 

(Corcoran et al., 2012) and for CFA this was mirrored for an in vivo exposure in carp 

(Corcoran et al., 2015).  The lack of hPXR activation by the fibrates (GEM and CFA) 

is consistent with a previous finding for hPXR in transactivation assays (Sinz et al., 

2006).  For some compounds, in particular CTZ and PRP, a higher variability was 
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observed in response to the higher agonist concentrations tested and onset of 

cytotoxicity or solubility are both possible explanations for this variability.  Cytotoxicity 

is an unlikely factor as the cells did not show any signs of morphological changes.  In 

terms of solubility, of the compounds yielding variable responses, only the highest 

CTZ concentration was bordering water solubility limits.  The reason for high 

variability for some a few of the data points across multiple experiments appears to 

relate to the variation in the technical replicates, which we are unable to account for. 

The β-blocker PRP activated the hPXR, but neither of the β-blockers tested 

activated the cPXR transactivation assay.  For both β-blockers tested, no detectable 

transactivation of hPXR has been demonstrated previously (Sinz et al., 2006).  We 

have though shown an up-regulation of cyp2k, cyp3a, mdr1 and mrp2 gene 

expression in carp primary hepatocytes in response to PRP exposure previously 

(Corcoran et al., 2012). 

EE2 induced transactivation of both cPXR and hPXR albeit only at the highest 

exposure concentration tested (10 µM), whereas TAM induced transactivation of 

hPXR only, at 1 µM and did so only weakly.  Transactivational activity at the hPXR 

has been shown previously for both drugs (Sinz et al., 2006). 

The azole fungicides were the only class of compounds showing consistent effects 

between both hPXR and cPXR.  In mammals, azoles are known to be both inhibitors 

and inducers of specific hepatic biotransformation systems, the effects being 

mediated through PXR (Hester et al., 2012; Huang et al., 2007; Sun et al., 2005; 

Wang et al., 2007).  Both MCZ and PCZ induced transactivation of cPXR and hPXR 

and they were more potent in the cPXR.  In vivo studies have shown PCZ induces 

CYP2B and CYP3A isoforms in rat and mouse liver as well as hepatic cyp3a gene 

expression in fathead minnow (Skolness et al., 2013; Sun et al., 2005).  Collectively, 

these findings indicate that PCZ is a potent activator of PXR and suggests a common 
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pathway between fish and mammals.  In line with our findings, MCZ has been 

identified in humans as potent PXR ligand, also inducing CYP3A4 (Dvorak, 2011; 

Svecova et al., 2008).  To the best of our knowledge, no other data are available on 

the effects of MCZ on fish.  In our in vitro assays, KTZ did not induce transactivation 

of cPXR or hPXR.  In carp hepatocytes, co-exposure to RIF and KTZ resulted in an 

inhibition of the gene expression responses of cyp2k and cyp3a, and KTZ alone had 

an effect on cyp2k, but no effect on cyp3a (Corcoran et al., 2012).  In rainbow trout 

and killifish, KTZ is known to induce CYP3A protein expression, but inhibit its 

catalytic activity in vivo and in vitro (Hegelund et al., 2004). 

Overall, our data show species differences in the potency of xenobiotics to 

transactivate PXR in vitro, however, in all cases cPXR transactivation occurred at 

concentrations exceeding those with environmental relevance.  As an example, the 

EC50s determined for the most potent cPXR agonists were 0.315 µM MCZ and 

0.213 µM PCZ, whereas measured average environmental concentrations are 

generally in pico- to nanomolar ranges (e.g. 0.019 nM MCZ and 0.85 nM PCZ) 

(Battaglin et al., 2011; Roberts and Bersuder, 2006).  Similarly for EE2, low 

micromolar concentrations were required to induce a weak transactivation of cPXR 

and the average concentration of EE2 in surface waters globally is sub-nanomolar 

(Aus der Beek et al., 2016).  We are not excluding the possibility that environmental 

exposure to these compounds does not pose any possible risk for adverse effects, 

but the likelihood is low for any individual compound.  There are, however, complex 

mixtures of PXR receptor agonists in the aquatic environment and when in 

combination, compounds with low individual efficacy can activate hPXR in a 

synergistic manner (Delfosse et al., 2015). 

There are considerable challenges when comparing data sets for PXR activation 

across the different published studies even for the reporter gene assay systems 
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alone.  The reasons for this include that a variety of different cell lines have been 

used, and that some transactivation assays employ a reporter construct consisting 

only of the PXR LBD rather than the full PXR sequence.  To illustrate the differences 

in transactivation assays that can occur for sequence inclusions of different sizes, 

exposure to CTZ was shown to result in a considerably lower (90% lower) activation 

of a zebrafish full-length PXR compared with a zebrafish PXR-LBD construct (Bainy 

et al., 2013).  This serves to emphasise that while reporter assays offer excellent in 

vitro tools to screen for PXR activation, functional studies either employing 

hepatocyte cultures or in vivo experimental approaches are needed for the validation 

of any effects seen. 

Overall, the data presented suggest that the reporter gene assay developed for 

activation of cPXR is a sensitive and reproducible model system for characterising 

the ligand activation profile of the PXR in carp.  This assay can be applied effectively 

for screening chemicals, including pharmaceutical, and/or environmental samples for 

PXR activation, for use in prioritising risk assessments.  Application of the assay has 

identified possible differences between the PXR associated xenobiotic-metabolising 

pathway in mammals compared with in fish. This being the case fish (carp) may be 

poor models for studying chemical activation of human PXR function.  Our findings 

further indicate that fish may have different metabolic pathways for detoxification of 

some of the key chemicals of environmental concern with possible implications for 

hazard identification and risk assessment. 
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Figure captions 

Figure 1.  Sequence of the 6xPXRE reporter construct. Nucleotides shown in green 

are PXRE sequences. Capital letters mark the conserved motifs.  The boxed section 

is a DR4 based on that published by Xie et al. (2000).  This sequence was inserted 

into the pGL4.24 vector using KpnI and HindIII restriction sites (underlined) to create 

the PXRE reporter vector.  Arrows indicate the direction of the nuclear response 

element repeat motif. 

 

Figure 2.  cPXR amino acid sequence aligned with PXR sequences of other animal 

species. The highly conserved DBD (blue outline) consists of two C4-type zinc 

fingers and includes a P-box motif (red outline). The conserved LBD (green outline) 

includes the AF-2 motif (purple outline). Accession numbers of sequences used for 

alignment: AAH17304 (H. sapiens); NP_443212 (R. norvegicus); NP_035066 (M. 

musculus); NP_001092087 (D. rerio). 

 

Figure 3.  Evolutionary relationships of PXR.  The neighbor-joining phylogenetic tree 

was constructed based on full length amino acid sequences. The scale bar 

represents 0.05 substitutions per site. 

 

Figure 4.  Activation of cPXR and hPXR by rifampicin (RIF) and dexamethasone 

(DEX) mediated by two different luciferase reporter vectors.  An asterisk denotes the 

treatment is significantly different from the corresponding DMSO control group 

(p<0.05). 
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Figure 5.  Concentration-response curves for carp (solid line) and human (dashed 

line) PXR activation on exposure to (A) rifampicin and (B) clotrimazole for 44 hours at 

concentration between 10 µM and 10 pM (10-5 and 10-11 M). Data are presented as x-

fold activation relative to DMSO control 

 

Figure 6.  Concentration–response profiles of cPXR and hPXR exposure to: the 

NSAIDs diclofenac (A), ibuprofen (B) and ketoprofen (C); the fibrates clofibric acid 

(D) and gemfibrozil (E); the β-blockers atenolol (F) and propranolol (G); the (anti-

)oestrogens 17α-ethinyloestradiol (H) and tamoxifen (I); and the antifungals 

ketoconazole (J), miconazole (H) and propiconazole (L).  Results are expressed as 

mean change normalised against their relevant respective controls ± SEM.  Dose-

response-curves were fitted by non-linear regression. 
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Highlights 

 Establishment of a reporter gene assay for carp PXR 

 PXR-transactivation differs with agonists and species 

 Implications of species-differences in PXR for risk assessment 

 Fish might not be good models for studying potential chemical activation of 

human PXR 

 


