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Stimulus pauses and perturbations differentially delay or promote the1

segregation of auditory objects: psychoacoustics and modeling2

James Rankin†,‡ (james.rankin@gmail.com),3

Pamela J Osborn Popp†, John Rinzel†,∗4

Abstract Segregating distinct sound sources is fundamental for auditory perception, as in the cocktail5

party problem. In a process called the build-up of stream segregation, distinct sound sources that are6

perceptually integrated initially can be segregated into separate streams after several seconds. Previous7

research concluded that abrupt changes in the incoming sounds during build-up — for example, a step8

change in location, loudness or timing — reset the percept to integrated. Following this reset, the multisecond9

build-up process begins again. Neurophysiological recordings in auditory cortex (A1) show fast (subsecond)10

adaptation, but unified mechanistic explanations for the bias toward integration, multisecond build-up and11

resets remain elusive. Combining psychoacoustics and modeling, we show that initial unadapted A1 responses12

bias integration, that the slowness of build-up arises naturally from competition downstream, and that13

recovery of adaptation can explain resets. An early bias toward integrated perceptual interpretations arising14

from primary cortical stages that encode low-level features and feed into competition downstream could also15

explain similar phenomena in vision. Further, we report a previously overlooked class of perturbations that16

promote segregation rather than integration. Our results challenge current understanding for perturbation17

effects on the emergence of sound source segregation, leading to a new hypothesis for differential processing18

downstream of A1. Transient perturbations can momentarily redirect A1 responses as input to downstream19

competition units that favor segregation.20

1 Introduction21

A valued paradigm for studying auditory streaming involves segregating two interleaved sequences of A22

tones and B tones, distinguishable by a perceived difference in pure tone frequency and timing. The tones23

are organized in a repeating ABA ABA . . . pattern1 (“ ” represents silence) (Fig. 1B, top). At first heard24

as a one stream rhythm (integrated percept), the probability of hearing two streams (segregated percept)25

gradually builds up over several to tens of seconds (build-up)2,3,4. Build-up occurs more rapidly with a26

large difference in frequency (DF) between A and B and at faster presentation rates. However, abrupt27

change in the incoming sound (e.g. a step change in location, loudness or timing) can reset perception to28

integrated2,5,6, after which multisecond build-up begins again. The first perceptual switch, typically from29

integrated to segregated is followed by persistent alternations between the two interpretations7,8. Build-30

up progresses not just to the segregation, but to the stable probability of segregation in the subsequent31

long-term alternations.32

Neural responses to triplet stimuli have been studied in primary auditory cortex (A1) of awake mon-33

keys9,10,11, in forebrain of awake12,13 or behaving14 songbirds, and in the auditory periphery of anesthetised34

guinea pigs15. The tonotopic organization of A1 and increased forward masking at higher presentation35

rates9,10 can explain the feature dependence of these responses. Studies comparing neural response data36

with build-up functions from human psychoacoustic experiments have shown that a trial averaged neuro-37

metric function can be tuned to match trial averaged behavioral data11,15,16. However, no study has claimed38

that the neural substrate for the perceptual state or switches in perceptual states lies in or before A1. Indeed,39

the only animal study with neural data recorded from behaving animals14 concluded that only stimulus40

features and not perceptual choice is encoded in songbird forebrain (analogous to A1). Responses to tones41

in A1 show rapid adaptation in the first few hundred milliseconds (1-3 triplets)11. In this initial phase,42

response amplitude adapts and dependence on DF emerges (at first little tonotopic dependence is evident43

for tones separated by less than an octave). The relationship between this rapid adaptation (∼ 500 ms) and44

the slower build-up process (several seconds) remains unexplained.45

In ref. 17 we developed a neuromechanistic model of auditory bistability based on a conceptual model46

proposed in ref. 9. Far apart A and B tones drive tonotopically segregated representations, but for smaller47
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Fig. 1 Neuromechanistic model captures initial bias to integration and build-up of stream segregation. (A)
Model schematic with two stages: tonotopic A1 and a competition stage (downstream of and pooling inputs from A1). A1
encodes only stimulus features, while the downstream competition stage encodes percepts. Inputs from lower frequency A
and higher B tones generate onset-plateau responses in A1 dependent on difference in frequency (DF) in semitones (st).
In the competition stage three units encode the integrated percept (AB), the segregated A stream, and the segregated
B stream. Units are in competition through mutual inhibition, pool inputs from A1, have recurrent NMDA excitation
(timescale 70 ms) and undergo adaptation on a slow timescale (timescale 1.4 s). (B) (top) Stimulus paradigm where low A
tones, high B tones and silences ( ) each of 100 ms repeat in an ABA triplet pattern. (below) A1 responses to tones adapt
rapidly (timescale 500 ms) with tonotopic dependence emerging and overall amplitude reducing during first 2–3 triplets.
Vertical offset for visualisation only. (C) One model simulation showing the activation threshold (horizontal dashed), and
each population’s NMDA variable (solid, pulsatile inputs appear smoothed in sub-threshold activity) and adaptation variable
(dashed). When the central AB unit is active (integrated), the peripheral units are suppressed through mutual inhibition.
Increasing adaptation for AB increases the probability of noise inducing a switch; when units A or B become active and
dominant after ∼ 4.5 s (segregated), the integrated (AB) unit is suppressed. (D) Build-up function computed as time-binned
trial-averaged proportion segregated computed from N = 500 model simulations. With no early adaptation of inputs from
A1 (input static), there is no build-up and stable proportion segregation from long-term alternations is reflected at onset.
Early adaptation of inputs from A1 gives initial bias toward integrated and proportion segregated gradually builds up to
DF-dependent value of long-term alternations. (E) Snapshots from build-up after 3, 7 and 10 triplets from model (each
solid curve in E corresponds to a dashed vertical line in D) are compared with psychoacoustic data (N=8 normal hearing
subjects) with percept reported at the end of presentation (dashed curves; errorbars show s.e.m., same for all plots)

DF the receptive fields overlap, leading to a common drive for an intermediate population encoding integra-48

tion (Fig. 1A). Our model mimics the periodic, pulsatile responses and stimulus feature dependence from49

A111, which are pooled as inputs to a competition stage residing downstream (A1 encodes only stimulus50

features, not the percepts). At the competition stage peripheral units A and B encode segregation and a51

central unit AB encodes integrated. The competition network incorporates the mechanisms of mutual inhi-52

bition, slow adaptation and additive noise shown to play an important role in perceptual bistability18,19.53

Recurrent excitation with an NMDA-like timescale links responses and thereby percepts across silent gaps54

between tones and triplets (Fig. 1C). Our model captures the complex dynamics of perceptual alternations,55
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reproducing characteristic features such as the log-normal distribution of perceptual durations as well as56

dependence of perceptual durations on parameters such as DF17. We focused previously on the alternations57

after the first perceptual switch; the initial bias to integrated and build-up were not addressed.58

Here, we propose that the initial integration bias is determined by early broad tonotopic tuning of59

neuronal responses in A1, while the multisecond timescale of build-up is due to slow adaptation downstream60

of A1. Recovery of early adaptation, say after a stimulus pause, can further explain the reset to the integrated61

percept. Furthermore, we find in new experiments, a class of transient perturbations (single unexpected tones62

in the ongoing stimulus) that subsequently promote segregation, in contrast to the widely reported resets63

to integrated. Our model, motivated from neurophysiological studies, provides a mechanistic explanation64

for build-up and resetting whilst also accounting for new experimental findings.65

2 Results66

2.1 Neuromechanistic model explains initial bias to integration and build-up of stream segregation67

In order to study build-up in our existing model, we made one change to the inputs based on further68

observations about the early responses to triplets in A111. We introduced rapid adaptation (timescale69

500 ms) for both input amplitude and DF dependence (Fig. 1B). During the first 2–3 triplets input evolves70

as if driven by a DF that is effectively small but gradually increasing to a static value. The AB unit71

receives enough input bias to become active, suppress the peripheral units and become dominant first72

(Fig. 1C). Time-binned build-up functions (three DF and two input cases) were computed by averaging73

across simulations. In the input static case (Fig. 1D dashed) the inputs are assumed post fast-adaptation74

(Fig. 1B after 3 triplets) and the time-course only reflects the static probability of post build-up alternations.75

In the input adapting case (Fig. 1D solid) responses are initially biased to integrated and gradually build-76

up to the static probability of later alternations. The slower timescale of this build-up arises from the77

mechanisms already established in17 for the competition stage downstream of A1. In particular, there is78

a slower adaptation process at the competition stage. In psychoacoustic experiments, the build-up process79

can be sampled with short stimulus presentations of different lengths with percepts reported at the end.80

Vertical lines in Fig. 1D show three such snapshots from the model (Fig. 1E solid). These are compared81

with psychoacoustic data (Fig. 1E dashed) for three DF and two presentation length conditions. A repeated82

measures ANOVA showed a significant effect of DF (F (2, 14) = 37.49, P < 0.001), of presentation length83

(F (2, 14) = 19.49, P < 0.005) and their interaction (F (4, 28) = 4.34, P < 0.05), see App. A. The close match84

with these data show that the model accurately captures build-up (increasing segregation with both DF85

and presentation length). Our model is the first to produce the bias to integrated in a manner directly86

motivated from neurophysiology data9,11 (fast adaptation in A1) and to produce gradual build-up due to87

a slower adaptation timescale downstream of A1 (at the competition stage in our model).88

2.2 Promotion of segregation by distractor and deviant tones89

In psychoacoustic experiments we reproduced a previously reported reset toward integration for a brief90

pause between triplets (paradigm, Fig. 2A; data Fig. 2D). In all experiments reported here, the stimulus91

ends in three normal triplets with the last triplet reported as integrated or segregated20,21. In Fig. 2D, if the92

test conditions (300 ms or 600 ms pause) showed no effect, the orange and red curves would align with the93

black ten triplet control. For a full reset to integrated the test conditions would align with the three triplet94

grey curve. Our results show, consistent with existing studies22,23, that brief stimulus pauses can result in a95

partial reset back toward integrated. The pause conditions had a significant effect on proportion segregated96

(F (2, 14) = 5.126, P < 0.05), see App. A. The reset is of a similar magnitude for all pause duration and DF97

conditions.98

In a new experiment six triplet presentations are used with a perturbation in the third triplet (full99

details in Sec. 4 and App. A). In the distractor case (Fig. 2B), an additional tone is inserted in the normal100

gap between the third and fourth triplet: . . . ABA ABAdABA . . . , where ‘d’ is 2 semitones (st) higher101

than B. In the deviant case (Fig. 2C), the B-tone in the third triplet is a deviant: . . . ABA ADA ABA . . . ,102

where ‘D’ is 2 st higher than B. A shorter presentation length was used relative to the pause experiment103

to avoid ceiling effects (saturation at proportion segregated=1). See Fig. 2E, where again, for no effect the104

test conditions would align with the black control case and for a reset to integrated, move down toward105

the grey three-triplet case. We found an opposite effect from pauses for a deviant or distractor tone during106

the ongoing triplet sequence: promotion of segregation. The increase in proportion segregated is significant107
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Fig. 2 Promotion of segregation by distractor and deviant tones, behavioral data (normal hearing subjects).
Psychoacoustic data from N=8 normal hearing subjects. (A) Paradigm for pause of 300 or 600 ms after 7 context triplets,
followed by 3 test triplets, where subjects report percept of final triplet. (B) Paradigm for distractor falling in the normal
gap between last of 3 context triplets and first of 3 test triplets. (C) Paradigm for deviant B tone in last of 3 context triplets.
(D) Brief pauses in stimulus presentation result in a partial reset to integrated. The test conditions (red, orange) would
align with the ten-triplet control (black) if the pause had no effect and align with the three-triplet control (grey) for a full
reset to integrated. (E) Both a distractor tone in the gap between triplets or a deviant tone within a triplet can promote
segregation. Proportion segregation increased for all test conditions (green, blue) relative to the control condition black.
(F) Direct comparison between stimulus pauses and distractor or deviant tones shows an opposite effect. The difference in
proportion segregated between test and control conditions in A and B is plotted; when the difference is positive there is
promotion of segregation, when negative a reset to integrated.

for these test conditions (F (3, 21) = 5.80, P < 0.05). There is a similar effect for the deviant and distractor108

cases (largest for small DF). A distractor at 15 st above B showed no effect (not shown); see App. A.109

For each experiment, by calculating the difference in proportion segregated between the test cases110

(colored curves) and control cases (black curves) in Fig. 2D–E, we can make a direct comparison between111

the two types of perturbation (Fig. 2F). A negative (positive) difference indicates a reset toward integrated112

(promotion of segregation). The promotion of segregation by a single-tone perturbation during triplets is a113

new and unexpected finding, opposite to the effect of a pauses and other perturbations previously reported.114

To better understand this phenomenon, we focused on the distractor tones and further investigated their115

relative frequency to the triplet tones (Fig. 4F). Before reporting these data we explore perturbations with116

the model.117

2.3 Rapid recovery of adapted A1 responses explains reset to integration for pauses118

In the model we assume that when the stimulus resumes after even a brief pause, it will be partially recovered119

from adaptation (to a state similar to stimulus onset) (Fig. 3A). Figure 3B shows a simulation-averaged120

build-up function comparing a case without a stimulus pause (input Fig. 1B) to a case with a pause input121

(input Fig. 3A). When the stimulus turns off the proportion segregated decreases (increases for DF=4)122

toward 0.5. When the stimulus resumes the amplitude and effective DF of inputs from A1 have partially123

recovered; the proportion segregated continues to decrease (starts decreasing for DF=4) before resuming124

gradual build-up. In this way, the model accounts for the partial reset toward integration across all DF125

conditions, compare red/orange curves in Fig. 3E (model) with Fig. 2F (experiments).126

2.4 Model hypothesis on differential processing of non-triplet tones127

For a distractor tone in the model, in order to compute an input amplitude, we first assumed the same128

rules as for the standard A and B tones. One modification was to assume a reduced response in A1 at the129

A-location due to higher repetition rate and the distractor immediately following an A-tone offset (stimulus-130

specific adaptation24,25). Until now the responses in A1 were taken directly as inputs to the competition131

stage, without modification. However, in initial simulations we found almost no effect of introducing a single132

new tone. A further assumption is that a distractor tone, arriving in a window where silence was expected,133

would be detected as a new event, and boosted (approximately to the level of an un-adapted tone) as input134

to the competition stage. Figure 3D shows inputs for a distractor 2 st above a normal B (B+2), see App. B.135

Still, only a small reset toward integrated is observed (Fig. 3E). Using the same assumptions for a deviant136
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Fig. 3 Rapid recovery of adapted A1 neural responses explains reset to integration after pauses in the
model. (A) A1 responses fed as inputs to competition stage with a pause in presentation; after pause inputs are un-
adapted. (B) Build-up functions from model with stimulus as shown in A (solid). Dashed curves without pause same as Fig
1D (solid). (C) The model captures the effect of stimulus pauses but not distractor or deviant tones (compare with Fig 2C,
same color conventions). (D) Inputs to competition stage, with distractor d after third triplet at B+2 (2st above a normal
B). Distractor tone response is assumed to have a normal tonotopic representation in A1, but be relatively more adapted
at the A-location due to higher repetition rate and immediately following an A-tone offset. Distractor tone response in A1
is boosted as input to the competition stage, so the response to d is larger than for preceding tones. (E) Build-up function
with distractor tone (solid) shows slight reset to integrated in comparison with no distractor case (dashed, as Fig 1D solid).
(F) Across a range of tonotopic locations for the distractor tone, the model would predict a modest reset to integrated.
Effect is largest when the distractor is at (A+B)/2 (labeled AB) and the DF is large, as the AB unit in the model would
receive more input than peripheral units. Note x-axis does not have fixed spacing and distance between A and B changes
with DF.

B tone at B+2 we find a similar effect (Fig. 3C). A comparison with the experimental data from Fig. 2F137

shows that the model has not captured the effects of deviants and distractors. A further exploration varying138

relative frequency of the distractor tone (Fig. 3F) shows that the model would predict a large reset toward139

integrated when it is at a frequency (A+B)/2, in which case the AB unit receives the most additional input140

from the distractor tone. However, this prediction was not borne out in later experiments.141

Using the model, we tested a new hypothesis for how novel inputs, tones that are saliently not part142

of a triplet, propagate from A1 to the competition stage. These include tones not fitting the temporal143

pattern of a regular triplet (e.g. the distractor tone) or not matching the frequency of the tones in a regular144

triplet (e.g. a deviant tone); in informal listening either case is saliently different from a normal triplet.145

We suppose that the AB unit, encoding the integrated percept, will only receive inputs matching a normal146

triplet, while as before, the unexpected event results in boosted input to the competition stage (Fig. 4A).147

For example, a distractor tone B+2 leads to a larger than expected input at B, but no input to AB (Fig148

4B). The build-up function shows an increase in segregation due to the peripheral units receiving more149

input. In both the distractor and deviant cases segregation is promoted, recapitulating the behavior with150

the reported experimental data, compare Fig. 4B (model) with Fig. 2F (experiments). Note that the model151

captures the largest promotion of segregation occurring for small DF.152

We further applied the model to predict the dependence of change in proportion segregated on the153

frequency of a distractor tone (Fig. 4E). Predictions: 1) the promotion of segregation occurs for a range154

of relative frequencies for the distractor tone, 2) the effect is strongest when the distractor tone is close155
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Fig. 4 Non-triplet (deviant or distractor) tones are gated out from AB unit. (A) Schematic showing how a
distractor d with, e.g. the frequency of a B tone, propagates in the model when boosted to A and B units and gated
out from the AB unit. (B) Model inputs from A1 with a distractor tone (at B+2) after the third triplet where it is not
seen by the AB unit, contrast with Fig 3D. (C) Build-up function in this case shows that the distractor tone results in
an immediate increase in segregation, contrast with Fig 3E. (D) Based on the new assumption the model captures, along
with the resetting effects of pauses, the promotion of segregation for distractor and deviant tones, compare with Fig 2C
(same color conventions). (E) The model predicts the largest effect for the distractor tone when it is close to the B location,
that the effect is largest for small DF and that the effect diminishes if the distractor tone is too far above B or below A.
Note x-axis does not have fixed spacing and distance between A and B changes with DF. (F) Experimental data showing
promotion of segregation with respect to the tonotopic location of the distractor tone.

to the A and B tones, 3) there is no effect if the distractor is too far in tonotopy from the A and B156

tones, and 4) asymmetry, e.g. that the effect is more prominent when the distractor is near or above the157

B tone than when it is near or below the A tone. Further experiments confirmed these general trends for158

distractor tones at more frequencies (total 8) relative to the A and B tones (Fig. 4F). One experiment159

tested distractors aligned with the A (disA), the B (disB) or directly between (disAB). These conditions160

showed a significant effect on proportion segregated (F (3, 21) = 5.00, P < 0.05). Another experiment tested161

distractors above B (disB+4, disB+8) and below A (disA-2). These conditions did not show a significant162

effect (F (3, 21) = 2.145, P = 0.125), which is indicative of the diminishing effect of the distractors away163

from the A and B tones.164

3 Discussion165

We report new insights on the dynamics of build-up in perceptual segregation, including the initial bias to-166

ward integration, and the effects of pauses, distractor tones and deviant tones. In audition the initial percept167

is typically integration with segregation developing over seconds2,3. But such biasing toward integration has168

eluded neuronally-based explanation. We suggest that the initial bias is determined by broad onset activa-169

tion in neurons selective to low-level features (e.g. tone frequency11,15) in or even below primary sensory170

cortex, prior to early adaptation and emergence of strong feature dependence. This property at onset biases171

the initial conditions that are propagated downstream of A1 to areas where identification of perceptual172

patterns, competition between them and build-up develops more slowly. Our study focused on auditory173
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streaming, but the principle could generalize to motion plaid displays consisting of two gratings moving in174

different directions, also showing an initial bias toward integrated pattern motion26. Neural responses in175

visual areas representing the relevant low-level feature (motion direction) show a broader initial activation176

and a bias toward the vector average, i.e. integrated, direction27. Our experiments and modeling demon-177

strate that the bias in the auditory case is partially restored during pauses that allow some recovery from178

early and fast adaptation (as brief as sub-sec), thereby allowing a refresh of the biased initial conditions.179

While various changes in stimuli can also interrupt build-up and reset toward integration we have discovered180

a class of perturbations that promote segregation rather than integration. In auditory streaming a transient181

perturbation that disrupts the triplet pattern (e.g., replacing B by a deviant D or adding a distractor tone d182

between triplets) promotes segregation. Intuitively, these events could briefly make one of the streams more183

salient and cause a switch. Our model provided an opportunity to seek a more mechanistic explanation.184

Based on our experiments and modeling we propose that non-triplet tones are processed differently down-185

stream from primary auditory cortex. Furthermore, our results support the notion of auditory streaming186

being bistable between perceptual states, where a pause or aberrant tone can flip the percept in a specific187

direction and the perturbation’s effect is still evident several seconds later.188

3.1 Timescale of the reset to integrated189

Using short stimulus presentations, we confirmed a partial reset to integrated for pauses of 300 or 600 ms,190

but did not find an increasing trend between the two conditions. A reset to integrated has been shown191

with pauses longer than 1 s using short stimulus presentations28,29,30 and with briefer pauses (<1 s) using192

long stimulus presentations (during bistable alternations)23. Ref. 31 showed a reset for multi-second pauses,193

using EEG recordings and a mismatch negativity paradigm.194

In our model, initial A1 responses had a large amplitude and broad tonotopic tuning; fast adaptation195

on a common timescale led to static responses with lower amplitude and tightened tuning. The tonotopic196

component is key for the initial bias toward integration. A rapid recovery of the fast adaptation following a197

stimulus pause led to a partial reset to integrated, consistent with our data. For a long enough pause there198

must be a full reset to integrated, as if hearing the stimulus for the first time. Ref. 32 suggested biasing from199

previous stimuli would have recovered within 6 s and this was confirmed by later studies22,29. Our results200

suggest that although rapid recovery of adaptation in A1 may explain the partial reset to integrated (even201

for very brief stimulus pauses), the multi-second timescale of longer term recovery may also be related to202

processes downstream of A1.203

3.2 Link between context and perturbations204

A sudden change after a sequence of context triplets causes at least partial resetting of build-up back205

toward integration, as shown for a change in ear of presentation2, a shift in perceived loudness and/or206

location5,6, a switch in attention4,33 and a pause in presentation (as described above); see review ref. 34.207

Like a pause, a switch in attention could allow recovery from adaptation. Otherwise a one-time shift of the208

entire stimulus in location or intensity (an increase, but not decrease6) could recruit previously unstimulated209

and, therefore, unadapted neurons. We may view the triplets preceding the deviant and distractor tones210

during build-up as context. Different types of context can bias perception toward (i.e. prime for) integration211

or segregation35,29,30,36. Even for a context of a single stream of tones, say A A A A , that would alone212

promote segregation for subsequent test triplets ABA ABA . . . , similar disruptions as above at the end of213

the context sequence lead to integration, as if the effect of the context was undone5,6,22. Also, a single deviant214

A’ at the end of an A A A . . . context can reduce or eliminate the expected bias toward segregation37,21,38.215

So while these various disruptions favor integration and may a priori lead one to a generalized expectation216

that a single transient distractor tone (between triplets) or a single deviant tone (within a triplet) should217

also promote integration, we found the opposite — promotion of segregation in the subsequent triplets.218

Nevertheless our results do not contradict these previous studies. Studies looking at the effects of deviant219

tones did so by placing these at the end of a single stream context37,21,38; in our study we placed the220

deviant or distractor at the end of context triplets. Ref. 33 included an experiment with a single delayed-221

onset deviant B tone, but did not report promotion of segregation or resetting. Nevertheless, other stimulus222

perturbations may promote segregation. Further experiments should consider whether single-tone deviants223

in features other than frequency (e.g. lateralization or loudness) can promote segregation.224
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3.3 Promotion of segregation and differential processing of non-triplet events225

Our model accounts for the observed segregation-promoting effects by assuming that inputs propagate226

to the competition stage in a differential manner, A1 responses to a deviant or a distractor tone do not227

reach the “integration (AB) unit”. It encodes a non-trivial rhythm and can be viewed as more sensitive228

to, effectively selective against, sounds that break the triplet pattern. Our implicit assumption is that the229

aberrant tone is identified as a mismatch and is deflected from reaching AB. Viewed differently, an incoming230

sound inconsistent with the integrated percept might result in the integration unit being briefly suppressed,231

allowing the peripheral units to take over. The crucial aspect is that the incoming tones have a differential232

effect on the integrated and segregated units. The effects of distractor tones also show a dependence on233

tonotopy, which led us to favor an input-based explanation.234

Our results allow us to rule out some other potential explanations for the effects of non-triplet perturba-235

tions. Suppose that such perturbations indiscriminately cause a switch in perception away from the current236

percept. One might argue that we saw switches only from integrated to segregated since we considered237

perturbations only during build-up, when integration is thought to be dominant. However, our data do not238

support the idea of switches from segregated to integrated. At DF=10, where ∼ 50% of trials are already239

segregated after 3 triplets, we saw no evidence of a reset or switch back toward integration (Fig. 2E), either240

in the group data, or in individual subjects (not shown). This facet of the data is consistent with the pro-241

posed notion that input propagates from A1 to the segregated units, but not the integrated unit. Another242

hypothesis could be that any transient, salient perturbation distinct from standard triplets promotes segre-243

gation. However, our data showed no effect for distractor tones sufficiently far in frequency from the A or244

B tones. Our modeling work shows that this interaction could be through input from the distractor tones245

still propagating to segregated units with tonotopic dependence.246

Ref. 38 showed that hearing a single A tone before the triplets could make that stream more salient.247

Could there be a similar effect in our data, where the distractor tone makes one of the streams more salient,248

or briefly direct attention toward it? The range of conditions for which we found promotion of segregation249

includes several cases where the perturbation is not an A or a B tone. The distractor tone d appears in a250

sequence . . . ABA ABAdABA . . . . It could be that the d is being grouped into a new triplet (AdA or B-d-251

B), thus making the A or B stream more salient (or highlighting their separation) ahead of the upcoming252

test triplets. For a distractor or deviant tone, the proposed mechanism in our model boosts inputs to the253

competition stage for the segregated units whilst gating out input to the integrated unit. This selective254

transient modulation of input gains could be viewed as a brief top-down attentional effect. However, for255

an attention mechanism, the selective gain would likely act in response to the perturbation mismatch with256

some delay. In our current model we have idealized the transmission of input from A1 to competition stage257

without a delay.258

3.4 Build-up and bistability in models259

Most existing computational models of auditory streaming have focused on reproducing the dependence1 of260

perceptual bias on DF and presentation rate39,40,41, the dynamics of build-up42,43 or both44. A complete261

theoretical framework for streaming should account for build-up as well as the later alternations, given that262

the probability of perceiving segregation converges to the long-term probability of bistable alternations.263

Some recent models focused on post-build-up alternations (auditory bistability)45,46,17,47. The initial bias264

to integration is set by specifying a priori initial conditions46,47. In ref. 45 the bias is emergent through an265

early stage of an algorithmic pattern discovery. Our model that accounts for alternations, and was further266

developed here to describe build-up, is the first treatment to explain the initial bias for integration through267

a direct link to observed neurophysiological responses9,11. To the best of our knowledge, no other model268

has been used to investigate resetting effects, or the effects of perturbations in general.269

3.5 Future directions for our model270

Our current neuromechanistic model relies on a lumped version of a distributed network, a few discrete271

units pool inputs from different tonotopic locations in A1. Although this view allows the model to account272

for many phenomena (stimulus parameter dependence, build-up, alternations, resetting for pauses), the273

notion of differential processing introduced to account for promotion of segregation approaches the limit of274

our modeling framework, and suggests the need for a richer description. One avenue for extension would275

be to consider a continuous feature space in DF, as proposed in ref. 39, at least at the A1 stage of the276
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model. Although the rules for the tonotopic spread of A1 responses allowed us to considered, for example,277

distractor tones away from the three locations A, B and (A+B)/2, a more refined description would define278

how A1 responds in time to any combination of tones across DF (and consider other paradigms, for example,279

involving frequency-banded maskers48). As a further extension we could introduce an additional dimension280

to the feature space, e.g., selectivity to different repetition rates of the streams and the relative timing281

(phase) of the inputs. A first step in this direction was made in44, with the use of delay lines to introduce a282

temporal feature space. Beyond this, a suitable theoretical framework to study might be a coupled oscillator283

network sensitive to frequencies in the range of the repetition rates of the tone sequences, not just the284

frequency of the tones (like tonotopy in A1). fMRI studies have implicated a broader network involved in285

streaming, including areas associated with rhythm and timing49. The design of such a network and the286

necessary mechanisms for competition could build directly on our present model. Such networks have been287

used in studies of rhythm perception50 and in phenomenological studies of perceptual bistability51. Such a288

richer description would allow one to pursue the origin of the differential processing we propose here and to289

investigate the effects of temporal coherence, a strong cue in auditory stream segregation52.290

3.6 Conclusion291

Our model with the developments presented here is the first grounded in neurophysiological detail to account292

for build-up and subsequent bistable alternations. We propose that the initial bias to integrated arises293

naturally from the rapid but delayed emergence of low-level feature dependence and that the more gradual294

timescale of build-up comes from competition mechanisms downstream of A1. This is the first explanation295

of integration bias and build-up motivated directly from neurophysical data (responses to triplet sequences296

in A111).297

New findings presented here challenge the current understanding of how the segregation of auditory298

objects is affected by interruptions and perturbations. A reset of the build-up process results from an299

established class of perturbations that shift the entire triplet stimulus in location, loudness or timing.300

We illustrate that the rapid recovery of responses in A1 can explain resetting for stimulus pauses. We301

demonstrated a new and opposite effect, promotion of segregation, by a complementary class of perturbations302

that transiently alter a single triplet or introduce a new non-triplet element. Our modeling in conjunction303

with confirmed experimental predictions led to a new hypothesis: that new non-triplet events (deviant or304

distractor tones) are gated out from the neural population encoding the complex integrated rhythm.305

4 Materials and methods306

4.1 Neuromechanistic model307

The neuronal circuits for competition and perceptual encoding are assumed to be downstream and receiving308

inputs from A1. The periodic inputs mimic the A1-responses to ABA- sequences reported in ref. 11. Neuronal309

activity is described by mean firings rates and competitive interactions emerge through a combination of310

excitatory and inhibitory connections, slow adaptation and intrinsic noise. We provide a brief outline of the311

model architecture, mechanisms and inputs here; the full model equations and further details in the App. B.312

The schematic in Fig. 1A shows downstream units A, B and AB that respectively pool inputs from313

regions of A1 centered at locations with best frequencies A, B and the midpoint between (A + B)/2. We314

associate a variable rk (k = {A,AB,B}) with each unit representing the mean firing rate of a population of315

neurons in the competition network. For each unit rk the intrinsic dynamics are illustrated in Fig. 1A and316

described by a differential equation like the following,317

τr ṙAB = −rAB + F
(
βeeAB − βi(rAB + rA + rB)− gaAB + IAB + χAB

)
. (1)

By way of an example, we describe this equation for rAB in detail; the equations for rA and rB take the318

same general form. The cortical timescale is τr = 10 ms. A sigmoidal firing rate (smooth threshold) function319

F (see App. B) process all inputs to the unit. Local excitation eAB has strength βe = 0.65 and evolves320

on an NMDA-like timescale τe = 70 ms. Global inhibition (assumed instantaneous and so proportional to321

the cortical variables rk) has strength βi = 0.3. Note βe > βi so there is net local excitation. Linear spike322

frequency adaptation (slow negative feedback) aAB has strength g = 0.045 and a timescale of 1.4 s.323

The input IAB mimics A1 cortical responses to triplet tone sequences; full details are given in App. B.324

There are two components to the early adaptation of these responses, both consistent with observations325

from ref. 11 and sharing a common timescale τA1 = 500 ms (Fig. 1B). Firstly, the overall amplitude of326
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responses decays. Secondly, the effective DF is initially small i.e. the DF dependence of the responses takes327

time to emerge. After a stimulus pause, the A1 adaptation is assumed to rapidly recover (τrec = 100 ms),328

such that when the stimulus resumes after a an adequate pause (say 2 × τrec) the model inputs resemble329

those after initial stimulus onset (Fig. 3B). For a distractor tone (or a deviant tone) input amplitude and330

tonotopic spread are consistent with a partially recovered response to the tone. At the tonotopic location331

A, responses to a distractor are reduced, because the distractor immediately follows the offset of a normal332

A tones (referred to as temporal forward masking in ref. 9). Intrinsic additive noise χAB is an independent333

Ornstien-Uhlenbeck process for each rk.334

Numerical simulations were implemented with an Euler-Murayama scheme with a stepsize of 0.5τr.335

Build-up functions were computed as time-binned averages across 500 simulations. For each time bin the336

fraction of trials with more activity in the AB unit than the summed activities of the A and B units337

was taken as the measure of proportion integrated. Computations were implemented in Matlab and batch338

processed using the function parfor; no special computing hardware was required. In all computations, the339

same set of 500 randomized initial conditions and the same 500 instantiations of the noise process (i.e.340

frozen noise) was used for each rk. This ensures that any differences between conditions is entirely due to341

changes to model parameters (e.g. reflecting different stimulus properties). For example, in Fig. 3B and E,342

the control (No pause, No dis) curves only deviate from the test simulations (Pause 600ms, disB+2) from343

the time point where the perturbation is introduced.344

4.2 Psychoacoustic experiments345

Our experimental paradigm is well suited for studying the effects of perturbations on how the subsequent346

triplets are perceived. In all experiments presented here (with pauses, distractors or deviants) the perturba-347

tion was followed by three normal triplets and subjects reported their perception of the final triplet, roughly348

1 s after the perturbation. Three triplets provides enough stimulus duration to make a reliable perceptual349

judgement20,21. This design precludes the possibility of subjects reporting, say a distractor tone, as being its350

own segregated stream, as the distractor occurs well before the final triplet. If continuous perceptual reports351

were used, confusion might arise about classifying an unexpected tone into it’s own stream at the moment352

the distractor is detected. A final possibility would be to use an objective measure of streaming37,33. An353

appropriate paradigm could be the one used in ref. 33, where performance in a deviant detection task func-354

tioned as an objective measure for streaming and showed qualitative agreement with subjective perceptual355

reports. In the objective task, subjects had to detect a single delayed-onset B tone and performance was356

best during integration. Given that the objective task relies on the detection of a delayed-onset deviant357

and that some trials would need to involve another deviant tone (the perturbations studied here), it could358

become rather confusing for a subject. It would be challenging for a subject to distinguish between multiple359

types of aberrant tone, ignoring some and reporting the presence of others.360

Procedure. Subjects sat in an acoustically shielded chamber and pressed keys on a keyboard to indicate361

their perceptual response. In each task, a short ABA- sequence ranging between three and 10 triplets was362

played, and the subjects reported with button presses whether the last triplet of the sequence sounded most363

like the integrated percept or the segregated percept and guessed if unsure. The integrated percept was364

defined as hearing the A and the B tones together in a galloping rhythm, and the segregated percept was365

defined as hearing the A tones and B tones separately in two distinct streams. Subjects were instructed366

to respond as quickly as possible and had up to 5 s — the length of the inter-stimulus interval (ISI) — to367

respond.368

Stimuli. The repeating ABA triplet consist of 100 ms pure tones with 10 ms linear ramps, where the ‘ ’369

indicates a silence also lasting 100 ms; in total, the duration of each ABA triplet is 400 ms. An inter-trial370

interval of 5 s was included between all trials. The higher frequency B tones are a variable DF semitones (st)371

above the lower frequency A tones. Cosine squared ramps with 10 ms rise and fall times were used. Each372

tone sequence was played binaurally through Etymotic headphones at 65 dB SPL. Three DF conditions373

were used for all experiments: DF ∈ {4, 7, 10} st. From trial to trial the A-tone base-frequencies were roved374

between 420 Hz and 1060 Hz, separated by intervals of 4 st; correspondingly, the B tone frequencies ranged375

between 530 Hz and 1888 Hz. The roving of base frequencies and ISI of 5 s were chosen to avoid any latent376

adaptation from one trial to the next22,30,53.377

Subjects. Seventeen subjects in total, including one of the authors, took part in the experiments (10378

female, 7 male), aged 20-51, mean age 27.9. Subjects were reimbursed for their participation and all ex-379

perimental procedures complied with human subject research guidelines as approved by the University380

Committee on Activities Involving Human Subjects at New York University (IRB-FY2016-310). All sub-381

jects provided written informed consent and were required to pass a hearing screening.382
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Conditions. The stimulus paradigm for the pause experiment is shown in Fig. 2A. A total of 15 conditions383

(3 DF conditions crossed with 5 stimulus length/pause combinations) were tested with 20 repetitions of each384

condition (total of 300 trials for each of 8 subjects). Two test conditions consistent of 7 context triplets,385

followed by a pause of 300 or 600 ms followed by 3 test triplets 8 blocks of 15 trials. Three control conditions386

of 3 (test only), 7 (context only) and 10 (no pause control) triplets were tested in 9 blocks of 20 trials and387

the test conditions. Control and test conditions were run in separate block sections to avoid confusion about388

timing of perceptual reports.389

Schematics of the stimulus paradigm for the distractor and deviant experiments are shown in Figs. 2B and390

C. Three different experimental sessions, with eight subjects each, were conducted for different experimental391

conditions. Subjects performed 20 blocks of 15 trials each, where the length of each trial ranged from392

1.2 s to 2.4 s in length. In each experiment, two control conditions included a 3 triplet and a 6 triplet393

condition with no deviants or distractors. Along with the two control conditions, each experiment included394

three distractor or deviant conditions, 6 triplets in length. Distractor tones were 50 ms in length and were395

inserted symmetrically in the 100ms inter-triplet gap between the third and fourth triplets of the sequence,396

so that there was 25ms of silence on either side of the distractor. Across the three experimental sessions,397

the following frequencies (in st, relative to the A and B tones of the triplets) of distractor tones were tested:398

A-2, A, (A+B)/2, B, B+2, B+4, B+8, B+15. Deviant tones involved a change in frequency to the B tone399

of the third triplet. In the one deviant tone condition tested, the B-tone was increased in frequency by 2 st.400
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Appendix406

A Statistical analyses for experimental results407

All statistical analyses presented here utilized the software R54 with the package ez55, which produces repeated measures408

analysis for variance (ANOVA) while handling sphericity tests and appropriate corrections to p-values where necessary56.409

For Experiment 1 the aim was to reproduce a known result, that brief stimulus pauses result in a partial reset towards410

the integrated percept. In test conditions a 300 or 600 ms pause in a ten triplet presentation was inserted after the seventh411

triplet, leaving three test triplets at the end. Reference control conditions (3 or 7 triplets) and the main control condition412

(10 triplets) reveal the behaviour with no pause (10), before the pause (7) and for the test triplets on their own (3).413

Data from all conditions in this experiment are shown in Fig. 5A. A first analysis shows that the build-up is occurring414

for the control conditions, that is, increasing proportion segregated with DF and presentation length. An ANOVA table415

for repeated measures (N = 8, as in all experiments) within-subject factors DF and cond (presentation length) for the416

three control conditions is labelled Experiment 1A in Table 1. In this section the term cond represents the relevant set417

of conditions in each experiment, refer to the headings for each experiment in Table 1. In general, we report significant418

effects at the standard α = 0.05-level and, where a Mauchly Spheriricity test reached significance for the given factor, we419

report the Greenhouse-Geiser corrected p-value pGG. The factors DF, cond and their interaction showed significant effects420

(Exp. 1A Table 1). Next, we compare the relevant control condition with the test conditions (dashed black and red/orange421

curves Fig. 5A). The effect cond for these conditions is tested in Experiment 1B in Table 1; we found a significant effect of422

DF and cond, but not their interaction. The observed reset to integrated for short stimulus pauses is significant.423

In Experiments 2–4 the effect of eight distractor cases and one deviant case were tested across three experiments. Each424

experiment had the same design with control conditions of 3 and 6 triplets and three test conditions (Fig. 5B–D). In each425

figure the relevant comparison is between the main control condition (6 triplets) and the test conditions (color). In general426

the test conditions promote segregation and we report whether these effects were significant for each experiment (Table 1).427

For Experiment 2 there was a significant effect of DF, cond and their interaction. Visual inspection of Fig. 5B suggests428

the significant effect of cond comes from increases in promotion segregated for the disB+2 and devB+2 conditions. For429

Experiment 3 there was a significant effect of DF, but not significant effect for cond or their interaction. Visual inspection430

of Fig. 5B shows that the disB+4 had the largest effect. These data support the notion that distractor tones far from the431

As and Bs have less of an effect than those close to A and B. For Experiment 4 there was a significant effect of DF and432

cond, but not their interaction. Visual inspection of Fig. 5B shows that the disAB condition (distractor at (A+B)/2) had433

the largest effect.434

There was some but not complete overlap in the subjects participating in each Experiments 2–4. We therefore wanted435

to check for consistency in the control conditions across the experiments to ensure making comparisons for test conditions436

across the experiments is relevant (Fig 4F). Table 1 (bottom) shows an ANOVA table including exp (experiment number)437

as a between subjects factor. We found no significant effects for exp, or its interactions with other factors, confirming that438

comparison across these experiments is appropriate.439

One might wish to apply post-hoc tests to further explore the significant effects for the variable cond in the ANOVAs440

reported above. Visual comparison of test conditions (colored curves) with the relevant control condition (dashed black441
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Fig. 5 Experiments 1–4. (A) Pause experiment with three control conditions for fixed-length presentations with indicated
number of triplets (black/grey curves). Control conditions were plotted and compared with the model in Fig. 1E. Test
conditions with pause duration indicated (orange/red). Test conditions plotted with two control conditions in Fig. 2A. (B)
Distractor and deviant experiment with two control conditions with indicated number of triplets (black/grey). One deviant
and two distractor cases were tested (blue/green/purple curves). One deviant and one distractor condition were plotted in
Fig. 2B. (C) As B for additional distractor cases tested in Experiment 3. (D) As B for additional distractor cases tested in
Experiment 4. All distractor conditions from Experiments 2–4 were plotted in Fig. 4F.

curve) for each experiment represented in Fig. 5 shows multiple cases that might be significant if tested in post-hoc442

comparisons. Indeed, for many of the conditions paired t-tests between the control and test conditions do reach significance443

at the p < 0.05 level. However, to rule out the chance of making Type I errors due to multiple comparisons being made (6444

comparisons for Experiment 1, 9 comparisons for Experiments 2–4), it is appropriate to apply a Bonferroni adjustment to445

the significance levels. No conditions reach significance with the conservative Bonferroni adjustments. We note that applying446

a Tukey Honest Significant Differences analysis is not appropriate with our repeated measures experimental design56.447

B Details of the model448

The network structure and neural mechanisms forming the basis of our model were originally motivated in17. In this section
we give a complete description of the model, specifying the exact formulation used in the present study. The firing rate
variables rk are indexed by k = {AB,A,B} for each population shown in Fig. 1A with the associated adaptation ak
and recurrent excitation ek variables (note that the symbol “e” is used exclusively for excitation variables and associated
constants whilst the symbol “exp ()” is used for the exponential function). The system of first order differential equations
is as follows:

τr ṙAB = −rAB + F
(
βeeAB − βi(rAB + rA + rB)− gaAB + IAB + χAB

)
,

τr ṙA = −rA + F
(
βeeA − βi(2rAB + rA + rB)− gaA + IA + χA

)
,

τr ṙB = −rB + F
(
βeeB − βi(2rAB + rA + rB)− gaB + IB + χB

)
,

τaȧAB = −aAB + rAB,

τaȧA = −aA + rA,

τaȧB = −aB + rB,

τeėAB = −eAB + rAB,

τeėA = −eA + rA,

τeėB = −eB + rB,

(2)

with time constants τr = 10 ms (cortical), τa = 1.4 s (spike frequency adaptation), τe = 70 ms (NMDA-excitation). The449

strength of recurrent excitation is given by βe = 0.65, lateral inhibition βi = 0.3 and adaptation g = 0.045. Note that450

the profile of inhibition used here, with non-uniform synaptic weights and independent of DF, was determined after fitting451

the model to behavioural data17. Note that although within-unit inhibition is included, βe > βi, so there is always net452
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Experiment 1A: cond = {3 trip; 7 trip; 10 trip control}
Effect dfn dfd F p [† if GG-corrected] ges

DF 2 14 37.486 0.000 0.571
cond 2 14 19.486 0.001† 0.492
DF:cond 4 28 4.336 0.007 0.094

Experiment 1B: cond = {10 trip control; 300 ms gap; 600 ms gap}
Effect dfn dfd F p [† if GG-corrected] ges

DF 2 14 22.945 0.001† 0.603
cond 2 14 5.126 0.021 0.127
DF:cond 4 28 1.457 0.242 0.021

Experiment 2: cond = {6 trip control; disB+2; disB+15; devB+2}
Effect dfn dfd F p [† if GG-corrected] ges

DF 2 14 19.511 0.000 0.521
cond 3 21 5.796 0.038† 0.203
DF:cond 6 42 2.414 0.043 0.055

Experiment 3: cond = {6 trip control; disB+4; disB+8; disA-2 }
Effect dfn dfd F p [† if GG-corrected] ges

df 2 14 29.461 0.000† 0.624
cond 3 21 2.145 0.125 0.064
df:cond 6 42 0.873 0.523 0.017

Experiment 4: cond = {6 trip control; disB; disAB; disA}
Effect dfn dfd F p [† if GG-corrected] ges

DF 2 14 53.899 0.000 0.604
cond 3 21 5.002 0.035† 0.167
DF:cond 6 42 1.632 0.162 0.029

Experiments 2-4 compare controls: cond = {3 trip; 6 trip control}, exp = {2; 3; 4}
Effect dfn dfd F p [† if GG-corrected] ges

exp 2 18 0.057 0.945 0.003
DF 2 36 49.041 0.001† 0.491
cond 1 18 12.191 0.003 0.067
exp:DF 4 36 0.029 0.998 0.001
exp:cond 2 18 0.018 0.982 0.000
DF:cond 2 36 4.372 0.020 0.016
exp:DF:cond 4 36 0.906 0.471 0.007

Table 1 Analysis of Variance (ANOVA) tables for repeated measures experiments (N=8 subjects) shown in Fig. 5. Columns
are effect degrees of freedom (dfn), error degrees of freedom (dfd), F-value, p-value, generalized eta-squared effect size (ges).
Significant p-values (0.05 significance level) are bold. A star indicates that the Greenhouse-Geiser corrected p-value was used
due to Mauchly’s sphericity test reaching significance at the α = 0.05. In all experiments frequency difference conditions
were DF ={4,7,10}. The first table (Experiment 1A) compares the control conditions of different lengths for Experiment
1 (Fig. 5A). The second (Experiment 1B) compares the main 10 triplet control with the test conditions. Similarly for
Experiments 2–4 comparing the 6 triplet control with the test conditions. The last table compares the 3 and 6 triplet
control conditions across Experiments 2–4. Each experiment had a different set of N=8 subjects but we found no effect for
exp (subject group), i.e. the subject groups gave similar results for the controls. This demonstrates that it is relevant to
compare data from the test conditions in Experiments 2–4, as done in Fig. 4F.

within-unit excitation. The firing rate function F is given by453

F (u) =
1

1 + exp (kF (−u+ θF ))
, (3)

where θF = 0.2 is a threshold parameter and kF = 12 is a slope parameter.454

Additive noise is introduced with independent stochastic processes χA, χB and χAB added to the inputs of each455

population. Input noise is modeled as an Ornstien-Uhlenbeck process:456

χ̇k = −
χk

τd
+ γ

√
2

τX
ξk(t), (4)

where τX = 100 ms (a standard choice19,57) is the timescale, the strength γ equals 0.0875 and ξ(t) is a white noise process457

with zero mean. Note these terms appear inside the firing rate function F such that firing rates rk remain positive and do458

not exceed 1.459
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B.1 Model inputs and early adaptation460

The particular form of the periodic inputs are based on recorded responses from A1 with ABA triplets11. We capture the461

basic form of these responses to tones (TR) with a pair of onset response functions, one with larger amplitude and early462

rise that captures the initial onset and a second with smaller amplitude and late rise that captures the plateau:463

TR(t) = H(t)

[
exp(2)

α2
1

t2 exp

(
−2t

α1

)
+ Λ2

exp (2)

α2
2

t2 exp

(
−2t

α2

)]
, (5)

with plateau amplitude fraction Λ2 < 1 and rise times α1 < α2. The constant terms
exp (2)
α{1,2}

terms normalise the amplitude464

at t = α{1,2} of the individual onset functions to 1. A standard Heaviside function H (step function where H(t) = 0 zero for465

t < 0 and H(t) = 1 for t > 0) ensures no response before an input tone at t = 0. Rise times of α1 = 15 ms and α2 = 82.5 ms466

and an amplitude Λ2 = 1/6 were chosen to approximately match the rise time and relative onset-to-plateau ratio observed467

in11.468

The spread of input is defined via the weighting function469

wp(DF, t) = Q(t)Ip exp

(
−R(t)DF

σp

)
, (6)

where the tonotopic decay constant is σp = 9.7 st, the input amplitude is Ip = 0.6, R(t) represents effective DF adaptation470

(increasing with time) and Q(t) represents amplitude adaptation (decreasing with time). These are the two components of471

the early fast-adaptation in A1 sharing a common timescale τA1 = 500 ms. The tonotopic spread of inputs in A1 evolves472

with time according to473

R(t) = 1− (1− p) exp(−t/τA1), (7)

where the initial DF fraction is p = 0.1 (R(t) rises from 0.1 to 1; effective DF rises from 0.1DF to DF). The input amplitude474

evolves according to475

Q(t) = 1 +m exp(−t/τA1), (8)

where the 1 +m (m = 2.5) is the initial input amplitude factor (Q(t) decays exponentially from 3.5 to 1; input amplitude476

decays from 3.5Ip to Ip).477

In order to specify the amount of input received by each unit, IAB, IA and IB, in (2), we first construct sequences of
tone responses TRA(t) (A A . . . ) and TRB(t) ( B . . . ) where the tones and silences (“ ”) each have a duration of 100 ms.
Inputs for a repeating ABA . . . sequence are given by

IAB(t) = w(DF/2, t)(TRA(t) + TRB(t)),

IA(t) = w(0, t)TRA(t) + w(DF, t)TRB(t), (9)

IB(t) = w(DF, t)TRA(t) + w(0, t)TRB(t),

and plotted in Fig 1B. Respectively, equations (7) and (8) describe the early adaptation on the timescale τA1 of the478

effective DF and the amplitude of responses in A1; see Fig 1B “Early adaption”. After this initial adaptation during ∼ 3479

triplets, w(DF, tlate) = Ip exp(−DF/σp) is independent of time; see Fig 1B “Static inputs”. After a stimulus pause, both480

components recover on a timescale τrec = 100 ms. The amplitude component can recover completely (8) and the tonotopic481

spread partially recovers (p = 0.325 in (7), rather than 0.1); see Fig 3A.482

We now specify how the formulation of the model in the present study relates to the one in17. In our previous study483

a slow synaptic depression on the recurrent excitation was introduced, but here we assume this does not play a role in the484

build up phase, i.e. we use static excitation (denoted efix in17). To maintain a match to our experimental data under this485

assumption g, βe, γ and Ip were adjusted relative to the values used in17. In the present study we use global, rather than486

DF-dependent, inhibition (denoted igbl in17), see our previous paper for further discussion on this point. The input terms487

in (2) given by IAB, IA, IB refer to the input to the competition stage, which may be different to the A1 responses, e.g.488

particular when inputs from distractor tones are gated out; see Fig 4A.489

B.2 Inputs from distractor and deviant tones, simple implementation of SSA490

For a distractor tone at tonotopic location d, or a deviant tone at tonotopic location D, the amplitude response in A1 can491

be computed in terms of the frequency difference DFd (or DFD) between d (or D) and the tonotopic locations A, (A+B)/2492

and B. The weighting function for a distractor (similarly for a deviant) is given by493

wd(DFd, t) = IdQ(t) exp

(
−DFd

σd

)
, (10)

where, the amplitude adapts through Q(t) and the tonotopic spread is assumed broad σd = 2.7σp (for example when
above or below the A and B tones). In the presence of the ABA triplets, the A location is hit by more tones and, if
a distractor immediately follows at A, it will be significantly adapted due to stimulus specific adaptation (SSA)24,25 in
A1. As such, a relatively smaller response is assumed at the A location (factor 0.5 in (11)). This ad hoc, straightforward
implementation of SSA is illustrated in Fig. 6B. We provide a more general implementation of SSA below. We now let
TRd(t) (. . . d . . . ) represent an impulse (5) at the specific time of the additional distractor tone. A distractor tone,
as a salient new event, is assumed boosted (Id = 2.8Ip) when it is it integrated as input to the competition stage (see Fig
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Fig. 6 Amplitude of A1 responses for distractor tones at different locations relative to A and B tones. (A) Tonotopic
tuning of responses to tones in A1 at locations A-2, (A+B)/2 and B+2 without SSA (e.g. responses to isolated tones with
no prior input). With no SSA, the tuned response is translated horizontally depending on the location of the tone. (B)
Representative tuning curves with SSA only at the A location. (C) Tuning curves with general SSA model. More tones
arrive at the A location and it will be more adapted than the B location. The profile of adaptation is shown for tones
below (dashed blue), between (dashed yellow) or above (dashed green) the A and B tones. Solid curves show the tonotopic
tuning of responses for tones at different location (legend in A); these are computed by multiplying the tuning curves in
panel A with the adaptation profiles (dashed curves) in B. (D) As Fig 4E with general SSA model rather than SSA only
at A location. Shows change in proportion segregated as a function of distractor location relative to A and B tones. Note
x-axis does not have fixed spacing and distance between A and B changes with DF. Apart than the SSA model, the same
assumptions are used (boost of inputs to A-unit and B-unit, no input to AB-unit (Fig 4A).

3D, where the distractor tone d gives larger amplitude input to the competition stage than preceding tones). For, say, a
distractor tone at tonotopic location B+2 the modified inputs would be

ÎAB(t) = IAB(t) + wd(DF/2 + 2)TRd(t),

ÎA(t) = IA(t) + 0.5wd(DF + 2)TRd(t), (11)

ÎB(t) = IB(t) + wd(2)TRd(t),

see Fig. 3D. For a deviant tone D we use the same rules (wD(DFD, t) = wd(DFd, t)), but the impulse TRD(t) (. . . D . . . )494

would replace a B tone in TRB(t). Incorporating the assumption illustrated in Fig 4A, that distractor tone responses in A1495

do not propagate to the integrated unit, ÎAB(t) = IAB(t) in (11); see Fig. 4B.496

B.3 General model for stimulus specific adaptation in A1497

Here we provide a more general description of how neuronal responses in A1 depend on the tonotopic location of a new tone498

subject due to SSA from preceding tones. Our implementation of SSA is based primarily on feedforward effects. In SSA a499

location that has received a sustained input will be adapted in response to further input at the same tonotopic location,500

with a bandwidth of around 3–4 st in A124,25. We provide a plausible, general implementation of SSA in our model, that501

could describe A1 responses and be used to determine the inputs from distractor tones to the model’s competition stage.502

Then general schema described below for computing the relative amplitude of responses to new tones, additional to the503

ABA triplets yields very similar results to the ad hoc description above, compare Fig 4E with Fig. 6D.504

The general principal is to determine how the tuning curve for a new tone might be modified, based on previous inputs505

from the regular triplet tones. Example tuning curves for new tones (shown unadapted in Fig. 6A), are modified by the506

adaptation profiles (dashed curves in Fig. 6B), dependent on the relative location of the new tone to preceding inputs. The507

adaptation profiles show the most adaptation close to the A tones (fast repetition rate), and less adaptation close to the B508

tones (slow repetition rate). For a new tone below A, the tuning curves (blue solid curve in Fig. 6B) is carved out on the509

right hand side. For a new tone above B, the tuning curves (green solid curve in Fig. 6B) is carved out on the left hand510

side. For a tone in between the tuning curve is carved out on either side (yellow solid curve in Fig. 6B). Below we give a511

more complete, mathematical description of how the modified tuning curves are calculated.512
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In this more general formulation, functions will be defined in terms of a tonotopic coordinate y, rather than in terms of513

a frequency difference DFd, as used above in (10). In the absence of any prior input, an isolated tone will elicit a response in514

A1, largest at the tonotopic location of the tone, and decaying on either side (Fig. 6A). In17, the tuning of these responses515

was assumed to have a symmetric exponential decay and, for a tone at a location N, this can be described by516

TC(y,N) = exp

(
−|y −N |

σtc

)
, (12)

where σtc = 4σp is broad relative to the post-adaptation tuning width for the A and B tones in (6). In the presence of517

repeating ABA triplets that precede a new tone, the tuned responses will depend on the location of the new tone relative518

to the As or the Bs. In general, if a series of tones has been arriving at a specific tonotopic location L (either A or B) then519

the tuning curve of any subsequent tones will be altered. For a new tone N+ above L the left side of its tuning curve will520

be reduced. For a new tone N− below L the right side of its tuning curve will be reduced. The following equation describes521

the Gaussian adaptation profile AP around the L location522

AP+(y, L) =

{
1− cL exp

(
−(y−L)2

2(BW/2)2

)
, y < L

1− cL, y ≥ L,
(13)

where BW = 4 is the bandwidth of adaptation and cL is the amplitude of adaptation, which will be larger when, for example,523

the preceding sequence of L tones has a higher repetition rate. Equation 13 is 1 for y � L, decreases with Gaussian decay524

to 1− cL as y approaches L from below and is 1− cL for y ≥ L. We similarly define AP for a tone below L525

AP−(y, L) =

{
1− cL, y ≤ L
1− cL exp

(
−(y−L)2

2(BW/2)2

)
y > L.

(14)

In this way the modified tuning curve T̂C for a tone N+ above L is given by multiplying the tuning curve with the526

appropriate adaptation profile527

T̂C(y,N+, L) = TC(y,N+)AP+(y, L), (15)

and for a tone N− below L is similarly given by528

T̂C(y,N−, L) = TC(y,N−)AP−(y, L). (16)

If a tuning curve will be modulated by two sequences of tones L1 and L2, an additional argument in (15) or (16) can signify529

further modulation of the tuning curve by a second adaptation profile, e.g. T̂C(y,N−, L1, L2) = TC(y,N−)AP−(y, L1)AP−(y, L2).530

These functions can now be used to work out the tuning curves for responses to deviant tones d, relative to the locations531

of the A and B tones featured in the ABA triplet sequence. Assuming significantly more adaptation at the A location532

due to the higher repetition rate, we set the adaptation strengths associated respectively with the A and B locations to be533

cA = 0.5 and cB = 0.125. The adaptation profile for a tone below A (which is also below B) will be534

APA−(y,A,B) = AP−(y,A)AP−(y,B), (17)

and is plotted dashed blue in Fig. 6B. For a tone between A and B (above A and below B), we have535

APAB(y,A,B) = AP+(y,A)AP−(y,B), (18)

plotted dashed yellow in Fig. 6B. For a tone above B (also above A), we have536

APB+(y,A,B) = AP+(y,B)AP+(y,A), (19)

plotted dashed green in Fig. 6B. For example, the tuning curve for a new tone (e.g. distractor tone) arriving at a location537

A-2 (Fig. 6B solid blue) is given by538

T̂CA−(y,A− 2, A,B) = TC(y,A− 2)APA−(y,A,B), (20)

at a location (A+B)/2 (Fig. 6B solid yellow) is given by539

T̂CAB(y, (A+B)/2, A,B) = TC(y, (A+B)/2)APAB(y,A,B), (21)

and at a location B+2 (Fig. 6B solid green) is given by540

T̂CB+(y,B + 2, A,B) = TC(y,B + 2)/2)APB+(y,A,B). (22)

To summarise, for T̂C, the first argument is tonotopic location, the second argument the location of a new tone. The
subscript A−, AB or B+ indicates whether the new tone is below, between, or above the A and B tones. The third and
fourth arguments are the adapted locations for preceding tones (here A and B from the ABA triplets). Having defined the
relative amplitude across tonotopy in A1, we now describe the final steps to determine the inputs to the model’s competition
stage. Similar to (11), the inputs for, say, a distractor tone d above B

ÎAB(t) = IAB(t) + IssaQ(t)T̂CB+((A+B)/2, d, A,B),

ÎA(t) = IA(t) + IssaQ(t)T̂CB+(A, d,A,B), (23)

ÎB(t) = IB(t) + IssaQ(t)T̂CB+(B, d,A,B),

where Q(t) describes early onset adaptation and Issa = 3Ip is the boosted amplitude for a salient new tone. Again, if we541

were to incorporate the assumption illustrated in Fig 4A, that no input from a distractor tone reaches in AB-unit, we set542

ÎAB(t) = IAB(t). Fig. 6D shows the effect on proportion segregated of distractor tones at different tonotopic locations with543

the general model for SSA presented here. The general model for SSA captures the same features as show in Fig. 4E, also544

based on the same assumptions illustrated in Fig. 4A, but with a different implementation of SSA.545
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