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ON p-ADIC DIFFERENTIAL EQUATIONS ON SEMISTABLE
VARIETIES

Valentina Di Proietto

ABSTRACT - In this paper we prove a comparison theorem between the category of certain modules with
integrable connection on the complement of a normal crossing divisor of the generic fiber of a proper semistable
variety over a DVR and the category of certain log overconvergent isocystrals on the special fiber of the same open.

1 Introduction

The “théoréme d’algébrisation” by Christol and Mebkhout (théoréme 5.0-10 of [CtMelV]) asserts that on a
open of a smooth and proper curve all the overconvergent isocrystals (with some non-Liouville conditions)
are algebraic. The aim of this paper is to give a generalized version of this result to the case of a variety of
arbitrary dimension that is the special fiber of a semistable variety.

We first recall the “théoreme d’algébrisation” and explain in which sense our result generalizes it. Let V
be a complete discrete valuation ring of mixed characteristic (0, p) with uniformizer 7, let K be its fraction
field and let k£ be the residue field. Christol and Mebkhout consider a proper and smooth curve X over V
and an affine open U with complement D. They define a functor

t: MICLS(Ug /K) — I'((Ux, X&) /Spf(V)) (1)

where the first category is the category of algebraic modules with connection on Uy which satisfy certain
convergent conditions and the second is the category of overconvergent isocrystals as defined by Berthelot
in [Be].

They prove that under some non-Liouville conditions the functor { is essentially surjective, i. e. every
overconvergent isocrystal is algebraic. Moreover they notice that, always assuming non-Liouville conditions,
1 is fully faithful if one restricts to the category of algebraic modules with connection on Uk with some
convergent conditions that are extendable to module with connections on Xg and logarithmic singularities
along Dy . The image of this restricted functor turns out to be the category of overconvergent isocrystals
with slope zero (probleme 5.0-14 1) of [CtMelV] and paragraph 6 of ).

We are interested in the following generalized situation.

Let X be a proper semistable variety over Spec(V'), which means that locally for the étale topology is étale
over SpecV[Z1,...,Zn,Y1,.-.,Yn]/(x1- -z, — ), with D a normal crossing divisor, which étale locally is
given by the equation {y;---ys = 0}. The divisor X} U D induces on X a logarithmic structure that we
denote by M; similarly, the closed point induces a logarithmic structure on Spec(V') that we denote by N.
We assume we have the following diagram of fine log schemes

(Xpy M) ——— (X, M) =— (X, M) (2)
(Spec(k), N) —— (Spec(V), N) <—— (Spec(K), N)

where the two squares are cartesian. The log structures denoted again by M on the special fiber X and by
N on k are defined in such a way that the closed immersions of fine log schemes (X, M) < (X, M) and
(Spec(k), N) < (Spec(V), N) are exact. In an analogous way the log structures on X and on K are defined
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in such a way that the open immersions (Xg, M) — (X, M) and (Spec(K), N) < (Spec(V'), N) are strict.
Let us note that the log structure on K constructed in this way is isomorphic to the trivial log structure.
We consider on X the open U defined as the complement of the divisor D; then there is an open immersion

j:U=X\D< X

and it induces on U the log structure j*(M) that, by abuse of notation, we again denote by M.
So we have a diagram analogous to for U, with the same notations for the log structures:

(U, M) ——— (U,M) <— (Ux, M)

| l |

(Spec(k), N) —— (Spec(V), N) <—— (Spec(K), N)

In this situation we consider the category, denoted by MIC(Uk /K)", of pairs (E,V) where E is a sheaf
of coherent Oy, -modules and V is an integrable connection regular along Dg.

As for the rigid side we look at IT((Uyg, X1)/Spf(V))!°9*, the category of overconvergent log isocrystals on
the log pair given by ((Ux, M), (X, M)/(Spf(V), N)) with Y-unipotent monodromy along Dy, where ¥ is
a subset of ZZ, satisfying some non-Liouville hypothesis and h is the number of the irreducible component
of Dy. A log overconvergent isocrystal is represented by a module with connection on a strict neighborhood
W of the tube |Ui[¢ in the tube | X[¢. To define X-unipotent monodromy we proceed étale locally and we
fix an irreducible component D5, of Dy, the smooth locus of Dy; then the part of the tube | D5, [ which is
contained in W is isomorphic to a product of an annulus of small width times certain rigid space associate
to D7, that we think as a base. A log overconvergent isocrystal & has X-unipotent monodromy along D7 ,
if &£, restricted to the product described above, admits a filtration such that every successive quotient is
the pullback of a module with connection on the base twisted by a module with connection on the annulus
depending on 3. We say that £ has ¥-unipotent monodromy along Dy, if the above condition holds for every
irreducible component of Dy. The category of overconvergent log isocrystals is defined by Shiho in [Sh4]
as a log version of the category of overconvergent isocrystals defined by Berthelot in [Be| and the notion
of ¥-unipotent monodromy is introduced by Shiho in [Sh6] as a generalization of the notion of unipotent
monodromy introduced by Kedlaya in [Ke]. Let us note that the notion of X-unipotent monodromy for a
module with connection on an annulus, with ¥ satisfying some non-Liouville conditions, coincides with the
notion of satisfying the Robba condition and having exponent in the sense of Christol and Mebkhout in X
(proposition 1.18 of [ShT]).

Our main result is:

Theorem 1.1. There is a natural algebrization functor
I'(Ug, X3)/Spf (V)92 — MIC(Ug /K)™9.
It is a fully faithful functor.

Let us note that our functor goes in the opposite direction with respect to Christol and Mebkhout’s
functor f.

The strategy of our proof is as follows.
We denote by Ieony((Xg, M)/(Spf(V), N))/* the category of locally free log convergent isocrystals on
the log convergent site ((Xy, M)/(Spf(V), N))cony With exponents in 3. The category of log convergent
isocrystals is defined by Shiho in [Shi], as a log version of the category of convergent isocrystal defined
by Ogus in [Og] and by Berthelot in [Be]. We consider the category of log overconvergent isocrystals on
((Ug, M), (Xg, M)/(Spf(V), N)) with X-unipotent monodromy and we prove that the restriction functor

5 Leomo (X, M)/(SPE(V), N))® — IH(Uh, Xi) SpE(V))1 0> 3)



is an equivalence of categories.

The equivalence of categories in is a generalization of theorem 3.16 of [Sh6], since Shiho proves the same
result in the case of X smooth and Dy a divisor with simple normal crossing, i. e. its components are
regular and meet transversally.

On the other hand we have a fully faithful functor

g : Iconv((ka M)/(Spf(V), N))lf’z — MIO((XK, ]\4)/]()”"2

between locally free log convergent isocrystals with exponents in ¥ and locally free Ox,-modules with
integrable connection on X, logarithmic singularities on Dg and exponents in 3. The theorem of algebraic
logarithmic extension of [AnBa] 1,4 gives us a fully faithful functor

MIC((Xg, Mp)/K)¥* — MIC(Uk/K)™. (4)

If we denote by MICLS(Ug /K)"9> the essential image of the functor i in MIC (U /K)"9, we can conclude
that we have an equivalence of categories

1T (Ug, X3) /SpE(V))!99E — MICLS(Ug [ K)"9%.

Let us now describe in detail the contents of the paper.

In the first paragraphs we suppose that (X, M) — (Spec(V'), N) is a general log smooth morphism of fine log
schemes (not necessarily semistable), with X proper and X}, reduced. We denote by (X, M) — (Spf(V), N)
the associated morphism of the p-adic completions. We recall the definition of modules with integrable log
connection on a fine log scheme, i.e. the category MIC((Xk,M)/K), the definition of log infinitesimal
isocrystals, the category I, (X, M)/(Spf(V), N)), and the definition of log convergent isocrystals, the
category Iony((Xg, M)/(Spf(V),N)). Using the fact that X is proper Shiho (Theorem 3.15, Corollary
3.2.16 of [Shi]) shows that MIC((Xx,M)/K) is equivalent to the category Iin (X%, M)/(Spf(V), N)) of
log infinitesimal isocrystals . We prove that the property of being locally free is stable with respect to this
equivalence of categories (propositions and , so that we have an equivalence of categories between
Ling ((Xi, M) /(Spf(V), N))Y and MIC((Xg,M)/K)Y. We use the definition of log convergent site and
isocrystals on it given by Shiho in chapter 5 of [Shi] and the functor

P : Iconv(Xk7 M)/(Spf(V)7N)) — Ilnf((X7 M)/(Spf(V), N))7

that he defines between log convergent isocrystals and log infinitesimal isocrystal. We adapt the proof of
proposition 5.2.9 of [ShI] to show that

< Leono (Xi, M)/(SpE(V), N))Y — Ling (X, M) /(SPE(V), N))Y

=~ MIC i ®)
= (Xx, M)/K)

is fully faithful (theorem . Shiho proves full faithfulness on the subcategory of log convergent isocrystals
that are iterated extensions of the unit object. As in Shiho’s proof, the key tool used is locally freeness.
Finally, we give a characterization of the essential image of the functor ® in terms of special stratifications,
a suitable modification of the special stratifications introduced by Shiho in [Shi]. We conclude by proving
that requiring a stratification to be special is the same as requiring that the radius of convergence of the
stratification is 1. In this last part we do not use log differential calculus, because we prove that we can
restrict to the case of trivial log structures (proposition .

Then we restrict to the semistable situation: we suppose that the morphism (X, M) — (Spec(V), N) is as
before . After describing the geometric situation, we introduce the definition of log convergent isocrystals
with exponents in ¥, using log-V-modules defined by Kedlaya in [Ke] and used by Shiho in [Sh6]. We first
define the notion of exponents in ¥ étale locally using coordinates, then we prove that it is independent on
the particular étale cover chosen and on the choice of the coordinates (lemma . After that, following
Shiho, we recall the notion of Y-unipotence for a log-V-module defined over a product of a rigid analytic



space and a polyannulus and also the extension theorem for ¥-unipotent log-V-modules. Then we analyze
log overconvergent isocrystals. Our setting is different from Shiho’s ([Shd]), since in our case the base
has a non-trivial log structure. To define a log overconvergent isocrystal with X-unipotent monodromy
we proceed étale locally. Then we recall the three key propositions that we use in the proof of the main
theorem. The first property is called “generization of monodromy” and asserts that the property of being
Y-unipotent is generic on the base in some sense that we make precise (proposition . The second
property, called “overconvergent generization”, says that the property of being Y-unipotent can be extended
on strict neighborhoods (proposition . The third one says that under certain conditions a convergent
log-V-module with exponents in ¥ is S-unipotent (proposition [I1.4). The proofs of these propositions are
given in [Sh6] as a generalization of the one contained in [Ke|. Using these properties we prove that the
notion of ¥-unipotent monodromy for an overconvergent isocrystal is well posed (lemma [12.1). Finally we
prove (theorem that the restriction functor

G+ Teono (X, M)/ (SpE(V), N) — IT((U, Xi) /SpE(V)) "9

is an equivalence of categories. The strategy of the proof is the same as in theorem 3.16 of [Sh6] and theorem
6.4.5 of [Ke].
In the last part we verify that the notion of exponents in ¥ behaves well with respect to the functor i, 4. e.
the functor

Leon (X M) /(SE(V), NS —5 MIC((Xic, Mp)/K)™

is well defined. Finally we adapt André and Baldassarri’s theorem of algebraic logarithmic extension to find
theorem [L11

2 Connections with logarithmic poles

We will recall the definition of log connection on a fine log scheme or on a p-adic fine log formal scheme,
which is taken from [Shl] definition 3.1.1; see also [Kz| paragraph 4.

We suppose the reader familiar with the language of log schemes introduced in [Ka] and with his version for
formal schemes given in [Shl] chapter 2.

We denote by V' a discrete valuation ring of mixed characteristic (0, p), complete and separated for the p-adic
topology, m a uniformizer of V| K its fraction field and k its residue field. By a formal scheme over Spf(V)
or a formal V-scheme, we mean a p-adic Noetherian and topologically of finite type formal scheme over V.
According to Shiho’s notation we will give the following definition.

Definition 2.1. If X is a scheme, we denote the category of coherent Ox-modules by Coh(Ox). If X is
formal V -scheme we denote by Coh(K®Ox) the category of sheaves of K @y Ox -modules that are isomorphic
to K @y F for some coherent Ox-module F. We will call an object of Coh(K ® Ox) an isocoherent sheaf.

The category of isocoherent sheaves is introduced in [Og] and (see [Og] remark 1.5) is equivalent to the
category of coherent sheaves on X" the rigid analytic space associated to the p-adic formal scheme X via
Raynaud generic fiber.

Definition 2.2. Let f : (X, M) — (S,N) be a map of fine log schemes (resp. fine log formal V-schemes)
and let E be a coherent Ox -module (resp. E € Coh(K @ Ox)). A log connection on E is an Og-linear map

V:E— E®w(1X,M)/(S,N)
that is additive and satisfies the Leibniz rule:

V(ae) =aV(e) +e®da



fora e Ox ande € E.
Here "J(lx,M)/(S,N) denotes the sheaf of log differentials (resp. the sheaf of log formal differentials).
We can extend V to V;

i V; i+1
E@wix . (s,n) — Wk (s
where Vi(e @ w) = e ® dw + (=1)'V(e) Aw. We say that V is integrable if V11 0V; =0 for all i.
We indicate the category of pairs (E, V) of a coherent sheaf E (resp. an isocoherent sheaf) and an integrable

log connection V with MIC((X,M)/(S,N)) (resp. MI\C’((X,M)/(S, N))). If M and N are isomorphic to
the trivial log structures we will write M = triv and N = triv and we use the notation MIC(X/S) (resp.

MIC(X/S)) to denote MIC((X, triv)/(S, triv)) (resp. MIC((X, triv)/(S, triv))).
From proposition 8.9 of [Kz] we know that in the smooth case in characteristic zero every coherent module
with integrable connection is locally free; more precisely we have the following result.

Proposition 2.3. If S is the spectrum of a field of characteristic 0 and X is a smooth scheme over S, then,
for every object (E,V) in MIC(X/S), E is a locally free Ox-module.

This proposition is not true if one admits log-connections; in fact, there is the following example.

Example 2.4. Let X be a curve over K and D a closed point, locally defined by the equation {t = 0}. If
we call Mp the log structure on X induced by D we can consider the following log connection

d: Ox = Wx Mp) /(K triv)-

If we consider the subsheaf Ox,. (—D), that consists of sections vanishing on D, then d induces a log con-
nection on Ox, (—D). We can see it locally: every section of Ox, (—D) can be written as a product of ft,
with f in Ox, . The induced log connection is:

Oxx(=D) = Ox, (-D)® w(lX,MD)/(K,triv)
ft—=d(ft) = fdt + tdf = ftdlogt + tdf
We can induce an integrable log connection on the quotient Ox, /Ox,(—D) = Op which is a skyscraper

sheaf.

As in the case where the log structures are trivial (see for example [BeOg] chapter 1), the category of
modules with integrable log connections is equivalent to the category of log stratifications: we now describe
this equivalence.

If (X,M) — (S,N) is a morphism of fine log schemes (resp. a morphism of fine log formal schemes), we
denote by (X™, M™) the n-th log infinitesimal neighborhood of (X, M) in (X, M) x g ny (X, M)(defined in
[Ka] (5.8), [Shl] remark 3.2.4 as a log version of the n-th infinitesimal neighborhood described in [BeOg]
chapter 1).

Definition 2.5. Let (X, M) — (S, N) be a morphism of fine log schemes (resp. of fine log formal V -schemes)
and let E be a coherent sheaf (reps. an isocoherent sheaf on X ). Then, a log stratification (resp. a formal
log stratification) on E is a family of morphisms €, : Oxn @ E — E ® Oxn, that satisfy the conditions:

(i) €n is Oxn-linear and €y is the identity;
(i) €, and €., are compatible via the maps
Oxn — Oxm, form < mn;
(i11) (cocycle condition) if we call p; ; (fori,j =1,2,3) the projections from the n-th log infinitesimal neigh-

borhood (X" (2), M(2)") of (X, M) in (X, M) x(g,n) (X, M) x(g,n) (X, M) to the n-th log infinitesimal
neighborhood (X", M™) of (X, M) in (X, M) xg,ny (X, M)

pij : (X"(2), M"(2)) = (X", M"),

then for all n
p?2(€n) Op§’3(6n) = pﬂlﬂ,:s(en)'



We denote by Str((X,M)/(S,N)) the category of log stratifications (resp. with @((X, M)/(S,N)) the
category of log formal stratifications).

Theorem 3.2.15 of [Shi] gives us the equivalence of categories that we announced: if (X, M) — (S, N)
is log smooth morphism of fine log schemes over Q (resp. a formally smooth morphism of fine log formal
V-schemes), then

Str((X, M)/(S,N)) = MIC((X,M)/(S,N))

(vesp. Str((X, M)/(S,N)) = MIC((X, M)/(S,N))).

3 Log infinitesimal isocrystals

We now define the infinitesimal site and log isocrystals on it. These are Shiho’s log formal analogous of
Grothendieck’s infinitesimal site and crystals on it defined in [Gr] or [BeOg] chapter 1. All the definitions
that follow are taken from chapter 3 of [Shi]. We define the infinitesimal site only in the case of a morphism
of fine log formal schemes, but analogous definition can be given for a morphism of log schemes.

Definition 3.1. Let (2°,M) — (., N) be a morphism of fine log formal V -schemes. An object of the log
infinitesimal site (£, M)/(.%,N))iny, or by brevity (%/Y)iff; when the log structures are clear, is a 4-ple
(%, T,L,¢) such that % is a formal V -scheme formally étale over 2", (7, L) is a fine log formal V -scheme
over (Z,N) and ¢ : (%, M) — (7, L) is a nilpotent exact closed immersion of log formal V -schemes over
(#,N). A morphism between (%, ,L,$) and (%', 7', L', ¢") is pair of maps g : (7,L) — (Z',L") and
U — U such that ¢' o f = go p. The coverings in this site are the coverings of 7 for the étale topology
{T; — T}, such that U = T; X 7 % . We sometimes denote the 4-ple (%, T, L, ¢) simply by 7.

Definition 3.2. A log isocrystal on the infinitesimal site (%/Y)ifgc, or a log infinitesimal isocrystal, is a
sheaf £ on (%/Y)ng such that:

(i) for every object (%, ,L,¢) the Zariski sheaf E induced on T is an isocoherent sheaf;

(ii) for every morphism g : T — ', the map g*(Ez/) — E7 is an isomorphism.
We denote the category of log isocrystals on the infinitesimal site (%/Y)izgf by Ling (2 )S)09.

Definition 3.3. Let 2 be a formal V-scheme and let F be an isocoherent sheaf. We say that it is locally
free module if there is a formal affine covering {U;}icr of 2 such that for every U; = SpfA;, there exists a
finitely generated A;-module F; such that F(U;) = K ® F; is a projective K ® A;-module.

Definition 3.4. A log isocrystal £ on the infinitesimal site (%/ﬂ)iff? is said to be locally free if for every

object (% , 7, L, p) of the infinitesimal site, the sheaf E induced on T is an isocoherent locally free module.
We will denote the subcategory of Iinf(%/Y)log consisting of the locally free infinitesimal log isocrystal by
Ling (X )S)leots

Thanks to theorem 3.2.15 of [Sh1] we can see that if (27, M) — (., N) is a formally log smooth morphism
of fine log formal V-schemes, then there exists a canonical equivalence of categories

Lng (2, M)/(#,N)) = MIC((2",M)/(#, N))

4 Log convergent isocrystals

In this section we define the log convergent site and the isocrystals on it. The following definitions are taken
from [Shi] paragraph 5.1.

Definition 4.1. For every log formal V-scheme (%, M) we indicate with %, the closed subscheme defined
by the ideal p and the associated reduced subscheme of %1 by %.



Definition 4.2. Let (Z',M) — (<, N) be a morphism of fine log formal V-schemes. An enlargement of
(2, M) over (Z,N) is a triple (7,L,z), that we will indicated with 7, such that (7,L) is a fine log
formal V -scheme over (%, N) and z is a morphism (Jp, L) — (2, M) over (#,N). A morphism between
two enlargements (7, L, z) and (F',L',2") is a morphism g : (Z,L) — (J', L") such that z = 2’ o gg, where
g0 : (%, L) = (TG, L) is the map induced by g.

Definition 4.3. We define the log convergent site of (Z',M) — (7, N) to be the site whose objects are
enlargements, morphisms are morphisms of enlargements and coverings are given by the étale topology on
T . We denote it by (2, M)/(.%, N))econw or (2 ).F)29. if there is no ambiguity about the log structures.

conv

Definition 4.4. A log isocrystal on (2 /.7)'%9,., or a log convergent isocrystal, is a sheaf & on (X /)9,
such that:

(i) for every enlargement (7, L, z) the Zariski sheaf £z induced on J is an isocoherent sheaf;
(i) for every morphism of enlargements g : (Z,L) — (', L), the map g*(E5+) — E is an isomorphism.
We denote by Ieony (2 /7)1 the category of log isocrystals on the log convergent site.

Definition 4.5. A log isocrystal € on the convergent site (£, M)/(,N))conv s locally free if for every
object T on the convergent site the sheaf £ induced on T is an isocoherent locally free sheaf.

We denote the subcategory of Ion, (2 ).7)9 consisting of the locally free log isocrystals on the convergent
site by Ieony (2.7 )09

5 Relations between algebraic and analytic modules with inte-
grable connections

In what follows we consider the following situation: we fix (X, M) — (Spec(V), N) a log smooth and proper
morphism of fine log schemes. We denote by (Xg, M) — (Spec(K), N) its generic fiber and (Xy, M) —
(Spec(k), N) its special fiber, that we suppose to be reduced. So we have a commutative diagram

(XIWM)(—> (XvM) (—)(XK>M) (6)

| | l

(Spec(k), N) —— (Spec(V), N) <—— (Spec(K), N)

The log structures on X and Spec(k), that with an abuse of notation we again call M and N, are defined
in such a way that the inclusions in (X, M) and (Spec(V'), N) in this diagram are exact closed immersions
of log schemes.

In the same way we define the log structures M on X and N on Spec(K) as the log structures defined in
such a way that the inclusions to (X, M) and (Spec(V'), N) are strict.

We consider the p-adic completion of (X, M) — (Spec(V), N) and we call it (X, M) — (Spf(V), N). With
(X, M) we mean X = (Xp, l'gl(QX/p"OX) with the log structure, that we call again M with an abuse of
notation, defined as the pull back of M via the canonical morphism X 5 X.

Another way to see this is [ChFo] Definition-Lemma 0.9, where the authors prove that the log structure
M over X is isomorphic to Linn(M)" with (M), the log structure on X,, = (X, Ox/p"Ox) that is the
pull-back of M via the morphism X, = X.

Now we want to construct a fully faithful functor

i Lon (X, M)/(SPE(V), N))Y — MIC((Xyc, M)/ (K. N))Y.

In corollary 3.2.16 of [Shi] we have a useful characterization of algebraic modules with integrable log con-
nection: the following result holds.



Proposition 5.1. Under the above assumptions, there is an equivalence of categories
s MIC((Xic, M)/(Spec(K), N)) — Ling (X, M)/(SPE(V), N)).

As we saw in example it is not true that every coherent module with integrable connection is locally
free, so we will restrict to the category that we call

MIC((Xx,M)/(K,N))4,

that consists of pairs (E, V) where V is an integrable log connection and E a locally free Ox, -module.
In the next two propositions we will see that the functor ¥ of proposition [5.1] induces an equivalence of

categories
: MIC((Xge, M)/(K,N)Y — Lip ¢ (X, M) /(Spf(V), N)Y.

Proposition 5.2. For every element € = (E,V) in MIC((Xx, M)/(K,N))", the corresponding element
U(E) € Lins((X,M)/(Spf(V),N)) is a log infinitesimal locally free isocrystal .

Proof. For the proof we look carefully at the definition of the functor ¥. The functor is defined as the
composition of three functors each one being an equivalence of category. The first functor ¥y is the one that
gives the equivalence of category between MIC((Xk,M)/(K, N)) and the category of log stratifications. So
given £ = (E, V), with F a locally free Ox,-module, ¥;(€) is again the Ox, -module E with a collection
of isomorphisms €, : Oxp. ® E — E ® Oxp, where (X7, M™) is the n-th log infinitesimal neighborhood of
(X, M) in (X, M) x (x n) (XK, M), that satisfies the conditions of deﬁnition By lemma 3.2.7 of [Shi]
we know that all the OX;L( are free Ox, -modules, so F ® (’)X?( are locally free Ox, -modules.

Now, thanks to example 1.4 of [Og|, that uses a formal version of GAGA principle, we know that the
category of coherent Ox,-modules on X is equivalent to the category of isocoherent modules on X. So we
can associate to our E an isocoherent sheaf E, that we now show to be locally free. The functor that gives
this equivalence is defined locally by extension of scalars: if we suppose that X = Spec(B) then the functor
is

E— F ®Br BK

where B = B®y K and By = @n B/p™ @ K. If E is locally free as coherent Ox,-module, then E is
a projective-Bx module. This implies that E ®@p, Bg is a projective Bg-module too. Indeed, since E is
projective, there exists a Bx-module F such that E @ F is a free Bx-module. Then (E @ F) ®p,. BK is a
free BK—module, which implies that E ®p, BK is a projective B -module.

Moreover if we indicate with (X™, M™) and (X7, M™) the n-th log infinitesimal neighborhoods of the diagonal
morphisms (X, M) — (X, M) xsprv),n) (X, M) and (Xx, M) — (X, M) % (5, ny (X5, M) respectively,
then we have an equivalence of categories also between Coh(Oxr ) and Coh(K ® Ox..) ([Og| (1.4).)

This means that we have a functor U5 from Str((Xg, M)/K) to @((X, M)/(Spf(V),N)). Moreover ¥s is
an equivalence of categories which sends locally free objects in locally free objects.

Now we construct the functor W3 between Str((X, M)/(Spf(V), N)) and L, ;(((X, M)/(Spf(V), N)).
Let us take an element (%,.7,L,¢) of the log infinitesimal site ()A(/Spf(V))ling. We know by definition
that (%, M) — (Spf(V), N) is formally log smooth over (Spf(V), N), because (%, M) is formally étale over
(X , M), that is formally log smooth over (SpfV, N). Therefore we have a diagram

(%,M) —— (%,M)
| |
(7,L) — (Spf(V),N)
and by proposition 2.2.13 of [Shl] we know that étale locally over 7 there exists a morphism c¢: (J,L) —

(%, M) that is a section for ¢ : (%, M) — (7, L). A
If we have 7’ étale over .7, then we call s : (J',L) — (X, M) the composition of the section ¢ with the



morphism (%, M) — (X, M).

Then we can define a sheaf over .7 using the pullback map s% : Coh(K ® O ) — Coh(K ® Oz), and we
call the resulting sheaf Eo = S}}E Let us note that E g is obviously a locally free isocoherent sheaf on
T, as soon as F is.

If we have two sections ¢ and d and respectively two morphisms s and ¢, the formally log smooth morphism sx
t: (7', L) — (X, M) X (Spf(V),N) (X, M) factors through the n-th log infinitesimal neighborhood (X™, M™),
for some n:

sXt: (glaL) L> (Xn,Mn) — (XvM) X (Spf(V),N) (XaM)v

because of the universal propriety of the n-th infinitesimal neighborhood.

Now, pulling back by u the isomorphisms é, : O, ® E— E®0 ¢ given by the stratification, we obtain an
isomorphism t7% Ex~s KE We want to descend this sheaf to .77; this is possible using the cocycle condition
and the theorem of faithfully flat descent for isocoherent sheaves of Gabber ([Og| proposition 1.9.).

In fact, let us consider the formally étale morphism (', L) — (7, L) and the two projections

(7', L) x(7.0) (7', L) —= (7', L)

|

(77, L)

Composing p; with the morphism s : (7', L) — (X, M) we find m; : (F', L) x (7.0) (7', L) — — (X, M) for
i = 1,2 respectively.

As before we have a map my x mo : (I, L") x(7 1y (T', L) — — (X, M) x (Spf(V),N) (X, M) that factors through
the n-th log infinitesimal neighborhood and we can deduce an isomorphism 77 KE =7y KE and consequently

an isomorphism p} , Eg/ = = ps xE:, that is a covering datum; to obtain a descent datum we adapt the
above argument using the cocycle condition of the stratification. Now using proposition 1.9 of [Og] we are
allowed to descend the sheaf E 7+ to an isocoherent sheaf on 7, that we call E 7.

Let us note that £ defines a log isocrystal on the infinitesimal site: to check property (ii) of definition
we can use the same arguments as before.

Now we prove that E is a locally free isocoherent module on 7.

We know that E5 is an isocoherent module on 7 , isomorphic to K ® F', for some coherent sheaf F' of
O 7-modules, and that there exists an étale covering of .7 such that the E 7, restricted to every element of
the covering, is a locally free isocoherent module. We can restrict ourselves to the affine case; we assume that
T = Spf(A), 7' = Spf(B) and Spf(B) — Spf(A) étale surjective. We can conclude applying the following
lemma. [

Lemma 5.3. Let A and B be commutative noetherian V -algebras and let M be a finitely generated AQ K =
Ag-module. If we have a map A — B that is faithfully flat and Bx ®a, M is projective, then M is a
projective Ax -module.

Proof. We have the following isomorphism for every Ag-module N:
Bk ®a, Bxt!y, (M,N) 2 Exty, (Bx ®a, M,Bx ®a, N),

for every ¢ > 0, because B is flat over Ax. We can conclude that M is projective because Bx ®4, M is
assumed to be projective. O

It is true also the viceversa of proposition

Proposition 5.4. If £ is a log infinitesimal locally free isocrystal, then there exists an object (E,V) €
MIC((Xg,M)/(K,N))¥ such that ¥((E,V)) = £.



Proof. From proposition|[5.1]we know that there exists an element (E, V) in the category MIC((Xg, M)/(K,N))
such that ¥((E,V)) = €.
So we have to show that E is a locally free Ox,-module. By proposition we are reduced to prove that
the equivalence of categories

j : Coh(Ox, ) — Coh(K ® Oy) (7)
behaves well with respect to locally free objects, in particular that if F is a locally free isocoherent module
then there exists a locally free sheaf of Ox,-modules F such that j(F) = F.
Let us take F' € Coh(Ox, ) such that F = j(F). We claim that if F' is not locally free, then F is not locally
free. Let us assume that F' is not locally free. So there exists an open affine, that we can suppose local,
U = Spec(A) C Xk such that F|y is not flat on U. By definition of flatness there exists a coherent ideal Z
of A such that Z® F|U — F is not injective. Let us take a coherent ideal Z’ of Ox,. that extends Z ([Ha] ex.
IT 5.15). Then T’ ® F — F is not injective. Therefore, since the functor j is faithful, exact and compatible
with tensor products the map j(Z') ® F = j(Z' ® F) — j(F) = F is not injective. So the functor

—®F : Coh(K ®Oy) — Coh(K ®Oy)
is not an exact functor and then F is not locally free. O
Now, as in [Shi] paragraph 5.2, we construct a functor
® < Loono (X, M)/(SPE(V), N)) — Ling (X, M)/(SpE(V), N)).

We remark that the functor ® and its restriction to locally free objects, ®, that we will mention below, can
be constructed for (2, M) — (., N), morphism of fine log formal schemes.

Let (%,7,L,¢) be an object of the infinitesimal site, define an enlargement ®*(J) = (, L,z : (9, L) =
(%, M) — (X, M)); this is clearly an element of the log convergent site (the isomorphism (J, M) = (%, L)
follows from the fact that immersion (%, M) — (7, L) is nilpotent exact closed immersion.) Let us observe
that ®*(X) = (X, M, z : (X3, M) — (X, M)).

If we have an isocrystal £ on the log convergent site we define

We have already seen in proposition and that ¥, the restriction of the functor ¥ to the locally free
objects
W MIC((XK7 M)/(Spf(V), N))lf — Iinf((Xv M)/(Spf(V), N))lfv

is well-defined and is an equivalence of categories. Now we want to show that also &), the restriction of the
functor @ to the locally free objects

® < Leonu (X, M)/(SpE(V), ) — Ling (X, M)/ (SpE(V), N))Y,
is well-defined. In particular we have the following lemma.

Proposition 5.5. If £ is a log convergent isocrystal, such that ®(&) is a locally free log infinitesimal isocrys-
tal, then &£ 1is also locally free.

Proof. We can evaluate £ at the enlargement (X, M,z : (X, M) — (X, M)) and we find that £y =
Eq,*( X)) = ®(F); s0 E¢ is a locally free isocoherent module. We are going to prove that £z is a locally free

isocoherent sheaf for every enlargement .7. Now taking an enlargement (7, L,z : (o, L) — (X, M)), we
have the following commutative diagram of log formal schemes

(%0, L) —— (X, M)
| |
(7,L) —% (Spf(V),N).
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As f is formally log smooth, we know that étale locally on 7 there is a morphism ¢ : (7, L) — (X, M) such
that coi=z and foc=0b.

So let us consider an open for the étale topology: .7 formally étale over .7 and we call again ¢ the morphism
(7',L) — (X , M) induced by the diagram above, where as usual with L we denote the pullback of L by
the étale map between .7 and .Z’. We construct the enlargement .7’ = (77, L,z : (), L) — (X, M));
the morphism c¢ clearly extends to a morphism of enlargements. So by definition of isocrystal we have an
isomorphism c*(€¢) = €7, from which we know that £z is a locally free isocoherent module.

Then we consider the formally étale morphism v : (J',L) — (7, L) that extends to a morphism of en-
largements; again by definition of isocrystal we have u*(£s) = £/. We know that £/ is a locally free
isocoherent module and we want to prove that £z is locally free: we can proceed as in the last part of
proposition and conclude. O

From the definition of the functor ® we see also the viceversa of proposition [5.5} indeed if £ is a locally
free log convergent isocrystal, then for every element & on the log infinitesimal site

Q(E) 7 = Ea+(7),

by definition of ®. ~ ~
So we can compose the functors ® and ¥~! and obtain a well defined functor

i+ Leony (X, M)/(SpE(V), N))Y — MIC((Xx, M)/(Spf(V), N))".
Our next goal is to prove that ® is fully faithful, showing first that this can be proved étale locally.

Proposition 5.6. If ® : I.gu, (X /Spf(V))eol/ — Iinf(X/Spf(V))log’lf is fully faithful étale locally on X,
then ® : Lony (X /Spf(V))109U — I, ¢ (X /Spf (V)09 is fully faithful.

Proof. We suppose that [[; Xj = X¢ — X is an étale covering of X. If X/ = X°¢ X ¢ Xe and X" =

Xe X ¢ Xe X ¢ X¢, we have the following diagram:

Toono (X /SPE(V))IO0 — 2o [, (X /SpE(V))le0ls

Leono(X¢/SpE(V)) oot 2 L5 (X0 /SpE(V)) oot

l |

Teom (X7 /SpE(V))loold 2o [ (X7 /SpE(V))leoild

i i

Teonu(X7 /SpE(V))ors 2 1 (X /SDE(V)) oS

where the vertical arrows are induced by the following morphisms:
Xe = X,
pii X=X x4 X¢— X for i =1,2,
Pij i X =X x4 XOx g X¢— X% ¢ X¢ forl <i<j<3

where the first is the étale morphism defining the étale cover, p; and p; ; are the natural projections.
Thanks to étale descent for log convergent isocrystals ([Shl] remark 5.1.7), giving &, a locally free log
convergent isocrystal on X is the same as giving £¢, a locally free log convergent isocrystal on X¢ and ag
isomorphism between p5E¢ — p;E¢, compatible with the usual cocycle conditions.

11



A morphism f from £ to F is the same as a morphism f¢ from £¢ and F¢ that satisfies arops ¢ = pj foasg
and the compatibility conditions given by cocycle conditions on X",

By hypothesis ®¢, ® and ®” are fully faithful, so f¢ induces a unique morphism ®¢(f¢) between ®¢(£¢) —
®¢(F°) that satisfies the same compatibility conditions on X’ and X". Moreover this association is surjective.
Using étale descent for log infinitesimal isocrystals proven in [Shi] remark 3.2.20 we can descend e (f¢) to
a morphism which coincides with ®(f) between ®(€) and ®(F). O

Before proving the full faithfulness étale locally we recall the construction of the universal enlargement
and of convergent stratifications given by Shiho in [Shl] paragraph 5.2.
Let £: (2, M) — (%, M’) be an exact closed immersion of p-adic log formal V-schemes over (., N') defined
by a sheaf of ideals Z. We need a more general notion of enlargement.

Definition 5.7. We say that the quadruple (7, L, z, g) is an enlargement of (Z', M) in (% , M) if (7,L, z)
is an enlargement of (2, M) and g is an (#,N) morphism (Z,L) — (% ,M') such that the following
diagram is commutative

(%a L) $ (%a M/)

P

(2, M)~ (7, M)

We call B, 2 (%) the formal blow up of (%, M') with respect to pOg +Z"*! and we denote by T}, o (%)
the open of B,, 2 (#) defined by p:

T2 () = {2 € Buo (¥)| (00w +I"")Os, o (@)0 = POB, o ()2}
We put on T, 2 (%) the log structure L,, o (%) induced by the pull-back of M.

Remark 5.8. We can see from [Og] proposition 2.3 that if % = Spf(A) and "' = (a1,...an) then
To a2 (¥) = Spf(A{t1,...tm}/(pt1 — a1,...,Dtm — am) modulo p-torsion). For a local description of the
formal blow up see [Bo] paragraph 2.6.

The map (T, 2 (#))o — (#')o factors through 25, so that we can equip the pair (T}, 2 (#), Ly, 2 (¥))
with two maps (z,,t,) in such a way that the quadruple (T3, 2 (¥, Ly, 2 (¥), Zn, t) is an enlargement of
(Z,M) in (#,M’) and the set {(T},, 2 (#), Ln, 2 (¥ ), zn,tn) }nen is an inductive system of enlargements
that is universal in the sense that for every enlargement (77, L', 2", t') of (Z', M) in (#, M') there exists a
unique morphism to the inductive system given by {(T),2 (%), Ln. 2 (%), zn, tn) tnen (proposition 5.2.4 of
[Shil).

The fiber product of fine log formal schemes is a log formal scheme that is not necessarily fine, but,
thanks to proposition 2.1.6 of [Shi], there is a functor (=)™ that sends a log formal scheme to a fine log
formal scheme that is right adjoint to the natural inclusion of fine formal schemes in the category of log
formal schemes. If f: (2, M) — (¥, N) is a morphism of fine formal schemes, we denote the fiber product
in the category of log formal schemes of (27, M) and (2, M) over (./,\N) by (Z,M) x(» n) (2, M)
(resp. the fiber product in the category of log formal schemes of (2", M) with itself three times over
(&, N) with (2°, M) X (o ny (2, M) X (5 ny (£, M)) and the fine log formal scheme associated to this with
(2, M) % (7 ny (2, M))™ (vesp. (27, M) x(» ny (2, M) X( n) (2, M))"™).

We want to construct a log formal scheme that we will indicated by (27 (1), M (1)) (resp. (Z(2),M(2)))
such that it factors the diagonal embedding A™ : (2", M) — (2, M) X (o n) (Z,M))™ (resp. A .
(2, M) = (2, M)x (5 N (2, M)x (5 5 (Z,M))"™) in an exact closed immersion (2", M) < (27(1), M(1))
(resp. the closed immersion (27, M) < (Z'(2), M(2))) followed by a formally log étale morphism: following
[Shi] or [Ka] proposition 4.10, we can do this if the morphism f : (2", M) — (¥, N) has a global chart.

We indicate with (Py — M,Qv — N,Q — P) a chart of f, with a(1) (resp. «(2)) the homomorphism
induced by the map P &g P — P (resp. P &g P &g P — P) and with R(1) the set (a(1)9?)~(P) (resp.
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with R(2) the set (a(2)97)~1(P)).
With this notation we define 2°(1) = (2" x.» Z7) Xspe(z,{Pagr}) SPI(Z,{R(1)}) (resp. 27(2) = (£ x.»
X X X) Xspt(z,{PaqPaopr}) SPE(Zp{R(2)})) equipped with the log structure M (1) (resp M (2)) defined
as the log structure induced by the canonical log structure on Spf(Z,{R(1)}) (resp. on Spf(Z,{R(2)})).
Thanks to proposition 4.10 of [Ka] we have that (27(1), M (1)) (resp. (2 (2),M(2))) factors the diagonal
embedding as we wanted.
Using the fact that (2, M) — (2 (i), M(i)) are exact closed immersions of log formal schemes for i = 1,2,
we define {(Tg (2 (7)), Lar n (£ (7)), 21,(3), £, (7)) }rnen which is the universal system of enlargements associ-
ated to this closed immersions. For simplicity of notation we will denote by (T}, (%), L, (7)) the n-th universal
enlargement (T%,n(%(z))v L%,n(%‘(z))a Zn(z)a tn (Z))
The natural maps

pi: (2, M) X Ny (2, M) = (2, M) for 1 =1,2,

Pij (2, M) XNy (Z,N) Xz n) (X ,N) = (Z,N) X n) (Z,N)
for 1<i<j<3
A (%—vM) — (%7M) ><(:7,N) (%7M)
induce compatible morphisms of enlargements:
Gisn + (Tn(1), Ln(1)) = (2, M)
Gijin (T (2), Ln(1)) = (T5(1), Ln(1))
Ap (2, M) = (To(1), Ln(1)).
With the same notation we can give the following definition.

Definition 5.9. A log convergent stratification on (2", M) is an isocoherent sheaf Eq on 2" and a compatible
family of isomorphisms
€ Gl = Gl

such that every €, satisfies
AY(€,,) = id;

qf,2;n<€’ﬂ) © q;,B;n(en) = qI,S;n(En)‘

We denote the category of log convergent stratifications by Str'((Z',M)/(,N)).

As in the case of log infinitesimal isocrystals we can establish an equivalence of categories between log
convergent stratifications and convergent log isocrystals: this is the statement of proposition 5.2.6 of [Shi].

Proposition 5.10. If the log formal scheme (2, M) is formally log smooth over the log formal scheme
(Spf(V), N), then the category Ioon,((Z, M)/(Spt(V), N)) is equivalent to Str'((Z ', M)/(Spf(V), N)).

Now that we have introduced all the machinery we can finish the proof of full faithfulness of the func-
tor . We need the following result, whose proof is essentially the same as the one of proposition 5.2.9 of [Sh1].

Theorem 5.11. The functor
D2 Loony (X, M)/(SpE(V), N)) — Ling (X, M)/ (SpE(V), N))Y

is fully faithful étale locally.
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Proof. Since fine log formal schemes have charts étale locally and the statement is of étale local nature,
we can suppose that the morphism f : (X,M) — (Spf(V),N) has a chart globally. For £ and F in
Leono (X, M)/ (Spf(V), N))/, we can define Hom(E,F) € Leons (X, M)/(Spt(V), N))"/ by

Hom(E, F)g = Hom(Ea, Fa).

The global sections of Hom(E, F) are isomorphic to Hom(&, F). The same holds for I, s (X, M)/(Spf(V), N))¥/.
So we are reduced to prove that there is an isomorphism

HO((X, M)/(SPE(V), N)conws €) —> HO((X, M) /(SPE(V), N)ins, (E))

for every £ in Ieony (X, M)/(Spf(V), N))Y.

As we noticed before the morphism f : (X, M) — (Spf(V), N) has a chart globally and so we can construct
the scheme (X (1), (M)(1)) that we described above.

The equivalence in proposition associates t0 & € Toony (X, M)/(Spf(V), N)) a log convergent strati-
fication (£, €y) given by a locally free isocoherent sheaf £¢ on X and isomorphisms

€n - (K®OT”(1)) ®€X — 55( ® (K ® OT,,L(l))

for all n.
So the set HO((X, M)/(Spt(V), N)cons, £) can be characterized in terms of log convergent stratifications as
follows:

HO((X, M) /(SpE(V), Neonn, ) = { € € T(X,E¢)| en(1®e) =e @1 Vn}.

To see this let us remember how Shiho ([Shl] prop 5.2.6) associates to a log convergent isocrystal £ a
convergent, stratification (£,€,): to define the isomorphism ¢, : ¢5,E¢ — ¢7,E%, he uses the fact that
Gafx = Er,1) = 41 ., i-e. the fact that £ is an isocrystal. A global section of the log convergent
isocrystal £ is a collection of (‘py)ﬂe(X/Spf(V))i‘;?,w with ¢ 7 € £4(7), with the property that if there is a
morphism of enlargements & — 7', then ¢ 7 is sent to . Hence if (e#) & is a global section and we send
ittoeg € (X, £ ) then ey is such that €,(1 ® eg) = e ® 1 for every n: this last condition is equivalent
to say that a global section of £ is compatible with ¢; ,, : T,,(1) — X fori = 1,2. Moreover let us take ey
which verifies that ¢,(1®eg) = eg ® 1 for every n, this means than one can define eg, (1) for every n in a
compatible way with respect to the map ¢; . : T,(1) — X fori = 1,2; using the universality of T,,(1) one
can construct a global section of £ (look again at proof of proposition 5.2.6 of [Shi]).

Let J be the sheaf of ideals that defines the closed immersion X < X (1); we denote by O X(1)an the sheaf
lim K ®Ox;y/J™. By proposition 5.2.7 (2) of [Sh1] we know that there is an injective map K ® O, 1) =
O X (1) If we tensor the isomorphisms €, of the convergent stratification (€, €,) with this map we obtain
a map

€ : Of((l)“‘ ®55< — SX' (9 Of((l)

that coincides with the limit of the isomorphisms of the stratification induced by ®(€) through the equivalence
of categories

Ling (X, M)/(SpE(V), N)) = Str((X, M)/(Spf(V), N)).
So we can characterize the set HO((X, M)/(Spf(V), N)ins as follows
HO((X, M)/(SpE(V), N)ins, 8(€)) = { e € T(X,E5)| €(1@e)=em1}.
This means that the claim is reduced to prove that the following diagram

e

OX(l an g ® OX(l an (8)

\/
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is commutative if and only if this is commutative

(K ® Or, (1)) ® (K ® Or, (1)) 9)

Knowing that the following diagram is commutative

OX(I)‘M‘ ®Eg — &4+ ® OX'(l)"m (10)

! |

(K ® O, 1)) ® Eg —>E4 @ (K ® Or, (1))

and putting together @D and (10, we can conclude that if @ is commutative then is commutative.
Let us suppose instead that (8)) is commutative: then using the fact that £¢ is flat and that the map

K® OTn(l) — OX(l)an is injective we can conclude that also @ is commutative. O

Shiho in [Shi] proposition 5.2.9 proves that the functor ® is fully faithful étale locally when it is restricted
to the nilpotent part of Iuon, ((X, M)/(Spf(V), N)) and Lz (X, M)/(Spf(V), N)). Our proof is essentially
the same, because the key property of nilpotent objects used in Shiho’s proof is that the nilpotent isocrystals
are locally free.

Putting together theorem [5.11] and proposition [5.6] we obtain the following

Theorem 5.12. The functor ® is fully faithful.

6 Characterizations of log convergent isocrystals in terms of strat-
ifications

We want to describe the essential image of the functor ®. As for the case of the proof of full faithfulness it
will be enough to describe it étale locally, then, with descent argument we can conclude as in proposition
So we can suppose that (X', M) — (Spf(V), N) has a chart globally.

To avoid log differential calculus we will prove that we can restrict to the case of trivial log structures. We
need the following lemma whose proof is essentially the same as proposition 5.2.11 of [Shi].

Proposition 6.1. Let f : (X,M) — (Spf(V),N) be a formally smooth morphism of fine log schemes
that admits a chart. Let U be a dense open subset of X and set j the open immersion j : U — X.
If & € Ling((X, M) /(Spf(V)), N) there exists E. in the category Lon, (U, M)/(Spf(V), N) such that
(I)(S ) = j*&, then &; € (I)( Conv((X,M)/(Spf(V),N))lf).

Proof. Let us consider the sheaf
F = znsHom((K © Op,(1)) ® &, %,€; x © (K ® Or,(1))-
The following sequence is exact:
- b . s
0= F % (F®Og1yan) ® Jud*(F) = jud*(F @ Oggyan);

because F is a projective z,.(K ® Or, (1))-module, and the following sequence is exact by proposition 5.2.8
of [Shl] and [Og] lemma 2.14

0— Zn*(K &® OTn(l)) — OX(I)an @]*]*Zn*(K ® OTn(l)) — ]*]*OX(I)an
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Viewing &, as a convergent stratification we have a map
€n 2 e s (K ® Op, (1)) @ 57 (€ 1)) = Jd 2 (57 (€ x) @ (K @ O, (1)))5
on the other hand the log infinitesimal isocrystal &; induces a stratification
€ Oxyan ®E; 3 = & 5 ® Oxqyan-

The pair (€, €],) lies in Ker(b), because b(€’, €),) = j*j.€’ — €, where we consider €/, as an element of j,j*(F ®

O A(l)m) using the injective map K ® Or, 1) — Og (1) Then there exists an ¢, € F such that a(e,) =
(~ e)) that defines a convergent stratification, i.e. a convergent isocrystal .. Moreover one can verify that
<I>(€ ) =& O

Now we want to apply proposition [6.1] choosing as U the subset

Xf—tm'v

={z e X |(f'N)z = (M)s}.

Let us prove that it is open and dense in X. Clearly Xf +riv 18 homeomorphic to Xy 7, —¢riy s0 it will be
sufficient to prove that Xy s, —triv is open dense in X;. But this follows from proposition 2.3.2 of [ShI]
because the special fiber is reduced.

Now applying proposition we can restrict ourselves to the case in which f *N = M. As Shiho notices the
hypothesis f*N = M gives an equivalence of categories

Teono (X, M) /(SpE(V), N)) & Leony (X, triv) /(Spt(V), triv)),

where the notation triv means that the log structure is trivial and

Ling (X, M)/(SpE(V), N)) = L (X, triv) /(Spf(V), triv)).

So we are reduce to the case of trivial log structures, as we wanted. We will characterize the essential image
using certain type of stratification that we call special.

Definition 6.2. Let (E,¢€,) be an object ofgﬁ(X/Spf(V)) and let E be a coherent p-torsion-free O ¢ -module

such that K @ E = E; we say that (E,€,) is special if there exists a sequence of integers k(n) for n € N such
that:

(i) k(n) = o(n) for n — oo,

(ii) the restriction of the map p*™e, to p3 , (E ©) has image contained in 22 (E) and the restriction of the
map pF™Me T to DI (E) has image contained in p n(E)

This definition is a small modification of definition of special stratification given by Shiho ([Shl] Definition
5.2.12). Our definition of special is weaker then Shiho’s definition: every special object in the sense of Shiho
is special in our sense and allows us to characterize the essential image of the functor ®.

Let us see now that the definition of special is well-posed.

Proposition 6.3. Deﬁm'tion is independent on the choice of the p-torsion-free sheaf E.

Proof. Suppose that (E, €,,) is special and that the conditions in deﬁnltlonare verified for a given coherent
p-torsionfree O ¢-module E such that K ® E = E. We take an other p-torsion-free O ¢-module F such that

K ®F = E and we want to prove that the same conditions are verified. From [Og] proposition 1.2 we know
the following isomorphisms

K @ Homo (B, F) =2 Homggo, (K ® E, K ® F) = Endggo, (E).
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If we take the identity as endomorphism of E we know that there exists a power of p, say p®, such that
the multiplication by p® is a morphism from FE to F; moreover this morphism is injective because Fis
p-torsion-free.

In the same way we can prove that there exists a b such that the multiplication by p® is an injective morphism
between F and E.

If we consider now the morphism pF("*e+be then we have that the restriction of this to pgn(ﬁ‘) goes to
Pin(F).

Arguing analogously for ;!

we are done. O

Let us see, first, that every object in the essential image of the functor ® is special.
Following Shiho [Shl], proposition 3.2.14 and proposition 5.2.6, both in the case of trivial log structures, we
have the equivalences of categories

Leonu(X /SpE(V)) = Str' (X /Spf(V)),

Lins (X /SpE(V)) = Str(X /Spt(V)).

The functor ® induces the functor
ot Str' (X /Spf(V)) = Str(X /Spf(V)).

From now on we may work locally. A

We are reduced to the situation where X is formally smooth and we call dz1,...dx; a basis of QL X /SpE(V)”
Let us call &1, ..., & the dual basis of dz1, .. .dz; where §; = 1®z; —2; ®1; we will indicate (§1,...,&) with
¢ and an I-ple of natural numbers (81, ...0;) with 3. We will use multi-index notations denoting [] ; ffj by
Eﬁand5¥+~~+5lby|,6'|. R R R

We call X™ the n-th infinitesimal neighborhood of X in X Xgurv X. By a formal version of proposition
2.6 of [BeOg] we know that Oy, is a free O¢-module generated by {EB : |B] < n}, so that we can write
Oxn = O%[El/(€°, 1Bl =n+1).

We want to give a local description also for the universal system of enlargement {7}, }, of Xin X XSpfV. X.
By [Og] remark 2.6.1 we know that T;, is isomorphic to the n-th universal enlargement of Xin X X SpfV X 1%
the formal completion of X X SpfV X along X. Using this and the local description given in the proof of
proposition 2.3 of [Og] we can write Op, = O ¢{§, £®/p (|8 = n+1)}. By universality of blowing up there
exists a unique map 1, such that the following diagram is commutative

X (11)

e
T l
-

e
ya

Tn HX XSpfv X

The functor « is induced by the pull back of v,, and in local coordinates is given by

Or, = 03{&.6°/p (1Bl =n+1)} — O%[€]l/(€°, 1Bl =n+1)

and sends % with |8] =n+1 to 0.

Proposition 6.4. If (E,¢,) is in @(X/Spf(‘/)) and it is in the image of the functor «, then it is special.

Proof. Let (E,€,) be an element of Str'(X /Spf(V)) such that o(E, €,) = (E, e,), with

!
en
G —= 4, F,
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where ¢; 5, are the projections from T;, to X, that exist by definition of convergent stratification.

We note that ¢7 ,F' = F ®0, (’)XH&'H{Eﬁ/p (I8l =n+1)} is embedded in []4 E¢P and so we have a map,
that we call €, which is the composition of

* E/n *
E =g ,E " q B[] B
2

Let us note that € does not depend from n, as a consequence of the fact that the maps €, coming from the
convergent stratification are compatible. Using the isomorphisms €, that define the stratification (E, €, )

D5 F /N pi b= H Eéﬁ,
IBI<n
where p; ,, are the projections p; , : X™ — X, we can define a map
E—p;,E>p;,E= [] E€. (12)
1BI<n
The fact that «(E,€,,) = (F, €,) means that, if we call pr the projection
[1E¢° = ][ E€°.
B IBI<n
the map in coincides with the map
E -5 [[Be® 5 T E€°.
B 1Bl<n

Let E be p-torsion-free O ¢-module such that K ® E = E; so q{n(E) = E®O4[|E1{%/p (1B =n+1)}
and this is embedded in [[4 Eﬁﬁ/pu%u, i.e.

a1 (E) = E@ O [I€1{€°/p (18] = n+ 1)} ] EE” (13)

)

Gt (B) = E@ O [I€1{6° /p (18] = n+ 1)} [T, B¢° /pl+%

]

The O ¢-module F is finitely generated and let eq,...,e; be a set of generators; then for every i = 1,...1
there exists a; such that

pPi€(e;) C HE L
B P

Thus there exists a =: maxj<;<;a; in N such that

éﬁ
18]

n+1J

and, if we call mg the projection Hg Eéﬂ — F, then

p‘”UL%J rgoé(E) C E;

18



therefore there exists a sequence b, (3) that tends to infinity when |3] goes to infinity such that

pL‘TlJWB od(E)cpPE. (14)

If we define now
a(k) := min{a € N| p*7rg o ¢'(E) C E for all 8 such that |8| <k},

then p** ey (E) C I5<k E¢P which means that p*(®) e, sends psk(E’) into pfk(E) So we are left to prove
that a(k) = o(k) for k — oo .
We notice, from the definition of a(k), that a(k) is a non decreasing sequence. If a(k) is bounded, then we

are done. Arguing by contradiction, then a(k) — oo for k — oo. This means that there exists a sequence
{ki}i such that

O<a(k:1):a(k1+1):~-~:a(k2—1)<
a(kg):a(k2+1):~~~:a(k3—1)<
ak;i):a(ki+1):~--:a(ki+1—1)';
a(kiﬂ):a(kiﬂ—&-l):-n:a(ng—l) < ....

Then ~ R
p**)mgoé(E) CE,

for every B such that |3| < k;. Let us prove that
p50mg 0 ¢ (E) ¢ pll (15)
for some 3 with |3| = k;. Let us suppose that this is not true; this means that
p**)lrs 0 (E) C E (16)
for every B such that |3| = k;. Moreover for 3 with |3| < k; we have
p**)Irg 0 (E) CpFi-Vng 0 (E) C E.

Hence we have ~ ~
p**) g0 (E) C E

for all B with |B| < k; and this contradicts the definition of a(k;)’s, so holds. If we now put together
the formula with |8 = k; and (15]), we find that

tim (|| -at0) ==

so that there exists iy such that

0< 3k 1
- kl n
for all ¢ > 49. Then for any k > k;, we can find some k; with k; <k < k;;1 — 1 and then
0< Uk alk) 1
~ k T k T n
Hence we have that lim supy, @ < 1. Since this is true for any n, we have that a(k) = o(k).

19



Now we want to prove the converse: that every special object is in the image of functor «. This is proven
by Shiho in proposition 5.2.13 of [Shi] for his special objects, but the proof works also in our case.

Proposition 6.5. If (E,e,) is a special stratification on X, then there exists (E',€,) € Str'(X,Spf(V))
such that a((E',€))) = (E, €,).

n

Hence we have a complete characterization in term of stratifications of the differential equations coming
from a log-convergent isocrystal.

Remark 6.6. An example of the situation studied before appears in [Bdf proposition 3.18 and corollary 3.14.

We want to describe the property of being special in term of radius of convergence. We will use the
formalism given in [LS] in the local situation described before proposition If we have an element
(E,e,) € @(X/Spf(‘/)), then we can take the inverse limit of the map that we considered in the proof of
the proposition [6.4]

E—ps,BE-sp;,BE= ] B¢,
1Bl<n

and we obtain
lime,

6:E — limp; . B~ limp; . E = [| B&".
B
According to definition 4.4.1 of [LS] we can say that a section s € I'(X, E) is n-convergent, with < 1 for
the stratification (E,€y,) if

0(s) eTN(X,E® Oy {5})

Definition 6.7. The radius of convergence of the section s for the stratification (E,€,) is defined as
R(s) = sup{n| s is n—convergent}.

And the radius of convergence of the stratification (E,€y) is

R((E,e,),X) = infseF(X’E)R(s).
Proposition 6.8. A stratification (E,€,) is special if and only if its radius of convergence is equal to 1.

Proof. We know that @(X/Spf(‘/)) is equivalent to the category @(X/Spf(‘/)). By lemma 5.2.15 of
[Shi] we can write the map 6 locally. Following the notation that we recalled before proposition we
denote by {Dg}o<|g|<n the dual basis of {£ﬁ}og‘ﬁ|§n in Diff" (O, O« ), the differential operators of order
< n and in particular we indicate with D;y := D(g....1,....0) with 1 at the i-th place .

With this notation

o)=Y %vfﬂ(e) o ¢
B

with Vg := (id ® Dy 0o V)1 0 -+ 0 (id ® Dy o V). Given an E, as in the definition then the fact of
being special can be translated as follows: there exists a sequence of integers a(n) such that a(n) = o(n) for
n — oo and that Va(e)
a(n) VB e I
p 7@ S
for e in E and for any multi index B such that |3| < n . Let us see that the radius of convergence of a
section e € F is 1, because e € E is n-convergent for every 7, i.e. for every n

o)=Y évﬁ(e) ©eP cT(X,Ew 0 {5)).
s "
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To prove it we have to show that if we denote by || || the p-adic Banach norm on E such that | E| =1
1
||@Va(€)\|77'm —0,Vn <1l

This is clearly true because, fixed an n, the following estimate holds:

1 1
IIEVa(e)IIn"" = p*(™ Hpa(")ava(e)lln'm < pemylP

for every B such that |3| < n, because p*(™) Vg( e) e E.
This means that ||%V,3(6)H17|ﬁ| — 0 since

1 a(n
0< Hﬁvﬂ(e)ﬂnw < pylBl

and p*™p!Bl — 0 because a(n) = o(n). So we can say that
R(e) =1Ve € E,

and if we take s € E, then there exists a positive integer k such that p*s € E, so that R(p*s) = 1; moreover
we know that s is n-convergent if and only if p*s is 1 convergent so

R(p"s) = R(s)

and we can conclude that our stratification has radius of convergence 1.

The converse is also true: if (E,¢,) is such that R((E, €,), X) =1, then (E, €,) is special. We choose an E
coherent O ¢-module p-torsion free such that K ® E = E; for every e € E let a(n,e) the minimal integer
such that

Vga(e) -~
a(n,e) ¥ P

P 3l el
for any @ with |8] < n. Since R((E,€,),X) =1, then

Va(e n Vga(e), 181\ =n n
max|g|<n <||g(!)||> n" < max|gj<n <| g(, )Iln 2 >n2 < (const)n?,

so that for n — oo p®(™®)y™ — 0 for any < 1. This means that a(n,e) = o( ) for any e € E. Now if e
€ E, then we can write e = Z fie; where f; € O and e;’s are generator of E which is finitely generated
O module, and we put a(n) := max;<;<;a(n,e;) (let us note that a(n) = o(n)). If we denote by dg the

operator Vg for the trivial stratification (K ® O, id), then for any f € O we have d,aé!f) € Oy for any 8.
Therefore, for any e = Ei fie; € E, we have

a(n) v,@(e) _ l d'yfz ( a(n) VB 'yez> ~
! 2 o) <8

Hence (FE, €,) is special. O

7 Description of the semistable case

In what follows we suppose that X is proper semistable variety over V', which means that locally for the
étale topology there is an étale map

V[:Ela"wxﬂmyla"wym]
Ty XTp — T ’

X 4 Spec
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We call Mx, the log structure on X induced by the special fiber X}, that is a divisor with normal crossing,
so locally for the étale topology it admits a chart given by

V[I17~-~,$n,y17~-~7ym]
T, " Tp —T

N —

that sends e; to x;, where e; = (0,...,1,...,0) with 1 at the i-th place.
We consider the log structure N induced by the closed point of Spec(V') that has a chart given by

N—=V,

that maps 1 to 7. This is explained in [Ka] example 2.5 (1) and example 3.7 (2).

We also consider a normal crossing divisor D on X that locally for the étale topology is defined by the
equation {y; - --ys = 0} and we indicate by Mp the log structure induced by D on X.

We consider on X the log structure M = Mx, ® Mp, that corresponds to the log structure induced by the
divisor with normal crossing X U D in X (let us remark that with the notation Mx, ® Mp we indicate the
sum in the category of log structures); the structural morphism extends to a log smooth morphism of log
schemes (X, M) — (Spec(V), N). Moreover the special fiber is reduced, hence the hypothesis stated at the
beginning of section [f] are satisfied.

If we denote by D the p-adic completion of D, then we have a diagram

Dy“——=D

|

X ——= X

.

Spec(k)—— Spf(V).

We suppose that étale locally on X we have the following diagram

D=, D; € X (17)
| |

U;:l{yj = 0} —— Spf(V{l‘l, ey Ty Y1, - 7ym}/(x1 Ty — ﬂ-))

which is cartesian with the vertical maps that are étale and the horizontal maps closed immersions.
If Xging and D,;pg are the singular loci of X and D respectively, then we will use the following notations:

XO = X - (Xsing U Dsing)
D° = D — (Ryimg U Dogng) = X° 1 D.

When we consider the situation étale locally and fix a diagram (17)), we have a decomposition of the formal
schemes X — Xsmq, X° and D° which will be useful later. First let X7 be the open formal scheme of X defined
by pullback of the open formal scheme of Spf(V{z1,...,2n,y1,- .- ,ym}/(xl - &, — 7)) on which all the x;’s
for ¢/ # 4 are invertible and let X ;.; be the open formal subscheme of X  defined by étale pullback of the open
formal subscheme of Spf(V{z1,...,zn,y1,. -, Ym}/ (@1 -+ 2 — 1)), where x; are invertible Vi’ #£ 4,1 <i<r
and y;. are invertible Vj' # j, 1 < j<s.

Moreover we will indicate with D° ;; the set X o3 N D= X 53N Dj, that is the open formal subscheme of D

defined by pullback of the open formal subscheme of Spf(V{xl, e Ty Y1y Uy YUm p (@1 e — 7r))
where all the z;; and the y; are invertible for all 7/ # 4,1 < <r Vj’ # j,1 < j < s. In the previous line g;
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in Spf(V{z1,...,2n,91,-..,7j,---,Ym}/(x1-- -2, — 7)) means that the coordinate y; is missing.
With this notations we have the following relations:

[TX5 =X = Xaing:  [IX5; =X,

[15:, = b
4,7

Note that this decomposition is defined only if we work étale locally and we fix a diagram as . If we
denote by the subscript x the rigid analytic space associate to a formal scheme, then the sets D7 ;- and

XZO j:x can be described as follows:
Xijie = {P € Xl Wil £ [wo(P) = 1,95 #  lyy ()] =1},

D2 = AP € Xic|¥i' #i |a(P) =1 V7' # 5 lys(P) =1 ,y;(P) = 0}.

Finally we will denote by U the open formal subscheme complement of Din X.

8 Log convergent isocrystals with exponents in X

We consider now the category of locally free log convergent isocrystals on X, that we denote, as before, by
Teons((X, M) /(Spf(V), N))¥. By remark 5.1.3 of [Sh1] we know that there is an equivalence of categories be-
tween ((Xg, M)/(Spf(V), N))conu, the log convergent site on the special fiber, and ((X, M)/(Spf(V), N))cono,
the log convergent site on the lifting, hence an equivalence of categories between Ioon, (X, M)/(Spt(V), N))H
and Leony ((Xk, M)/(Spf(V), N))¥, locally free isocrystals on equivalent sites.

As we saw in section [5] through the functor ® we can associate to a locally free convergent log isocrystal £
on X a locally free infinitesimal log isocrystal ®(£). Using the terminology of [Ke] and [Sho], in the local
situation as in , @(5) induces a log-V-module E on Xk with respect to yi, . ..ys, that means a locally
free coherent module E on Xk and an integrable connection

ViE-E®uwy

1 . <> . . 1 e
where wXK/K is the coherent sheaf on X associated to the isocoherent sheaf K ® w(X,M)/(Spf(V)’N) on X.

If we are in the situation of we can write wiz /i more explicitly: if we denote by Qﬁ( /K the sheaf of
K K

continuous classical 1-differentials on the rigid analytic space X K, then

Wi i = (% /K & @ Ox, dlogy;)/L,
j=1
where L is the coherent sub O generated by (dy;,0) — (0, y;dlogy;) for 1 < j < s. Fixed a j' € {1,...,s},
i.e a component Dy = {y; =0} of D, then there is a natural immersion of

Q% /K © @ O, dlogy; - wy e
J#3’

and we call Mj, the image. The endomorphism res; is obtained by tensoring with Op, ,. the following map

— FEQwk

1
E— FEFQuws Xk /K

Xk/K /Mj

and is called the residue of E along Dj.x. Thanks to proposition 1.5.3 of [BaCh] we know that there exists
a minimal and monic polynomial P; € K[T] such that P;(res;) = 0. The exponents of (E, V) along Dj,k
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are the roots of P;.
We fix a set X = Hh \Zn € ZE »» where £ is the number of the irreducible components of D= UZ:l D" in

X.

If there exists an étale covering [, ¢; : [], X, — X such that every X, has a diagram as in , then we
can define a function of sets i : {1,...,7} x {1,...,s} = {1,...,k} as follows: with the notatlon as in the
previous paragraph C/U(D;i j,l) is Contalned in one 1rreduc1ble component of D which we denote by D),

We denote by ¥,; ;) the factor of X corresponding to the component Dhig),

Definition 8.1. A locally free convergent isocrystal £ has exponents along Dy in% if there exists an étale
covering [, ¢ : 1], X, — X such that every X, has a diagram

= Ui D Xi (18)

|

Uj=ityy =0} S SpfV{zy1, . @i vty Yem} /(00 -+ 20 — 1)

as i with Dy := o YD ) Moreover, for every j € {1,...,s}, for every l, the log-V-module E; on )A(Z;K
induced by € has exponents along D] LK NNy Yni ), if d)l(Do ) C D)

We denote the category of locally free log convergent isocrystals with exponents in ¥ by Icom,((X, M)/(Spf(V),N))
o7 Ioony (X /Spf(V))le9:=

P

In the next lemma we prove that the definition of isocrystals with exponents along Dk in ¥ is well posed.

Lemma 8.2. The notion of locally free log convergent isocrystal with exponents in 3 is independent on the
choice of the étale covering and the diagram as in , which are chosen in definition .

Proof. Let us suppose that £ is a log convergent isocrystal with exponents along Dy in ¥. It is sufficient to
prove that for any étale morphism ¢ : X' — X, such that for X’ there exists a diagram

’ A~ A~

D=5 D, C X (19)

J'=1"7

|

U () = 0} S SPEV{@h oo @l ke Y} () 2 — )

as in , with D’ := ¢~1(D), the log-V-module E’ on XK induced by £ has exponents along D’ g in
m;,’zlzh(i,,j,),lf ¢(D;2 ;) € DM

By hypothesis £ has exponents along Dy in ¥, hence there exists an étale covering [ [, ¢; : [1, X, = X
such that every X, has a diagram

D= Dji € X (20)

l

Uj‘:l{yl,j =0} —— SpfV{zi1,. ., @i ns Uity Yim}/ (T1a - Ty — )

as in (17) with D; := o ( ) such that for every [ the log-V-module E; on X 1,k induced by £ has exponents
along DJ sE 0N Y ), if ¢Z(D° ) C c DhGg)
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Let us denote by X{ the fiber product X’ x X'l and by D’ D', i D;’l the inverse image of D, D;-,, Dj,l
on X respectively. With this notation we have two diagrams on X :

D} = US, 2 X/ (21)

|

Uj=ily) = 0} ——— SpfV{z!,....20 01,y /(2 o2l — )

and

Dy =U;_, Df, Xi (22)

| |

Uj‘:1{yj,l =0} “—— SpfV{z1 4. s Tn s Y105 s Yma} /(@10 Ty — 7).

The diagram (|2 ib induced by (|1 through P2, the projection on the second factor pr, : X' x < X, — Xi;
and the dlagram is induced by (|2 through p1, the projection on the first factor pry : X' % Xl - X'
The log-V-module Ez induced by £ on X/ 1,k has exponents along D 1,k Which are contained in the set of
exponents of E; along Dj,l; k. This happens because the residue of El along D;’ 1,k » denoted by res;v:l is the
image of the residue of E; along D, .k, denoted by res;;, via the map

Endof,j‘hk (El|ﬁjyl;K) - End@b;’,l;x (El,|jj;,(l;K)7

which is induced by the projection pr,. If Pj l is the minimal and monic polynomial such that P] i(res;i) =0,
then Pj l(res ) =0, so if we denoted by P . the minimal and monic polynomial such that P (reslf ) =0,
then P . | Pji. So the roots of P | are contalned in the roots of P;;, which means that the exponents
of EJ along Dj,l are a subset of the set of exponents of E; along D]J;K. Since for every (i,j) such that
¢ 0 prQ(Dgfj’l) is contained in D" also qﬁl(Df’j’l) is contained in D7) and viceversa, then we proved
that for every (4, j) such that ¢; o prz(Dgfg’l) is contained in D™#9) the exponents along D;.”l;K are contained
in ﬂZT:th(,-J) . R

Now we want to look at the exponents of Ej along D7, ; .

Let us put Xl’o = Xl’ﬂX°7Dl’°' D’OXO D i :—D /ﬂXO and D”O: DZ’OXO. Since the map
End@b, (El |é/ , ) — End@D,o (El|D/o )
1,5 K LK 'K

1,j K
is injective because of the local freeness it is enough to look at the exponents of Ej| X, along D;"], K-

Let us note that D;O is a relative normal crossing divisor in a smooth formal V-scheme; if D,o = C’t )
is the decomposition of D/ in 1rreduc1b1e components, from [NaSh]| proposltlon A.0.3 and proposition A.0.7,
we can deduce that D, o and D}e

Thanks to what we have proven before we know that E | ¢/ Ko has exponents along D] I R N AEPINE

il that are irreducible components of D , correspond to some C’tl S.

3)
where (7,7) are such that ¢; o prQ(Dl’jl) is contained in Dh(W) We now consider D 71, then DZ-,J,J will

i.51- If Cyy is such that ¢ o pry (Ot,l) C D" then also
¢1 0 pry(Cyy) € D™ by the commutativity of the following diagram

coincide with some CY;’s, so will correspond to some D}e

X'xe X\ X, (23)

-

1) A

X — X
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So we can conclude that the exponents of E] along b;",l;K are contained in ﬂ{//zlzh(il’j/) with (i/,4’) such
that ¢ o prl(ﬁ;/‘ij/’l) c DML,

Finally we prove that E' has exponeAnts al(ing lA);-,;K in ﬂir,/:th(i,,j/) with (i’ j') such that ¢(D), i) C D',
Having a surjective étale map [, X] — X', the thesis is reduced to prove that the induced map

Endo, (E'®0p )—Endo ., ([[E® o, pr, ) (24)
J7,t

N D
35K 3K TN e

is mJectlve A .
If o(D;7 ;) C DM | then ¢ o prl(D» 1) C DM for every 1 and ¢ o pry ([], D;7 ;) is contained in

DAY, One can see that the residue of E’ along lA);-,;K goes via the map in into the residue of [[, E]
along Hl G LK

L(Djrixc: Op, %FHD’IK’OH,D’ )

LK

is injective, since [], X ;= X' is étale surjective and then faithfully flat. O

9 Log-V-modules on polyannuli

We recall in this section the notion of log-V-modules on some particular rigid space defined and used by
Kedlaya in [Ke] and by Shiho in [Sh6].
An aligned interval is a interval I contained in [0, 00) such that any end point is contained in I'* with I'*
the multiplicative divisible closure of the image of the absolute value | | : K* — R*. An aligned interval is
said to be quasi open if is open at any non zero end point. For an aligned interval we define a polyannulus
as the rigid analytic space A% (1) = {(t1,...,tn) € AR™||t;| e IVi=1,...,n}.
For example we will consider A%-([A, 1]), the rigid annulus with coefficients in K and radii A and 1, for A € I'*
or A%([0,0]), the polyannulus in n coordinates of null radius.
If Y is a smooth rigid analytic space and v, ..., ys are global sections such that they are smooth and meet
transversally, then for a subset ¥ = H§=1 Y C K* we denote by LNMy x: the category of log-V-module on
Y such that all the exponents along {y; = 0} are contained in X; for every j =1,...,s
If Y is a smooth rigid analytic space and ¥, ..., ys are global sections such that they are smooth and meet
transversally, then we set Wy x A7 ([0,0))/K = wy/K &) 691 1 Oydlogt;. We define a log-V-module (E,V) on
Y x A% (]0,0])/K with respect to y1 ..., Ys, t1, ...ty as alog-V-module (E, V) on Y with respect to y1, ..., ys
with n commuting endomorphisms 6 =t; 2 ar; of (B,V) fori=1,...n. Ifwefix ¥ =T[[_, % x[[;L, =
C K**", we can define a log-V-module (E, V) with respect to 41 ...ys,t1,...,t, on Y x A%([0,0])/K with
exponents in ¥ if the log—V module (E,V) on Y has exponents along {y; = 0} in ¥; and if the commuting
endomorphisms 9; = ;-2 3t have eigenvalues in 3; for every ¢ = 1,...,n. Following Shiho we denote the
category of locally free log V-modules on Y x A% ([0,0])/K with exponents in ¥ by LNMy s an (j0,0)),%-
If I is an aligned interval and & := (51, ..y&n) € K™, the log-V-module denoted by (M, Vs ) is the log-V-
module on A% (1) given by (Oay (1), d + 327, §;dlogt;). We will define now the notion of X-unipotence for
log-V-modules on a product of a smooth r1g1d analytic space and a polyannulus ([Sh6] definition 1.3).

Definition 9.1. Let Y be a smooth rigid analytic space, 11, ...,Yys global sections whose zero loci are smooth
and meet transversally, I an aligned interval and ¥ = Hj 'Y, C K5t We say that € = (E,V) €
LNMy x an (1) is X-unipotent if after some finite extension of K there exists a filtration

oc&c---cé, =€
of subobjects such that every successive quotient £ /&1 = i F x m5(Me, V), where w1 denotes the first
projection, me the second, F is a log-V-module € LNMX,I—[;=1 s, and(Me,V 1, ) denotes the log -V-module

we defined before with £ € HjJr?H

We will denote by ULNMy y an (1) » the categories of L-unipotent log-V-modules on'Y x A% (I).
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Remark 9.2. (Remark 1.16 of [Sh6]) We note that in the case of I = [0,0] we have that ULNMy » o= ([0,0)),52 =
LNMy x a7 ([0,0),5° every object in LNMy x a7 ([0,0)),5 %8 X-unipotent. Let us take £ in LNMy x a7 ([0,0)),5, see-
ing as a log-V-module (E,V) in LNMY’H-;_:1 x,; endowed with d; for j =1,...,n, commuting endomorphisms.
To prove that it is X-unipotent we proceed by induction on the rank of E. We consider Ey = NP_ Ker(0;—¢&;),
for some (&1,...,&,) € Hjigﬂ X,;. The submodule Eq is non zero, it is X-constant and E/Ey is ¥-unipotent
by induction hypothesis. Hence £ is X-unipotent.

Shiho ([Sh6] Definition 1.5) defines a functor
Ur : LNMy s a7 (10,0)),5 = LNMy s an (1),
It associates to a log-V-module £ a log-V-module U;(€) defined as the sheaf 7€ and the connection

" dt;
v (Vo Y m (N ()
i=1 v

where N; for i = 1,...n are the commuting endomorphisms attached to £ with eigenvalues on 3;.
We recall here the definition of a non Liouville number, which we will use in the sequel.

z™

Definition 9.3. An element « in K is said to be p-adically non-Liowville if both the power series Zn;m P

and Zn#a n*: have radius of convergence equal to 1.

As in definition 1.8 of [Sh6] we can define the following,.

Definition 9.4. A set ¥ C K is called (NID) (resp. (NLD)) if for any a, 8 € %, o — 3 is a non zero
integer (resp. is p-adically non-Liouville). A set ¥ = [[;_;%; C K° is called (NID) (resp. (NLD)) if for
anyj=1,...,8 3; is (NID) (resp. (NLD)).

We will use the following result ([Ke] 3.3.4, [Ke] 3.3.6, [Sh6] corollary 1.15 and [Sh6] corollary 1.16)
Theorem 9.5. Let Y be as before, I a quasi open interval and ¥ = H‘#? 3, C Kt which is (NID) and

j=
(NLD) then the restriction of the functor Uy to the S-unipotent log-V-modules

Ur : ULNMy s ay (j0.0)),5 = ULNMy s a. (1) 3

is an equivalence of categories. If I is an interval of length > 0, but not necessarily quasi open, then the
functor Uy is fully faithful.

10 Log overconvergent isocrystals

Before defining the category of log overconvergent isocrystals, we recall the notion of log tubular neighbor-
hood given by Shiho in [Sh2] definition 2.2.5 with some restrictive hypothesis and in [Sh3|] paragraph 2 in
full generality. This is the log version of the tubular neighborhood defined by Berthelot in [Be].

Given a closed immersion of fine log formal schemes i : (Z, Mz) — (2, M), there exists a fine log formal
scheme (27", M s..) and an associated homeomorphic closed exact immersion i* : (Z, Mz) — (2%, M gex)
such that the functor that associates i® to i is a right adjoint functor to the inclusion functor from the cat-
egory of homeomorphic closed immersions of log formal schemes in the category of closed immersions of log
formal schemes. The functor ¢ — i°® is called the exactification functor and its existence is proven in [Sh3]
proposition-definition 2.10.
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Definition 10.1. Let (Z,Mz) — (Z,Msz) be a closed immersion of log formal schemes, then the log
tubular neighborhood ]Z[i@;g of (Z,Mz) in (Z,Mg) is defined as the rigid analytic space Z5° associated to
the formal scheme Z°¢*. We can define the specialization map

sp :]Z[gpg% .f'f,

where Z is the completion of Z along Z, as the composition of the usual specialization map ]Z[gpg: =
ZT with the map Z* — % induced by the morphism Z<* — % .

We can notice that, if the closed immersion i : (Z, Mz) — (2, M) is exact, then 2°** = %% and the
log tubular neighborhood ]Z [{,}g coincides with the classical tubular neighborhood.
We define the category of log overconvergent isocrystals for log pairs. Log pairs are defined in paragraph 4 of
[Sh4] and in 2.1 of [ChTS| in the case of trivial log structures. A log pair is a pair ((X, Mx), (X, M)) of fine
log schemes in characteristic p endowed with a strict open immersion (X, Mx) < (X, Mg). A morphism
of log pairs f : ((X, Mx),(X,Mx)) — ((Y,My), (Y, My)) is a morphism of log schemes f : X — Y that
verifies f(X) C Y. A log pair ((X, Mx),(X,Mg)) over a log pair ((S, Ms), (S, Mg)) is a log pair endowed
with the structural morphism f : ((X, Mx), (X, Mg)) — ((S, Ms), (S, Mg)). We assume that all log pairs
are log pairs over a given log pair ((S, Mg), (S, Mg)). In paragraph 4 of [Sh4] there is a definition of log
overconvergent isocrystals for log pairs over a log pair ((S, Ms), (S, Mg)) with Mg isomorphic to the trivial
log structure; we will give analogous definition in the case of non necessarily trivial Mg.
A log triple is a triple ((X,Mx),(X,Mg),(Z, Ms)) which consists of a log pair ((X,Mx), (X, Mg))
and a log formal scheme (2, M%) over a log formal scheme (-, M.») endowed with a closed immersion
(X, M%) < (2, Mg). Morphisms of log triples are defined in the natural way, as well as a log triple over
an other log triple. We will work only with triples ((X, Mx), (X, Mx), (&, M%)) over a fixed log triple
((S7MS)’(S7MS)’(y7MY))' _
As in the classical case, for a log triple (X, Mx), (X, Mg), (£, M%)) we can define a strict neighborhood
W of |X[%9Y in X[’ to be an admissible open of | X['%¢ such that {W,]X['%Y—] X[} is an admissible cov-
ering of | X [l;,g . Given a sheaf of Oy modules £ we define the sheaf of overconvergent sections as the sheaf
j;EVE = lim_ aw,y]x[z;g*a;vl,ng, where W' varies among the strict neighborhoods of ]X[l;g in ]X’[l;,g that

are contained in W and aq g/ : T < T is the natural inclusion. If W =]X [l;zg , then we will denote the sheaf
of overconvergent sections by ;€.
We suppose that there exists a commutative diagram

(X, Mg) —> (2, M) (25)

Pl

(Y,MY) —— (@a M@/)

where j is a closed immersion and h is formally log smooth. If we denote by (Z2(1), Mg(1)) (resp.
(Z(2), M (2))) the fiber product of (£, M %) with itself over (%', My ) (reps. the fiber product of (22, M)
with itself over (%, My ) three times), then the projections and the diagonal induce the following maps:

i :]X[lgof(l)ﬁ])?[f;,g for 1 =1,2,

pig X[y =X 55, for 1<, <3,

A :}X[@M]X[g@-‘f(l).

Definition 10.2. With the previous notation a log overconvergent isocrystal is a pair (€,€) consisting of
a coherent jTO]X[zog -module £ and € a jT(’)]X[zog -linear isomorphism € : pi€ — piE that satisfies A*(e) =
@ 2 (1)

id and pj 4(€) o p5 5(€) = pis(e). We denote by I'((X,X)/%,P)'9) the category of log overconvergent
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isocrystals on ((X, Mx), (X, Mx)/%) over (2, Mg). We say that (£,¢) is a locally free log overconvergent
isocrystal if £ is a locally free jTO]X[l;g -module and we indicate the category of locally free log overconvergent

isocrystals with IT(((X, X) /%, 2)9)f

In the case of trivial log structures the previous definition coincides with the definition of overconvergent
isocrystals given by Berthelot [Be].

Remark 10.3. Shiho in [Sh{|] definition 4.2 defines the category of log overconvergent isocrystals also in a
more general situation, but for our purposes the definition we gave is sufficient.

Given a log pair ((X, Mx), (X, Mg)), we assume the existence of a diagram

(X, Mg) % (Y, My) = (7, M), (26)
where (Y, My ) is a log scheme over (S, Ms), (%, My ) is a p-adic log formal scheme over (., M.»») and i is
a closed immersion. X
Coming back to the setting discussed in section we consider the log triple ((Ug, M), (Xx, M), (X, M)) over
((Spec(k), N), (Spec(k), N), (Spf(V), N)) and the following commutative diagram

(U, M) > (Xp, M) > (X, M)
| “| |
(Spec(k), N) —— (Spec(k), N)——(Spf(V), N) .

The diagram as in is given by

(U, M) % (Speck, N) % (SpfV, N)

and the commutative diagram as in ([25)) is

(X, M) (X, M)

lg lh

(Spec(k),N) —— (Spf(V),N).

Let us note that since the immersion (Uy, M) — (X, M) is strict and the closed immersion (X, M) <
(X, M) is exact, the log tubes in these cases coincide with the classical tubes:

1X5[27=] X[ g = Xk

UL =Uk[x= Uk

Now we want to give a description of integrable connections associated to locally free log overconvergent
isocrystals in our case. By proposition 2.1.10 of [Be] we know that there is an equivalence of categories
between Coh(jTO] Xk[f(), the category of jTO] X[ ~coherent modules, and the inductive limit category of
coherent modules over strict neighborhoods of |Uy[¢ in | X%[¢. Thanks to remark after proposition 2.1.10 of
[Bel, if (£,¢€) is a locally free log overconvergent isocrystal, then & is a locally free jTO] X[y module, which
means that there exists a strict neighborhood W of [Uy[¢ in | X[ and a locally free Oy-module E, such
that ji, B = & .

The log overconvergent isocrystal (£, €) induces an integrable connection on &

V . g — 5 ®jTO]X,€[}% ij]lAXk[X/K
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1
(X,M)/(Spf(V),N)

of JUk[x in | Xi[5, as we saw before, there exists E on W such that jj;, E = £ and there exists an integrable
connection

where W]lxk /K is the restriction of K ®w to | X[ moreover given a strict neighborhood W

. . . 1 . . . 1
which induces the above connection on &£, where Wiy i 18 the restriction of K ® Wik a0)/(SpE(V)N) to W.
If étale locally we are in the situation described in , then W contains a subspace of the form

{Pe Xk | V) ly(P)| =7}

for some A € (0,1) NT* with T'* the divisible closure of the image of the absolute value | | : K* — R™T.
Therefore we can restrict E to the space

{Pe XZj;K | A <ly;(P)| <1}
Proposition 10.4. There is an isomorphism
¢ D5 i x A (N1) = {P € X2 | A< Jy;(P)| <1},
where AL ([N, 1)) :=={t e AL | |t| € N1}

Proof. If we can prove that b;U( x AL ([0,1)) = ng;K, then the isomorpAhism of the proposition will be

clear. To prove this we will apply lemma 4.3.1 of [Ke]: we consider A =I'(X}; ;-,Ox, ), and as B the ring

AJy; A = T(D7 ;. rc, Ox, ). We can apply lemma 4.3.1 of [Ke] because I'(D7 ;. r-, Ox,) is formally smooth
over K and we can conclude that

F(Xio,j;K7 OXK) = F(D?,j;Kv OXK)HyJ”
i.e. the isomorphism that we wanted. O

We fix a set ¥ = H::1 ¥p € ZE, where k is the number of the irreducible components of D= UZ:l D
in X, with the same notations as before definition

Definition 10.5. A log overconvergent isocrystal £ has X-unipotent monodromy if there exists an étale
covering [ [, ¢1 : 11, Xi = X such that every X; has a diagram

D=, Dj,; ¢ X (27)
Uj=ityji = 0} = SpftV{z1s. s mn s yits s Yma}/ (@1 ooy — )

as in with Dy := qbl_l(b) such that for every l the restriction of the log-V-module E; on XZ;K to
ﬁz(’),j,l;K X A}([)" 1)7

is Nj_y Xp(,5)-unipotent , ¥ (i, ) such that (bl(lA)f’j’l) c DM,

We denote the category of log overconvergent isocrystals with S-unipotent monodromy by IT(((Uy, X)/Spf(V))le9:*
or IT((Ukv M)a (Xk7 M))/(Spf(V), N))E

Remark 10.6. In definition [10.5 we do not ask any locally freeness hypothesis, because every object in the
category It (Uy, M), (Xy, M))/(Spf(V), N)) is such that £ is locally free. This is clear because (€, €) induces

on a strict neighborhood W an Ow -module E, such that j?;VE = & endowed with an integrable connection.
As K is of characteristic 0 we can conclude that E is locally free and & is locally free.
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11 Unipotence, generization and overconvergent generization

In this section we recall the three propositions that we will use in the proof of the main theorem. They are
proven by Shiho in [Sh6] as generalization of the analogous propositions proven by Kedlaya in [Ke] (assuming
> = 0). We will write the statements only in the cases that we need, that are simplified versions of the
propositions given in paragraph 2 of [Sh6]. The first property that we consider is called by Shiho and Kedlaya
generization property for monodromy ([Ke] proposition 3.4.3 and [Sh6|] proposition 2.4 ).

Proposition 11.1. Let A be an affinoid algebra such that Y = Spm(A) is smooth and endowed with sections
Y1, ---,Ys that are smooth and meet transversally. Suppose that there exists A C L such that L is an affinoid
algebra over K, Spm(L) is smooth, all the y;’s are invertible in L and the spectral norm on L restricts to the
spectral norm on A. Let I be a quasi open interval contained in [0,1) and A} (I) defined as Spm(L) x A% (I).
Let X2 C Zy**® be a set which is (NLD) and (NID); if E € LN My an (1)5 is such that the induced object F
S LNMAE(I),E 18 unipotent, then E is X-unipotent.

The second result that we need is called overconvergent generization and describes the property of ex-
tension of unipotence on strict neighborhoods (proposition 2.7 of [Sh6] and proposition 3.5.3 of [Kel).

Proposition 11.2. Let P be a p-adic formal affine scheme topologically of finite type over V. Let Yy, C Py
be an open dense subscheme of the special fiber of P such that P is formally smooth over V in a neighborhood
of Y. Let W be a strict neighborhood of |Yi[p in Pk, I C [0,1) a quasi open interval and ¥ a subset of Ly -
Given B € LNMyyyan 1)z such that the restriction of E to Yilpx Ak (I) is L-unipotent, then for every
closed interval [b,c] C I there exists a strict neighborhood W' of |Yi[p in Pk such that W' is contained in
W and such that the restriction of E to W' x A% b, c] is B-unipotent.

The third property that we need states that, under certain assumptions, a log-V-module with exponents
in ¥ that is convergent is Y-unipotent (proposition 2.12 of [Sh6] and lemma 3.6.2 of [Ke]). Before giving the
statement we recall what is a log-V-module with exponents in ¥ that is convergent ([Sh6], definition 2.9).

Definition 11.3. Let Y be a smooth affinoid rigid space endowed with yi, . ..,ys € T'(Y, Oy) whose zero loci
are smooth and meet transversally, let a € (0,1] NT* and let E be a log-V-module on X x A% ([0,a)) with
respect t0 Y1, .., Ys,t1,---,tn. Then E is called log convergent if, for any o’ € (0,a) NT*, n € (0,1) and
veIY x A%([0,d]), E), the multisequence

n i—1

1 0
o= L (LT (o 1)

j=1 1=0

is m-null which means that for any multisequence c;, .
nt i the multisequence {c;, . ;b

i, 0 any complete extension of K with |c;, . .| <

i} converges to zero.

M 77;’7l

01 5eeny

Proposition 11.4. Let A be an integral affinoid algebra such that Y = Spm(A) is smooth. Suppose that
there exists A C L such that L is an affinoid algebra over K, Spm(L) is smooth and y;’s are invertible in L
and the spectral norm of L restricts to the spectral norm of A. Let ¥ C Z;H‘s be a set which is (NLD) and
(NID); if E is an object of LN My x an (0,1)),s which is log convergent, then it is X-unipotent.

12 Extension theorem

Now we come back to the semistable situation and we will prove that the definition of ¥-unipotent mon-
odromy is well posed.

Proposition 12.1. Let £ be an overconvergent log isocrystal which is in the category I (U, X1,)/Spf(V))l09:=.
The notion of X-unipotent monodromy for € is independent on the choice of the étale cover and of the diagram

mn which we have chosen in definition .
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Proof. First we will prove that if £ has Y-unipotent monodromy for some diagram as in 7 then it has
Y-unipotent monodromy for any diagram as in . So we suppose that there exists an étale covering
I, ¢ : 1, X, — X such that every X, has a diagram as in . As we saw before £ induces on some W
strict neighborhood of |Uy[¢ in | X[¢ a locally free Oy -module E with an integrable connection. In the
situation of W contains the set

{PeXix | Vily(P) = A}

and the restriction of E to .
Df,j;K X A}([)‘v 1)

is Mi_; X (i, j)-unipotent for some A, if (4, 7) are such that ¢l(ﬁ57j) C DM,
Using theorem we can extend F to a module with connection on

Df .k x Ak[0,1)

that is Ni_; ¥,(;, j)-unipotent. In fact, we can restrict £ to a module with connection on E?,j;K X A}(([O, 0])
which is Mj_;3j; j-unipotent and use the equivalence of categories of theorem to extend it to a

Mi—12n(i,j)-unipotent log-V-module on ch'),j;K x AL]0,1) ([0,1) is a quasi open interval). This is true for
25> M)/(Spf(V), N)) which is con-
vergent because it is convergent on U N H(i,j) X7 ; that is an open dense X N H(m.) X3 (we are applying
here proposition . Hence we have a locally free isocrystal on ((X°,M)/ (Spf(V'), N)) which is convergent
and such that has exponents along D; in N[_; % 5 for every (i, j) such ¢;(Df ;) C Dhd)

For any other diagram as in , E on ﬁ;”j;K X A}([)\A, 1) with (4,7) such that ¢1(Df]) c DhGd) 1s the
restriction of a convergent module with connection on D7 ; x X AL[0,1) with exponents in ﬁ;":lEh(W), SO
that it is Ni_, ©"(9)_unipotent on lA)f’j;K x AL [\, 1) by proposition

Now we prove that the notion of Y-unipotence is independent on the choice of the étale covering. To do this,

it suffices to prove that if £ is a log overconvergent isocrystal with ¥-unipotent monodromy, for any étale
morphism ¢ : X’ — X such that X’ admits a diagram

every (i,7) so E can be extended to a locally free isocrystal on (([; ; X

D'=U_ D¢ X’ (28)

| |

U;:1{y§' =0} —— SpfV{z},..., 20,91, - ym}t/(z} ..., —7)

as in , with D’ := gb*l(b), the log-V-module E induced on X’ by € is Ni—12n(i,5)-unipotent on IA);OJK X
AL[X 1), for every (i, ) such that 15;‘} is such that qb(l%‘}) C D"9), We may assume that i);‘}K = SpmA
is affinoid. As in the proof of proposition we know that there exists an étale covering [, X ;= X’ such
that, for any [, X ; admits a diagram as in 1)

diagram.

However since we have already showed that the notion of Y-unipotent monodromy does not depend on the
choice of a diagram as in , we can say that £ has Y-unipotent monodromy with respect to a diagram as
in for X{ induced by the diagram 1) This means that the log-V-module E is Nj_; 3, (; j-unipotent
when it is restricted to ]_[l(D;OjK X%, Xi ) ¥ Ag[A, 1) with (4, 7) such that ¢(Hl(l§;°j x ¢ X])) C D),
Let us take an affine covering [, C1, — Hl(D;O] X ¢ X]) by affine formal schemes and put SpmL := [],, Ch.x-
Then F is ﬁg_lﬁ,j)—unipotent on SpmLx A} [\, 1) and the affinoid algebras A and L satisfy the assumption

such that £ has Y-unipotent monodromy with respect to this

of proposition Applying proposition we can conclude that F is Nj_;3; j-unipotent on D;OJ K X
AL [N 1) as we wanted. O
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We can now state the main result, an extension theorem that generalizes theorem 6.4.5 of [Ke] and
theorem 3.16 of [Sh6]. The strategy of the proof is the same as the one in [Ke] and [Sh6] and we will follow
step by step the proof of theorem 3.16 of [Sh6].

We will need for the proof the following lemma:

Lemma 12.2. If W is an open dense in P = Spf(A), with A a formal V algebra of topologically finite
type such that Ay is reduced, then the spectral seminorm on O(|Wy[p) restricts to the spectral seminorm on

O(1Px[p).

Proof. We can suppose that W is defined by the equation {g # 0}, in particular that W = Spf (A {%}) .
So we have a map of V-algebras
1
A— A {} ,
g

which is injective modulo 7 because Wy, is dense in Ay that is reduced. By the topological Nakayama’s
lemma (ex 7.2 of [Ei]) we can conclude that we have an inclusion of V-algebras

].

OPilp) = A® K 5 O(Wilp) = A{g} o K

which induces an inclusion of affinoid algebras

Let us take the Banach norm | |p on A® K induced by A and the Banach norm | | on A {
by A{%}, then

%}@K induced
lalp = |alw

for any a € K ® A. By the well known formula (see for example [FvdP] corollary 3.4.6)
. n L
lalpsp = lim |a"[p
where with | |psp we denote the spectral norm, we are done. O

Theorem 12.3. We fix a set ¥ = Hﬁzl ¥y € Z’;, where k is the number of the irreducible components of

D= UZ:1 D" in X and we require that ¥ has the properties (NID) and (NLD). Let us suppose that locally
for the étale topology we have a diagram as , then the restriction functor

G+ Teono (X, M) /(SpE(V), N))? — TT((Uy, M), (X3, M))/(SpE(V), N))”
is an equivalence of categories.

Proof. We will divide the proof in 3 steps.

Step 1: the functor ;T is well defined.

Let € be in Toon, (X, M)/(Spf(V),N))=, then we prove that j1(£) € IT(Uy, M), (Xi, M))/(Spt(V), N))=.
Thanks to lemma and lemma |12.1) we can work étale locally. We suppose that ¢ is an étale map to X
and we call again X an étale neighborhood for which we have the diagram as in 1j in this situation the log
convergent isocrystal £ induces a log-V-module with respect to y1,...,ys on Xg such that has exponents
along Dj.c in mg:ﬂ%(“f i and j are such that ¢(l§f]) c DMid) . By the definition of L-unipotent

103)

monodromy (definition we are reduced to prove that, if we restrict E to

ﬁz(’),j;K X A}([07 1)7
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then it is N_;3,(; j)-unipotent if 4, j are such that (b(ﬁfj) C D),

We know by hypothesis that the restriction of E to ﬁ;’ ik X AL[0,1) is log convergent and has exponents
along ﬁj;Kin Mi—12h(i,j), hence we have to prove that this implies N;_; ¥, j)-unipotence; from proposition
we know that this implies Nj_;3;,(; j)-unipotence.

Step 2: the functor j' is fully faithful.

We have to prove that given f : & — F, a morphism of log overconvergent isocrystals of »-unipotent
monodromy, if there exist extensions of £ and F to log convergent isocrystals with exponents in ¥ that we
call respectively £ and F, then f extends uniquely to f (€ — F.

We can work étale locally. We denote by ¢ an étale map to X and again by X an étale neighborhood that
we consider for which there exists a diagram as in .

Let us take W a strict neighborhood of |Ui[¢ in | Xi[¢; by definition f induces a morphism ¢ of V-modules
between Eg¢ and Ex, the V-modules on W that are induced by £ and F respectively:

p:Ee = Er.

We call £z and Ez the log-V-modules on Xk induced by € and F.
Let us take the following covering of

Xe= | 4
JC{1...s}

where
Ay ={PeXg| ly;(P)l <1 (GeJ) ly;(P) =X\ (¢ )}

and A € (0,1) NT™ is such that both £ and F are defined on the following set:
B ={P e Xkl |y;(P)| = X Vj}.
The covering of Xk given by the A;’s restricts to the following covering of B = UJC{L_“’S} B, where
By={PeXg| A<|y(P) <1 (GEJ), ly(P) =X (¢ )
The extensions Eg and Ez are log convergent in
{PeXkly;(P)=0 (jeJ). ly;(P)| =X (j ¢ )} xA[o,1) (29)

by proposition 3.6 of [Sh6] and they have exponents in Hj Ni—12n(i,j)- They extend the restrictions of Eg
and Er on .
{PeXkly(P)=0 (j€J) ly;(P)| = A (& 1)} x AVI[A 1),

By theorem [9.5] we can conclude that ¢ extends to
Ay ={P € Xcly;(P) =0 (G € J) [y;(P)| = A (j ¢ 1)} x AV)[0,1);
this means that on this set there exists a unique
¢y Fs — Ex

that extends ¢ on Bj.
On A; N A; we have the extensions ¢; and ¢, which glue because they coincide on the set

BiNBy={PecXg| A< |y;(P)| <1 (je(IUJ)-(INJ)),
ly;(P)[ =X (j ¢ (TUJ)} x ATV 1)

because they extend the map ¢ on By N Bj.
Step 3: the functor ;' is essentially surjective.
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Since we have the étale descent property for the category of locally free log convergent isocrystals (remark
5.1.7 of [Sh1]) and the full faithfulness of the functor jf, we may work étale locally to prove the essential
surjectivity.

If £ € I'"((Uy, Xx), Spf(V))!°9 = then by definition of log overconvergent isocrystal we know that £ induces
a module with connection on the following set

{P e Xk| Vj:|y;(P)] > A}
that we will denote by E that is N;_; ¥y ; j-unipotent on
ﬁZj,K x AY\ 1) ={P ¢ Dj7K| Vi # g |y;(P)| =1, Vi' #i:|z}(P)| =1} x Al[)\,l),

for 7, 7 such that qS(ﬁfJ) c DhGg)
We will prove that F extends to a log-V-module on

Cupr={P € Xk| Vj>a ,|y;(P)| = A}

Va =0,...,s with exponents along {y; = 0} in Nj_; X, ;) with 4, j such that qb(bfj) c D) proceeding
by induction on a.
So we suppose, by induction hypothesis, that E extends to the set Cy_1, = {P € XK| Vi>a—1,ly;(P)| >
A} for some A with exponents along {y; = 0} in Nj_;¥j(; ;) with 4, j such that ¢(ﬁf]) c D),
We consider the following admissible covering of Xk = AU B, where

A={P e Xkl [ya(P)| = X'}

B={Pe Xg| |ya(P)| < 1}
with X' € [\, 1) N T,
Intersecting the covering AU B with C,_1 » we obtain the following admissible covering:
Coc1y = (Ca—l,/\’ NA)U (Oa—l,)\/ NB) = (30)
={PecXkg|Vj>a—1 |y(P) >N}
(PeXg| Vji>aly(P)| >N, XN <|ya(P)| <1} =
={PeXk|Vj>a—1 |y;(P)|>X\N}U
{P € Dox| ¥j>a ly;(P)| = XN} x A'N,1),

and intersecting with Cg »/:
Ca,)\/ = (Ca,x n A) U (Ca,/\’ n B) = (31)

{PeXk| Vi>a—1 |y(P)| > N}YU{P e Xk| Vi>a [y;(P)| >N, |ya(P)| < 1}
—{PeXil Vj>a—1 ly(P)| = N} ULP € Dail ¥ > a ly;(P)| = N} x A0, 1).
Comparing the formulas in and , we see that it is sufficient to prove that E extends from
{P € Dyx| Vi>a ,ly(P)| > N} x Ap[N, 1)

to
{P € Dox| Vi >a |y;(P)] > X} x A'[0,1),
for some X" € [A,1) NI in a log-V-module such that it has exponents along {y; = 0} in Nj_; ¥ ;) with
i, j for which ¢(Dg ;) C D).
As we saw before E is Ni_;¥,(; o)-unipotent on
Df kx Ak (W 1) =

. 32
{P€Dax| Vi #a:lyj(P) =1, Vi’ #i:|aj(P)| = 1} x Ak (M 1)), o
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80 it is M{_13p(4,q)-unipotent also on
H DS, xx Ak ([N 1)) =

TP € Dkl Vi’ #a: [yj(P) =1, V' # i+ |#}(P)] = 1} x Ak(I\1)).

%

We now want to apply proposition following the notation given in the proposition in our case we have
that P is the pull-back of

Vi{zy, .. .,Zn,y1- Yo - Ym . _
speY 121 Yool Ymd g1y o T (- al) )

TiooZe =T il i
by the morphism .
X = SptV{z1, ...y Zn, Y1, oy Ym /(@1 2 — T0),
Y}, is the open defined in Py by the following equation

{ya+1 o Ys 7& 0}

and

W x Ai(I) ={P € Do x| ¥j <a:|y;(P)| =1,
Vi >a |y (P)| > A Vi' #i: |2 (P)| = 1} x A ([\, 1))
The hypothesis of proposition are fulfilled.

The restriction of E to .
{P € Dokl Vji>a ,ly(P)| >} x Ak([A, 1))

is a log-V-module with exponents in Hj Mi—1Xn(,5), that is Hj Mi—1Xn(,5)-unipotent on
Yilp=[T{P € Dax| Vi’ # a:|yj(P)| =1, Vi’ #i: |2j(P)| =1} x A (A, 1));

so applying proposition we know that for every [b, ] C [A, 1) there exists a X' (we suppose that it verifies
A" € (¢,1) for gluing reasons) such that E is [[; Nj_; X j)-unipotent on

[T4P € Dokl ¥i<a:lys(P) =1,
i

Wisa:ly(P) = XN, Vi A @) =1} x AY([b,d]).
Now we apply proposition with

Spm(L) = [[{P € Dax| ¥j < a:|y;(P)| =1,
Wi >a:ly (P)| = N, Vil #i:|a(P)| =1}
and

Y ={PeDyx| Vji>a:l|y(P) >N}

we are in the hypothesis of that proposition thanks to lemma hence we deduce that E is [] 5 Miz1Xn
unipotent on

3)7

{P € Dax| Vj>a:ly(P)] =N} x A ((bc)).
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By theorem (9.5 we see that E can be extended to a Hj Mi—12n(,;)-unipotent log-V-module, in particular to
a log-V-module with exponents in Hj Mi—1 2,5 on

{P € Dax| Vj>a:ly(P) >N} xAY(0,c)).

Now we glue this with E and we obtain a log-V-module with exponents in the set Hj Mi_1Xn(,5) on

{P € Dox| Vj>a |y(P)| >N} x Ax([0,1))

as we wanted.

Therefore we have a log-V-module defined on the space Xk and we now prove that it is convergent.

We know that the restriction of E to Uk is log convergent because it is an extension of an overconvergent
log isocrystal on Uk, hence it belongs to the category

ICOHV((U7 M), (Spf(V), N))lf-

Since U is an open dense in X, we have a module with log connection defined in the whole space that is
convergent on an open dense of the space; we can apply proposition [6.1] and conclude that E is convergent.
O

13 Main theorem
As we saw in proposition there is an equivalence of categories
51t Lo M)/(SPE(V), M) s TH(U, X5) [SpA(V))!>.

Now we want to compare this to the category MIC((Xx, M)/K)" that we defined in definition We
can define the notion of exponents also in the algebraic case, giving the analogous definition that we gave
before definition replacing the rigid analytic space X with the algebraic space X, the divisor Dg

with the divisor Dg and the OXK—module w(lXK,M)/K with the Ox,-module w(lxK)M)/K.

We fix a set © = H;::l ©, C K/, where f is the number of irreducible components of the divisor Dy =

ngle;K. We say that (E,V) in MIC((Xk,Mp)/K) has residue along D in © if étale locally there exists
a diagram analogous to such that for every [ the log-V-module X;. i induced by (E, V) has exponents
along Dj 1.k in O, for every j such that gzﬁl;K(ﬁj,l) c Dr),

We will denote the category of locally free module with integrable log connection with exponents in © by
MIC((Xk,Mp)/K)®. We can prove as in lemma [8.2| that the notion of exponents in © can be given étale
locally and that is independent on the choice of a diagram as in (L7). If (E,V) is in MIC((Xk,Mp)/K)
we restrict locally étale in a situation for which there exists a diagram analogous to for the algebraic
setting and we look at the exponents of (E,V) along Dj,x. In particular we consider the log-V-module
(E,V) on Xk induced by the log infinitesimal locally free isocrystal U(E, V) (where ¥ is the functor defined
in proposition and the residue of it along Dj; k- We have a map

Endo,,  (Elp, ) = Endo, (Elp ),

that sends the residue of (E, V) along D, i to the residue of (E’, @) along ﬁj;K. Moreover the map is injective
because the map

I'(Djik,Op, ) = T'(Djik, ObJ;K)

is injective. This means that étale locally (E,V) and the log-V-module (E,V) have the same exponents
along Dj.x and ﬁj; K respectively.

The relation between © and X is as follows.

Given a log infinitesimal isocrystal € with exponents in ¥ then the functor ¥ ! associates to it a module with
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integrable log connection (£, V) such that it has exponents in © = Hizl ©,,, where the p-th component ©,
is given by ﬂ;leh(’Vj) where j is such that ¢; x(Dj,x) C DPK | Viceversa given a module with integrable
log connection (F,V) such that it has exponents in ©, the functor ¥ associates to it a log infinitesimal
isocrystal £ with exponents in ¥ = szl ¥, where the h-th component is given by ©PU) where j is such
that ¢(Dg ;) C D"

From this it follows that the functor ¥ induces an equivalence of categories

MIC((XK7 MD)/(K7 triv))lﬂ@ — Iz’nf((X7 M)/(Spf‘/, N))lf’z'

If we start from a log overconvergent isocrystal £ with Y-unipotent monodromy as in we apply the
equivalence of category given by the functor j! of theorem and the observations written above, we can
conclude that there is fully faithful functor

IT(Uy, M), (Xp, M))/(Spf(V), N)* — MIC(( Xk, Mp)/(K, triv))/©.

The logarithmic extension theorem of Andre and Baldassarri (theorem 4.9 of [AnBa]) gives an equivalence
of category between MIC((Xx, Mp)/(K,triv))!/:® and the category of coherent modules with connection
on Uy regular along Dy, that we denote by MIC(Ug /K)"9 gives us the general result.

Theorem 13.1. There is a fully faithful functor

I (U, M), (Xy, M))/(SpE(V), N))* — MIC(Uk /K)"™.
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