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Abstract - In this paper we prove a comparison theorem between the category of certain modules with

integrable connection on the complement of a normal crossing divisor of the generic fiber of a proper semistable

variety over a DVR and the category of certain log overconvergent isocystrals on the special fiber of the same open.

1 Introduction

The “théorème d’algébrisation” by Christol and Mebkhout (théorème 5.0-10 of [CtMeIV]) asserts that on a
open of a smooth and proper curve all the overconvergent isocrystals (with some non-Liouville conditions)
are algebraic. The aim of this paper is to give a generalized version of this result to the case of a variety of
arbitrary dimension that is the special fiber of a semistable variety.
We first recall the “théorème d’algébrisation” and explain in which sense our result generalizes it. Let V
be a complete discrete valuation ring of mixed characteristic (0, p) with uniformizer π, let K be its fraction
field and let k be the residue field. Christol and Mebkhout consider a proper and smooth curve X over V
and an affine open U with complement D. They define a functor

† : MICLS(UK/K) −→ I†((Uk, Xk)/Spf(V )) (1)

where the first category is the category of algebraic modules with connection on UK which satisfy certain
convergent conditions and the second is the category of overconvergent isocrystals as defined by Berthelot
in [Be].
They prove that under some non-Liouville conditions the functor † is essentially surjective, i. e. every
overconvergent isocrystal is algebraic. Moreover they notice that, always assuming non-Liouville conditions,
† is fully faithful if one restricts to the category of algebraic modules with connection on UK with some
convergent conditions that are extendable to module with connections on XK and logarithmic singularities
along DK . The image of this restricted functor turns out to be the category of overconvergent isocrystals
with slope zero (problème 5.0-14 1) of [CtMeIV] and paragraph 6 of [CtMeII] ).
We are interested in the following generalized situation.
Let X be a proper semistable variety over Spec(V ), which means that locally for the étale topology is étale
over SpecV [x1, . . . , xn, y1, . . . , yn]/(x1 · · ·xr − π), with D a normal crossing divisor, which étale locally is
given by the equation {y1 · · · ys = 0}. The divisor Xk ∪ D induces on X a logarithmic structure that we
denote by M ; similarly, the closed point induces a logarithmic structure on Spec(V ) that we denote by N .
We assume we have the following diagram of fine log schemes

(Xk,M) �
� //

��

(X,M)

��

(XK ,M)? _oo

��
(Spec(k), N)

� � // (Spec(V ), N) (Spec(K), N)? _oo

(2)

where the two squares are cartesian. The log structures denoted again by M on the special fiber Xk and by
N on k are defined in such a way that the closed immersions of fine log schemes (Xk,M) ↪→ (X,M) and
(Spec(k), N) ↪→ (Spec(V ), N) are exact. In an analogous way the log structures on XK and on K are defined
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in such a way that the open immersions (XK ,M) ↪→ (X,M) and (Spec(K), N) ↪→ (Spec(V ), N) are strict.
Let us note that the log structure on K constructed in this way is isomorphic to the trivial log structure.
We consider on X the open U defined as the complement of the divisor D; then there is an open immersion

j : U = X \D ↪→ X

and it induces on U the log structure j∗(M) that, by abuse of notation, we again denote by M .
So we have a diagram analogous to (2) for U , with the same notations for the log structures:

(Uk,M) �
� //

��

(U,M)

��

(UK ,M)? _oo

��
(Spec(k), N)

� � // (Spec(V ), N) (Spec(K), N)? _oo

In this situation we consider the category, denoted by MIC(UK/K)reg, of pairs (E,∇) where E is a sheaf
of coherent OUK -modules and ∇ is an integrable connection regular along DK .
As for the rigid side we look at I†((Uk, Xk)/Spf(V ))log,Σ, the category of overconvergent log isocrystals on
the log pair given by ((Uk,M), (Xk,M)/(Spf(V ), N)) with Σ-unipotent monodromy along Dk, where Σ is
a subset of Zhp , satisfying some non-Liouville hypothesis and h is the number of the irreducible component
of Dk. A log overconvergent isocrystal is represented by a module with connection on a strict neighborhood
W of the tube ]Uk[X̂ in the tube ]Xk[X̂ . To define Σ-unipotent monodromy we proceed étale locally and we
fix an irreducible component D◦j,k of D◦k, the smooth locus of Dk; then the part of the tube ]D◦j,k[X̂ which is
contained in W is isomorphic to a product of an annulus of small width times certain rigid space associate
to D◦j,k, that we think as a base. A log overconvergent isocrystal E has Σ-unipotent monodromy along D◦j,k
if E , restricted to the product described above, admits a filtration such that every successive quotient is
the pullback of a module with connection on the base twisted by a module with connection on the annulus
depending on Σ. We say that E has Σ-unipotent monodromy along Dk if the above condition holds for every
irreducible component of D◦k. The category of overconvergent log isocrystals is defined by Shiho in [Sh4]
as a log version of the category of overconvergent isocrystals defined by Berthelot in [Be] and the notion
of Σ-unipotent monodromy is introduced by Shiho in [Sh6] as a generalization of the notion of unipotent
monodromy introduced by Kedlaya in [Ke]. Let us note that the notion of Σ-unipotent monodromy for a
module with connection on an annulus, with Σ satisfying some non-Liouville conditions, coincides with the
notion of satisfying the Robba condition and having exponent in the sense of Christol and Mebkhout in Σ
(proposition 1.18 of [Sh7]).
Our main result is:

Theorem 1.1. There is a natural algebrization functor

I†((Uk, Xk)/Spf(V ))log,Σ −→MIC(UK/K)reg.

It is a fully faithful functor.

Let us note that our functor goes in the opposite direction with respect to Christol and Mebkhout’s
functor †.

The strategy of our proof is as follows.
We denote by Iconv((Xk,M)/(Spf(V ), N))lf,Σ the category of locally free log convergent isocrystals on
the log convergent site ((Xk,M)/(Spf(V ), N))conv with exponents in Σ. The category of log convergent
isocrystals is defined by Shiho in [Sh1], as a log version of the category of convergent isocrystal defined
by Ogus in [Og] and by Berthelot in [Be]. We consider the category of log overconvergent isocrystals on
((Uk,M), (Xk,M)/(Spf(V ), N)) with Σ-unipotent monodromy and we prove that the restriction functor

j† : Iconv((Xk,M)/(Spf(V ), N))lf,Σ −→ I†((Uk, Xk)/Spf(V ))log,Σ (3)
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is an equivalence of categories.
The equivalence of categories in (3) is a generalization of theorem 3.16 of [Sh6], since Shiho proves the same
result in the case of Xk smooth and Dk a divisor with simple normal crossing, i. e. its components are
regular and meet transversally.
On the other hand we have a fully faithful functor

ĩ : Iconv((Xk,M)/(Spf(V ), N))lf,Σ −→MIC((XK ,M)/K)lf,Σ

between locally free log convergent isocrystals with exponents in Σ and locally free OXK -modules with
integrable connection on XK , logarithmic singularities on DK and exponents in Σ. The theorem of algebraic
logarithmic extension of [AnBa] I,4 gives us a fully faithful functor

MIC((XK ,MD)/K)lf,Σ −→MIC(UK/K)reg. (4)

If we denote byMICLS(UK/K)reg,Σ the essential image of the functor ĩ inMIC(UK/K)reg, we can conclude
that we have an equivalence of categories

I†((Uk, Xk)/Spf(V ))log,Σ −→MICLS(UK/K)reg,Σ.

Let us now describe in detail the contents of the paper.
In the first paragraphs we suppose that (X,M)→ (Spec(V ), N) is a general log smooth morphism of fine log
schemes (not necessarily semistable), with X proper and Xk reduced. We denote by (X̂,M)→ (Spf(V ), N)
the associated morphism of the p-adic completions. We recall the definition of modules with integrable log
connection on a fine log scheme, i.e. the category MIC((XK ,M)/K), the definition of log infinitesimal
isocrystals, the category Iinf ((X̂,M)/(Spf(V ), N)), and the definition of log convergent isocrystals, the
category Iconv((Xk,M)/(Spf(V ), N)). Using the fact that X is proper Shiho (Theorem 3.15, Corollary
3.2.16 of [Sh1]) shows that MIC((XK ,M)/K) is equivalent to the category Iinf ((Xk,M)/(Spf(V ), N)) of
log infinitesimal isocrystals . We prove that the property of being locally free is stable with respect to this
equivalence of categories (propositions 5.2 and 5.4), so that we have an equivalence of categories between
Iinf ((Xk,M)/(Spf(V ), N))lf and MIC((XK ,M)/K)lf . We use the definition of log convergent site and
isocrystals on it given by Shiho in chapter 5 of [Sh1] and the functor

Φ : Iconv(Xk,M)/(Spf(V ), N)) −→ Iinf ((X̂,M)/(Spf(V ), N)),

that he defines between log convergent isocrystals and log infinitesimal isocrystal. We adapt the proof of
proposition 5.2.9 of [Sh1] to show that

Φ̃ : Iconv((Xk,M)/(Spf(V ), N))lf −→ Iinf ((X̂,M)/(Spf(V ), N))lf

∼= MIC((XK ,M)/K)lf
(5)

is fully faithful (theorem 5.11). Shiho proves full faithfulness on the subcategory of log convergent isocrystals
that are iterated extensions of the unit object. As in Shiho’s proof, the key tool used is locally freeness.
Finally, we give a characterization of the essential image of the functor Φ̃ in terms of special stratifications,
a suitable modification of the special stratifications introduced by Shiho in [Sh1]. We conclude by proving
that requiring a stratification to be special is the same as requiring that the radius of convergence of the
stratification is 1. In this last part we do not use log differential calculus, because we prove that we can
restrict to the case of trivial log structures (proposition 6.1).
Then we restrict to the semistable situation: we suppose that the morphism (X,M) → (Spec(V ), N) is as
before (2). After describing the geometric situation, we introduce the definition of log convergent isocrystals
with exponents in Σ, using log-∇-modules defined by Kedlaya in [Ke] and used by Shiho in [Sh6]. We first
define the notion of exponents in Σ étale locally using coordinates, then we prove that it is independent on
the particular étale cover chosen and on the choice of the coordinates (lemma 8.2). After that, following
Shiho, we recall the notion of Σ-unipotence for a log-∇-module defined over a product of a rigid analytic
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space and a polyannulus and also the extension theorem for Σ-unipotent log-∇-modules. Then we analyze
log overconvergent isocrystals. Our setting is different from Shiho’s ([Sh4]), since in our case the base
has a non-trivial log structure. To define a log overconvergent isocrystal with Σ-unipotent monodromy
we proceed étale locally. Then we recall the three key propositions that we use in the proof of the main
theorem. The first property is called “generization of monodromy” and asserts that the property of being
Σ-unipotent is generic on the base in some sense that we make precise (proposition 11.1). The second
property, called “overconvergent generization”, says that the property of being Σ-unipotent can be extended
on strict neighborhoods (proposition 11.2). The third one says that under certain conditions a convergent
log-∇-module with exponents in Σ is Σ-unipotent (proposition 11.4). The proofs of these propositions are
given in [Sh6] as a generalization of the one contained in [Ke]. Using these properties we prove that the
notion of Σ-unipotent monodromy for an overconvergent isocrystal is well posed (lemma 12.1). Finally we
prove (theorem 12.3) that the restriction functor

j† : Iconv((Xk,M)/(Spf(V ), N))lf,Σ −→ I†((Uk, Xk)/Spf(V ))log,Σ

is an equivalence of categories. The strategy of the proof is the same as in theorem 3.16 of [Sh6] and theorem
6.4.5 of [Ke].
In the last part we verify that the notion of exponents in Σ behaves well with respect to the functor ĩ, i. e.
the functor

Iconv((Xk,M)/(Spf(V ), N))lf,Σ −→MIC((XK ,MD)/K)lf,Σ

is well defined. Finally we adapt André and Baldassarri’s theorem of algebraic logarithmic extension to find
theorem 1.1.

2 Connections with logarithmic poles

We will recall the definition of log connection on a fine log scheme or on a p-adic fine log formal scheme,
which is taken from [Sh1] definition 3.1.1; see also [Kz] paragraph 4.
We suppose the reader familiar with the language of log schemes introduced in [Ka] and with his version for
formal schemes given in [Sh1] chapter 2.
We denote by V a discrete valuation ring of mixed characteristic (0, p), complete and separated for the p-adic
topology, π a uniformizer of V , K its fraction field and k its residue field. By a formal scheme over Spf(V )
or a formal V -scheme, we mean a p-adic Noetherian and topologically of finite type formal scheme over V .
According to Shiho’s notation we will give the following definition.

Definition 2.1. If X is a scheme, we denote the category of coherent OX-modules by Coh(OX). If X is
formal V -scheme we denote by Coh(K⊗OX) the category of sheaves of K⊗V OX-modules that are isomorphic
to K ⊗V F for some coherent OX-module F . We will call an object of Coh(K ⊗OX) an isocoherent sheaf.

The category of isocoherent sheaves is introduced in [Og] and (see [Og] remark 1.5) is equivalent to the
category of coherent sheaves on Xan, the rigid analytic space associated to the p-adic formal scheme X via
Raynaud generic fiber.

Definition 2.2. Let f : (X,M) → (S,N) be a map of fine log schemes (resp. fine log formal V -schemes)
and let E be a coherent OX-module (resp. E ∈ Coh(K ⊗OX)). A log connection on E is an OS-linear map

∇ : E → E ⊗ ω1
(X,M)/(S,N)

that is additive and satisfies the Leibniz rule:

∇(ae) = a∇(e) + e⊗ da
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for a ∈ OX and e ∈ E.
Here ω1

(X,M)/(S,N) denotes the sheaf of log differentials (resp. the sheaf of log formal differentials).
We can extend ∇ to ∇i

E ⊗ ωi(X,M)/(S,N)
∇i−−→ E ⊗ ωi+1

(X,M)/(S,N),

where ∇i(e⊗ ω) = e⊗ dω + (−1)i∇(e) ∧ ω. We say that ∇ is integrable if ∇i+1 ◦ ∇i = 0 for all i.
We indicate the category of pairs (E,∇) of a coherent sheaf E (resp. an isocoherent sheaf) and an integrable

log connection ∇ with MIC((X,M)/(S,N)) (resp. M̂IC((X,M)/(S,N))). If M and N are isomorphic to
the trivial log structures we will write M = triv and N = triv and we use the notation MIC(X/S) (resp.

M̂IC(X/S)) to denote MIC((X, triv)/(S, triv)) (resp. M̂IC((X, triv)/(S, triv))).

From proposition 8.9 of [Kz] we know that in the smooth case in characteristic zero every coherent module
with integrable connection is locally free; more precisely we have the following result.

Proposition 2.3. If S is the spectrum of a field of characteristic 0 and X is a smooth scheme over S, then,
for every object (E,∇) in MIC(X/S), E is a locally free OX-module.

This proposition is not true if one admits log-connections; in fact, there is the following example.

Example 2.4. Let X be a curve over K and D a closed point, locally defined by the equation {t = 0}. If
we call MD the log structure on X induced by D we can consider the following log connection

d : OX → ω1
(X,MD)/(K,triv).

If we consider the subsheaf OXK (−D), that consists of sections vanishing on D, then d induces a log con-
nection on OXK (−D). We can see it locally: every section of OXK (−D) can be written as a product of ft,
with f in OXK . The induced log connection is:

OXK (−D)→ OXK (−D)⊗ ω1
(X,MD)/(K,triv)

ft 7→ d(ft) = fdt+ tdf = ftdlogt+ tdf

We can induce an integrable log connection on the quotient OXK/OXK (−D) = OD which is a skyscraper
sheaf.

As in the case where the log structures are trivial (see for example [BeOg] chapter 1), the category of
modules with integrable log connections is equivalent to the category of log stratifications: we now describe
this equivalence.
If (X,M) → (S,N) is a morphism of fine log schemes (resp. a morphism of fine log formal schemes), we
denote by (Xn,Mn) the n-th log infinitesimal neighborhood of (X,M) in (X,M)×(S,N) (X,M)(defined in
[Ka] (5.8), [Sh1] remark 3.2.4 as a log version of the n-th infinitesimal neighborhood described in [BeOg]
chapter 1).

Definition 2.5. Let (X,M)→ (S,N) be a morphism of fine log schemes (resp. of fine log formal V -schemes)
and let E be a coherent sheaf (reps. an isocoherent sheaf on X). Then, a log stratification (resp. a formal
log stratification) on E is a family of morphisms εn : OXn ⊗ E → E ⊗OXn , that satisfy the conditions:

(i) εn is OXn-linear and ε0 is the identity;

(ii) εn and εm are compatible via the maps

OXn → OXm , for m ≤ n;

(iii) (cocycle condition) if we call pi,j (for i, j = 1, 2, 3) the projections from the n-th log infinitesimal neigh-
borhood (Xn(2),M(2)n) of (X,M) in (X,M)×(S,N) (X,M)×(S,N) (X,M) to the n-th log infinitesimal
neighborhood (Xn,Mn) of (X,M) in (X,M)×(S,N) (X,M)

pi,j : (Xn(2),Mn(2))→ (Xn,Mn),

then for all n
p∗1,2(εn) ◦ p∗2,3(εn) = p∗1,3(εn).
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We denote by Str((X,M)/(S,N)) the category of log stratifications (resp. with Ŝtr((X,M)/(S,N)) the
category of log formal stratifications).

Theorem 3.2.15 of [Sh1] gives us the equivalence of categories that we announced: if (X,M) → (S,N)
is log smooth morphism of fine log schemes over Q (resp. a formally smooth morphism of fine log formal
V -schemes), then

Str((X,M)/(S,N)) ∼= MIC((X,M)/(S,N))

(resp. Ŝtr((X,M)/(S,N)) ∼= M̂IC((X,M)/(S,N))).

3 Log infinitesimal isocrystals

We now define the infinitesimal site and log isocrystals on it. These are Shiho’s log formal analogous of
Grothendieck’s infinitesimal site and crystals on it defined in [Gr] or [BeOg] chapter 1. All the definitions
that follow are taken from chapter 3 of [Sh1]. We define the infinitesimal site only in the case of a morphism
of fine log formal schemes, but analogous definition can be given for a morphism of log schemes.

Definition 3.1. Let (X ,M) → (S , N) be a morphism of fine log formal V -schemes. An object of the log

infinitesimal site ((X ,M)/(S , N))inf , or by brevity (X /S )loginf when the log structures are clear, is a 4-ple
(U ,T , L, φ) such that U is a formal V -scheme formally étale over X , (T , L) is a fine log formal V -scheme
over (S , N) and φ : (U ,M) → (T , L) is a nilpotent exact closed immersion of log formal V -schemes over
(S , N). A morphism between (U ,T , L, φ) and (U ′,T ′, L′, φ′) is pair of maps g : (T , L) → (T ′, L′) and
f : U → U ′ such that φ′ ◦ f = g ◦ φ. The coverings in this site are the coverings of T for the étale topology
{Ti → T }i such that Ui = Ti ×T U . We sometimes denote the 4-ple (U ,T , L, φ) simply by T .

Definition 3.2. A log isocrystal on the infinitesimal site (X /S )loginf , or a log infinitesimal isocrystal, is a

sheaf E on (X /S )loginf such that:

(i) for every object (U ,T , L, φ) the Zariski sheaf ET induced on T is an isocoherent sheaf;

(ii) for every morphism g : T → T ′, the map g∗(ET ′)→ ET is an isomorphism.

We denote the category of log isocrystals on the infinitesimal site (X /S )loginf by Iinf (X /S )log.

Definition 3.3. Let X be a formal V -scheme and let F be an isocoherent sheaf. We say that it is locally
free module if there is a formal affine covering {Ui}i∈I of X such that for every Ui = SpfAi, there exists a
finitely generated Ai-module Fi such that F(Ui) = K ⊗ Fi is a projective K ⊗Ai-module.

Definition 3.4. A log isocrystal E on the infinitesimal site (X /S )loginf is said to be locally free if for every
object (U ,T , L, φ) of the infinitesimal site, the sheaf ET induced on T is an isocoherent locally free module.
We will denote the subcategory of Iinf (X /S )log consisting of the locally free infinitesimal log isocrystal by
Iinf (X /S )log,lf .

Thanks to theorem 3.2.15 of [Sh1] we can see that if (X ,M)→ (S , N) is a formally log smooth morphism
of fine log formal V -schemes, then there exists a canonical equivalence of categories

Iinf ((X ,M)/(S , N)) ∼= M̂IC((X ,M)/(S , N))

4 Log convergent isocrystals

In this section we define the log convergent site and the isocrystals on it. The following definitions are taken
from [Sh1] paragraph 5.1.

Definition 4.1. For every log formal V -scheme (Y ,M) we indicate with Y1 the closed subscheme defined
by the ideal p and the associated reduced subscheme of Y1 by Y0.
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Definition 4.2. Let (X ,M) → (S , N) be a morphism of fine log formal V -schemes. An enlargement of
(X ,M) over (S , N) is a triple (T , L, z), that we will indicated with T , such that (T , L) is a fine log
formal V -scheme over (S , N) and z is a morphism (T0, L)→ (X ,M) over (S , N). A morphism between
two enlargements (T , L, z) and (T ′, L′, z′) is a morphism g : (T , L)→ (T ′, L′) such that z = z′ ◦ g0, where
g0 : (T0, L)→ (T ′0 , L

′) is the map induced by g.

Definition 4.3. We define the log convergent site of (X ,M) → (S , N) to be the site whose objects are
enlargements, morphisms are morphisms of enlargements and coverings are given by the étale topology on
T . We denote it by ((X ,M)/(S , N))conv or (X /S )logconv if there is no ambiguity about the log structures.

Definition 4.4. A log isocrystal on (X /S )logconv, or a log convergent isocrystal, is a sheaf E on (X /S )logconv
such that:

(i) for every enlargement (T , L, z) the Zariski sheaf ET induced on T is an isocoherent sheaf;

(ii) for every morphism of enlargements g : (T , L)→ (T ′, L′), the map g∗(ET ′)→ ET is an isomorphism.

We denote by Iconv(X /S )log the category of log isocrystals on the log convergent site.

Definition 4.5. A log isocrystal E on the convergent site ((X ,M)/(S , N))conv is locally free if for every
object T on the convergent site the sheaf ET induced on T is an isocoherent locally free sheaf.
We denote the subcategory of Iconv(X /S )log consisting of the locally free log isocrystals on the convergent
site by Iconv(X /S )log,lf .

5 Relations between algebraic and analytic modules with inte-
grable connections

In what follows we consider the following situation: we fix (X,M)→ (Spec(V ), N) a log smooth and proper
morphism of fine log schemes. We denote by (XK ,M) → (Spec(K), N) its generic fiber and (Xk,M) →
(Spec(k), N) its special fiber, that we suppose to be reduced. So we have a commutative diagram

(Xk,M)
� � //

��

(X,M)

f

��

(XK ,M)? _oo

��
(Spec(k), N) �

� // (Spec(V ), N) (Spec(K), N)? _oo

(6)

The log structures on Xk and Spec(k), that with an abuse of notation we again call M and N , are defined
in such a way that the inclusions in (X,M) and (Spec(V ), N) in this diagram are exact closed immersions
of log schemes.
In the same way we define the log structures M on XK and N on Spec(K) as the log structures defined in
such a way that the inclusions to (X,M) and (Spec(V ), N) are strict.
We consider the p-adic completion of (X,M) → (Spec(V ), N) and we call it (X̂,M) → (Spf(V ), N). With
(X̂,M) we mean X̂ = (Xk, lim←−OX/p

nOX) with the log structure, that we call again M with an abuse of

notation, defined as the pull back of M via the canonical morphism X̂ → X.
Another way to see this is [ChFo] Definition-Lemma 0.9, where the authors prove that the log structure
M over X̂ is isomorphic to lim←−n(M)n with (M)n the log structure on X̂n = (Xk,OX/pnOX) that is the

pull-back of M via the morphism X̂n → X.
Now we want to construct a fully faithful functor

i : Iconv((X̂,M)/(Spf(V ), N))lf −→MIC((XK ,M)/(K,N))lf .

In corollary 3.2.16 of [Sh1] we have a useful characterization of algebraic modules with integrable log con-
nection: the following result holds.
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Proposition 5.1. Under the above assumptions, there is an equivalence of categories

Ψ : MIC((XK ,M)/(Spec(K), N)) −→ Iinf ((X̂,M)/(Spf(V ), N)).

As we saw in example 2.4, it is not true that every coherent module with integrable connection is locally
free, so we will restrict to the category that we call

MIC((XK ,M)/(K,N))lf ,

that consists of pairs (E,∇) where ∇ is an integrable log connection and E a locally free OXK -module.
In the next two propositions we will see that the functor Ψ of proposition 5.1 induces an equivalence of
categories

MIC((XK ,M)/(K,N))lf −→ Iinf ((X̂,M)/(Spf(V ), N))lf .

Proposition 5.2. For every element E = (E,∇) in MIC((XK ,M)/(K,N))lf , the corresponding element
Ψ(E) ∈ Iinf ((X̂,M)/(Spf(V ), N)) is a log infinitesimal locally free isocrystal .

Proof. For the proof we look carefully at the definition of the functor Ψ. The functor is defined as the
composition of three functors each one being an equivalence of category. The first functor Ψ1 is the one that
gives the equivalence of category between MIC((XK ,M)/(K,N)) and the category of log stratifications. So
given E = (E,∇), with E a locally free OXK -module, Ψ1(E) is again the OXK -module E with a collection
of isomorphisms εn : OXnK ⊗ E → E ⊗OXnK , where (Xn

K ,M
n) is the n-th log infinitesimal neighborhood of

(XK ,M) in (XK ,M)×(K,N) (XK ,M), that satisfies the conditions of definition 2.5. By lemma 3.2.7 of [Sh1]
we know that all the OXnK are free OXK -modules, so E ⊗OXnK are locally free OXK -modules.

Now, thanks to example 1.4 of [Og], that uses a formal version of GAGA principle, we know that the
category of coherent OXK -modules on XK is equivalent to the category of isocoherent modules on X̂. So we
can associate to our E an isocoherent sheaf Ê, that we now show to be locally free. The functor that gives
this equivalence is defined locally by extension of scalars: if we suppose that X = Spec(B) then the functor
is

E 7−→ E ⊗BK B̂K
where BK = B ⊗V K and B̂K = lim←−nB/p

n ⊗ K. If E is locally free as coherent OXK -module, then E is

a projective-BK module. This implies that E ⊗BK B̂K is a projective B̂K-module too. Indeed, since E is
projective, there exists a BK-module F such that E ⊕ F is a free BK-module. Then (E ⊕ F )⊗BK B̂K is a
free B̂K-module, which implies that E ⊗BK B̂K is a projective B̂K-module.
Moreover if we indicate with (X̂n,Mn) and (Xn

K ,M
n) the n-th log infinitesimal neighborhoods of the diagonal

morphisms (X̂,M) → (X̂,M) ×(Spf(V ),N) (X̂,M) and (XK ,M) → (XK ,M) ×(K,N) (XK ,M) respectively,
then we have an equivalence of categories also between Coh(OXnK ) and Coh(K ⊗OX̂n) ([Og] (1.4).)

This means that we have a functor Ψ2 from Str((XK ,M)/K) to Ŝtr((X̂,M)/(Spf(V ), N)). Moreover Ψ2 is
an equivalence of categories which sends locally free objects in locally free objects.

Now we construct the functor Ψ3 between Ŝtr((X̂,M)/(Spf(V ), N)) and Iinf (((X̂,M)/(Spf(V ), N)).

Let us take an element (U ,T , L, φ) of the log infinitesimal site (X̂/Spf(V ))loginf . We know by definition
that (U ,M)→ (Spf(V ), N) is formally log smooth over (Spf(V ), N), because (U ,M) is formally étale over
(X̂,M), that is formally log smooth over (SpfV,N). Therefore we have a diagram

(U ,M) //
� _

φ

��

(U ,M)

��
(T , L) // (Spf(V ), N)

and by proposition 2.2.13 of [Sh1] we know that étale locally over T there exists a morphism c : (T , L)→
(U ,M) that is a section for φ : (U ,M)→ (T , L).
If we have T ′ étale over T , then we call s : (T ′, L) → (X̂,M) the composition of the section c with the
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morphism (U ,M)→ (X̂,M).
Then we can define a sheaf over T ′ using the pullback map s∗K : Coh(K ⊗OX̂)→ Coh(K ⊗OT ′), and we

call the resulting sheaf ÊT ′ = s∗KÊ. Let us note that ET ′ is obviously a locally free isocoherent sheaf on

T ′, as soon as Ê is.
If we have two sections c and d and respectively two morphisms s and t, the formally log smooth morphism s×
t : (T ′, L)→ (X̂,M)×(Spf(V ),N) (X̂,M) factors through the n-th log infinitesimal neighborhood (X̂n,Mn),
for some n:

s× t : (T ′, L)
u−→ (X̂n,Mn) −→ (X̂,M)×(Spf(V ),N) (X̂,M),

because of the universal propriety of the n-th infinitesimal neighborhood.
Now, pulling back by u the isomorphisms ε̂n : OX̂n ⊗ Ê → Ê⊗OX̂n given by the stratification, we obtain an

isomorphism t∗KÊ
∼= s∗KÊ. We want to descend this sheaf to T ; this is possible using the cocycle condition

and the theorem of faithfully flat descent for isocoherent sheaves of Gabber ([Og] proposition 1.9.).
In fact, let us consider the formally étale morphism (T ′, L)→ (T , L) and the two projections

(T ′, L)×(T ,L) (T ′, L)

p1

��

p2 // (T ′, L)

(T ′, L) .

Composing pi with the morphism s : (T ′, L) → (X̂,M) we find πi : (T ′, L) ×(T ,L) (T ′, L) → (X̂,M) for
i = 1, 2 respectively.
As before we have a map π1×π2 : (T , L′)×(T ,L) (T ′, L)→ (X̂,M)×(Spf(V ),N) (X̂,M) that factors through

the n-th log infinitesimal neighborhood and we can deduce an isomorphism π∗1,KÊ
∼= π∗2,KÊ and consequently

an isomorphism p∗1,KÊT ′
∼= p∗2,KÊT ′ , that is a covering datum; to obtain a descent datum we adapt the

above argument using the cocycle condition of the stratification. Now using proposition 1.9 of [Og] we are
allowed to descend the sheaf ÊT ′ to an isocoherent sheaf on T , that we call ÊT .
Let us note that ÊT defines a log isocrystal on the infinitesimal site: to check property (ii) of definition 3.2
we can use the same arguments as before.
Now we prove that ÊT is a locally free isocoherent module on T .
We know that ÊT is an isocoherent module on T , isomorphic to K ⊗ F , for some coherent sheaf F of
OT -modules, and that there exists an étale covering of T such that the ÊT , restricted to every element of
the covering, is a locally free isocoherent module. We can restrict ourselves to the affine case; we assume that
T = Spf(A), T ′ = Spf(B) and Spf(B) → Spf(A) étale surjective. We can conclude applying the following
lemma.

Lemma 5.3. Let A and B be commutative noetherian V -algebras and let M be a finitely generated A⊗K =
AK-module. If we have a map A → B that is faithfully flat and BK ⊗AK M is projective, then M is a
projective AK-module.

Proof. We have the following isomorphism for every AK-module N :

BK ⊗AK ExtiAK (M,N) ∼= ExtiBK (BK ⊗AK M,BK ⊗AK N),

for every i ≥ 0, because BK is flat over AK . We can conclude that M is projective because BK ⊗AK M is
assumed to be projective.

It is true also the viceversa of proposition 5.2.

Proposition 5.4. If E is a log infinitesimal locally free isocrystal, then there exists an object (E,∇) ∈
MIC((XK ,M)/(K,N))lf such that Ψ((E,∇)) = E .
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Proof. From proposition 5.1 we know that there exists an element (E,∇) in the categoryMIC((XK ,M)/(K,N))
such that Ψ((E,∇)) = E .
So we have to show that E is a locally free OXK -module. By proposition 5.2 we are reduced to prove that
the equivalence of categories

j : Coh(OXK )→ Coh(K ⊗OX̂) (7)

behaves well with respect to locally free objects, in particular that if F is a locally free isocoherent module
then there exists a locally free sheaf of OXK -modules F such that j(F ) = F .
Let us take F ∈ Coh(OXK ) such that F = j(F ). We claim that if F is not locally free, then F is not locally
free. Let us assume that F is not locally free. So there exists an open affine, that we can suppose local,
U = Spec(A) ⊆ XK such that F |U is not flat on U . By definition of flatness there exists a coherent ideal I
of A such that I ⊗F |U → F is not injective. Let us take a coherent ideal I ′ of OXK that extends I ([Ha] ex.
II 5.15). Then I ′ ⊗ F → F is not injective. Therefore, since the functor j is faithful, exact and compatible
with tensor products the map j(I ′)⊗F = j(I ′ ⊗ F )→ j(F ) = F is not injective. So the functor

−⊗F : Coh(K ⊗OX̂)→ Coh(K ⊗OX̂)

is not an exact functor and then F is not locally free.

Now, as in [Sh1] paragraph 5.2, we construct a functor

Φ : Iconv((X̂,M)/(Spf(V ), N)) −→ Iinf ((X̂,M)/(Spf(V ), N)).

We remark that the functor Φ and its restriction to locally free objects, Φ̃, that we will mention below, can
be constructed for (X ,M)→ (S , N), morphism of fine log formal schemes.
Let (U ,T , L, φ) be an object of the infinitesimal site, define an enlargement Φ∗(T ) = (T , L, z : (T0, L) ∼=
(U0,M)→ (X̂,M)); this is clearly an element of the log convergent site (the isomorphism (T0,M) ∼= (U0, L)
follows from the fact that immersion (U ,M)→ (T , L) is nilpotent exact closed immersion.) Let us observe
that Φ∗(X̂) = (X̂,M, z : (Xk,M)→ (X̂,M)).
If we have an isocrystal E on the log convergent site we define

Φ(E)T = EΦ∗(T ).

We have already seen in proposition 5.2 and 5.4 that Ψ̃, the restriction of the functor Ψ to the locally free
objects

Ψ̃ : MIC((XK ,M)/(Spf(V ), N))lf −→ Iinf ((X̂,M)/(Spf(V ), N))lf ,

is well-defined and is an equivalence of categories. Now we want to show that also Φ̃, the restriction of the
functor Φ to the locally free objects

Φ̃ : Iconv((X̂,M)/(Spf(V ), N))lf −→ Iinf ((X̂,M)/(Spf(V ), N))lf ,

is well-defined. In particular we have the following lemma.

Proposition 5.5. If E is a log convergent isocrystal, such that Φ(E) is a locally free log infinitesimal isocrys-
tal, then E is also locally free.

Proof. We can evaluate E at the enlargement (X̂,M, z : (Xk,M) → (X̂,M)) and we find that EX̂ =
EΦ∗(X̂) = Φ(E)X̂ ; so EX̂ is a locally free isocoherent module. We are going to prove that ET is a locally free

isocoherent sheaf for every enlargement T . Now taking an enlargement (T , L, z : (T0, L) → (X̂,M)), we
have the following commutative diagram of log formal schemes

(T0, L)
z //

i

��

(X̂,M)

f

��
(T , L)

b // (Spf(V ), N).
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As f is formally log smooth, we know that étale locally on T there is a morphism c : (T , L)→ (X̂,M) such
that c ◦ i = z and f ◦ c = b.
So let us consider an open for the étale topology: T ′ formally étale over T and we call again c the morphism
(T ′, L) → (X̂,M) induced by the diagram above, where as usual with L we denote the pullback of L by
the étale map between T and T ′. We construct the enlargement T ′ = (T ′, L, z : (T ′0 , L) → (X̂,M));
the morphism c clearly extends to a morphism of enlargements. So by definition of isocrystal we have an
isomorphism c∗(EX̂) ∼= ET ′ , from which we know that ET ′ is a locally free isocoherent module.
Then we consider the formally étale morphism u : (T ′, L) → (T , L) that extends to a morphism of en-
largements; again by definition of isocrystal we have u∗(ET ) ∼= ET ′ . We know that ET ′ is a locally free
isocoherent module and we want to prove that ET is locally free: we can proceed as in the last part of
proposition 5.2 and conclude.

From the definition of the functor Φ we see also the viceversa of proposition 5.5; indeed if E is a locally
free log convergent isocrystal, then for every element T on the log infinitesimal site

Φ(E)T = EΦ∗(T ),

by definition of Φ.
So we can compose the functors Φ̃ and Ψ̃−1 and obtain a well defined functor

i : Iconv((X̂,M)/(Spf(V ), N))lf →MIC((XK ,M)/(Spf(V ), N))lf .

Our next goal is to prove that Φ̃ is fully faithful, showing first that this can be proved étale locally.

Proposition 5.6. If Φ̃ : Iconv(X̂/Spf(V ))log,lf → Iinf (X̂/Spf(V ))log,lf is fully faithful étale locally on X̂,

then Φ̃ : Iconv(X̂/Spf(V ))log,lf → Iinf (X̂/Spf(V ))log,lf is fully faithful.

Proof. We suppose that
∐
j X̂j = X̂e → X̂ is an étale covering of X̂. If X̂ ′ = X̂e ×X̂ X̂e and X̂ ′′ =

X̂e ×X̂ X̂e ×X̂ X̂e, we have the following diagram:

Iconv(X̂/Spf(V ))log,lf
Φ̃ //

��

Iinf (X̂/Spf(V ))log,lf

��
Iconv(X̂

e/Spf(V ))log,lf
Φ̃e //

�� ��

Iinf (X̂e/Spf(V ))log,lf

�� ��
Iconv(X̂

′/Spf(V ))log,lf
Φ̃′ //

�� ����

Iinf (X̂ ′/Spf(V ))log,lf

�� ����
Iconv(X̂

′′/Spf(V ))log,lf
Φ̃′′ // Iinf (X̂ ′′/Spf(V ))log,lf

where the vertical arrows are induced by the following morphisms:

X̂e → X̂,

pi : X̂ ′ = X̂e ×X̂ X̂e → X̂e for i = 1, 2,

pi,j : X̂ ′′ = X̂e ×X̂ X̂e ×X̂ X̂e → X̂e ×X̂ X̂e for1 ≤ i < j ≤ 3

where the first is the étale morphism defining the étale cover, pi and pi,j are the natural projections.
Thanks to étale descent for log convergent isocrystals ([Sh1] remark 5.1.7), giving E , a locally free log
convergent isocrystal on X̂ is the same as giving Ee, a locally free log convergent isocrystal on X̂e and αE
isomorphism between p∗2Ee → p∗1Ee, compatible with the usual cocycle conditions.
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A morphism f from E to F is the same as a morphism fe from Ee and Fe that satisfies αF ◦p∗2fe = p∗1f
e ◦αE

and the compatibility conditions given by cocycle conditions on X̂ ′′.
By hypothesis Φ̃e, Φ̃′ and Φ̃′′ are fully faithful, so fe induces a unique morphism Φ̃e(fe) between Φ̃e(Ee)→
Φ̃e(Fe) that satisfies the same compatibility conditions on X̂ ′ and X̂ ′′. Moreover this association is surjective.
Using étale descent for log infinitesimal isocrystals proven in [Sh1] remark 3.2.20 we can descend Φ̃e(fe) to
a morphism which coincides with Φ̃(f) between Φ̃(E) and Φ̃(F).

Before proving the full faithfulness étale locally we recall the construction of the universal enlargement
and of convergent stratifications given by Shiho in [Sh1] paragraph 5.2.
Let ` : (X ,M) ↪→ (Y ,M ′) be an exact closed immersion of p-adic log formal V -schemes over (S , N) defined
by a sheaf of ideals I. We need a more general notion of enlargement.

Definition 5.7. We say that the quadruple (T , L, z, g) is an enlargement of (X ,M) in (Y ,M ′) if (T , L, z)
is an enlargement of (X ,M) and g is an (S , N) morphism (T , L) → (Y ,M ′) such that the following
diagram is commutative

(T0, L)

z

��

g0 // (Y0,M
′)

��
(X ,M) �

� ` // (Y ,M ′)

We call Bn,X (Y ) the formal blow up of (Y ,M ′) with respect to pOY +In+1 and we denote by Tn,X (Y )
the open of Bn,X (Y ) defined by p:

Tn,X (Y ) := {x ∈ Bn,X (Y )| (pOY + In+1)OBn,X (Y ),x = pOBn,X (Y ),x}.

We put on Tn,X (Y ) the log structure Ln,X (Y ) induced by the pull-back of M ′.

Remark 5.8. We can see from [Og] proposition 2.3 that if Y = Spf(A) and In+1 = (a1, . . . am) then
Tn,X (Y ) = Spf(A{t1, . . . tm}/(pt1 − a1, . . . , ptm − am) modulo p-torsion). For a local description of the
formal blow up see [Bo] paragraph 2.6.

The map (Tn,X (Y ))0 → (Y )0 factors through X0, so that we can equip the pair (Tn,X (Y ), Ln,X (Y ))
with two maps (zn, tn) in such a way that the quadruple ((Tn,X (Y ), Ln,X (Y ), zn, tn) is an enlargement of
(X ,M) in (Y ,M ′) and the set {(Tn,X (Y ), Ln,X (Y ), zn, tn)}n∈N is an inductive system of enlargements
that is universal in the sense that for every enlargement (T ′, L′, z′, t′) of (X ,M) in (Y ,M ′) there exists a
unique morphism to the inductive system given by {(Tn,X (Y ), Ln,X (Y ), zn, tn)}n∈N (proposition 5.2.4 of
[Sh1]).

The fiber product of fine log formal schemes is a log formal scheme that is not necessarily fine, but,
thanks to proposition 2.1.6 of [Sh1], there is a functor (−)int that sends a log formal scheme to a fine log
formal scheme that is right adjoint to the natural inclusion of fine formal schemes in the category of log
formal schemes. If f : (X ,M)→ (S , N) is a morphism of fine formal schemes, we denote the fiber product
in the category of log formal schemes of (X ,M) and (X ,M) over (S , N) by (X ,M) ×(S ,N) (X ,M)
(resp. the fiber product in the category of log formal schemes of (X ,M) with itself three times over
(S , N) with (X ,M)×(S ,N) (X ,M)×(S ,N) (X ,M)) and the fine log formal scheme associated to this with
((X ,M)×(S ,N) (X ,M))int (resp. ((X ,M)×(S ,N) (X ,M)×(S ,N) (X ,M))int).
We want to construct a log formal scheme that we will indicated by (X (1),M(1)) (resp. (X (2),M(2)))
such that it factors the diagonal embedding ∆int : (X ,M) → ((X ,M) ×(S ,N) (X ,M))int (resp. ∆int :
(X ,M)→ ((X ,M)×(S ,N)(X ,M)×(S ,N)(X ,M))int) in an exact closed immersion (X ,M) ↪→ (X (1),M(1))
(resp. the closed immersion (X ,M) ↪→ (X (2),M(2))) followed by a formally log étale morphism: following
[Sh1] or [Ka] proposition 4.10, we can do this if the morphism f : (X ,M)→ (S , N) has a global chart.
We indicate with (PX → M,QV → N,Q → P ) a chart of f , with α(1) (resp. α(2)) the homomorphism
induced by the map P ⊕Q P → P (resp. P ⊕Q P ⊕Q P → P ) and with R(1) the set (α(1)gp)−1(P ) (resp.
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with R(2) the set (α(2)gp)−1(P )).
With this notation we define X (1) = (X ×S X ) ×Spf(Zp{P⊕QP}) Spf(Zp{R(1)}) (resp. X (2) = (X ×S

X ×S X ) ×Spf(Zp{P⊕QP⊕QP}) Spf(Zp{R(2)})) equipped with the log structure M(1) (resp M(2)) defined
as the log structure induced by the canonical log structure on Spf(Zp{R(1)}) (resp. on Spf(Zp{R(2)})).
Thanks to proposition 4.10 of [Ka] we have that (X (1),M(1)) (resp. (X (2),M(2))) factors the diagonal
embedding as we wanted.
Using the fact that (X ,M) ↪→ (X (i),M(i)) are exact closed immersions of log formal schemes for i = 1, 2,
we define {(TX ,n(X (i)), LX ,n(X (i)), zn(i), tn(i))}n∈N which is the universal system of enlargements associ-
ated to this closed immersions. For simplicity of notation we will denote by (Tn(i), Ln(i)) the n-th universal
enlargement (TX ,n(X (i)), LX ,n(X (i)), zn(i), tn(i)).
The natural maps

pi : (X ,M)×(S ,N) (X ,M)→ (X ,M) for i = 1, 2,

pi,j : (X ,M)×(S ,N) (X , N)×(S ,N) (X , N)→ (X , N)×(S ,N) (X , N)

for 1 ≤ i < j ≤ 3

∆ : (X ,M)→ (X ,M)×(S ,N) (X ,M)

induce compatible morphisms of enlargements:

qi;n : (Tn(1), Ln(1))→ (X ,M)

qi,j;n : (Tn(2), Ln(1))→ (Tn(1), Ln(1))

∆n : (X ,M)→ (Tn(1), Ln(1)).

With the same notation we can give the following definition.

Definition 5.9. A log convergent stratification on (X ,M) is an isocoherent sheaf EX on X and a compatible
family of isomorphisms

εn : q∗2;nEX → q∗1;nEX
such that every εn satisfies

∆∗n(εn) = id;

q∗1,2;n(εn) ◦ q∗2,3;n(εn) = q∗1,3;n(εn).

We denote the category of log convergent stratifications by Str′((X ,M)/(S , N)).

As in the case of log infinitesimal isocrystals we can establish an equivalence of categories between log
convergent stratifications and convergent log isocrystals: this is the statement of proposition 5.2.6 of [Sh1].

Proposition 5.10. If the log formal scheme (X ,M) is formally log smooth over the log formal scheme
(Spf(V ), N), then the category Iconv((X ,M)/(Spf(V ), N)) is equivalent to Str′((X ,M)/(Spf(V ), N)).

Now that we have introduced all the machinery we can finish the proof of full faithfulness of the func-
tor Φ̃. We need the following result, whose proof is essentially the same as the one of proposition 5.2.9 of [Sh1].

Theorem 5.11. The functor

Φ̃ : Iconv((X̂,M)/(Spf(V ), N))lf −→ Iinf ((X̂,M)/(Spf(V ), N))lf

is fully faithful étale locally.
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Proof. Since fine log formal schemes have charts étale locally and the statement is of étale local nature,
we can suppose that the morphism f : (X̂,M) → (Spf(V ), N) has a chart globally. For E and F in
Iconv((X̂,M)/(Spf(V ), N))lf , we can define Hom(E ,F) ∈ Iconv((X̂,M)/(Spf(V ), N))lf by

Hom(E ,F)T = Hom(ET ,FT ).

The global sections ofHom(E ,F) are isomorphic to Hom(E ,F). The same holds for Iinf ((X̂,M)/(Spf(V ), N))lf .
So we are reduced to prove that there is an isomorphism

H0((X̂,M)/(Spf(V ), N)conv, E) −→ H0((X̂,M)/(Spf(V ), N)inf , Φ̃(E))

for every E in Iconv((X̂,M)/(Spf(V ), N))lf .
As we noticed before the morphism f : (X̂,M)→ (Spf(V ), N) has a chart globally and so we can construct
the scheme (X̂(1), (M)(1)) that we described above.
The equivalence in proposition 5.10 associates to E ∈ Iconv((X̂,M)/(Spf(V ), N))lf a log convergent strati-
fication (EX̂ , εn) given by a locally free isocoherent sheaf EX̂ on X̂ and isomorphisms

εn : (K ⊗OTn(1))⊗ EX̂ −→ EX̂ ⊗ (K ⊗OTn(1))

for all n.
So the set H0((X̂,M)/(Spf(V ), N)conv, E) can be characterized in terms of log convergent stratifications as
follows:

H0((X̂,M)/(Spf(V ), N)conv, E) = { e ∈ Γ(X̂, EX̂)| εn(1⊗ e) = e⊗ 1 ∀n}.

To see this let us remember how Shiho ([Sh1] prop 5.2.6) associates to a log convergent isocrystal E a
convergent stratification (EX̂ , εn): to define the isomorphism εn : q∗2,nEX̂ → q∗1,nEX̂ , he uses the fact that
q∗2,nEX̂ ∼= ETn(1)

∼= q∗1,nEX̂ , i.e. the fact that E is an isocrystal. A global section of the log convergent
isocrystal E is a collection of (ϕT )T ∈(X̂/Spf(V ))logconv

with ϕT ∈ ET (T ), with the property that if there is a

morphism of enlargements T → T ′, then ϕT ′ is sent to ϕT . Hence if (eT )T is a global section and we send
it to eX̂ ∈ Γ(X̂, EX̂) then eX̂ is such that εn(1⊗ eX̂) = eX̂ ⊗ 1 for every n: this last condition is equivalent

to say that a global section of E is compatible with qi,n : Tn(1) → X̂ for i = 1, 2. Moreover let us take eX̂
which verifies that εn(1 ⊗ eX̂) = eX̂ ⊗ 1 for every n, this means than one can define eTn(1) for every n in a

compatible way with respect to the map qi,n : Tn(1) → X̂ for i = 1, 2; using the universality of Tn(1) one
can construct a global section of E (look again at proof of proposition 5.2.6 of [Sh1]).
Let J be the sheaf of ideals that defines the closed immersion X̂ ↪→ X̂(1); we denote by OX̂(1)an the sheaf

lim←−mK⊗OX̂(1)/J
m. By proposition 5.2.7 (2) of [Sh1] we know that there is an injective map K⊗OTn(1) →

OX̂(1)an . If we tensor the isomorphisms εn of the convergent stratification (EX̂ , εn) with this map we obtain
a map

ε′ : OX̂(1)an ⊗ EX̂ −→ EX̂ ⊗OX̂(1)an

that coincides with the limit of the isomorphisms of the stratification induced by Φ̃(E) through the equivalence
of categories

Iinf ((X̂,M)/(Spf(V ), N)) ∼= Ŝtr((X̂,M)/(Spf(V ), N)).

So we can characterize the set H0((X̂,M)/(Spf(V ), N)inf as follows

H0((X̂,M)/(Spf(V ), N)inf , Φ̃(E)) = { e ∈ Γ(X̂, EX̂)| ε′(1⊗ e) = e⊗ 1}.

This means that the claim is reduced to prove that the following diagram

OX̂(1)an ⊗ EX̂
ε′ // EX̂ ⊗OX̂(1)an

EX̂

ee 99
(8)
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is commutative if and only if this is commutative

(K ⊗OTn(1))⊗ EX̂
εn // EX̂ ⊗ (K ⊗OTn(1))

EX̂

gg 77

.

(9)

Knowing that the following diagram is commutative

OX̂(1)an ⊗ EX̂
ε′ // EX̂ ⊗OX̂(1)an

(K ⊗OTn(1))⊗ EX̂
εn //

OO

EX̂ ⊗ (K ⊗OTn(1))

OO
(10)

and putting together (9) and (10), we can conclude that if (9) is commutative then (8) is commutative.
Let us suppose instead that (8) is commutative: then using the fact that EX̂ is flat and that the map
K ⊗OTn(1) → OX̂(1)an is injective we can conclude that also (9) is commutative.

Shiho in [Sh1] proposition 5.2.9 proves that the functor Φ is fully faithful étale locally when it is restricted
to the nilpotent part of Iconv((X̂,M)/(Spf(V ), N)) and Iinf ((X̂,M)/(Spf(V ), N)). Our proof is essentially
the same, because the key property of nilpotent objects used in Shiho’s proof is that the nilpotent isocrystals
are locally free.
Putting together theorem 5.11 and proposition 5.6 we obtain the following

Theorem 5.12. The functor Φ̃ is fully faithful.

6 Characterizations of log convergent isocrystals in terms of strat-
ifications

We want to describe the essential image of the functor Φ̃. As for the case of the proof of full faithfulness it
will be enough to describe it étale locally, then, with descent argument we can conclude as in proposition
5.6. So we can suppose that (X̂,M)→ (Spf(V ), N) has a chart globally.
To avoid log differential calculus we will prove that we can restrict to the case of trivial log structures. We
need the following lemma whose proof is essentially the same as proposition 5.2.11 of [Sh1].

Proposition 6.1. Let f : (X̂,M) → (Spf(V ), N) be a formally smooth morphism of fine log schemes
that admits a chart. Let U be a dense open subset of X̂ and set j the open immersion j : U ↪→ X̂.
If Ei ∈ Iinf ((X̂,M)/(Spf(V ), N))lf there exists Ec in the category Iconv((U,M)/(Spf(V ), N))lf such that

Φ̃(Ec) = j∗Ei, then Ei ∈ Φ̃(Iconv((X̂,M)/(Spf(V ), N))lf ).

Proof. Let us consider the sheaf

F = zn∗Hom((K ⊗OTn(1))⊗ Ei,X̂ , Ei,X̂ ⊗ (K ⊗OTn(1))).

The following sequence is exact:

0→ F a−→ (F ⊗OX̂(1)an)⊕ j∗j∗(F)
b−→ j∗j

∗(F ⊗OX̂(1)an),

because F is a projective zn∗(K ⊗OTn(1))-module, and the following sequence is exact by proposition 5.2.8
of [Sh1] and [Og] lemma 2.14

0→ zn∗(K ⊗OTn(1))→ OX̂(1)an ⊕ j∗j
∗zn∗(K ⊗OTn(1))→ j∗j

∗OX̂(1)an .
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Viewing Ec as a convergent stratification we have a map

ε′n : j∗j
∗zn∗((K ⊗OTn(1))⊗ j∗(Ei,X̂))→ j∗j

∗zn∗(j
∗(Ei,X̂)⊗ (K ⊗OTn(1)));

on the other hand the log infinitesimal isocrystal Ei induces a stratification

ε′ : OX̂(1)an ⊗ Ei,X̂ → Ei,X̂ ⊗OX̂(1)an .

The pair (ε′, ε′n) lies in Ker(b), because b(ε′, ε′n) = j∗j∗ε
′− ε′n where we consider ε′n as an element of j∗j

∗(F ⊗
OX̂(1)an) using the injective map K ⊗ OTn(1) → OX̂(1)an . Then there exists an εn ∈ F such that a(εn) =

(ε′, ε′n) that defines a convergent stratification, i.e. a convergent isocrystal Ēc. Moreover one can verify that
Φ̃(Ēc) = Ei.

Now we want to apply proposition 6.1 choosing as U the subset

X̂f̂−triv = {x ∈ X̂ | (f̂∗N)x̄ = (M)x̄}.

Let us prove that it is open and dense in X̂. Clearly X̂f̂−triv is homeomorphic to Xk,fk−triv so it will be

sufficient to prove that Xk,fk−triv is open dense in Xk. But this follows from proposition 2.3.2 of [Sh1]
because the special fiber is reduced.
Now applying proposition 6.1 we can restrict ourselves to the case in which f̂∗N = M . As Shiho notices the
hypothesis f̂∗N = M gives an equivalence of categories

Iconv((X̂,M)/(Spf(V ), N)) ∼= Iconv((X̂, triv)/(Spf(V ), triv)),

where the notation triv means that the log structure is trivial and

Iinf ((X̂,M)/(Spf(V ), N)) ∼= Iinf ((X̂, triv)/(Spf(V ), triv)).

So we are reduce to the case of trivial log structures, as we wanted. We will characterize the essential image
using certain type of stratification that we call special.

Definition 6.2. Let (E, εn) be an object of Ŝtr(X̂/Spf(V )) and let Ẽ be a coherent p-torsion-free OX̂-module

such that K⊗ Ẽ = E; we say that (E, εn) is special if there exists a sequence of integers k(n) for n ∈ N such
that:

(i) k(n) = o(n) for n→∞,

(ii) the restriction of the map pk(n)εn to p∗2,n(Ẽ) has image contained in p∗1,n(Ẽ) and the restriction of the

map pk(n)ε−1
n to p∗1,n(Ẽ) has image contained in p∗2,n(Ẽ).

This definition is a small modification of definition of special stratification given by Shiho ([Sh1] Definition
5.2.12). Our definition of special is weaker then Shiho’s definition: every special object in the sense of Shiho
is special in our sense and allows us to characterize the essential image of the functor Φ̃.
Let us see now that the definition of special is well-posed.

Proposition 6.3. Definition 6.2 is independent on the choice of the p-torsion-free sheaf Ẽ.

Proof. Suppose that (E, εn) is special and that the conditions in definition 6.2 are verified for a given coherent
p-torsionfree OX̂ -module Ẽ such that K ⊗ Ẽ = E. We take an other p-torsion-free OX̂ -module F̃ such that

K ⊗ F̃ = E and we want to prove that the same conditions are verified. From [Og] proposition 1.2 we know
the following isomorphisms

K ⊗HomOX̂ (Ẽ, F̃ ) ∼= HomK⊗OX̂ (K ⊗ Ẽ,K ⊗ F̃ ) ∼= EndK⊗OX̂ (E).
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If we take the identity as endomorphism of E we know that there exists a power of p, say pa, such that
the multiplication by pa is a morphism from Ẽ to F̃ ; moreover this morphism is injective because F̃ is
p-torsion-free.
In the same way we can prove that there exists a b such that the multiplication by pb is an injective morphism
between F̃ and Ẽ.
If we consider now the morphism pk(n)+a+bεn then we have that the restriction of this to p∗2,n(F̃ ) goes to

p∗1,n(F̃ ).
Arguing analogously for ε−1

n we are done.

Let us see, first, that every object in the essential image of the functor Φ is special.
Following Shiho [Sh1], proposition 3.2.14 and proposition 5.2.6, both in the case of trivial log structures, we
have the equivalences of categories

Iconv(X̂/Spf(V )) = Str′(X̂/Spf(V )),

Iinf (X̂/Spf(V )) = Ŝtr(X̂/Spf(V )).

The functor Φ induces the functor

α : Str′(X̂/Spf(V ))→ Ŝtr(X̂/Spf(V )).

From now on we may work locally.
We are reduced to the situation where X̂ is formally smooth and we call dx1, . . . dxl a basis of Ω1

X̂/Spf(V )
.

Let us call ξ1, . . . , ξl the dual basis of dx1, . . . dxl where ξj = 1⊗xj−xj⊗1; we will indicate (ξ1, . . . , ξl) with

ξ and an l-ple of natural numbers (β1, . . . βl) with β. We will use multi-index notations denoting
∏
j ξ

βj
j by

ξβ and β1 + · · ·+ βl by |β|.
We call X̂n the n-th infinitesimal neighborhood of X̂ in X̂ ×SpfV X̂. By a formal version of proposition

2.6 of [BeOg] we know that OX̂n is a free OX̂ -module generated by {ξβ : |β| ≤ n}, so that we can write

OX̂n = OX̂ [[ξ]]/(ξβ, |β| = n+ 1).

We want to give a local description also for the universal system of enlargement {Tn}n of X̂ in X̂ ×SpfV X̂.

By [Og] remark 2.6.1 we know that Tn is isomorphic to the n-th universal enlargement of X̂ in X̂×SpfV X̂|X̂ ,

the formal completion of X̂ ×SpfV X̂ along X̂. Using this and the local description given in the proof of

proposition 2.3 of [Og] we can write OTn = OX̂{ξ, ξ
β/p (|β| = n+ 1)}. By universality of blowing up there

exists a unique map ψn such that the following diagram is commutative

X̂n

ψn

zz ��
Tn // X̂ ×SpfV X̂.

(11)

The functor α is induced by the pull back of ψn and in local coordinates is given by

OTn = OX̂{ξ, ξ
β/p (|β| = n+ 1)} → OX̂ [|ξ|]/(ξβ, |β| = n+ 1)

and sends ξβ

p with |β| = n+ 1 to 0.

Proposition 6.4. If (E, εn) is in Ŝtr(X̂/Spf(V )) and it is in the image of the functor α, then it is special.

Proof. Let (E, ε′n) be an element of Str′(X̂/Spf(V )) such that α(E, ε′n) = (E, εn), with

q∗2,nE
ε′n−−→ q∗1,nE,
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where qi,n are the projections from Tn to X̂, that exist by definition of convergent stratification.

We note that q∗1,nE = E ⊗OX̂ OX̂ [|ξ|]{ξβ/p , (|β| = n+ 1)} is embedded in
∏

β Eξβ and so we have a map,
that we call ε′, which is the composition of

E → q∗2,nE
ε′n−−→ q∗1,nE →

∏
β

Eξβ.

Let us note that ε′ does not depend from n, as a consequence of the fact that the maps ε′n coming from the
convergent stratification are compatible. Using the isomorphisms εn that define the stratification (E, εn)

p∗2,nE
εn−−→ p∗1,nE =

∏
|β|≤n

Eξβ,

where pi,n are the projections pi,n : Xn → X, we can define a map

E → p∗2,nE
εn−−→ p∗1,nE =

∏
|β|≤n

Eξβ. (12)

The fact that α(E, ε′n) = (E, εn) means that, if we call pr the projection∏
β

Eξβ
pr−→

∏
|β|≤n

Eξβ,

the map in (12) coincides with the map

E
ε′−−→
∏
β

Eξβ
pr−−→

∏
|β|≤n

Eξβ.

Let Ẽ be p-torsion-free OX̂ -module such that K ⊗ Ẽ = E; so q∗1,n(Ẽ) = Ẽ ⊗ OX̂ [|ξ|]{ξβ/p (|β| = n + 1)}
and this is embedded in

∏
β Ẽξβ/pb

|β|
n+1c, i.e.

q∗1,n(E) = E ⊗OX̂ [|ξ|]{ξβ/p (|β| = n+ 1)} �
� // ∏

β Eξβ

q∗1,n(Ẽ) = Ẽ ⊗OX̂ [|ξ|]{ξβ/p (|β| = n+ 1)} �
� //

?�

OO

∏
β Ẽξβ/pb

|β|
n+1c

?�

OO
(13)

The OX̂ -module Ẽ is finitely generated and let e1, . . . , el be a set of generators; then for every i = 1, . . . l
there exists ai such that

paiε′(ei) ⊂
∏
β

Ẽ
ξβ

pb
|β|
n+1c

Thus there exists a =: max1≤i≤lai in N such that

paε′(Ẽ) ⊂
∏
β

Ẽ
ξβ

pb
|β|
n+1c

and, if we call πβ the projection
∏

β Eξβ → E, then

pa+b |β|n+1cπβ ◦ ε′(Ẽ) ⊂ Ẽ;
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therefore there exists a sequence bn(β) that tends to infinity when |β| goes to infinity such that

pb
|β|
n cπβ ◦ ε′(Ẽ) ⊂ pbn(β)Ẽ. (14)

If we define now

a(k) := min{a ∈ N| paπβ ◦ ε′(Ẽ) ⊂ Ẽ for all β such that |β| ≤ k},

then pa(k)εk(Ẽ) ⊂
∏
|β|≤k Ẽξ|β|, which means that pa(k)εk sends p∗2,k(Ẽ) into p∗1,k(Ẽ). So we are left to prove

that a(k) = o(k) for k →∞ .
We notice, from the definition of a(k), that a(k) is a non decreasing sequence. If a(k) is bounded, then we
are done. Arguing by contradiction, then a(k) → ∞ for k → ∞. This means that there exists a sequence
{ki}i such that

0 < a(k1) = a(k1 + 1) = · · · = a(k2 − 1) <

a(k2) = a(k2 + 1) = · · · = a(k3 − 1) <

. . .

a(ki) = a(ki + 1) = · · · = a(ki+1 − 1) <

a(ki+1) = a(ki+1 + 1) = · · · = a(ki+2 − 1) < . . . .

Then
pa(ki)πβ ◦ ε′(Ẽ) ⊆ Ẽ,

for every β such that |β| ≤ ki. Let us prove that

pa(ki)πβ ◦ ε′(Ẽ) * pẼ (15)

for some β with |β| = ki. Let us suppose that this is not true; this means that

pa(ki)−1πβ ◦ ε′(Ẽ) ⊆ Ẽ (16)

for every β such that |β| = ki. Moreover for β with |β| < ki we have

pa(ki)−1πβ ◦ ε′(Ẽ) ⊆ pa(ki−1)πβ ◦ ε′(Ẽ) ⊆ Ẽ.

Hence we have
pa(ki)−1πβ ◦ ε′(Ẽ) ⊆ Ẽ

for all β with |β| ≤ ki and this contradicts the definition of a(ki)’s, so (15) holds. If we now put together
the formula (14) with |β| = ki and (15), we find that

lim
i→∞

(⌊
ki
n

⌋
− a(ki)

)
=∞,

so that there exists i0 such that

0 ≤ a(ki)

ki
≤ 1

n

for all i ≥ i0. Then for any k ≥ ki0 we can find some ki with ki ≤ k ≤ ki+1 − 1 and then

0 ≤ a(k)

k
≤ a(ki)

ki
≤ 1

n
.

Hence we have that lim supk
a(k)
k ≤

1
n . Since this is true for any n, we have that a(k) = o(k).
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Now we want to prove the converse: that every special object is in the image of functor α. This is proven
by Shiho in proposition 5.2.13 of [Sh1] for his special objects, but the proof works also in our case.

Proposition 6.5. If (E, εn) is a special stratification on X̂, then there exists (E′, ε′n) ∈ Str′(X̂, Spf(V ))
such that α((E′, ε′n)) = (E, εn).

Hence we have a complete characterization in term of stratifications of the differential equations coming
from a log-convergent isocrystal.

Remark 6.6. An example of the situation studied before appears in [Ba] proposition 3.13 and corollary 3.14.

We want to describe the property of being special in term of radius of convergence. We will use the
formalism given in [LS] in the local situation described before proposition 6.4. If we have an element

(E, εn) ∈ Ŝtr(X̂/Spf(V )), then we can take the inverse limit of the map that we considered in the proof of
the proposition 6.4

E → p∗2,nE
εn−−→ p∗1,nE =

∏
|β|≤n

Eξβ,

and we obtain

θ : E → lim←− p
∗
2,nE

lim←− εn
−−−−→ lim←− p

∗
1,nE =

∏
β

Eξβ.

According to definition 4.4.1 of [LS] we can say that a section s ∈ Γ(X̂, E) is η-convergent, with η < 1 for
the stratification (E, εn) if

θ(s) ∈ Γ(X̂, E ⊗OX̂

{
ξ

η

}
).

Definition 6.7. The radius of convergence of the section s for the stratification (E, εn) is defined as

R(s) = sup{η| s is η−convergent}.

And the radius of convergence of the stratification (E, εn) is

R((E, εn), X̂) = infs∈Γ(X̂,E)R(s).

Proposition 6.8. A stratification (E, εn) is special if and only if its radius of convergence is equal to 1.

Proof. We know that Ŝtr(X̂/Spf(V )) is equivalent to the category M̂IC(X̂/Spf(V )). By lemma 5.2.15 of
[Sh1] we can write the map θ locally. Following the notation that we recalled before proposition 6.4 we
denote by {Dβ}0≤|β|≤n the dual basis of {ξβ}0≤|β|≤n in Diffn(OX̂ ,OX̂), the differential operators of order
≤ n and in particular we indicate with D(i) := D(0...,1,...,0) with 1 at the i-th place .
With this notation

θ(e) =
∑
β

1

β!
∇β(e)⊗ ξβ

with ∇β := (id ⊗D(1) ◦ ∇)β1 ◦ · · · ◦ (id ⊗D(l) ◦ ∇)βl . Given an Ẽ, as in the definition 6.2, then the fact of
being special can be translated as follows: there exists a sequence of integers a(n) such that a(n) = o(n) for
n→∞ and that

pa(n)∇β(e)

β!
∈ Ẽ

for e in Ẽ and for any multi index β such that |β| ≤ n . Let us see that the radius of convergence of a
section e ∈ Ẽ is 1, because e ∈ Ẽ is η-convergent for every η, i.e. for every η

θ(e) =
∑
β

1

β!
∇β(e)⊗ ξβ ∈ Γ(X̂, E ⊗OX̂{

ξ

η
}).
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To prove it we have to show that if we denote by ‖ ‖ the p-adic Banach norm on E such that ‖Ẽ‖ = 1

‖ 1

β!
∇β(e)‖η|β| → 0,∀ η < 1.

This is clearly true because, fixed an n, the following estimate holds:

‖ 1

β!
∇β(e)‖η|β| = pa(n)‖pa(n) 1

β!
∇β(e)‖η|β| ≤ pa(n)η|β|

for every β such that |β| ≤ n, because pa(n) 1
β!∇β(e) ∈ Ẽ.

This means that ‖ 1
β!∇β(e)‖η|β| → 0 since

0 ≤ ‖ 1

β!
∇β(e)‖η|β| ≤ pa(n)η|β|

and pa(n)η|β| → 0 because a(n) = o(n). So we can say that

R(e) = 1 ∀e ∈ Ẽ,

and if we take s ∈ E, then there exists a positive integer k such that pks ∈ Ẽ, so that R(pks) = 1; moreover
we know that s is η-convergent if and only if pks is η convergent so

R(pks) = R(s)

and we can conclude that our stratification has radius of convergence 1.
The converse is also true: if (E, εn) is such that R((E, εn), X̂) = 1, then (E, εn) is special. We choose an Ẽ
coherent OX̂ -module p-torsion free such that K ⊗ Ẽ = E; for every e ∈ Ẽ let a(n, e) the minimal integer
such that

pa(n,e)∇β(e)

β!
∈ Ẽ

for any β with |β| ≤ n. Since R((E, εn), X̂) = 1, then

max|β|≤n

(
‖∇β(e)

β!
‖
)
ηn ≤ max|β|≤n

(
‖∇β(e)

β!
‖η
|β|
2

)
η
n
2 ≤ (const)η

n
2 ,

so that for n → ∞ pa(n,e)ηn → 0 for any η < 1. This means that a(n, e) = o(n) for any e ∈ Ẽ. Now if e

∈ Ẽ, then we can write e =
∑l
i fiei where fi ∈ OX̂ and ei’s are generator of Ẽ which is finitely generated

OX̂ module, and we put a(n) := max1≤i≤la(n, ei) (let us note that a(n) = o(n)). If we denote by dβ the

operator ∇β for the trivial stratification (K ⊗OX̂ , id), then for any f ∈ OX̂ we have
dβ(f)
β! ∈ OX̂ for any β.

Therefore, for any e =
∑l
i fiei ∈ Ẽ, we have

pa(n)∇β(e)

β!
=

l∑
i=1

∑
0≤γ≤β

dγfi
γ!

(
pa(n) ∇β−γei

(β − γ)!

)
∈ Ẽ.

Hence (E, εn) is special.

7 Description of the semistable case

In what follows we suppose that X is proper semistable variety over V , which means that locally for the
étale topology there is an étale map

X
ét−→ Spec

V [x1, . . . , xn, y1, . . . , ym]

x1 · · ·xr − π
.
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We call MXk the log structure on X induced by the special fiber Xk that is a divisor with normal crossing,
so locally for the étale topology it admits a chart given by

Nr → V [x1, . . . , xn, y1, . . . , ym]

x1 · · ·xr − π

that sends ei to xi, where ei = (0, . . . , 1, . . . , 0) with 1 at the i-th place.
We consider the log structure N induced by the closed point of Spec(V ) that has a chart given by

N→ V,

that maps 1 to π. This is explained in [Ka] example 2.5 (1) and example 3.7 (2).
We also consider a normal crossing divisor D on X that locally for the étale topology is defined by the
equation {y1 · · · ys = 0} and we indicate by MD the log structure induced by D on X.
We consider on X the log structure M = MXk ⊕MD, that corresponds to the log structure induced by the
divisor with normal crossing Xk ∪D in X (let us remark that with the notation MXk ⊕MD we indicate the
sum in the category of log structures); the structural morphism extends to a log smooth morphism of log
schemes (X,M) → (Spec(V ), N). Moreover the special fiber is reduced, hence the hypothesis stated at the
beginning of section 5 are satisfied.
If we denote by D̂ the p-adic completion of D, then we have a diagram

Dk
� � //
� _

��

D̂� _

��
Xk
� � //

��

X̂

��
Spec(k)

� � // Spf(V ).

We suppose that étale locally on X̂ we have the following diagram

D̂ =
⋃s
j=1Dj

� � //

��

X̂

��⋃s
j=1{yj = 0} �

� // Spf(V {x1, . . . , xn, y1, . . . , ym}/(x1 · · ·xr − π))

(17)

which is cartesian with the vertical maps that are étale and the horizontal maps closed immersions.
If X̂sing and D̂sing are the singular loci of X̂ and D̂ respectively, then we will use the following notations:

X̂◦ = X̂ − (X̂sing ∪ D̂sing)

D̂◦ = D̂ − (X̂sing ∪ D̂sing) = X̂◦ ∩ D̂.

When we consider the situation étale locally and fix a diagram (17), we have a decomposition of the formal
schemes X̂−X̂sing, X̂

◦ and D̂◦ which will be useful later. First let X̂◦i be the open formal scheme of X̂ defined
by pullback of the open formal scheme of Spf(V {x1, . . . , xn, y1, . . . , ym}/(x1 · · ·xr−π)) on which all the xi′ ’s
for i′ 6= i are invertible and let X̂◦i,j be the open formal subscheme of X̂◦i defined by étale pullback of the open
formal subscheme of Spf(V {x1, . . . , xn, y1, . . . , ym}/(x1 · · ·xr−π)), where xi′ are invertible ∀i′ 6= i, 1 ≤ i ≤ r
and yj′ are invertible ∀j′ 6= j, 1 ≤ j ≤ s.
Moreover we will indicate with D̂◦i,j the set X̂◦i,j ∩ D̂ = X̂◦i,j ∩ D̂j , that is the open formal subscheme of D̂j

defined by pullback of the open formal subscheme of Spf(V {x1, . . . , xn, y1, . . . , ŷj , . . . , ym}/(x1 · · ·xr − π)),
where all the xi′ and the yj′ are invertible for all i′ 6= i, 1 ≤ i ≤ r,∀j′ 6= j, 1 ≤ j ≤ s. In the previous line ŷj

22



in Spf(V {x1, . . . , xn, y1, . . . , ŷj , . . . , ym}/(x1 · · ·xr − π)) means that the coordinate yj is missing.
With this notations we have the following relations:∐

i

X̂◦i = X̂ − X̂sing,
∐
i,j

X̂◦i,j = X̂◦,

∐
i,j

D̂◦i,j = D̂◦.

Note that this decomposition is defined only if we work étale locally and we fix a diagram as (17). If we
denote by the subscript K the rigid analytic space associate to a formal scheme, then the sets D̂◦i,j;K and

X̂◦i,j;K can be described as follows:

X̂◦i,j;K = {P ∈ X̂K | ∀i′ 6= i |xi′(P )| = 1 ,∀j′ 6= j |yj′(P )| = 1 },

D̂◦i,j;K = {P ∈ X̂K | ∀i′ 6= i |xi′(P )| = 1 ,∀j′ 6= j |yj′(P )| = 1 , yj(P ) = 0}.

Finally we will denote by Û the open formal subscheme complement of D̂ in X̂.

8 Log convergent isocrystals with exponents in Σ

We consider now the category of locally free log convergent isocrystals on X̂, that we denote, as before, by
Iconv((X̂,M)/(Spf(V ), N))lf . By remark 5.1.3 of [Sh1] we know that there is an equivalence of categories be-
tween ((Xk,M)/(Spf(V ), N))conv, the log convergent site on the special fiber, and ((X̂,M)/(Spf(V ), N))conv,
the log convergent site on the lifting, hence an equivalence of categories between Iconv((X̂,M)/(Spf(V ), N))lf

and Iconv((Xk,M)/(Spf(V ), N))lf , locally free isocrystals on equivalent sites.
As we saw in section 5, through the functor Φ we can associate to a locally free convergent log isocrystal E
on X̂ a locally free infinitesimal log isocrystal Φ̃(E). Using the terminology of [Ke] and [Sh6], in the local
situation as in (17), Φ̃(E) induces a log-∇-module E on X̂K with respect to y1, . . . ys, that means a locally
free coherent module E on X̂K and an integrable connection

∇ : E → E ⊗ ω1
X̂K/K

,

where ω1
X̂K/K

is the coherent sheaf on X̂K associated to the isocoherent sheaf K ⊗ ω1
(X̂,M)/(Spf(V ),N)

on X̂.

If we are in the situation of (17) we can write ω1
X̂K/K

more explicitly: if we denote by Ω1
X̂K/K

the sheaf of

continuous classical 1-differentials on the rigid analytic space X̂K , then

ω1
X̂K/K

= (Ω1
X̂K

/K ⊕
s⊕
j=1

OX̂Kdlogyj)/L,

where L is the coherent sub OX̂K generated by (dyj , 0)− (0, yjdlogyj) for 1 ≤ j ≤ s. Fixed a j′ ∈ {1, . . . , s},
i.e a component D̂j′;K = {y′j = 0} of D̂K , then there is a natural immersion of

Ω1
X̂K

/K ⊕
⊕
j 6=j′
OX̂Kdlogyj → ω1

X̂K/K

and we call Mj′ the image. The endomorphism resj is obtained by tensoring with ODj;K the following map

E → E ⊗ ω1
X̂K/K

→ E ⊗ ω1
X̂K/K

/Mj

and is called the residue of E along D̂j;K . Thanks to proposition 1.5.3 of [BaCh] we know that there exists

a minimal and monic polynomial Pj ∈ K[T ] such that Pj(resj) = 0. The exponents of (E,∇) along D̂j;K
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are the roots of Pj .

We fix a set Σ =
∏k
h=1 Σh ∈ Zkp, where k is the number of the irreducible components of D̂ =

⋃k
h=1 D̂

h in

X̂.
If there exists an étale covering

∐
l φl :

∐
l X̂l → X̂ such that every X̂l has a diagram as in (17), then we

can define a function of sets h : {1, . . . , r} × {1, . . . , s} → {1, . . . , k} as follows: with the notation as in the
previous paragraph φl(D̂

◦
i,j,l) is contained in one irreducible component of D̂, which we denote by D̂h(i,j).

We denote by Σh(i,j) the factor of Σ corresponding to the component D̂h(i,j).

Definition 8.1. A locally free convergent isocrystal E has exponents along D̂K in Σ if there exists an étale
covering

∐
l φl :

∐
l X̂l → X̂ such that every X̂l has a diagram

D̂l =
⋃s
j=1 D̂j,l

� � //

��

X̂l

��⋃s
j=1{yl,j = 0} �

� // SpfV {xl,1, . . . , xl,n, yl,1, . . . , yl,m}/(xl,1 . . . xl,r − π)

(18)

as in (17) with D̂l := φ−1
l (D̂). Moreover, for every j ∈ {1, . . . , s}, for every l, the log-∇-module El on X̂l;K

induced by E has exponents along D̂j,l;K in ∩ri=1Σh(i,j), if φl(D̂
◦
i,j,l) ⊂ D̂h(i,j).

We denote the category of locally free log convergent isocrystals with exponents in Σ by Iconv((X̂,M)/(Spf(V ), N))Σ

or Iconv(X̂/Spf(V ))log,Σ.

In the next lemma we prove that the definition of isocrystals with exponents along D̂K in Σ is well posed.

Lemma 8.2. The notion of locally free log convergent isocrystal with exponents in Σ is independent on the
choice of the étale covering and the diagram as in (17), which are chosen in definition 8.1.

Proof. Let us suppose that E is a log convergent isocrystal with exponents along D̂K in Σ. It is sufficient to
prove that for any étale morphism φ : X̂ ′ → X̂, such that for X̂ ′ there exists a diagram

D̂′ =
⋃s′
j′=1 D̂

′
j′
� � //

��

X̂ ′

��⋃s′
j′=1{y′j′ = 0} �

� // SpfV {x′1, . . . , x′n′ , y′1, . . . , y′m′}/(x′1 . . . x′r′ − π)

(19)

as in (17), with D̂′ := φ−1(D̂), the log-∇-module E′ on X̂ ′K induced by E has exponents along D̂′j′;K in

∩r′i′=1Σh(i′,j′), if φ(D̂
′◦
i′,j′) ⊂ D̂h(i′,j′) .

By hypothesis E has exponents along D̂K in Σ, hence there exists an étale covering
∐
l φl :

∐
l X̂l → X̂

such that every X̂l has a diagram

D̂l =
⋃s
j=1 D̂j,l

� � //

��

X̂l

��⋃s
j=1{yl,j = 0} �

� // SpfV {xl,1, . . . , xl,n, yl,1, . . . , yl,m}/(xl,1 . . . xl,r − π)

(20)

as in (17) with D̂l := φ−1
l (D̂) such that for every l the log-∇-module El on X̂l;K induced by E has exponents

along D̂j,l;K in ∩ri=1Σh(i,j), if φl(D̂
◦
i,j) ⊂ D̂h(i,j) .
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Let us denote by X̂ ′l the fiber product X̂ ′×X̂ X̂l and by D̂′l, D̂
′
j′,l, D̂

′′
j,l the inverse image of D̂l, D̂

′
j′ , D̂j,l

on X̂ ′l respectively. With this notation we have two diagrams on X̂ ′l :

D̂′l =
⋃s′
j′=1D

′
j′,l
� � //

��

X̂ ′l

��⋃s′
j′=1{y′j′ = 0} �

� // SpfV {x′1, . . . , x′n′ , y′1, . . . , y′m′}/(x′1 . . . x′r′ − π)

(21)

and

D̂′l =
⋃s
j=1 D̂

′′
j,l
� � //

��

X̂ ′l

��⋃s
j=1{yj,l = 0} �

� // SpfV {x1,l, . . . , xn,l, y1,l, . . . , ym,l}/(x1,l . . . xr,l − π).

(22)

The diagram (21) is induced by (19) through p2, the projection on the second factor pr2 : X̂ ′ ×X̂ X̂l → X̂l;

and the diagram (22) is induced by (20) through p1, the projection on the first factor pr2 : X̂ ′ ×X̂ X̂l → X̂ ′.

The log-∇-module E′l induced by E on X̂ ′l;K has exponents along D̂′′j,l;K which are contained in the set of

exponents of El along D̂j,l;K . This happens because the residue of E′l along D̂′′j,l;K , denoted by res
′′

j,l is the

image of the residue of El along D̂j,l;K , denoted by resj,l, via the map

EndOD̂j,l;K
(El|D̂j,l;K )→ EndOD̂′′

j,l;K

(E′l |D̂′′j,l;K ),

which is induced by the projection pr2. If Pj,l is the minimal and monic polynomial such that Pj,l(resj,l) = 0,

then Pj,l(res
′′

j,l) = 0, so if we denoted by P
′′

j,l the minimal and monic polynomial such that P
′′

j,l(res
′′

j,l) = 0,

then P
′′

j,l | Pj,l. So the roots of P
′′

j,l are contained in the roots of Pj,l, which means that the exponents

of E′l along D̂′′j,l are a subset of the set of exponents of El along D̂j,l;K . Since for every (i, j) such that

φl ◦ pr2(D̂′′◦i,j,l) is contained in D̂h(i,j) also φl(D̂
◦
i,j,l) is contained in D̂h(i,j) and viceversa, then we proved

that for every (i, j) such that φl ◦pr2(D̂′′◦i,j,l) is contained in D̂h(i,j) the exponents along D̂′′j,l;K are contained
in ∩ri=1Σh(i,j) .

Now we want to look at the exponents of E′l along D̂′j′,l;K .

Let us put X̂ ′◦l := X̂ ′l ∩ X̂◦, D̂′◦l := D̂′l ∩ X̂◦, D̂′◦l,j′ := D̂′l,j′ ∩ X̂◦ and D̂′′◦l,j := D̂′′l ∩ X̂◦. Since the map

EndOD̂′
l,j′;K

(E′l |D̂′
l,j′;K

)→ EndOD̂′◦
l,j′;K

(E′l |D̂′◦
l,j′;K

)

is injective because of the local freeness it is enough to look at the exponents of E′l |X̂′◦l;K along D̂
′◦
l,j′;K .

Let us note that D̂
′◦
l is a relative normal crossing divisor in a smooth formal V -scheme; if D̂

′◦
l =

⋃
t Ĉt,l

is the decomposition of D̂
′◦
l in irreducible components, from [NaSh] proposition A.0.3 and proposition A.0.7,

we can deduce that D̂
′◦
i′,j′,l and D̂

′′◦
i,j,l, that are irreducible components of D̂

′◦
l , correspond to some Ĉt,l’s.

Thanks to what we have proven before we know that E
′

l |X̂′◦l;K has exponents along D̂
′′◦
j,l;K in ∩ri=1Σh(i,j)

where (i, j) are such that φl ◦ pr2(D̂′′◦i,j,l) is contained in D̂h(i,j).We now consider D̂
′◦
j′,l, then D̂

′◦
i′,j′,l will

coincide with some Ct,l’s, so will correspond to some D̂
′′◦
i,j,l. If Ct,l is such that φ ◦ pr1(Ct,l) ⊂ D̂h then also

φl ◦ pr2(Ct,l) ⊂ D̂h by the commutativity of the following diagram

X̂ ′ ×X̂ X̂l

pr1
��

pr2 // X̂l

φl
��

X̂ ′
φ // X̂

. (23)
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So we can conclude that the exponents of E′l along D̂
′

j′,l;K are contained in ∩r′i′=1Σh(i′,j′) with (i′, j′) such

that φ ◦ pr1(D̂
′◦
i′,j′,l) ⊂ D̂h(i′,j′).

Finally we prove that E′ has exponents along D̂′j′;K in ∩r′i′=1Σh(i′,j′) with (i′, j′) such that φ(D̂
′◦
i′,j′) ⊂ D̂h(i′,j′).

Having a surjective étale map
∐
l X̂
′
l → X̂ ′, the thesis is reduced to prove that the induced map

EndO
D̂
′
j′;K

(E′ ⊗OD̂′
j′;K

)→ EndO∐
l D̂
′
j′,l;K

(
∐
l

E′l ⊗O∐
l D̂
′
j′,l;K

) (24)

is injective.
If φ(D̂

′◦
i′,j′) ⊂ D̂h(i′,j′), then φ ◦ pr1(D̂

′◦
i′,j′,l) ⊂ D̂h(i′,j′) for every l and φ ◦ pr1(

∐
l D̂
′◦
i′,j′,l) is contained in

D̂h(i′,j′). One can see that the residue of E′ along D̂
′

j′;K goes via the map in (24) into the residue of
∐
lE
′
l

along
∐
l D̂
′

j′,l;K .

Γ(D̂′j′;K ,OD̂′
j′;K

)→ Γ(
∐
l

D̂′j′,l;K ,O∐
l D̂
′
j′,l;K

)

is injective, since
∐
l X̂
′
l → X̂ ′ is étale surjective and then faithfully flat.

9 Log-∇-modules on polyannuli

We recall in this section the notion of log-∇-modules on some particular rigid space defined and used by
Kedlaya in [Ke] and by Shiho in [Sh6].
An aligned interval is a interval I contained in [0,∞) such that any end point is contained in Γ∗ with Γ∗

the multiplicative divisible closure of the image of the absolute value | | : K∗ → R+. An aligned interval is
said to be quasi open if is open at any non zero end point. For an aligned interval we define a polyannulus
as the rigid analytic space AnK(I) = {(t1, . . . , tn) ∈ An,rigK ||ti| ∈ I ∀ i = 1, . . . , n}.
For example we will consider A1

K([λ, 1]), the rigid annulus with coefficients in K and radii λ and 1, for λ ∈ Γ∗

or AnK([0, 0]), the polyannulus in n coordinates of null radius.
If Y is a smooth rigid analytic space and y1, . . . , ys are global sections such that they are smooth and meet
transversally, then for a subset Σ =

∏s
j=1 Σj ⊂ K̄s we denote by LNMY,Σ the category of log-∇-module on

Y such that all the exponents along {yj = 0} are contained in Σj for every j = 1, . . . , s.
If Y is a smooth rigid analytic space and y1, . . . , ys are global sections such that they are smooth and meet
transversally, then we set ωY×AnK([0,0])/K = ω1

Y/K ⊕
⊕n

i=1OY dlogti. We define a log-∇-module (E,∇) on

Y ×AnK([0, 0])/K with respect to y1 . . . , ys, t1, . . . tn as a log-∇-module (E,∇) on Y with respect to y1, . . . , ys
with n commuting endomorphisms ∂i = ti

∂
∂ti

of (E,∇) for i = 1, . . . n. If we fix Σ =
∏s
j=1 Σj ×

∏n
i=1 Σi

⊂ K̄s+n, we can define a log-∇-module (E,∇) with respect to y1 . . . ys, t1, . . . , tn on Y ×AnK([0, 0])/K with
exponents in Σ if the log-∇-module (E,∇) on Y has exponents along {yj = 0} in Σj and if the commuting
endomorphisms ∂i = ti

∂
∂ti

have eigenvalues in Σi for every i = 1, . . . , n. Following Shiho we denote the
category of locally free log-∇-modules on Y ×AnK([0, 0])/K with exponents in Σ by LNMY×AnK([0,0]),Σ.

If I is an aligned interval and ξ := (ξ1, . . . , ξn) ∈ K̄n, the log-∇-module denoted by (Mξ,∇Mξ
) is the log-∇-

module on AnK(I) given by (OAnK(I), d+
∑n
j=1 ξjdlogtj). We will define now the notion of Σ-unipotence for

log-∇-modules on a product of a smooth rigid analytic space and a polyannulus ([Sh6] definition 1.3).

Definition 9.1. Let Y be a smooth rigid analytic space, y1, . . . , ys global sections whose zero loci are smooth
and meet transversally, I an aligned interval and Σ =

∏s+n
j=1 Σj ⊂ K̄s+n. We say that E = (E,∇) ∈

LNMY×AnK(I) is Σ-unipotent if after some finite extension of K there exists a filtration

0 ⊂ E1 ⊂ · · · ⊂ En = E

of subobjects such that every successive quotient Ei/Ei−1
∼= π∗1F × π∗2(Mξ,∇Mξ

), where π1 denotes the first
projection, π2 the second, F is a log-∇-module ∈ LNMX,

∏s
j=1 Σj and(Mξ,∇Mξ

) denotes the log -∇-module

we defined before with ξ ∈
∏s+n
j=s+1 Σj.

We will denote by ULNMY×AnK(I),Σ the categories of Σ-unipotent log-∇-modules on Y ×AnK(I).
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Remark 9.2. (Remark 1.16 of [Sh6]) We note that in the case of I = [0, 0] we have that ULNMY×AnK([0,0]),Σ
∼=

LNMY×AnK([0,0]),Σ: every object in LNMY×AnK([0,0]),Σ is Σ-unipotent. Let us take E in LNMY×AnK([0,0]),Σ, see-
ing as a log-∇-module (E,∇) in LNMY,

∏s
j=1 Σj endowed with ∂j for j = 1, . . . , n, commuting endomorphisms.

To prove that it is Σ-unipotent we proceed by induction on the rank of E. We consider E1 = ∩ni=1Ker(∂i−ξi),
for some (ξ1, . . . , ξn) ∈

∏s+n
j=s+1 Σj. The submodule E1 is non zero, it is Σ-constant and E/E1 is Σ-unipotent

by induction hypothesis. Hence E is Σ-unipotent.

Shiho ([Sh6] Definition 1.5) defines a functor

UI : LNMY×AnK([0,0]),Σ → LNMY×AnK(I),Σ.

It associates to a log-∇-module E a log-∇-module UI(E) defined as the sheaf π∗1E and the connection

v 7→ π∗1(∇)v +

n∑
i=1

π∗1(Ni)(v)⊗ dti
ti
,

where Ni for i = 1, . . . n are the commuting endomorphisms attached to E with eigenvalues on Σi.
We recall here the definition of a non Liouville number, which we will use in the sequel.

Definition 9.3. An element α in K̄ is said to be p-adically non-Liouville if both the power series
∑
n 6=α

xn

α−n
and

∑
n 6=α

xn

n−α have radius of convergence equal to 1.

As in definition 1.8 of [Sh6] we can define the following.

Definition 9.4. A set Σ ⊂ K̄ is called (NID) (resp. (NLD)) if for any α, β ∈ Σ, α − β is a non zero
integer (resp. is p-adically non-Liouville). A set Σ =

∏s
j=1 Σj ⊂ K̄s is called (NID) (resp. (NLD)) if for

any j = 1, . . . , s Σj is (NID) (resp. (NLD)).

We will use the following result ([Ke] 3.3.4, [Ke] 3.3.6, [Sh6] corollary 1.15 and [Sh6] corollary 1.16)

Theorem 9.5. Let Y be as before, I a quasi open interval and Σ =
∏s+n
j=1 Σj ⊂ K̄s+n which is (NID) and

(NLD) then the restriction of the functor UI to the Σ-unipotent log-∇-modules

UI : ULNMY×AnK([0,0]),Σ → ULNMY×AnK(I),Σ

is an equivalence of categories. If I is an interval of length ≥ 0, but not necessarily quasi open, then the
functor UI is fully faithful.

10 Log overconvergent isocrystals

Before defining the category of log overconvergent isocrystals, we recall the notion of log tubular neighbor-
hood given by Shiho in [Sh2] definition 2.2.5 with some restrictive hypothesis and in [Sh3] paragraph 2 in
full generality. This is the log version of the tubular neighborhood defined by Berthelot in [Be].
Given a closed immersion of fine log formal schemes i : (Z,MZ) ↪→ (Z ,MZ ), there exists a fine log formal
scheme (Z ex,MZ ex) and an associated homeomorphic closed exact immersion iex : (Z,MZ) ↪→ (Z ex,MZ ex)
such that the functor that associates iex to i is a right adjoint functor to the inclusion functor from the cat-
egory of homeomorphic closed immersions of log formal schemes in the category of closed immersions of log
formal schemes. The functor i 7→ iex is called the exactification functor and its existence is proven in [Sh3]
proposition-definition 2.10.
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Definition 10.1. Let (Z,MZ) ↪→ (Z ,MZ ) be a closed immersion of log formal schemes, then the log

tubular neighborhood ]Z[logZ of (Z,MZ) in (Z ,MZ ) is defined as the rigid analytic space Z ex
K associated to

the formal scheme Z ex. We can define the specialization map

sp :]Z[logZ → Ẑ ,

where Ẑ is the completion of Z along Z, as the composition of the usual specialization map ]Z[logZ = Z ex
K →

Z ex with the map Z ex → Ẑ induced by the morphism Z ex → Z .

We can notice that, if the closed immersion i : (Z,MZ) ↪→ (Z ,MZ ) is exact, then Z ex = ZK and the

log tubular neighborhood ]Z[logZ coincides with the classical tubular neighborhood.
We define the category of log overconvergent isocrystals for log pairs. Log pairs are defined in paragraph 4 of
[Sh4] and in 2.1 of [ChTs] in the case of trivial log structures. A log pair is a pair ((X,MX), (X̄,MX̄)) of fine
log schemes in characteristic p endowed with a strict open immersion (X,MX) ↪→ (X̄,MX̄). A morphism
of log pairs f : ((X,MX), (X̄,MX̄)) → ((Y,MY ), (Ȳ ,MȲ )) is a morphism of log schemes f : X̄ → Ȳ that
verifies f(X) ⊂ Y . A log pair ((X,MX), (X̄,MX̄)) over a log pair ((S,MS), (S̄,MS̄)) is a log pair endowed
with the structural morphism f : ((X,MX), (X̄,MX̄)) → ((S,MS), (S̄,MS̄)). We assume that all log pairs
are log pairs over a given log pair ((S,MS), (S,MS)). In paragraph 4 of [Sh4] there is a definition of log
overconvergent isocrystals for log pairs over a log pair ((S,MS), (S,MS)) with MS isomorphic to the trivial
log structure; we will give analogous definition in the case of non necessarily trivial MS .
A log triple is a triple ((X,MX), (X̄,MX̄), (P,MP)) which consists of a log pair ((X,MX), (X̄,MX̄))
and a log formal scheme (P,MP) over a log formal scheme (S ,MS ) endowed with a closed immersion
(X̄,MX̄) ↪→ (P,MP). Morphisms of log triples are defined in the natural way, as well as a log triple over
an other log triple. We will work only with triples ((X,MX), (X̄,MX̄), (P,MP)) over a fixed log triple
((S,MS), (S,MS), (S ,MS )).
As in the classical case, for a log triple ((X,MX), (X̄,MX̄), (P,MP)) we can define a strict neighborhood

W of ]X[logP in ]X̄[logP to be an admissible open of ]X̄[logP such that {W, ]X̄[logP −]X[logP } is an admissible cov-

ering of ]X̄[logP . Given a sheaf of OW modules E we define the sheaf of overconvergent sections as the sheaf

j†WE = lim−→W ′
αW ′,]X̄[logP ∗

α−1
W ′,WE , where W ′ varies among the strict neighborhoods of ]X[logP in ]X̄[logP that

are contained in W and αT,T ′ : T ↪→ T ′ is the natural inclusion. If W =]X̄[logP , then we will denote the sheaf
of overconvergent sections by j†E .
We suppose that there exists a commutative diagram

(X̄,MX̄)
j //

g

��

(P,MP)

h

��
(Ȳ ,MȲ )

i // (Y ,MY )

(25)

where j is a closed immersion and h is formally log smooth. If we denote by (P(1),MP(1)) (resp.
(P(2),MP(2))) the fiber product of (P,MP) with itself over (Y ,MY ) (reps. the fiber product of (P,MP)
with itself over (Y ,MY ) three times), then the projections and the diagonal induce the following maps:

pi :]X̄[logP(1)→]X̄[logP for i = 1, 2,

pi,j :]X̄[logP(2)→]X̄[logP(1) for 1 ≤ i, j ≤ 3,

∆ :]X̄[logP →]X̄[logP(1).

Definition 10.2. With the previous notation a log overconvergent isocrystal is a pair (E , ε) consisting of
a coherent j†O]X̄[logP

-module E and ε a j†O]X̄[log
P(1)

-linear isomorphism ε : p∗1E → p∗2E that satisfies ∆∗(ε) =

id and p∗1,2(ε) ◦ p∗2,3(ε) = p∗1,3(ε). We denote by I†(((X, X̄)/Y ,P)log) the category of log overconvergent
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isocrystals on ((X,MX), (X̄,MX̄)/Y ) over (P,MP). We say that (E , ε) is a locally free log overconvergent
isocrystal if E is a locally free j†O]X̄[logP

-module and we indicate the category of locally free log overconvergent

isocrystals with I†(((X, X̄)/Y ,P)log)lf .

In the case of trivial log structures the previous definition coincides with the definition of overconvergent
isocrystals given by Berthelot [Be].

Remark 10.3. Shiho in [Sh4] definition 4.2 defines the category of log overconvergent isocrystals also in a
more general situation, but for our purposes the definition we gave is sufficient.

Given a log pair ((X,MX), (X̄,MX̄)), we assume the existence of a diagram

(X̄,MX̄)
g−→ (Ȳ ,MȲ )

i−→ (Y ,MY ), (26)

where (Ȳ ,MȲ ) is a log scheme over (S,MS), (Y ,MY ) is a p-adic log formal scheme over (S ,MS ) and i is
a closed immersion.
Coming back to the setting discussed in section 7, we consider the log triple ((Uk,M), (Xk,M), (X̂,M)) over
((Spec(k), N), (Spec(k), N), (Spf(V ), N)) and the following commutative diagram

(Uk,M) �
� //

��

(Xk,M)

fk

��

� � // (X̂,M)

��
(Spec(k), N) �

� // (Spec(k), N) �
� // (Spf(V ), N) .

The diagram as in (26) is given by

(Uk,M)
g−→ (Speck,N)

i−→ (SpfV,N)

and the commutative diagram as in (25) is

(Xk,M)
j //

g

��

(X̂,M))

h

��
(Spec(k), N)

i // (Spf(V ), N).

Let us note that since the immersion (Uk,M) ↪→ (X̂,M) is strict and the closed immersion (Xk,M) ↪→
(X̂,M) is exact, the log tubes in these cases coincide with the classical tubes:

]Xk[log
X̂

=]Xk[X̂= X̂K

]Uk[log
X̂

=]Uk[X̂= ÛK .

Now we want to give a description of integrable connections associated to locally free log overconvergent
isocrystals in our case. By proposition 2.1.10 of [Be] we know that there is an equivalence of categories
between Coh(j†O]Xk[X̂

), the category of j†O]Xk[X̂
-coherent modules, and the inductive limit category of

coherent modules over strict neighborhoods of ]Uk[X̂ in ]Xk[X̂ . Thanks to remark after proposition 2.1.10 of
[Be], if (E , ε) is a locally free log overconvergent isocrystal, then E is a locally free j†O]Xk[X̂

module, which
means that there exists a strict neighborhood W of ]Uk[X̂ in ]Xk[X̂ and a locally free OW -module E, such

that j†WE = E .
The log overconvergent isocrystal (E , ε) induces an integrable connection on E

∇ : E → E ⊗j†O]Xk[
X̂

j†ω1
]Xk[X̂/K
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where ω1
]Xk[X̂/K

is the restriction of K⊗ω1
(X̂,M)/(Spf(V ),N)

to ]Xk[X̂ ; moreover given a strict neighborhood W

of ]Uk[X̂ in ]Xk[X̂ , as we saw before, there exists E on W such that j†WE = E and there exists an integrable
connection

∇ : E → E ⊗ ω1
W/K

which induces the above connection on E , where ω1
W/K is the restriction of K ⊗ ω1

(X̂,M)/(Spf(V ),N)
to W.

If étale locally we are in the situation described in (17), then W contains a subspace of the form

{P ∈ X̂K | ∀j |yj(P )| ≥ λ}

for some λ ∈ (0, 1) ∩ Γ∗ with Γ∗ the divisible closure of the image of the absolute value | | : K∗ → R+.
Therefore we can restrict E to the space

{P ∈ X̂◦i,j;K | λ ≤ |yj(P )| < 1}.

Proposition 10.4. There is an isomorphism

φ : D̂◦j,i;K ×A1
K([λ, 1))→ {P ∈ X̂◦i,j;K | λ ≤ |yj(P )| < 1},

where A1
K([λ, 1)) := {t ∈ A1

K | |t| ∈ [λ, 1)}.

Proof. If we can prove that D̂◦j,i;K × A1
K([0, 1)) ∼= X̂◦i,j;K , then the isomorphism of the proposition will be

clear. To prove this we will apply lemma 4.3.1 of [Ke]: we consider A = Γ(X̂◦i,j;K ,OXK ), and as B the ring

A/yjA = Γ(D̂◦i,j;K ,OXK ). We can apply lemma 4.3.1 of [Ke] because Γ(D̂◦i,j;K ,OXK ) is formally smooth
over K and we can conclude that

Γ(X̂◦i,j;K ,OXK ) ∼= Γ(D̂◦i,j;K ,OXK )[|yj |]

i.e. the isomorphism that we wanted.

We fix a set Σ =
∏k
h=1 Σh ∈ Zkp, where k is the number of the irreducible components of D̂ =

⋃k
h=1 D̂

h

in X̂, with the same notations as before definition 8.1.

Definition 10.5. A log overconvergent isocrystal E has Σ-unipotent monodromy if there exists an étale
covering

∐
l φl :

∐
l X̂l → X̂ such that every X̂l has a diagram

D̂l =
⋃s
j=1 D̂j,l

� � //

��

X̂l

��⋃s
j=1{yj,l = 0} �

� // SpfV {x1,l, . . . , xn,l, y1,l, . . . , ym,l}/(x1,l . . . xr,l − π)

(27)

as in (17) with D̂l := φ−1
l (D̂) such that for every l the restriction of the log-∇-module El on X̂l;K to

D̂◦i,j,l;K ×A1
K [λ, 1),

is ∩ri=1Σh(i,j)-unipotent , ∀ (i, j) such that φl(D̂
◦
i,j,l) ⊂ D̂h(i,j).

We denote the category of log overconvergent isocrystals with Σ-unipotent monodromy by I†(((Uk, Xk)/Spf(V ))log,Σ

or I†((Uk,M), (Xk,M))/(Spf(V ), N))Σ.

Remark 10.6. In definition 10.5 we do not ask any locally freeness hypothesis, because every object in the
category I†((Uk,M), (Xk,M))/(Spf(V ), N)) is such that E is locally free. This is clear because (E , ε) induces

on a strict neighborhood W an OW -module E, such that j†WE = E endowed with an integrable connection.
As K is of characteristic 0 we can conclude that E is locally free and E is locally free.
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11 Unipotence, generization and overconvergent generization

In this section we recall the three propositions that we will use in the proof of the main theorem. They are
proven by Shiho in [Sh6] as generalization of the analogous propositions proven by Kedlaya in [Ke] (assuming
Σ = 0). We will write the statements only in the cases that we need, that are simplified versions of the
propositions given in paragraph 2 of [Sh6]. The first property that we consider is called by Shiho and Kedlaya
generization property for monodromy ([Ke] proposition 3.4.3 and [Sh6] proposition 2.4 ).

Proposition 11.1. Let A be an affinoid algebra such that Y = Spm(A) is smooth and endowed with sections
y1, . . . , ys that are smooth and meet transversally. Suppose that there exists A ⊆ L such that L is an affinoid
algebra over K, Spm(L) is smooth, all the yi’s are invertible in L and the spectral norm on L restricts to the
spectral norm on A. Let I be a quasi open interval contained in [0, 1) and AnL(I) defined as Spm(L)×AnK(I).
Let Σ ⊂ Zn+s

p be a set which is (NLD) and (NID); if E ∈ LNMY×AnK(I),Σ is such that the induced object F
∈ LNMAnL(I),Σ is unipotent, then E is Σ-unipotent.

The second result that we need is called overconvergent generization and describes the property of ex-
tension of unipotence on strict neighborhoods (proposition 2.7 of [Sh6] and proposition 3.5.3 of [Ke]).

Proposition 11.2. Let P be a p-adic formal affine scheme topologically of finite type over V . Let Yk ⊆ Pk
be an open dense subscheme of the special fiber of P such that P is formally smooth over V in a neighborhood
of Yk. Let W be a strict neighborhood of ]Yk[P in PK , I ⊂ [0, 1) a quasi open interval and Σ a subset of Znp .
Given E ∈ LNMW×AnK(I),Σ such that the restriction of E to ]Yk[P×AnK(I) is Σ-unipotent, then for every
closed interval [b, c] ⊆ I there exists a strict neighborhood W ′ of ]Yk[P in PK such that W ′ is contained in
W and such that the restriction of E to W ′ ×AnK [b, c] is Σ-unipotent.

The third property that we need states that, under certain assumptions, a log-∇-module with exponents
in Σ that is convergent is Σ-unipotent (proposition 2.12 of [Sh6] and lemma 3.6.2 of [Ke]). Before giving the
statement we recall what is a log-∇-module with exponents in Σ that is convergent ([Sh6], definition 2.9).

Definition 11.3. Let Y be a smooth affinoid rigid space endowed with y1, . . . , ys ∈ Γ(Y,OY ) whose zero loci
are smooth and meet transversally, let a ∈ (0, 1] ∩ Γ∗ and let E be a log-∇-module on X × AnK([0, a)) with
respect to y1, . . . , ys, t1, . . . , tn. Then E is called log convergent if, for any a′ ∈ (0, a) ∩ Γ∗, η ∈ (0, 1) and
v ∈ Γ(Y ×AnK([0, a′]), E), the multisequence

bi1,...,in :=

 1

i1!, · · · in!

 n∏
j=1

ij−1∏
l=0

(
tj
∂

∂tj
− l
) (v)


i1,...,in

is η-null which means that for any multisequence ci1,...in in any complete extension of K with |ci1,...,in | <
ηi1+···+in the multisequence {ci1,...,inbi1,...,in} converges to zero.

Proposition 11.4. Let A be an integral affinoid algebra such that Y = Spm(A) is smooth. Suppose that
there exists A ⊆ L such that L is an affinoid algebra over K, Spm(L) is smooth and yj’s are invertible in L
and the spectral norm of L restricts to the spectral norm of A. Let Σ ⊂ Zn+s

p be a set which is (NLD) and
(NID); if E is an object of LNMY×AnK([0,1)),Σ which is log convergent, then it is Σ-unipotent.

12 Extension theorem

Now we come back to the semistable situation and we will prove that the definition of Σ-unipotent mon-
odromy is well posed.

Proposition 12.1. Let E be an overconvergent log isocrystal which is in the category I†((Uk, Xk)/Spf(V ))log,Σ.
The notion of Σ-unipotent monodromy for E is independent on the choice of the étale cover and of the diagram
in (17) which we have chosen in definition 10.5.
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Proof. First we will prove that if E has Σ-unipotent monodromy for some diagram as in (17), then it has
Σ-unipotent monodromy for any diagram as in (17). So we suppose that there exists an étale covering∐
l φl :

∐
l X̂l → X̂ such that every X̂l has a diagram as in (17). As we saw before E induces on some W

strict neighborhood of ]Uk[X̂ in ]Xk[X̂ a locally free OW -module E with an integrable connection. In the
situation of (17) W contains the set

{P ∈ X̂;K | ∀j |yj(P )| ≥ λ}

and the restriction of E to
D̂◦i,j;K ×A1

K [λ, 1)

is ∩ri=1Σh(i,j)-unipotent for some λ, if (i, j) are such that φl(D̂
◦
i,j) ⊂ D̂h(i,j).

Using theorem 9.5 we can extend E to a module with connection on

D̂◦i,j;K ×A1
K [0, 1)

that is ∩ri=1Σh(i,j)-unipotent. In fact, we can restrict E to a module with connection on D̂◦i,j;K ×A1
K([0, 0])

which is ∩ri=1Σh(i,j)-unipotent and use the equivalence of categories of theorem 9.5 to extend it to a

∩ri=1Σh(i,j)-unipotent log-∇-module on D̂◦i,j;K × A1
K [0, 1) ([0,1) is a quasi open interval). This is true for

every (i, j) so E can be extended to a locally free isocrystal on ((
∐

(i,j) X̂
◦
i,j ,M)/(Spf(V ), N)) which is con-

vergent because it is convergent on Û ∩
∐

(i,j) X̂
◦
i,j that is an open dense X̂ ∩

∐
(i,j) X̂

◦
i,j (we are applying

here proposition 6.1). Hence we have a locally free isocrystal on ((X̂◦,M)/(Spf(V ), N)) which is convergent
and such that has exponents along D̂j in ∩ri=1Σh(i,j) for every (i, j) such φl(D̂

◦
i,j) ⊂ D̂h(i,j).

For any other diagram as in (17), E on D̂◦i,j;K × A1
K [λ, 1) with (i, j) such that φl(D̂

◦
i,j) ⊂ D̂h(i,j) is the

restriction of a convergent module with connection on D̂◦i,j:K × A1
K [0, 1) with exponents in ∩ri=1Σh(i,j), so

that it is ∩ri=1Σh(i,j)-unipotent on D̂◦i,j;K ×A1
K [λ, 1) by proposition 11.4.

Now we prove that the notion of Σ-unipotence is independent on the choice of the étale covering. To do this,
it suffices to prove that if E is a log overconvergent isocrystal with Σ-unipotent monodromy, for any étale
morphism φ : X̂ ′ → X̂ such that X̂ ′ admits a diagram

D̂′ =
⋃s
j=1 D̂

′
j
� � //

��

X̂ ′

��⋃s
j=1{y′j = 0} �

� // SpfV {x′1, . . . , x′n, y′1, . . . , y′m}/(x′1 . . . x′r − π)

(28)

as in (17), with D̂′ := φ−1(D̂), the log-∇-module E induced on X̂ ′ by E is ∩ri=1Σh(i,j)-unipotent on D̂
′◦
i,j;K ×

A1
K [λ, 1), for every (i, j) such that D̂

′◦
i,j is such that φ(D̂

′◦
i,j) ⊂ D̂h(i,j). We may assume that D̂

′◦
i,j;K = SpmA

is affinoid. As in the proof of proposition 8.2 we know that there exists an étale covering
∐
l X̂
′
l → X̂ ′ such

that, for any l, X̂ ′l admits a diagram as in (17) such that E has Σ-unipotent monodromy with respect to this
diagram.
However since we have already showed that the notion of Σ-unipotent monodromy does not depend on the
choice of a diagram as in (17), we can say that E has Σ-unipotent monodromy with respect to a diagram as
in (17) for X̂ ′l induced by the diagram (28). This means that the log-∇-module E is ∩ri=1Σh(i,j)-unipotent

when it is restricted to
∐
l(D̂

′◦
i,j;K ×X̂K X̂

′
l,K)×A1

K [λ, 1) with (i, j) such that φ(
∐
l(D̂

′◦
i,j ×X̂ X̂ ′l)) ⊂ D̂h(i,j).

Let us take an affine covering
∐
h Ĉh →

∐
l(D̂

′◦
i,j×X̂ X̂ ′l) by affine formal schemes and put SpmL :=

∐
h Ĉh;K .

Then E is ∩ri=1Σh(i,j)-unipotent on SpmL×A1
K [λ, 1) and the affinoid algebras A and L satisfy the assumption

of proposition 11.1. Applying proposition 11.1 we can conclude that E is ∩ri=1Σh(i,j)-unipotent on D̂
′◦
i,j;K ×

A1
K [λ, 1) as we wanted.
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We can now state the main result, an extension theorem that generalizes theorem 6.4.5 of [Ke] and
theorem 3.16 of [Sh6]. The strategy of the proof is the same as the one in [Ke] and [Sh6] and we will follow
step by step the proof of theorem 3.16 of [Sh6].
We will need for the proof the following lemma:

Lemma 12.2. If W is an open dense in P = Spf(A), with A a formal V algebra of topologically finite
type such that Ak is reduced, then the spectral seminorm on O(]Wk[P ) restricts to the spectral seminorm on
O(]Pk[P ).

Proof. We can suppose that W is defined by the equation {g 6= 0}, in particular that W = Spf
(
A
{

1
g

})
.

So we have a map of V -algebras

A −→ A

{
1

g

}
,

which is injective modulo π because Wk is dense in Ak that is reduced. By the topological Nakayama’s
lemma (ex 7.2 of [Ei]) we can conclude that we have an inclusion of V -algebras

A ↪→ A

{
1

g

}
which induces an inclusion of affinoid algebras

O(]Pk[P ) = A⊗K ↪→ O(]Wk[P ) = A

{
1

g

}
⊗K

Let us take the Banach norm | |P on A⊗K induced by A and the Banach norm | |W on A
{

1
g

}
⊗K induced

by A{ 1
g}, then

|a|P = |a|W
for any a ∈ K ⊗A. By the well known formula (see for example [FvdP] corollary 3.4.6)

|a|P,sp = lim
n→∞

|an|
1
n

P

where with | |P,sp we denote the spectral norm, we are done.

Theorem 12.3. We fix a set Σ =
∏k
h=1 Σh ∈ Zkp, where k is the number of the irreducible components of

D̂ =
⋃k
h=1 D̂

h in X̂ and we require that Σ has the properties (NID) and (NLD). Let us suppose that locally
for the étale topology we have a diagram as (17), then the restriction functor

j† : Iconv((X̂,M)/(Spf(V ), N))Σ −→ I†((Uk,M), (Xk,M))/(Spf(V ), N))Σ

is an equivalence of categories.

Proof. We will divide the proof in 3 steps.
Step 1: the functor j† is well defined.
Let E be in Iconv((X̂,M)/(Spf(V ), N))Σ, then we prove that j†(E) ∈ I†((Uk,M), (Xk,M))/(Spf(V ), N))Σ.
Thanks to lemma 8.2 and lemma 12.1, we can work étale locally. We suppose that φ is an étale map to X̂
and we call again X̂ an étale neighborhood for which we have the diagram as in (17); in this situation the log
convergent isocrystal E induces a log-∇-module with respect to y1, . . . , ys on X̂K such that has exponents
along D̂j;K in ∩ri=1Σh(i,j) if i and j are such that φ(D̂◦i,j) ⊂ D̂h(i,j). By the definition of Σ-unipotent
monodromy (definition 10.5) we are reduced to prove that, if we restrict E to

D̂◦i,j;K ×A1
K [0, 1),
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then it is ∩ri=1Σh(i,j)-unipotent if i, j are such that φ(D̂◦i,j) ⊂ D̂h(i,j).

We know by hypothesis that the restriction of E to D̂◦i,j;K × A1
K [0, 1) is log convergent and has exponents

along D̂j;K in ∩ri=1Σh(i,j), hence we have to prove that this implies ∩ri=1Σh(i,j)-unipotence; from proposition
11.4 we know that this implies ∩ri=1Σh(i,j)-unipotence.

Step 2: the functor j† is fully faithful.
We have to prove that given f : E → F , a morphism of log overconvergent isocrystals of Σ-unipotent
monodromy, if there exist extensions of E and F to log convergent isocrystals with exponents in Σ that we
call respectively Ẽ and F̃ , then f extends uniquely to f̃ : Ẽ → F̃ .
We can work étale locally. We denote by φ an étale map to X̂ and again by X̂ an étale neighborhood that
we consider for which there exists a diagram as in (17).
Let us take W a strict neighborhood of ]Uk[X̂ in ]Xk[X̂ ; by definition f induces a morphism ϕ of ∇-modules
between EE and EF , the ∇-modules on W that are induced by E and F respectively:

ϕ : EE → EF .

We call EẼ and EF̃ the log-∇-modules on X̂K induced by Ẽ and F̃ .
Let us take the following covering of

X̂K =
⋃

J⊂{1...s}

AJ

where
AJ = {P ∈ X̂K | |yj(P )| < 1 (j ∈ J) |yj(P )| ≥ λ (j /∈ J)}

and λ ∈ (0, 1) ∩ Γ∗ is such that both E and F are defined on the following set:

B = {P ∈ X̂K | |yj(P )| ≥ λ ∀j}.

The covering of X̂K given by the AJ ’s restricts to the following covering of B =
⋃
J⊂{1,...,s}BJ , where

BJ = {P ∈ X̂K | λ ≤ |yj(P )| < 1 (j ∈ J), |yj(P )| ≥ λ (j /∈ J)}.

The extensions EẼ and EF̃ are log convergent in

{P ∈ X̂K |yj(P ) = 0 (j ∈ J), |yj(P )| ≥ λ (j /∈ J)} ×A|J|[0, 1) (29)

by proposition 3.6 of [Sh6] and they have exponents in
∏
j ∩ri=1Σh(i,j). They extend the restrictions of EE

and EF on
{P ∈ X̂K |yj(P ) = 0 (j ∈ J) |yj(P )| ≥ λ (j /∈ J)} ×A|J|[λ, 1).

By theorem 9.5 we can conclude that φ extends to

AJ = {P ∈ X̂K |yj(P ) = 0 (j ∈ J) |yj(P )| ≥ λ (j /∈ J)} ×A|J|[0, 1);

this means that on this set there exists a unique

φ̃J : EẼ → EF̃

that extends φ on BJ .
On AI ∩AJ we have the extensions φI and φJ , which glue because they coincide on the set

BI ∩BJ = {P ∈ X̂K | λ ≤ |yj(P )| < 1 (j ∈ (I ∪ J)− (I ∩ J)),

|yj(P )| ≥ λ (j /∈ (I ∪ J))} ×A|I∩J|[λ, 1)

because they extend the map φ on BI ∩BJ .
Step 3: the functor j† is essentially surjective.
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Since we have the étale descent property for the category of locally free log convergent isocrystals (remark
5.1.7 of [Sh1]) and the full faithfulness of the functor j†, we may work étale locally to prove the essential
surjectivity.
If E ∈ I†((Uk, Xk),Spf(V ))log,Σ, then by definition of log overconvergent isocrystal we know that E induces
a module with connection on the following set

{P ∈ X̂K | ∀j : |yj(P )| ≥ λ}

that we will denote by E that is ∩ri=1Σh(i,j)-unipotent on

D̂◦i,j,K ×A1[λ, 1) = {P ∈ D̂j,K | ∀j′ 6= j : |y′j(P )| = 1, ∀i′ 6= i : |x′i(P )| = 1} ×A1[λ, 1),

for i, j such that φ(D̂◦i,j) ⊂ D̂h(i,j) .
We will prove that E extends to a log-∇-module on

Ca,λ = {P ∈ X̂K | ∀j > a , |yj(P )| ≥ λ}

∀a = 0, . . . , s with exponents along {yj = 0} in ∩ri=1Σh(i,j) with i, j such that φ(D̂◦i,j) ⊂ D̂h(i,j), proceeding
by induction on a.
So we suppose, by induction hypothesis, that E extends to the set Ca−1,λ = {P ∈ X̂K | ∀j > a−1 , |yj(P )| ≥
λ} for some λ with exponents along {yj = 0} in ∩ri=1Σh(i,j) with i, j such that φ(D̂◦i,j) ⊂ D̂h(i,j).

We consider the following admissible covering of X̂K = A ∪B, where

A = {P ∈ X̂K | |ya(P )| ≥ λ′}

B = {P ∈ X̂K | |ya(P )| < 1}
with λ′ ∈ [λ, 1) ∩ Γ∗.
Intersecting the covering A ∪B with Ca−1,λ′ we obtain the following admissible covering:

Ca−1,λ′ = (Ca−1,λ′ ∩A) ∪ (Ca−1,λ′ ∩B) = (30)

= {P ∈ X̂K | ∀j > a− 1 |yj(P )| ≥ λ′}∪
{P ∈ X̂K | ∀j > a |yj(P )| ≥ λ′, λ′ ≤ |ya(P )| < 1} =

= {P ∈ X̂K | ∀j > a− 1 |yj(P )| ≥ λ′}∪
{P ∈ D̂a,K | ∀j > a |yj(P )| ≥ λ′} ×A1[λ′, 1),

and intersecting with Ca,λ′ :
Ca,λ′ = (Ca,λ′ ∩A) ∪ (Ca,λ′ ∩B) = (31)

{P ∈ X̂K | ∀j > a− 1 |yj(P )| ≥ λ′} ∪ {P ∈ X̂K | ∀j > a |yj(P )| ≥ λ′, |ya(P )| < 1}

= {P ∈ X̂K | ∀j > a− 1 |yj(P )| ≥ λ′} ∪ {P ∈ D̂a,K | ∀j > a |yj(P )| ≥ λ′} ×A1[0, 1).

Comparing the formulas in (30) and (31), we see that it is sufficient to prove that E extends from

{P ∈ D̂a,K | ∀j > a , |yj(P )| ≥ λ′} ×A1
K [λ′, 1)

to
{P ∈ D̂a,K | ∀j > a |yj(P )| ≥ λ′} ×A1[0, 1),

for some λ′ ∈ [λ, 1) ∩ Γ∗ in a log-∇-module such that it has exponents along {yj = 0} in ∩ri=1Σh(i,j) with

i, j for which φ(D̂◦i,j) ⊂ D̂h(i,j).
As we saw before E is ∩ri=1Σh(i,a)-unipotent on

D̂◦i,a,K×A1
K([λ, 1)) =

{P ∈ D̂a,K | ∀j′ 6= a : |y′j(P )| = 1, ∀i′ 6= i : |x′i(P )| = 1} ×A1
K([λ, 1)),

(32)
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so it is ∩ri=1Σh(i,a)-unipotent also on∐
i

D̂◦i,a,K×A1
K([λ, 1)) =∐
i

{P ∈ D̂a,K | ∀j′ 6= a : |y′j(P )| = 1, ∀i′ 6= i : |x′i(P )| = 1} ×A1
K([λ, 1)).

We now want to apply proposition 11.2; following the notation given in the proposition in our case we have
that P is the pull-back of

Spf
V {x1, . . . , xn, y1 . . . ŷa . . . ym}

x1 · · ·xr − π
{y−1
j |j < a}{

∏
i,i′ i 6=i′

(xi − x′i)−1}

by the morphism
X̂ → SpfV {x1, . . . , xn, y1, . . . , ym}/(x1 · · ·xr − π),

Yk is the open defined in Pk by the following equation

{ya+1 · · · ys 6= 0}

and

W ×A1
K(I) = {P ∈ D̂a,K | ∀j < a : |yj(P )| = 1,

∀j > a , |yj(P )| ≥ λ ∀i′ 6= i : |x′i(P )| = 1} ×A1
K([λ, 1)).

The hypothesis of proposition 11.2 are fulfilled.
The restriction of E to

{P ∈ D̂a,K | ∀j > a , |yj(P )| ≥ λ} ×A1
K([λ, 1))

is a log-∇-module with exponents in
∏
j ∩ri=1Σh(i,j), that is

∏
j ∩ri=1Σh(i,j)-unipotent on

]Yk[P=
∐
i

{P ∈ D̂a,K | ∀j′ 6= a : |y′j(P )| = 1, ∀i′ 6= i : |x′i(P )| = 1} ×A1
K([λ, 1));

so applying proposition 11.2 we know that for every [b, c] ⊂ [λ, 1) there exists a λ′ (we suppose that it verifies
λ′ ∈ (c, 1) for gluing reasons) such that E is

∏
j ∩ri=1Σh(i,j)-unipotent on∐

i

{P ∈ D̂a,K | ∀j < a : |yj(P )| = 1,

∀j > a : |yj(P )| ≥ λ′, ∀i′ 6= i : |x′i(P )| = 1} ×A1([b, c]).

Now we apply proposition 11.1 with

Spm(L) =
∐
i

{P ∈ D̂a,K | ∀j < a : |yj(P )| = 1,

∀j > a : |yj(P )| ≥ λ′, ∀i′ 6= i : |x′i(P )| = 1}

and
Y = {P ∈ D̂a,K | ∀j > a : |yj(P )| ≥ λ′};

we are in the hypothesis of that proposition thanks to lemma 12.2, hence we deduce that E is
∏
j ∩ri=1Σh(i,j)-

unipotent on
{P ∈ D̂a,K | ∀j > a : |yj(P )| ≥ λ′} ×A1((b, c)).
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By theorem 9.5 we see that E can be extended to a
∏
j ∩ri=1Σh(i,j)-unipotent log-∇-module, in particular to

a log-∇-module with exponents in
∏
j ∩ri=1Σh(i,j) on

{P ∈ D̂a,K | ∀j > a : |yj(P )| ≥ λ′} ×A1([0, c)).

Now we glue this with E and we obtain a log-∇-module with exponents in the set
∏
j ∩ri=1Σh(i,j) on

{P ∈ D̂a,K | ∀j > a , |yj(P )| ≥ λ′} ×A1
K([0, 1))

as we wanted.
Therefore we have a log-∇-module defined on the space X̂K and we now prove that it is convergent.
We know that the restriction of E to ÛK is log convergent because it is an extension of an overconvergent
log isocrystal on ÛK , hence it belongs to the category

Iconv((Û ,M), (Spf(V ), N))lf .

Since Û is an open dense in X̂, we have a module with log connection defined in the whole space that is
convergent on an open dense of the space; we can apply proposition 6.1 and conclude that E is convergent.

13 Main theorem

As we saw in proposition 12.3 there is an equivalence of categories

j† : Iconv((X̂,M)/(Spf(V ), N))lf,Σ −→ I†((Uk, Xk)/Spf(V ))log,Σ.

Now we want to compare this to the category MIC((XK ,M)/K)lf that we defined in definition 2.2. We
can define the notion of exponents also in the algebraic case, giving the analogous definition that we gave
before definition 8.1, replacing the rigid analytic space X̂K with the algebraic space XK , the divisor D̂K

with the divisor DK and the OX̂K -module ω1
(X̂K ,M)/K

with the OXK -module ω1
(XK ,M)/K .

We fix a set Θ =
∏f
p=1 Θp ⊂ K̄f , where f is the number of irreducible components of the divisor DK =

∪fp=1D
p;K . We say that (E,∇) in MIC((XK ,MD)/K) has residue along DK in Θ if étale locally there exists

a diagram analogous to (17) such that for every l the log-∇-module Xl;K induced by (E, ∇) has exponents

along Dj,l;K in Θp(j) for every j such that φl;K(D̂j,l) ⊂ Dp(j).
We will denote the category of locally free module with integrable log connection with exponents in Θ by
MIC((XK ,MD)/K)Θ. We can prove as in lemma 8.2 that the notion of exponents in Θ can be given étale
locally and that is independent on the choice of a diagram as in (17). If (E,∇) is in MIC((XK ,MD)/K)
we restrict locally étale in a situation for which there exists a diagram analogous to (17) for the algebraic
setting and we look at the exponents of (E,∇) along Dj;K . In particular we consider the log-∇-module

(Ê, ∇̂) on X̂K induced by the log infinitesimal locally free isocrystal Ψ(E,∇) (where Ψ is the functor defined
in proposition 5.1) and the residue of it along D̂j;K . We have a map

EndODj;K (E|Dj;K )→ EndOD̂j,K
(Ê|D̂j;K ),

that sends the residue of (E,∇) along Dj;K to the residue of (Ê, ∇̂) along D̂j;K . Moreover the map is injective
because the map

Γ(Dj;K ,ODj;K )→ Γ(D̂j,K ,OD̂j;K )

is injective. This means that étale locally (E,∇) and the log-∇-module (Ê, ∇̂) have the same exponents
along Dj;K and D̂j;K respectively.
The relation between Θ and Σ is as follows.
Given a log infinitesimal isocrystal E with exponents in Σ then the functor Ψ−1 associates to it a module with
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integrable log connection (E,∇) such that it has exponents in Θ =
∏f
p=1 Θp, where the p-th component Θp

is given by ∩ri=1Σh(i,j) where j is such that φl,K(Dj;K) ⊂ Dp;K . Viceversa given a module with integrable
log connection (E,∇) such that it has exponents in Θ, the functor Ψ associates to it a log infinitesimal

isocrystal E with exponents in Σ =
∏k
h=1 Σh where the h-th component is given by Θp(j) where j is such

that φ(D̂◦i,j) ⊂ D̂h.
From this it follows that the functor Ψ induces an equivalence of categories

MIC((XK ,MD)/(K, triv))lf,Θ −→ Iinf ((X̂,M)/(SpfV,N))lf,Σ.

If we start from a log overconvergent isocrystal E with Σ-unipotent monodromy as in 10.5, we apply the
equivalence of category given by the functor j† of theorem 12.3 and the observations written above, we can
conclude that there is fully faithful functor

I†((Uk,M), (Xk,M))/(Spf(V ), N))Σ −→MIC((XK ,MD)/(K, triv))lf,Θ.

The logarithmic extension theorem of Andrè and Baldassarri (theorem 4.9 of [AnBa]) gives an equivalence
of category between MIC((XK ,MD)/(K, triv))lf,Θ and the category of coherent modules with connection
on UK regular along DK , that we denote by MIC(UK/K)reg gives us the general result.

Theorem 13.1. There is a fully faithful functor

I†((Uk,M), (Xk,M))/(Spf(V ), N))Σ −→MIC(UK/K)reg.
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