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Abstract 
Cooperation between cellular organelles such as mitochondria, peroxisomes and the ER is 

essential for a variety of important and diverse metabolic processes. Effective communication 

and metabolite exchange requires physical linkages between the organelles, predominantly in 

the form of organelle contact sites. At such contact sites organelle membranes are brought 

into close proximity by the action of molecular tethers, which often consist of specific protein 

pairs anchored in the membrane of the opposing organelles. Currently numerous tethering 

components have been identified which link the ER with multiple other organelles but 

knowledge of the factors linking the ER with peroxisomes is limited. Peroxisome-ER 

interplay is important because it is required for the biosynthesis of unsaturated fatty acids, 

ether-phospholipids and sterols with defects in these functions leading to severe diseases. 

Here we characterise acyl-CoA binding domain protein 4 (ACBD4) as a tail-anchored 

peroxisomal membrane protein which interacts with the ER protein, vesicle-associated 

membrane protein-associated protein–B (VAPB) to promote peroxisome-ER associations.  

Introduction 
The study of organelle interactions at membrane contact sites is an area of cell biology which 

has expanded rapidly over the last decade due to the understanding that interorganellar 

communication is vital for cellular function. A striking example of the importance of 

organelle interplay is found in the relationship between the endoplasmic reticulum (ER) and 

peroxisomes (reviewed in (Schrader et al., 2015). These two organelles have been known to 

be intimately associated since ultrastructural studies in the 1960’s detected close apposition 

between ER tubules and peroxisomal membranes (Novikoff and Shin, 1964; Yamamoto and 

Fahimi, 1987). A number of metabolic pathways require the combined action of both 

peroxisomal and ER-resident enzymes. Most notably in the production of ether-phospholipids 

such as plasmalogens which requires generation of a characteristic ether bond by peroxisomal 

enzymes before the remaining steps in biosynthesis can be completed in the ER (Dorninger et 

al., 2015; Wanders et al., 2016) . Failure to properly assemble peroxisomes (e.g. in Zellweger 

spectrum disorders (Braverman et al., 2016)), mutations in the genes which encode the 

peroxisomal enzymes or import factors which bring the enzymes into peroxisomes result in a 

deficiency in ether phospholipid production and lead to diseases such as rhizomelic 

chondrodysplasia punctata (RCDP) (Braverman et al., 1997; Heikoop et al., 1990; Motley et 

al., 2002). In mammals, as well as linking with peroxisomes for metabolic cooperation, the 

ER can also play a role, perhaps in collaboration with mitochondria, in the de novo 
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generation of peroxisomes (Hettema et al., 2014; Rucktäschel et al., 2010; Sugiura et al., 

2017). The full extent the ER plays in peroxisome biogenesis is unclear but appears to at least 

involve the provision of membrane phospholipids (and potentially membrane proteins such as 

Pex16) for formation of the peroxisomal membrane (Aranovich et al., 2014; Raychaudhuri 

and Prinz, 2008). 

As well as interacting with peroxisomes, the ER forms contact sites with mitochondria, Golgi 

complex, plasma membrane, and endosomes (Alpy et al., 2013; Doghman-Bouguerra and 

Lalli, 2016; Stoica et al., 2014) (see (Eisenberg-Bord et al., 2016) for a comprehensive list). 

Two key players are vesicle-associated membrane protein-associated proteins – A and B 

(VAPA/B), which are present in a number of important contact sites involving the ER 

(Murphy and Levine, 2016). VAPA/B are ER-resident membrane proteins containing a major 

sperm protein (MSP) domain that interacts with proteins containing a FFAT or FFAT-like 

motif (Loewen et al., 2003). One such protein is PTPIP51, a mitochondrial membrane protein 

which interacts with VAPB to mediate mitochondria-ER associations, facilitating calcium 

exchange and regulating autophagy (Gomez-Suaga et al., 2017; Stoica et al., 2014). 

Recently, we identified peroxisomal acyl-CoA binding domain protein 5 (ACBD5) and 

VAPB as interaction partners of a molecular tether which physically links peroxisomes to the 

ER in mammals (Costello et al., 2017a). Both VAPB and ACBD5 are C-tail-anchored (TA) 

membrane proteins, defined as proteins which contain N-terminal functional domains 

followed by a single transmembrane domain (TMD) close to the C-terminus and a short C-

terminal tail region. These characteristic properties dictate that TA proteins are post-

translationally sorted to their target membrane with the N-terminus facing the cytosol 

(Borgese and Fasana, 2011). In another recent study we investigated the targeting properties 

of TA proteins, discovering the importance of interplay between TMD hydrophobicity and 

tail-charge, and developed a statistical model to predict cellular localisation of TA proteins 

based on these physicochemical parameters (Costello et al., 2017b). Using this bioinformatics 

prediction tool we identified an isoform of ACBD4 (isoform 2), a predicted TA protein of 

unknown function and localisation, as a potential peroxisomal protein and confirmed this by 

expression of Myc-ACBD4iso2 in COS-7 cells (Costello et al., 2017b). ACBD4, like 

ACBD5, is a member of the ACBD family which is characterized by the presence of an acyl-

CoA binding domain. Seven different ACBDs have been identified in mammals but the acyl-

CoA binding protein structural fold has been found in 48 different protein architectures 

across all species (Neess et al., 2015). Thus, although ACBD4 and ACBD5 share 58% 
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sequence identity this is mainly isolated to similarities in the N-terminal acyl-CoA binding 

domain, with the rest of the proteins showing significant differences.  

Here, we show that ACBD4 isoform2 is a tail-anchored peroxisomal protein which interacts 

with the ER-resident protein VAPB to facilitate interaction between the two organelles. 

These results suggest that ACBD4, like ACBD5, can act as a molecular tether, physically 

linking peroxisomes and the ER making this the second protein involved in peroxisome-ER 

contacts in mammals. 

Results 
ACBD4iso2 is a C-tail-anchored membrane protein which shows peroxisomal targeting 
when expressed in COS-7 cells. ACBD4 has three major isoforms (as defined by UniProt 

identifier: Q8NC06) one of which, isoform 2 (UniProt identifier: Q8NC06-2), is predicted to 

contain a C-terminal TMD and tail. In addition to the characteristic N-terminal acyl-CoA 

binding domain, other predicted structural features in ACBD4iso2 include a potential coiled-

coil domain and a predicted FFAT-like motif (Fig. 1A). Previously, we showed that Myc-

ACBD4iso2 expressed in COS-7 cells localised to peroxisomes (Costello et al., 2017b). Here, 

we further characterise ACBD4 localisation showing that whilst we always observe Myc-

ACBD4iso2 targeting to peroxisomes (Fig. 1B), when expression levels are high we observe 

changes in peroxisome morphology (Fig. 1C) and weak, non-peroxisomal signal (Fig. 1D) 

which co-localises with a mitochondrial marker (Fig. 1E). This phenomenon has also been 

observed for other peroxisomal TA proteins such as Pex26 (Halbach et al., 2006) which also 

shows mitochondrial localisation when expression is high.  

To confirm that ACBD4iso2 is a C-tail-anchored protein with the N-terminus exposed to the 

cytosol we performed differential permeabilisation experiments using either digitonin or 

Triton X-100. Triton X-100 permeabilises peroxisomal membranes whereas upon digitonin 

treatment peroxisome membranes remain intact (Schrader et al., 1998; Schrader et al., 2017). 

Accordingly, following digitonin treatment the peroxisomal matrix marker catalase was 

inaccessible to antibodies and was only detected after Triton X-100 treatment (Fig. 1F). After 

digitonin treatment the N-terminal FLAG-tag of FLAG-ACBD4iso2 was detectable using 

FLAG antibodies indicating that the N-terminus of ACBD4 is exposed to the cytosol (Fig. 

1G) similar to what was found for ACBD5 (Costello et al., 2017b).  
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ACBD4iso2 interacts with VAPB. As the function of ACBD4 is unknown we performed 

proteomics studies to identify potential binding partners. GFP-ACBD4iso2 and GFP alone 

were expressed in COS-7 cells and pull down studies and mass spectrometry (MS) analyses 

were performed in triplicate. Following filtering of the results (based on a previous study 

(Palumbo et al., 2015) only protein IDs with >1 unique peptide hits, >20% peptide:protein 

coverage and overall MS scores >30, which did not appear in any of the GFP only control 

experiments, were considered) from MS experiments we identified the ER membrane 

proteins VAPA and VAPB as candidate binding partners (Fig. 2A). We next confirmed the 

ACBD4-VAPB interaction by immunoprecipitation (IP). GFP-ACBD4iso2 and Myc-VAPB 

were co-expressed in COS-7 cells and their interaction was assessed by IP using Myc-TRAP 

magnetic agarose beads (Fig. 2B). As a positive control we used GFP-ACBD5 which we had 

previously shown to interact with Myc-VAPB using the same assay (Costello et al., 2017a). 

Using this assay we were able to confirm interaction between ACBD4iso2 and VAPB.  

Co-expression of GFP-ACBD4iso2/Myc-VAPB promotes ER-PO associations. Having 

established that ACBD4 can interact with VAPB we wanted to test if ACBD4, like ACBD5, 

can play a role in mediating peroxisome-ER associations. To test this, we co-expressed Myc-

VAPB and GFP-ACBD4iso2 in COS-7 cells and analysed ER-PO localisation using confocal 

microscopy (Fig. 3). In our previous study we observed that when both ACBD5 and VAPB 

were over-expressed we could observe increased ER-peroxisome associations which, 

strikingly, allowed visualisation of discrete peroxisomal structures when using VAPB as an 

ER marker (Costello et al., 2017). Here, this characteristic PO-ER association was also 

observed when ACBD4 and VAPB were co-expressed together but not individually (Fig. 3A, 

B). Furthermore, when we examined cells in which ACBD4 was found at mitochondria (see 

Fig. 1C) we detected increased association of VAPB-labelled ER with the mitochondrial 

marker, suggesting that in this case mis-targeted ACBD4 was mediating increased ER-

mitochondria interactions (Fig. 3C). These findings support a role for ACBD4 and VAPB 

interaction in ER-peroxisome tethering.  

Discussion 
The data presented here, namely that ACBD4 is localised to peroxisomes and interacts with 

the ER protein VAPB to promoter ER-peroxisome associations support the assumption that 

ACBD4 is acting as a tether (Schuldiner and Zalckvar, 2017). In a recent publication we 

identified the first molecular mechanism which allowed peroxisome-ER interactions in 
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mammalian cells via a tether consisting of peroxisomal ACBD5 and ER-resident VAPB 

(Costello et al., 2017a) (Fig. 4). We showed that in the absence of ACBD5/VAPB 

peroxisomal membrane expansion was reduced, suggesting that the lipid flow from the ER to 

peroxisomes required for peroxisomal membrane growth was disrupted. In addition the 

movement of peroxisomes was increased. Simultaneously the group of Peter Kim used a 

parallel approach to reach the same conclusions, additionally reporting that plasmalogen 

synthesis is impaired when the VAPB-ACBD5 tether is disrupted (Hua et al., 2017). Recent 

studies have now identified patients carrying pathogenic mutations which lead to the loss of 

ACBD5 protein (Abu-Safieh et al., 2013; Ferdinandusse et al., 2016; Yagita et al., 2017). In 

these cases increased levels of very-long-chain fatty acids (VLCFAs) were detected in patient 

cells likely due to reduced import into peroxisomes. This suggested a role for ACBD5 in 

binding VLCFAs in the cytosol and facilitating their transport into peroxisomes which would 

then be mediated by the peroxisomal ABC transporters at the peroxisomal membrane (Baker 

et al., 2015; van Roermund et al., 2008). It is not clear if ACBD5 interacts with the ABC 

transporters, with a recent study failing to identify ACBD5 as an interacting partner of 

ABCD2 (Geillon et al., 2017), nor how the tethering function of ACBD5 is linked to its 

function in β-oxidation of VLCFAs. However, as ACBD4 also contains an acyl-CoA binding 

domain and a predicted FFAT-like motif it is tempting to speculate that ACBD4 may play a 

similar role to ACBD5 (Fig. 4). The differences between the two proteins may lie in substrate 

specificity, expression profile, regulation or type of tether. Yagita and colleagues (Yagita et 

al., 2017) reported that ACBD5 is able to preferentially bind VLCFAs in vitro but its optimal 

substrate was not identified and may differ from the optimal substrate for ACBD4. In our 

previous study (Costello et al., 2017a), knockdown of ACBD5 showed significant effects on 

the extent of peroxisome-ER interactions in HepG2 cells. As ACBD4 is reported to be 

expressed in these cells (Yang et al., 2016), it is unlikely that normal ACBD4 levels can fully 

complement the function of ACBD5. It is possible that ACBD5 is the major tether for 

peroxisome-ER contacts whereas ACBD4 may play a role in a more specialised ER-

peroxisome association. The presence of more than one tether which can link peroxisomes 

and the ER is in line with the multiple different tether combinations employed by other 

organelles to cater for specialised functions  (Prinz, 2014). Future studies will address these 

points and contribute to the understanding of the roles of ACBD4 and ACBD5 in 

peroxisome-ER interplay, lipid metabolism and how their dysfunction links to disease. 
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Materials and Methods 

Plasmids and antibodies 
Myc-VAPB plasmid was kindly provided by C. Miller (King’s College London, UK). A 

human ACBD4iso2 cDNA clone (Cusabio Life Sciences, 

http://www.cusabio.com/Clone/ACBD4-158327.html) was used as a template to generate 

GFP-ACBD4iso2 and FLAG-ACBD4iso2 using eGFP-C1 and pCMV-2B vectors 

respectively. Primers: ACBD4_iso2_GFP_For = AAACTCGAGCTATGGGCACCGAG 

AAAGAAAGCCCAGAGCCCGAC, ACBD4_iso2_GFP_Rev = TTGGATCCTCACCTC 

TTTTGGGTCCGAAACATTCGGAAGAGCC (XhoI, BamHI digest into eGFP-C1). 

ACBD4_myc_For =AAGGATCCATGGGCACCGAGAAAGAAAGCCCAGAGCCCGAC, 

ACBD4iso2_myc_Rev = CTCTCGAGTCACCTCTTTTGGGTCCGAAACATTCGGAAGA 

GCC (XhoI, BamHI digest into pCMV2B). Antibodies were as follows: polyclonal rabbit 

anti-PEX14  (kindly provided by D. Crane, Griffith University, Brisbane, Australia); anti-

catalase (Abcam, http://www.abcam.com/catalase-antibody-ab88650.html); anti-GFP 

(Thermofisher, https://www.thermofisher.com/antibody/product/GFP-Tag-Antibody-

Polyclonal/A-11122); anti-Myc (Abcam, http://www.abcam.com/myc-tag-antibody-

ab9106.html); anti-FLAG (SIGMA, 

http://www.sigmaaldrich.com/catalog/product/sigma/f3165?lang=en&region=GB). 

 

Cell culture and transfection 
COS-7 cells (African green monkey kidney cells; ATCC, https://www.lgcstandards-

atcc.org/products/All/CRL-1651) were cultured in DMEM, high glucose (4.5 g/L) 

supplemented with 10% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin at 37°C with 

5% CO2 and 95% humidity. COS-7 cells were transfected using diethylaminoethyl (DEAE)-

dextran (Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/product/sigma/d9885) as 

described (Bonekamp et al., 2010).  

 
Immunofluorescence and microscopy 
Cells were processed for immunofluorescence 24h after transfection as described previously 

(Bonekamp et al., 2013). Cell imaging was performed using an Olympus IX81 microscope 

equipped with an UPlanSApo 100x/1.40 Oil objective (Olympus Optical, Hamburg, 

Germany), eGFP ET filter-set (470/40 Et Bandpass filter, Beamsplitter T495 LPXR and 

525/50 ET Bandpass filter (Chroma Technology GmbH, Olching, Germany)), and TxRed HC 
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Filter Set (562/40 BrightLine HC Beamsplitter HC BS 593, 624/40 BrightLine HC (Semrock, 

Rochester, USA)). Digital images were taken with a CoolSNAP HQ2 CCD camera and 

adjusted for contrast and brightness using MetaMorph 7 (Molecular Devices, 

https://www.moleculardevices.com/systems/metamorph-research-imaging/metamorph-

microscopy-automation-and-image-analysis-software). Confocal images were obtained using 

a Leica SP8 equipped with: Argon laser (488), DPSS561 laser (561), HC PL APO 63x/1.3 

Oil objective, HC PL APO 100x/1.44 Oil objective, Hybrid detectors (HyD). 

Immunoprecipitation 
GFP-ACBD4iso2, or GFP only control, and Myc-VAPB were expressed in COS-7 cells. 

After 48 h cells were washed in PBS and lysed in ice-cold lysis buffer (25 mM Tris-HCl pH 

7.5, 150 mM NaCl, 0.5 mM EDTA, 1% NP-40, 1 mM PMSF and mini protease inhibitor 

cocktail (Roche, http://www.sigmaaldrich.com/catalog/product/roche/11836170001)). 

Unsolubilised material was pelleted by centrifugation at 100,000 × gav. Clarified lysates were 

then mixed with Myc-TRAP magnetic agarose beads (ChromoTek, 

http://www.chromotek.com/products/nano-traps/myc-trapr/) and incubated for 2 h at 4°C. 

Beads were washed extensively with lysis buffer and bound proteins were either eluted with 

Laemmli buffer or further processed for mass spectrometry analysis. Immunoprecipitates and 

total lysates were analyzed by Western immunoblotting.  

 

Mass spectrometry (MS) 
For MS analysis, immunoprecipitations (see above) from three independent experiments were 

analyzed for both GFP-ACBD4iso2 and a GFP only control. Sample preparation and protein 

identification were carried out by the University of Bristol Proteomics Facility as described 

previously (Palumbo et al., 2015). Extracted MS/MS spectra were searched against the 

Uniprot Human database and were filtered at 5% FDR. Additional filtering parameters were 

based on a previous study (Palumbo et al., 2015). Only protein IDs with >1 unique peptide 

hits, >20% peptide:protein coverage and overall MS scores >30, which did not appear in any 

of the GFP only control experiments, were considered.  
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Figure legends 

Fig. 1. ACBD4iso2 is a peroxisomal C-tail-anchored protein. (A) Schematic overview of 

ACBD4iso2 domain structure. ACBD = acyl-CoA binding domain, FFAT-like = two 

phenyalanines in an acidic tract, CC = coiled coil, TMD = transmembrane domain. (B-E) 

Subcellular localization patterns for ACBD4iso2. COS-7 transfected with Myc-ACBD4iso2 

were immunolabelled using αPEX14 (peroxisomal marker), αTOM20 (mitochondrial marker) 

and αMyc antibodies. (E) Higher magnifications of boxed regions are shown (F-G) 

Differential permeabilisation. COS-7 cells expressing FLAG-ACBD4iso2 were fixed, 

permeabilised with either Triton X-100 (0.2% in PBS) (F) or digitonin (2.5µg/ml in PBS) 

(G), and stained with αCatalase (PO matrix), αPEX14 (PO membrane) or αFLAG antibodies. 

Bars, 10 µm (overlay), 2µm (magnified sections). 

Fig. 2. ACBD4iso2 interacts with VAPB. (A) Identification of VAPB and VAPA by MS 

after co-immunoprecipitation (IP) with GFP-ACBD4iso2 from COS-7 cells (results from 3 

experiments); GFP used as control. Only protein IDs which did not appear in any of the GFP 

only control experiments were considered. (B) Immunoprecipitation (IP) of GFP-ACBD4iso2 

and Myc-VAPB after co-expression in COS-7 cells. GFP used as a negative control and GFP-

ACBD5 as a positive control. Samples were immunoprecipitated (GFP-Trap) and 

immunoblotted (IB) using Myc/GFP antibodies.  

 

Fig. 3. ACBD4iso2/VAPB co-expression promotes PO-ER association. COS-7 cells were 

transfected with (A) Myc-VAPB alone (immunolabelled using αPEX14, a peroxisomal 

marker), (B) Myc-VAPB co-expressed with GFP-ACBD4iso2, (C) Myc-VAPB co-expressed 

with GFP-ACBD4iso2 showing mitochondrial mistargeting. (D) Co-localisation of GFP-

ACBD4iso2 with Tom20 (mitochondrial marker). Arrows highlight PO-ER association. Bars, 

20 µm (overview), 5 µm (cut outs). 

 

Fig. 4. Model of ACBD4/ACBD5-VAPB interaction. 
ACBD4 and ACBD5 are both C-tail anchored peroxisomal membrane proteins with 

functional domains in the cytoplasm which can interact with the MSP domain of ER resident 

VAPB via a FFAT-like motif. ACB = acyl-CoA binding, FFAT = two phenyalanines in an 

acidic tract, MSP = major sperm protein binding domain 
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