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Abstract

Accurate prediction of the air-entrainment process in air-water two-phase turbulent flows is one of the most computationally
challenging subjects under current investigation in hydraulic engineering. An ideal numerical model for air-entrainment needs
to be accurate and fast in the definition of a macroscopic interface and simultaneously precise enough to take into account the
formation of bubbles through the free-surface, their transport and their natural interactions: bubble-bubble and bubble-fluid. The
problem is made more complex by the strong coupling between mesh and solution exhibited by interface capturing schemes which
are commonly used for such problems. This paper examines numerical and modelling aspects of the entrainment process for two
canonical cases; the 2D dam break and 3D circular plunging jet cases. We start by investigating the capacities of a Volume-of-
Fluid based model to detect the free-surface and predict the velocities inside the water phase, examining the effect of coarsening
and refining the mesh on the prediction of the interface location. A reformulated explicit term is used to detect bubble formation
and air-entrainment at the free-surface, without the need of a calibration process and adapted to run together with Volume-of-Fluid
models. The results obtained with this new approach are further compared with similar cases in the literature in terms of bubble
formation and free-surface wave’s amplitude. The correct definition of the free-surface was found to be strongly dependent on the
mesh refinement in a way that has very significant implications for the development of air-entrainment modelling.
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1. Introduction1

Air-entrainment occurs in most turbulent free-surface flows in nature resulting in a dispersed two-phase flow below2

the surface with a complex turbulent mixture structure, where compressibility and density are important physical3

properties affecting the air-entrainment and transport characteristics. The accurate prediction of air-entrainment is a4

very ambitious goal for most Computational Fluid Dynamics (CFD). The air-water interface is very unstable and the5

length scales of turbulence range from those influenced by the bubbles and surface tension (order from microns to6
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millimetres) to those of the mean flow (order of meters). The simulations should be able to work on a coarse grid1

in order to simulate the mean flow behaviour, the free-surface position and all the similar large length scales (LLS),2

whilst at the same time being sufficiently detailed to model the transport of the bubbles of gas within the flowing3

fluid and simulate important phenomena as bubble formation, breakup, coalescence and collision, which take place4

on small length scales (SLS).5

In CFD, Volume-of-Fluid (VOF) [16] and Level-Set (LS) [32] based models are typically used to capture the6

interface between two fluids, solving a single set of Navier-Stokes equations representing both air and water, together7

with an indicator function propagated by an advection equation. These interface models are widely used for many8

free-surface flows with macroscopic interfaces and LLS systems, as in vertical plunging jets [17, 24, 28]. Direct9

Numerical Simulations could simulate all aspects of the entrainment process right down to the subsequent dynamics10

of the bubbles; however this would be incredibly time-consuming and, in some cases, the application of VOF method11

to dispersed phases could lead to a non-physical interpretation of bubbles or droplets [7]. Instead, for a realistic mesh12

resolution the representation of the entrained air (SLS system) can be accomplished by the inclusion of an Eulerian13

dispersed phase model with a second set of equations representing the dynamics of the bubbles. Different approaches14

that follow this idea can be found in the literature. The model of Cerne et al. [7] blends the VOF interface tracking15

with a two-fluid model formulation [11]. In this model, in zones where the phase separation are clear and where16

just one fluid is present, the two-fluid model is switched off and a single set of Navier-Stokes equations together17

with the VOF method is solved instead. A criterion based on the local dispersion of the interface is used to switch18

between the two formulations, however, the accuracy of the results has exhibit a strong dependence on the value of19

this threshold which goes against the essence of a blending model. To overcome the dependency of the dispersion20

threshold, Yan and Che [39] introduced a unified solution framework for coupling VOF with a two-fluid model. The21

idea was to blend the two formulations ensuring the conservation of all three phases; i.e. when the LLS of air are22

present (phase2), the interface tracking model is activated; then when the LLS are absent from the cell, the two-phase23

model is used to solve for the local characteristics of the fluids (phase1 for water and phase3 for bubbles). The model24

shown to be efficient for the simulation of a rising bubble and a swarm of bubbles in a vertical pipe. However, volume25

fraction conservation when the three phases are present is not guaranteed, with particular losses occurring for phase2.26

Wardle and Weller [36] introduced in OpenFOAM R© a hybrid formulation based on the combination of an Eulerian27

multifluid framework (to solve the SLS) with an interface capturing method using VOF (to solve the LLS), along with28

a switching function based on the work of Cerne et al. [7]. Shonibare and Wardle [33] extended this hybrid model to29

deal with variable bubble size using the reduced population balance method and applied it to a vertical plunging jet. A30

similar conceptual approach to the last was implemented by Marschall and Hinrichsen [25] in OpenFOAM R© for solely31

two-phase flows. Hänsch et al. [14] extended the inhomogeneous Multiple Size Group (MUSIG)-approach by adding32

a continuous gas phase in order to solve simultaneously in the same domain, dispersed and continuous gas phases.33

The transition between the two was modelled by the ”clustering method” that utilises an additional interfacial force34

applied to the Eulerian multifluid framework. The solutions were verified for the case of plunging jets. Yet another35
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type of subgrid models combine an interface model (VOF/LS) with the two-phase flow formulation by including a1

source term to detect the air formation at the free-surface [15, 22, 23]. Source terms at the interface relate the rate of2

bubble formation to surface flow properties such as local turbulence and the size of interface waves.3

A typical experiment in which air-entrainment has been observed and extensively studied is the plunging jet4

[1, 2, 4, 8, 10, 18, 29, 31]. Plunging jets are efficient mechanisms to dissipate energy, and in doing so produce5

and transport significant quantities of bubbles through the body of the water. Practical examples of plunging jets6

include dam spillways and plunge pool stilling basins, waste-water treatment, oxygenation of bioreactors and river7

re-oxygenation. Air-entrainment in the pool depends upon the jet impact, the physical properties of air and water, the8

jet diameter, the free falling distance between the jet and the pool, and the jet turbulence. At the intersection point of9

the jet and the water, free-surface instabilities are the reason for air-entrainment when the jet impact velocity exceeds a10

characteristic velocity or onset velocity [8]. Slightly above the onset velocity, the air entrains in the form of individual11

bubbles and small pockets. At the impact point, the free-surface is observed to assume a shape which balances the12

forces between both sides of the interface. With increased liquid velocity at the jet impact zone, the local stress13

is increased, and small cavities are formed and pulled bellow the free surface. Deeper into the pool, these cavities14

decrease in radius but continue balancing the surface forces. A critical condition is reached where either (a) a steady15

balance of forces can no longer be maintained or (b) the inferior end of the cavity or the free-surface is disrupted by16

disturbances at the free jet stream and/or on the pool. The result is the sequential generation of small bubbles or air17

pockets below the free surface. In this case, the rate of air-entrainment is very small and challenging to measure with18

common intrusive probes. At higher jet velocities, a substantial air pocket or sheath is formed at the periphery of the19

jet below the free surface; this air pocket is unstable and its breakup forms the entrained air bubbles which are then20

the subject of transport within the body of the water [4].21

This paper proposes a reformulated explicit term for bubble formation that is independent of calibrating factors22

by using a renewed formula for surface wave’s amplitude. The explicit term was included in the well validated23

interFoam VOF solver from the OpenFOAM R© toolkit to accurately predict the interface position [19, 20, 21]. An24

interface location coefficient is necessary for this coupling. This study represents a starting point for the development25

of a VOF-based model with a modelled closure to represent the entrained air. Section 2 develops the equations behind26

the numerical model along with the interface location technique and the air-entrainment term. Section 3 presents the27

results and their discussion for two canonical test cases; a 2D dam break case and a 3D plunging jet. Finally, section 428

presents conclusions.29

2. Numerical Model30

2.1. General concepts31

Interface capturing models such as the VOF model (implemented in the OpenFOAM R© toolkit as interFoam) rep-32

resent the free-surface dynamics of the two phases in terms of single phase-weighted velocity and pressure fields,33
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governed by a single set of mass and momentum equations. For a system of isothermal, incompressible and im-1

miscible two-phase flow, the Reynolds averaged equations for mass conservation and momentum are written in their2

conservative form:3

∇ · U = 0 (1)

∂ρU
∂t

+ ∇ · (ρUU) = −∇p∗ + g · x∇ρ + ∇ · τ + f (2)

where ρ (kg m−3) is the fluid local density, g (m s−2) the gravitational acceleration, U (m s−1) the velocity vector,4

τ (Pa) the shear stress tensor, p∗ (Pa) a modified pressure adopted by removing the hydrostatic pressure (ρg · x)5

from the total pressure and f (kg m−2s−2) the volumetric surface tension force. It is important to note that in interface6

capturing models, the velocity vector U acts as a shared velocity of the two fluids, i.e. U = U f 1 = U f 2, rather than in7

mixture models where U f k, k = {1, 2} can assume different magnitudes.8

The decomposition of the viscous stress term is given by the Stokes’s stress constitutive equation (Eq. 3) where9

µ (kg m−1s−2) is the dynamic viscosity.10

∇ · τ = ∇ · [µ(∇U + (∇U)T )] = ∇ · (µ∇U) + (∇U) · ∇µ (3)

Together with the previous equations, interFoam uses the VOF technique [16] to capture the interface between the11

two fluids by solving a transport/advection equation (Eq. 4). Basically, at each cell of the domain we define an alpha12

(α) value representing the fraction of the volume of the fluid in that cell [6, 34]. Cells completely filled with fluid13

1 ( f 1) will be represented by α = 1 and cells filled with fluid 2 ( f 2), by a value α = 0. The interface is localised14

to the cells where α is intermediate between these two values. The advection equation also includes an interfacial15

compressive term to confine this interface region into as small a region of space as possible (the last term on the l.h.s.16

of Eq. 4) [3, 37], rather than using interface reconstruction schemes [30].17

∂α

∂t
+ ∇ · (αU) + ∇ · [Ucα(1 − α)] = 0 (4)

The term α(1 − α) ensures that the compressive term is calculated just at the interfacial cells of the domain, while18

Cα is a binary coefficient that activates (Cα = 1) or deactivates (Cα = 0) the interface sharpening term. The source19

term also includes the compressive velocity (Uc) that acts as a velocity perpendicular to the interface and is written as:20

Uc = Cα|U|
∇α

|∇α|
(5)

It is worth emphasising that the interface is merely being localised within the volume of space for which 0 < α < 1.21

For simplicity it is often taken that the interface is represented in post-processing by the isosurface α = 0.5, but strictly22

speaking this is simply an assumption, one which we wish to explore in the present work.23
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When α assumes values between 0 and 1, the physical properties of the two-fluid mixture are defined as a weighted1

average of two fluid properties:2

ρ = αρ f 1 + (1 − α)ρ f 2 (6)

µ = αµ f 1 + (1 − α)µ f 2 (7)

The volumetric surface force function is explicitly estimated by the Continuum Surface Force (CSF) model (Eq. 8)3

developed by Brackbill et al. [5] where σ (kg s−2) is the surface tension and κ (m−1) is the surface curvature calculated4

as κ = ∇ · (∇α/|∇α|).5

f = σκ∇α (8)

The turbulent kinetic energy (k) and rate of energy dissipation (ε) are calculated using the realizable k−ε turbulence6

model, with the effective dynamic viscosity (µ) being given by a sum of molecular viscosity (ν) and turbulent viscosity7

(νt) (µ = ρ(νt + ν)). The choice of the realizable k − ε is based on its known ability to accurately predict the spreading8

rate of both planar and round jets [13, 40]. This turbulent model is also superior to the standard k − ε model for the9

simulation of flows involving rotation, boundary layers under strong pressure gradients, separation and recirculation.10

The realizable k − ε also requires less computational time than Re-Normalisation Group (RNG) k − ε which was11

derived to deal with the swirl effect on turbulence [13].12

2.2. Bubble formation13

The air-entrainment process is described by the inclusion of a function Eg (m−3s−1) which describes the rate of14

bubble generation at the free-surface. It is calculated at the end of each time-step and does not change any convergence15

process within the standard solver. The formulation of this variable follows closely the work of Ma et al. [23], who16

represent it as:17

Eg =

〈
∂Un

∂n

〉
a

φentVg
(9)

where Un is the normal velocity component to the free-surface, a (m) is the amplitude of the cavities formed at the18

free-surface (Fig. 1), Vg (m3) is the volume of a sphere calculated assuming an averaged bubble diameter and φent (m)19

is the interface thickness, given by φent = 0.05L, where L (m) is a characteristic linear dimension (equal to the pipe20

diameter for pipe flow or the hydraulic diameter when dealing with river systems). The symbols 〈〉 are used to turn21

the normal derivative zero if its value is less than zero:22

〈 f (x)〉 =


f (x) , f (x) > 0

0 , f (x) ≤ 0
(10)
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A rough way to predict the volume fraction occupied by the bubble phase at each cell can be done by Eg, f rac =1

EgVg∆t, where ∆t (s) is the computational time step. This neglects the advection and diffusion terms of the void2

fraction conservation and transport at the free-surface, however, when the velocities are small, it can provide a good3

first impression of void fraction magnitude.4

In this work and according to Ervine and Falvey [12], the amplitude of the surface disturbances (a) is considered5

as having the same order of magnitude as the radius of the turbulent eddies at the free-surface (l′). From here, we6

obtain:7

a = l′/2 = C3/4
µ

k3/2

2ε
(11)

where Cµ is a turbulence model constant which in the k − ε model theory assumes the value 0.09 [27, 35]. Similar8

criteria is used by Hirt [15] to calculate surface disturbances at free-surface in the CFD commercial code Flow-3D R©.9

In the model of Ma et al. [23], the amplitude of the surface disturbances (a) is calculated as a = Cent k/g, where Cent10

is a constant that needs to be calibrated for each case.11

l'

a

σ σ

idealized free-surface

Un

water with vorticity 
to trap air bubbles

air

water r

Figure 1. Free-surface with physical parameters used. Adapted from Ervine and Falvey [12].

2.3. Interface location12

The location of the air-entrainment in our VOF model does not follow the same criteria as in work from Ma et al.13

[23] (which uses LS methods). In LS, the interface can either be located by assuming a certain threshold for interface14

thickness, or by limiting the velocity to some threshold value. However, in VOF models, the interfacial structure can15

only be detected by the change of volume fraction or by its gradient, as for example in the the algebraic equation16

formulated by Hänsch et al. [14]. In this work, Eg is calculated using a similar criterion as used for the compressive17

term, i.e. by multiplying the last by the function φFS = 4α(1−α). This will work as a masking function, which returns18

0 when calculated in cells away from the free-surface and 1 at the interface. From the fact that this coefficient uses19

α to detect the free-surface, it is fairly essential keep the interface confined to a small number of cells possible, and20

from this we see the need of a mesh dependence study.21

7509



Lopes et al. / Applied Mathematical Modelling 40 (17-18) 7504-7515 7510

3. Results: Example cases1

3.1. 2D Dam-break2

The example presented here is the benchmarking 2D dam-break case without obstacle. This case is used by many3

other authors to show the capabilities of free-surface models and of interest for this work as it can exhibit several4

possible zones of natural aeration of the flow and the interface location. A static water column is initially held against5

the left wall by a vertical gate as shown in Fig. 2. On removing the gate, the water column collapses and the resulting6

slosh hits the right wall before returning in the form of a small propagating wave.7

2n

n
4n

n=0.146 m

water air

atmosphere

wall

Figure 2. 2D dam-break domain.

Numerical simulations are performed in four different meshes: 16 × 16, 32 × 32, 46 × 46 and 64 × 64 cells.8

The fluid properties were chosen to represent the physical values of water and air at 15oC. Surface tension is set9

to 0.072 kg s−2, the averaged bubble radius (rb) is 0.002 m and φent = 0.05n = 0.0071 m, where n stands for the10

water column width (Fig. 2). The domain is bounded by walls with the exception of the top one that represents the11

atmosphere. The pressure at the walls is given by Neumann boundary conditions (BC), whilst the velocity is set to12

no-slip (Dirichet-BC).13

Figure 3 presents snapshots of the free-surface position for t = 0.1, 0.3, 0.7 and 1.0 s for finer mesh. Figure 3a14

shows the φFS function and Fig. 3b the values of the terms Eg and Eg, f rac. Figure 4 demonstrates the influence of15

changing the mesh size on the free-surface position for t = 0.8 s. Again, Fig. 4a shows the φFS function and Fig. 4b16

the values of the terms Eg and Eg, f rac.17

The function used to detect the free-surface has demonstrated excellent accuracy throughout the simulation time18

even when a large cavity is formed inside the fluid (Fig. 3a4). One second after the collapse of the water column19

(Fig. 3b1), due to the friction with the bottom wall, air is forced to enter from the bottom, where the term Eg assumes20

high values. High values of air-entrainment can also be seen in the zone where the water collides with the right wall21

(Fig. 3b2) and on its way back in the area where a small cavity of the breaking wave is formed (Fig. 3b3). The mesh22

influence study show a large difference between meshes 16 × 16 and 32 × 32 cells both for φFS and Eg values. The23

free-surface in the last three finer meshes have a similar shape, whereas the maximum values of Eg are on the order of24

4× 107 in the mesh with 32× 32 cells (Fig. 4b2) and of the order of 5× 107 for 46× 46 and 64× 64 cells (Fig. 4b3 and25
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4) Eg,frac

1.00
0.75

0.50

0.25

0.00

1.00
0.75

0.50

0.25

0.00

φFS

Eg(x107 )

7.00
6.00

4.00

2.00

0.00

Figure 3. Dam-break process for the time steps t = 0.1, 0.3, 0.7 and 1.0s using the finest mesh (64 × 64 cells). Top images are photographs of the

experiment, middle figures (a) show the function to detect the free-surface position (φFS ) and bottom figures (b) show the bubble formation term

(Eg) and its volume fraction on the cells (Eg, f rac).

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

1.00
0.75

0.50

0.25

0.00

φFS

Eg,frac

1.00
0.75

0.50

0.25

0.00

Eg(x107 )

7.00
6.00

4.00

2.00

0.00

Figure 4. Mesh influence study of dam-break case at t = 0.8s. From the left to right the meshes are: 16×16, 32×32, 46×46 and 64×64 cells. Top

figures (a) show the function to detect the free-surface position (φFS ) and bottom figures (b) show the bubble formation term (Eg) and its volume

fraction on the cells (Eg, f rac).
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Fig. 4b4). This shows that, even with the decreasing of the mesh size, the values of Eg are quasi mesh independent,1

although its spacial location is sensible to the grid size.2

3.2. 3D vertical plunging jet3

The 3D computational domain represents a part of the experimental apparatus used by Chanson and Manasseh4

[9], schematically represented in Fig. 5. This experimental work provides extensive data on void fraction and bubble5

count rate inside the water, which despite not being relevant in this work, will be useful to compare the results when a6

full air-entrainment model is completed. The simulation of a 3D domain rather than a 2D domain allows us to better7

represent all the flow structures across the interface which are manifestly 3D structures. Also, comparisons to the 3D8

model of Ma et al. [22] in terms of Eg values and later for void fractions can be done clearly and without constraints9

(note that Ma et al. [22] applied their model to the same case in their study).10

A plunging jet of clean water is ejected from a d0 = 0.025 m diameter nozzle, into a pool of stationary water. The11

distance between the water surface and the nozzle is constant and equal to x1 − x0 = 0.1 m. The impact velocity of12

the jet at the pool is U1 = 3.5 m s−1. Velocity profiles are obtained at different horizontal planes from 0.8d1 (m) to13

10.0d1 (m) below the initial pool free-surface, where d1 is the jet diameter at the impact zone (d1 ≈ 0.024 m) and14

r1 the jet radius (r1 ≈ 0.012 m). To investigate the impact of mesh resolution on the solution, three different grids15

with different mesh resolutions were generated and their characteristics summarized in Table 1. In order to decrease16

the computational time, instead of using spatially uniform meshes, three zones with different grid sizes are created as17

defined in Fig. 5.18

cell length, ∆x (m) N.Cells N.Proc. Time (s)

jet and surface (Z1) centre-bottom (Z2) lateral (Z3)

Coarse grid (G0.005) 0.005 0.005 0.005 84 192 16 1963

Medium grid (G0.0025) 0.0025 0.0025 0.005 521 124 16 39 891

Fine grid (G0.00125) 0.00125 0.0025 0.005 2 104 460 16 281 073

Finnest grid (G0.0008) 0.0008 - 0.00125* 0.0025 0.005 2 458 835 32 284 242

Table 1. Grid characteristics to demonstrate the mesh dependency. Zones Z1, Z2 and Z3 are represented in Fig. 5. *In this case, cells with 0.0008 m

edges were placed just on the intersection between jet and pool.

The initial conditions are set as represented in Fig. 5. The pool is filled with stationary water (U = 0 m s−1) to a19

constant depth. A cylindrical column of water with a fixed inlet velocity is used to represent the jet. In order to get fast20

convergence of the solution and computational stability the air velocity in the vicinity of the jet is set equal to the jet21

velocity. Four different boundary conditions (BC) are used in this simulation as shown in Fig. 5. The velocity at the22

inlet is calculated based on the jet impact velocity using Bernoulli’s principle, U0 =

√
U2

1 − 2g(x1 − x0) = 3.21 m s−1.23

The atmosphere just allows the air to leave the domain by setting U as dependent on pressure with total pressure set24

as zero. The lateral boundaries have Neumann-BC for α, p equal to hydrostatic pressure and non-slip Dirichet-BC25

for U. For the bottom boundary the hydrostatic pressure is set to ρ f 1g(xbottom − x1) = 3915.2 Pa and Neumann-BC are26
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Air-bubble
diffusion 
layer

x

r

0.2m

0.2m

0.125m

U1,d1,r1

U0,d0,r0

4.0 d1

2.0 d1

1.2 d1

0.8 d1

lateral

bottom

inlet

atmosphere

Z1

Z2

Z3

wall

aeration point

8.0 d1

6.0 d1

10.0 d1

α=1

α=0

Figure 5. Vertically-centred slice of the computational domain for the 3D circular plunging jet problem. The mesh presented corresponds to

G0.00125 (Table 1).
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used for the remaining variables. In order to verify the correct application of these boundary condition, we simulated1

with the coarser mesh the full experimental domain and verified that the results in terms of U, p and α in the zone2

close to the jet agreed with those calculated on the smaller domain.3

The k, ε and νt variables at the inlet are calculated by:4

k0 =
3
2

(U0I0)2 = 0.000235 m2s−2 (12)

ε0 = Cµ

k3/2
0

l0
= 0.000371 m2s−3 (13)

νt,0 = Cµ

k2
0

ε0
= 1.3416 × 10−5 m2s−1 (14)

where U0 (m s−1) is the mean flow velocity at jet inlet; I0 (%) the turbulent intensity at jet inlet, set as 0.39 % (value5

from the experiment of Chanson and Manasseh [9]) and l0 (m) the length scale at jet inlet, in this study calculated as6

l0 = 0.035 d0 (m). On the remaining boundaries k0, ε0 and νt,0 are defined as Dirichlet-BC. The fluid properties were7

chosen based on the physical values of water and air at 15oC. Surface tension is set to 0.072 kg s−2, bubble radius (rb)8

is 0.00175 m and φent = 0.0012 m. The simulation ran with the extra term activated from the beginning. A steady-9

state solution was acquired after 6500 time iterations with an averaging time step of 0.0001 s for the simulation with10

coarser mesh, which gives a final time of about 0.65 s. This state was identified from the criteria that the residuals of11

k, ε and p, and the volume fraction on the domain were constant in time. The averaged values from the last 0.1 s were12

used to plot the results. Maximum Courant number and maximum Courant for α are both defined to 0.5.13

3.2.1. Radial velocity profiles14

The liquid velocity plays a key role in the transport of bubbles into the fluid. This therefore represents a good15

variable with which we can validate the solution and demonstrate grid independence. In order to prove this, in this16

section, the computed radial distribution of liquid velocity is presented. Figure 6 shows the dimensionless radial17

velocity profiles (U/U1) on the pool depths of x = 0.8d1, 1.2d1 and 2.0d1 for the four meshes presented. These three18

profiles were chosen here because these were the positions where Chanson and Manasseh [9] measured experimentally19

the air concentration profiles.20

From the data in Fig. 6, it can be seen that the velocity has the maximum value at the jet centreline and tends21

to zero away from the centre. For a free jet in air, the greater the distance from the jet inlet, the lower and wider22

the velocity profile becomes, eventually assuming the universal shape of a Gaussian curve [26]. However, for a jet23

impacting a pool it is also known that the profiles closer to jet impact zone are affected by the abrupt decreasing of the24

velocity from its maximum value to zero. This situation is clearly visible in the results of the finer mesh (Fig. 6). The25

velocity on the jet axis was equal to 3.5 m s−1 (U/U1 = 1.0), and this value remained constant until a distance equal26

to the radius of the jet. After reaching a distance of 1.0r/r1, the velocity passed from this maximum to roughly zero27

in about 0.25r/r1. On the coarser meshes, numerical viscosity smooths the profile; the axis velocity remains correct28
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Figure 6. Liquid velocity for pool depths (a) x = 0.8d1 (m), (b) x = 1.2d1 (m) and (c) x = 2.0d1 (m). U1 = 3.5 m s−1, d1 = 0.024 m and

r1 = 0.012 m.

and the curves tends to zero velocity at similar values of r/r1 ≈ 1.5, but the shape of the curve between these extremes1

is significantly affected, with a smoother shape for the coarser meshes indicating a reduction of velocity inside the jet2

(r/r1 < 1.0). On the finest mesh the jet flow remains as a plug flow and the variation in velocity is restricted to the air3

region around it. From these results we can also assume that we reach a mesh independent solution for the grid with4

∆x = 0.0008 m.5

More interesting results are obtained when the profiles are plotted in a different dimensionless form. In a developed6

flow region the curve must present an self-similar shape in all the sections and it can be compared with the solutions7

of Wilcox [38](Fig. 7a) and Tollmien [1, 29](Fig. 7b). On both, the local velocity U is divided by the velocity on8

the jet axis Ux. The radial distance r is rendered dimensionless by dividing it by the vertical distance x for Wilcox9

profile and by dividing r by b for Tollmien solution, where b represents the value of r where the velocity is half of the10

velocity on the jet axis. Note that in a developing flow region Ux = U1.11

Figure 7 presents the fluid velocity profiles for horizontal profiles at distances x = 0.8d1 to x = 10.0d1 from the12

beginning of jet impact zone and the comparison with the solutions of Wilcox and Tollmien using mesh G0.0008.13

Since these solutions were derived to predict the velocities in the fully developed flow region [1], we must keep in14

mind that they will not necessarily correctly predict the flow at the jet beginning, and this is indeed what we find.15

From the analysis of Fig. 7a and Fig. 7b it can be noted that the profiles are converging to a self-similar solution,16

however, the first three profiles are quite a long way away from the fully developed solution, indicating that those are17

within the developing flow region and can not be used as a comparison. The true convergence and self-similarity was18

achieved slightly after 4.0d1, as is better shown in Fig. 7a. The profile at x = 10.0d1 is shown not to converge on the19

approximation to the Tollmien solution at distances to the axis of the jet lower than 1.0r/b (Fig. 7b). At this depth the20

mesh is coarser and consequently the results are less accurate. The velocities plotted at profiles x = 0.8d1 to 8.0d121

were evaluated in the refinement zone Z1 − Z2, whereas 10.0d1 were evaluated further down in the zone just covered22

by the refinement Z2 (Fig. 1).23
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Figure 7. Liquid velocity profiles for some horizontal profiles along the pool depth (x = 0.8d1 to 10.0d1). Ux is the velocity on the jet axis, x is the

vertical direction and b the value of r where the velocity is half of the velocity on the jet axis. The profiles are compared with the solutions of (a)

Wilcox and (b) Tollmien using mesh G0.0008

.

3.2.2. Free-surface detection and bubble formation1

The dependence of the free-surface location on the α value and on the mesh refinement is shown in Fig. 8.2

Figure 8a shows the variation of the free-surface shape with α values on the finest mesh (G0.0008). Figure 8b shows3

the free-surface for different meshes keeping the value of alpha constant to 0.3.4
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Figure 8. Temporal-averaged free-surface and air-cavity determined by: (a) keeping the finer mesh (G0.0008) and changing α value and (b) keeping

α = 0.3 and changing the mesh refinement. The x (m) axis is the vertical direction and r1 (m) the jet radius at impact zone (r1 = 0.012 m).

In a VOF simulation, the value of α that correctly represents the interface is not clearly defined; the interface5

is instead captured in the values between 0 and 1. Although some authors use a value of 0.5, the appropriate value6

should be subject of an analysis depending on the case under consideration. The α isosurface is strongly influenced7
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by turbulence at the free-surface and by what value of α we wish to consider as a threshold for the interface. Figure 81

shows the temporally averaged shape of the free-surface and the air cavity for various values of α. The overall shape2

of the free-surface (Fig. 8a) seems insensitive to the value of α used, however the cavity shape increases substantially3

in volume with increasing values of α. In fact, the interface fluctuations are higher in the air-cavities of the jet than in4

the remaining free-surface, making the value of α much more important in those regions.5

Figure 8b presents the shape of the interface for the different levels of mesh refinement. The lack of cells in the6

coarser mesh produces a smoother connection between the pool free-surface and the jet, and neglects the creation of7

air cavities. In the other hand, the medium and fine mesh are able to generate and detect the cavities, however due to8

the lack of mesh resolution to calculate correctly the forces acting on the interface, the air cavity may not be formed9

correctly and closed, although we can see on the fine grid a smaller gap between the jet and the surface. At the end,10

the finest mesh has sufficient resolution to generate and close the cavities.11

The effect of changing the mesh resolution is highly significant for the overall modelling of the entrainment12

process. As mentioned in the introduction, the whole entrainment process could be simulated by resolving the free-13

surface all the way to the scale of the entrained bubbles, however doing so would be phenomenally expensive and14

inappropriate for an engineering simulation. A more cost-effective approach would be to model the large scale shape of15

the free-surface on a relatively coarse mesh, with modelled entrainment into an Eulerian two-fluid model representing16

the statistical propagation of subgrid scale entrained bubbles. Technically speaking, for the Eulerian two-fluid model17

to work the bubble size should be substantially smaller than the cell size; however since the process of air-entrainment18

is a continuous one which is having to be truncated at some intermediate scale, it is likely that this constraint is being19

violated at some point.20

The function Eg, representing the number of bubbles formed at the free-surface, is also presented in this section.21

Figure 9 shows the time-averaged values of Eg for the four meshes used and the free-surface position, delimited by22

φFS isolines of 0.1, 0.5 and 0.9. As mentioned before, a sharp interface is very important in order not to spread the Eg23

term over a large number of cells. In the first instance, observing Fig. 9, just the meshes G0.0008 and G0.00125 show24

Eg values calculated at the intersection of the jet with the pool, which is indeed the position where bubble formation25

was observed experimentally. However, our concern is also about the accuracy of Eg, and in these terms, G0.000826

mesh generates closest values when compared with the work of Ma et al. [23] and a more precise location of the zone27

of aeration – it can be noticed the generation of bubbles exactly inside of the air cavity, whereas in remaining meshes,28

Eg is spread all over the free-surface.29

Figure 10 shows the comparison between the values of free-surface wave amplitude (a) using (a) the formulation30

of Ma et al. [23] and (b) the concept proposed in the current paper. Around the jet impact zone and inside the air31

cavity, the values are reasonably similar in both cases (a ≈ 0.001 m). These places, out of all the area occupied by the32

free-surface, are exactly the zones where the comparison should be made. The differences found at the centre of the33

jet has no importance for the calculation of Eg term and can be ignored.34
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Figure 9. 2D centre-slice profiles of the free-surface and bubble formation term using the meshes: (a) G0.0008, (b) G0.00125, (c) G0.0025 and (d)

G0.005. Isolines correspond to φFS = 0.1, 0.5 and 0.9. The axis x is the vertical direction and r1 the jet radius at impact zone (r1 = 0.012 m).
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Figure 10. Comparison between the value of free-surface wave amplitude (a) using (a) the formulation of Ma et al. [23] and (b) the concept

proposed in this paper. The location of the free-surface is represented by α = 0.3.

4. Conclusions1

The present work attempts to numerically simulate air entrainment in two canonical cases; a 2D dam break and2

3D circular plunging jet using Computational Fluid Dynamics. We investigate the interplay of numerical factors such3

as mesh resolution with the modelling processes of surface capturing and entrainment modelling. The VOF interface4

model as implemented in the code interFoam from the open-source OpenFOAM R© toolkit was used to reproduce the5

interface between the water and air. In addition, an explicit term for air-entrainment detection was adapted to run6

with VOF models without a need of a calibration process. This was done by implementing a factor for free-surface7

detection and new concept of surface wave’s amplitude based on the turbulent length scales.8
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The 2D dam break case was used to ascertain the influence of mesh size in the definition of free-surface position1

and aeration zone. The magnitude of air-entrainment term does not suffer much variation with the grid size, which let2

us believe that the new concept for wave’s amplitude also improved the model on its independence of mesh size. The3

free-surface position is in contrast, much more sensible to the grid size and consequently a responsible to the accuracy4

of the aeration zone.5

In the case of the 3D plunging jet, the free-surface shape was plotted using different mesh refinements and alpha6

values. The mesh refinement is shown to significantly affect the definition of the air cavities. The radial liquid velocity7

in the fully developed zone of the jet was found to be in reasonable agreement with analytical solution found on the8

literature. The term Eg for bubble formation reaches its maximum value in the intersection between the free-surface9

and the jet interface. This result is in agreement with visual descriptions of the air-entrainment process found in10

the literature. The term was successfully adapted to run within VOF based models and to be independent of user-11

calibration, by setting the free-surface wave’s amplitude to be equal to the radius of the turbulent length scales. The12

results shown here prove that we might be optimistic about the applicability of this new concept, however, some other13

test cases are needed to validate the data as well as the conclusion of the air-entrainment model to compare the values14

of transported air.15

5. Nomenclature16

f volumetric surface tension force, kg m−2s−2
17

g gravity vector, m s−2
18

n free-surface normal vector, −19

U velocity vector, m s−1
20

Uc compressive velocity, m s−1
21

b value of r where the velocity is half of the velocity on the jet axis, m22

Cα binary coefficient, −23

Cµ turbulence model constant, −24

Cent constant for air-entrainment model, −25

d jet diameter, m26

Eg number of bubbles formed at free-surface, m−3s−1
27

g gravity, m s−2
28

I turbulent intensity, %29

k turbulent kinetic energy, m2s−2
30

l′ turbulent length scale, m31

p∗ dynamic pressure, Pa or kg m−1s−2
32

r radial direction, jet radius, m33
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t time, s1

U mean velocity, m s−1
2

Vg volume calculated assuming an averaged bubble diameter, m3
3

x vertical direction on pool, m4

Z1,Z2,Z3 refinement zones of the mesh, −5

Greek Symbols6

α volume fraction, −7

∆t computational time step, s8

κ surface curvature, m−1
9

µ dynamic viscosity, kg m−1s−2
10

νt turbulent viscosity, m2s−1
11

φent interface thickness, m12

φFS interface location function, −13

ρ density, kg m−3
14

σ surface tension, kg s−2
15

τ shear stress tensor, Pa or kg m−1s−2
16

ε turbulent dissipation, m2s−3
17

n water column width, m18

Subscripts19

0 inlet position20

1 jet impact position21

f 1 fluid 122

f 2 fluid 223
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