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Abstract—The mirror game has been recently proposed as
a simple, yet powerful paradigm for studying interpersonal
interactions. It has been suggested that a virtual partner able
to play the game with human subjects can be an effective tool
to affect the underlying neural processes needed to establish the
necessary connections between the players, and also to provide
new clinical interventions for rehabilitation of patients suffering
from social disorders. Inspired by the motor processes of the
central nervous system (CNS) and the musculoskeletal system in
the human body, in this paper we develop a novel interactive
cognitive architecture based on nonlinear control theory to drive
a virtual player (VP) to play the mirror game with a human
player (HP) in different configurations. Specifically, we consider
two cases: the former where the VP acts as leader and the latter
where it acts as follower. The crucial problem is to design a
feedback control architecture capable of imitating and following
or leading a human player in a joint action task. Movement of
the end-effector of the VP is modeled by means of a feedback
controlled Haken-Kelso-Bunz (HKB) oscillator, which is coupled
with the observed motion of the HP measured in real time.
To this aim, two types of control algorithms (adaptive control
and optimal control) are used and implemented on the HKB
model so that the VP can generate a human-like motion while
satisfying certain kinematic constraints. A proof of convergence
of the control algorithms is presented in the paper together
with an extensive numerical and experimental validation of their
effectiveness. A comparison with other existing designs is also
discussed, showing the flexibility and the advantages of our
control-based approach.

Index Terms—Motor coordination, virtual player, mirror
game, joint action, nonlinear control.

I. INTRODUCTION

THE emergence of coordinated behavior between humans
is a common phenomenon in many areas of human en-

deavor. Examples include improvisation theater, group dance,
music playing, team sports and parade marching [1]. At the
core of the interaction between the players lies a fundamental
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feedback mechanism where each player adapts her/his motion
in response to the observed movement of the other.

To study this intriguing phenomenon, the mirror game has
been recently proposed as a simple, yet effective paradigm.
In its simplest formulation, the mirror game features two
people imitating each other’s movements at high temporal and
spatial resolution [2]. The game can be played in different
experimental conditions: the former where one of the players
leads and the other has to follow the leader’s motion (Leader-
Follower condition); the latter where the two players create
joint synchronized movement (Joint Improvisation condition).

The theory of similarity in social psychology suggests
that people prefer to team up with others possessing similar
morphological and behavioral features, and that interpersonal
coordination is enhanced if their movement shares similar
kinematic features [3], [4]. Further evidence suggests that
motor processes caused by interpersonal coordination are
strictly related to mental connectedness. Specifically, motor
coordination between two people contributes to social attach-
ment [5].

As suggested in [5], coordination games can therefore be
used to help people suffering from social disorders improve
their social skills. Also they can be effectively exploited
in social robotics to enhance attachment, coordination and
rehabilitation during human-robot interactions [6]. For this
reason, it has been proposed that creating a VP or avatar able
to coordinate its motion with that of a HP can be extremely
useful to study the onset of coordination and how it is affected
by similarity/dissimilarity between the players’ motion char-
acteristics [7]. A VP can also be used for diagnostics and
rehabilitation of patients suffering from social disorders as
recently proposed in [8].

The aim of this paper is the design of a novel interac-
tive cognitive architecture (ICA), based on nonlinear control
theory, able to drive a VP to play the mirror game with a
human either as a leader or as a follower. Contrary to previous
approaches in the literature, the proposed ICA allows for
bi-directional feedback between the HP and the VP, which
was shown to be one of the key components in interpersonal
coordination [9], while guaranteeing that the motion of the
VP, when interacting in real-time with the HP, exhibits certain
desired kinematic features. When playing as a follower, the
ICA needs to guarantee that, while exhibiting the desired
movement properties, the VP tracks as closely as possible the
motion of the human leader. When playing as the leader, the
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ICA needs instead to generate new interesting motion. The
proposed ICA can also be integrated into a humanoid robot to
achieve the desired dual-arm coordination [10].

In this paper we take the view that the design of such
an architecture is fundamentally a nonlinear control design
problem where, given some reference input, the architecture
has to drive the VP onto a desired motion which is a function
of the movement of the human player being sensed during
the game. We explore two different approaches, one based
on adaptive control, the other on optimal control. Our control
architecture mimics the two fundamental actions which have
been suggested to be at the core of the emergence of motor
coordination between two or more effectors in biological sys-
tems: feedback and feedforward [11], [12], [13]. Specifically,
the motor system is able to correct the deviation from the
desired movement with the aid of feedback control, whilst
feedforward control allows it to reconcile the interdependency
of the involved effectors and preplan the response to the
sensory incoming information [12], [13], [14].

We show experimentally that the proposed control archi-
tectures are able to effectively drive the VP to play the
mirror game while generating motion with desired kinematic
properties. In particular, we use the concept of Individual
Motor Signature (IMS) recently proposed in [15], [16] to
characterize the motion of an individual player and evaluate
how similar/dissimilar the motion of two different individuals
is. Following our approach we are able to show that the VP
driven by the cognitive architecture presented in the rest of
this paper can play the mirror game either as a leader or a
follower while exhibiting a desired IMS.

Relevant previous work in the literature includes the gen-
eration of human-like movements [17], the development of
a mathematical model to explain the coordination dynamics
observed experimentally in the mirror game [2], and the human
dynamic clamp paradigm proposed in [7], [18], [19] where the
use of a virtual partner driven by appropriate mathematical
models is proposed to study human motor coordination. These
previous approaches will be used to investigate and compare
the performance of the novel strategy presented in this paper.
We wish to emphasize that the control algorithms developed
and validated in what follows can be also effectively used for
trajectory planning to enhance human-robot coordination in
joint interactive tasks.

The rest of the paper is organized as follows. Mirror game
set-up, problem statement and motor signature are discussed
in Section II before presenting the schematic of the proposed
cognitive architecture in Section III. The feedback control
strategies at the core of the ICA are developed and analyzed in
Section IV and V. The experimental validation of the control
algorithms is presented in Section VI where experimental
results are discussed showing the effectiveness of the proposed
strategies. A comparison with other existing approaches is also
carried out. Finally, conclusions and suggestions for future
work are drawn in Section VII.

II. THE MIRROR GAME PROBLEM

Investigation of interpersonal coordination requires appro-
priate experimental paradigms. A typical paradigm recently

Fig. 1. Experimental set-up of the mirror game between a VP and a HP at
the University of Montpellier, France (see [8] for further details).

proposed in the literature is the mirror game, which involves
two people imitating each other’s movements at high temporal
and spatial resolution [2]. It can be played in two different
conditions: Leader-Follower condition, where the follower
attempts at tracking the leader’s motion as accurately as
possible, and Joint Improvisation condition, where the players
jointly coordinate and synchronize their movements without
any of the two being designated as leader or follower.

Our set-up is inspired by that in [2]. Specifically, a small
orange ball is mounted onto a string, which the HP can move
back and forth along the string itself. In the meanwhile, the
VP on the opposite screen moves its own ball on a parallel
string with the same length (see Fig. 1). In this implementation
of the mirror game, two players (a HP and a VP) are required
to move their respective ball back and forth and synchronize
their movement. Here, we assume that the game is played in
a Leader-Follower condition.

The position of the ball moved by the HP is detected by a
camera. A feedback control strategy then needs to be designed
in order to generate the trajectory of the ball moved by the
VP. Such a trajectory can then be provided to the on-board
controllers of the VP (robot or computer avatar) as the desired
trajectory for its end effector.

To solve this control problem so that the VP motion presents
similar features to the motion of a human player, it is necessary
to choose an appropriate model of the VP motion that can
then be controlled using a nonlinear feedback strategy. To
this purpose, here we use the Haken-Kelso-Bunz oscillator,
which was first proposed in [20] as a model able to capture
the observations made in experiments on human bimanual
coordination. The model consists of two nonlinearly coupled
nonlinear oscillators described by

z̈+(α ż2 +β z2− γ)ż+ω
2z = [a+b(z−w)2](ż− ẇ) (1)

where z, ż represent position and velocity of finger 1, and w, ẇ
those of finger 2, modeled by a replica of (1) obtained by
swapping w, ẇ with z, ż; a and b are the coupling parame-
ters, and α , β , γ and ω characterize the response of each
uncoupled finger when subject to some reference signal. It
is worthy of note that, other than describing intrapersonal
motor coordination, the HKB oscillator was suggested in
the literature as a paradigmatic example of human motor
coordination even beyond the simple bimanual experiments
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(a) Same player
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(b) Two different players

Fig. 2. Position time series and corresponding PDF of velocity time series
for the same player (a) and two different players (b).

it was originally introduced for [7], [18], [20], [21]. Indeed,
the HKB model was used to describe interpersonal motor
coordination involving two different people [22], [23], [24]
or a group of three or more persons [25], and it was shown to
be better qualified as end effector model in the mirror game
than other systems [26].

Solving the mirror game can be formulated as the following
control problem. Given a nonlinear HKB oscillator of the form{

ẋ(t) = y(t)
ẏ(t) =−

(
αy2(t)+βx2(t)− γ

)
y(t)−ω2x(t)+u(t)

(2)

where x and ẋ refer to the position and velocity of the end
effector of the VP, respectively, and u is an external control
input, the problem is to design a feedback controller u such
that x achieves bounded asymptotic tracking of the position of
the HP, while expressing some desired kinematic features.

As metrics to characterize the kinematic properties of the
motion of an individual playing the game we use the concept
of individual motor signature (IMS), recently introduced in
[15], [16]. It has been shown that the IMS is time invariant
and unique for each player. It is defined in terms of the velocity
profile (or distribution) of the player’s motion in solo trials.
To quantify how similar or dissimilar the signatures of two
different players are, we use the earth mover’s distance (EMD)
between any two probability distribution functions (PDF)
of their velocity time series [16], [27]. The EMD between
two PDFs p1 and p2 can be computed as EMD(p1, p2) =∫

Z |CDFp1(z)−CDFp2(z)|dz, where Z denotes the integration

Fig. 3. Motor coordination between two players in the mirror game.

domain, and CDFpi(z) denotes the cumulative distribution
function of the distribution pi, i ∈ {1,2}. Fig.2(a) shows the
position time series of the same HP and the corresponding PDF
of velocity in two solo trials. It is visible that the two PDFs
of velocity time series resemble each other in terms of their
shape, and the EMD between them is 0.024. In contrast, the
two PDFs of velocity time series in Fig.2(b) differ remarkably
from each other, and the value of EMD is 0.604, which
confirms the qualification of the PDF of velocity time series
in solo trials as individual motor signature.

III. DESIGN OF THE COGNITIVE ARCHITECTURE

We design the cognitive architecture of the VP so as to
replicate the main processes involved in making a human being
play the mirror game (see Fig. 3). The visual system detects
the ball’s position on the string and generates visual signals,
which are then transmitted to the central nervous system (CNS
including brain and spinal cord). Several parts of the CNS
(such as ventral horn, cerebellum and motor cortex) use an
internal model to predict the kinematic characteristics of the
other player’s motion and generate the neural impulses that
control the extension and contraction of muscles. Finally, the
neuromuscular system activates and coordinates the muscles
involved in generating the hand movements.

This architecture is mapped onto the real-time control
schematics shown in Fig. 4 whose blocks are briefly described
below.
• A camera is used to detect the position rp of the HP.
• A filtering and velocity estimation block is used to filter

the position data acquired by the camera via a low pass
filter and to estimate the velocity of the HP (reference)
via the simple formula

r̂v(t) =
rp(tk)− rp(tk−1)

T
t ∈ [tk, tk+1] (3)

where k ∈ N∗, and T = tk − tk−1 denotes the sampling
period of the camera. The estimated velocity is then used
to predict the HP position over the next interval by using
the expression:

r̂p(t) = rp(tk)+ r̂v(t)(t− tk), t ∈ [tk, tk+1] (4)

• At the core of the architecture lie the two blocks Tempo-
ral Correspondence Control and Signature Control. The
former is designed to regulate the end effector model so
that its motion tracks that of the HP with varying degrees
of dynamic similarity. Specifically, it aims at minimizing
the position error between the time series of the HP and
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that of the VP. The latter block uses the prerecorded
velocity time series of a reference HP with the desired
IMS (velocity profile) in order to generate the avatar
trajectory with desired kinematic features. In particular,
the aim of the signature controller is that of reducing
the distance (computed in terms of EMD) between the
velocity distribution of the VP and that of some reference
HP it aims at replicating the motion characteristics of.

• The prerecorded velocity trajectory of a reference HP
playing solo, representing the desired IMS, is stored in
the Signature generator block while the signature of the
avatar motion is estimated by the Signature estimation
block.

• The end effector model is used to generate the avatar
motion via an appropriate feedback control scheme. As
mentioned before, the HKB equation is employed to
describe the dynamics of the end effector.

• Finally, the output of the cognitive architecture (position
x and velocity ẋ) is used as reference motion for the VP.

In what follows we focus on the development of two
different feedback control strategies that drive the cognitive
architecture. Since our control algorithm is designed for a
virtual computerized agent rather than a real robot platform,
we do not take into account the effects of external disturbances
as those mentioned in [28]. First, following the approach of
[29], we develop an adaptive algorithm able to control the
temporal correspondence between VP and HP during the game
(green blocks in Fig.4). Note that adaptive control strategies
are widely employed in a large variety of contexts, as for
example those recently presented in [30], [31]. Then, we
consider an optimal controller to solve simultaneously the
multi objective control problem of tracking the trajectory of
the HP while preserving the features of the desired IMS of
interest (green and blue blocks in Fig.4). For both strategies
a proof of convergence is given before presenting numerical
and experimental investigation of their performance.

IV. ADAPTIVE CONTROL OF TEMPORAL
CORRESPONDENCE

To solve the control problem of temporal correspondence,
we propose an adaptive controller based on the end effector
model shown in (2). Specifically, we choose the nonlinear
controller given by

u = [a(t)+b(t)(x− rp)
2](ẋ− r̂v)︸ ︷︷ ︸

Coordination

−Cpe−δ (ẋ−r̂v)
2
(x− rp)︸ ︷︷ ︸

Temporal Correspondence

(5)

where rp is the position of the HP, r̂v is the estimated
velocity, Cp and δ are constant parameters, while the coupling
parameters a and b are updated according to the adaptive laws:

ȧ(t) =−e−2a(t) [(x− rp)(y− r̂v)+ηa(x− rp)
2]−ηa (6)

and

ḃ(t) =
y− r̂v

e2b(t)
[ω2x+(αy2 +βx2− γ)y−ηa(y− r̂v)−u]−ηa

(7)

where ηa is a positive constant. Note that the control law
(5) consists of two complementary terms. The former has

the same structure as that of the coupling proposed in [20]
to model the interaction between two HPs, albeit with the
introduction of adaptive parameters to account for variability
between different HPs. The second term, depending on the
fixed parameters Cp and δ , deals with the position error when
the velocity mismatch approaches zero and hence the first
term decays to zero. When |ẋ− r̂v| is relatively large, the
coupling term of the HKB equation instead dominates and
motor coordination between the two players becomes more
pronounced during the mirror game.

Theoretical analysis of the adaptive control algorithm is
given in what follows.

A. Convergence analysis

Theorem 4.1: The adaptive feedback controller (5) ensures
that the solution of the controlled HKB model (2) satisfies

|x(t)− rp(t)| ≤ eηaT

√
2ε

e2ηaT −2
+

2
eηaT

√
E(0), t ∈ [0,+∞)

if ηa is chosen so that ηa >
ln2
2T , where

E(0) =
1
2

[
(x(0)− rp(0))2 +(y(0)− r̂v(0))2 + e2a(0)+ e2b(0)

]
and

ε = sup
k∈N∗

(T 2 +1)(r̂v(kT )− r̂v(kT −T ))2.

Proof: Choose the energy-like function

E ,
1
2

[
(x− rp)

2 +(y− r̂v)
2 + e2a + e2b

]
(8)

Note that r̂v is fixed in each sampling interval [kT,(k +
1)T ),k ∈ N∗. Then the time derivative of E along the tra-
jectories of (2) with u defined in (5) is given by

Ė = (x− rp)(ẋ− r̂v)+(y− r̂v)ẏ+ e2aȧ+ e2bḃ

= (x− rp)(y− r̂v)− (y− r̂v)
[
(αy2 +βx2− γ)y+ω

2x−u
]

+(y− r̂v) [ω
2x+(αy2 +βx2− γ)y−ηa(y− r̂v)−u]−ηae2b

−
[
(x− rp)(y− r̂v)+ηa(x− rp)

2]−ηae2a

=−ηa(x− rp)
2−ηa(y− r̂v)

2−ηae2a−ηae2b

=−2ηaE, t ∈ [kT,(k+1)T )

Solving the above differential equation yields

E(t) = e−2ηa(t−kT )E(kT ), t ∈ [kT,(k+1)T ) (9)

Moreover, at the sampling point kT we have

E(kT )−E−(kT )

=
1
2
[(x− rp(kT ))2− (x− rp(kT −T )− r̂v(kT −T )T )2

+(y− r̂v(kT ))2− (y− r̂v(kT −T ))2]

≤ (rp(kT )− rp(kT −T )− r̂v(kT −T )T )2

+(r̂v(kT )− r̂v(kT −T ))2 +E−(kT )

= (1+T 2)(r̂v(kT )− r̂v(kT −T ))2 +E−(kT )

which is equivalent to

E(kT )≤ ε +2E−(kT ) (10)
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Fig. 4. Block diagram of the cognitive architecture of VP. Green blocks allow for the control of temporal correspondence between the VP and the HP, and
blue blocks take into account the desired individual motor signature.

where ε = supk∈N∗(T
2 + 1)(r̂v(kT ) − r̂v(kT − T ))2 and

E−(kT )= limt→kT E(t). Evaluating (9) and (10) at t =(k+1)T
and nesting the inequalities backwards till t = 0, we get

E(kT )≤ ε

[
1+

2
e2ηaT +

(
2

e2ηaT

)2

+ ...+

(
2

e2ηaT

)k−1
]

+

(
2

e2ηaT

)k

E(0) = ε
1− ( 2

e2ηaT )
k

1− 2
e2ηaT

+

(
2

e2ηaT

)k

E(0)

≤ ε

1− 2
e2ηaT

+
2

e2ηaT E(0), ∀k ∈ N∗

(11)

when the inequality ηa >
ln2
2T holds. Moreover, combining (9)

with (11), we get

E(t)≤ ε

1− 2
e2ηaT

+
2

e2ηaT E(0), t ∈ [0,+∞)

which clearly implies

|x(t)− rp(t)| ≤ eηaT

√
2ε

e2ηaT −2
+

2
eηaT

√
E(0), t ∈ [0,+∞)

�
Remark 4.1: It is easy to demonstrate that the coupling

parameters a and b are upper bounded with the proposed
adaptive laws.

Remark 4.2: Since rp(t) ∈ [0, l],∀t ≥ 0 and |r̂v(t)| ≤ l
T , the

following inequality holds

ε = sup
k∈N∗

(T 2 +1)(r̂v(kT )− r̂v(kT −T ))2 ≤ 4l2(1+T 2)

T 2

where l refers to the length of the string. Generally, the upper
bound for the position error is relatively conservative. When
the velocity of the HP is small, ε is small as well, and
the estimation for the position error is accurate enough. In
addition, taking the limit of (11) as kT →∞ and combining it

with (8), the position error between the two players satisfies
the following inequality:

limsup
kT→+∞

|x(t)− rp(t)| ≤ eηaT

√
2ε

e2ηaT −2

Similarly, we can estimate the velocity error as

|ẋ(t)− r̂v(t)| ≤ eηaT

√
2ε

e2ηaT −2
+

2
eηaT

√
E(0), t ∈ [0,+∞)

While being effective in achieving bounded tracking of the
HP position, the control approach derived so far is unable
to explicitly guarantee that the generated motion follows a
desired IMS. Therefore we consider a different scheme based
on optimal control.

V. OPTIMAL TEMPORAL CORRESPONDENCE AND
SIGNATURE CONTROL

The second approach we propose is based on optimal con-
trol, which is an effective framework to allow for movement
coordination and reconcile target tracking and individual motor
signature [32]. We assume that in the mirror game the motion
of the VP can be decomposed into a series of goal-directed
movements (see Fig. 5) influenced by both the position of
the HP and the desired individual motor signature. Thus, we
formulate the problem of driving the end effector motion
as described by (2) on a finite time interval [tk, tk+1] as the
dynamic optimization problem

min
u∈R

J (12)

where

J =
θp

2
(x(tk+1)− r̂p(tk+1))

2︸ ︷︷ ︸
Temporal Correspondence

+
1
2

∫ tk+1

tk
θσ (ẋ(τ)− rσ (τ))

2︸ ︷︷ ︸
Similarity

+ηmu(τ)2dτ

(13)
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Fig. 5. Movement of the VP end effector in the mirror game

with the constraint θp + θσ = 1 and θp,θσ ,ηm > 0 being
tunable control parameters. Here, r̂p(tk+1) denotes the esti-
mated position of the HP at time tk+1 (see (4) for further
details), while rσ refers to a prerecorded velocity time series
representing the desired motor signature. For the sake of sim-
plicity, the optimization interval [tk, tk+1] in the cost function
(13) corresponds to the sampling interval. The above cost
function mainly consists of three terms. The first term aims
at minimizing the mismatch between the position time series
of the HP and that of the VP. The second term takes care of
making the velocity profile of the VP as close as possible to
the reference one (motor signature). The last term guarantees
boundedness of the control effort. In particular, the idea behind
this cost function is that the human-like movement of the VP
emerges from the integration of three different goals related to
temporal correspondence, motor signature and control energy
expenditure, respectively. Note that the VP acts as a leader
when θp is close to 0, since the term related to the position
error x− r̂p in the cost function is negligible and the only
aim of the VP is to exhibit the motion characterized by the
desired motor signature. On the other hand, the VP behaves as
a follower if θp is close to 1 as in this case the controller aims
solely at minimizing the mismatch between the HP and VP
terminal positions. For small values of ηm, the control energy
can be large enough for the VP to achieve the desired tracking
performance or signature matching. On the other hand, for
larger values of ηm the control energy is small, which results
into a poorer performance of the VP.

A. Convergence Analysis

To prove stability of the optimal control algorithm, we focus
on proving boundedness of the position error between the
reference input and the output of the cognitive architecture.
In particular, optimality of the cost function is guaranteed in
each optimization interval if the damped harmonic oscillator is
adopted as end effector model instead of the HKB oscillator.
Since both the reference position rp and the desired velocity
rσ are bounded, we assume rp ∈ [r, r̄] and rσ ∈ [v, v̄].

Theorem 5.1: The optimal control algorithm applied to the
HKB oscillator (2) with cost function (13) ensures bounded
position error between HP and VP.

Proof: First of all, we need to demonstrate that there exists
a limit cycle in the HKB oscillator{

ẋ = y
ẏ =−(αx2 +βy2− γ)y−ω2x

(14)

Choose the energy-like function as V (x,y)= ω2x2+y2

2 . The time
derivative of V (x,y) along the trajectory of the HKB oscillator

x

y

V(x,y)=c2

V(x,y)=c1

αx2+βy2=γ

rmin

rmax

Fig. 6. Illustration on the construction of region R. The black ellipse is
described by the equation αx2 +βy2 = γ , and the region R refers to the ring-
shaped area bounded by two red ellipses corresponding to V (x,y) = c1 and
V (x,y) = c2, respectively.

(14) is given by

V̇ (x,y) = ω
2xẋ+ yẏ = ω

2xy− (αx2 +βy2− γ)y2−ω
2xy

=−(αx2 +βy2− γ)y2

Define

rmax := max
(√

γ

α
,

√
γ

β

)
,rmin := min

(√
γ

α
,

√
γ

β

)
and construct a region R as follows (see Fig. 6)

R := {(x,y) ∈ R2 : c1 ≤V (x,y)≤ c2}

where the positive constants c1 and c2 satisfy

rmin = max

(√
2c1

ω2 ,
√

2c1

)
, rmax = min

(√
2c2

ω2 ,
√

2c2

)
Clearly, R contains no stationary points of the system. Indeed,
the only stationary point of the system is (x,y) = (0,0), which
is located outside the region R. Moreover, V̇ (x,y) ≥ 0 when
V (x,y) = c1 and V̇ (x,y)≤ 0 when V (x,y) = c2. According to
the Poincare-Bendixson theorem, we conclude that the HKB
oscillator (14) has a limit cycle in R.

Let J∗ denote the value of the cost function (13) with the
optimal control algorithm in each time interval, and let J0
represent the value of the corresponding cost function when
u= 0. Since u aims at minimizing the value of the cost function
for all k ∈ N∗, we can write

J∗≤ J0 =
θp

2
(x(tk+1)− r̂p(tk+1))

2+
θσ

2

∫ tk+1

tk
(ẋ(τ)−rσ (τ))

2dτ

Since rp is bounded, r̂p(tk+1) is bounded as well according to
(3) and (4). In addition, also rσ (τ) is bounded, and so are x(t)
and ẋ(t) as the trajectory of the HKB oscillator converges to
the limit cycle in R. Thus, we can claim that J0 is bounded for
k∈N∗, which implies boundedness of J∗ and as a consequence
of the position error between VP and HP. �

Remark 5.1: It is demonstrated that the bound on the
tracking error |x(tk+1)− r̂p(tk+1)| converges to 0 as θp→ 1 and
ηm→ 0. Similarly, the bound of the velocity error |ẋ(tk+1)−
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rσ (tk+1)| goes to 0 if θσ → 1, ηm→ 0 and rσ (tk) = y(tk) (see
Supplementary Material for the detailed analysis).

The analytical solution to the optimization problem (12) is
available if a linear damped harmonic oscillator is employed
as end effector model, and Pontryagin’s minimum principle
provides necessary and sufficient conditions to solve the
minimization problem [33].

Corollary 5.1: Given the linear system ẍ + aẋ + bx = u,
the optimal control approach guarantees convergence to the
optimum solution over each subinterval.

Proof: According to the fundamental theorem of the calculus
of variations, we need to examine the second variation of the
given cost function in order to establish the optimum. From the
conclusions in [33], the second variation of the cost function
(13) is given by

δ
2J = θp[δx(tk+1)]

2

+
∫ tk+1

tk

(
δX δu

)( HXX HXu
HT

uX Huu

)(
δX
δu

)
dt

where H is the Hamiltonian

H(X ,u,λ ) =
1
2

θs(ẋ− rσ )
2 +

1
2

ηu2 +λ
T
(

y
−ay−bx+u

)
with X = [x, ẋ]T = [x,y]T and λ = [λ1,λ2]

T . Rewrite the linear
system in matrix form Ẋ = AX +Bu, where

A =

(
0 1
−b −a

)
, B =

(
0
1

)
Let X = X∗+ δX and u = u∗+ δu, where X∗ and u∗ denote
optimal state and optimal control, respectively. Since Ẋ∗ =
AX∗+Bu∗, we get

˙δX = AδX +Bδu (15)

where δX = [δx,δ ẋ]T . Thus, it follows from HXu = HuX =
[0 0]T , Huu = η > 0 and

HXX =

(
0 0
0 θs

)
≥ 0

that

δ
2J = θp[δx(tk+1)]

2 +
∫ tk+1

tk
δX(t)T HXX δX(t)+η(δu(t))2dt

= θp[δx(tk+1)]
2 +

∫ tk+1

tk
θs(δ ẋ(t))2 +η(δu(t))2dt ≥ 0

Moreover, δ 2J = 0 is equivalent to δx(tk+1) = 0, δ ẋ(t) = 0 and
δu(t) = 0 for all t ∈ [tk, tk+1], which yields δx(t) = δx(tk) = 0
from (15). This corresponds to the optimal solution X∗ and the
optimal control u∗. Therefore, we conclude that the optimal
control ensures the minimum value of the cost function (13)
for the linear system in each time interval. �

VI. VALIDATION

In this section we experimentally validate our control algo-
rithms on a simple, yet effective, set-up implemented at the
University of Bristol, UK. Experimental data of human-human
interaction is used to evaluate the matching performance of the
virtual player, and a comparison with existing VP models is
provided as well.

HP Computer

x(t)

rp(t) rp(kT)

Leap motion

controller

Fig. 7. Experimental set-up of the mirror game between a HP and a VP. The
position of the human fingertip rp(t) is detected by a leap motion controller,
and the sampled position rp(kT ) is sent to the computer, while the position
x(t) of the VP is generated by implementing the control algorithm. Two balls
are shown on the computer screen, which describe the end effector positions
of the HP (green ball) and the VP (blue ball), respectively.

A. Experimental Set-up

The employed set-up was developed for measuring motions
of players in the one-dimensional mirror game. A human
participant is required to join the game while interacting
with a VP (implemented on a laptop computer). In order to
detect the position of her/his hand, a leap motion controller
[34] is employed (see Fig. 7). The leap motion controller
and the laptop computer are both placed on a table whose
height is around 70cm. The HP is required to wave her/his
hand horizontally over the leap motion controller at a vertical
distance of approximately 50cm. Indeed, at this distance the
horizontal resolution of the device is maximum and it is able
to measure the hand position within a range of 60cm. The
position of the hand of the HP within this interval is mapped
into the interval [−0.5,0.5] and visualized on the computer
screen as a green solid circle, while the position of the VP is
visualized as a blue solid circle. Players can be either standing
or seated. After the game is initialized, there is a 2s wait before
data recording begins and the game starts. This initial delay
is used to allow the HP to place her/his hand over the leap
motion controller. Human players are not instructed before
playing the game, but they are just told to lead or follow a VP
during 60s rounds.

Remark 6.1: The real-time implementation of adaptive (Sec-
tion IV) and optimal (Section V) control in Matlab can be
expensive. Specifically, the computational burden and the time
required to implement such control strategies mainly depend
on the numerical method employed to integrate differential
equations (adaptive control), and on the desired accuracy of
the numerical solutions (optimal control). In our case we adopt
the simple Euler method to numerically integrate differential
equations, and we choose the value (RelTol, 1e-1) as numerical
accuracy for the function “bvp4c” employed to solve the two-
point boundary problem. We find that with this choice of
algorithm, Matlab is fast enough to solve the problem in real-
time.

B. Measures

The temporal correspondence between the VP and the HP is
evaluated according to the following indexes: root mean square
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(RMS) of the position mismatch, relative position error (RPE),
circular variance (CV) and time lag (TL).

1) RMS: The root mean square of the position error be-
tween two players describes the tracking accuracy of
the follower in the mirror game:

RMS =

√
1
n

n

∑
i=1

(x1,i− x2,i)2

where n is the number of sampling steps in the simula-
tion, and x1,i and x2,i denote the positions of leader and
follower at the i-th sampling step, respectively.

2) RPE: The relative position error is a measure of how
well the follower tracks the leader [16]. Positive values
of RPE indicate that the follower is indeed behind the
leader:

RPE =

 (x1(t)− x2(t))sgn(ẋ1(t)),
if sgn(ẋ1(t)) = sgn(ẋ2(t)) 6= 0;

|x1(t)− x2(t)|,otherwise.

where x1(t) and x2(t) (ẋ1(t) and ẋ2(t)) are positions (ve-
locities) of the leader and follower at time t, respectively.

3) CV: The circular variance is used to quantify the coor-
dination level between two players

CV =

∥∥∥∥∥1
n

n

∑
k=1

ei∆Φk

∥∥∥∥∥ ∈ [0,1]

where ∆Φk represents the relative phase between them
at the k-th sampling step, n refers to the total number
of time steps and ‖ · ‖ denotes the 2-norm [35].

4) TL: The time lag describes the shifted time that achieves
the maximum cross-covariance of two time series. It is
sensitive to the changes of motion direction, hence can
be interpreted as the average reaction time of the player
in the mirror game [36].

C. Results

1) VP driven by the ICA based on adaptive control: The
parameters for the HKB equation and the adaptive feedback
controller (AFC) in (5) are set heuristically as follows: α = 10,
β = 20, γ =−1, ω = 0.1, a(0) =−5, b(0) =−5, Cp = 40 and
δ = 0.25. In our implementation the sampling time is T = 0.1s
and therefore ηa = 30 > ln2

2T ' 0.35. In particular, the values
of all the previous parameters have been chosen so that the
response of the HKB oscillator to several sinusoidal signals
with different frequencies was qualitatively the same as that
of a HP trying to track the same references. Moreover, it is
worthy of note that the initial values of a and b influence the
performance of the avatar only at start-up.

The reactive-predictive controller (RPC) proposed in [2] is
also implemented to compare its performance against that of
our adaptive feedback controller when considering the same
input trajectory from a human leader. Following the scheme
presented in [2] to implement the RPC, the dynamics of the
VP is described by ẍ = ∑

5
i=1 Aiωicos(ωit)+ f , where x ∈ R
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(a) position time series

0 10 20 30 40 50 60
−4

−3

−2

−1

0

1

2

3

4

t

φ
(t
)

(b) relative phase time series

Fig. 8. Time series of position (a) and relative phase (b) between human
leader and virtual follower; blue (AFC), red (RPC), green (human leader)
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(a) veocity PDF

φ
-4 -3 -2 -1 0 1 2 3 4

(b) relative phase PDF

Fig. 9. Distributions of velocity (a) and relative phase (b) between human
leader and virtual follower; blue (AFC), red (RPC), green (human leader)

represents the position of the avatar and ḟ = k(r̂v− ẋ), k > 0,
with parameters Ai being estimated adaptively as

Ȧi = λ

[
r̂v−

5

∑
i=1

Aisin(ωit)

]
sin(ωit), λ > 0

As suggested in [2], in this case the parameters are chosen as
follows: ω1 = 0.025, ω2 = 0.05, ω3 = 0.075, ω4 = 0.1, ω5 =
0.125, λ = 0.01, k = 30 and Ai(0) = 0,∀i = 1, ...,5.

To compare the performance of the two algorithms, we plot
the time series of both position and relative phase (see Fig. 8)
together with the distributions of velocity and relative phase
of HP and VP (see Fig. 9). In particular, the relative phase
between the two players is defined as ∆φ = φHP−φV P, where
φHP and φV P are the phases of human and virtual player,
respectively. Specifically, the phase is estimated according to
the method proposed in [37]. Note that positive values of ∆φ

correspond to the avatar following the HP during the game.
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Fig. 10. Time evolution of positions and relative phase (a) and PDF of
velocities (b) while the VP is driven by the optimal control and acts as follower
in the mirror game

We observe that, when using the reactive-predictive con-
troller, the position of the VP presents oscillations away from
the human participant position not only when s/he is moving,
but also when s/he is still. Such an oscillatory feature does
not appear when using the adaptive feedback controller. In
general, both the position error e= x−rp and the velocity error
ė= ẋ− r̂v are higher when using the RPC strategy. When using
the adaptive feedback controller, the position error remains
smaller never exceeding 0.2, while it can become as high
as 0.8 when using RPC. Similarly, the velocity error never
exceeds 0.62 for the AFC, while it goes up to a maximum of
3 for the RPC.

Moreover, when using AFC, the relative phase time series is
much closer to 0 than that obtained when using RPC, meaning
that with our proposed algorithm it is possible for the VP to
better synchronize with the human leader. Such results are
confirmed by the relative phase distributions obtained when
using both the algorithms, as shown in Fig. 9(b). Finally, the
difference in the velocity distributions of HP and VP is much
more evident when RPC is used, confirming that our strategy
better captures the features of the HP and is therefore able to
replicate more accurately the kinematic properties observed in
human motor coordination in the context of the mirror game.

2) VP driven by the ICA based on optimal control: The
parameters of the VP are set heuristically as follows: α = 1,
β = 1, γ = 1, ω = 1, ηm = 10−4 and the sampling period
T = tk+1− tk = 0.03s. In order for the VP to play the mirror
game as a follower, we set the control parameters θp = 0.9
and θσ = 0.1, which makes the VP play in a follower
configuration (minimizing the position mismatch more than
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Fig. 11. Time evolution of positions and relative phase (a) and PDF of
velocities (b) while the VP is driven by the optimal control and acts as leader
in the mirror game

the signature EMDs). As shown in Fig.10(a), the VP performs
quite well as a follower during the game; indeed, the root
mean square (RMS) of the position error is equal to 0.089.
In order to distinguish the leader from the follower in the
game, we also calculate the relative phase between HP and
VP. From the bottom panel in Fig. 10(a) we observe that
the majority of relative phase is positive (with a mean value
of 0.35), meaning that the VP is following the HP in the
game for most of the time. The circular variance (CV) is
also calculated to quantify the coordination level between
two players. The CV between HP and VP is 0.94, which
indicates a high coordination level. As for the distribution
of the velocity, Fig. 10(b) shows that the VP signature (blue
line) is closer to that of the HP (red line) than the desired
motor signature (cyan line). This is due to the choice of the
control parameters in the cost function (13) that render the
strategy able to minimize more the position error between
the players. The measured EMDs at the end of the trial are
given as follows: EMD(Sig,HP) = EMD(Sig,V P) = 0.05 and
EMD(V P,HP) = 0.008.

The VP can be enabled to play the game as a leader by
changing the control parameters setting θp = 0.1 and θσ = 0.9.
Experimental results are shown in Fig. 11. The RMS of the
tracking error is 0.12, and the CV between the two players
is 0.56. As depicted in the bottom panel of Fig. 11(a), the
majority of the relative phase time series is negative (with a
mean value of −0.31), meaning that now the VP is leading the
HP during the game for most of the time. In contrast to the
previous case, the velocity distributions shown in Fig. 11(b)
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Fig. 12. Position time series of the HP pair (upper panel) and the correspond-
ing VP pair (lower panel) in the mirror game.

confirm that the VP is now matching well the desired signature
(velocity profile): EMD(Sig,HP) =EMD(V P,HP) = 0.01 and
EMD(Sig,V P) = 0.002.

The tracking performance in Fig. 10(a) is superior to that
shown in Fig. 11(a) in terms of coordination level and tracking
error, which indicates that the VP is more accurate at tracking
the leader’s trajectories than the HP. Moreover, the relative
phase is mostly positive as shown in Fig. 10(a) as opposed
to the mainly negative relative phase in Fig. 11(a), which is
consistent with the role (follower or leader) assigned to the
VP. Moreover, the velocity PDF of the virtual player is close
to that of the human player when the former is driven to track
the motion of the latter, as shown in Fig. 10(b); vice versa, it
is close to the desired motor signature, as shown in Fig. 11(b).
This confirms that the VP succeeds in acting as follower or
leader as desired with the proposed control approach.

3) Interaction between two VPs: As mentioned before, our
final goal is to create a customized VP able to “replicate”
the kinematic features of a given HP in the mirror game.
To test how well the VP can replicate the features of a
given HP, we carried out the following experiment. First
of all, two HPs are required to play the mirror game in a
Leader-Follower condition. Then the signatures of the human
leader (HL) and the human follower (HF) are fed into a
virtual leader (VL) and a virtual follower (VF), respectively.
Finally, we make the VL (θp = 0.43) and the VF (θp = 0.92)
play the mirror game together. In Fig. 12, the upper panel
shows the time evolution of the position trajectories of the
HL and the HF, while the lower panel presents those of the
corresponding VL and VF. It appears that the VL and the VF
succeed in matching the kinematic characteristics of the HL
and the HF in terms of the RMS value of their position error
[RMS(HL,HF) = 0.0466 and RMS(V L,V F) = 0.0497] and
the time lag between the two players [TL(HL,HF) = 0.09
and TL(V L,V F) = 0.09]. In addition, Table I gives the values
of EMDs and describes the matching results quantitatively.
SigL and SigF represent the signatures of HL and HF when
playing solo, respectively. It shows that the proposed approach
allows to replicate effectively the game dynamics between two
humans playing the mirror game via two coupled VPs.

4) Comparison with existing models: In order to compare
different VP models, following the approach of [26] we need
to establish a benchmark, which describes the general kine-

TABLE I
MATCHING PERFORMANCE OF VPS IN TERMS OF EMD.

EMD(SigL,HL) 0.010 EMD(SigF ,HF) 0.007
EMD(SigL,VL) 0.006 EMD(SigF ,VF) 0.006
EMD(HL,HF) 0.0034 EMD(VL,HL) 0.0052
EMD(VL,VF) 0.0031 EMD(VF,HF) 0.0053

TABLE II
INDEXES OF TEMPORAL CORRESPONDENCE

HPs OPC HKB RPC JKE
RPE 0.0914 0.0816 2.1767 0.3838 0.1467
CV 0.3011 0.1002 0.9400 0.7602 0.4859
TL 0.2035 0.1274 1.5192 0.0428 -0.9674

matic characteristics of human participants in the mirror game.
To this aim, 5 HPs were asked to track a prerecorded reference
signal, and indexes of temporal correspondence were recorded
to represent a benchmark of typical human dynamics. The
existing VP models were then enabled to track the same ref-
erence. Corresponding indexes were computed for the VPs and
compared with the benchmark to evaluate the proposed control
algorithms. We adopted the following models to drive the VP:
our strategy based on optimal control (OPC), Haken-Kelso-
Bunz model (HKB)[18], reactive-predictive control (RPC)[2]
and Jirsa-Kelso excitator (JKE) [7]. The parameter setting
of existing VP models is the same as that in the relevant
references. In Table II, we show the benchmark of temporal
correspondence and performance indexes of the corresponding
VP models. On the whole, our algorithm performs best in
terms of matching the benchmark among all the VP models.
In addition to temporal correspondence, we also computed
how similar the VP signature is to that of the HP whose
trajectory was used as prerecorded reference signal during
the benchmark experiment (see Fig.13). We find again that
the optimal control strategy developed in this paper is the
best in terms of replicating the human-like movement with
an estimated EMD(HP,OPC) = 0.0184.
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Fig. 13. PDF of velocity time series for different VP models.
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VII. CONCLUSIONS

We presented the novel design of an interactive cognitive
architecture able to drive a virtual player to play the mirror
game against a human player. We developed two strategies.
The former, based on adaptive control, was shown to be
effective to achieve temporal correspondence between the
motion of the virtual player and that of the human individual.
Convergence of the algorithm was proved. However, we noted
that such strategy does not allow the VP to exhibit some
desired kinematic features (individual motor signature) of a
given human player. To overcome this limitation, we proposed
a different strategy based on the iterative solution of an ap-
propriate optimal control problem. After proving boundedness
and convergence of this additional approach, we tested its
effectiveness experimentally. We showed that the proposed
strategy is able to drive the VP so as to play the game
both as leader or follower while matching well the individual
motor signature of a given individual. Furthermore, we carried
out a comparison with other existing models, confirming the
effectiveness of the proposed approach. We wish to emphasize
that our approach opens the possibility of making VPs, each
modeling a different individual, play against each other and
produce in silico experiments. This can reduce the cost and
time of carrying out joint action experiments and can be
effectively used to test different human-machine interaction
scenarios via the mirror game.

The algorithm implementation for a real robot platform is
the subject of ongoing research, which inevitably requires the
technical consideration of robot actuators for stochastic dis-
turbances [38], unknown actuator dynamics [39] and vibration
suppression [40]. Finally, we are also exploring the possibility
of combining adaptive and optimal control strategies, thus
allowing the parameters of the optimal control to vary over
time depending on the interaction with the other agent.
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M. di Bernardo, “Design of a virtual player for joint improvisation with
humans in the mirror game,” PloS one, vol. 11, no. 4, p. e0154361,
2016.

[25] F. Alderisio, B. G. Bardy, and M. di Bernardo, “Entrainment and
synchronization in networks of rayleigh–van der pol oscillators with
diffusive and haken–kelso–bunz couplings,” Biological Cybernetics, vol.
110, no. 2, pp. 151–169, 2016.

[26] F. Alderisio, D. Antonacci, C. Zhai, and M. di Bernardo, “Comparing
different control approaches to implement a human-like virtual player in
the mirror game,” in 15th European Control Conference (ECC), 2016,
pp. 216–221.

[27] E. Levina and P. Bickel, “The earth mover’s distance is the mallows
distance: some insights from statistics,” in Computer Vision, 2001. ICCV
2001. Proceedings. Eighth IEEE International Conference on, vol. 2.
IEEE, 2001, pp. 251–256.

[28] C. K. Ahn, S.-T. Jung, S.-K. Kang, and S.-C. Joo, “Adaptive H∞

synchronization for uncertain chaotic systems with external distur-



IEEE TRANSACTIONS ON CYBERNETICS, VOL. #, NO. #, FEBRUARY 2017 12

bance,” Communications in Nonlinear Science and Numerical Simula-
tion, vol. 15, no. 8, pp. 2168–2177, 2010.

[29] C. Zhai, F. Alderisio, K. Tsaneva-Atanasova, and M. di Bernardo, “A
novel cognitive architecture for a human-like virtual player in the mirror
game,” in 2014 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). IEEE, 2014, pp. 754–759.

[30] J. M. Pak, C. K. Ahn, Y. S. Shmaliy, P. Shi, and M. T. Lim, “Switching
extensible fir filter bank for adaptive horizon state estimation with
application,” IEEE Transactions on Control Systems Technology, vol. 24,
no. 3, pp. 1052–1058, 2016.

[31] Q. Zhou, H. Li, C. Wu, L. Wang, and C. K. Ahn, “Adaptive fuzzy control
of nonlinear systems with unmodeled dynamics and input saturation
using small-gain approach,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2016.

[32] J. Diedrichsen, R. Shadmehr, and R. B. Ivry, “The coordination of
movement: optimal feedback control and beyond,” Trends in Cognitive
Sciences, vol. 14, no. 1, pp. 31–39, 2010.

[33] D. S. Naidu, Optimal control systems. CRC press, 2002.
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