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Abstract

Real-world policymakers want to extract investors’ private information about a policy’s likely effects

by “listening to” asset markets. However, this brings the risk that investors will profitably “ma-

nipulate” prices to steer policy. We model the interaction between a policymaker and an informed

(profit-seeking) investor who can buy/short-sell an asset from uninformed traders. We character-

ize when the investor’s incentives do not align with the policymaker’s, implying that to induce

truth-telling behavior the policymaker must commit to sometimes ignoring the signal (as revealed

by the investor’s behavior driving the asset’s price). This implies a commitment to executing the

policy with a probability depending on the asset’s price. We develop a taxonomy for the full set

of relationships between private signals, asset values, and policymaker welfare, characterizing the

optimal indirect mechanism for each case. We find that where the policymaker is ex-ante indiffer-

ent, she commits to sometimes/never executing after a bad signal, but always executes after a good

signal. Generically, this “listening” mechanism leads to higher (policymaker) welfare then ignoring

the signals. We discuss real-world evidence, implications for legislative processes, and phenomena

such as “trial balloons” and “committing political capital”.
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1 Introduction

There are realms where we expect key informed private individuals to know more than policymakers

about the impacts of a potential policy. If assets are publicly traded and markets are efficient

aggregators of information we might expect policymakers to use these to determine the best policies.

For example, we might consider a trade agreement, new copyright law, or education policy, as

aiming to increase the productivity or long run profits of some sector. We can also consider policies

designed to increase consumer surplus or government revenue by reducing rents in some industry,

e.g, health-care reform and the insurance, drug, and hospital industries. In either case, key private

players and managers in these sectors may have considerable private information about the likely

effect of each policy.

Consider the following scenario. Suppose that at a precise point in time a specific new policy

is formulated, or becomes relevant, that was not previously considered. Assume that it is common

knowledge that the policymaker (henceforth “the PM”) will execute the policy if the asset’s price

goes in the “right” direction tomorrow. Suppose the policy is designed to boost profits, but the

PM is not sure if it will do so. We say that the policy is “good” when it will increase the PM’s

welfare, and we say it is “bad” otherwise.1 If investors receive a signal that the policy is good they

may buy the asset, causing its traded price to increase, convincing the PM to execute the policy.

On the other hand, if the signal suggests that the policy is bad they might not buy the asset (or

may short sell it), the asset’s price will not increase, and the PM will not execute the policy. Here,

for either signal, the movement in the asset price is justified by the ultimate policy choice.

This may also work when the good policy reduces the assets’ value.2 For example, a policy

may be intended to reduce excess insurance company profit, but its true effect may not be known.3

1Obviously, the PM’s incentives may or may not be aligned with the public interest; this central issue of public

choice is out of the scope of this paper.
2Our model does not require that the policy’s goal directly involves its effect on an industry or an asset’s value;

we simply consider particular alignments, as discussed below. An exogenous factor, e.g., the progress of technology

or the potential supply of some natural resource, may happen to determine both whether a policy will be successful

for the PM and whether a particular asset is profitable.
3For example, the USA’s 2010 Affordable Care Act included an individual mandate and subsidies to purchase

insurance as well as the establishment of “insurance exchanges” with regulations intended to reduce prices through
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Here, the PM announces a policy. If the price of insurance company shares declines the next day

she will execute the policy, and the market’s reaction is justified. If the price does not decrease the

PM will not execute the policy and again the market’s (non-) reaction is justified.

However, unlike in the above scenarios, the interests of the PM and the asset holder may not

align. For example, although the PM wants the policy to be executed if and only if it is good, the

asset holder may always want the policy to be executed, or he may never want it to be executed.4

Thus an asset holder might seek to hide his signal from the PM and thus “manipulate” the asset

price. However, the party with inside information need not be the asset holder, and even asset

holders may be able sell off their holdings. In our preferred model, we consider the decisions of an

Informed Investor (henceforth II) who interacts with an individual Uninformed Trader (henceforth

“UT”), or equivalently, a number of uninformed traders.5

Nonetheless, even where incentives are not naturally aligned, the PM may still be able to extract

information from II if she can make a binding commitment to execute (or to not execute) the policy

with some minimum probability regardless of II’s actions.6 Both types of commitment change II’s

incentives through two channels. First, they can reduce (or increase) the effect of the II’s action

on the probability the policy is executed, hence reducing or increasing the asset’s relative expected

encouraging competition and transparent pricing. It was widely assumed the mandate would have a side effect of

boosting insurance company profits, while the exchanges and regulations were meant to counter this. Presumably

policymakers hoped in net to reduce (or at least not increase) insurance company profits, but opponents of the bill

argued that would be a “giveaway” to the insurance industry.
4For example, a solar energy firm may want a massive public subsidy for research and development, as it will

almost certainly be profitable for this firm. However, the PM may only find it worthwhile if it leads to dramatic

breakthroughs, which would lead both to extremely large profits for the firm and large social benefits.
5If your eyes see II as the Roman numeral “two” you can think of him as a “type II” investor, in comparison to

the “type I” uninformed trader “UT”. We will occasionally refer to him as just “II” without the article “the” when

it sounds better. with no “inherent” interest in the assets’ value, who may buy the asset, short sell it, or do nothing.

With an endogenous asset price, the relevant “alignment” of incentives is subtle; the II’s incentives will depend on

the relative probabilities of each signal as well as the effects of policy on asset values.
6In the example just mentioned, the PM might tie her own hands to sometimes execute the R&D subsidy even if,

after announcing the policy being considered, the solar energy firm’s share price do not increase dramatically. She

may also (or instead) commit to sometimes not executing it even if the share price does not increase dramatically

after the announcement.
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value after each action. Second, if these probabilistic commitments are common knowledge, they

will also affect the ex-ante expected returns to the asset, and hence increase or decrease the price

the II must pay the UTs for the asset. If the II can short sell the asset, these effects on the initial

asset price will have a double effect on the relative returns to buying versus short-selling.

Note that we model the II as a single informed investor, or, equivalently, a set of informed

investors who coordinate and can thus drive the market. We do not focus on the case where

information is diffusely held.7

The mechanisms we propose are indirect ones: the PM does not directly pay the II as a

function of his revealed signal and the outcome. Instead, she uses existing asset markets as a tool,

and the efficiency of the mechanism depends on the structure and parameters of the environment.

We justify this in the conclusion.

We solve for the entire parameter space of incentive alignments, dividing these up into six

intuitive cases, offering an intuitive taxonomy, and motivating these with real world examples.

Given ex-ante policy indifference we find that inducing truth-telling behavior and listening to

markets is generically strictly preferable for the PM. We find an interesting asymmetry: where

the PM is ex-ante indifferent, and where her commitment is common knowledge, she commits to

occasionally (or never) executing after a bad signal, but she always executes after a good signal.

Also surprising: allowing the II to short-sell – giving him a greater set of options – may make

implementation harder or easier and thus decrease or increase the PM’s payoff, depending on

parameters.

Our work is largely a theoretical benchmark; we consider the case with the maximum potential

for manipulation, where II is a single agent, and describe how the optimal mechanism involves

randomization, and define the frontier of what the PM can achieve. Our paper may also be seen

as a normative policy proposal. However, these considerations may also be reflected in current

practices, and decision-makers are already taking prediction markets into account (Arrow et al.,

7In such a case the informed investors might fail to coordinate on the more efficient equilibrium. Even after a

signal that the policy is both good and profitable, these investors might refrain from buying the asset, each believing

that none of the others will buy, and thus the signal will not be passed to the PM, and the policy may not be executed.

We return to this discussion in the conclusion.
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2008). Although PMs make policy announcements and float “trial balloons” there is little evidence

that they explicitly commit to tying policy to asset prices. Still there is anecdotal evidence of some

policymaker “market-watching.” Legislative processes, policy trials, and “committing political

capital” may also enable listening and informal conditional commitments, in essence a purification

of the mixed/behavioral strategy. We expand on this in the conclusion.

Our paper proceeds as follows. Section 2 reviews the literature. We specify our formal model

in section 3. In section 4 we give general lemmas and results. We conclude in section 5, focusing

on the broader academic and practical policy implications of s, ways in which the model could be

extended, and suggestions for empirical work.

2 Literature Review

Previous work has analyzed the relationship between the values of assets in conventional markets

and the policy predictions of information markets.8 These papers have also considered the impli-

cations of using such analysis to set policy. A more extensive literature has considered the effect of

policy announcements on asset prices, and the implications that can be drawn from these through

event studies. A major concern is that if future policy itself reacts to the market’s response to

the policy announcement, the market response may be hard to interpret; this has been called the

“circularity problem” (Bernanke and Mishkin, 1997; Sumner and Jackson, 2008).

To circumvent this circularity, others have proposed the use of “conditional prediction mar-

kets”(Hanson, 2013; Abramowicz, 2004). In such a market one asset takes a value, tied to some

outcome, if a policy is executed, another asset takes a value if it is not executed, and otherwise

trades are canceled. For example, Hahn and Tetlock (2003) consider assets whose values are tied

to the level of GDP in the event (or non-event, for the second asset) of a carbon emissions cap, and

consider what the difference in these asset prices reveal about the likely effect of such a cap.

However, according to Hahn and Tetlock (2003), “[a] general concern is that information markets

8Information markets are markets which do not represent direct claims on tangible assets (Wolfers and Zitzewitz,

2006). Our analysis may also apply to corporate policy, in cases where the corporate management may know less

about outcomes than the market as a whole. Kau et al. (2008) find that, “on average, managers listen to the market:

they are more likely to cancel investments when the market reacts unfavorably to the related announcement.”
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are susceptible to price manipulation by those with a vested interest in the policy decision”; the

other aforementioned authors express similar concerns. Because of this, there are important limits

to the use of prediction markets, which tend to be thin and illiquid.9 When real assets such as

firms and physical capital are strongly affected by a policy it may be difficult to make prediction

markets large enough to deter manipulation. Furthermore, if the main impact of a policy is only

known by a single individual or a coordinated group with the ability to heavily invest or short sell

(or with a strong direct interest in the outcome) then bringing large numbers of other uninformed

traders into the prediction market will not deter manipulation.

It may be more effective for policymakers to learn from the movement of real large-scale asset

markets and from real investment decisions when a policy is announced, explicitly recognizing

(and perhaps publicizing) the connection between the probability of executing the policy and the

movement in the asset prices. In this context policymakers could explicitly take into account the

incentive for manipulation and use randomized execution to induce truth-telling. As we discuss

below, the potential to deter “market manipulation” may rely on the ability of a policymaker

to make binding commitments to a random policy execution mechanism. Our paper explicitly

formalizes and models this problem.

A few recent papers consider the potential for market manipulation in related contexts. Hanson

and Oprea (2009) has some similarities to ours, but is fundamentally different in its aims and

assumptions. These authors model a market microstructure with noise traders, potentially informed

traders, a competitive market maker, and a thin prediction market. As in our model they have a

single rational “manipulator”; however, in contrast to us they assume he has a specific preference

over the market price or over “the beliefs of neutral observers influenced by the price.” In other

words, their manipulator is essentially a “noise trader” who has a specific goal unrelated to the

asset’s true value. In contrast, our II seeks only to make a profit off of the policy outcome he

induces.10

9Sumner and Jackson (2008) note that conditional and prediction markets are likely to be thin and hence unreliable,

arguing government subsidies to trading are needed to combat this.
10Our model differs in other important ways. Our II has unique private information; they assume a large number

of traders who can pay a cost to learn about the asset’s true value and about the manipulator’s preferred price.

Another difference: we explicitly model the policy choice.
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2.1 Empirical work and examples

There are several recent cases in which policymakers seem to have listened to the market, or where

others have suggested that they could or should have done so.

Breinlich (2011) examined stock market reactions to the 1989 Canada-United States Free Trade

Agreement (CAFTA). He found that “increases in the likelihood of ratification led to stock market

gains of exporting firms relative to non-exporters”, and used this to impute increased “expected

per-period profits of exporters by around 6-7% relative to non-exporters.”

During the debate over the US Affordable Care Act, Milani (2010) tracked the stock returns

of health insurance companies against a prediction market security whose payoff was tied to the

inclusion of the “public option” in the bill. He concluded, “the results reveal the market expectation

of a negative effect of the public option on the value of health insurance companies.” Friedman

(2009) performed event studies on pharmaceutical firms’ share prices as they introduced new drugs,

comparing the implied profitability of (low versus high Medicare share) drugs before and after the

introduction of the Medicare Part D prescription drug benefit. He used this to impute that the bill

would lead to $205 billion in additional drug company profits.

Wolfers and Zitzewitz (2006) presented evidence, in the context of the Iraq war in the 2000’s,

that spot and futures market oil (and equity index option) prices moved in line with a prediction

market for a security that paid off if Saddam Hussein were removed from power by a certain date.11

They used this to estimate the distribution of investors’ beliefs for the impact of the war on the

economy, imputing “a substantial probability of an extremely adverse outcome.”

As Wolfers and Zitzewitz (ibid) argue, the above sort of evidence be used to “better understand

the consequences of a prospective policy decision ... [and] to inform decision-making in real time.”

In light of the above evidence, the public option might have been scrapped, the drug benefit

repealed or reformed, the Iraq war reconsidered, and the CAFTA agreement reinforced or cancelled

(depending on whether PMs thought the gains were large enough).

The Pentagon also attempted to use markets to predict geopolitical risks. The Defense Advanced

Research Projects Agency proposed introducing a policy market that in the Summer of 2003; some

11They interpret this as reflecting the probability of a US attack on Iraq in 2002-2003.
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claimed these involved “terrorism futures”. However, the project was cancelled, allegedly in light

of concerns that bad actors might themselves invest, commit terrorist acts, and profit from this

(Hanson, 2005).12

Poland’s 2011-2012 experience seems to be a particularly clear-cut example of policy responding

to the market’s reaction. In November 2011, Polish PM Donald Tusk announced a new tax on

copper and silver. Share prices of KGHM (which controls all of Poland’s copper production) fell by

14% on the day of the announcement and a further 9.7% in the next session. On January 3, 2012

the Finance Ministry lowered this proposed tax rate after negative reactions from the Economy

and Treasury ministries and from the company, which argued the tax would make output at one of

its three mines inviable. Economy Minister Waldemar Pawlak explicitly mentioned the share price

reaction in his criticism.13

3 Model

In this section, we describe the primitives of our model, the economy in which investors and

policymakers interact, and we discuss our maintained assumptions. We next introduce the asset

market and justify the assumptions of our model; in particular (i) the timing of information, and

in our preferred specification (ii) an endogenous initial asset value and (iii) allowing short-selling.

We give a general characterization of the II’s and PM’s optimization problems and incentive

compatibility constraints, and present some general results and lemmas.

We give some notation. The state is denoted by s ∈ S. There is an informed investor “II”, who

receives a binary signal, σ ∈ {γ, β}, in which γ is the good signal and β is the bad signal. The signal

is correlated with the state of the world s ∈ {G,B}, i.e., the good state and the bad state (these

12This would be a distinct form of manipulation from our discussion; such concerns involve physical actions taken

in order to manipulate markets; we are considering financial transactions and investments made in order to influence

policy (which in turn influences asset values). We assume that the PM does not derive welfare from the investments;

if these “investments” are acts of terrorism this is obviously the PM’s concern.
13Pawlak: “If the tax had been more clearly presented during the prime minister’s expose, there would be less

unrest and less fluctuation in KGHM’s share value. Now we have to prepare [the new tax] properly so that it benefits

the state but doesn’t kill KGHM” (http://www.wbj.pl/article-57461-deputy-pm-criticizes-copper-tax.html, accessed

on 1 Jan. 2014)
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states reflect the welfare consequences of a policy, as formalized below). P (s, σ) represents the joint

probability over (s, σ), and P (s|σ) is the conditional probability of s given σ. The unconditional

probabilities are P (s) :=
∑

σ∈{γ,β} P (s, σ) and P (σ) :=
∑

s∈{G,B} P (s, σ).14

3.1 Timing and policymaker’s objective function

Timing:

1. Nature chooses the state of the world, s ∈ {G,B}.

2. The PM commits to probabilities of execution q(σ̂) ∈ (0, 1) as a function of the signal to be

revealed σ̂ ∈ {γ, β}. These commitments are publicly observed or deduced by all parties.

3. [t = 0] The initial asset price A0 is formed by the expectation of one or more Uninformed

Traders (henceforth, UTs). They are willing to sell or “commit to buy” a total of one unit at

this price.

4. The II receives signal σ and chooses i ∈ {b, nb, sh}; respectively, buying one unit, doing

nothing, or short selling one unit. The II’s action becomes observable to the PM (through

its impact on the asset price), sending a signal σ̂ to the PM.

5. The PM executes the policy with the pre-committed probability q(σ̂), where σ̂ = σ in a truth

telling equilibrium.

6. [t = 1]. Payoffs are realized.

We consider this to be a useful representation of the real world. Suppose we had alternately

assumed that the II got the signal before t = 0, and all agents could anticipate the policy that

would be considered at time t = 1, A0 would incorporate the II’s signal. In such a case it would

be unclear when the PM should look for a discrete jump in the asset price reflecting the policy

announcement. Our preferred interpretation of the timing is the following. Although the policy is

14Although we restrict the set of states and the set of signals to be two elements, we could easily extend the current

setup into many states and many possible signals.
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not a complete surprise, (e.g., it might have long been known that the government would pursue a

prescription drug plan in 2007), the policy is multi-dimensional, nuanced, and detailed. There is a

random element to the PM’s choice of policy details; the “listening” pertains to the effect of this.

The PM chooses from a potentially infinite set with commonly known statistical properties.15 The

chosen policy will be “good” with probability P (γ), etc., as described above. Only after the II

knows the chosen policy, he can use his inside information to learn about the policy’s likely effects.

We denote this as “II receives signal σ.”

PM’s payoff: The PM either executes a policy (denoted p = e) or does not (denoted p = ne). The

PM’s payoff with the policy choice p and the state s is W (p, s). Note that the investment decision

i is not in the PM’s objective function. We assume that the PM wants to execute the policy if and

only if the true signal is γ; i.e., γ represents the “good news” about the policy. Formally,

Assumption 1 (i)
∑

s P (s|γ)W (e, s) >
∑

s P (s|γ)W (ne, s), (ii)
∑

s P (s|β)W (e, s) <
∑

s P (s|β)W (ne, s).

With probabilistic execution of the policy ⟨q(γ), q(β)⟩, (implicitly assuming the PM has deduced

the true signals) the PM’s expected payoff is:

Ω(q(γ), q(β)) :=
∑
s,σ

P (s, σ)
[
q(σ)W (e, s) + (1− q(σ))W (ne, s)

]
.

For later use, we re-write the PM’s payoff in terms of gains/losses from execution in either state:∑
s,σ

P (σ, s)W (ne, s) + q(γ)P (γ)(EW (e|γ)− EW (ne|γ)) + q(β)P (β)(EW (e|β)− EW (ne|β))

=
∑
s,σ

P (σ, s)W (ne, s) + q(γ)P (γ)∆W (γ)︸ ︷︷ ︸
(+)

+q(β)P (β)∆W (β)︸ ︷︷ ︸
(−)

(1)

where we define EW (p|σ) :=
∑

s P (s|σ)W (p, s) and ∆W (σ) := EW (e|σ)− EW (ne|σ).

By Assumption 1 the second term is positive, and the third term is negative. Thus, as long as

the incentive compatibility constraints (described in section 3.3) are satisfied so that the II reveals

the true signal, the PM wants to maximize q(γ) and minimize q(β).

As a benchmark, we assume that before learning the signal the PM is indifferent between

executing the policy and not executing it.

15The idea that the specific policy could not have been predicted may be justified as in models of incomplete

information.
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Assumption 2 The policymaker is ex-ante indifferent between policies < q(γ) = 1, q(β) = 1 >

and < q(γ) = 0, q(β) = 0 >, i.e.,16

∑
s

P (s)W (e, s) =
∑
s

P (s)W (ne, s) i.e., ∆W (γ)P (γ) + ∆W (β)P (β) = 0.

This indifference assumption implies that changes to q(β) and q(γ) have equal and opposite

direct effects on PM’s welfare (holding the II’s behavior constant).

3.2 Asset market and the informed investor’s payoff

The asset’s fundamental value, A1(p, s), represents the discounted stream of future earnings from

the asset; this will depend on the state and the policy. At the end of the interaction, at time t = 1,

after the state and the policy decision become common knowledge, the asset’s price will equal its

fundamental value.17

Determination of A0: We could have alternately assumed that the initial asset price A0 is exoge-

nous, i.e., not affected by q(γ) and q(β). Instead, we assume it is based on the expected outcomes

in light of the conditional probabilities of execution and the unconditional probabilities of each

signal. We argue that the latter assumption is more reasonable and relevant.18 Suppose A0 were

exogenous, and the parameters were such that (e.g.) holding the asset is profitable on average

given the announced values of ⟨q(γ), q(β)⟩. If one takes an arbitrary value of A0, the UTs could be

systematically “fooled” and make negative profits in expectation. To avoid this contradiction of ra-

tional expectations, we assume that conditional probabilities are correctly anticipated. (The results

would be equivalent if we alternatively allowed these probabilities to not be correctly anticipated

but assumed they are publicly announced before A0 is set.)

16The equivalence of the two conditions is derived by the following.

∆W (γ)P (γ) + ∆W (β)P (β) = 0 ⇔ P (γ)(EW (e|γ)− EW (ne|γ)) + P (β)(EW (e|β)− EW (ne|β)) = 0

⇔P (γ)EW (e|γ) + P (β)EW (e|β) = P (γ)EW (ne|γ) + P (β)EW (e|β) ⇔
∑
s

P (s)W (e, s) =
∑
s

P (s)W (ne, s)

17We assume that no earnings accrue from the asset until after time t = 1; this is without loss of generality.
18The results of the model with exogenous A0 are available by request.
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Other possible justifications for an exogenous A0 do not seem reasonable or relevant to our

empirical examples.19 Thus we assume that at time t = 0 the asset’s initial price A0 is determined

by the expectations of the UTs before they potentially learn the signal σ, allowing them to depend

on the PM’s probabilistic commitments. I.e., A0 := A0(q(γ), q(β)).

We further assume that the signal and the state are specific to the policy, i.e., if the policy is

not executed the asset’s value does not depend on the state:

Assumption 3

A1(ne) := A1(p = ne, s = G) = A1(p = ne, s = B).

Thus, the expectation of A1(ne) is invariant to the signal (and state), i.e., EA1(ne|σ) = A1(ne) for

any σ ∈ {γ, β}.

Using this, we derive the initial asset price:

A0(q(γ), q(β)) =P (γ)q(γ)
∑
s

P (s|γ)A1(e, s) + P (β)q(β)
∑
s

P (s|β)A1(e, s)

+ [P (γ)(1− q(γ)) + P (β)(1− q(β))]A1(ne)

=P (γ)q(γ)[EA1(e|γ)−A1(ne)] + P (β)q(β)[EA1(e|β)−A1(ne)] +A1(ne)

=q(γ)P (γ)∆A1(γ) + q(β)P (β)∆A1(β) +A1(ne), (2)

where we define EA1(e|σ) – the expected value of the asset conditional on execution and signal,

and ∆A1(σ) – the expected benefit of execution (relative to non-execution) to an asset-holder given

signal σ, as

EA1(e|σ) :=
∑
s

P (s|σ)A1(p = e, s), and ∆A1(σ) := EA1(e|σ)−A1(ne).

19Two possible justifications: (i) If only the II could profit from holding the asset at t = 1 (e.g., through his own

production process) and he holds all the bargaining power, then A0 would be priced at cost, regardless of the q’s.

However, this would imply that the PM could only identify the signal if she could identify who the II was in advance

and identify his precise choice, a difficult proposition. (ii) If the policy was considered a zero-probability event, and

the policy as well as the q functions were announced to the II’s before being publicly announced, or the II’s could

react to this information before the UTs, then A0 might also be unaffected by the q’s; it also seems unlikely that the

PM could orchestrate this. Furthermore, neither of these scenarios seem to reflect the empirical cases we describe.
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Note that the price A0 does not depend on the signal, as the signal is not common knowledge

at t = 0.

II’s payoffs: II’s payoff is his net return from buying or short selling the asset. We assume that

he can buy the first unit at price A0 before his action is detected, and the price rises to A1. (Even

if we change the size of this first unit, our results will not change.) If he chooses to buy at time

t = 0, setting i = b, he pays A0 to the UT, and earns the asset’s fundamental value A1 at t = 1.

Thus, for either policy choice p ∈ {e, ne} and for either signal s ∈ {G,B},

V (p, s, i = b) = A1(p, s)−A0.

If he short sells at time t = 0 (i.e., setting i = sh), he gets paid A0 by the UT, and then must

buy the asset at its fundamental value at t = 1. Thus, holding the policy constant, the payoff from

short selling is the negative of the payoff from buying, i.e.,

V (p, s, i = sh) = A0 −A1(p, s) = −V (p, s, i = b).

If the II does nothing at time t = 0 (i.e., setting i = nb), he neither pays nor receives anything

at t = 0 and neither owns nor owes the asset at time t = 1; thus

V (p, s, i = nb) = 0.

As we show in Appendix A.5, either buying or short selling will yield non-negative profits for

II. Thus he will never strictly prefer to “do nothing”, if short selling is allowed (note that we

assume no administrative costs to transactions). He will be indifferent only for a knife edge case.20

We next define II’s expected payoff from buying when he receives signal σ and takes the action

that leads the PM to believe the signal was σ̂ (henceforth, we will say “his action reports σ̂”; note

that σ̂ = σ in a truth-telling mechanism):

EV (i = b|σ, σ̂) =
∑
s

P (s|σ)[q(σ̂)V (e, s, b) + (1− q(σ̂))V (ne, s, b)]

= q(σ̂)[EV (e|σ)− EV (ne)] + EV (ne) = q(σ̂)[EA1(e|σ)− EA1(ne)] + EA1(ne)−A0(q(γ), q(β))

= q(σ̂)∆A1(σ) +A1(ne)−A0(q(γ), q(β)). (3)

20In policy considerations one might want to consider investors who own an asset that is affected by the policy but

which they can not sell without large administrative costs. We save this for future work.
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In other words, when the II’s signal is σ and his action reports σ̂, his expected payoff from

buying is q(σ̂)∆A1(σ), the expected increase in asset value given the true and reported signals, plus

the baseline value under non-execution A1(ne), less the cost of buying the share A0(q(γ), q(β)).

When the II’s signal is σ and the PM believes it was σ̂, the II’s profit from short selling is

EV (i = sh|σ, σ̂) = −q(σ̂)∆A1(σ)−A1(ne) +A0(q(γ), q(β)) = −EV (i = b|σ, σ̂). (4)

Expanding A0(q(γ), q(β)), equations 3 and 4 become:

EV (i = b|σ, σ̂) = q(σ̂)∆A1(σ)− [q(γ)P (γ)∆A1(γ) + q(β)P (β)∆A1(β)], (5)

EV (i = sh|σ, σ̂) = −EV (i = b|σ, σ̂) = −q(σ̂)∆A1(σ) + q(γ)P (γ)∆A1(γ) + q(β)P (β)∆A1(β). (6)

The first term on the right hand side of (5) and (6) is the expected gain or loss in asset value

from probabilistic execution given the true and reported signals. The bracketed terms are the ex-

ante expectation of this gain or loss, i.e., A0 − A1(ne). Holding constant the signal sent, the gain

from shorting is the loss from buying and vice-versa. With a truth-telling mechanism, buying and

short selling will send opposite signals.

To be concise, we denote the informed investor who has received signal σ by II(σ).

3.3 Incentive compatibility constraints

For II’s behavior to be truth-telling, he must prefer to buy whenever he sees a good signal and

short sell whenever he sees a bad signal, or vice versa. Formally, the PM may interpret i = b and

i ̸= b (i) as the investor having received signal γ and β respectively, or (ii) as the investor having

received signal β and γ respectively. Thus, there are two possible sets of incentive compatibility

constraints.

Set 1 (Buy if and only if the signal is γ):

Here, the PM interprets i = b as II having received γ. The IC constraints when short selling

is allowed are:

q(γ)∆A1(γ) +A1(ne)−A0(q(γ), q(β)) ≥ −q(β)∆A1(γ)−A1(ne) +A0(q(γ), q(β)), (IC11)

−q(β)∆A1(β)−A1(ne) +A0(q(γ), q(β)) ≥ q(γ)∆A1(β) +A1(ne)−A0(q(γ), q(β)). (IC12)

14



The first constraint ensures the II prefers to buy when he gets signal γ; the second constraint

ensures he prefers to short sell when he gets signal β. In other words, the first constraint deters

II(β) from mimicking II(γ) with signal γ, and the second deters II(γ) from mimicking II(β).

We rearrange IC11 for intuition (the intuition for IC12 is similar):

q(γ)∆A1(γ)︸ ︷︷ ︸
(i)

− (q(γ)∆A1(γ)P (γ) + q(β)∆A1(β)P (β))︸ ︷︷ ︸
(ii)

≥ −q(β)∆A1(γ)︸ ︷︷ ︸
(i)

+(q(γ)∆A1(γ)P (γ) + q(β)∆A1(β)P (β))︸ ︷︷ ︸
(ii)

On each side of the above inequality, (i) represents the II’s expectation of the gain (or loss) in the

asset’s value given the signal he is sending, and (ii) is the ex-ante expected gain (or loss) in the

asset’s value.

Note that if short-selling is not allowed, the right-hand side will be zero.

Inequalities IC11 and IC12 can also be written as:

∆A1(γ)
[
q(β)

(
1− 2P (β)

∆A1(β)

∆A1(γ)

)
+ q(γ)(1− 2P (γ)))

]
≥ 0, (IC ′

11)

∆A1(β)
[
q(γ)

(
1− 2P (γ)

∆A1(γ)

∆A1(β)

)
+ q(β)(1− 2P (β)))

]
≤ 0. (IC ′

12)

Set 2 (Buy if and only if the signal is β):

Here, the PM interprets i = sh as II having received γ. The incentive compatibility constraints

when short sale is allowed are:

−q(γ)∆A1(γ)−A1(ne) +A0(q(γ), q(β)) ≥ q(β)∆A1(γ) +A1(ne)−A0(q(γ), q(β)), (IC21)

q(β)∆A1(β) +A1(ne)−A0(q(γ), q(β)) ≥ −q(γ)∆A1(β)−A1(ne) +A0(q(γ), q(β)), (IC22)

The first constraint ensures that II(γ) prefers buying to short selling; the second constraint ensures

that II(β) prefers short selling to buying. Without short-selling, the left (right) side of the first

(second) inequality is zero. These constraints can be motivated and simplified as in set 1.

Note that Sets 1 and 2 are precisely the converse of each other, i.e., both constraints are derived

by multiplying both sides by negative one, but holding the inequality signs the same.
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Remark 1: We do not allow the PM to set direct payments after any combination of revealed

signal and realized state. However, A0(q(γ), q(β)) plays a role similar to a direct payment in the

standard mechanism model with transferable utility. As shown in the II’s payoff (e.g., q(γ)∆(A)+

A1(ne)−A0(q(γ), q(β))), the choice of randomized policy execution ⟨q(γ), q(β)⟩ changes how much

the II has to pay/receive (i.e., A0(q(γ), q(β))). To be more specific, if II chooses to buy, his

net payoff is q(γ)∆(A) + A1(ne)− A0(q(γ), q(β)), and he has to pay A0(q(γ), q(β)). On the other

hand, if an II chooses to short sell, his net payoff is −q(γ)∆(A) − A1(ne) + A0(q(γ), q(β)), and

he receives A0(q(γ), q(β)) for the short sale. However, the difference from the direct payment in

the standard mechanism design literature is that A0(q(γ), q(β)) depends on the allocation of a

non-money commodity (i.e., the randomized allocation ⟨q(γ), q(β)⟩ in our model).

Remarks 2: Our paper can also be compared with the literature on costly signaling models

following Spence (1973): II sends a costly signal by buying/short-selling the asset, and upon

observing II’s action, the PM chooses execution/non-execution. The most obvious difference

between our model and costly signaling models is that the PM commits to the probability of

execution, (q(γ), q(β)). However, that is not the only difference. The strategy q(σ) after observing

signal σ also influences A0(q(γ), q(β)), i.e, the equilibrium play determines the payoffs (including

out-of-equilibrium payoffs). Thus, our model is not easily comparable, requiring two extensions to

the costly signaling model.

4 Analysis

In this section, we characterize the optimal probabilistic commitment ⟨q(γ), q(β)⟩, which maximizes

the PM’s welfare without breaking the incentive compatibility constraints of the IIs.

4.1 General results

With the aforementioned commitment ⟨q(γ), q(β)⟩, the PM’s problem is:

max
0≤q(·)≤1

∑
s,σ

P (σ, s)
[
q(σ)W (e, s) + (1− q(σ))W (ne, s)

]
s.t. IC set 1 (IC11,IC12) or IC set 2 (IC21,IC22). (7)
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We define the first best policy, blind policies, and an incentive-constrained optimal policy.

Definition 1 (First best policy) ⟨q(γ) = 1, q(β) = 0⟩ is the first best policy.

Definition 2 (Blind policy) ⟨q(γ), q(β)⟩ with q(γ) = q(β) is a blind policy.

Definition 3 (Incentive-constrained optimal policy) An incentive-constrained optimal pol-

icy solves the PM’s maximization problem (7).

Considering expression (1), the first best policy trivially maximizes the policymaker’s welfare

since ∆W (γ) > 0 and ∆W (β) < 0. However, it may not be feasible since it may not be incentive

compatible, as we show later.

A PM who employs a blind policy does not listen to markets as the signal does not alter her

probability of executing the policy, i.e., q(γ) = q(β). However, this policy is always incentive

compatible (i.e., it satisfies one of the two sets of constraints, so that it leads II to take a distinct

action after each signal).

Proposition 4 Any blind policy is incentive compatible (i.e., it satisfies one of the two sets of

incentive compatibility constraints).

Proof. See Appendix.

With a blind policy, UTs assume it occurs equally often when its effect on the asset is more

favorable and when it is less favorable (or harmful). This is reflected in the market price. II will

thus buy if he gets the signal suggesting that execution will be more favorable to the asset’s value,

and short sell otherwise. (If, nongenerically, the effect on the asset’s value is the same in either state

he is always indifferent but his behavior is truth-telling in equilibrium by the standard argument.)

Lemma 5 The incentive-constrained optimal ⟨q(γ), q(β)⟩ satisfies q(γ) ≥ q(β).

Proof. Considering expression (1) in light of the PM’s indifference (Assumption 2), q(γ) < q(β)

implies that the sum of the last two terms in expression (1) is negative; while q(γ) = q(β) (i.e., not

listening to markets) implies this sum is zero. Thus we must have q(γ) ≥ q(β).
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Lemma 5 implies that hearing a truthful signal and then making the wrong policy decision most

of the time is worse than not listening at all.

Proposition 6 The incentive-constrained optimal policy satisfies 1 = q(γ) ≥ q(β).

Proof. IC constraints are written as Cq(γ) R q(β); as can be seen from a small rearrangement

of (IC ′
11) and (IC ′

12) (Note again that Sets 1 and 2 are identical except for the direction of the

inequalities). If the constraint is Cq(γ) ≥ q(β), the first best q(γ) = 1 and q(β) = 0 trivially

satisfies the constraint as long as C ≥ 0. If C < 0, q(γ) = q(β) = 0 is the only possible solution.

However, we have shown in the proof for Proposition 4 that for all q̃ ∈ [0, 1], q̃ = q(γ) = q(β) is

incentive compatible in the relevant constraint set. Thus, Cq(γ) ≥ q(β) must not be in the relevant

set since only q(γ) = q(β) = 0 is incentive compatible, while the other q̃ = q(γ) = q(β) is not.

Thus, when an incentive compatibility constraint is binding, it must be expressed as:

Cq(γ) ≤ q(β).

Since q(γ) ≥ q(β) from Lemma 5, C ≤ 1 must be the case (if not, we have a contradiction:

Cq(β) ≤ Cq(γ) ≤ q(β) with C > 1). If C = 1, q(γ) = q(β) = 1 is a trivial solution since

q(γ) ≥ q(β).If the constraint is satisfied with Cq(γ) = q(β) < 1 where C < 1, then PM could do

better by increasing q(γ) by ϵ and increasing q(β) by a smaller amount Cϵ.

This asymmetric result is consistent with asymmetry of the problem; the PM “naturally” wants

q(β) = 0 and q(γ) = 1, and zero and one do not have symmetric properties. Note that Proposition

6 holds even when short sale is not allowed (see Remark in Appendix A.3.1). However, this

proposition depends critically on the assumption of endogenous A0; as we demonstrate in section

4.5, if A0 were exogenous, this proposition would not hold.

Given that q(γ) = 1, the only variable we have to deal with is q(β). With two constraints

for each set and a single choice variable q(β), it is trivial that at most only one constraint binds

generically.

Corollary 7 For a given set, at most one of the two incentive compatibility constraints will bind.
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Note again that (IC11) and (IC12) are identical to (IC22) and (IC21) respectively, except that

the inequalities are reversed. With k ̸= i and ℓ ̸= j, if (ICij) holds as an equality with a certain

⟨q(γ), q(β)⟩, then (ICkℓ) holds as an equality with ⟨q(γ), q(β)⟩.

We can write down (IC11) and (IC12) as follows:

[q(γ) + q(β)]∆A1(γ)︸ ︷︷ ︸
(a)

−2E(∆A1)︸ ︷︷ ︸
(b)

≥ 0 ≥ [q(γ) + q(β)]∆A1(β)︸ ︷︷ ︸
(a)

−2E(∆A1)︸ ︷︷ ︸
(b)

, (8)

where E(∆A1) := A0 −A1(ne).

Considering the expression above, we can divide the net payoffs to II(γ) from the truth-telling

action (relative to an action that falsely sends signal β̂) into “policy-driven” and “expectation-

driven” (relative) payoffs. For set 1, the policy-driven payoff, labeled “(a)” above, represents the

change in the asset’s value after buying the asset and sending a good signal – i.e., the return for an

“asset owner” – less the negative of the change in the asset’s value after short selling and sending

a bad signal – the return for an “asset ower”. The expectation-driven payoffs, labeled “(b)” above,

represent the cost of purchasing the asset less the income from short selling it, i.e., (the negative)

of twice the initial price; these prices are affected by the UT’s expectations.

Clearly, the set given by the above two constraints is non-empty only if ∆A1(γ) ≥ ∆A1(β).

Similarly, Set 2 (i.e., (IC21) and (IC22)) can be expressed as:

[q(β) + q(γ)]∆A1(β)− 2E(∆A1) ≥ 0 ≥ [q(β) + q(γ)]∆A1(γ)− 2E(∆A1) (9)

The set is non-empty only if ∆A1(β) ≥ ∆A1(γ). Note that ∆A1(γ) ≥ ∆A1(β) and ∆A1(β) ≥

∆A1(γ) are exclusive (excepting the knife-edge case) and exhaustive, and that even blind policies

are incentive compatible. Thus,generically, only one set can be implemented, so the relative size

of ∆A1(γ) and ∆A1(β) fully determines which set of incentive compatibility constraints are used.

From this, we derive the following proposition.

Proposition 8 The PM induces Set 1 (“buy only if good”) if ∆A1(γ) > ∆A1(β) and Set 2 (“buy

only if bad”) if ∆A1(γ) > ∆A1(β).

Note that proposition 8 holds even if short-selling is not allowed (in that case, although both sets

may be implementable, only one can be implemented profitably; see remarks in appendix A.3.1).
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Finally, we show that the PM always does better by listening to the market.

Proposition 9 The incentive-constrained optimal policy is generically superior to blind policies.

Proof. See appendix A.1.2.

The proof works by showing that generically, for incentive-constrained optimality, q(β) < 1.

This is then combined with Proposition 6 to show that generically 1 = q(γ) > q(β), which is

superior to a blind policy.

In other words, listening is generically better then not listening. Thus – given our assumption

that the signal is informative of the true state – ex-ante indifference implies that the PM is willing

to make commitment ⟨q(γ), q(β)⟩ in order to learn the signal. (In some cases, no commitment will

be necessary, i.e., ⟨q(γ) = 1, q(β) = 0⟩ may be optimal.) Note that proposition 9 will hold whether

or not short selling is allowed (see Remark in Appendix A.3.1).

4.2 Characterizing binding constraints

As we show by characterizing all cases below, for particular values of ∆A1(γ),∆A1(β), if one IC

constraint binds where P (γ) > 1
2 > P (β), it will not bind where P (γ) < 1

2 < P (β). This is shown in

figure 1 below. The (potentially) binding constraint depends here on whether P (β) > P (γ) or vice

versa. In general, the II may be able to profit from either buying or shorting, i.e., from taking the

action that, in expectation conditional on the signal, and knowing that the PM will follow him, is

more profitable. This is because he has an information advantage over the UTs in knowing which

signal he is sending the PM, and thus what the PM will likely do. His informational advantage and

his profit will tend to be greater (from truth-telling) for a given signal the less likely this signal is,

i.e., the lower is P (σ), as it will induce a less likely policy outcome, hence a larger profit. This offers

intuition for a policymaker: in general she should be more concerned about an informed investor

trying to fake the less likely signal. Figure 1 describes the binding constraints in each region. (Note

that ∅ means that no constraint is binding, i.e., the PM achieves the first best).
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Figure 1: Allowing short-selling

4.3 Full characterization: Six cases

We divide the parameter sets into six cases in terms of the policy’s effect on the asset’s value after

each signal: (i) ∆A1(γ) > ∆A1(β) > 0, (ii) ∆A1(β) > ∆A1(γ) > 0, (iii) ∆A1(β) > 0 > ∆A1(γ),

(iv) 0 > ∆A1(β) > ∆A1(γ), (v) 0 > ∆A1(γ) > ∆A1(β), and (vi) ∆A1(γ) > 0 > ∆A1(β). This

classification, along with a taxonomy we will explain, is displayed in figure 2.

(i) Treat

(ii) Tiger(iii) Judo

(iv) Weapon

(v) Chemo (vi) Paternal

Se
t 2

Se
t 1

∆A1(γ)

∆A1(β)

Figure 2: Taxonomy of incentive alignment between PM and an asset-owner

We can interpret these six cases in terms of the alignment of incentives of the PM and the asset
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owner. To give insight, we solve for case 1 in detail; the other five cases are solved more concisely,

with derivations in the appendix. Results are summarized in figure 3 in section 4.4.

4.3.1 Case (i), “A Treat”: ∆A1(γ) > ∆A1(β) > 0, i.e., the asset’s value increases when

the policy is executed, more so with the good signal.

This policy represents a treat for the asset-owner; execution will always increase the asset’s value,

but from the PM’s perspective, it is only worth “buying this treat” where the signal suggests if

it will be very beneficial to the asset holder. This case may reflect a trade policy that involves

costly concessions for the government but will be worth executing if it boosts a particular export

sector by a sufficient amount; cf. Breinlich (2011). Alternatively, it might reflect a public research

and development funding plan that will certainly stimulate some new inventions and raise profits

somewhat, but will require dramatic results to justify its large costs. A macroeconomic stimulus

or a bank or international bailout may have similar properties.21

Proposition 8 implies that Set 1 is relevant, and Proposition 6 implies q(γ) = 1. Since ∆A1(γ) >

0 and ∆A1(β) > 0, we can rewrite IC ′
11 and IC ′

12 substituting these out:

q(β)
(
1− 2P (β)

∆A1(β)

∆A1(γ)

)
− (1− 2P (β)) ≥ 0,

(
1− 2P (γ)

∆A1(γ)

∆A1(β)

)
− q(β)(1− 2P (γ)) ≤ 0

[Condition 1: P (γ) = 1
2 = P (β)] Then the two constraints become:

q(β)
(
1− ∆A1(β)

∆A1(γ)

)
≥ 0,

(
1− ∆A1(γ)

∆A1(β)

)
≤ 0

Thus we can reduce q(β) to zero, and the incentive-constrained optimal policy achieves the first

best, ⟨q(γ) = 1, q(β) = 0⟩.
21Extending the model, suppose the II is a large bond speculator, the PM is the European Union, and the policy

is a package guaranteeing bonds against default, requiring austerity measures, and giving loans and aid to Greece.

The default risk and the effectiveness of the policy are both uncertain. The bond holders (and Greek leaders) might

prefer the EU to provide the maximal aid, but it may not be worth the cost to the EU. The EU could “announce

consideration” of a policy, implying a certain conditional probability of execution, and see how the markets react.

The direction of the likely effect is known (bonds will increase in value and yields will decline) but the magnitude of

the effect will determine whether to execute the policy.
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[Condition 2: P (γ) > 1
2 > P (β)] Suppose P (γ) > 1

2 > P (β). Then the above is simplified into:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)︸ ︷︷ ︸
(a)

≥ 1,
1− 2P (γ)∆A1(γ)

∆A1(β)

1− 2P (γ)︸ ︷︷ ︸
(b)

≥ q(β)

Note that the second inequality is reversed as it was divided by a negative number.

Both (a) and (b) are larger than 1. Since the PM wants to decrease q(β) as much as she can,

the only relevant (i.e., binding) constraint is the first one. Thus we conclude:

For P (γ) > 1/2 > P (β),
⟨
q(γ) = 1, q(β) =

1− 2P (β)

1− 2P (β)∆A1(β)
∆A1(γ)

⟩
.

[Condition 3: P (γ) < 1
2 < P (β)] Then the ICs are simplified into:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)
≤ 1,

1− 2P (γ)∆A1(γ)
∆A1(β)

1− 2P (γ)
≤ q(β)

The first constraint is irrelevant irrespective of the sign of
1−2P (β)

∆A1(β)
∆A1(γ)

1−2P (β) as the PM wants to

minimize q(β) (note that q(β) = 0 trivially satisfies the first constraint). If
1−2P (γ)

∆A1(γ)
∆A1(β)

1−2P (γ) is negative,

then the second constraint is also irrelevant; the optimal solution is ⟨q(γ) = 1, q(β) = 0⟩. If
1−2P (γ)

∆A1(γ)
∆A1(β)

1−2P (γ) is positive, it is smaller than 1. Then the second constraint is relevant, i.e., the

second constraint binds, and we derive the optimal solution
⟨
q(γ) = 1, q(β) =

1−2P (γ)
∆A1(γ)
∆A1(β)

1−2P (γ)

⟩
.

To summarize, the optimal policy interprets the II’s buying as signal γ and his not buying as

signal β. The optimal incentive-constrained optimal policy is:

For P (γ) < 1/2 < P (β),
⟨
q(γ) = 1, q(β) = max

(
0,

1− 2P (γ)∆A1(γ)
∆A1(β)

1− 2P (γ)

)⟩
,

for P (γ) > 1/2 > P (β),
⟨
q(γ) = 1, q(β) =

1− 2P (β)

1− 2P (β)∆A1(β)
∆A1(γ)

⟩
,

and for P (γ) = 1/2 = P (β), ⟨q(γ) = 1, q(β) = 0⟩, i.e., the first best.

Note that P (γ) = 1/2 = P (β) implies the first best, ⟨q(γ) = 1, q(β) = 0⟩ for all cases, so we will

not mention it further.
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Remark 3 [Binding constraints and signal probabilities]: Consider why the second con-

straint (IC12) does not bind where P (γ) > P (β). Suppose these probabilities, and suppose the

policy is at the first-best ⟨q(γ) = 1, q(β) = 0⟩. Here, an II(β) type will want to short sell and

deter execution. The UTs believe that the policy is executed “most of the time”; thus deterring

execution yields the larger information advantage or “surprise”. II(β) can profit from this infor-

mation advantage in proportion to ∆A1(γ), as when he short-sells the UTs compensate him for

their predicted execution after the good signal.

In contrast, if II(β) were to buy and induce execution, this would bring only the smaller

∆A1(β) in ex-post profit while to buy the asset he would have to compensate the UTs for their

expectation of asset gains from execution under the good signal, paying them P (γ)∆A1(γ).

Now consider why (IC12) may bind where P (γ) < P (β). Here if the policy were first-best the

UTs would believe it would be executed less then half of the time; thus inducing execution yields

the larger surprise, an information advantage of 1 − P (γ). On the other hand, the (ex-post) gain

from inducing execution here is only proportional to ∆A1(β) but he must pay the UT’s for the asset

in proportion to ∆A1(γ); the “asymmetric asset gain” hurts him here. In contrast, by short-selling

and deterring execution he is inducing a smaller surprise but will not have to pay for the asymmetric

asset gain. These two effects go in the opposite direction, and where the “larger surprise” advantage

outweighs the “asymmetric asset gain” cost – i.e., where i.e., where 2P (γ) < ∆A1(β)
∆A1(γ)

– then IC12

will bind.

Note that derivations for cases 2-6 are in appendix A.2.

4.3.2 Case (ii), “Tiger”: ∆A1(β) > ∆A1(γ) > 0, i.e., the asset’s value increases when

the policy is executed, less so with the good signal.

Consider a benefit program such as the USA’s Medicare part D that is expected to be somewhat

profitable for the drug industry, but will also yield other public benefits. However, depending on

the true market structure and true prospects for innovation, the drug industry might be able to

use this to reap excess profits at the expense of consumers (see Friedman, 2009).

Solution: The PM will use Set 1, i.e., will induce the II to short sell under the good signal, and
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buy under the bad signal. She will do this by setting:⟨
q(γ) = 1, q(β) =

1− 2P (β)

1− 2P (β)∆A1(β)
∆A1(γ)

⟩
if P (γ) < 1/2 < P (β),

and setting
⟨
q(γ) = 1, q(β) = max

(
0,

1− 2P (γ)∆A1(γ)
∆A1(β)

1− 2P (γ)

)⟩
if P (γ) > 1/2 > P (β).

The contrast between cases (i) and (ii) offers real-world lessons. The choice of which type of

behavior to try to induce depends on the relative gains to the asset under the good or bad policy.

If the asset does better when the policy is bad, policymakers may want to get informed investors

to buy only if the policy is bad, and then will have to promise to execute the policy with some

probability anyway.

4.3.3 Case (iii), “Judo”: ∆A1(β) > 0 > ∆A1(γ), i.e., the asset’s value increases when

policy is executed under the bad signal, and decreases when it is executed under

the good signal.

For this case the dimension of interaction between the policymaker and the industry is largely

zero-sum, with few mutual gains or losses. The policy may be a reform of taxes or regulation

that intends to be harsher and more punitive. However, it may backfire, perhaps if the firm finds

loopholes, and may actually increase profits (hence the term “Judo”).

Solution: The PM will use Set 2 and induce the II to short sell under the good signal, and buy

under the bad signal, by setting:

For P (γ) < 1/2 < P (β), ⟨q(γ) = 1, q(β) = 0⟩.

For P (γ) > 1/2 > P (β),
⟨
q(γ) = 1, q(β) =

1− 2P (β)

1− 2P (β)∆A1(β)
∆A1(γ)

⟩
.

4.3.4 Case (iv), “Weapon”: 0 > ∆A1(β) > ∆A1(γ), i.e., the asset’s value decreases

when the policy is executed, more so with the good signal.

This describes a policy intended (or expected) to severely reduce profits. Perhaps these profits are

seen as monopoly or monopsony rents, and thus reducing them may increase consumer surplus.
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There may be some cost to administering this policy. It may require a severe regulatory burden so

it will only be worth doing if it has a major “trust busting” effect. Advocates of this policy may

argue that it will reduce “excess profiteering” by monopolists and oligopolists. Opponents may

argue it will have little effect on rents, as the oligopolists will find ways to evade it, yet it will lead

to large bureaucratic costs and negative unintended consequences for consumers. This policy is a

“weapon” worth using only if it is fierce enough.

Solution: The PM will use Set 2 and induce the II to short sell under the good signal and buy

under the bad signal, by setting:

For P (γ) > 1/2 > P (β),
⟨
q(γ) = 1, q(β) =

1− 2P (β)

1− 2P (β)∆A1(β)
∆A1(γ)

⟩
,

and for P (γ) < 1/2 < P (β),
⟨
q(γ) = 1, q(β) = max

(
0,

1− 2P (γ)∆A1(γ)
∆A1(β)

1− 2P (γ)

)⟩
4.3.5 Case (v), “Chemotherapy”: 0 > ∆A1(γ) > ∆A1(β), i.e., The asset’s value de-

creases when the policy is executed, more so with the bad signal.

This may reflect a tax increase or increase in the regulatory burden on industry, but one that is

not intended to be excessively burdensome. The Polish mining tax (see section 2.1) offers a good

example. This also may reflect a stricter price cap for a regulated industry such as a utility; the

government wants to limit profits but not to bankrupt the firm(s). Macroeconomic policy raising

interest rates to respond to inflation might be similarly characterized. Like chemotherapy, this

policy is expected to do some damage, but it is only successful if it does not harm the patient (or

asset) too much.

Solution: The PM will use Set 1 and induce the II to buy under the good signal and short sell

under the bad signal, by setting:

For P (γ) > 1/2 > P (β),
⟨
q(γ) = 1, q(β) = max

(
0,

1− 2P (γ)∆A1(γ)
∆A1(β)

1− 2P (γ)

)⟩
, and

for P (γ) < 1/2 < P (β),
⟨
q(γ) = 1, q(β) =

1− 2P (β)

1− 2P (β)∆A1(β)
∆A1(γ)

⟩
.
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4.3.6 Case (vi), “Paternalist”: ∆A1(γ) > 0 > ∆A1(β), i.e., The asset’s value increases

when policy is executed under a good signal, and decreases when it is executed

after a bad signal.

This reflects a policy that under some circumstances will have direct or indirect benefits for the

industry, and in other cases will hurt the industry. It may be directly designed to benefit the indus-

try, such as a change in regulations meant to deter destructive competition, or allow coordination

on an industry-standard. This may apply to patent reform, or to a complicated change in trade

agreements or in immigration law. Another policy that is contested in this way is putting limits

on CEO pay. This may also reflect policy with other goals, e.g., an educational reform, but which

is only seen as worth doing if it happens to help (and not harm) some key industries. This might

be called a paternalist policy because at best it helps an industry achieve higher profits than they

could achieve alone, but at worst it represents a misguided government overreach that hurts the

private sector.

Solution: The PM will induce the II to buy under the good signal and short sell under the bad

signal, by setting:

For P (γ) > 1/2 > P (β),
⟨
q(γ) = 1, q(β) =

1− 2P (β)

1− 2P (β)∆A1(β)
∆A1(γ)

)⟩
.

For P (γ) < 1/2 < P (β), ⟨q(γ) = 1, q(β) = 0⟩.

Remark 4: Note that the first best is achieved if the good signal is more likely. This agrees with

our standard notion of “aligned incentives”: both the government and an asset holder will want

the policy executed if and only if it is a good policy. If the asset price A0 were unaffected by the

q functions, this would hold for any value of P (γ). With an exogenous A0 the II would only care

about the impact of the policy on the asset’s fundamental value, and incentives would be clearly

aligned. He would always want to buy after a good signal, inducing the “good” policy and making

a profit on the asset, and would never want to buy after a bad signal. With the endogenous A0

this is still the case if the good signal is more rare, and thus the information advantage can also

be better exploited from inducing execution than from short selling and inducing non-execution.

However, if the good signal is the more common one, the “natural” incentives to increase the asset’s
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value and the greater information advantage go in opposite directions, thus q(β) may need to be

increased to get truthful behavior. A similar insight holds for the symmetric case (iii), i.e., wherever

the expected direction of the policy impact on the asset depends on the signal. This highlights an

insight for policymaker: even if ex-post incentives are aligned, the incentive to buy or short sell an

asset may not be.

4.4 Comparison with an alternative model without short sale

We now summarize the optimal policies for all of the cases graphically. Since q(γ) = 1 whether

short sale is allowed or not, we omit the value of q(γ) in graphs. We first present the algebraic

solutions by region and probabilities P (γ) R P (β); we also illustrate the incentive-constrained

optimal policy when short sale is not available to informed investors. The derivation is in appendix

A.3.
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Figure 3: Allowing short-selling

Simple intuition might suggest that restricting the tools available to the informed investor, e.g.,
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Figure 4: Without short-selling

by forbidding short sale, would make it harder for him to ‘manipulate’ the policy outcome and

conversely, easier to get him to reveal his private information. However, as seen in Figure 3 and

4, sometimes allowing II to short sell lowers the incentive compatible q(β) and thus improves the

PM’s welfare. There are two potentially countervailing effects. First, the potentially profitable

short-selling opportunity means II may not prefer to buy after a good signal. Second, allowing

short-selling may make it easier to dissuade him from buying after a bad signal.

Indeed, it can be easily shown that with P (γ) < P (β), allowing short sale (weakly) lowers q(β)

in cases (ii)-(vi). Even in region (i), allowing short sale increases welfare if ∆A1(β) ≤ P (β)∆A1(γ)

or 1
2 ≥ P (γ) ≥ 1

3 holds when P (γ) < P (β). Even when P (γ) > P (β) is the case, we can

find some necessary and sufficient conditions under which allowing short sale improves welfare:

∆A1(β) >
1
2∆A1(γ) and ∆A1(β) > P (β)∆A1(γ) in region (i), ∆A1(β) < 2P (γ)∆A1(γ) in region

(ii), 1
2 > P (β) > 1

3 in regions (iii) and (iv), no condition is required in region (v), and q(β) = 0 in

region (vi) with or without the possibility of short sale. These comparisons are shown in figures 3

and 4. We give comparisons for (P (γ) = 3/4, P (β) = 1/4) and (P (γ) = 1/4, P (β) = 3/4) in figures

5 and 6
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Although allowing short sale provides a further tool for II’s deviation, it also can provides II

more benefit when he is truthful. Short sale makes both the right-hand side and the left hand side

of each incentive compatibility constraint larger; hence, it may become easier (or harder) to enforce

truth-telling.

P (γ) = 3
4 > P (β) = 1

4 P (γ) = 1
4 < P (β) = 3

4

Figure 5: With short-selling

P (γ) = 3
4 > P (β) = 1

4 P (γ) = 1
4 < P (β) = 3

4

Figure 6: Without short-selling
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4.5 Comparison with an alternative model with exogenous A0 and without short

sale

Our above proposition 6 – stating that the PM may set q(β) > 0 but will always set q(γ) = 1 –

depended on the endogeneity of A0 in (q(γ), q(β)). To illustrate this point, we show that when A0

is exogenous, q(β) = 0 and q(γ) < 1 is optimal for certain values of the parameters.

We consider one such case as an example. The full case-by-case analysis is available by request.

We henceforth use the following notation:

EV (p|σ) =
∑

P (s|σ)V (p, s, i = b).

We consider a case that resembles case (i) of our preferred model. We assume that an II who

buys gets a profit when a good policy is executed, a lower profit when a bad policy is executed,

and sustains a loss when the policy is not executed. (It is trivial to show that these payoffs could

arise from a particular assumption over the fixed initial asset price A0 and the assets’ value under

each state and policy outcome.) We assume that the investor’s payoff satisfies the following.

EV (e|γ) > EV (e|β) > 0 > EV (ne|σ) (10)

Condition (10) implies that the first set of IC constraints is relevant. Here II(γ) is induced to

choose i = b, while II(β) must choose i = nb. In other words, sending the bad signal means not

buying the asset. This requires the following incentive compatibility constraints:

∑
s

P (s|γ)[q(γ)(V (e, s, b)) + (1− q(γ))V (ne, s, b)] ≥ 0, (11)

0 ≥
∑
s

P (s|β)[q(γ)V (e, s, b) + (1− q(γ))V (ne, s, b)]. (12)

When II(γ) deviates to not buy, he earns nothing; as does II(β) when he tells the truth by not

buying (i = nb); hence the zero terms on the right (left) side of the first (second) inequality. A

similar interpretation applies to the second incentive compatibility constraint.

Set 1 is further simplified into:

q(γ)[EV (e|γ)− EV (ne|γ)] ≥ −EV (ne|γ) and − EV (ne|β) ≥ q(γ)[EV (e|β)− EV (ne|β)]. (13)
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If the agent does not buy the asset, he no longer cares whether the policy is executed or not.

Hence, the PM will set q(β) = 0, as executing the policy after a bad signal will be costly but does

not encourage truth-telling. In other words, under Condition 10, q(β) = 0; as we show formally

below. (Note that the same intuition does not go through in our preferred model with endogenous

A0; setting q(β) > 0 in our preferred model will affect the asset’s initial price and thus the II’s

relative incentives to buy or short.)

The objective function is:

∑
s,σ

P (σ, s)W (ne, s) + q(γ)P (γ) (EW (e|γ)− EW (ne|γ))︸ ︷︷ ︸
(+)

+q(β)P (β) (EW (e|β)− EW (ne|β))︸ ︷︷ ︸
(−)

.

As q(β) is not present in the constraints, the PM must set q(β) = 0, as ∆W (β) < 0 from the

previously defined welfare function.

On the other hand q(γ) cannot be either 0 or 1: if q(γ) = 1, then the investor with signal σ = β

always succeeds in deceiving the policymaker, and if q(γ) = 0, then the policymaker never executes

the policy, which implies an inefficiency since the policymaker ignores valuable information. Thus

q(γ) must be a number between 0 and 1.

We derive the optimal value of q(β) in appendix A.4. This yields the optimal policy
⟨
q(β) =

0, q(γ) = 1
EV (e|β)

− EV (ne|β)+1

⟩
under Condition 10, that is, q(γ) < 1. The PM interprets the II’s buying

(not buying) as having received signal γ (signal β).

This demonstrates that (as noted above) with a fixed initial asset price A0 and no short selling,

the PM optimally sets ⟨q(γ) < 1, q(β) = 0⟩ for some ranges of parameters.

5 Conclusion

Although politicians often appear to be more concerned with immediate public opinion than with

the efficacy of policies, in cases where voters do not have a strong issue identification, performance

is what matters.22 Thus, after floating policy “trial balloons” politicians may listen to both polls

22This is likely to hold for technical “hard issues” (Carmines and Stimson, 1980). Fiorina (1978), among others

found some evidence for “retrospective voting”; however, there is debate over its explanatory power (see e.g., Fiorina

et al., 2003).
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and markets.23

The ability to listen and conditionally commit, perhaps imprecisely, may be embodied in the

political system. In a system with several branches of government, the framers of a constitution

could either allow an executive (President or Premier) to execute policy unilaterally, or require her

to put a bill to the legislative branch (or directly to the people). Although she cannot precisely

set the probability it will be passed after each type of market news she can make the bill more

or less palatable the first time she submits it. For example, President Obama could have first

submitted his health care bill with public funding of abortion, which presumably would have made

it unlikely to pass. If it failed, but the market’s reaction appeared favorable, he could then submit

a similar bill without the abortion provision. The constitutional and procedural “rules” may affect

the extent to which a bill’s sponsor can introduce unrelated “riders,” the extent to which the bill

can be adjusted throughout the process, and the length of time a bill is considered.

The commitment might also take the form of a policy trial, perhaps one with a high probability

of a type-I or type-II error. The PM could commit to follow the results of the trial if they are

strongly significant in one direction or the other, which may be a small fraction of the time. Here,

the PM might not actually expect to learn from the trial; instead she cares more about how the

market reacts to the announcement of the trial. Where the trial’s results are not significant, she

can follow the signals generated by II’s behavior.

Another commitment strategy is committing political capital. A government, political party,

or faction may come out in support of a policy, and put their credibility on the line. This may

make it costly but not impossible to later vote against the policy if the market reveals a negative

signal.24 This commitment would plausibly have no effect on the probability of execution if the

market reveals a good signal. This commitment may be made weaker or stronger depending on

the number of legislators that are asked to speak strongly in favor of the policy. Suppose there is

23Listening to the market is not equivalent to a referendum; the commitments we describe allow the PM to use

the market to extract private information about the potential results of policies. Unlike referendum voters, traders

in the market are “voting” about what they think is profitable, but not necessarily voting for what benefits them as

a private citizen.
24This cost could come from a loss of reputation for managerial expertise as in Prendergast and Stole (1996) or a

simple voter dislike or distrust of inconsistency and “flip-flopping”, perhaps signalling untrustworthiness
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asymmetric information over these legislators’ true preferences or allow other sources of randomness

such as revealed public support. A simple model should demonstrate that the likelihood that the

bill is passed after a bad signal would increase in the number of legislators committing political

capital to the policy.

Generally, a long deliberation permitting amendments and reconsiderations may allow legisla-

tors more time and flexibility to listen to the market; “fast-tracking” will limit this. The timeline

under which a policy is introduced to the legislative process could also affect its conditional prob-

ability of execution after each signal. Suppose the market is expected to reveal its signal(s) about

the policy with a known hazard rate. The bill could then be scheduled for a vote on a particular

date, implying a certain probability that the (good or bad) signal will have been revealed.

Adding legislator-specific favors and “pork”, or unfavorable “poison” to the bill could also alter

the conditional probabilities. Suppose that there is uncertainty about legislator’s preferences and

thus uncertainty over the probability that a bill will pass after either signal (or without a signal).

However, some legislators’ preferences can be identified: known “swing Democrats” will always

support the bill after a good signal, but may oppose it after a bad signal. Suppose that offering

pork for a legislator’s district will raise the probability that she votes for a bill after any signal –

this is, of course, as long as she is not already certain to vote for (against) the bill. Offering pork

for a swing Democrat will increase q(β) without affecting q(γ).

As noted, our indirect mechanism does not follow the standard rules. There are reasons why

it may not be feasible to set up an explicit mechanism, paying investors for insider information.

Such “strange handouts” would likely be politically unpopular. It may be difficult to know which

investors have the “accurate” information. The government could try to commit such investors who

claim to have information to put money down and take losses if they are wrong, however they may

not be able to pay back such losses, and they may be reluctant, or perhaps unable (because of credit

constraints) to put money down in advance. The asset markets that exist are already suited to deal

with these commitment problems. Secondly, if the government recruited and offered commitments

to these “informants” it would still have to carefully monitor what positions the informants take in

assets market. They may have outside investments that would undermine the mechanism for truth

telling in the explicit “direct payments” mechanism. Therefore, the asset markets will still need
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to be taken into account. Finally, to the extent that the government could design mechanisms of

rewards and punishments on its own, the considerations that will be relevant will be similar to the

ones we describe below.

It is possible that for more technical policies and for more technocratic policymakers this will

involve explicit randomization. However, we think it will more likely to take the form (and may

have already taken the form) of introducing bills and legislation that has differing likelihood of

passing, and exploiting the randomness in the political system. We also imagine that, even if

policymakers do not explicitly consider the extent to which they should introduce randomness, we

offer a framework for thinking about how they can use the market signals to adapt policy. As noted

above, we have suggestive evidence that they are already taking into account how the market reacts

in formulating legislation and in executing it.

One concern mentioned by Wolfers and Zitzewitz (2006) is that if there are several public and

private signals of a policy’s efficacy, the interpretation of the difference in the conditional asset’s

value will depend on all of these, and may be difficult to interpret. E.g., a government may only

execute a carbon cap in the event of severe flooding of the Eastern seaboard; hence the conditional

expectation of GDP in the event of a carbon cap may also reflect the expectation of the effect this

flooding. Thus, introducing exogenous randomness may have an additional benefit: it may help

improve the interpretation of market signals even without manipulation. Our own modeling does

not address this, as we focus on the investor’s private signal; this is scope for future work.

Our model could be extended in several ways. Future work might examine a case where the

policymaker is seeking to influence investor behavior. It may also be interesting to model an

investor who has an inherent interest, e.g., owning a asset affected by the policy which cannot be

sold without costs.

The most valuable extensions will be empirical. Economists should seek to identify and measure

the ways in which particular asset values will be differentially affected by policies, and how this

relates to the policies’ welfare consequences. Where a connection is found, economists should also

measure the extent to which the information is concentrated in the hands of potential “manipula-

tors.” Armed with this information, policymakers may benefit by setting up a “listening process”,

bearing in mind the implementation concerns we describe. As we describe, they may need to limit
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the extent to which good or bad news feeds directly into policy, incorporating literal or approximate

ex-ante policy commitments.
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A Appendix

A.1 Proofs for Lemmas and Propositions

A.1.1 Proof for Proposition 4

It is trivial that q(γ) = q(β) = 0 is incentive compatible.

Now consider q(γ) = q(β) > 0. Plugging q̃ = q(γ) = q(β) > 0 into (IC ′
11) and (IC ′

12), we derive:

q̃
[
∆A1(γ)− 2P (β)A1(β) +A1(γ)− 2P (γ)A1(γ)

]
≥ 0 ⇔ 2q̃P (β)

[
∆A1(γ)−A1(β)

]
≥ 0,

q̃
[
∆A1(β)− 2P (γ)A1(γ) +A1(β)− 2P (β)A1(β)

]
≤ 0 ⇔ 2q̃P (γ)

[
∆A1(β)−A1(γ)

]
≤ 0

using P (γ) + P (β) = 1.

Similarly, plugging q̃ = q(γ) = q(β) > 0 into (IC21) and (IC22), we derive:

2q̃P (γ)
[
∆A1(β)−A1(γ)

]
≥ 0, 2q̃P (β)

[
∆A1(γ)−A1(β)

]
≤ 0.
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As noted earlier, the two sets are identical except the direction of the inequalities. Set 1 is satisfied

if ∆A1(γ) ≥ ∆A1(β), and Set 2 is satisfied if ∆A1(γ) ≤ ∆A1(β). Thus a blind policy is incentive

compatible in terms of one set of incentive compatibility constraints.

A.1.2 Proof for Proposition 9

To prove this we show that generically, for incentive-constrained optimality, q(β) < 1. From

Proposition 6, this implies generically 1 = q(γ) > q(β), which is superior to a blind policy.

Generically, ∆A1(γ) ̸= ∆A1(β). (i) Assume ∆A1(γ) > ∆A1(β). Suppose that q(γ) = q(β) = 1

non-generically. Then Set 1 becomes: 2P (β)
[
∆A1(γ)− A1(β)

]
≥ 0, 2P (γ)

[
∆A1(β)− A1(γ)

]
≤ 0

as shown in the proof for Proposition 4. We can see that both of these two constraints hold with

strict inequality, implying q(β) < 1 would also satisfy these constraints, and thus q(β) = 1 must

be suboptimal. (ii) Assuming ∆A1(γ) < ∆A1(β), we can apply the same logic to the second set of

incentive compatibility constraints to derive a contradiction.

A.2 Derivations for cases 2-6

A.2.1 Case ii: ∆A1(β) > ∆A1(γ) > 0

Proposition 8 implies that Set 2 is the relevant one. Also q(γ) = 1 from Proposition 6. Since

∆A1(β) > ∆A1(γ) > 0, we can simplify the two incentive constraints into:

q(β)
(
1− 2P (β)

∆A1(β)

∆A1(γ)

)
− (1− 2P (β)) ≤ 0,

(
1− 2P (γ)

∆A1(γ)

∆A1(β)

)
− q(β)(1− 2P (γ)) ≥ 0

[Case 1: P (γ) > 1
2 > P (β)] Then the above is simplified into:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)
≤ 1,

1− 2P (γ)∆A1(γ)
∆A1(β)

1− 2P (γ)︸ ︷︷ ︸
(b)

≤ q(β)

Clearly, the first constraint is not relevant as the PM wants to minimize q(β). If (b) > 0, then

the solution is < q(γ) = 1, q(β) =
1−2P (γ)

∆A1(γ)
∆A1(β)

1−2P (γ) >. If (b) ≤ 0, then the second constraint is also

irrelevant by the same reason; thus the solution is < q(γ) = 1, q(β) = 0 >. In summary, the
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solution is:

For P (γ) > 1/2 > P (β),
⟨
q(γ) = 1, q(β) = max

(
0,

1− 2P (γ)∆A1(γ)
∆A1(β)

1− 2P (γ)

)⟩
[Case 2: P (γ) < 1

2 < P (β)]. The incentive compatibility constraints are:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)︸ ︷︷ ︸
(a)

≥ 1, 1 ≥ 1− 2P (γ)

1− 2P (γ)∆A1(γ)
∆A1(β)︸ ︷︷ ︸

(b)

q(β)

Then the second constraint is irrelevant as PM wants to minimize q(β). Note (a) > 1, so the

solution is:

For P (γ) < 1/2 < P (β),
⟨
q(γ) = 1, q(β) =

1− 2P (β)

1− 2P (β)∆A1(β)
∆A1(γ)

⟩
.

A.2.2 Case iii: ∆A1(β) > 0 > ∆A1(γ)

Proposition 8 implies that Set 2 is the relevant one. Also q(γ) = 1 from Proposition 6. Since

∆A1(β) > 0 > ∆A1(γ), we can simplify these into:

q(β)
(
1− 2P (β)

∆A1(β)

∆A1(γ)

)
− (1− 2P (β)) ≥ 0,

(
1− 2P (γ)

∆A1(γ)

∆A1(β)

)
− q(β)(1− 2P (γ)) ≥ 0

[Case 1: P (γ) > 1
2 > P (β)] The above is simplified into:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)︸ ︷︷ ︸
(a)

≥ 1,
1− 2P (γ)∆A1(γ)

∆A1(β)

1− 2P (γ)︸ ︷︷ ︸
(b)

≤ q(β)

Note that (a) > 1 and (b) < 0; thus, the second constraint is irrelevant, and the result follows.

For P (γ) > 1/2 > P (β),
⟨
q(γ) = 1, q(β) =

1− 2P (β)

1− 2P (β)∆A1(β)
∆A1(γ)

⟩
.

[Case 2: P (γ) < 1
2 < P (β)] The incentive compatibility constraints are:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)︸ ︷︷ ︸
(a)<0

≤ 1, 1 ≥ 1− 2P (γ)

1− 2P (γ)∆A1(γ)
∆A1(β)︸ ︷︷ ︸

(b)>0

q(β)

Note that since (a) < 0 and (b) > 0 hold, both of the constraints are irrelevant, so the solution is:

For P (γ) < 1/2 < P (β), ⟨q(γ) = 1, q(β) = 0⟩.
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A.2.3 Case iv: 0 > ∆A1(β) > ∆A1(γ)

Proposition 8 implies that Set 2 is the relevant one. Also q(γ) = 1 from Proposition 6. Since

0 > ∆A1(β) > ∆A1(γ), the constraints are simplified into:

q(β)
(
1− 2P (β)

∆A1(β)

∆A1(γ)

)
− (1− 2P (β)) ≥ 0,

(
1− 2P (γ)

∆A1(γ)

∆A1(β)

)
− q(β)(1− 2P (γ)) ≤ 0

[Case 1: P (γ) > 1
2 > P (β)] The above can be simplified into:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)︸ ︷︷ ︸
(a)

≥ 1,
1− 2P (γ)∆A1(γ)

∆A1(β)

1− 2P (γ)︸ ︷︷ ︸
(b)

≥ q(β)

Note that (a) > 1 and (b) > 1; thus, the second constraint is irrelevant, and the result follows.

[Case 2: P (γ) < 1
2 < P (β)] then the IC constraints can be written as:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)︸ ︷︷ ︸
(a)<1

≤ 1,
1− 2P (γ)∆A1(γ)

∆A1(β)

1− 2P (γ)︸ ︷︷ ︸
(b)<1

≤ q(β)

Since (a) < 1, the first constraint is irrelevant. If (b) < 0, the second constraint is also irrelevant;

and the optimal solution is < q(γ) = 1, q(β) = 0 >. If 0 < (b) < 1, then the optimal solution is

< q(γ) = 1, q(β) =
1−2P (γ)

∆A1(γ)
∆A1(β)

1−2P (γ) >. So the result follows.

A.2.4 Case v: 0 > ∆A1(γ) > ∆A1(β)

Proposition 8 implies that Set 1 is the relevant one. Also q(γ) = 1 from Proposition 6.

Set 1 is:

∆A1(γ)
[
q(β)

(
1− 2P (β)

∆A1(β)

∆A1(γ)

)
− q(γ)(1− 2P (β)))

]
≥ 0,

∆A1(β)
[
q(γ)

(
1− 2P (γ)

∆A1(γ)

∆A1(β)

)
− q(β)(1− 2P (γ)))

]
≤ 0.

Since 0 > ∆A1(γ) > ∆A1(β), we can simplify the above into:

q(β)
(
1− 2P (β)

∆A1(β)

∆A1(γ)

)
− (1− 2P (β)) ≤ 0,

(
1− 2P (γ)

∆A1(γ)

∆A1(β)

)
− q(β)(1− 2P (γ)) ≥ 0
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[Case 1: P (γ) > 1
2 > P (β)] Then the above is simplified into:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)︸ ︷︷ ︸
(a)

≤ 1,
1− 2P (γ)∆A1(γ)

∆A1(β)

1− 2P (γ)︸ ︷︷ ︸
(b)

≤ q(β)

Clearly the first constraint is irrelevant as the PM wants to minimize q(β).

If (b) ∈ (0, 1), then the optimal solution is < q(γ) = 1, q(β) =
1−2P (γ)

∆A1(γ)
∆A1(β)

1−2P (γ) >. If (b) < 0, then

the second constraint is also irrelevant; thus, the optimal solution is < q(γ) = 1, q(β) = 0 >. In

summary, the optimal solution is:

For P (γ) > 1/2 > P (β),
⟨
q(γ) = 1, q(β) = max

(
0,

1− 2P (γ)∆A1(γ)
∆A1(β)

1− 2P (γ)

)⟩
.

[Case 2: P (γ) < 1
2 < P (β)] The incentive compatibility constraints are:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)︸ ︷︷ ︸
(a)>1

≥ 1,
1− 2P (γ)∆A1(γ)

∆A1(β)

1− 2P (γ)︸ ︷︷ ︸
(b)>1

≥ q(β)

Note that (a) > 1 and (b) > 1. Thus, the second constraint is irrelevant, and the result follows.

A.2.5 Case vi: ∆A1(γ) > 0 > ∆A1(β)

Proposition 8 implies that Set 1 is the relevant one. Also q(γ) = 1 from Proposition 6. Since

∆A1(γ) > 0 > ∆A1(β), we can simplify these into:

q(β)
(
1− 2P (β)

∆A1(β)

∆A1(γ)

)
− (1− 2P (β)) ≥ 0,

(
1− 2P (γ)

∆A1(γ)

∆A1(β)

)
− q(β)(1− 2P (γ)) ≥ 0

[Case 1: P (γ) > 1
2 > P (β)] Then the above is simplified into:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)︸ ︷︷ ︸
(a)

≥ 1,
1− 2P (γ)∆A1(γ)

∆A1(β)

1− 2P (γ)︸ ︷︷ ︸
(b)

≤ q(β)

Note that (a) > 1 and (b) < 0, so that the second constraint is irrelevant, and the result follows

from the first constraint.

41



[Case 2: P (γ) < 1
2 < P (β)] The incentive compatibility constraints are:

q(β)
1− 2P (β)∆A1(β)

∆A1(γ)

1− 2P (β)︸ ︷︷ ︸
(a)<0

≤ 1,
1− 2P (γ)∆A1(γ)

∆A1(β)

1− 2P (γ)︸ ︷︷ ︸
(b)>1

≥ q(β)

Note that (a) < 0 and (b) > 1. Thus, the first constraint is irrelevant, and the result follows.

A.3 Model without short selling

A.3.1 Incentive compatibility constraints

The 1st set: Buy if and only if the signal is γ.

Making the right-hand side of (IC ′
11) and the left-hand side of (IC ′

12) zero, the two incentive

compatibility constraints without the possibility of short sale become:

q(γ)∆A1(γ) ≥ q(β)∆A1(β) (14)

P (γ)q(γ)∆A1(γ) ≥ (q(γ)− P (β)q(β))∆A1(β) (15)

The 2nd set: Buy if and only if the signal is β

Similar to the 1st set, we derive Set 2 without the possibility of short sale:

q(β)∆A1(β) ≥ q(γ)∆A1(γ) (16)

P (β)q(β)∆A1(β) ≥ (q(β)− P (γ)q(γ))∆A1(γ) (17)

Remark: Note that plugging q̃ := q(γ) = q(β) into the four constraints, we can prove Proposition

4 the same way. Also all four constraints are of form Cq(γ) R q(β); thus, the proof for Proposition

6 can be done the same way in the current environment too. Plugging q̃ := q(γ) = q(β) into the

four constraints makes it possible to show Proposition 9 the same way too. Finally, inequalities (9)

are written as follows in the current environment:

q(γ)∆A1(γ)− E(∆A1) ≥ 0 ≥ q(γ)∆A1(β)− E(∆A1)

Thus, the non-emptiness of the above set implies ∆A1(γ) ≥ ∆A1(β). Thus, Proposition 8 can be

proven the same way in the current environment.

In summary, the incentive-constrained optimal policy satisfies 1 = q(γ) ≥ q(β), and Set 1 (Set

2) is the relevant one if and only if ∆A1(γ) ≥ ∆A1(β) (∆A1(γ) ≤ ∆A1(β)).
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A.3.2 Further simplification of the two sets of incentive compatibility constraints

With q(γ) = 1, we can rewrite the second constraint of Set 1 as:

P (γ)∆A1(γ) ≥ ∆A1(β)− q(β)P (β)∆A1(γ)

⇔ q(β)P (β)∆A1(β) ≥ (∆A1(β)− P (γ)∆A1(γ)) = (∆A1(β)− (1− P (β))∆A1(γ))

q(β)∆A1(β) ≥
(∆A1(β)−∆A1(γ)

P (β)
+ ∆A1(γ)

)
Thus Set 1 is combined into:

∆A1(γ) ≥ ∆A1(β)q(β) ≥
[∆A1(β)−∆A1(γ)

P (γ)
+ ∆A1(γ)

]
, (18)

and Set 2 is similarly combined into

∆A1(β)q(β) ≥ ∆A1(γ) ≥
[∆A1(γ)−∆A1(β)

P (β)
+ ∆A1(β)

]
q(β). (19)

A.3.3 ∆A1(γ) > ∆A1(β) > 0

We consider Set 1, inequalities (18).

∆A1(γ) ≥ ∆A1(β)q(β) ≥
[∆A1(β)−∆A1(γ)

P (γ)
+ ∆A1(γ)

]
,

Since the policymaker wants to minimize q(β), the only constraint that might bind is the second

one. Note that the bracket term could be positive or negative depending on the sign of ∆A1(β)−

P (β)∆A1(γ) since
∆A1(β)−∆A1(γ)

P (γ) +∆A1(γ) =
1

P (γ)(∆A1(β)− (1−P (γ))∆A1(γ)) =
1

P (γ)(∆A1(β)−

P (β)∆A1(γ)).

If 1
P (γ)(∆A1(β) − P (β)∆A1(γ)) < 1, the constraint does not bind, and the optimal solution is

< q(γ) = 1, q(β) = 0 >.

On the other hand if 1
P (γ)(∆A1(β) − P (β)∆A1(γ)) > 1, the constraint is binding; thus, the

optimal solution is
⟨
q(γ) = 1, q(β) = 1

P (γ)

(
1− P (β)∆A1(γ)

∆A1(β)

)⟩
.

In summary, the optimal policy is⟨
q(γ) = 1, q(β) = max

(
0,

1

P (γ)

(
1− P (β)

∆A1(γ)

∆A1(β)

))⟩
.
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A.3.4 ∆A1(β) > ∆A1(γ) > 0

We consider Set 2:

∆A1(β)q(β) ≥ ∆A1(γ) ≥
[∆A1(γ)−∆A1(β)

P (β)
+ ∆A1(β)

]
q(β).

Since the policymaker wants to minimize q(β), the only the first constraint binds. Thus, the solution

is: ⟨
q(γ) = 1, q(β) =

∆A1(γ)

∆A1(β)

⟩
.

A.3.5 ∆A1(β) > 0 > ∆A1(γ)

We consider Set 2:

∆A1(β)q(β) ≥ ∆A1(γ) ≥
[∆A1(γ)−∆A1(β)

P (β)
+ ∆A1(β)

]
q(β).

The only constraint that might bind is the second one, which is re-written as 1 ≤
[1−∆A1(β)

∆A1(γ)

P (β) +

∆A1(β)
∆A1(γ)

]
q(β). Note that the bracket term is simplified as 1

P (β)

[
1 − ∆A1(β)

∆A1(γ)
+ P (β)∆A1(β)

∆A1(γ)

]
=

1−P (γ)
∆A1(β)
∆A1(γ)

P (β) , which is larger than 1 since P (β) < 1 and 1 − P (γ)∆A1(β)
∆A1(γ)

> 1. Thus, the solu-

tion is: ⟨
q(γ) = 1, q(β) =

P (β)

1− P (γ)∆A1(β)
∆A1(γ)

⟩
.

A.3.6 0 > ∆A1(β) > ∆A1(γ)

We consider Set 2:

[−∆A1(β)]q(β) ≤ [−∆A1(γ)] ≤
[−∆A1(γ) + ∆A1(β)

P (β)
−∆A1(β)

]
q(β).

Since the policymaker wants to minimize q(β), the second inequality binds, which is re-written as:

1 ≤
[1− ∆A1(β)

∆A1(γ)

P (β)
+

∆A1(β)

∆A1(γ)

]
q(β).
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Note that the bracket term is simplified as 1
P (β)

[
1− ∆A1(β)

∆A1(γ)
+ P (β)∆A1(β)

∆A1(γ)

]
=

1−P (γ)
∆A1(β)
∆A1(γ)

P (β) , which

is larger than 1 since
(
1− P (γ)∆A1(β)

∆A1(γ)

)
> 1− P (γ) = P (β). Thus solution is:

⟨
q(γ) = 1, q(β) =

P (β)

1− P (γ)∆A1(β)
∆A1(γ)

⟩
.

A.3.7 0 > ∆A1(γ) > ∆A1(β)

We consider Set 1:

[−∆A1(γ)] ≤ [−∆A1(β)]q(β) ≤
[−∆A1(β) + ∆A1(γ)

P (γ)
−∆A1(γ)

]
︸ ︷︷ ︸

(+)

.

Since the policymaker wants to minimize q(β), the first inequality binds. Thus, the solution is:⟨
q(γ) = 1, q(β) =

( −∆A(γ)

−∆A1(β)

)⟩
.

A.3.8 ∆A1(γ) > 0 > ∆A1(β)

We consider Set 1:

∆A1(γ) ≥ ∆A1(β)q(β) ≥
[∆A1(β)−∆A1(γ)

P (γ)
+ ∆A1(γ)

]
.

To minimize q(β), the only constraint that might bind is the second constraint.

Dividing both sides by ∆A1(β), we derive q(β) ≤
[1−∆A1(γ)

∆A1(β)

P (γ) + ∆A1(γ)
∆A1(β)

]
since ∆A1(β) is negative.

Then q(β) = 0 satisfies the constraint. Thus, the solution is:

< q(γ) = 1, q(β) = 0 > .

A.4 Derivation for case of fixed A0, no short-selling, condition (10)

The first set of incentive compatibility constraints (13) is equivalent to the following under condition

(10):

q(γ) ≥ −EV (ne|γ)
EV (e|γ)− EV (ne|γ)

and q(γ) ≤ −EV (ne|β)
EV (e|β)− EV (ne|β)

.
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Moreover we get the following with condition (10):

−EV (ne|γ)
EV (e|γ)− EV (ne|γ)

<
−EV (ne|β)

EV (e|β)− EV (ne|β)
.

Thus, the two constraints become

−EV (ne|γ)
EV (e|γ)− EV (ne|γ)

≤ q(γ) ≤ −EV (ne|β)
EV (e|β)− EV (ne|β)

.

The policy maker wants to increase q(γ) as long as the two incentive compatibility constraints

are satisfied. Thus, we conclude:

q(γ) =
−EV (ne|β)

EV (e|β)− EV (ne|β)
=

1
EV (e|β)

−EV (ne|β) + 1
.

Note that this value is between 0 and 1 under condition 10.

A.5 Short selling or buying is superior to not buying

Consider the case of ∆A1(γ) > ∆A1(β). II(γ)’s payoff when he buys and II(β)’s payoff when he

short sells are, respectively:

q(γ)∆A1(γ)− (P (γ)q(γ)∆A(γ) + P (β)q(β)∆A(β)) = P (β)[q(γ)∆A1(γ)− q(β)∆A1(β)], and

−q(β)∆A1(β) + (P (γ)q(γ)∆A(γ) + P (β)q(β)∆A(β)) = P (γ)[q(γ)∆A1(γ)− q(β)∆A1(β)]

As shown in Lemma 5, q(γ) ≥ q(β) must be the case. (Note that the proof for Lemma 5 depends

only on the PM’s welfare function.)

For case (i) in which ∆A1(γ) > ∆A1(β) > 0, both of the above payoffs are positive since

q(γ) ≥ q(β). The same holds for case (vi) in which ∆A1(γ) > 0 > ∆A1(β). For case (v) in which

0 > ∆A1(γ) > ∆A1(β), suppose P (γ) > P (β). Plugging the optimal q(β) and q(γ) = 1 into

q(γ)∆A1(γ)− q(β)∆A1(β), we derive:

∆A1(γ)−
1− 2P (γ)∆A1(γ)

∆A1(β)

1− 2P (γ)
∆A1(β) =

∆A1(γ)−∆A1(β)

1− 2P (γ)
> 0.

On the other hand, suppose P (γ) < P (β). Plugging the optimal q(β) and q(γ) = 1 into q(γ)∆A1(γ)−

q(β)∆A1(β), we derive:

∆A1(γ)−
1− 2P (β)

1− 2P (β)∆A1(β)
∆A1(γ)

∆A1(β) =
∆A1(γ)−∆A1(β)

1− 2P (β)∆A1(β)
∆A1(γ)

> 0.
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Thus, we have shown that the two payoffs are non-negative when ∆A1(γ) > ∆A1(β).

Similarly, consider the case of ∆A1(γ) < ∆A1(β). II(γ)’s payoff when he short sells and

II(β)’s payoff when he buys are, respectively:

−q(γ)∆A1(γ) + (P (γ)q(γ)∆A(γ) + P (β)q(β)∆A(β)) = P (γ)[q(β)∆A1(β)− q(γ)∆A1(γ)], and

q(β)∆A1(β)− (P (γ)q(γ)∆A(γ) + P (β)q(β)∆A(β)) = P (β)[q(β)∆A1(β)− q(γ)∆A1(γ)]

For case (ii) in which ∆A1(β) > ∆A1(γ) > 0, suppose P (γ) > P (β). Plugging the optimal q(β)

and q(γ) = 1 into [q(β)∆A1(β)− q(γ)∆A1(γ)], we derive

1− 2P (γ)∆A1(γ)
∆A1(β)

1− 2P (γ)
∆A1(β)−∆A1(γ) =

∆A1(β)−∆A1(γ)

1− 2P (γ)
> 0.

On the other hand, suppose P (γ) < P (β). Plugging the optimal q(β) and q(γ) = 1 into [q(β)∆A1(β)−

q(γ)∆A1(γ)], we derive

1− 2P (β)

1− 2P (β)∆A1(β)
∆A1(γ)

∆A1(β)−∆A1(γ) =
∆A1(β)−∆A1(γ)

1− 2P (β)∆A1(β)
∆A1(γ)

> 0.

For case (iii) in which ∆A1(β) > 0 > ∆A1(γ), the two payoffs are trivially non-negative. The same

holds for case (iv) in which 0 > ∆A1(β) > ∆A1(γ).

Thus we have shown that the payoffs are also non-negative when ∆A1(γ) < ∆A1(β).
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