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Summary 

The basidiomycete fungus Ustilago maydis has emerged as a powerful model organism 

to study fundamental biological processes. U. maydis shares many important features 

with human cells but provides the technical advantages of yeast. Recently, U. maydis 

has also been used to investigate fundamental processes in peroxisome biology. Here, 

we present an efficient yeast recombination-based cloning method to construct and 

express fluorescent fusion proteins (or conditional mutant protein alleles) which target 

peroxisomes in the fungus U. maydis. In vivo analysis is pivotal for understanding the 

underlying mechanisms of organelle motility. We focus on the in vivo labelling of 

peroxisomes in U. maydis and present approaches to analyze peroxisomal motility.  

 

1. Introduction 

Filamentous fungi have emerged as powerful model organisms to study cellular 

mechanisms. The basidiomycete U. maydis is a dimorphic fungus which exists in a 

yeast-like and filamentous form (1-4). Over the past decade, U. maydis has been 

introduced as a model system for studying cell biological processes (5-7). Remarkably, 

U. maydis shares many important features with human cells (8) including i) DNA repair 

mechanisms (9); ii) microtubule organization (10); iii) long-distance microtubule-based 

transport (11); iv) polarized growth (12); v) open mitosis (13) and vi) cooperative 

peroxisomal and mitochondrial fatty acid beta-oxidation (14-16). In addition, U. maydis 

provides the technical advantages of yeast cells (e.g. genetic accessibility, short 

generation time, simple cultivation methods, and sophisticated molecular tools). The U. 

maydis genome is fully sequenced (17) and comprises 20.5 Mb contained in 23 

chromosomes. The 6902 genes are listed in the MIPS U. maydis database 



(http://pedant.helmholtz-

muenchen.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_t237631_Ust_

maydi_v2GB). Interestingly, U. maydis shares many more proteins with humans than 

with the yeast Saccharomyces cerevisiae (7, 8, 16). 

Over the years, U. maydis has become a powerful model system for cell and molecular 

biology, and suitable molecular tools have been established (7). Recently, U. maydis has 

also been used to investigate fundamental processes in peroxisome biology, and 

exciting new insights in peroxisomal protein composition and metabolism (16), the 

mechanisms of peroxisome motility and organelle distribution (18, 19) and peroxisomal 

targeting via ribosomal stop codon read-through were obtained (20-22) with this model 

fungus.  

Peroxisome motility and dynamics are important prerequisites for peroxisome 

inheritance, proper intracellular distribution, positioning, organelle interactions, and 

biogenesis (23-26). Here, we focus on the in vivo labeling of peroxisomes in U. maydis. 

We describe the generation of plasmids encoding fluorescent proteins with a 

peroxisomal targeting signal through yeast recombination-based cloning (YRBC). We 

then address laser-based epi-fluorescence microscopy approaches to visualize and 

analyze peroxisomal motility. A better understanding of peroxisome metabolism, 

motility and dynamics in U. maydis may prove helpful to explain the highly complex 

phenotypes of peroxisomal disorders in humans. 

 

2. Materials 

All solutions are prepared with ultrapure water and kept at room temperature unless 

stated otherwise. 

http://pedant.helmholtz-muenchen.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_t237631_Ust_maydi_v2GB
http://pedant.helmholtz-muenchen.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_t237631_Ust_maydi_v2GB
http://pedant.helmholtz-muenchen.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_t237631_Ust_maydi_v2GB


 

2.1 For yeast recombination-based cloning (YRBC) 

1. Saccharomyces cerevisiae strain DS94 (MATα, ura3-52, trp1-1, leu2-3, his3-111, 

and lys2-801) (27) 

2. YPD medium (yeast extract, 10 g/l; peptone, 20 g/l; glucose, 20 g/l; agar, 20 g/l) - 

Autoclave at 121ºC for 20 min and store at room temperature 

3. Yeast synthetic drop-out media (yeast nitrogen base without amino acids and 

ammonium sulphate, 1.7 g/l; ammonium sulphate, 5 g/l; casein hydrolysate, 5 g/l; 

tryptophan, 20 mg/l; with 20 g/l agar added for preparing the plates) - Autoclave at 

121ºC for 20 min and store at room temperature 

4. 6M Sodium iodide - Stored at 4ºC 

5. Salmon sperm DNA (Stock solution of 2 µg/µl) 

6. 1 M Lithium acetate – Prepare fresh on the day of transformation and filter sterilise 

7. 50% PEG 4000 - Prepare fresh on the day of transformation and filter sterilize 

8. Silica glass suspension (Stock solution of 100 mg/ml) - Store at -20ºC 

9. DNA wash buffer (50 mM NaCl, 10 mM Tris HCl pH-7.5, 2.5 mM EDTA and 50% 

ethanol (v/v)) – Store at 4ºC 

10. Yeast-lysis buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris pH-8.0 

and 10 mM EDTA) 

11. Phenol:chloroform: isoamylalcohol (25:24:1 v/v) 

12. Acid washed glass beads (425–600 µm diameter) 

13. TE buffer (10 mM Tris HCl; 1 mM EDTA, pH-8.0) 

14. 3 M sodium acetate pH-5.5  

15. 4 M ammonium acetate  

16. RNaseA (10 mg/ml in water) 



17. 100% Ethanol 

18. 70% Ethanol 

 

2.2 For Escherichia coli transformation 

1. E. coli strain DH5α  

2. DYT medium (tryptone, 16 g/l; yeast extract, 10 g/l; NaCl, 5 g/l; with 20 g/l agar 

added for preparing the plates) - Autoclave at 121ºC for 20 min  

3. 10 mM MgCl2 

4. Transformation buffer (250 mM KCl, 15 mM CaCl2, 10 mM PIPES, 55 mM MnCl2) 

5. DMSO 

6. Liquid nitrogen 

7. Ampicillin (Stock concentration 100 mg/ml; filter sterilized) 

 

2.3 For cultivation and genetic transformation of Ustilago maydis  

1. Vitamin Solution (28): 0.1% (w/v) thiamine hydrogen chloride; 0.05% (w/v) 

riboflavin; 0.05% (w/v) pyridoxine hydrochloride; 0.2% (w/v) D-pantothenic acid hemi 

calcium salt; 0.2% (w/v) 4-aminobenzoic acid; 0.2% (w/v) nicotinic acid; 0.2% (w/v) 

choline chloride; 1.0% (w/v) myo-inositol. Use immediately or aliquot and store at -

20ºC. 

2. Trace Elements (28): 0.06% (w/v) boric acid; 0.01% (w/v) ferric acid.6H2O; 0.4% 

(w/v) sodium molybdate.2H2O; 0.04% (w/v) zinc chloride; 0.14% (w/v) manganese (II) 

chloride.4.H2O; 0.04% (w/v) copper(II) sulphate.5H2O. Sterilize by filtration. 

3. Salt Solution (28): 16% (w/v) monopotassium phosphate; 8.0% (w/v) trace elements 

(see 2.3 point 2); 1.32% (w/v) calcium chloride.2H2O; 4.08% (w/v) magnesium 



sulphate.7H2O; 8.0% (w/v) potassium chloride; 4.0% (w/v) sodium sulphate. Sterilize 

by filtration.  

4. CM Medium (28): 0.25% (w/v) casamino acids; 0.1% (w/v) yeast extract; 1.0% (w/v) 

vitamin solution (see 2.3 point 1); 6.25% (w/v) salt solution (see 2.3 point 3); 0.05% 

(w/v) herring sperm DNA; 0.15% (w/v) ammonium nitrate. Set the pH to 7.0 and 

autoclave for 20 min at 121°C (see Note 1). For agar plates, add agar to reach a final 

concentration of 2%. 

5. NM Medium (28): 0.3% (w/v) KNO3, 6.25% (w/v) salt solution (see 2.3 point 3). Set 

the pH to 7.0 and autoclave for 20 min at 121°C (see Note 1 and 2). 

6. NSY Glycerol: 0.5% (w/v) sucrose; 0.8% (w/v) bacto nutrient broth; 0.1% (w/v) 

yeast extract ; 80% (w/v) 87% glycerol (final concentration 69.6%) and autoclave for 20 

min at 121°C. 

7. SCS buffer: Solution 1: 0.6% (w/v) sodium citrate.2H2O (final concentration 20 

mM); 18.2% (w/v) sorbitol (final concentration 1M). Solution 2: 0.4% (w/v) citric 

acid.H2O (final concentration 20 mM); 18.2% (w/v) sorbitol (final concentration 1 M). 

Add solution 2 to solution 1 until pH 5.8 is reached. Autoclave for 20 min at 121ºC and 

store at 4 ºC. 

8. STC buffer: 50% (w/v) sorbitol; 1% (w/v) 1M Tris-HCl pH 7.5; 10% (w/v) 1M 

calcium chloride. Autoclave for 20 min at 121ºC and store at 4 ºC. 

9. STC/40% PEG: 60% (w/v) of STC buffer; 40% (w/v) PEG 4000. Filter sterilize and 

store at 4 ºC. 

10 YEPS light: 1.0 % (w/v) Yeast-Extract; 0.4 % (w/v) Peptone; 0.4 % (w/v) Sucrose. 

Autoclave for 20 min at 121ºC. 

11. Regeneration (REG) agar: 1.0% (w/v) yeast extract; 2.0% (w/v) peptone; 2.0% 

(w/v) sucrose; 18.22% (w/v) sorbitol, 1.5% (w/v) agar. Autoclave for 20 min at 121ºC. 



 

2.4 Equipment  

2.4.1 For molecular biological work and growth of cells 

• Autoclave 

• Small table top centrifuge (for microcentrifuge tubes) 

• Large table top centrifuge (for 15 and 50 ml conical tubes); we use a Heraeus 

Biofuge Stratos Benchtop centrifuge (Kendro Laboratory Products, Osterode, 

Germany) 

• PCR machine 

• Water bath 

• Vibrax, (we use IKA Vibrax VXR, IKA-Werke, Staufen, Germany) 

• Clean bench 

• 50 ml flasks 

• 28 and 37°C incubators (standing and shaking) 

2.4.2 For live cell imaging 

• Standard wide field microscope (upright or inverted; see 3.3.1 for our setup) 

with fluorescent light source and appropriate filter sets to image GFP and RFP 

• Microscope slides 

• Cover slips 

• Microwave  

• Stirring hot plate 

 

3. Methods 

We have developed vectors to label peroxisomes in U. maydis using yeast 

recombination-based cloning (YRBC), which enables assembly of multiple overlapping 



DNA fragments in a single cloning step. The YRBC method avoids the dependency on 

the availability of restriction enzyme sites in the DNA sequence as required for 

conventional restriction/ligase based cloning approaches. Instead, multiple DNA 

fragments, with 30 bp overlap sequences, are transformed into S. cerevisiae, where upon 

homologous recombination the vector is generated in a single step. As an example, we 

illustrate the generation of paGFP-SKL, a vector encoding a fusion of the photo-

activatable green fluorescent protein paGFP (or monomeric green or red fluorescent 

protein eGFP/mCherry) to the C-terminal peroxisome targeting signal peptide SKL 

(Fig. 1). The vector is integrated into the succinate dehydrogenase (sdi1) locus of the U. 

maydis AB33 strain (U. maydis strains reviewed in (7)), avoiding untargeted ectopic 

integration and the risk of unwanted side effects such as gene disruptions or even 

alteration of gene expression levels. The resulting strain enables the visualization of 

peroxisomes in both yeast-like and hyphal cells of U. maydis.  

 

3.1 Generation of plasmid through yeast recombination-based cloning (YRBC) 

The plasmid pCpaGFP-SKL (18) (Fig 1) was generated through yeast recombination-

based cloning (YRBC) in S. cerevisiae, following published procedures (28). YRBC 

involves ten major steps (Fig. 2). In brief, the cloning vector needs to be linearized 

with a suitable restriction enzyme which can be chosen freely and independently of the 

DNA fragment to be cloned. Primer design is the key step in generating the vectors 

using YRBC. The 30 bp overlapping sequences to the next DNA fragment need to be 

incorporated in the 5′ end of the 20–25 bp primer sequence, which results in a total 

primer length of about 50–55 bp. Likewise, primers GD110, GD111, GD112 and 

GD113 (Table 1) were synthesized and used to amplify the desired DNA fragments 

using Phusion high-fidelity DNA polymerase (Thermo Scientific, Leicestershire, UK). 



The PCR reagents and cycling parameters are described in Table 2 and Table 3, 

respectively. The DNA bands of interest are excised and purified from the gel as 

described below. 

 

Place Figs. 1 and 2 here 

Place Tables 1 and 2 and 3 here 

 

3.1.1 Purification of DNA fragments from agarose gels  

DNA fragments of interest are purified using silica glass suspension as described 

previously (30).  

1. Run the PCR products on an agarose gel and cut the corresponding fragments (see 

Note 3). 

2. Melt the gel slice at 55 °C for 5 min with 3 volumes of 6 M sodium iodide (see Note 

4), followed by further incubation for 5 min at 55 °C with 20 μl silica glass suspension 

(100 mg/ml stock solution). 

3. Centrifuge the reaction mixture at 13,000 rpm for 30 s and discard the supernatant.  

4. Wash the pellet with DNA wash buffer for 3 times (see Note 5).  

5. Finally, elute the DNA from the glass beads by adding 10 μl water and incubation at 

55 °C for 10 min. 

 

3.1.2 Preparation of yeast competent cells and transformation 

Transformation of DNA fragments into S. cerevisiae DS94 is performed as described 

previously (29, 31).  



1. Grow S. cerevisiae DS94 cells overnight in 3 ml YPD medium at 28°C in a shaking 

incubator (200 rpm).  

2. Transfer the overnight culture to 50 ml YPD and grown for 5 h at 28 °C in a shaking 

incubator (200 rpm).  

3. Harvest the cells by centrifugation at 2200 rpm for 5 min and wash the cells with 5 

ml sterile water.  

4. Suspend the cells in 300 μl water and keep at room temperature for further use.  

5. Add 4 μl each of purified DNA fragments (linearized vector, and PCR products 

obtained with primers GD110, GD111, GD112 and GD113 (Table 1) to a sterile 

microcentrifuge tube and add 50 μl salmon sperm DNA (2 μg/μl stock), 50 μl S. 

cerevisiae cells, 32 μl 1 M lithium acetate and 240 μl 50% PEG 4000. 

6. Mix the components gently by inverting the tubes for a few times and incubate at 28 

°C for 30 min.  

7. Perform a heat shock at 45°C for 15 min and centrifuge tubes at 2000 rpm for 2 min. 

8. Gently remove the supernatant and suspended the pellet in 150 μl water.  

9. Plate the cell suspension, in two dilutions (20% and 80% of the cells) onto two yeast 

synthetic drop-out medium plates which lack uracil and incubate at 28°C for 2 days. 

 

3.1.3 Colony PCR on yeast colonies and plasmid DNA isolation from yeast cells 

Colony PCR is performed on yeast cells by using DreamTaq DNA polymerase 

(Thermo Scientific, Leicestershire, UK) in 20 μl total volume. PCR reagents and 

cycling parameters are described in Table 4 and Table 5, respectively. One primer 

(SK41) which binds to the vector and another primer (GD113) which binds to the insert 



(Table 1) are used to identify the positive clones; the expected band sizes are of 

1800 bp. Plasmid DNA is isolated from the positive yeast colonies as described 

previously with slight modification (32).  

1. Grow the recombinant S. cerevisiae cells overnight in 15 ml yeast synthetic drop-out 

medium at 28 °C and harvest the cells by centrifugation at 3000 rpm for 5 min.  

2. Add 200 μl yeast-lysis buffer, 200 μl phenol:chloroform: isoamylalcohol (25:24:1 

v/v) and 0.3 g acid washed glass beads to the tubes. 

 3. Vortexed for 5 min using IKA Vibrax shaker.  

4. Add 200 μl TE buffer (pH-8.0) and centrifuge for 5 min at 13,000 rpm.  

5. Carefully transfer the upper aqueous layer to a sterile microcentrifuge tube and add 

50 μl 3 M sodium acetate pH-5.5 and 1 ml ethanol.  

6. Keep the tubes at −20°C for 15 min and centrifuge at 13,000 rpm for 20 min.  

7. Suspend the cell pellet in 400 μl TE buffer containing RNaseA (100 µg/ml final 

concentration) and incubate at 37°C for 15 min. 

8. Precipitate the DNA by addition of 10 μl 4 M ammonium acetate and 1 ml 100% 

ethanol.  

9. Centrifuge the tubes for 5 min at 13,000 rpm and wash DNA with 70% ethanol.  

10. Remove the residual ethanol by incubating the tubes at 37°C for 10 min and 

suspend the DNA in 20 μl water.  

 

Place Tables 4 and 5 here 

 

3.1.3 E. coli transformation and isolation of plasmid DNA 

Transform 10 μl of DNA isolated from S. cerevisiae into competent E. coli DH5α cells. 

Isolate the plasmid DNA from the transformed E. coli colonies and further confirm by 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502459/table/t0005/


restriction analysis and sequencing. For transformation and isolation of plasmid DNA, 

use established standard protocols for molecular biology. 

1. For preparation of competent cells, grow a single E. coli colony overnight in 20 ml 

DYT medium at 37 °C in a shaking incubator (200 rpm).  

2. Add 100 μl overnight culture to 100 ml fresh DYT medium containing 10 mM 

MgCl2 and incubate at 18 °C with 100 rpm until the optical density reaches 0.25 

(approx. 48 h).  

3. Chill the cells in ice water for 10 min and centrifuge at 4 °C for 10 min at 5000 rpm.  

4. Discard the supernatant and suspend the pellet in 60 ml ice cold transformation 

buffer.  

5. Centrifuge the cell suspension at 4 °C for 10 min at 5000 rpm and suspend the cell 

pellet in 16 ml transformation buffer.  

6. Add 1.2 ml DMSO and prepare 50 μl aliquots. 

7. Freeze aliquots in liquid nitrogen and store the competent cells at −80 °C.  

8. Use 10 µl of isolated yeast DNA and add 50 µl of E. coli competent cells. Keep on 

ice for 10 min. Heat shock for 45-60 s at 42ºC. Leave on ice for 2-3 min, add 900 µl of 

DYT and incubate for 1 h at 37ºC, 200 rpm. 

9. Spread the cells on DYT plates containing 100 µg/ml ampicillin, and incubate 

overnight at 37ºC. 

10. For the plasmid isolation pick a single colony and inoculate in 5ml DYT and 

incubate overnight at 37ºC.  

11. To isolate the plasmid from E. coli use a commercial plasmid extraction kit (see 

Note 6) or other method available in the laboratory. 



 

3.2 Transformation of U. maydis 

3.2.1 Generation of Protoplasts (adapted from (33)) 

1. Grow the U. maydis strain of interest (here, AB33) overnight in 50 ml YEPS light 

medium at 28ºC, 200 rpm. The OD600nm should be in the 0.6-0.8 range (see Note 7).  

2. Spin down the culture for 10 min at 3,000 rpm. Remove the supernatant and 

resuspend the pellet in 25 ml SCS buffer. Centrifuge for 10 min at 3,000 rpm and 

remove the supernatant.  

3. Resuspend the pellet in 2 ml SCS buffer containing 7 mg/ml of lysing enzymes from 

Trichoderma harzianum (containing β-glucanase, cellulase, protease and chitinase 

activities) (Sigma–Aldrich, Gillingham, UK) and leave at room temperature for 10-15 

min until 30-40% of the cells become rounded (protoplast formation is monitored 

under the microscope). From this step forward, perform everything on ICE (!).  

4. Add 10 ml of cold SCS buffer and centrifuge at 2,200 rpm for 7 min at 4ºC. Remove 

the supernatant. Repeat the washing step twice. Centrifuge the final wash at 2,100 rpm 

for 12 min. Resuspend the pellet in 500 µl of ice cold STC buffer. Prepare aliquots of 

50 µl and either store immediately at -80ºC or use directly for transformation.  

 

3.2.2 Linearization of plasmid poGSKL for U. maydis transformation 

1. Linearize the plasmid of interest (here, poGSKL) (34) by restriction endonuclease 

digestion (here, SspI). 



2. Run a test gel with 1 µl of the digestion mixture. To the reaction tube add 1/10th of 

the volume of 3 M sodium acetate and 2.5 volumes of 96% ethanol. Vortex and leave 

for at least 30 min at -20ºC.  

3. Spin down the mixture at 13,300 rpm for 20 min, 4ºC. Discard the supernatant and 

add 1 ml of 70% ethanol. Spin down at 13,300 for 7 min. Remove the supernatant and 

let the DNA pellet air dry. Resuspend in 15-50 µl double distilled water (depending on 

the amount of DNA in the gel - see step 2). 

 

3.2.3 U. maydis transformation 

1. Thaw a 50 µl U. maydis aliquot on ice (see 3.2.1, step 4) and add 1-5 µg of 

linearized plasmid DNA and 1 µl of heparin (1 mg/ml). Incubate on ice for 10 min. 

2. Prepare the Reg-agar plates which are composed of two layers. In a 100 mm petri 

dish, add a bottom layer with selectable antibiotic (15-20 ml) and leave it to solidify. 

Then, add the top layer without antibiotic (!!!) (15-20 ml) (see Note 8). 

2. Add 500 µl PEG (40% (w/v) in STC buffer (filter sterilized) on top of the protoplasts 

and carefully mix by pipetting up and down. Leave on ice for 15 min. 

3. Carefully mix and streak the mixture onto 2 plates of Reg-agar (80% and 20% of the 

mixture). Incubate the plates for 4-7 days at 28ºC. 

4. Singularize the transformants on CM-agar plates with the appropriate antibiotic. 

Confirm peroxisomal targeting by microscopy. For this, prepare a glass slide with a 

drop of water (around 1µl) and streak a singularized colony from the plate. Add a 

coverslip and examine for fluorescence. After confirmation, strains should be grown in 

YEPS light medium. Mix 1ml of the cell culture with 1ml NSY-glycerol and store at -

80ºC (see Note 9). 



 

3.3 Live cell imaging of U. maydis 

3.3.1 Our microscope setup 

We use an inverted microscope (IX81; Olympus, Hamburg, Germany) with Plan-

Apochromat 100×/1.45 NA oil total internal reflection fluorescence microscopy or 

UPlan-SApochromat 60×/1.35 NA oil objective lenses (Olympus, Hamburg, 

Germany). The fluorescent tags are excited using a VS-LMS4 Laser Merge System 

(Visitron) with 70-mW solid-state lasers at 488 and 561 nm (see Note 10). Images are 

captured using a fast, high-resolution camera - CoolSNAP HQ2 (Photometrics/Roper 

Scientific, Ottobrunn, Germany). For GFP detection the microscope is equipped with 

an eGFP ET filter-set (470/40 Et Bandpass filter, Beamsplitter T495 LPXR and 525/50 

ET Bandpass filter (Chroma Technology GmbH, Olching, Germany)). For co-

visualization studies of two different proteins labeled with GFP and mCherry, for 

example mCherry-SKL and Kinesin3-GFP, we use Dual-View imager (Dual-View 

Micro; Photometrics) equipped with a dual-line beam splitter (z491/561; Chroma 

Technology Corp, Olching, Germany) with an emission beam splitter (565 DCXR; 

Chroma Technology Corp, Olching, Germany), an ET-Band pass 525/50 (Chroma 

Technology Corp.), and a single band pass filter (BrightLine HC 617/73; Semrock, 

Rochester, USA). Photo-bleaching experiments are preformed using a 405-nm/60-mW 

diode laser, which is decreased by a neutral density 0.6 filter, resulting in 15-mW 

output power, coupled into the light path by an adaptor (OSI-IX 71; Visitron Systems, 

Munich, Germany). The 405-nm laser is controlled by UGA-40 controller (Rapp 

OptoElectronic, Hamburg, Germany) and VisiFRAP 2D FRAP control software from 

MetaMorph Series 7.5. (Visitron Systems, Munich, Germany). For microscope 

acquisition, device control and image analysis is assured by the MetaMorph® Software 



(Molecular Devices, Downingtown, PA). This software allows a complete control of 

the system plus diverse applications for image analysis.  

 

3.3.2 Culture preparation for microscopy 

1. From the -80ºC glycerol stock streak the strain of interest (here, AB33_eGFP-

SKL) on a CM-plate supplemented with glucose. The strain should be incubated 

at 28ºC and should be properly grown after 1-2 days. 

2. Prepare a 100 ml flask with 20 ml of complete medium (CM) supplemented with 

1% glucose. From the plate remove a small amount of cells with a 100 µl tip to 

add into the flask (the tip can go into the flask) (see Note 11). Incubate overnight 

(or more than 8 hours) at 28ºC, 200 rpm.  

For hyphal formation (AB33_GFP-SKL), cells are grown in a 100 ml flask with 

20 ml of complete medium (CM) supplemented with 1% glucose over the day or 

overnight. Spin down 15ml of the cell culture at 3,000 rpm for 10 min in a 15 ml 

conical tube. Discard the supernatant and rinse the tube with nitrate minimal 

medium (NM). Re-suspend the cell pellet in NM containing 1% glucose and 

incubate for 6-8 h or overnight at 28ºC, 200 rpm (Fig. 3) (see Note 12).  

 

Place Fig. 3 here 

 

3.3.3 Live cell imaging of peroxisomes in U. maydis 

1. First prepare an agarose cushion. To do so, prepare a 2% solution of agarose in 

water and melt it in a microwave. Next, prepare 2 microscope slides with 

masking tape on one side. Place those slides on a flat table and put a third slide 

between them. Put a drop (50-100 µl) of the agarose solution on the middle slide 



and cover it with a fourth slide (see Fig. 4). Keep the agarose close to the 

microscope facility/setup on a stirring hot plate at approx. 60-70ºC. This way, 

new slides can be constantly generated. Preparing 5-10 slides in advance will 

allow you to perform your experiments in an appropriate timeframe under 

similar conditions (see Notes 13 and 14). 

 

Place Fig. 4 here 

 

2.  For live cell imaging add 1 µl of your cell culture to an agarose cushion and 

cover with a coverslip. Peroxisome fluorescence signals (GFP-SKL) are very 

intense (see Note 15). To capture single images of fluorescent peroxisomes, we 

routinely use an exposure time of 100 to150 ms with binning 1 and digital gain 

3. To capture all peroxisomes within the cell, we generate Z-stacks with the 

above settings and a Z step size of 200 nm. We usually use a total number of 31 

steps covering the whole cell. 

To visualize and quantify motility behavior of peroxisomes (Fig. 5), we acquire 

continuous streams using 150 ms of exposure time with binning 1 and digital 

gain 3. The total number of plains acquired range from 75 to 200. 

 

Place Fig. 5 here 

 

3.  For co-localization or co-motility analysis (for example, mCherry-SKL and 

Kinesin3-GFP) we perform synchronized observations of red (mCherry or RFP) 

and green (GFP) fluorescence signals (see Note 16) using a Dual-View imager. 



We capture single images or continuous streams using 150 ms of exposure time 

with binning 1 and digital gain 3. The total number of plains acquired range 

from 75 to 150 (see Note 17). The amount of signals in both channels makes it 

difficult to get clear information from those streams. In this case, parts of the 

cell can be photo-bleached using the 405 nm laser before stream acquisition 

(see Note 18) (see Fig. 6 for an example and compare to kymograph in Fig. 5).  

 

Place Fig. 6 here 

 

3.3.4 Visualization and analysis 

1. We use MetaMorph software for analysis and image processing. This can also be 

done with ImageJ or other image processing software. 

Motility events of peroxisomes are visualized in kymographs which represent time 

over distance. To generate a kymograph in MetaMorph, draw a line (single or 

multipoint) over the total length of the cell or region of interest. Then, in the main 

menu go to Stack  Kymograph. In the newly opened window, the width of the line 

can be chosen to cover the whole cell or only the path of a single motility event. By 

pressing “Create” a kymograph over the chosen area is generated. In the kymograph, 

each pixel line represents one frame of the original movement so that the velocity, flux 

and run length can be analyzed (see Note 19). As shown in Fig. 5, kymographs 

generated over the desired length of the hyphal cell can give you an overview of the 

type and characteristics of the motile events (run length, velocities, direction, pausing 

time, and frequency). 



2. To analyze the distribution of peroxisomes, acquire z-stacks of fungal cells (see 

3.3.3, step 2). From these stacks, generate maximum projections using MetaMorph. 

Draw a line over the length of individual hyphal cells and use the command linescan 

(Measure  Linescan) to analyze a fluorescent intensity profile. The profile can be 

transferred into the software Excel. An individual intensity profile can be used or the 

mean intensity of multiple intensity profiles can be calculated (Fig. 7).  

 

Place Fig. 7 here 

 

3. To visualize co-motility, generate a kymograph of each channel as described above, 

and align (Process  Color Align) the two kymographs (Fig. 6). 

 

4. Notes 

1. Before use, the medium needs to be supplemented with 1% glucose (50% (w/v) 

stock). As the CM-Glucose medium gets easily contaminated, it is recommended to 

work under sterile conditions and to use a burner or clean bench. The NM-Glucose 

medium degrades over time and loses its ability to induce hyphal growth. NM medium 

without Glucose is stable! 

2. NM medium becomes cloudy in the autoclave and needs to be mixed until it has been 

cooled down and turns clear again. 

3. To facilitate detection of the PCR fragments, run a side lane with 0.5-1 µl of the 

PCR product. If required, the PCR fragments can be stored at -20ºC for 2-3 days.  

4. It is important to completely dissolve the agarose. Increase incubation time (up to 10 

min) if the agarose has not dissolved properly. 



5. When pipetting the wash buffer, cover the beads and do not vortex.  

6. We use GeneJET Plasmid Miniprep Kit from Thermo Sientific, Paisley, UK. 

7. If overgrown in the morning, you can dilute the culture to an OD600nm 0.2 and 

incubate until the desired OD600nm is reached. Do not use cultures with OD600nm > 0.8. 

8. For each transformation, two Reg-Agar plates are required. 

9. For cell stocks we use 2 ml Micro tubes with screw tops (e.g. Sarstedt, Nümbrecht, 

Germany). 

10. The advantage of using lasers as an excitation light source is that the output power 

can be regulated. As the peroxisome signals are very strong, it is important to reduce the 

power to avoid saturation of the camera. This can also be achieved by putting neutral 

density lens filters into the light path.  

11. It requires experience to select/pick the right amount of cells. Initially, select 

different amounts of cells and monitor for optimal growth on the following day. 

Preferably initiate the cultures in the late afternoon/evening to avoid overgrowth. On the 

next day, you should have an optimal OD600nm of around 0.8. When the culture is very 

transparent, it is too diluted and it will be difficult to find cells for imaging. However, if 

it is very dense and turbid, the cells may be stressed and should not be used. If required, 

you can dilute the culture by adding fresh medium (i.e., remove some of the culture and 

add the same amount of medium to refresh nutrients). If you do this, the culture needs at 

least 1 hour incubation in a shaking incubator before starting microscopy. 

12. In case of an “over day” culture, you do not have to rinse the conical tube. Try to 

shift the cells as late as possible into nitrate minimal medium (NM). The cells should 

not be kept longer than 18 h in nitrate minimal medium (NM) as they get stressed. 



13. The 2% agarose solution can be reused over several days. If it becomes too solid, 

prepare a fresh solution. The agarose cushions prevent the cells from moving around 

and supply them with water and oxygen at the same time.  

14. Keep in mind that observation under the microscope should not exceed 15 min (!) 

due to oxygen depletion processes. 

15. We reduce the laser power to 2-6% due to intense fluorescence. If you cannot 

reduce the intensity of your light source, try to dim it using a neutral-density filter to 

avoid over-exposure. 

16. For this kind of experiment it is important to image both channels simultaneously to 

capture transient interactions. Normally, the red label is weaker than the green one; thus 

the peroxisomes should be labeled with mCherry and the second protein of interest 

(here, Kinesin 3) should be labeled with GFP. It is also helpful if you can regulate the 

excitation power separately for each channel. 

17. The length of the stream depends on the signal stability in both channels. Normally, 

the red fluorescent tags are less photo-stable and bleach faster than the green fluorescent 

tags (35, 36). 

18. Photo-bleaching can be performed over different lengths of the cell, ranging from 1 

µm up to 40 µm. However, keep in mind that using the 405 nm laser will not only 

bleach the fluorescent tags but can also damage other molecules in the cell.  

19. Analysis of the velocity works only in newly generated kymographs. Use the “single 

line” tool and trace one motility event. The velocity is shown in the kymograph window 

and can be transferred into Excel via the “open Log” button in the kymograph window. 
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Figure Legends 

Figure 1. Vector for integration of peroxisome marker protein into the genome of 

U. maydis. The vector pCpaGFP-SKL confers carboxin resistance and is designed for 

integration of a paGFP-SKL fusion protein into the genome of U. maydis. The vector 

contains a H253L point mutation in the succinate dehydrogenase (sdi1) gene sequence, 

which confers carboxin resistance and allows targeted integration into the sdi1 locus of 

U. maydis. Note that fragments are not drawn to scale.  

 

Figure 2. Flow chart illustrating the different steps involved in yeast 

recombination based cloning (YRBC). See main text for details (adapted from (37)). 

 

Figure 3. The dimorphic fungus U. maydis. The yeast-like form (upper panel; Bar, 5 

µm) and the filamentous hyphal cell (lower panel; Bar, 10 µm) are depicted. 

 

Figure 4. Preparation of the agarose cushion. a) Place a drop of liquid 2% agarose 

(60ºC) on a glass slide. b) Gently, but immediately, cover with a glass slide as indicated 

in the Figure. Let it solidify and when dry (15-20 min), carefully remove the upper slide 

and (c) add 1 µl of U. maydis culture. d) Cover the agarose cushion with a coverslip and 

observe under the microscope.  

 

Figure 5. Morphology and dynamics of peroxisomes in U. maydis. Upper panel: 

Peroxisome morphology in the U. maydis hyphal cell labelled with eGFP-SKL. The cell 

edge is indicated in blue. Bar, 15 µm. Lower panel: Different types of peroxisome 

motility visible in the kymograph: directed transport (green arrow); diffusional (purple 



arrow head) and stationary (dashed grey rectangle). The stream was acquired over 300 

frames with 150 ms exposure. Bars, 5 µm, 6 s. 

 

Figure 6. Co-mobility of Kinesin3 and peroxisomes after photobleaching. Bleach 

the hyphal cell in a specific area(s) of interest; afterwards acquire time series to observe 

co-motility events within the bleached region. By overlapping the two channels, the 

motility of the organelles/protein of interest can be visualized. For a more graphical and 

quantitative observation, generate a kymograph that allows the measurement of 

velocity, distance and duration of the events. This was used in (18) to identify the 

molecular motor involved in peroxisome motility in U. maydis and to analyze the 

relative localization of the motor protein to the peroxisome. 

 

Figure 7. Peroxisome distribution in U. maydis. Upper panel: 2D-deconvolved 

maximum projection of a Z-axis stack, adjusted in brightness, contrast, and gamma 

settings. Bar, 5 µm. Lower panel: Fluorescent intensity profiles of eGFP-SKL in AB33 

hyphal cells. Position of cell tips is indicated (Tip). Each data point represents the mean 

± SEM (60 cells, two experiments). This kind of experiment was used in (18) to show 

even distribution of PO throughout the wild type hyphal cell and the mis-localisation of 

peroxisomes in the absence of early endosome motility. 

  



Table 1. Primers used in this study 

Primer  Sequence (5' to 3') 
GD110 TAAGCTGTCAAACATGAGAATTCATCGATGGCGGCCGCACGGGGATCTTC 

GD111 CTTAATTAAGGATCCGGCGCGCCGCGGCCGCACGCTAAGTGGAGTTGTCC 

GD112 TATTTGAGAAGATGCGGCCAGCAAAACTAACTGAAGCTTGCATGCCTGCA 

GD113 TGCAGCCGGGCGGCCGCTTTAAAGCTTCGACTTGTACAGCTCGTCCATGC 

SK41 GTGGATGATGTGGTCTCTACAGG 

 

 

Table 2. PCR mix for fragment amplification  

 Volume 

Template DNA 1 µl 

10 µM fw primer 2 µl 

10 µM rv primer 2µl 

5x Phusion HF buffer 10µl 

10 mM dNTPs 1 µl 

dH2O 33.5 µl 

Phusion polymerase 0.5 µl 

              Total                                    50 µl 

 

  



 

Table 3. PCR cycling parameters for fragment 
amplification  

Step Temperature Volume 

1 98 ºC 30 s 

2 98 ºC 10 s 

3 60 ºC 20 s 

4 72 ºC 30 s/ 1kb 

5 10 ºC 10 min  

6 10 ºC ∞ 

Go to step 2 and repeat for 34 cycles 

 

Table 4. PCR mix for Colony PCR  

 Volume 

Yeast Colony -- 

10 µM fw primer 1 µl 

10 µM rv primer 1µl 

dH2O 8 µl 

2xDream Taq Green 
PCR Master Mix 

10 µl 

VT                                        20 µl 

 

 

  



Table 5. PCR cycling parameters for Colony PCR 

Step Temperature Time 

1 95 ºC 5 min 

2 95 ºC 30 s 

3 60 ºC 20 s 

4 72 ºC 60 s/ 1kb 

5 10 ºC 10 min  

6 10 ºC ∞ 

Go to step 2 and repeat for 34 cycles 
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	3.1.3 Colony PCR on yeast colonies and plasmid DNA isolation from yeast cells
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	3.3.1 Our microscope setup
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