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Abstract 

Tail-anchored (TA) proteins contain a single transmembrane domain (TMD) at the C-

terminus, anchoring them to organelle membranes where they mediate a variety of critical 

cellular processes. Mutations in individual TA proteins cause a number of severe inherited 

disorders. However, the molecular mechanisms and signals facilitating proper TA protein 

targeting are not fully understood, in particular in mammals. Here, we identify additional TA 

proteins at peroxisomes or shared by multiple organelles in mammals and reveal that a 

combination of TMD hydrophobicity and tail charge determines targeting to distinct 

organelles. Specifically, an increase in tail charge can override a hydrophobic TMD signal 

and re-direct a protein from the ER to peroxisomes or mitochondria and vice versa. We 

demonstrate that subtle alterations in those physicochemical parameters can shift TA protein 

targeting between organelles, explaining why peroxisomes and mitochondria share many TA 

proteins. Our analyses enabled us to allocate characteristic physicochemical parameters to 

different organelle groups. This classification allows for the first time, successful prediction 

of the location of uncharacterized TA proteins. 
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Introduction 

Tail-anchored (TA) proteins possess a single transmembrane domain (TMD) close to their C-

terminus which anchors them to cellular membranes and exposes their N-terminal domain to 

the cytosol. They play key roles in processes requiring membrane anchorage such as organelle 

division, apoptosis, vesicle targeting/fusion, and lipid trafficking (Borgese and Fasana, 2011). 

Their correct targeting and localization is therefore of fundamental importance for cellular 

function and viability of the organism. As the TMD of TA proteins emerges from the 

ribosome only after termination of translation, sorting and insertion require post-translational 

mechanisms (Borgese and Fasana, 2011; Kutay et al., 1993). TA proteins gain entry to the 

cellular membrane systems at three subcellular sites: ER, mitochondria (MITO) and 

peroxisomes (PO). In yeasts and mammals the orthologous GET and TRC40 complexes, 

respectively are involved in the delivery and insertion of TA proteins into the ER (Mariappan 

et al., 2010; Mateja et al., 2015; Schuldiner et al., 2008). In mammals initial binding of 

nascent TA proteins is mediated by SGTA and the BAG6 complex, constituting a quality 

control step in the pathway (Hessa et al., 2011; Leznicki and High, 2012; Leznicki et al., 

2013; Mariappan et al., 2010; Mock et al., 2015). Following successful transit through the 

SGTA/BAG6 checkpoint, TA proteins are delivered to the ER transit factor TRC40 (GET3 in 

yeast). Two additional proteins, WRB (Vilardi and Lorenz, 2011) and CAML (Yamamoto and 

Sakisaka, 2012), then act as receptors for TRC40-bound TA proteins on the ER membrane. 

For some ER TA proteins, alternative pathways exist which may utilize the SRP or HSC70-

HSP40 systems (Abell et al., 2004; Abell et al., 2007; Daniele et al., 2016; Vogl et al., 2016). 

The molecular mechanisms for sorting and insertion to peroxisomes and mitochondria are less 

clearly understood. The factors for targeting of mitochondrial TA proteins have not yet been 

identified although the involvement of HSC70 has been suggested (Borgese and Fasana, 

2011; Rabu et al., 2008). An alternative possibility is via unassisted insertion with the 

composition of the mitochondrial membrane contributing to targeting specificity (Kemper et 

al., 2008). For peroxisomal TA proteins, targeting is generally considered to be mediated by 

PEX19, an import receptor for peroxisomal membrane proteins (PMPs), and PEX3, the 

receptor for PEX19-PMP at the peroxisomal membrane (Chen et al., 2014b; Yagita et al., 

2013). Due to the few peroxisomal TA proteins identified to date, these studies are based on 

mammalian PEX26 (PEX15p in yeast) (Buentzel et al., 2015; Halbach et al., 2006; Yagita et 

al., 2013) and FIS1, which is shared by peroxisomes and mitochondria (Delille and Schrader, 

2008; Koch et al., 2005). Besides these primary targeting systems subcellular localization can 
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be further controlled after membrane entry by processes such as membrane extraction and TA 

protein degradation (Chen et al., 2014a; Okreglak and Walter, 2014). 

The targeting information for TA proteins is contained within the C-terminus, and it is 

established that hydrophobicity of the TMD and the presence of charged residues are 

important factors in membrane selection (Borgese et al., 2007). Generally, ER-targeted TA 

proteins tend to have more hydrophobic TMDs than those targeted to mitochondria (Wang et 

al., 2010) with non-charged regions surrounding the TMD (Horie et al., 2002; Kuroda et al., 

1998). Yagita and colleagues (2013) demonstrated that, for PEX26, charged residues in the 

tail were also important for peroxisomal targeting. Despite this general knowledge about 

factors influencing targeting, it remains to be determined how these two properties ensure 

proper targeting to mitochondria, peroxisomes and the ER. 

Furthermore, TA proteins can be targeted to both peroxisomes and mitochondria in 

mammalian cells (Dixit et al., 2010; Gandre-Babbe and van der Bliek, 2008; Huber et al., 

2013; Koch et al., 2005), revealing close organelle interplay and novel peroxisomal functions 

(Schrader et al., 2015). Moreover, disorders with combined defects in peroxisomal and 

mitochondrial fission, caused by mutations in MFF and GDAP1, TA proteins shared by both 

organelles, have been discovered (Huber et al., 2013; Koch et al., 2016; Shamseldin et al., 

2012). As peroxisomes fulfil important metabolic functions in lipid and ROS metabolism and 

influencing neuronal development and ageing (Fransen et al., 2012), there is great interest in 

the identification of additional peroxisomal TA proteins and those shared by peroxisomes and 

mitochondria. 

Whilst bioinformatic studies have previously identified potential TA proteins in yeast, plants 

and humans (Beilharz et al., 2003; Kalbfleisch et al., 2007; Kriechbaumer et al., 2009; 

Shigemitsu et al., 2016), wider, integrated studies investigating how targeting is coordinated 

to direct TA proteins to individual or multiple organelles in mammals are currently lacking. 

Here, we identify additional TA proteins at peroxisomes or shared by multiple organelles in 

mammals and reveal that a combination of TMD hydrophobicity and tail charge determines 

targeting to distinct organelles. We demonstrate that tail charge and TMD hydrophobicity act 

as directly opposing signaling parameters. A sufficient increase in one can override the other 

re-directing a protein from the ER to peroxisomes or mitochondria and vice versa. 

Mechanistically, changes in these physicochemical parameters correlated with the ability of 

either PEX19 or GET3 to bind and prevent aggregation of individual TA proteins. We show 

that subtle alterations in TMD hydrophobicity and tail charge can shift targeting between 

organelles, explaining why peroxisomes and mitochondria share many TA proteins. Our 
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analyses allow for the first time, successful prediction of the location of uncharacterized TA 

proteins. 

 

Results 

 

Identification of new peroxisomal and shared peroxisome/mitochondria TA proteins. 

Peroxisomes and mitochondria cooperate in lipid and ROS metabolism and share membrane 

proteins involved in organelle division and anti-viral signaling (Koch et al., 2005; Delille and 

Schrader, 2008; Gandre-Babbe and van der Bliek, 2008; Dixit et al., 2010). Remarkably, all 

these dually localized proteins are TA proteins. To assess how extensive sharing of TA 

proteins between organelles is and to identify additional peroxisomal proteins, we examined a 

number of TA proteins for localization and targeting (Fig. 1, Fig. S1). Expression of tagged 

TA proteins in COS-7 cells and colocalization with organelle markers revealed a subset of 

mitochondrial TA proteins, able to target both mitochondria and peroxisomes. These included 

the anti-apoptotic proteins BCL-XL and BCL2, the motor adaptors MIRO1 and MIRO2, and 

adaptor OMP25 (Fig. 1, Fig. S1). BCL2 and MIRO2 were additionally targeted to the ER 

which was already reported for BCL2 (Krajewski et al., 1993). Peroxisomal localization of 

MIRO1 was confirmed by detection of the endogenous protein in organelle subfractions (Fig. 

S2). 

In contrast, the pro-apoptotic TA proteins BAK and BAX were targeted to mitochondria as 

was monoamine oxidase A (MAOA) (Fig. 1, Fig. S1). Expression of ER TA proteins 

SEC61β, VAPB and FALDH isoform 2 (FALDH-ER in this study) (Ashibe et al., 2007) 

resulted in ER staining (Fig. 1, Fig. S1); for FALDH-ER, localization was confirmed by 

assessing organelle subfractions (Fig. S2B). FALDH-PO, a splice variant of FALDH which 

only differs from FALDH-ER in its C-terminal tail (Fig. 1B) (Ashibe et al., 2007) was 

confirmed as a TA protein which exclusively targets peroxisomes (Fig. 1, Fig. S2E). ACBD5 

is another potential TA protein recently detected at peroxisomes (Islinger et al., 2007; 

Nazarko et al., 2014; Wiese et al., 2007). Expressed and endogenous ACBD5 showed 

peroxisomal localization in COS-7 cells (Fig. 1A, Fig. S2A). Furthermore, ACBD5 localized 

to peroxisomal fractions in density gradients, was found in the integral membrane protein 

fraction after carbonate-treatment and differential permeabilization experiments showed that 

its N-terminus faces the cytosol (Fig. S2C-E). Overall, these observations suggest that, in 

addition to TA proteins targeting either mitochondria or peroxisomes, a subset of 
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mitochondrial TA proteins share overlapping targeting properties with peroxisomal TA 

proteins. In contrast, all tested ER-specific TA proteins showed no detectable peroxisomal 

localization.  

 

High TMD hydrophobicity is not unique to ER TA proteins in mammals, but 

peroxisomal TA proteins contain a highly charged tail. Targeting information responsible 

for sorting of TA proteins to the ER and mitochondria is generally located within their C-

termini (Borgese et al., 2003). Targeting signals are supposed to consist of general 

physicochemical parameters such as TMD hydrophobicity and tail charge. Compared to ER 

TA proteins, mitochondrial TA proteins are generally thought to possess less hydrophobic 

TMDs (Borgese and Fasana, 2011). This is the case for yeast, where ER TA proteins clearly 

differ from those targeted to mitochondria or peroxisomes by a more hydrophobic TMD 

(GRAVY > 1.75) (Fig. 2A) (Beilharz et al., 2003). To identify organelle-specific targeting 

information for mammalian TA proteins, we analyzed the C-terminal sequences of 51 proteins 

whose localization had been characterized (including this study) and compared their 

physicochemical parameters (Dataset S1). Whereas in yeast a clear distinction between ER 

and mitochondrial TMD hydrophobicity is observed, this does not universally apply to 

mammalian TA proteins with TMD hydrophobicity more randomly distributed and not 

significantly different when compared to peroxisomal TA proteins (Fig. 2A-C). However, our 

analysis revealed a significantly higher positive net charge of the tail region in peroxisomal 

TA proteins (mean 6.03±1.03) compared to those routed to both peroxisomes and 

mitochondria (mean 2.5±0.43), to mitochondria only (mean 1.12±0.41) or to ER (mean 

0.21±0.3) (Fig. 2D). Significant differences in charge or hydrophobicity were not observed in 

regions preceding the TMD (Fig. S3). When tail length was assessed, peroxisomal TA 

proteins appeared to possess a significantly longer tail (Fig. S3A), but this did not appear to be 

a requirement for peroxisomal targeting as ACBD5 contains a short tail comparable to the 

average tail length of the other groups.  

We conclude that a highly positive net charge in the tail is a general property of all identified 

peroxisomal TA proteins in mammals (as shown for PEX26 by Yagita et al., 2013), which 

distinguishes them from mitochondrial and ER TA proteins. We further determined a 

significantly higher TMD hydrophobicity in ER compared to mitochondrial TA proteins 

indicating that a hydrophobic TMD and low tail charge support ER targeting.  
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Alterations in tail charge and TMD hydrophobicity distribute TA proteins between 

peroxisomes, mitochondria and ER. To verify the bioinformatics results, we first analyzed a 

selection of ACBD5 mutants (Fig. 3A). A GFP-ACBD5
TMD-T

 fusion protein targeted to 

peroxisomes, indicating the TMD-tail region is sufficient for peroxisomal targeting (Fig. 3B). 

Mutations in the tail region (GFP-ACBD5
TMD-T

 MUT1), reducing tail charge from +4.9 to 

+2.9, resulted in targeting to mitochondria (Fig. 3B). Occasionally dual localization to 

peroxisomes and mitochondria was observed (“shared” in Fig. 3E), but all cells showed 

mitochondrial targeting (Fig 3E, Fig S4A). Further reducing tail charge to +0.9 (GFP-

ACBD5
TMD-T 

MUT2), predominantly resulted in ER staining, with some cells showing 

targeting to both ER and mitochondria (Fig. 3B, E; Fig S4A). This demonstrates that subtle 

changes in tail charge can route a peroxisomal TA protein to mitochondria, whereas further 

reduction in charge leads to ER targeting. 

Our analysis showed that some ER TA proteins possess a positively charged tail, but unlike 

peroxisomal TA proteins this is generally combined with a highly hydrophobic TMD. To 

investigate if an increase in TMD hydrophobicity can direct ACBD5 to the ER and “override” 

the positively charged tail, we expressed a version of GFP-ACBD5
TMD-T 

(MUT3) with 

increased TMD hydrophobicity (Fig. 3A). MUT3 was directed to the ER and showed only 

minor peroxisomal targeting (Fig. 3B, E). This is in line with our data on FALDH, which 

possesses a highly hydrophobic TMD (GRAVY 2.4). This property (and the negative charge 

in the tail, -1.1) routes the major isoform (FALDH-ER) to the ER (Fig. 1A). Targeting a TA 

protein with a highly hydrophobic TMD to peroxisomes appears to require a highly positive 

net charge in the tail. Indeed, the tail of FALDH-PO is highly charged (charge +9.1), and 

overrides TMD hydrophobicity. To investigate if increased tail charge can improve targeting 

to peroxisomes, we expressed a mutant version of FIS1 with increased tail charge, FIS1-SR 

(Onoue et al., 2013) (Fig. 3C). Wild-type FIS1, as described previously (Koch et al., 2005), 

distributes to both mitochondria and peroxisomes, whereas FIS1-SR is predominantly targeted 

to peroxisomes (Fig. 3D, E, Fig S4B). 

To more definitively establish correlations between TA protein sequence and localization we 

utilized another model TA protein, GDAP1, which is predominantly mitochondrial but also 

localizes and functions at peroxisomes (Huber et al., 2013). We generated a systematic set of 

mutants with alterations in both TMD hydrophobicity and tail charge and assessed their 

localization (Fig. 4). This is shown graphically, for each individual mutant in Fig. 4B-I, as the 

percentage of cells displaying the indicated subcellular localization. For example, a GFP-

GDAP1
TMD-T

 fusion protein with wild-type TMD and tail sequence was targeted to 
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mitochondria (MITO) alone in ~28% of cells whilst ~72% of cells showed dual mitochondrial 

and peroxisomal targeting (MITO/PO) (Fig. 4B, C). In line with our other observations, 

increasing tail charge increased peroxisomal targeting of GDAP1 (whilst not completely 

abolishing mitochondrial targeting) whereas reducing tail charge resulted in ER targeting 

(Fig. 4D, E). Increasing TMD hydrophobicity was able to override tail charge, resulting in 

predominantly ER targeting (Fig. 4F) whereas reducing the hydrophobicity caused a shift to 

mitochondria (Fig. 4G, H). Finally, removing the tail altogether resulted in ER targeting (Fig 

4I). Overall, our data suggest an interplay between tail charge and TMD hydrophobicity in 

organelle targeting. We conclude that a highly charged tail in combination with a moderately 

hydrophobic TMD directs TA proteins to peroxisomes. Subtle changes can alter protein 

distribution: a reduction in tail charge or TMD hydrophobicity enables targeting of 

peroxisomal TA proteins to mitochondria whereas low charges in combination with a highly 

hydrophobic TMD favour transport to the ER; an increase in tail charge increases peroxisomal 

targeting directly opposing the hydrophobic ER signal in the TMD. Our analysis also reveals 

that an increase in TMD hydrophobicity can “override” tail charge and route peroxisomal TA 

proteins to the ER.  

 

Peroxisomal TA proteins interact with the peroxisomal import receptor PEX19. 

Targeting of membrane proteins to peroxisomes involves the import receptor PEX19 

(Sacksteder et al., 2000). Due to the restricted number of known peroxisomal TA proteins, 

studies on PEX19 interaction have focused on PEX26/PEX15p (Chen et al., 2014b; Halbach 

et al., 2006; Yagita et al., 2013). For the dually targeted TA proteins FIS1 and GDAP1, 

interaction with PEX19 has been demonstrated (Delille and Schrader, 2008; Huber et al., 

2013). Immunoprecipitation experiments revealed that the peroxisomal TA proteins FALDH-

PO and ACBD5 interact with PEX19, whereas no interaction was observed for FALDH-ER 

(Fig. 5A). As the FALDH isoforms only differ in the tail sequence, this points to a role for the 

tail in PEX19 binding. Interaction with PEX19 was also demonstrated for FIS1 and FIS1-SR 

(Fig. S3G). With the GFP-ACBD5
TMD-T

 fusions interaction was observed for the WT, but not 

for mutants 1-3 suggesting a requirement of high charge and moderate TMD hydrophobicity 

for PEX19 binding (Fig. 5B). This was confirmed in vitro by testing binding of fluorescently-

labelled peptides matching the TMD and tail region of ABCD5 to recombinant PEX19 using 

fluorescence anisotropy (Fig. 5C). Whilst binding of the WT and MUT2 peptides to PEX19 

was significantly different (Kd = 0.9µM and 7.7µM respectively), binding of peptide MUT1 

to PEX19 was only slightly altered compared to WT (MUT1, Kd = 1.9µM). Binding of the 
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fluorescent peptides to the control peroxisomal protein SurE was not observed, indicating 

specificity for PEX19 (Fig. S3H). The discrepancy between binding of MUT1 to PEX19 in 

vitro compared with the lack of interaction observed in the immunoprecipitation experiments 

may reflect the presence of competing factors in vivo (see discussion). 

We also investigated the targeting of peroxisomal TA proteins in PEX19-deficient fibroblasts. 

In control cells FALDH-PO, ACBD5 and FIS1-SR were targeted to peroxisomes (Fig. 5D), 

whereas all three proteins were routed to mitochondria in PEX19-deficient cells (Fig. 5D) 

supporting a general role for PEX19 in receptor mediated targeting of peroxisomal TA 

proteins. Importantly, all three proteins showed no observable ER localization in PEX19-

deficient cells (Fig. S3), further confirming the overlap between peroxisomal and 

mitochondrial targeting properties. Mechanistic insights into the biochemical activity of 

Neurospora crassa (Nc) PEX19 and the ER targeting factor GET3 have recently been 

revealed using a cell-free assay (Chen et al., 2014b). Using this assay the authors 

demonstrated that NcPEX19 but not NcGET3 was sufficient to prevent aggregation of 

NcPEX26. To gain further insight into the mechanisms controlling selective organelle 

targeting we utilized this assay to test the activity of PEX19 and GET3 on our ACBD5
TMD-T

 

constructs. ACBD5
TMD-T

 constructs were in vitro translated in HeLa extracts in the presence 

of recombinant NcPEX19 or NcGET3. NcPEX26
 TMD-T

 and NcSEC61β
 TMD-T

 served as 

controls. In the absence of PEX19 and GET3, TA proteins form large aggregates seen as 

punctate structures by fluorescence microscopy (Fig. 5E). Translation in the presence of 

PEX19 largely prevented aggregation of ACBD5
TMD-T

 WT, and ACBD5
TMD-T

 MUT2 but had 

almost no effect on ACBD5
TMD-T

 MUT3 (comparable to SEC61β). By contrast, GET3 

prevented aggregation of MUT3, but had significantly less impact on MUT2 and WT. 

Artificial aggregation by saturation of the chaperoning machinery was excluded by the use of 

excess NcPEX19 and NcGET3. For ACBD5
TMD-T

 MUT3 this correlates with our localization 

and PEX19 binding data suggesting that by increasing TMD hydrophobicity PEX19 activity 

is reduced whilst for GET3 it is apparently increased. However, a charged tail does not 

exclude GET3 from having some activity on ACBD5
TMD-T

 WT in vitro, in line with previous 

observations (Yagita et al., 2013). Nevertheless, the positive charge in the tail of ACBD5
TMD-T

 

WT increases binding affinity to PEX19 if compared to an uncharged tail-sequence as shown 

by the fluorescence anisotropy assay (Fig. 5C). 

 

Prediction of TA protein localization in mammalian cells. Finally, we exploited the 

compiled data to predict targeting of uncharacterized TA proteins (Fig. 6). We trained a SVM 



11 

 

classifier using the TMD GRAVY, tail charge and cellular location of 43 proteins from our 

dataset (Fig. 1, Dataset S1). This classifier builds a statistical model able to predict the 

probability of a protein to be targeted to each organelle (Fig. 6A). Peroxisomal, mitochondrial 

and ER TA proteins can clearly be separated into regions of high class probability or clusters, 

with very few exceptions (i.e. mitochondrial TOMM22 clusters with ER). When using the 

highest probability class, the SVM misclassifies 9 of the 43 data points (21%) when used in 

an in-sample fashion. A more rigorous leave-one-out cross validation misclassifies 14 of the 

43 data points (33%). To assess the predictive power of our classifier, we analyzed a 

published list of predicted human TA proteins (Kalbfleisch et al., 2007) and generated 

probabilities for peroxisomal, mitochondrial and ER targeting (Dataset S2). The predicted 

localization of three proteins was experimentally verified (Fig. 6B). In agreement with our 

prediction, the candidate TA protein ACBD4 localized to peroxisomes (Fig. 6B). ACBD4 

shares 58% sequence identity with ACBD5, mainly due to similarities in the N-terminal acyl-

CoA binding domain, but the amino acid sequence in the C-terminus is significantly different. 

ATP5J2, which was shown to be a minor component of the mitochondrial ATP synthase 

complex (Aggeler et al., 2002), was also predicted to be targeted to peroxisomes. Expression 

of Myc-ATP5J2 revealed dual targeting to mitochondria and peroxisomes (Fig. 6B). This is in 

accordance with proteomics studies reporting other ATP synthase subunits in peroxisomal 

fractions (Wiese et al., 2007), but how these proteins might function at peroxisomes is 

unclear. Finally, we analyzed the targeting of PPP1R3F, a potential regulatory subunit of 

protein phosphatase type 1 complexes (Kelsall et al., 2011). Predicted targeting to the ER was 

confirmed by expression of Myc-PPP1R3F in COS-7 cells (Fig. 6B).  

 

Discussion 

Hundreds of TA proteins have been predicted bioinformatically in a wide range of organisms 

(Beilharz et al., 2003; Kalbfleisch et al., 2007; Kriechbaumer et al., 2009), several have been 

associated with human disorders, but many are still of unknown function or localization. A 

better understanding of the mechanisms which determine targeting and localization, is of great 

value for the study of TA proteins and organelle function, in particular in humans where 

mistargeting may cause hitherto undetected disorders.  

In the present study, we characterize physicochemical parameters of a large number of TA 

proteins in mammals and increase the number of bona fide peroxisomal TA proteins 
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significantly, allowing us to identify targeting information and bioinformatically predict 

targeting. 

Recent studies determining targeting properties for mitochondrial and peroxisomal TA 

proteins demonstrated that targeting to both organelles requires a positively charged C-

terminal tail sequence (Horie et al., 2002; Isenmann et al., 1998; Kuroda et al., 1998; Yagita 

et al., 2013). Our data clearly demonstrate that a highly positive net charge in the tail region is 

a general property of all identified peroxisomal TA proteins in mammals, which distinguishes 

them significantly from mitochondrial and ER TA proteins. As shown for ACBD5, step-wise 

reduction in the tail charge results first in mitochondrial and subsequently in ER mistargeting. 

In line with this, an increase in tail charge can direct TA proteins from mitochondria or the 

ER to peroxisomes, as exemplified by GDAP1 MUT1, FIS1-SR, or FALDH-PO. These data 

fit a model where a highly charged tail promotes interaction with the peroxisome import 

receptor PEX19 (Fig. 7). We provide evidence that ACBD5, FALDH-PO, and FIS1 interact 

with PEX19, whereas mutants with a reduction in tail charge lose this ability and are 

mistargeted. This is also reflected in our in vitro binding assay using C-terminal peptides. 

Binding to PEX19 has also been demonstrated for other TA proteins (PEX26, FIS1, GDAP1 

and FAR1) (Delille and Schrader, 2008; Halbach et al., 2006; Honsho et al., 2013; Huber et 

al., 2013). Overall, these findings support a general role for PEX19 in the direct, receptor 

mediated targeting of peroxisomal TA proteins in mammals (Fig. 7). Nevertheless, additional 

proteins at the organelle membranes may prevent insertion or induce excision of TA proteins 

missorted by the cytosolic shuttle systems (Chen et al., 2014a; Okreglak and Walter, 2014). 

Whereas in yeast a clear distinction between ER and mitochondrial TMD hydrophobicity is 

observed, this property does not universally apply to mammalian TA proteins. Instead, our 

data reveal an interplay between tail charge and TMD hydrophobicity. This is exemplified by 

FALDH-PO and FALDH-ER which share a highly hydrophobic TMD, suggesting ER 

targeting of both. Instead, the highly charged tail routes FALDH-PO to peroxisomes. Our 

analysis also reveals that an increase in TMD hydrophobicity can “override” tail charge and 

route peroxisomal TA proteins to the ER and vice versa.  

We further determined a significantly higher TMD hydrophobicity in ER TA proteins than in 

those targeted to mitochondria indicating that a hydrophobic TMD and a low tail charge 

support ER targeting in mammals. Whilst this study was in submission Rao et al. (Rao et al., 

2016) proposed helical content of the TMD (based on the AGADIR helix propensity scale) as 

an additional factor relevant for ER-targeting in yeast. Interestingly, our GDAP1
TMD-T

 model 

proteins exhibit similar variations in AGADIR values as the model proteins used by Rao and 
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colleagues (GDAP1
TMD-T

 MUT3 = 1.05, MUT4 = 0.73, WT = 0.57, MUT5 = 0.48) and 

similarily show a shift in subcellular localization from ER to MITO. Thus, helical content of 

the TMD may also be considered as a parameter relevant for TA protein targeting in 

mammals.  

Mitochondrial TA proteins have been proposed to be targeted by a default route allowing 

either unassisted insertion of TA proteins (Krumpe et al., 2012; Setoguchi et al., 2006) or 

using as yet uncharacterized targeting factors for mitochondrial TA proteins (Kemper et al., 

2008) (Fig. 7). Our data supports that highly hydrophilic TMDs are preferentially inserted into 

mitochondrial outer membranes (Fig. 3). Interestingly, in the absence of PEX19 a 

hydrophobic TMD (FALDH-PO) combined with a highly charged tail does not prevent TA 

protein targeting to mitochondria, and in these conditions no ER localization is observed. This 

supports a model where mitochondrial TA proteins are targeted by a positive selection 

mechanism (Fig. 7), suggesting the existence of a yet undetected shuttle protein, or a 

mitochondrial default pathway able to insert charged TA proteins with a higher kinetic 

efficiency then the GET pathway even when they possess highly hydrophobic TMDs. 

Interestingly, hydrophobic TMD versions of PEX26 and ACBD5 are protected from 

aggregation by NcGET3 despite their highly charged tails (Chen et al. 2014; Fig. 5, this 

study). In their recent publication Rao and colleagues (Rao et al., 2016) elegantly showed, 

that tail-charge and TMD hydrophobicity influence the yeast GET pathway at three distinct 

steps: 1) capture by SGT2, 2) transfer from SGT2 to GET3 and 3) targeting and insertion into 

the ER membrane. During any of these steps TA proteins may be rejected and would then be 

available for other organelle targeting machinery e.g. PEX19. In the first step, binding to 

SGT2 depends on the properties of the TMD with no dependence on tail charge. TA proteins 

with TMD’s containing highly hydrophobic or highly helical content form more stable 

complexes with SGT2 and more readily enter the ER pathway. In the second step GET3 

appears to share similar substrate preferences to SGT2. In the final step GET3-bound 

substrates which are highly hydrophobic are more likely to be maintained in a stable complex 

long enough to reach the ER membrane for insertion. At this stage any positive charge in the 

tail region drastically reduces import into the ER membrane. Although this model is based on 

yeast proteins it may provide an explanation for many of the observations we make here. For 

example, the TMD of ACBD5 has relatively low hydrophobicity/helical content. Thus, based 

on its TMD, wild-type ACBD5 is a suboptimal substrate for SGT2/GET3. In addition, its 

charged tail (+4.9, which is higher than the charge observed in any known, ER resident TA 

protein) would be highly inefficient at inserting into the ER membrane. This would allow 
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PEX19 multiple opportunities to interact with ACBD5 and facilitate its delivery to 

peroxisomes. When the tail charge is reduced, as in ACBD5
TMD-T

 MUT1, SGT2/GET3 

affinity is unchanged, the tail charge (+2.9) is still suboptimal for ER insertion but Pex19 

affinity is slightly reduced (Kd = 1.9µM vs 0.9µM in wild-type) and potentially the affinity 

for either a mitochondrial chaperone or the mitochondrial membrane itself is optimal. 

ACBD5
TMD-T

 MUT2, like MUT1, is able to initially bind to SGTA/GET3 enter the ER 

pathway (Fig. 5G) but unlike MUT1 it now has an uncharged tail to successfully pass the ER 

membrane checkpoint.        

Our findings also explain why peroxisomes and mitochondria share a significant number of 

TA proteins such as FIS1, MFF, MAVS, or GDAP1 (Koch et al., 2005, Gandre-Babbe et al., 

2008, Dixit et al., 2010, Huber et al. 2013). Although our results from overexpression 

experiments cannot definitively prove the in vivo localization of all the mitochondrial TA 

proteins investigated in this study, they still underline the overlap in targeting information for 

both organelles. As subtle changes in the tail charge can shift TA targeting between 

peroxisomes and mitochondria, it is likely that some exchange occurred through mutations 

during co-evolution of both organelles (Martin, 2010). Binding to PEX19 may have been the 

selective force allowing the association of new functions with peroxisomes. Based on our 

findings, those shared functions may also include regulation of organelle motility and 

apoptosis, but await further confirmation in vivo. Very recently peroxisome permeability was 

reported to be influenced by pro-apoptotic proteins (Hosoi et al. 2017). Thus, anti-apoptotic 

proteins at peroxisomal membranes could protect the organelles from excessive matrix protein 

release into the cytosol. Exchange of TA proteins between peroxisomes and the ER appears to 

be more difficult to achieve, requiring more significant sequence changes. This is exemplified 

by FALDH, which exploits alternative splicing to allow targeting to peroxisomes or the ER. 

Here we demonstrate that the characteristic physicochemical features of the TMD/tail region 

allow prediction of TA protein localization. Correlating data from the classifier analysis with 

our experimental approaches confirms that ER TA proteins are primarily sorted according to 

their high TMD hydrophobicity, which is required for efficient GET3/TRC40 chaperone 

activity. Peroxisomal TA proteins possess some tolerance in TMD hydrophobicity, but a 

highly positive tail charge appears to be the primary selective force for PEX19 binding. In 

mitochondrial TA proteins low TMD hydrophobicity seems favorable for efficient membrane 

insertion, whereas tail charge appears to shield from selection for effective ER-membrane 

insertion (Rao et al., 2016). Importantly, both parameters – TMD hydrophobicity and tail-

charge – exhibit competitive effects on organellar targeting; thus, proteins with a 



15 

 

comparatively low or high TMD hydrophobicity, which on its own would favour 

mitochondrial and ER targeting, respectively, can still be targeted to peroxisomes, if the TMD 

is followed by a highly charged tail. Alternatively, TA proteins with charged tails can be 

routed to ER or mitochondria, if they exhibit appropriately hydrophobic or hydrophilic 

TMDs. 

However, besides these general features other properties may influence organelle-specific 

targeting, for example additional signals within the N-terminus or accessibility of the tail 

region. An example may be GDAP1L1, which, when expressed, is cytosolic and can only be 

targeted to mitochondria upon specific stimulation (Niemann et al., 2014). Additional 

parameters influencing targeting (e.g. position of hydrophobic and charged residues in the tail, 

helical propensity of the TMD) could add another dimension to the classifier, improving its 

predictive power. 

It should be noted that several of the shared peroxisome-mitochondria or peroxisomal TA 

proteins are of medical importance and have been linked to human disorders (Abu-Safieh et 

al., 2013; Ferdinandusse et al., 2016; Huber et al., 2013; Keller et al., 2014; Koch et al., 2016; 

Shamseldin et al., 2012). Our predictor has allowed us to associate potentially new 

membrane-associated functions with peroxisomes and other organelles. It will be a great 

challenge for future studies to verify the localization of the endogenous TA proteins, their cell 

type or organ-specific expression and to elucidate their cellular functions and importance for 

organelle biology and human health. 

 

Materials and Methods 

 

Plasmids and antibodies 

For initial cloning of human genes, total RNA was extracted from HepG2 cells using TRIZOL 

reagent, reverse transcribed into cDNA and used as a PCR template. Gene synthesis was 

performed by Genscript (Genscript, Piscataway, USA) or Eurofins (Eurofins Genomics, 

Ebersberg, Germany). See Table S1 for details of plasmids generated in this study, Table S2 

for details of primers used and Table S3 for other plasmids. Site-directed mutagenesis used 

the QuikChange Kit (Agilent). Details on antibodies can be found in Table S4. 
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Cell culture and transfection 

COS-7 (African green monkey kidney cells; ATCC CRL-1651), HepG2 (human 

hepatoblastoma cells; ATCC HB-8065), PEX19-deficient (c.320delA) (Mohamed et al., 2010) 

and wild-type human, control (C109) fibroblasts (kindly provided by H. Waterham, AMC, 

University of Amsterdam, NL) were cultured in DMEM, high glucose (4.5 g/L) supplemented 

with 10% FBS, penicillin and streptomycin at 37°C with 5% CO2 and 95% humidity. COS-7 

cells were transfected using diethylaminoethyl (DEAE)-dextran (Sigma-Aldrich) or 

TurboFect™ (Thermo Fisher Scientific). Fibroblasts were transfected by microporation using 

the Neon® Transfection System (Thermo Fisher Scientific). 

 

Immunofluorescence and microscopy 

Cells were processed for immunofluorescence 24 or 48 h after transfection. Cells grown on 

glass coverslips were fixed with 4% PFA in PBS (pH 7.4), permeabilized with 0.2% Triton X-

100 and incubated with antibodies as described previously (Bonekamp et al., 2013). For 

differential permeabilization, cells were either permeabilized with 0.2% Triton X-100 or 2.5 

μg/ml digitonin. Cell imaging was performed using an Olympus IX81 microscope equipped 

with an UPlanSApo 100x/1.40 Oil objective (Olympus Optical, Hamburg, Germany). Digital 

images were taken with a CoolSNAP HQ2 CCD camera and adjusted for contrast and 

brightness using the Olympus Soft Imaging Viewer software (Olympus Soft Imaging 

Solutions GmbH) and MetaMorph 7 (Molecular Devices, USA). Confocal images were 

obtained using a Zeiss LSM 510 META inverted microscope equipped with a Plan 

Apochromat 63x/1.4 NA (oil/dic) objective (Carl Zeiss, Oberkochen, Germany), using the 

Argon 488nm and He 543nm laser lines. Digital images were adjusted for contrast and 

brightness using the Zeiss LSM Image Browser software (Carl Zeiss MircroImaging GmbH). 

 

Subcellular fractionation 

Peroxisome purification from rat liver was performed as described (Islinger et al., 2012). In 

brief, liver tissue was homogenized in homogenization buffer (HB; 250 mM sucrose, 5 mM 

MOPS, 1 mM EDTA, 2 mM PMSF, 1 mM DTT, 1 mM ɛ-aminocaproic acid, 0.1% ethanol, 

pH 7.4) using an Potter-Elvehjem tissue grinder (1 stroke/120 s). The homogenate was 

clarified in an initial centrifugation step at 600  gav, 10 min. The resulting pellet was re-

homogenized and re-centrifuged applying the same conditions; both supernatants were pooled 

and comprise the post nuclear supernatant (PNS). Subsequently, PNS was centrifuged at 

1,900  gav, 15 min to yield the pellet of heavy mitochondria (HM). The resulting supernatant 
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was centrifuged at 25,500  gav, 20 min resulting in the light mitochondrial pellet (LM). The 

corresponding supernatant was again centrifuged at 100,000  gav, 30 min to separate the 

microsomal pellet (MIC) from cytosol (CYT). To increase purity of the fractions, each pellet 

recovered was washed in 5 ml HB/g liver tissue and centrifuged using the same parameters. 

Highly purified peroxisomes were obtained from LM applying a sigmoidal Optiprep-gradient 

from 1.26 – 1.12 g/ml in a vertical type rotor at an integrated force of 1,256  10
6
 g min. 

Here, peroxisomes form a distinct band at 1.20 g/ml. 

Subcellular separation of homogenates from HepG2 cells was performed in a modified 

procedure. Harvested cells were homogenized in HB using a syringe (needle 27G, 7 strokes). 

The differential centrifugation series was performed at 500  gav (PNS), 2,000  gav (HM), 

20,000  gav (LM), 100,000  gav (MIC & CYT). The LM fraction was subsequently 

separated on a linear Nycodenz gradient from 1.26 – 1.12 g/ml at 100,000  gav, 3 h. The 

gradient was eluted in 12 equal-sized fractions for further analysis. 

Integral membrane proteins were prepared from the peroxisome-enriched fraction LM using 

the carbonate stripping method (Fujiki et al., 1982). An aliquot of LM was pelleted at 25,500 

 gav and suspended in a hypo-osmotic TVBE-buffer for organelle rupture (1 mM NaHCO3, 1 

mM EDTA, 0.01% Triton X-100, pH 7.6). After 30 min incubation on ice the organelle 

suspension was centrifuged at 100,000  gav to yield a soluble matrix fraction and crude 

membrane pellet. The membrane pellet was subsequently resuspended in 0.1 M Na2CO3 and 

incubated on ice for 30 min to remove peripherally attached membrane proteins. The integral 

membrane pellet was prepared by centrifugation at 100,000  gav and washed in TVBE-buffer 

applying the same centrifugation parameters. Samples (equal amounts of protein) were 

subsequently analyzed by immunoblotting. 

 

Immunoprecipitation 

For immunoprecipitation experiments GFP or FLAG-tagged TA proteins and HA-tagged 

PEX19 were expressed in COS-7 cells. After 48 h cells were washed in PBS and then 

incubated with 1 mM DSP followed by quenching with 100 mM Tris pH 7.4. Cells were lysed 

in ice-cold lysis buffer (25 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5% TritonX-100, 1 mM 

PMSF and protease inhibitor cocktail), undissolved material was pelleted by centrifugation at 

15,000 g and lysates mixed with GFP-TRAP (ChromoTek) or FLAG-antibody coupled 

agarose beads and incubated for 2 h at 4°C. Beads were subsequently washed extensively 

with lysis buffer and bound proteins eluted with either Laemmli buffer (GFP-TRAP) or 50 



18 

 

mM NaOH (FLAG-beads). Immunoprecipitates and total lysates were subsequently analyzed 

by immunoblotting. 

 

Expression and purification of PEX19 and SurE 

Full-length human PEX19 was cloned into vector pETM11. For PEX19 expression, E.coli 

BL21(DE3)RIL cells were incubated in autoinduction medium (Studier, 2005) at 20C for 16 

h. Subsequently, cells were pelleted, re-suspended in Lysis Buffer (50 mM Hepes pH 7.5, 200 

mM NaCl, 20 mM imidazole), lysed by sonication, loaded onto Ni-NTA resin and eluted with 

Elution Buffer (50 mM Hepes pH 7.5, 200 mM NaCl, 300 mM imidazole). The eluted protein 

was dialyzed overnight into Dialysis Buffer (50 mM Tris-HCl pH 7.5, 250 mM NaCl, 0.5 mM 

TCEP) and simultaneously digested with TEV protease (1:50 molar ratio). The protease, 

affinity tag and undigested protein were removed via a second affinity chromatography step 

and the cleaved protein was concentrated and purified via Size-Exclusion Chromatography 

(HiLoad 16/600 Superdex 75 pg, GE Healthcare). SurE 

(http://www.uniprot.org/uniprot/Q8LAM2) was expressed as an N-terminal poly-histidine 

fusion in E. coli strain BL21(DE3)RIL using auto-induction medium at 37C for 4 hours and 

21C overnight. Purification was as for PEX19 but following elution the eluted protein was 

further purified by using a 16/600 Superdex 200 pg column. 

 

Fluorescence Anisotropy 

Fluorescently-labelled peptides ACBD5 WT (FITC-SPGVLTFAIIWPFIAQWLVYLYYQR 

RRRKL), MUT1 (FITC-SPGVLTFAIIWPFIAQWLVYLYYQRARAKL) and MUT2 (FITC 

SPGVLTFA IIWPFIAQWLVYLYYQAAAAKL) (Genscript) were used in the assay at a 

final concentration of 6.7 nM. Note. the C-terminal asparagine was removed to facilitate 

peptide synthesis. Assays were performed in black 96-well plates (Greiner) with an Infinite 

M1000 plate reader (TECAN) regulated at 25 ºC, excitation/detection at 470/530 nm. The 

experiment was performed in Dialysis Buffer with 0.67 mg/ml BSA to prevent unspecific 

binding on the surface of the plastic well. The protein concentration series was obtained by 

successive dilution by a factor of 1.5 and each point measured in triplicate. Being highly 

hydrophobic, the peptides have a tendency to aggregate, resulting in an unusual decrease in 

anisotropy upon protein titration. Addition of detergents in the buffer prevented aggregation, 

but interfered with the interaction, and therefore we chose to perform the experiment in a 

detergent-free buffer which provided reproducible data. Three independent measurements 

http://www.uniprot.org/uniprot/Q8LAM2
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were performed and binding data were analyzed using Prism (GraphPad software, USA). 

Binding profiles were fit using a simple model (hyperbolic equation) assuming 1:1 

stoichiometry. 

 

Cell-free chaperone assay 

mRNA was generated and purified following the manufactures’ instruction (mMessage 

mMachine T7 Transcription kit and MEGAclear kit (Ambion). Translation reactions were 

conducted as previously described (Chen et al., 2014b). In short, mRNAs were translated in 

HeLa cell translation extracts using the 1-Step Human Coupled IVT Kit—DNA (Thermo 

Scientific) according to manufacturer’s instructions. Reactions were incubated for 2.5 h using 

5 μM of chaperone proteins and western blotting used to control for levels of protein 

expression. Images of aggregates were taken with an epi-fluorescence microscope 

(BX51;Olympus) equipped with a 100/1.4 NA oil immersion objective and a GFP filter cube. 

The excitation wavelength is between 457nm-487nm, the emission wavelength is between 

502nm-538nm and the dichroic cut-off wavelength is 495nm. 10 separated images were used 

to generate a maximum projection image in Fiji software. A magnified representative area is 

shown in the Fig. 5. Aggregates were quantified with the “Analyze Particle” function in Fiji. 

Three independent experiments were conducted and analyzed with unpaired t-test. 

Purification of NcPEX19 and NcGET3 were performed as described (Chen et al., 2014b). 

Briefly, NcPEX19 and NcGET3 were expressed from the pET15b (Novagen) vector in 

Escherichia coli BL21 (DE3, Stratagene) and purified with Ni-NTA resin following the 

manufactures’ instruction (Qiagen). Eluted proteins were further purified by size-exclusion 

chromatography using a Hi-load 16/60 Superdex 200 prep grade column (GE Healthcare) 

equilibrated in Buffer H (20mM HEPES, pH 6.8, 50mM KOAc, 200mM sorbitol, 1mM 

MgCl2). 

 

Sequence and bioinformatics analysis 

Data on human TA proteins was sourced from the literature (references in Dataset S1). 

SNARE proteins were omitted as they have been previously shown to differ significantly 

from other ER TA proteins (Kalbfleisch et al., 2007). Protein sequences were obtained from 

the NCBI database (http://www.ncbi.nlm.nih.gov/), all isoforms were analyzed and those that 

lacked a C-terminal TMD were removed. Yeast TA proteins were sourced from literature and 

by homology with human proteins. For the detection of the membrane spanning helices in the 

TA proteins the TMHMM server v. 2.0 (Krogh et al., 2001) was used. When no TMD was 

http://www.ncbi.nlm.nih.gov/
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predicted but the protein had been characterized as a TA protein, the TMPred server from 

ExPASy was used, with a threshold score of 1500 (Hofmann and Stoffel, 1993). As a measure 

for hydrophobicity, the Grand Average of Hydropathicity (GRAVY) of membrane spanning 

helices was calculated (Kyte and Doolittle, 1982), using the ProtParam server from ExPASy 

(Gasteiger et al., 2005). The charge of the tail sequence was calculated using the Protein 

Calculator v3.4 (http://protcalc.sourceforge.net). Box-and-whiskers plots were created with 

GraphPad Prism 5 (GraphPad Software, USA) with whiskers representing the smallest and 

largest value in the sample. PEX19-binding sites were analyzed using the BLOCKS algorithm 

from the PeroxisomeDB 2.0 database (Schlüter et al., 2007). 

For the support vector machine (SVM) classifier (Cortes and Vapnik, 1995), we trained a 

SVM classifier with the [protein data] using the SVM application in package e1071 (Meyer et 

al., 2014), of the R statistical programming environment [R Core team, 2014] utilizing the 

LIBSVM library of Chang et al. (Chang and Lin, 2011). The SVM takes the training set of 

[Tail Charge, GRAVY and location in cell], and builds a statistical model to predict the 

probability of [location in cell], given any combination of [Tail Charge, GRAVY]. Initially, 

we restrict the training data to three unique classes, corresponding to [location in cell] – 

mitochondria (MITO), peroxisomes (PO) and endoplasmic reticulum (ER).  

 

Statistical analyses 

Analysis of GRAVY, charge, tail length and PEX19 binding were performed using GraphPad 

Prism 5 software. A two-tailed unpaired t-test was used to determine statistical differences 

against the indicated group. *p<0.05, **p<0.01, ***p<0.001. For qualitative analyses of 

organelle-specific targeting of TA proteins, a minimum of 300 cells were examined per 

condition, and organelle localization was microscopically assessed in at least 3 independent 

experiments. Data are presented as mean ± SEM.  

 

 

 

 

 

 

 

 

 

http://protcalc.sourceforge.net/
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Figure legends  

Fig. 1. Targeting survey for TA proteins in mammalian cells. (A) Subcellular localization 

patterns for selected TA-proteins. COS-7 cells transfected with Myc-ACBD5, Myc-FALDH-

PO, Myc-FALDH-ER, GFP-BCL-XL, and GFP-BAK were immunolabelled using αPEX14 

(PO) and αMyc antibodies. Arrows highlight regions of colocalization (BCL-XL) or lack of 

colocalization (BAK, FALDH-ER) with peroxisomes. Higher magnifications of boxed 

regions are shown. Bars, 10 µm (overview), 5 µm (overlay). (B) Table summarizing the TA 

proteins analyzed.  

Fig. 2. Comparison of physicochemical parameters of human and yeast TA proteins A-

C) Localization of TA proteins in humans (Kalbfleisch et al., 2007) and yeast (Beilharz et al., 

2003) was assessed via database and literature searches; TMD GRAVY and net tail charge 

were calculated for each. (A-B) Scatter plots depicting TMD GRAVY for each TA protein in 

yeast (A) and humans (B). (C-D) Box-and-whisker plots of tail charge (D) and TMD GRAVY 

(D) for human TA proteins; whiskers = sample range (**p < 0.01, ***p < 0.001, ns - not 

significant compared to indicated group; unpaired t-test). MITO TA proteins (blue), PO 

(green), shared (PO & MITO, white), ER (salmon-pink). 

Fig. 3. Alterations in tail charge and TMD GRAVY redistribute TA proteins to other 

organelles. (A) Domain structure of ACBD5 and mutants (GFP-ACBD5
TMD-T

). ACB, Acyl 

CoA binding domain. (B) COS-7 cells transfected with GFP-ACBD5
TMD-T

WT or mutants 1-3 

and, where indicated, Myc-VAPB (ER), were labeled with αPEX14 (PO), αTOM20 (MITO), 

and αMyc antibodies. (C) Domain structure of FIS1-WT/SR. TPR, Tetratricopeptide repeat 

domain. (D) COS-7 cells transfected with FLAG fusions of FIS1-WT or FIS1-SR were 

labeled with αTOM20 and αFLAG antibodies. (E) Qualitative analysis of GFP-ACBD5
TMD-T

 

(A, B) and FLAG-FIS1 (C, D) localization. A minimum of 300 cells were examined per 

condition, and organelle localization was microscopically assessed. The percentage of cells 

with PO, MITO, ER or shared localization is shown (For ACBD5 WT/MUT1 and FIS1-WT, 

shared = % cells with both PO and MITO staining; ACBD5 MUT2, shared = % cells with 

MITO and ER staining; ACBD5 MUT3, shared = % cells with ER and PO staining). Values 

represent mean ± SEM of 3 independent experiments. Higher magnification view of boxed 

regions in (B, D) is shown. Bars (B, D), 20 µm (overview), 10 µm (overlay). 
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Fig. 4. Alterations in tail charge and TMD GRAVY redistribute GDAP1 to other 

organelles. (A) Domain structure of GDAP1 and mutants (GFP-GDAP1
TMD-T

). (B-I) COS-7 

cells were transfected with GFP-GDAP1
TMD-T

WT or mutants 1-6 and labeled with αPEX14 

(PO), αTOM20 (MITO), and αPDI (ER) antibodies. Arrows highlight regions of 

colocalization with PEX14 (B,D,G,H) or lack of colocalization with TOM20 (C). For 

qualitative assessment, the percentage of cells with PO, MITO, ER or shared (/) localization 

for the individual constructs is shown. A minimum of 300 cells were examined per condition, 

and organelle localization was microscopically assessed.  Organelle name in parentheses 

indicate very weak but observable staining. Values represent mean ± SEM of 3 independent 

experiments. Higher magnification view of boxed regions is shown. Bars, 20 µm, 2.5 µm 

(magnifications). 

Fig. 5. PEX19 affinity is a key determinant in targeting the peroxisomal membrane. (A-

B) Immunoblots of coimmunoprecipitations from COS-7 cell lysates, expressing HA-PEX19 

and GFP fusions as indicated, using GFP-Trap. Cytosolic GFP was used as a control. Input 

(1% of total), total cell lysates; IP, immunoprecipitation. Dotted line in (A) indicates cropped 

region. (C) Normalized representative curves of fluorescence anisotropy measurements, using 

recombinant PEX19 and fluorescently labelled peptides (TMD+tail of ACBD5) (see Fig. 3A). 

Average Kd (µM) values, WT: 0.9 ±0.5, MUT1: 1.9±0.5, MUT2: 7.7±0.2. Values represent 

mean ± SD of 3 independent measurements. (D) Control and PEX19-deficient fibroblasts 

transfected with GFP and FLAG fusions as indicated were labelled with αPEX14, αTOM20 

and αFLAG antibodies. Higher magnification view of boxed regions is shown. Bars, 20 µm 

(top panel), 5 µm (lower panels). (E) mRNAs for ACBD5
TMD-T

 constructs, PEX26
 TMD-T

 and 

SEC61β
 TMD-T

 were in vitro translated in the presence of recombinant NcPEX19 or GET3 

(5µM) and aggregation monitored using fluorescence microscopy. Bar, 2µm. (F) 

Immunoblots showing levels of in-vitro translated proteins. Equal amounts of a representative 

translation reaction were loaded and the blot probed with α-HA antibody; a band from a 

coomassie stained gel run in parallel serves as loading control. (G) Solubilizing activity as 

determined by quantification of aggregate number with data from 10 individual fields of view. 

Values represent mean ± SEM of 3 independent experiments (**p < 0.01, ***p < 0.001, ns - 

not significant compared to the indicated group; unpaired t-test). 
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Fig. 6. A combination of tail charge and TMD GRAVY allows prediction of organelle 

targeting for mammalian TA proteins. (A) SVM classifier plot showing clustering of TA 

proteins to different organelle locations based on TMD GRAVY and tail charge. Probability 

contours are as indicated. test – selected TA proteins, A = ACBD4, B = ATP5J2, C = 

PPP1R3F. (B) COS-7 cells transfected with Myc fusions of ACBD4, ATP5J2, and PPP1R3F 

were labelled with αPEX14, αTOM20, αPDI (ER) and αMyc antibodies. Higher 

magnification view of boxed regions is shown. Bars, 20 µm (overview), 10 µm (overlay). 

Fig. 7. Schematic model for TA protein targeting to ER, mitochondria and peroxisomes 

in mammalian cells. Specific targeting of TA proteins to ER, mitochondria and peroxisomes 

in mammalian cells is mediated by a combination of TMD hydrophobicity and tail charge. 

Targeting of TA proteins to the ER involves the GET (Guided Entry of Tail-anchored 

proteins) pathway. ER TA proteins interact with a cytosolic sorting complex (composed of 

BAG6, TRC35/GET4, Ubl4a/GET5) and are delivered and inserted into the ER membrane by 

TRC40 (GET3) and WRB (GET1). A WRB/CAML dimeric membrane receptor (functional 

homolog to GET1/2) accepts the TA protein from TRC40 at the ER. A hydrophobic TMD and 

low tail charge support ER targeting in mammals. Targeting of TA proteins to peroxisomes is 

mediated by PEX19 and PEX3. Peroxisomal TA proteins are characterized by a highly 

charged tail which promotes PEX19 interaction. TA proteins with a hydrophobic TMD 

require increased tail charge to be targeted to peroxisomes. It is currently unknown if delivery 

and insertion of TA proteins into mitochondria involves specific targeting factors or is 

primarily unassisted. Mitochondrial TA proteins generally possess a less hydrophobic TMD 

than ER TA proteins and a less charged tail compared to peroxisomal TA proteins. This 

scheme is based on the steady state distribution of TA proteins, but other processes such as 

membrane extraction and TA protein degradation may also influence the subcellular 

localization. (Please note that the illustration of the GET-pathway has been simplified). 

BAG6, BCL2-associated athanogene cochaperone 6; TRC, Transmembrane domain 

Recognition Complex; Ubl4a, ubiquitin-like 4a; WRB, tryptophan-rich basic. 
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Fig. 1. Targeting survey for TA proteins in mammalian cells. 
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Fig. 2. Comparison of physicochemical parameters of human and yeast TA proteins 
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Fig. 3. Alterations in tail charge and TMD GRAVY redistribute TA proteins to other 

organelles. 

 



34 

 

 

Fig. 4. Alterations in tail charge and TMD GRAVY redistribute GDAP1 to other 

organelles. 
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Fig. 5. PEX19 affinity is a key determinant in targeting the peroxisomal membrane. 
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Fig. 6. A combination of tail charge and TMD GRAVY allows prediction of organelle 

targeting for mammalian TA proteins. 
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Fig. 7. Schematic model for TA protein targeting to ER, mitochondria and peroxisomes 

in mammalian cells.  


