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Abstract

In this thesis, I investigate dynamic and computational properties of prokaryotic
signalling architectures commonly known as the Two Component Signalling networks
and phosphorelays. The aim of this study is to understand the information
processing capabilities of different prokaryotic signalling architectures by examining
the dynamics they exhibit.

I present original investigations into the dynamics of different phosphorelay
architectures and identify network architectures that include a commonly found four
step phosphorelay architecture with a capacity for tuning its steady state output
to implement different signal-response behaviours viz. sigmoidal and hyperbolic
response. Biologically, this tuning can be implemented through physiological
processes like regulating total protein concentrations (e.g. via transcriptional
regulation or feedback), altering reaction rate constants through binding of auxiliary
proteins on relay components, or by regulating bi-functional activity in relays which
are mediated by bifunctional histidine kinases. This study explores the importance
of different biochemical arrangements of signalling networks and their corresponding
response dynamics.

Following investigations into the significance of various biochemical reactions and
topological variants of a four step relay architecture, I explore the effects of having
different types of proteins in signalling networks. I show how multi-domain proteins
in a phosphorelay architecture with multiple phosphotransfer steps occurring on the
same protein can exhibit multistability through a combination of double negative
and positive feedback loops. I derive a minimal multistable (core) architecture and
show how component sharing amongst networks containing this multistable core can
implement computational logic (like AND, OR and ADDER functions) that allows
cells to integrate multiple inputs and compute an appropriate response.

I examine the genomic distribution of single and multi domain kinases and annotate
their partner response regulator proteins across prokaryotic genomes to find the
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biological significance of dynamics that these networks embed and the processes they
regulate in a cell. I extract data from a prokaryotic two component protein database
and take a sequence based functional annotation approach to identify the process,
function and localisation of different response regulators as signalling partners in
these networks.

In summary, work presented in this thesis explores the dynamic and computational
properties of different prokaryotic signalling networks and uses them to draw an
insight into the biological significance of multidomain sensor kinases in living cells.
The thesis concludes with a discussion on how this understanding of the dynamic
and computational properties of prokaryotic signalling networks can be used to
design synthetic circuits involving different proteins comprising two component and
phosphorelay architectures.
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To all those who struggle with the detail in their search for
the big picture
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1
Introduction

Decision making in prokaryotic cells occurs through a complex web of signalling
networks embedding both information gatherers and signal transducers. They help
the cell to sense changes in its external and internal environments and respond to it
by modulating various physiological processes in the cell. The term architecture
represents the structure of a signalling network defined by its constituent proteins
and reactions occurring amongst these proteins when a signal molecule flows through
the network. As these signal molecules travel from one member of the network
to another, they carry information about the environment from the information
gathering sensor to the transducer (response regulator) protein that modulates a
response from the network. These networks are therefore important for cells to
capture and process information about their environment, and ensure that the cells
deal with changes (around and within) in a reliable and timely manner.

One of the simplest prokaryotic signalling architectures has only two proteins,
namely the sensor and transducer proteins. This forms a simple signalling network
known as the two component signalling (TCS) network (see figure 1.1A). Variants of
this architecture containing additional proteins also occur in prokaryotic cells, and
are known as phosphorelays. A schematic representation of the simple TCS and a
phosphorelay network is shown in figure 1.1. Unlike a simple TCS, phosphorelays
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have two additional phosphotransfer steps involving a signal molecule as it moves
from the sensor to its cognate response regulator. These additional proteins (as
shown in figure 1.1B) are known as the receiver (REC) and phosphotransfer (Hpt)
proteins.

Input

RESPONSE Regulator

Output

SENSOR Kinase

H D

H D

Input Output
A

B

D

REC HPT

Input

RESPONSE Regulator

Output

SENSOR Kinase

H D

C

H

SENSOR RESPONSE

Output

A

B

A

B

Figure 1.1: Shows a two component signalling architecture (A) and phosphorelay (B).
The red filled circle represents phosphate groups and arrows show the direction in which
phosphate groups are transferred.

With numerous physiological processes in a cell, all occurring over a range of
time scales and requiring different dynamic behaviours, some prokaryotic cells
like Pseudomonas aeruginosa employ hundreds of variants of simple TCS and
larger phosphorelay networks [1]. Networks like ArcB-ArcA [2] forms a simple
two component signalling network that regulates gene expression in a cell,
depending on the presence (or absence) of oxygen; the KinA-Spo0A pathway
found in Bacillus subtilis has four proteins which form a phosphorelay architecture
that regulates sporulation [3]. These signalling networks in the cell can either
operate individually, regulating disparate processes, or in tandem [4] where they
communicate with each other by sharing proteins, use connector molecules that
amplify signals [5]; or via crosstalk [6] where signal molecules from one network
travels to another. Even as signalling between members of a signalling network
is highly specific [7], some networks employ crosstalk (phosphorelays) and embed
interesting dynamics [6, 8, 9] while processing signals in the cell. This presence of
a number of signalling architectures and communications between them show the
complex signal processing and regulatory strategies occurring within prokaryotic cells.
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While these networks operate within the cell, it is important that they map different
signals, or combinations thereof, onto specific physiological responses within the
cell in a responsive and reliable fashion. To understand the mechanisms that define
signalling architectures and how they ensure a reliable and responsive mapping of
signals, this study focusses on commonly found prokaryotic signalling architectures
and examines the significance of different biochemical reactions and the resultant
architectures involved in prokaryotic signalling. Using methods borrowed from
dynamical systems theory, this study uses differential equation models representing
reactions in these networks, and studies their dynamic and computational properties.
Studying different architectures, and understanding the significance of different
biochemical reactions and proteins occurring in signalling networks can explain
how modular prokaryotic signalling architectures are capable of exhibiting complex
behaviours like adaptation (seen in chemotaxis[10]) or a food per cell computation
carried out when regulating sporulation [3] in Bacillus subtilis.

In comparison to eukaryotic signalling, prokaryotes have simpler signalling
architectures.1 Understanding these networks could help us derive an insight into
the evolution of complexity in cells and the dynamic and computational properties
exhibited by networks containing different types of proteins could highlight the
evolutionary context for proteins which play the role of information gatherers and
transducers in the cell. Understanding this is important as these proteins are
required in a cell to constantly sense changes in the cell’s environment and respond
to it by modulating its internal cellular machinery.

This study does not directly examine evolutionary mechanisms underlying
prokaryotic signalling networks but focuses instead on characterising the functioning
of different signalling architectures and their dynamic and computational properties.
This is to identify possible design principles that define the structure of signalling
architectures based on the signal processing capabilities required by the cell
to continuously track changes in its environment and respond to them reliably.
Building on initial investigations from a system dynamics perspective, this
study attempts to find the biological significance of different signal processing
characteristics exhibited by prokaryotic signalling networks. The next section gives a
brief background into the biochemistry of two component and phosphorelay signalling.

1Unlike prokaryotes, eukaryotes are multicellular organisms with a more complex structure that
includes membrane bound organelles and a nucleus with a nuclear membrane.
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1.1 Introduction to Signalling

1.1.1 Two Component Signalling networks

As discussed at the beginning of this chapter, the main components of a simple two
component signalling architecture are its sensor and response regulator proteins.
The sensor protein usually has a kinase activity, where it acts as an enzyme
that transfers a phosphate group from a phosphate containing molecule to an
unphosphorylated substrate. The sensor kinase is usually a membrane bound
receptor protein with an extracellular input domain2 that detects specific signalling
molecules in its environment, changes its active conformation [11] and undergoes
an ATP3 mediated autophosphorylation reaction to receive a γ phosphate group
from the ATP. The autophosphorylated sensor kinase protein then transfers the
phosphate group onto an aspartate containing receiver portion (also called domain)
of the response regulator (RR) found in the cytoplasm of the cell. The RR
acts as a transducer which receives information from the sensor kinase (through
phosphotransfer reactions) and regulates the output of downstream process in the cell.

Reactions in a two component signalling network

HK
ks→ HKp (1)

RR + HKp

k1


kr

RRp + HK (2)

RRp
k2→ RR (3)

Once the response regulator receives a phosphate group from a sensor kinase, the
phosphorylated RR can play a variety of downstream roles [12, 13] depending on
the processes that it is involved in. Upon receiving phosphate groups, the RR
either activates or deactivates a downstream signalling pathway [14], acts as a
transcription factor which directly binds to the cell’s DNA and regulates gene
expression [15] or acts as a sink protein that creates a tunable threshold device [16].
Once a phosphorylated response regulator loses its phosphate group after affecting a
downstream process, the signal is lost from the network and the network’s response is

2A domain in a protein is a portion of the protein which is independently stable, and can
maintain its structure and function, even in the absence of the rest of the protein.

3ATP stands for Adenosine Tri Phosphate. It is a phosphorylated nucleotide (adenosine) with
three phosphate groups, α, β, γ. ATP is a common source of energy in various biochemical processes
within the cell.
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terminated. This flow of a phosphate group from a sensor to the response regulator
represents the flow of information through in a simple prokaryotic signalling network.

Histidine kinases are one of the most commonly found sensor kinases in prokaryotes
and occur occasionally in eukaryotes. In general, there are a several types of sensor
kinases defined by the amino acids found on their phosphorylation site. If it is a
histidine residue, the sensor protein is called a histidine kinase. If there are other
amino acids like serine, threonine and tyrosine kinases, the kinases are named
accordingly [11] as serine, threonine or tyrosine kinase. A preference for histidine
kinase in prokaryotes could be due to the formation of a phosphoramidate bond
when a histidine kinase binds with an incoming phosphate group. This bond has a
high free energy and low stability which allows cells to break this bond easily during
signalling, and makes the response time for the transfer of signal molecule from the
histidine kinase very short.

When sensor kinases are only involved in the transfer of phosphate groups onto its
substrate or the next member in the relay, they are known as a monofunctional
kinases. There are some systems [17–22], where the kinase protein performs an
additional role of removing phosphate groups from a protein i.e. phosphatase
activity, they are known as a bifunctional sensor kinase. This dual role for a
sensor kinase allows a signalling network with a bifunctional histidine kinase to
respond to specific triggers, or stress molecules, which bind to the sensor kinase
and toggle the sensor protein’s activity from a kinase to a phosphatase or vice
versa [23]. This can be a useful mechanism employed by signalling networks to
tune signal response behaviours in some architectures or as a means of building
a buffer against crosstalk in the system [24]. When carrying out a phosphatase
activity, the sensor kinase forms a complex with an already phosphorylated aspartate
domain in the relay which, in some cases can also lead to interesting dynamics [25]
due to a temporary sequestration of a downstream signalling member [26] in the relay.

In summary, the basic two component signalling architecture with a sensor histidine
kinase and response regulator represents one of the simplest signalling architectures
in prokaryotes. It is commonly found across bacteria [1], archaea [27] and in some
eukaryotes [28] also. In some cases, the modularity of this simple architecture is
leveraged by a cell to evolve longer variants, i.e. phosphorelays. The following
section discusses phosphorelay architecture in more detail.
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1.1.2 Phosphorelays

As described earlier (and shown in figure 1.1B), a phosphorelay is an extension of a
simple two component signalling architecture and contains additional receiver and
phosphotransfer domains involved in phosphotransfer within the network. These
domains can either occur on separate proteins (figure 1.1B) or on the same protein
as shown in figure 1.2. Sensor kinases with an additional REC domain along with a
kinase are known as a hybrid sensor kinase (see figure 1.2A) and while those with
have both REC and Hpt domains are known as unorthodox sensor kinase proteins
(figure 1.2B).

In phosphorelays, the signal molecule (phosphate group) flows from a sensor histidine
kinase to a receiver protein and reaches Hpt before being transferred on to a response
regulator (See figure 1.2A). In a number of systems, phosphotransfer reactions
between REC-Hpt and Hpt-RR are reversible [29, 30]. The flow of phosphate groups
amongst domains found in phosphorelays, is always from a histidine to aspartate or
vice versa. There is no phosphotransfer between similar domains (i.e. histidine→
histidine or aspartate→ aspartate). This conserved nature of phosphotransfer is
shared by all prokaryotic signalling architectures which have these proteins [31] and
is used to build modular signalling architectures in a cell.

Figure 1.2: Shows a Hybrid Sensor Kinase (A) and an Unorthodox Sensor Kinase (B).
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Reactions in a phosphorelay

HK
ks // HKp

HKp + REC
k2 // HK + RECp

RECp + Hpt
k3 // REC + Hptp

Hptp + RR
k4 // Hpt + RRp.

HK + RECp
k2r // HKp + REC

RECp
kh1 // REC

REC + Hptp
k3r // RECp + Hpt

RRp
kh2 // RR

Hpt + RRp
k4r // Hptp + RR.

A widely held view is that phosphorelays have evolved to allow the cell to achieve
signal integration using phosphorylation at their different layers4 [30, 32]. While
theoretical studies have shown the potential of relays for signal integration [3, 33],
it remains unclear how and why selective pressures on signal integration should
lead to the widespread phosphorelay features such as relay length of four and
presence of reverse phosphorylation. Some investigations into the length (number of
phosphotransfer steps) of a phosphorelay show that phosphorelays with four proteins
achieve an optimal sensitivity to incoming signals and having any additional proteins
(> 4) in the network brings no significant improvement in its ability to sense signals
[33] from the environment. This could explain the absence of naturally occurring
phosphorelays with more than four proteins in a single phosphorelay network but it
remains to be proven conclusively.

An alternative possibility is that evolution of phosphorelays has resulted in specific
features due to their effects on signal processing capabilities of the cell. For example,
transcriptional feedbacks such as those seen in the Bacillus subtilis phosphorelay
raise the possibility of achieving bistable dynamics as a functional role of the relay

4Layers refer to proteins in the relay. Both these terms mean the same and are used interchange-
ably in this thesis.
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[34, 35]. Recent experimental studies, however, show that this system possesses no
bistability and that the embedded feedback loops might have limited effect on its
steady state response [36, 37]. One of these studies found high heterogeneity in the
phosphorylated RR levels [36], while the other showed experimental evidence for
ultrasensitivity in the output of the phosphorelay but suggested that the source
of this feature lies downstream of the relay [37]. The former result leads to the
proposal that the main functional role of the B. subtilis sporulation phosphorelay
is to act as a noise generator. It is not clear how these findings and hypotheses
should apply to other phosphorelays, and particularly to those that are not nested
in transcriptional feedbacks. Knowing that cells can employ different signalling
arrangements (topologies5) and sometimes use multiple networks to integrate
multiple signals and regulate responses in multiple pathways via branched signalling
networks, this study examines branched signalling networks with shared proteins
and signalling molecules along with individual two component and phosphorelay
architectures.

Functional arguments derived from studies of a specific system are usually limited in
providing a broad understanding of the relation between the observed architectural
and biochemical features of phosphorelays and their function. This study therefore
carries out a detailed mathematical investigation into different variants of prokaryotic
signalling architectures and develops a thorough understanding of their functioning
in the cell.

1.2 Introduction to Modelling Approaches

Different signalling networks exhibit varying dynamics like oscillations [38],
hyperbolic [39]), sigmoidal [40] or show a rapid adaptation [41] to changes in the
external environment of the network. Understanding the mechanisms causing
these dynamics is essential to identify potential design principles dictated by the
correlation between dynamics of different signalling architectures and the biological
functions they regulate. The dynamics of signalling networks involving a series of
biochemical reactions with a complex interplay and involvement of biomolecules
from different cellular processes are usually modelled using a system of ordinary
differential equations (ODE). This section therefore introduces ordinary differential
equations and describes how we express chemical reactions in systems using ODEs.
We take the example of a simple two component signalling network (see figure
1.1) and discuss the assumptions and simplifications made when using mass action

5We use the terms topology, architecture and arrangement interchangeably in this thesis
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kinetics to derive these ODEs. As discussed in the previous section, a two component
signalling network has a commonly found prokaryotic signalling architecture and is
found across a wide number of genomes [11, 42, 43].

Dynamical systems theory is an area of mathematics used to describe complex
temporal dynamics with models containing either difference or differential equations
[44]. For systems where the change in time is continuous (like signalling networks),
we use differential equations and for those where the changes are discrete, differ-
ence equations are more appropriate. In this section, we describe continuous time
dynamical systems and discuss how differential equations are used to understand
the temporal dynamic behaviours exhibited by two component signalling networks.
We begin with an introduction to differential equations and show how an ordinary
differential equation model for a prokaryotic two component signalling network can
be derived.

1.2.1 Ordinary Differential Equations

Differential equations represent the evolution of one or more (dependent) variables
with respect to one or more (independent) variables by specifying mathematical
functions that relate the derivatives of the dependent variables to the values of the
independent variables. If the derivatives are calculated with respect to a single
independent variable (for example, equation (4)), then the equation is known as an
ordinary differential equation (or ODE) but if the derivatives are calculated with
respect to more than one independent variable, then the equation is called a partial
differential equation (PDE) (for example, equation (5)).

dx

dt
= a · x+ b (4)

∂2u

∂x2
+
∂2u

∂y2
=

1

v2
· ∂

2u

∂t2
(5)

We know that two component signalling networks have two key members viz. the
sensor protein (HK) and the response regulator (RR). Let us consider reactions
(1)-(3) occurring in a simple two component signalling network. This network has
the two proteins HK and RR occurring in either their phosphorylated (HKp, RRp)
or unphosphorylated forms (HK, RR). These phosphotransfer reactions in two
component systems are not enzyme mediated and occur when a phosphate carrying
member of the network collides with a cognate unphosphorylated signalling partner.
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In reaction (1), we see that HK is phosphorylated at a rate ks to form HKp. We
are assuming that there is sufficient ATP in the surrounding environment that
the reaction rate is independent of changes in ATP concentration, reducing this
phosphotransfer reaction to a unimolecular reaction. The other phosphotransfer
reactions in the network occur at rates k1 and k2, representing the phosphotransfer
from HKp to RR and RRp losing the phosphate group through a dephosphorylation
or an auto-hydrolysis reaction (3). The rate kr represents the rate at which a reverse
phosphotransfer where the phosphate group from RRp travels back to a molecule of
HK. In this model, auto-hydrolysis shown in reaction reaction (3) also accounts for
the loss of phosphate groups from RR due to a response triggered by its action on a
downstream process.

When modelling these reactions using ordinary differential equations, we assume
mass action kinetics [45], and consider the stoichiometry6 of the reactions (1)-
(3) to determine the coefficients of equations (6)-(9) representing changes in the
concentration of proteins in this network. When using mass action kinetics, we
make the assumption that these chemical reactions occur in a well mixed system at
equilibrium and the rate of the reaction is directly proportional to the concentration
of reactants and the probability (usually called reaction rate) of collisions between
them. This means that, in reaction (2), the rate of formation of RRp is directly
proportional to the product of the concentration of both the reactants HKp and RR,
and the probability of collisions between the two (i.e reaction rate k1). In general,
for any protein P in this network, concentration at any given point of time (dP

dt
) is

the difference between reactions producing new molecules of P and those removing
P from the system. If we consider the example of HK in the system, new molecules
of HK are created in the forward phosphotransfer reaction (2) and removed in the
reverse phosphotransfer reaction (2) and in reaction (1). The ODE describing the
rate of change of HK (i.e. dHK

dt
) can be written as shown below.

dHK

dt
= k1 ·RR ·HKp − ks ·HK − kr ·HK ·RRp (6)

We repeat this approach for every protein in the network and derive a system
of ODEs which represent the change in concentration of all phosphorylated and
unphosphorylated proteins in a two component signalling network (6)-(9).

6Stoichiometry of chemical reactions represents changes in the number of molecules of all species
found in a reaction.
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dHKp

dt
= ks ·HK + kr ·RRp ·HK − k1 ·RR ·HKp (7)

dRR

dt
= kr ·RRp ·HK + k2 ·RRp − k1 ·RR ·HKp (8)

dRRp

dt
= k1 ·RR ·HKp − kr ·RRp ·HK − k2 ·RRp (9)

Building this ODE model is useful for understanding how concentration of different
proteins in a dynamic system (like signalling network) changes over time. In addition
to tracing the temporal variation in the variables of the system, ODE models
allow us to identify points in the system’s evolution where the net change in the
concentration of different variables of the system over time becomes zero, and the
system reaches its steady state. By equating the right hand side (R.H.S) of ODEs in
expressions (6-9) to zero, we can derive the steady state solution of a two component
signalling network as a function of RRp and the reaction parameters defining the
rate at which different phosphotransfer reactions in the network take place.

In the following sections, we discuss methods used to study the temporal evolution
and steady state behaviour of a system of differential equations defining two
component signalling networks.

1.2.2 Numerical Simulations

When a dynamical system starts with some initial conditions, depending on the
initial values of different variables in the system, and the equations defined as ODEs,
numerical methods like the Euler method [44, 46], mid point method [44, 46, 47]
and Runge-Kutta (http://mathworld.wolfram.com/Runge-KuttaMethod.html)
[47, 48] method can be used to iteratively derive the approximate values for
different variables in the system at different time steps. This approach of iteratively
solving a set of ODE equations using time steps is referred to as numerical simulations.

The accuracy of approximating values of different variables using methods like
Euler or Runge-Kutta depends on the size of the time step dt as a smaller time
step indicates a finer mesh which accounts for both fast and the slow reactions
in a system. A smaller time step increases the accuracy of the approximation,
but at the same time, it increases computational time and hence the resources
required to numerically simulate the system increases very quickly. This is more
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Parameters Low High Source

k2 (Ms)-1 10 105 [54]; [55]; [24]

k3 (Ms)-1 10 105 [54];[55]; [24]

k4 (Ms)-1 10 105

k5 (Ms)-1 10 105 [22] ; [54]

k6 (Ms)-1 1 10 [22] ; [54]

k2r (Ms)-1 10 105 [54]

k3r (Ms)-1 10 105 [54]

k4r(Ms)-1 10 105 [54]

k5r (Ms)-1 10-3 10-1 [22] ; [54]

kh1 (s)-1 10-3 10-1 [54] ;[55]

kh2 (s)-1 10-3 10-1 [54] ;[55]

HKtotal (M) 10-6 2 x 10-4 [54]

RECtotal (M) 10-6 2 x 10-4 [54]

Hpttotal (M) 10-6 2 x 10-4 [54]

RRtotal (M) 10-6 2 x 10-4 [54]

Table 1.1: Shows parameter regimes for reaction rates and protein concentrations derived
from published experimental data. Sources for these parameters are listed in the fourth
column.

challenging with stiff systems, where the time scales of the slowest and quickest re-
actions differ significantly, and therefore numerical simulations become more unstable.

In this study, we carry out a detailed investigation on the role of all the different
parameters in prokaryotic signalling networks and their effects on prescribing specific
dynamics to the network. Table 1.1 shows biological parameters from published
experimental data, used in these numerical simulations. We encode reactions in
the network as ODE functions on Matlab [49] and use solvers like ode45s, ode23t
and ode15s [50] to iteratively solve the system of equations represented in the ODE
function. ode45 and ode23 use Runge-Kutta-Fehlberg integration algorithm, with
a variable step size while ode15s is a variable order solver which uses numerical
differentiation formulas [50, 51]. In addition to using Matlab, tools like XPPAUT
(http://www.math.pitt.edu/~bard/xpp/xpp.html) [52] and Oscill8 [53] can also
be used for numerically simulating a system of ODEs.

30

http://www.math.pitt.edu/~bard/xpp/xpp.html


In addition to understanding the temporal dynamics of signalling networks, it is
also important to know how the system behaves when it reaches a steady state. For
this, we can derive an analytical solution that gives us expressions for the steady
state values of different variables in the network. This involves solving for each
variable from the ODE model in a logical manner where the final outcome is a
series of expressions for each variable in the system as a function of other variables
and reaction parameters. The steps involved in deriving the steady state analytical
solution for a system of ODEs representing two component signalling networks are
described in section 1.2.3. When dealing with large and complex system of ODEs,
it is sometimes difficult to arrive at an analytical solution for the system. In this
case, numerical simulations are useful in approximating the concentration of different
proteins in the network over time and calculating the approximate steady state value
of different variables in the system by ensuring that they have converged to a value
which does not vary, even if the system is numerically simulated for an additional
time period.

1.2.3 Steady State Analytical Solution

As mentioned in the previous section, a key aspect of understanding a network’s
dynamics is knowing how the system behaves when it is at steady state. We know
that mathematically, a steady state of a system is a point in variable space at which
the variables do not change with time. In some cases, the steady state of a system is
stable and in others, it is unstable. When we identify that a system has a stable
steady state, it means that a small perturbation at the steady state will damp out,
resulting in the system settling back into its original steady state (figure 1.3A). But
in the case of an unstable steady state, fluctuations are amplified and instead of
being dampened, they push the system away from the original steady state (figure
1.3B). To derive such an understanding of the steady state of a system, we need
to examine the sign of the real parts of the eigenvalues of the system obtained by
linearising the equations evaluated at steady state. Negative real parts indicate
stability, whilst one or more positive parts indicate instability [56].
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Figure 1.3: Shows two types of stability i.e. stable (XS(S)) and unstable (XS(U)) steady
state.

In this study, we derive analytical solutions for ODEs (6)-(9) by equating their right
hand side (R.H.S) to zero. Solving the resultant system of equations gives the value
of different variables in the system at steady state. This is known as an analytical
or exact solution for the system. In the context of a biological signalling network
which regulates gene expression (for example [57]), the steady state concentration
of proteins controlling gene expression in the system defines different expression
patterns in the cell,and can result in different physiological states of a cell. In (6)-(9),
when we equate the right hand side of these expressions to zero, it means that
dHK
dt

= dHKp

dt
= dRR

dt
= dRRp

dt
= 0, we get

0 = k1 ·RR ·HKp − ks ·HK − kr ·HK ·RRp (10)

0 = ks ·HK + kr ·RRp ·HK − k1 ·RR ·HKp (11)

0 = kr ·RRp ·HK + k2 ·RRp − k1 ·RR ·HKp (12)

0 = k1 ·RR ·HKp − kr ·RRp ·HK − k2 ·RRp (13)
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We see that (10) = −(11) and (12) = −(13). These equations are redundant and
we therefore reduce the number of equations by removing (10) and (12). From
the resultant ODEs, we find the total concentration of both phosphorylated and
unphosphorylated forms of all proteins in the network is conserved i.e. HK+HKp =

HKtot and RR +RRp = RRtot. We can therefore rewrite equations (11) and (13) to
arrive at smaller system of ODEs where all variables in the system are expressed in
their phosphorylated forms (HKp and RRp) as shown below.

0 = ks · (HKtot −HKp) + kr ·RRp · (HKtot −HKp)− k1 · (RRtot −RRp) ·HKp

(14)

0 = k1 · (RRtot −RRp) ·HKp − kr ·RRp · (HKtot −HKp)− k2 ·RRp (15)

Expanding and rearranging equations (14) and (15) gives us,

0 = ((k1 − kr) ·RRp − k1 ·RRtot − ks) ·HKp + kr ·RRp ·HKtot + ks ·HKtot (16)

0 = ((−k1 + kr) ·RRp + k1 ·RRtot) ·HKp + (−HKtot · kr − k2) ·RRp (17)

By fixing the values of RRp, i.e. assuming that we know its values at steady state,
we use a recursive approach to derive an expression for all the other variables in this
system as a function of RRp. From equation (17), we isolate an expression for HKp

as a function of RRp .

HKp = − RRp · (HKtot · kr + k2)

RRp · k1 −RRp · kr −RRtot · k1
(18)

To derive an expression for HK, we consider the conservation of total HK
concentration in the cell, i.e. HK = HKtot −HKp

HK =
HKtot ·RRp · k1 −HKtot ·RRtot · k1 +RRp · k2

RRp · k1 −RRp · kr −RRtot · k1
(19)
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and for RR, we know that

RR = RRtot −RRp (20)

For signalling networks like TCS, a steady solution for the system is only valid when
all the variables in the system have positive values. Using equation (18) and (19),
for any positive value of RRp, we know that HK and HKp are positive when

RRp <
RRtot · k1
k1 − kr

(21)

As RR = RRtot −RRp, we know that RR is positive as

RRp < RRtot (22)

Expressions (21) and (22), give us the bounds for values of different variables in
the system, within which steady state values of all variables in the system remain
positive.

1.2.4 Signal Response Relationships

Building on our understanding of the temporal and steady state behaviour of signalling
networks, deriving an understanding of how a dynamic system responds to different
inputs is essential for understanding the signal processing capabilities of signalling
networks. When deriving an expression for the steady state signal-response curve
for all the prokaryotic signalling networks considered in this study (analytically), we
consider ks as the input and the concentration of RRp as a response from the system.
The expression for a signal response curve , i.e. ks vs RRp is shown below.

ks = f−1(RRp)

By substituting values for HKp and RRp in equation (16), we can derive an expression
for ks as

ks =
RRp · k2 · (RRp · k1 −RRp · kr −RRtot · k1)

HKtot ·RRp · k1 −HKtot ·RRtot · k1 +RRp · k2
(23)
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Using this expression, we can generate steady state signal-response curves for a simple
two component signalling network (ks vs RRp). When we consider steady state
signal-response curves, it is important to understand the nature of the signal-response
curve and the effects that different parameters in the model have on its shape.

1.2.5 Classifying steady state signal-response curves

The shape of a signal-response curve carries important information about the signal
processing capabilities of a system [2]. For example, a curve with a strong sigmoidal
shape indicates a switch-like response, in which the system acts like a filter, where
signals below a certain threshold do not generate any significant response. In the
case of a linear signal-response curve, the system responds to all incoming signals,
while a hyperbolic signal-response curve means that the system responds to all input
signals until it reaches a saturation point, after which the output remains the same.

The shape of a signal-response curve has been quantified in some systems using
the ratio of signals generating 90% and 10% of maximal response [40]; however,
measuring the level of sigmoidality for any arbitrary signal-response curve is not
trivial. Before the analytical solution was derived, attempts were made to classify
steady state signal response curves by fitting signal response curve data with a
Hill function and Monod-Wyman-Changeux functions to derive a measure for
sigmoidality and then classify steady state signal-response curves into sigmoidal or
non sigmoidal curves. These attempts resulted in poor fits and this classification
approach was not very reliable when sampling over the wide range of parameters
(extracted from experimental data) used in our models.

To get around these challenges of curve fitting and measuring signals generating
90% and 10% of maximal response, scripts that count the number of sign changes
in the second derivative of RRp as a function of ks in the signal-response plot can
be used. For a sigmoidal curve, there is usually a change in sign from positive to
negative (see figure 1.4) whilst in the case of a hyperbolic curve, the second derivative
has no change in the sign and is always negative. This classification approach was
implemented through scripts in Matlab.
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Figure 1.4: Represents a sigmoidal curve derived using a hill equation V = Vm·Sn

knm+Sn . S is
plotted on the x-axis, and A, B & C show , the corresponding first derivative dV

dS and the
second derivative d2V

dS2 respectively, plotted on the y-axis. Parameters used to generate this
plot were Vm = 10; n = 2.5; km = 15. The values of S were varied between 0 and 40.

Once we derived the analytical expression for the ks vs RRp curve, we classified
curves easily by examining the second derivative of the equation (23), representing the
steady state signal-response curve. We checked if the slope of the second derivative
curve is positive or negative at RRp = 0. If the curve is sigmoidal, the second
derivative curve is initially positive and then becomes negative (see figure 1.4) while
hyperbolic curves will always have a negative second derivative. Thus, the sign of
the second derivative of the signal-response curve at zero can be taken as a test for
sigmoidality. This was also confirmed by the agreement of sigmoidality classifications
based on the sign of the second derivative of the signal-response curve on the entire
curve. Using this criterion, we grouped the curves into sigmoidal or hyperbolic
curves.
From (23), we derive the second derivative expression for ks as a function of RRp.

k′′s = − 2 · k2 ·HKtot ·RR2
tot · k21 · (HKtot · kr + k2)

(HKtot ·RRp · k1 −HKtot ·RRtot · k1 +RRp · k2)3
(24)

At RRp = 0,we find that

k′′s (0) =
2 · k2 · (HKtot · kr + k2)

(k1 ·RRtot ·HK2
tot)

(25)
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Expression (25) is always positive and this shows that a simple TCS network with
separate sensor HK and response regulator RR exhibits a sigmoidal signal response
behaviour.

1.2.6 Detecting Multistability

When we examine the steady state behaviour of different dynamical systems, we
find that some systems can have more than one steady state [58–62]. If a system
has a single stable steady state, irrespective of what its initial conditions are, the
system will always converge to the same value. By contrast, in multistable systems,
depending on the initial conditions, the final steady state values of the variables
can be different. Figure 1.5A shows an example schematic of a system which is
monostable and figure 1.5B shows a system which is bistable with two steady states.
In a monostable system, irrespective of the initial conditions (values of X,Y in a two
variable system), all curves representing the evolution of different variables in the
system (trajectories), reach the same steady state (XS, YS). In bistable systems,
(figure 1.5B), depending on the initial conditions, a system can reach either of the
two different steady states (XS1, YS1) or (XS2, YS2).

Figure 1.5 shows how in addition to deriving a steady solution for the system,
knowing if a system can exhibit multistability is important to understanding a
network’s behaviour and its signal processing capabilities. As seen in figure 1.5,
we can use time series plots to understand if a given system is monostable or
multistable. The challenge with using numerical sampling of initial conditions
to find all the possible steady states is that without a conclusive proof that
all the steady states have been found, the results obtained will depend on the
number of initial conditions that were sampled and the computational time
available. Deriving an analytical solution is a more comprehensive approach to
detecting the number of steady states. When this derivation is too complex or not
feasible, then there are other approaches used to detect multistability in chemical
reaction networks. These use interaction graphs and chemical reaction network
theory (CRNT) to examine the chemical reaction structure underlying signalling
networks to predict if a system has the capacity to exhibit more than one steady state.
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Figure 1.5: Is a representative diagram showing systems with a single steady state (XS , YS)
(A) and a bistable system with two stable steady states (XS1, YS1) and (XS2, YS2) (B).
In (A), each solid line represents the system starting with different initial conditions and
converging to a single steady state (XS , YS). In (B), solid and dashed lines represent the
system starting with different initial conditions and converging to two different steady
states (XS1, YS1) and (XS2, YS2) respectively.

Interaction Graphs

One of the approaches used to identify if a system has multiple steady states is its
interaction graph. An interaction graph is a visual representation of the reactions in
a network where the nodes indicate chemical species in the reaction network and
edges represent the reactions occurring between them. When building an interaction
graph representing the two component signalling network described in reactions
(1)-(3), we would use a positive edge to connect RRp to HKp if ∂F (HKp)

∂CRRp
> 0; a

negative edge if ∂F (HKp)

∂CRRp
< 0 and no edge if ∂F (HKp)

∂CRRp
= 0, where F(HKp) is the

function that represents the rate of change in concentration of HKp. Once we build
interaction graphs for a network, Thomas [63] and Soule [64] show that multistability
requires a positive circuit (see figure 1.6) where the product of signs of all edges in
the circuit is positive for at least one set of species in the network. A circuit refers to
a closed path along the nodes and edges of a graph where no edge is traversed more
than once. If a graph does not have a positive circuit, then the system cannot be
multistable. Another condition proposed by Kaufman [65] states that, multistability
requires the presence of a variable nucleus with at least one edge displaying more
than one sign depending on the species concentration, or a presence of two nuclei
with opposite signs in a network where the sign of the nucleus with p positive circuits
is given by (−10)p+1 [66]. This nucleus in an interaction graph is defined as a union
of one or more disjointed circuits which contains all vertices of the interaction graph.
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Figure 1.6: Shows circuits (representative) in an interaction graph. Positive circuits (A &
B) negative circuit (C) and a circuit which can be positive or negative depending on the
sign of the edge connecting Y to X (D) (Figure adapted from [62]).

Chemical Reaction Network Theory

When we model signalling networks with an assumption of mass action kinetics, the
resultant equations form a chemical reaction network (CRN) [67]. We can derive
a stoichiometric matrix for the reaction network and test it for injectivity [68] i.e.
determine if the system can exhibit multistability [69, 70]. The presence of injectivity
indicates that there are distinct positive outcomes for distinct arguments to the
system. When testing these expressions for injectivity, the reactions are assumed to
occur in an isothermal, homogeneous continuous flow stirred tank reactor. Another
technique related to this examines a slightly distinct graph representing the CRN. It
is called the species - reaction graph or SR graph [71, 72].

In this study, we used deficiency theorem implemented in CRNT (Chemical
Reaction Network Theory) toolbox to detect multistability https://crnt.osu.

edu/LecturesOnReactionNetworks. This theorem proposes necessary conditions
for the presence, stability and multiplicity of steady states in a chemical reaction
network. Chemical Reaction Network Theory Toolbox implements a parameter free
approach where the assumption is that multistable CRNs have certain topological fea-
tures and within each compatibility class there is a strict, single positive steady state
with positive concentrations for all the variables in the system (https://crnt.osu.
edu/LecturesOnReactionNetworks) [73–77] ((http://www.jeremy-gunawardena.
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com/papers/crnt.pdf)). CRNT toolbox employs the CRN theory described in
[73, 75–77](https://crnt.osu.edu/LecturesOnReactionNetworks), and was used
to examine if two component and phosphorelay architectures exhibited multistability,
before deriving a detailed analytical solution. For simple systems, this toolbox can
also suggest example parameters where the system exhibits multistability. Following
an initial test on a network’s capacity for multistability, deriving a detailed ana-
lytical solution allows one to examine both necessary and sufficient conditions for
multistability.

1.3 Summary

In this chapter, we introduced the background biochemistry underlying signalling in
prokaryotes and the methods used to model the dynamics of prokaryotic signalling
networks. Using the example of a simple two component signalling network, we
discussed how ODE models are built and how numerical and analytical solutions
are derived for ODE models. Building on this introduction the following chapters
discuss key findings from our investigations into two component and phosphorelay
architectures.

1.4 Thesis Outline

Chapter 2 examines a generic four protein phosphorelay architecture (figure 1.2A)
with reverse phosphotransfer from RR → Hpt and Hpt → REC. Using ODE models
representing the flow of signal molecules in this network, it discusses the dynamics
of how the concentration of different phosphorylated and unphosphorylated proteins
in a phosphorelay vary. By studying the temporal and steady state dynamics, it
looks for specific parameter regimes where phosphorelays exhibit both hyperbolic
and sigmoidal signal-response behaviour to identify the necessary and sufficient
conditions for specific signal processing behaviours seen in a network. A thorough
exploration of the biochemical features constituting a phosphorelay architecture
is carried out by deriving 32 variants of the generic four protein phosphorelay
architecture as shown in figure 1.2A. Using a combination of numerical simulations,
analytical solutions and multi parameter sensitivity analysis, the role of different
biochemical reactions in prescribing specific signal-response behaviours is examined.
Focussing on the signal-response behaviour of networks is required for a detailed
understanding of signal processing capabilities embedded in different phosphorelay
architectures [16, 26, 78, 79] and is therefore explored here in detail. This in depth
examination is needed to understand intracellular regulation and the evolution of
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control architectures in prokaryotic cells.

Building on the investigation of different biochemical features of a phosphorelay
architecture, chapter 3 examines the significance of signalling architectures employing
different types of sensor kinase proteins in the network. Building models for
phosphorelay architectures with multidomain histidine kinases like hybrid and
unorthodox (see figure 1.2B & 1.2C), this chapter examines the dynamics that
additional phosphotransfer domains on histidine kinases confer on a phosphorelay
network. In comparison to sensor kinases without additional REC or Hpt domains,
phosphorelays with multidomain HKs have intramolecular phosphotransfer reactions
between HK→ REC and REC → Hpt domains. The chemical reaction network
structure underlying phosphorelays with hybrid sensor kinases is examined using the
CRNT toolbox (https://crnt.osu.edu/CRNTWin) [80] to test for multistability.
Building on findings from this and examining systems where multiple bistable core
networks share components, this chapter presents proofs that explain the correlation
between the number of phosphotransfer domains on a sensor kinase, number of
pathways sharing common protein components and the resultant multistability and
computational logic embedded in the network.

Chapter 4 builds on theoretical findings from chapters 2 and 3 to study the
distribution of different histidine kinases across genomes and annotates different HK
mediated RR sequences to identify metabolic processes that different signalling archi-
tectures are involved in. This examination of proteins occurring in signalling networks
is required for understanding the biological context in which different prokaryotic
networks operate and potentially explain their distribution across genomes [81]. Cor-
relating theoretical predictions from the dynamics and computational properties with
the biological context in which different proteins occur could help in deriving useful
insights into potential design principles underlying signalling networks in prokaryotes.

Chapter 5 summarises the key results derived from our understanding of different
prokaryotic signalling architectures, their dynamics and computational properties.
Building on these results, the chapter concludes by discussing how the modularity of
prokaryotic signalling architectures and the availability of a number of TCS proteins
could be used to build engineered control circuits for different synthetic biology
applications.
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2
Phosphorelays provide tunable signal

processing capabilities for the cell.

Chapter Overview

Achieving a complete understanding of cellular signal transduction requires deci-
phering the relation between structural and biochemical features of a signalling
system and the shape of the signal-response relationship it embeds. Using explicit
analytical expressions and numerical simulations, this chapter examines this rela-
tion in four-layered phosphorelays which are ubiquitous in prokaryotes and some
lower eukaryotes and plants. By deriving an analytical expression that relates the
shape of the signal-response relationship in a relay to the kinetic rates of forward
phosphorylation, reverse phosphorylation and hydrolysis reactions, we identify a
set of mathematical conditions that dictate the shape of the signal-response rela-
tionship exhibited by different phosphorelay architectures. This lead to the finding
that a specific phosphorelay architecture that is commonly observed in nature can
satisfy these conditions in such a way that it allows plasticity (tunability) among
hyperbolic and sigmoidal signal-response relationships. In particular, we find that
the shape of the signal-response relationship of this relay architecture can be tuned
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by altering kinetic rates and total protein concentrations in different parts of the
relay. These findings are an important step towards predicting response dynamics of
phosphorelays, and the nature of subsequent physiological responses that different
phosphorelay architectures mediate. We are able to do this solely from their topolog-
ical features and a few composite measurements like measuring the ratio of reverse
and forward phosphorylation rate constants are sufficient to determine the shape
of signal-response relationship that these relays exhibit. Furthermore, this study
highlights the potential ways in which selective pressures on signal processing could
can play a role in the evolution of observed structural and biochemical characteristics
in phosphorelays.

2.1 Introduction

Signalling networks like phosphorelays allow prokaryotic cells to produce appropriate
physiological responses to changes that are external and internal to the cell.
Examining signal-response characteristics of these networks and how they are shaped
by specific biochemical mechanisms in the network is fundamental to understanding
the flow of information in a cell and to engineer cellular behaviour. Most of the
studied phosphorelays to date have a sequence of four phosphotransfer reactions and
contain four types of so-called two component proteins (or domains in the case of
multidomain proteins) (section 1.1.2) [29, 30]. Phosphorelay networks have different
lengths (number of proteins in the network), and differ with respect to the presence
and location of hydrolysis and reverse phosphorylation reactions in the network.
Variants of phosphorelays found in prokaryotes can contain additional RRs (> 1)
[25, 82]; HKs which function as both a kinase and a phosphatase (bifunctional
HKs) [25] and in some cases, could involve phosphorelays which are nested within
transcriptional feedback loops [3, 36, 37]. What is the significance, if any, of these
structural and biochemical features of phosphorelays? More broadly, what is the
functional benefit of having a specific phosphorelay structure for the cell? To achieve
a broad understanding, we built phosphorelay models with a range of alternative
biochemical assumptions and parameter regimes to examine the correlation between
different structural and biochemical features with their signal processing dynamics.
Using both numerical simulations and analytical derivations, we evaluate the shape
of signal-response relationships in all possible four-layered phosphorelay topologies
(See Table 2.1) that arise when we distribute hydrolysis and reverse phosphorylation
reactions on a base phosphorelay structure.
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Figure 2.1: (A) Schematic representation of the general four layered phosphorelay model.
Hydrolysis reactions (on aspartate residues found on REC and RR proteins only) and
forward and reverse phosphorylation reactions are shown, along with the possibility of
the HK being bifunctional (B) Hyperbolic and sigmoidal signal-response relationships
displayed by a specific topology (topology 30 shown in Table 2.1). The two curves are
obtained by choosing specific parameter sets (Appendix A). The x- and y-axis correspond
to the signal and response of the system, which in the model are approximated by the
HK auto-phosphorylation rate constant, ks and by the fraction of phosphorylated RR,
respectively. k2, k3, k4 and k2r, k3r, k4r are phosphotransfer and reverse phosphotransfer
reactions representing the flow of phosphate groups between members of the phosphorelay
(see section 2.2.1).

2.2 Modelling different phosphorelay architectures

To examine the significance of different biochemical reactions in a phosphorelay
architecture, we begin with a phosphorelay which contains a monofunctional his-
tidine kinase. We build a generic model of the four-layered phosphorelay using
ordinary differential equations (ODE) and incorporate all possible combinations of
reverse-phosphorylation reactions between layers (proteins) and hydrolysis reactions
(i.e. encompassing all possible topologies in a four-layered relay with reverse phos-
phorylation and hydrolysis). In these architectures, the hydrolysis reactions are
considered possible only on REC and RR as these proteins are phosphorylated on
an aspartate residue (while HK and Hpt are phosphorylated on a histidine residue)
and the resultant bond is known to have an inherent instability [83, 84]. Assuming a
fixed phosphorelay structure containing four proteins, we derive 32 different variants
(see table 2.1) of the base phosphorelay architecture shown in figure 2.1 and examine
their steady state signal-response behaviour to understand the dynamical significance
of different biochemical reactions occurring in the network.
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2.2.1 Phosphorelays with monofunctional kinase

An ODE model for a phosphorelay contains all the four main proteins viz.
histidine kinase (monofunctional) HK, a receiver protein REC, a His-containing
phosphotransfer protein Hpt, and a response regulator RR. Each of these proteins
can be either phosphorylated (in which case we write Xp (where X is one of the
four proteins HK,REC,Hpt, and RR)) or unphosphorylated (in which case we
write X). Phosphotransfer reactions occurring in this network are modelled using
mass action kinetics and do not involve a complex formation. In this current
model, we ignore the loss of proteins due to degradation/dilution and assume a
quasi steady state concentrations of all proteins in the network. Considering all
these assumptions, the final set of reactions occurring in the network are shown below:

HK
ks // HKp HKp + REC

k2 // HK + RECp

RECp + Hpt
k3 // REC + Hptp Hptp + RR

k4 // Hpt + RRp.

When we include reverse phosphotransfer reactions involving HK, REC, Hpt and
RR along with hydrolysis reactions at RECp and RRp, phosphorelays have these
additional reactions:

HK + RECp
k2r // HKp + REC RECp

kh1 // REC

REC + Hptp
k3r // RECp + Hpt RRp

kh2 // RR

Hpt + RRp
k4r // Hptp + RR.

From ODEs representing these reactions, we generate different variants of the four
protein phosphorelay architecture by setting some of the rate constants k∗r or kh∗
to zero. This helps to derive expressions for all the 32 different variants shown in
table 2.1. Amongst these reactions, the minimal set of reactions which occur at rates
k2, k3, k4, ks all 6= 0 form the base phosphorelay architecture.
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Reverse Phosphotransfer Reactions Auto-hydrolysis Reactions

Topology ID RECp+HK
k2r−−→ HKp+REC Hptp+REC

k3r−−→ RECp+Hpt RRp+Hpt
k4r−−→ Hptp+RR Recp

kh1−−→ Rec + Pi RRp
kh2−−→ RR + Pi

Topology 1 1 0 0 0 1

Topology 2 0 1 0 0 1

Topology 3 0 0 1 0 1

Topology 4 1 0 1 0 1

Topology 5 1 1 0 0 1

Topology 6 0 1 1 0 1

Topology 7 0 0 0 0 1

Topology 8 1 1 1 0 1

Topology 9 1 0 0 1 0

Topology 10 0 1 0 1 0

Topology 11 0 0 1 1 0

Topology 12 1 0 1 1 0

Topology 13 1 1 0 1 0

Topology 14 0 1 1 1 0

Topology 15 0 0 0 1 0

Topology 16 1 1 1 1 0

Topology 17 1 0 0 0 0

Topology 18 0 1 0 0 0

Topology 19 0 0 1 0 0

Topology 20 1 0 1 0 0

Topology 21 1 1 0 0 0

Topology 22 0 1 1 0 0

Topology 23 0 0 0 0 0

Topology 24 1 1 1 0 0

Topology 25 1 0 0 1 1

Topology 26 0 1 0 1 1

Topology 27 0 0 1 1 1

Topology 28 1 0 1 1 1

Topology 29 1 1 0 1 1

Topology 30 0 1 1 1 1

Topology 31 0 0 0 1 1

Topology 32 1 1 1 1 1

Table 2.1: List of all possible topologies in a four-layered phosphorelay. The topologies are
indicated with a binary identification code that indicates the presence (1) or absence (0) of
reverse phosphotransfer reactions along the layer, and the presence (1) or absence (0) of
hydrolysis reactions at layers 2 and 4 which represents proteins RECp & RRp.

Ordinary differential equations. To simplify notations when writing differential
equations for these networks, we define:

x1 = [HK], x2 = [HKp], x3 = [REC], x4 = [RECp],

x5 = [Hpt], x6 = [Hptp], x7 = [RR], x8 = [RRp].

The resultant system of ODEs is:

ẋ1 = −ksx1 − k2rx1x4 + k2x2x3 (26)
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ẋ2 = ksx1 + k2rx1x4 − k2x2x3 (27)

ẋ3 = −k2x2x3 + kh1x4 + k2rx1x4 + k3x4x5 − k3rx3x6 (28)

ẋ4 = k2x2x3 − kh1x4 − k2rx1x4 − k3x4x5 + k3rx3x6 (29)

ẋ5 = −k3x4x5 + k3rx3x6 + k4x6x7 − k4rx5x8 (30)

ẋ6 = k3x4x5 − k3rx3x6 − k4x6x7 + k4rx5x8 (31)

ẋ7 = −k4x6x7 + kh2x8 + k4rx5x8 (32)

ẋ8 = k4x6x7 − kh2x8 − k4rx5x8 (33)

Here, we see that

ẋ1 + ẋ2 = 0, ẋ3 + ẋ4 = 0, ẋ5 + ẋ6 = 0, ẋ7 + ẋ8 = 0.

As a consequence, xi + xi+1 is constant for i = 1, 3, 5, 7 and the system has four
conserved quantities:

HKtot = x1 + x2, RECtot = x3 + x4, Hpttot = x5 + x6, RRtot = x7 + x8,

where HKtot, RECtot, Hpttot, and RRtot are positive constants given by the initial
concentrations of the system. To ease the writing, we change the notation to

H := HKtot, C := RECtot, T := Hpttot, R := RRtot.

Deriving steady state solutions for the system using numerical simula-
tions

Initially, we examined this system of ODEs by solving them numerically in Matlab
[49] using its native ODE solvers, ode15s and ode23t ([50]). If we consider a
plot of RRp vs time (t), and set the duration of the simulation time to be tsim.
The system is considered to have reached its steady state if the concentration
of RRp has settled to a value which does not change with time i.e. dRRp

dt
= 0.

We verify if RRp has reached its steady state at tsim by passing the values of all
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variables in the ODE at time, tsim as initial guesses to LMFnlsq. This function
considers the Fischer's modification on the Levenberg-Marquardt algorithm to
find optimal values / roots for a system of ODEs. By passing simulation data
generated from these ODE solvers as initial points, we can optimise our estimate
of the steady state and thus derive a more accurate approximation of the steady
state signal response behaviour. Using this approach, before we had the analytical
solution, we numerically derived both time-series data and steady state signal-
response (ks vs RRp (x8)) curves for all the 32 variants of a phosphorelay architecture.

Classifying signal-response curves using numerical simulations

To examine the nature of steady state signal-response curves and understand the
significance of different reaction parameters and concentrations in a phosphorelay,
we use Matlab scripts and generate signal-response curves from randomly sampled
parameter values, sampled from parameter regimes defined by published experimental
data (see table 1.1). We sample a total of 1000 different parameter sets and for each
set, plot the steady state signal-response curve. These curves were then classified
into different response types by examining the sign of the curve‘s second difference
values with input (ks) values close to (if not equal to) zero. For a sigmoidal curve,
these values are positive and in the case of a hyperbolic response, they are negative.
Using this approach, we derive classification data for all the 32 different architectures
(see table 2.2) across all the sampled parameter sets.
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Total protein concentrations are equal Total protein concentrations are unequal

Topology ID Reverse Hydrolysis % Hyperbolic % Sigmoidal % Hyperbolic % Sigmoidal

Topology 1 1 0 0 0 1 100.000 0.000 100.000 0.000

Topology 2 0 1 0 0 1 100.000 0.000 100.000 0.000

Topology 3 0 0 1 0 1 100.000 0.000 100.000 0.000

Topology 4 1 0 1 0 1 100.000 0.000 100.000 0.000

Topology 5 1 1 0 0 1 100.000 0.000 100.000 0.000

Topology 6 0 1 1 0 1 100.000 0.000 100.000 0.000

Topology 7 0 0 0 0 1 100.000 0.000 100.000 0.000

Topology 8 1 1 1 0 1 100.000 0.000 100.000 0.000

Topology 9 1 0 0 1 0 N.R N.R N.R N.R

Topology 10 0 1 0 1 0 N.R N.R N.R N.R

Topology 11 0 0 1 1 0 N.R N.R N.R N.R

Topology 12 1 0 1 1 0 N.R N.R N.R N.R

Topology 13 1 1 0 1 0 N.R N.R N.R N.R

Topology 14 0 1 1 1 0 49.267 50.733 48.133 51.867

Topology 15 0 0 0 1 0 N.R N.R N.R N.R

Topology 16 1 1 1 1 0 83.200 16.800 83.267 16.733

Topology 17 1 1 1 0 0 N.R N.R N.R N.R

Topology 18 1 0 0 0 0 N.R N.R N.R N.R

Topology 19 0 1 0 0 0 N.R N.R N.R N.R

Topology 20 0 0 1 0 0 N.R N.R N.R N.R

Topology 21 1 0 1 0 0 N.R N.R N.R N.R

Topology 22 1 1 0 0 0 N.R N.R N.R N.R

Topology 23 0 1 1 0 0 N.R N.R N.R N.R

Topology 24 0 0 0 0 0 N.R N.R N.R N.R

Topology 25 1 0 0 1 1 100.000 0.000 100.000 0.000

Topology 26 0 1 0 1 1 98.467 1.533 97.867 2.133

Topology 27 0 0 1 1 1 100.000 0.000 100.000 0.000

Topology 28 1 0 1 1 1 100.000 0.000 100.000 0.000

Topology 29 1 1 0 1 1 99.667 0.333 99.867 0.133

Topology 30 0 1 1 1 1 55.400 44.600 57.133 42.867

Topology 31 0 0 0 1 1 100.000 0.000 100.000 0.000

Topology 32 1 1 1 1 1 87.800 12.200 88.800 11.200

Table 2.2: Signal-response relationship classifications for the 32 different topologies (where
only 18 are responsive) using different classification and sampling schemes, i.e. equal
(HKtotal=RECtotal=Hpttotal=RRtotal) or unequal (HKtotal 6= RECtotal 6= Hpttotal 6=
RRtotal) total concentrations, and assuming that the phosphorelay is regulated by a
monofunctional kinase. N.R. indicates that the corresponding topology is non responsive.
We used numerical simulations to derive the steady state values plotted on the signal-
response curve (see section 2.2.1). Classification into different response types has been done
by examining the sign of the second difference values of the signal-response curve at low
input (ks) values. In these topologies, the remaining percentage of curves are categorised
as linear.
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From this, we find that topologies 14, 16, 30 and 32 are tunable with a capacity for
exhibiting both sigmoidal and hyperbolic behaviour depending on the parameters.
To investigate this further, and understand specific relationships that exist between
different reaction rates and protein concentrations, we derived an explicit analytical
solution for the system.

Deriving steady state solutions of the system analytically

The steady states of the system are found by setting the derivatives, ẋi of the
concentrations to zero, that is, ẋi = 0. By equating the right-hand side of the ODEs
in equations (26-33) to zero we obtain a system of polynomial equations in the
concentrations xi. Due to the existence of conserved amounts, some equations are
redundant. For instance, the first and second steady-state equations are

0 = −ksx1 − k2rx1x4 + k2x2x3, 0 = ksx1 + k2rx1x4 − k2x2x3.

One equation is minus the other, and hence, if one of them is fulfilled then so is the
other. This happens because x1 + x2 is conserved. In total, four of the steady-state
equations are redundant and must be replaced by the corresponding conservation
equations. The steady states of the system are thus given as the solutions to the
following system of equations:

H = x1 + x2 (34)

C = x3 + x4 (35)

T = x5 + x6 (36)

R = x7 + x8 (37)

0 = ksx1 + k2rx1x4 − k2x2x3 (38)

0 = k2x2x3 − kh1x4 − k2rx1x4 − k3x4x5 + k3rx3x6 (39)

0 = k3x4x5 − k3rx3x6 − k4x6x7 + k4rx5x8 (40)

0 = k4x6x7 − kh2x8 − k4rx5x8. (41)

Rearrangement of the steady-state equations.

The set of equations (34)-(41) can be replaced by another system of equations that
is easier to interpret. We change equations (38)-(41) by linear combinations of them.
This process does not change the set of solutions to the system. Specifically, we
replace:
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(40) by (40)+(41), (39) by (39)+(40)+(41), (38) by
(38)+(39)+(40)+(41),

and leave (41) as it is. This results in the following equivalent system of equations:

H = x1 + x2 (42)

C = x3 + x4 (43)

T = x5 + x6 (44)

R = x7 + x8 (45)

0 = ksx1 − kh1x4 − kh2x8 (46)

0 = k2x2x3 − kh1x4 − k2rx1x4 − kh2x8 (47)

0 = k3x4x5 − k3rx3x6 − kh2x8 (48)

0 = k4x6x7 − kh2x8 − k4rx5x8, (49)

where (34)-(37) are identical to (42)-(45), and (49) is identical to (41).

Using the above equations, and applying a recursive technique of substituting values
of different variables, we derive expressions for the concentration (xi) of all proteins
in the network at steady state as a function of x8. This implies that if the value of
x8 at steady state is known, then so are the values of x1, . . . , x7 :

x7 = R− x8 (50)

x5 =
k4Tx7 − kh2x8
k4x7 + k4rx8

(51)

x6 = T − x5 (52)

x3 =
k3x5C − kh2x8
k3x5 + k3rx6

(53)

x4 = C − x3 (54)

x1 =
k2x3H − kh1x4 − kh2x8

k2x3 + k2rx4
(55)

x2 = H − x1 (56)

The steady values derived from these expressions are only valid when they are positive.
To ensure this, we derive bounds for x8 values where all variables in the system are
positive and at steady state. By iteratively substituting values of different variables
in equations (50 - 56), we identify bounds for x8, where values of x8 are in the interval
I, where I = (0, α) (see A.2, supplementary text S2, [85]). This ensures that all
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steady state protein concentrations are positive. We can derive the value for α using
equation (57). α is the first positive root of the degree-2 polynomial:

q2(x8) := a2x
2
8 + a1x8 + a0 (57)

where

a2 = kh2(k4 − k4r)(kh1 + k2H) + k2h2(k3 − k3r) + kh2(k3k4 − k3rk4r)T

a1 = −kh1(k3rC(kh2 + k4rT ) + kh2k4R)− kh2(k2H(k4R + k3C) + k3k4T ·R)

−k2k3k4H · C · T

a0 = k2k3k4H · C · T ·R

From equations (34)-(41), we also can derive an expression for ks in terms of x8:

ks =
kh1x4 + kh2x8

x1
.

If we express x4 and x1 in terms of x8 using (50)-(56), we obtain that the exact
analytical expression relating ks and x8 is:

ks = f(x8) =
x8p1(x8)p2(x8)

q1(x8)q2(x8)
(58)

with q2(x8) given as in (57) and

q1(x) = (kh2(k3 − k3r) + (k3k4 − k3rk4r)T )x− k3k4R · T ,

p1(x) = kh2
(
kh1(k4 − k4r) + kh2(k3 − k3r) + (k3k4 − k3rk4r)T

)
x

− k4kh2(kh1 + k3T )R− k3rkh1(kh2 + k4rT )C,

p2(x) = kh2(k2 − k2r)(k4 − k4r)x2 + k2k3k4R · C · T+(
kh2( k4(k2r − k2)R + (k2rk3r − k2k3)C ) + (k2rk3rk4r − k2k3k4)C · T

)
x.

This function is well defined for x8 is in I = (0, α), that is, it is positive and
continuous. When x8 approaches α (the upper bound of the interval I), then ks

tends to infinity (the denominator of f tends to zero). Therefore, the image of f is
the interval (0,+∞). Further, the function f can be differentiably extended at zero
such that f(0) = 0. Given a rate constant ks, there is a unique value of x8 for which
f(x8) = ks. This value is the steady-state value of x8 corresponding to ks, and the
other steady states as shown in (50-56).
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2.2.1.1 Properties of the signal-response curve.

We let ϕ denote the inverse of f , that is,

ϕ(ks) = x8 , if ks = f(x8).

Using the Inverse Function Theorem, the signal-response function ϕ is continuous
and differentiable in [0,+∞). We do not have an analytical expression for ϕ, only
for its inverse. However, most of the information required from ϕ can be retrieved
from f :

(i) The function ϕ is increasing.

(ii) α is the maximal value of the response, x8. When the activation rate ks tends
to infinity, then x8 approaches α.

(iii) The derivative of ϕ at a point ks = k equals ϕ′(k) = 1/f ′(x8) for x8 = ϕ(k).

(iv) The second derivative of ϕ at a point ks = k equals ϕ′′(k) = −f ′′(x8)/f ′(x8)3

for x8 = ϕ(k).

For example, the derivative of the signal-response curve ϕ at zero is:

k3k4H ·R · T
k4kh2(kh1 + k3T )R + k3rkh1(kh2 + k4rT )C

. (59)

Since f is an increasing function in I, we have that ϕ′(k) > 0 for all k ≥ 0 and the
sign of the second derivative of ϕ at k is minus the sign of the second derivative of f
at ϕ(k).

Practical considerations.

(v) The signal-response curve is plotted by generating points (f(x8), x8).

(vi) The maximal response is easily computed as the first positive root of q2(x),
which is a degree-2 polynomial.

(vii) Given ks, the steady-state value of x8 is the first positive zero of the polynomial

ksq1(x8)q2(x8)− x8p1(x8)p2(x8).

The other steady-state values are obtained from x8 and (34-41).
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2.2.1.2 Classifying signal-response curves

Once we have an expression for the steady state signal-response curve, we examine
the nature of response dynamics of a phosphorelay by studying its shape. The shape
carries important information about the response features of the given network [39].
A function g(x) that initially increases slowly and then quickly (after crossing a
threshold value) before slowing down is called sigmoidal, that is, g′(x) is initially
increasing then decreasing or, alternatively, g′′(x) is first positive and then becomes
negative. Unlike this, a function g(x) that increases at a slower and slower rate is
called hyperbolic, that is the derivative g′(x) of g is decreasing or, alternatively, the
second derivative is negative, g′′(x) < 0.

It is difficult in general to establish if a curve is sigmoidal or hyperbolic (or none of
these) and here, we used a simple test to identify if ϕ is sigmoidal or hyperbolic, by
considering the second derivative of the signal-response curve (see section 2.2.1.2).
If the second derivative of ϕ at zero is positive, then the first derivative grows
indicating that the curve will likely be sigmoidal. If, on the contrary, the second
derivative of ϕ at zero is negative, then the curve is likely to be hyperbolic. This
test is a good indicator of the shape of ϕ, but it is important to note that this test
only considers the behaviour near zero. By building algorithms that examine sign
changes in the second derivative curves on the entire signal-response curve and
comparing it with a script that only examines the second derivative sign at zero, we
find that the two results do not vary much. This means that the classification based
on the sign of second derivative at zero is reasonable.

We compute ϕ′′(0) using item (iv) above and ϕ(0) = 0 using Maple. We find that
the sign of ϕ′′(0) agrees with the sign of:

S =− kh1(k4rT + kh2)
(
k3r(k2k3k4 − k2k3rk4r + k2rk3rk4r)C · T + k4k2rk3rkh2R

+ kh2(k2k3 − k2k3r + k2rk3r)(k4R + k3rC)
)
H · C

k2rk4kh2(k3k3r(k4rT + kh2)C · T + k4kh2(k3T + kh1)R)H ·R (60)

− (k3rkh1(k4rT + kh2)C + k4kh2(k3T + kh1)R)2.

Identifying necessary conditions for sigmoidal signal-response curves

As discussed earlier, if S > 0, then the signal-response curve is classified as sigmoidal
and if S < 0, then it is classified as hyperbolic. If the blue terms in equation (60) are
all positive, then the curve is hyperbolic and hence only if some of the highlighted
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blue terms are negative, is S > 0. Note that the negative terms in S are multiplied
by kh1. Therefore, necessary conditions for ϕ to be sigmoidal are

kh1 > 0 and (k2k3k4 − k2k3rk4r + k2rk3rk4r < 0 or k2k3 − k2k3r + k2rk3r < 0).

In particular, if k3r = 0 then sigmoidality cannot occur. By inspecting in detail the
two blue terms, we see that

k2k3 − k2k3r + k2rk3r = k2(k3 − k3r) + k2rk3r = k2k3 + (k2r − k2)k3r,

k2k3k4 − k2k3rk4r + k2rk3rk4r = k2(k3k4 − k3rk4r) + k2rk3rk4r = k2k3k4 + (k2r − k2)k3rk4r.

We conclude that necessary conditions for ϕ to be sigmoidal are:

kh1 > 0 and k2 > k2r and (k3r > k3 or k3rk4r > k3k4). (61)

Further, we conclude the following from an analysis of the expression of S:

• If H or k2 are very small, then S is negative and hence ϕ is hyperbolic.

• If kh2 = 0, then the sign of S agrees with the sign of

H(k2k3k4 − k2k3rk4r + k2rk3rk4r) + k3rk4rkh1.

In this case, necessary conditions for ϕ to be sigmoidal are:

kh1 6= 0 and k2 > k2r and k3rk4r > k3k4.

Identifying necessary conditions for hyperbolic signal-response curves

It can also be shown (see Appendix B.1.2) that if:

k2−k2r > 0, and (k3−k3r)kh2(k4R+k3rC)+k3r(k3k4−k3rk4r)C ·T > 0, (62)

then the second derivative of ϕ strictly decreases over I and hence the curve is
hyperbolic (that is, not only the second derivative at zero indicates so). These two
inequalities are fulfilled if

k2 > k2r, k3 > k3r, k4 > k4r.

That is, if the phosphorelay rate constants are larger than their reverse counterparts
then the curve is hyperbolic. However, the curve can be hyperbolic without these
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inequalities being fulfilled.

Total protein concentrations

By expressing the term S in (60) as a polynomial which is a function of one of
the total amounts, we can observe that for some parameter values, varying the
total amounts can also change the system’s response from sigmoidal (S positive)
to hyperbolic (S negative) and vice versa. The results of the last column in the
table hold true for any choice of parameters that make the leading or independent
coefficients for the term S expressed in terms of total protein concentration, positive.
This has been summarised in table 2.3.

Degree Independent coefficient Leading coefficient Sign of S

H 1 negative
positive

for some parameters

S < 0 for H small,

S > 0 for H large

C 2 negative
positive

for some parameters

S < 0 for C small,

S > 0 for C large

T 3
positive

for some parameters
negative

S > 0 for T small,

S < 0,for C large

R 4
positive

for some parameters
negative

S > 0 for R small,

S < 0,for C large

Table 2.3: Shows the effects of varying total protein levels in different layers. The column
Degree refers to the degree of the polynomial S (60), when it is derived as a function of
different total concentration of proteins in the phosphorelay.

In summary, deriving an analytical solution of the system has given us specific
relationships between different parameters in a system of ODEs describing phos-
phorelays with a monofunctional histidine kinase. Using the necessary conditions
defined in section 2.2.1.2, we carry out a sampling exercise similar to section 2.2.1,
and study the distribution of different response types within a biologically relevant
parameter regime.
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2.2.1.3 Sampling biological parameter regimes using analytical solutions

As described in section 2.2.1, we wrote Matlab scripts that examined each topology
by randomly sampling a total of 1000 different parameter sets from a uniform
distribution of parameters in experimentally determined parameter regimes. For each
set, we derived the signal-response relationship f, i.e. the steady state phosphorylated
x8 (RRp) concentrations corresponding to a given ks over a range of values of x8

between 0 and 0.95 ·α with increments of α
100

. Using this steady state signal-response
curve, we examine the sign of the second derivative of the curve at zero, and arrive
at this distribution of different response types across all 32 topologies (shown in
table 2.4). From this table, we find that topologies 1-9, 25-29 & 31 are always
hyperbolic while topologies 14, 16, 30 and 32 are tunable and can exhibit more
than one response behaviour depending on specific values for parameters in the model.

2.2.2 Tunable phosphorelay architectures

As discussed in sections 2.2.1 and 2.2.1.3, we find that there are several variants
of phosphorelays with a capacity for exhibiting both hyperbolic and sigmoidal
response. This makes them tunable, giving them a capacity for exhibiting different
response behaviours under different parameter regimes. Based on the necessary
conditions defined for a system’s response behaviour (in section 2.2.1.2), we can
determine a phosphorelay’s current response behaviour easily from its reaction
rates and total protein concentrations. Biologically, the response behaviour can be
toggled through mutations which changes reaction rates and also by regulating
total protein concentrations in the relay through transcriptional feedback in the cell
which controls production of new proteins in the cell. When studying such tunable
architectures, a common question to ask is if one behaviour is better than the other
and what it means when the network responds differently in different parameter
regimes. We examine this by comparing the two architectures and testing their
ability to respond to changing inputs, i.e. response time (time taken to respond to
changes in the input) and measure the variance in (reliability of) a relay’s output
depending on the response regime.

2.2.2.1 Responsiveness in topologies 14 and 30 - a comparison between
sigmoidal and hyperbolic regimes

To understand the responsiveness of tunable topologies to incoming signals, we study
the differences in time taken for a relay to respond to a change in input (response
time) under the two regimes (sigmoidal and hyperbolic). For each topology, we
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Total protein concentrations are equal Total protein concentrations are unequal

Topology ID Reverse Hydrolysis % Hyperbolic % Sigmoidal % Hyperbolic % Sigmoidal

Topology 1 1 0 0 0 1 100.000 0.000 100.000 0.000

Topology 2 0 1 0 0 1 100.000 0.000 100.000 0.000

Topology 3 0 0 1 0 1 100.000 0.000 100.000 0.000

Topology 4 1 0 1 0 1 100.000 0.000 100.000 0.000

Topology 5 1 1 0 0 1 100.000 0.000 100.000 0.000

Topology 6 0 1 1 0 1 100.000 0.000 100.000 0.000

Topology 7 0 0 0 0 1 100.000 0.000 100.000 0.000

Topology 8 1 1 1 0 1 100.000 0.000 100.000 0.000

Topology 9 1 0 0 1 0 N.R. N.R. N.R. N.R.

Topology 10 0 1 0 1 0 N.R. N.R. N.R. N.R.

Topology 11 0 0 1 1 0 N.R. N.R. N.R. N.R.

Topology 12 1 0 1 1 0 N.R. N.R. N.R. N.R.

Topology 13 1 1 0 1 0 N.R. N.R. N.R. N.R.

Topology 14 0 1 1 1 0 49.467 50.533 48.267 51.733

Topology 15 0 0 0 1 0 N.R. N.R. N.R. N.R.

Topology 16 1 1 1 1 0 84.533 15.467 85.267 14.733

Topology 17 1 0 0 0 0 N.R. N.R. N.R. N.R.

Topology 18 0 1 0 0 0 N.R. N.R. N.R. N.R.

Topology 19 0 0 1 0 0 N.R. N.R. N.R. N.R.

Topology 20 1 0 1 0 0 N.R. N.R. N.R. N.R.

Topology 21 1 1 0 0 0 N.R. N.R. N.R. N.R.

Topology 22 0 1 1 0 0 N.R. N.R. N.R. N.R.

Topology 23 0 0 0 0 0 N.R. N.R. N.R. N.R.

Topology 24 1 1 1 0 0 N.R. N.R. N.R. N.R.

Topology 25 1 0 0 1 1 100.000 0.000 100.000 0.000

Topology 26 0 1 0 1 1 98.467 1.533 97.867 2.133

Topology 27 0 0 1 1 1 100.000 0.000 100.000 0.000

Topology 28 1 0 1 1 1 100.000 0.000 100.000 0.000

Topology 29 1 1 0 1 1 99.667 0.333 99.867 0.133

Topology 30 0 1 1 1 1 55.467 44.533 57.400 42.600

Topology 31 0 0 0 1 1 100.000 0.000 100.000 0.000

Topology 32 1 1 1 1 1 89.533 10.467 90.067 9.933

Table 2.4: Signal-response relationship classifications for the 32 different topologies (where
only 18 are responsive) using different classification and sampling schemes, i.e. equal
(HKtotal=RECtotal=Hpttotal=RRtotal) or unequal (HKtotal 6= RECtotal 6= Hpttotal 6=
RRtotal) total concentrations, and assuming that the phosphorelay is regulated by a
monofunctional kinase. N.R. indicates that the corresponding topology is non responsive.
We use the sign of a second derivative value at zero to derive this classification data. In
these topologies, the remaining percentage of curves are categorised as linear.
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picked 100 random parameter sets from both sigmoidal and hyperbolic regimes and
for every parameter set, we calculated f and the maximal response α as described
in (57). We then ran a time course analysis where we introduced an arbitrary step
size increase (decrease) of 10% , after starting the simulation with a basal signal
(i.e. ks) level of 0.2 · α, 0.5 · α and 0.8 · α. The switch on (off) time was calculated
as the time taken for the system to reach a new steady state after the input (ks) is
increased (decreased) (figures 2.2 and 2.3). We use the response times from these
100 sample parameter sets and plotted them in panels E and F (see figure 2.2). We
see that the mean time taken by phosphorelays with topology 14 to respond to a
step increase in input (ks), also known as “switch on time”is marginally higher with
a wider distribution for parameters generating a sigmoidal response than hyperbolic.
In the case of topology 30, mean switch on time is instead slightly higher with a
wider distribution when parameters generating hyperbolic response behaviour are
chosen than sigmoidal. In addition to switch on time, we also looked at “switch off
time ”(see figure 2.3) and find that the topologies exhibit a behaviour similar to
what was seen in figure 2.2 with marginal difference in the mean response time and
distribution of response times. Both switch on and switch off times represent the
time taken by a phosphorelay to respond to changing inputs, and are generally called
as response time. The numerical simulations carried out here used Matlab and its
native ODE solvers for stiff systems (ode15s & ode23s).
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A B

C D

E

F

Figure 2.2: Analysis of noise and response properties of topologies 14 and 30 assuming
monofunctional HK. A & B. Signal-response curve for topologies 14 (A) and 30 (B). The
x-axis corresponds to the signal input to the system, which in the model is approximated
by varying the HK auto-phosphorylation rate constant, ks. The y-axis corresponds to the
simulated mean of the fraction of phosphorylated RR, calculated using the PRISM model
checker [86, 87]. The solid and dashed curves show the results obtained from constraining the
system parameters in the hyperbolic (HB) and sigmoidal (SG) regimes respectively. C & D.
Standard deviation in concentration of phosphorylated RR for topologies 14 (C) and 30 (D).
The x-axis shows the signal input to the system, taken to be the HK auto-phosphorylation
rate constant, ks. The y-axis shows the standard deviation (σRRp) over mean of the fraction
of phosphorylated RR (µRRp) at steady state, both calculated using the PRISM model
checker (see section 2.2.2.2). E & F. Box plots showing the distribution of response times
for topologies 14 (E) and 30 (F) as measured from hyperbolic and sigmoidal regimes. For
each topology, the response time is measured for 100 randomly selected parameter sets
from the hyperbolic and sigmoidal regimes.
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Figure 2.3: Distribution of response off times for topologies 14 (A) and 30 (B) as measured
from hyperbolic (HB) and sigmoidal (SG) regimes, and shown as box plots. Response off
time is defined as the time taken for the system to reach a new steady state after the input
(ks) is decreased by 10%. For each topology, the response off time is measured for 100
randomly selected parameter sets from the hyperbolic and sigmoidal regimes, based on
classifications using the second derivative of the signal-response curve at zero (see section
1.2.5).

Having examined the time taken by phosphorelays in different response regimes to
respond to varying inputs, we compare the reliability of response in tunable topologies
when they occur in either sigmoidal or hyperbolic regimes.

2.2.2.2 Reliability of response in topologies 14 and 30 - a comparison
between sigmoidal and hyperbolic regimes

When we use ODEs to model a reaction network, reactions in the model are
defined in a deterministic manner. But when these networks occur in a cell, their
behaviour is less deterministic due to uncertainty in their surrounding environment
and internally within the network as reactions depend on the probability of
collisions occurring between reactants. To understand the reliability of response
in tunable topologies when they are in different response regimes, we use a
probabilistic model checking [86] tool called PRISM (v4.0.3) [87] and build a
Continuous Time Markov Chain (CTMC) model of the phosphorelay contain-
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ing a monofunctional kinase. This probabilistic model will allow us to compare
the behaviour of a tunable phosphorelay in sigmoidal and hyperbolic response regimes.

A CTMC model represents a stochastic process where the state of a system at any
future time point tn+1 depends on its current state at tn and is independent of the
past state of the system. Each state vector of the Markov chain represents the
number of molecules of all species in the system (> 0) at that point of time and
evolves into the next state on the Markov chain, in accordance with a transition
matrix. The state based transition matrix that we build here is defined on the
basis of the stoichiometric matrix which we use to derive an ODE model (as seen
in equations (26-33)) and defines a set of probabilities for transition amongst
different proteins in the network. We built a CTMC model for a generic four protein
phosphorelay with some of the transition probabilities equated to zero. This allows
us to switch between topologies 14 and 30 (See Appendix D).

With a CTMC model which depends on the present state of the system, tools like
PRISM [87] evaluate the Markov chain for all possible transition routes at any
given point of time with each leading to a different state vector on the Markov
chain. Using PRISM’s model checking [88] tools, we can store these transition states
and calculate the probability that a certain specific state occurs. The number of
transition states that PRISM evaluates is directly related to the number of molecules
in the system and it grows exponentially leading to a rapid explosion in the number
of states. This affects the computational tractability of simulating the network.
To ensure that we can simulate the PRISM model for a phosphorelay, we use a
scaling factor and reduce the number of molecules in the system to 10 per protein.
It has been previously shown [89] that using such a scaling ensures computational
tractability and provides a solution which is qualitatively similar to the solution
obtained from a more computationally intensive approach.

We converted the ODE model representing the 32 topologies into elementary reactions
with probabilistic transition rates defining how the molecule numbers change after
each transition (see table 2.5). All bimolecular phosphotransfer rates were transferred
into probabilistic rates by dividing them with a scaling factor, g = NA · V , where
NA is Avogadro‘s number and V is a volumetric factor with dimensions M−1 while
unimolecular reaction rates remained the same and required no scaling (s−1) [90, 91].
We set V in such a way that it ensures that there are 10 molecules for each of the
species in the system and the number of possible states are at a computationally
tractable level.
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Parameters Mass Action Values Dimension Scaling by g= 53191(M−1) Stochastic Values Dimension

ks 0 .. 0.1 s−1 /1 0 .. 0.1 s−1

k2 5.32E+04 M−1s−1 /g 9.99E-01 s−1

k3 1.55E+04 M−1s−1 /g 2.91E-01 s−1

k4 2.20E+04 M−1s−1 /g 4.14E-01 s−1

k5 0.017816822 s−1 /1 0.017816822 s−1

k2r 0 M−1s−1 /g 0.00E+00 s−1

k3r 6.18E+04 M−1s−1 /g 1.16E+00 s−1

k4r 7.49E+04 M−1s−1 /g 1.41E+00 s−1

k2h 0.066414053 s−1 /1 6.64E-02 s−1

HKtot 1.85E-04 M *g 9.86E+00 1

RECtot 1.85E-04 M *g 9.86E+00 1

Hpttot 1.85E-04 M *g 9.86E+00 1

RRtot 1.85E-04 M *g 9.86E+00 1

Table 2.5: Converting kinetic rates used in the ODE models for topology 30 in the
hyperbolic regime to the probabilistic rates used in the CTMC model described in appendix
D.

Following this transformation of a kinetic ODE model into a transition matrix for a
CTMC model of a phosphorelay, we simulate the model and store all the Markov
state vectors for the system. We vary the phosphorylation rate that converts HK to
HKp, i.e. k1 in the model (see Appendix D) using the querying formalism developed
in the PRISM language and calculate the mean concentration of proteins at different
time points and the values of RRp once the system reaches a steady state. By
varying the input (k1 in Appendix D), we derived the mean steady state RRp values
for different inputs and calculated the signal-response curves representing the system
(A & B in figure 2.2) and also calculated noise (C & D in figure 2.2) in the response
levels (RRp) of topologies 14 & 30 respectively, when they were in sigmoidal and
hyperbolic parameter regimes.

From figure 2.2, we see that under the sigmoidal regime, phosphorelays reach a lower
maximal response level and have a high degree of standard deviation in their RRp

values at steady state for both topology 14 and 30.

In summary, we find that tunable topologies containing monofunctional kinases have
more noise in their response levels when they have a sigmoidal response than when
they exhibit a hyperbolic response. In addition to this, topology 30, appears to
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have a shorter response time when facing varying inputs when it is in a sigmoidal
response regime. With topology 14, there is no difference in the response time
between the two response regimes.

So far in this chapter, we have discussed how we can derive ODE models for
phosphorelays with monofunctional kinases, determine the steady state signal-
response behaviours that they exhibit and the properties of tunable phosphorelay
architectures in different response regimes. These models assume simplifications on
phosphotransfer mechanisms, auto-dephosphorylation reactions and also assume
that the total concentration of proteins are a constant. These are important
simplifications which make it easier to model these networks, but differ in a few
ways from the networks which function in a cell.

In the next section, we will discuss phosphorelays with a bifunctional kinase and
understand how additional phosphatase activity for the kinase affects the overall
dynamics in the phosphorelay.

2.2.3 Phosphorelays with bifunctional kinase

We use the same approach described in section 2.2.1 for modelling phosphorelay
architectures with a bifunctional histidine kinase. A bifunctional kinase catalyses
both phosphorylation and dephosphorylation of REC and RECp [19, 21] molecules
respectively and can be represented using the reaction

HK + RECp

k5


k5r

HK− RECp

k6


k5r

HK + REC.

This extends the system shown in section 2.2.1 and results in a new set of ODEs
C.1.1. These ODEs differ from the original model only in the description of the rate
of change for the concentrations of HK and REC, and incorporate a new species
which represents the complex formed by HK and REC. Unlike phosphorelays with
a monofunctional kinase, having a bifunctional kinase does not allow an explicit
analytical relation. Instead of an analytical solution, we infer the existence of an
analytical function relating ks and x8 and examine the properties of this function.
Appendix C gives a detailed description of how we arrive at a signal response
expression and related conditions for a phosphorelay with a bifunctional kinase. The
steady state expressions for each variable xi in the system as a function of x8 are
shown below.

x7 = R− x8 (63)
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x6 =
x8(k4rT + kh2)

k4x7 + k4rx8
(64)

x5 =
k4Tx7 − kh2x8
k4x7 + k4rx8

(65)

x4 =
kh2x8 + k3rx6(C − x9)

k3x5 + k3rx6
(66)

x3 =
k3x5(C − x9)− kh2x8

k3x5 + k3rx6
(67)

x2 =
k2rx4(H − x9) + k6x9 + kh1x4 + kh2x8

k2x3 + k2rx4
(68)

x1 =
k2x3(H − x9)− k6x9 − kh1x4 − kh2x8

k2x3 + k2rx4
(69)

x9 = g(x8) (70)

x9 represents the complex [HK-RECp]. All the other variables (xi, where i =
1,2,3· · · 8) represent the same proteins as described in section 2.2.1. The expression
for g(x8) can be represented as

G(x8, x9) = c0(x8) + c1(x8)x9 + c2(x8)x
2
9 + c3(x8)x

3
9,

where,

c0(x8) =kyx8(kh2(k4R + z3x8) + z1C)
(
kh2(z3(kh1 + k2H) + z4)x

2
8

+ (C(kh1z1 + z2H) + kh2k4R(k2H + k3T + kh1))x8 − k2k3k4CHTR
)

c1(x8) =
(

(k2rz1 − z2)Cx8 − kh2(k2 − k2r)(k4R + z3x8)x8 + k2k3k4CTR
)

(k3k4TR + z4x8)

+
(

(k2k3k4TR− x8z2)(kh2(x8z3 + k4R)(H + C) + z1(2H + C)C)

− kh2k2z1(x8z3 + k4R)(H + C)x8 − k2k2h2x8(x28z23 + k24R
2
)

− 2kh2z3(k2k4kh2R + z1kh1)x
2
8 + kh2x8(k6z3 − z1)(k3k4TR + z4x8)

+ (k6z4x8 − 2z1kh1x8 + k3k4k6TR)(z1C + kh2k4R)
)
x8ky

c2(x8) =
(
kh2z3(z2 + k2z1)x

2
8 + (kh1z

2
1 + (2z2C + k2kh2k4R− k6z4 + z2H)z1

− k4kh2R(k2k3z3T − z2))x8 − k3k4RT (k2k4kh2R + z1(k6 + 2Ck2 + k2H))
)
x8ky

− (k3k4TR + z4x8)(k2k3k4TR + (k2rz1 − z2)x8)

c3(x8) =z1(k2k3k4TR− z2x8)kyx8
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with

z1 := k3r(k4rT+kh2), z2 := k2k3(k4T+kh2), z3 := k4r−k4, z4 := z1−k3(k4T+kh2),

2.2.4 Comparing monofunctional and bifunctional HK medi-

ated phosphorelays

When examining the signal response expression in section C.1.2, we see that the
maximal response of phosphorylated response regulator x8 = [RRp] is independent
of whether the kinase is bifunctional or not. In particular, we see that its value is
independent of the rate constants k5, k5r, k6. However, the signal-response curve in
the bifunctional case is always below the signal-response curve in the monofunctional
case. The expression for when the kinase is monofunctional (seen in (34)-(41)) can
easily be obtained from those in (205) by setting x9 = 0. It follows that if the
common reactions have the same rate constants in the two cases, then for every fixed
x8, the value of x4 (resp. x1) in the bifunctional case is smaller (resp. larger) than in
the monofunctional case. Consequently, for any rate constants k5, k5r, k6, we have
fb(x8) < f(x8). This means that the signal ks required to achieve a certain response
x8 is smaller in the monofunctional case than in the bifunctional case. Nevertheless,
as ks increases, the steady-state value of x8 tends to the maximal response (which is
the same value in both cases). Therefore, the difference between the steady-state
value of x8 in the two cases becomes negligible for large values of ks.

This is due to sequestration of substrate in x9. Therefore, the signal-response
curve in the monofunctional case is always above the corresponding curve in the
bifunctional case (for any choice of additional rate parameters). Since the maximal
response is independent of the role of the kinase, a smaller signal is required to get
close to the maximal response, when the kinase is monofunctional. Furthermore, if
the reciprocal of the Michaelis-Menten constant 72 ky = k5/(k5r + k6) (equation
(204)) increases and k6 is fixed, then fb(x8) increases for a fixed x8 (see Appendix
C.2.3).

66



Unlike phosphotransfer seen in two component signalling networks, enzyme mediated
reactions involving intermediates (complex formation) are usually modelled under
the assumptions of Michaelis-Menten kinetics [92, 93]. Consider a biological catalyst
(enzyme, E) binding to a substrate (S), and forming a complex (ES) (2.2.4). ES
dissociates to form a product P at a rate kp in addition to releasing the original
substrate (S) and enzyme (E) back into the reactant pool at a rate kr,

E + S
kf


kr

ES
kp→ E + P

The rate of product formation (dP
dt
) for this system can be derived as a function

of substrate concentration (S) and reaction rate kp. Assuming that the complex,
ES reaches equilibrium very quickly and its concentration is always at steady state
(irrespective of the concentration of substrate or product [94] molecules), we can
define the rate of product formation (dP

dt
) as

dP

dt
=

Vmax.S

Km + S
(71)

Vmax is the maximal rate of product formation where Vmax = kp.Et and Et = E+ES

(total enzyme concentration, assumed to be constant). Km is known as the Michaelis
constant where

Km =
kr + kp
kf

(72)

It represents the strength of association between E and S in the ES complex and
affects both the rate of product formation and the availability of free substrate
molecules (S) in the reactant system.

In addition to this, as described in sections 2.2.1 and 2.2.1.3, we analysed the
distribution of different response dynamics in phosphorelays with bifunctional
kinase. Similar to our study in sections 2.2.1 and 2.2.1.3, we sampled 1000 different
parameter sets within experimentally determined parameter regimes, using both
numerical simulations and solving the system of ODEs analytically (classification
data shown in tables 2.6 & 2.7 respectively).
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Total protein concentrations are equal Total protein concentrations are unequal

Topology ID Reverse Hydrolysis % Hyperbolic % Sigmoidal % Hyperbolic % Sigmoidal

Topology 1 1 0 0 0 1 100.00 0.00 100.00 0.00

Topology 2 0 1 0 0 1 98.20 1.80 99.40 0.60

Topology 3 0 0 1 0 1 99.90 0.10 99.90 0.10

Topology 4 1 0 1 0 1 99.90 0.10 99.80 0.20

Topology 5 1 1 0 0 1 98.70 1.30 98.80 1.20

Topology 6 0 1 1 0 1 49.60 50.40 51.20 48.80

Topology 7 0 0 0 0 1 100.00 0.00 99.90 0.10

Topology 8 1 1 1 0 1 51.10 48.90 57.60 42.40

Topology 9 1 0 0 1 0 N.R N.R N.R N.R

Topology 10 0 1 0 1 0 N.R N.R N.R N.R

Topology 11 0 0 1 1 0 N.R N.R N.R N.R

Topology 12 1 0 1 1 0 N.R N.R N.R N.R

Topology 13 1 1 0 1 0 N.R N.R N.R N.R

Topology 14 0 1 1 1 0 47.20 52.80 50.90 49.10

Topology 15 0 0 0 1 0 N.R N.R N.R N.R

Topology 16 1 1 1 1 0 50.80 49.20 53.20 46.80

Topology 17 1 1 1 0 0 N.R. N.R. N.R. N.R.

Topology 18 1 0 0 0 0 N.R. N.R. N.R. N.R.

Topology 19 0 1 0 0 0 N.R. N.R. N.R. N.R.

Topology 20 0 0 1 0 0 N.R. N.R. N.R. N.R.

Topology 21 1 0 1 0 0 N.R. N.R. N.R. N.R.

Topology 22 1 1 0 0 0 37.900 61.900 35.700 64.100

Topology 23 0 1 1 0 0 N.R. N.R. N.R. N.R.

Topology 24 0 0 0 0 0 37.8 62.2 42.6 57.1

Topology 25 1 0 0 1 1 100.00 0.00 99.80 0.20

Topology 26 0 1 0 1 1 99.60 0.40 99.00 1.00

Topology 27 0 0 1 1 1 99.90 0.10 99.50 0.50

Topology 28 1 0 1 1 1 99.90 0.10 99.60 0.40

Topology 29 1 1 0 1 1 99.50 0.50 99.00 1.00

Topology 30 0 1 1 1 1 51.60 48.40 58.30 41.70

Topology 31 0 0 0 1 1 100.00 0.00 100.00 0.00

Topology 32 1 1 1 1 1 60.80 39.20 62.00 38.00

Table 2.6: Signal-response relationship classifications for the 32 different topolo-
gies (where only 20 are responsive) using different sampling schemes, i.e. equal
(HKtotal=RECtotal=Hpttotal=RRtotal) or unequal (HKtotal 6= RECtotal 6= Hpttotal 6=
RRtotal) total concentrations, and assuming that the phosphorelay is regulated by a bi-
functional kinase. We used numerical simulations to derive the steady state values plotted
on the signal-response curve and classification into different response types was done by
examining the sign of second difference values of the signal-response curve at low input (ks)
levels (see section 2.2.1). N.R. indicates that the corresponding topology is non responsive.
In these topologies, the remaining percentage of curves are categorised as linear.
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These tables shows that having bifunctional histidine kinase increases the number of
responsive topologies with non constant response curves. For example, topologies
22 & 24 in table 2.6 and table 2.7 are responsive when the kinase has an
additional phosphatase activity (unlike monofunctional HK mediated phosphorelay
topologies shown in tables 2.2 and 2.4). We also see that unlike in the case of a
phosphorelay containing monofunctional kinase, there are more tunable architectures
here, i.e. topologies 6, 8, 22 & 24 (refer to table 2.1). In topologies 16 & 32,
there is a significant drop in the percentage of hyperbolic curves when there is a
bifunctional histidine kinase, along with an increase in the number of sigmoidal curves.

In the models that we discussed so far, we ignore complex formation and degradation
of proteins. We also assume the absence of hydrolysis reactions at the histidine
containing residues. In the next part of this thesis, we will examine how different
assumptions on the mechanisms underlying this signalling network can affect our
understanding of phosphorelays and more specifically, compare the criterion for both
necessary and sufficient conditions for different signal-response behaviours.

2.3 Phosphorelays with different modelling assump-

tions

2.3.1 Model with intermediates

We extend the model given in section 2.2.1 to incorporate the formation of intermedi-
ate complexes at the phosphotransfer reactions. Intermediates refer to the complexes
formed when reactants bind to each other during reactions, before the products are
formed. In the reactions below, Yi, where i = 1, 2, 3 represent the intermediates
formed in the system. That is, the model extended with intermediates consist of the
reactions

HK
ks // HKp HKp + REC

k2a // Y1
k2ar
oo

k2b // HK + RECp
k2br
oo

RECp
kh1 // REC RECp + Hpt

k3a // Y2
k3ar
oo

k3b // REC + Hptp
k3br
oo

RRp
kh2 // RR Hptp + RR

k4a // Y3
k4ar
oo

k4b // Hpt + RRp.
k4br
oo

By setting some of the rate constants k∗r or kh∗ to zero, we obtain different topologies
involving different combinations of reverse phosphorelay and hydrolysis reactions as
before.
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Total protein concentrations are equal Total protein concentrations are unequal

Topology ID Reverse Hydrolysis % Hyperbolic % Sigmoidal % Hyperbolic % Sigmoidal

Topology 1 1 0 0 0 1 100.00 0.00 100.00 0.00

Topology 2 0 1 0 0 1 98.30 1.70 98.70 1.30

Topology 3 0 0 1 0 1 100.00 0.00 100.00 0.00

Topology 4 1 0 1 0 1 100.00 0.00 100.00 0.00

Topology 5 1 1 0 0 1 98.70 1.30 98.70 1.30

Topology 6 0 1 1 0 1 50.50 47.40 47.80 52.20

Topology 7 0 0 0 0 1 100.00 0.00 100.00 0.00

Topology 8 1 1 1 0 1 52.70 45.10 51.90 48.10

Topology 9 1 0 0 1 0 N.R. N.R. N.R. N.R.

Topology 10 0 1 0 1 0 N.R. N.R. N.R. N.R.

Topology 11 0 0 1 1 0 N.R. N.R. N.R. N.R.

Topology 12 1 0 1 1 0 N.R. N.R. N.R. N.R.

Topology 13 1 1 0 1 0 N.R. N.R. N.R. N.R.

Topology 14 0 1 1 1 0 48.30 50.20 43.50 55.00

Topology 15 0 0 0 1 0 N.R. N.R. N.R. N.R.

Topology 16 1 1 1 1 0 52.80 45.80 43.90 51.60

Topology 17 1 0 0 0 0 N.R. N.R. N.R. N.R.

Topology 18 0 1 0 0 0 N.R. N.R. N.R. N.R.

Topology 19 0 0 1 0 0 N.R. N.R. N.R. N.R.

Topology 20 1 0 1 0 0 N.R. N.R. N.R. N.R.

Topology 21 1 1 0 0 0 N.R. N.R. N.R. N.R.

Topology 22 0 1 1 0 0 43.400 34.200 38.800 34.200

Topology 23 0 0 0 0 0 N.R. N.R. N.R. N.R.

Topology 24 1 1 1 0 0 40.8 31.5 46.6 26.2

Topology 25 1 0 0 1 1 100.00 0.00 100.00 0.00

Topology 26 0 1 0 1 1 99.60 0.40 98.70 1.30

Topology 27 0 0 1 1 1 99.80 0.00 100.00 0.00

Topology 28 1 0 1 1 1 99.90 0.00 100.00 0.00

Topology 29 1 1 0 1 1 99.50 0.50 98.90 1.10

Topology 30 0 1 1 1 1 52.70 46.40 52.60 47.40

Topology 31 0 0 0 1 1 100.00 0.00 100.00 0.00

Topology 32 1 1 1 1 1 62.10 37.80 55.80 44.20

Table 2.7: The results of signal-response relationship classification for the 32 different topolo-
gies (where only 20 are responsive) using different sampling schemes (equal or different total
protein concentrations at different layers) equal (HKtotal=RECtotal=Hpttotal=RRtotal) or
unequal (HKtotal 6= RECtotal 6= Hpttotal 6= RRtotal) total concentrations, and assuming
that the phosphorelay is regulated by a bifunctional kinase. N.R. indicates that the corre-
sponding topology is non responsive. We derived steady state analytical expressions for the
steady state values plotted on the signal-response curve. The classification of these curves
into different response types was done by examining the sign of the expression representing
the second derivative of ks as a function of RRp, when RRp = 0. In these topologies, the
remaining percentage of curves are categorised as linear.
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Ordinary differential equations.

We model protein concentrations in the system using ordinary differential equations
(ODEs). To simplify the notation, we define:

x1 = [HK], x2 = [HKp], x3 = [REC], x4 = [RECp],

x5 = [Hpt], x6 = [Hptp], x7 = [RR], x8 = [RRp],

x9 = [Y1], x10 = [Y2], x11 = [Y3].

The dynamics of the concentrations in time is modelled with a system of ODEs:

ẋ1 = −ksx1 − k2brx1x4 + k2bx9 (73)

ẋ2 = ksx1 + k2arx9 − k2ax2x3 (74)

ẋ3 = −k2ax2x3 + kh1x4 + k2arx9 + k3bx10 − k3brx3x6 (75)

ẋ4 = k2bx9 − kh1x4 − k2brx1x4 − k3ax4x5 + k3arx10 (76)

ẋ5 = −k3ax4x5 + k3arx10 + k4bx11 − k4brx5x8 (77)

ẋ6 = k3bx10 − k3brx3x6 − k4ax6x7 + k4arx11 (78)

ẋ7 = −k4ax6x7 + kh2x8 + k4arx11 (79)

ẋ8 = k4bx11 − kh2x8 − k4brx5x8 (80)

ẋ9 = k2ax2x3 − k2arx9 + k2brx1x4 − k2bx9 (81)

ẋ10 = k3ax4x5 − k3arx10 − k3bx10 + k3brx3x6 (82)

ẋ11 = k4ax6x7 − k4arx11 + k4brx5x8 − k4bx11. (83)

The system has four conserved quantities:

HKtot = x1 + x2 + x9, RECtot = x3 + x4 + x9 + x10,

Hpttot = x5 + x6 + x10 + x11, RRtot = x7 + x8 + x11,

where HKtot, RECtot, Hpttot, and RRtot are positive constants given by
the initial concentrations of the system. As before, we write

H := HKtot, C := RECtot, T := Hpttot, R := RRtot.
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Steady-state equations.
We proceed as in the monofunctional case and conclude that the steady states of the
system are given as the solutions to the following system of equations:

H = x1 + x2 + x9 (84)

C = x3 + x4 + x9 + x10 (85)

T = x5 + x6 + x10 + x11 (86)

R = x7 + x8 + x11 (87)

0 = −ksx1 − k2brx1x4 + k2bx9 (88)

0 = −k2ax2x3 + kh1x4 + k2arx9 + k3bx10 − k3brx3x6 (89)

0 = k2bx9 − kh1x4 − k2brx1x4 − k3ax4x5 + k3arx10 (90)

0 = −k3ax4x5 + k3arx10 + k4bx11 − k4brx5x8 (91)

0 = k3bx10 − k3brx3x6 − k4ax6x7 + k4arx11 (92)

0 = −k4ax6x7 + kh2x8 + k4arx11 (93)

0 = k4bx11 − kh2x8 − k4brx5x8 (94)

Hyperbolic vs. sigmoidal.
It is not so straightforward in this case to obtain an analytical description of the
signal-response curve. Therefore, we adopt a direct route to the computation of the
sign of the second derivative at zero.
When ks = 0, then the steady state of the system equals

(x1, . . . , x11) = (H, 0, C, 0, T , 0, R, 0, 0, 0, 0).

We want to find the derivative of the response x8 with respect to ks at ks = 0 at
steady state. To this end, we do the following steps:

1. We take the derivative with respect to ks of both sides of the steady-state
equations. We obtain new equations, where pi = ∂xi

∂ks
:

0 = −x1 − ksp1 − k2brp1x4 − k2brx1p4 + k2bp9, (95)

0 = −k2ap2x3 − k2ax2p3 + k2arp9 − k3brp3x6 − k3brx3p6 + k3bp10 + kh1p4, (96)

0 = −k2brp1x4 − k2brx1p4 + k2bp9 − k3ap4x5 − k3ax4p5 + k3arp10 − kh1p4, (97)

72



0 = −k3ap4x5 − k3ax4p5 + k3arp10 − k4brp5x8 − k4brx5p8 + k4bp11, (98)

0 = −k3brp3x6 − k3brx3p6 + k3bp10 − k4ap6x7 − k4ax6p7 + k4arp11 (99)

0 = −k4ap6x7 − k4ax6p7 + k4arp11 + kh2p8, (100)

0 = −k4brp5x8 − k4brx5p8 + k4bp11 − kh2p8, (101)

0 = p1 + p2 + p9 (102)

0 = p3 + p4 + p9 + p10, (103)

0 = p5 + p6 + p10 + p11, (104)

0 = p7 + p8 + p11. (105)

2. We substitute, in the equations above, the steady-state value when ks = 0 and
obtain:

0 = −H − ksp1(0)− k2brp1(0)− k2brHp4(0) + k2bp9(0),

0 = −k2aCp2(0)− k2ap3(0) + k2arp9(0)− k3brp3(0)− k3brCp6(0) + k3bp10(0) + kh1p4(0),

0 = −k2brp1(0)− k2brHp4(0) + k2bp9(0)− k3aTp4(0)− k3ap5(0) + k3arp10(0)− kh1p4(0),

0 = −k3aTp4(0)− k3ap5(0) + k3arp10(0)− k4brp5(0)− k4brTp8(0) + k4bp11(0),

0 = −k3brp3(0)− k3brCp6(0) + k3bp10(0)− k4aRp6(0)− k4ap7(0) + k4arp11(0),

0 = −k4aRp6(0)− k4ap7(0) + k4arp11(0) + kh2p8(0),

0 = −k4brp5(0)− k4brTp8(0) + k4bp11(0)− kh2p8(0),

0 = p1(0) + p2(0) + p9(0),

0 = p3(0) + p4(0) + p9(0) + p10(0),

0 = p5(0) + p6(0) + p10(0) + p11(0),

0 = p7(0) + p8(0) + p11(0).

This system is linear in p1(0), . . . , p11(0) and hence the derivatives of xi at
ks = 0 can be found by solving the system. We have solved it using Maple. In
particular, we have obtained that

p8(0) =
k4ak3bk3ak4bH ·R · T

denom
(106)
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Where

denom = kh2k4ak3bk4bR(kh1 + k3aT )

+kh1k3ar(kh2k4ar(k3brC + k4aR) + k3brC(kh2k4b + k4brk4arT ))

This is the derivative of the signal-response curve at ks = 0.

3. We repeat the steps above one more time: we compute the derivative with
respect to ks of the above equations (step 1). We evaluate the resulting
equations at the steady state for ks = 0 and at pi = pi(0). We obtain a linear
system in the second derivatives of xi at ks = 0 which can be solved in Maple.
As a result, we obtain the second derivative of x8 with respect to ks at ks = 0

as desired.

Before showing what the second derivative of x8 with respect to ks at ks = 0 is, it is
convenient to introduce new parameters. For i = 2, 3, 4, let

kiy =
kia

kiar + kib
, kiyr =

kibr
kiar + kib

, ki = kibkiy, kir = kiarkiyr.

For an interpretation of these constants see below. In particular, we take ki, kir to
be the rates of forward and reverse phosphorylation at each layer. With these new
constants, we obtain that the derivative of x8 with respect to ks at ks = 0, that is
(106), becomes

p8(0) =
k3k4H ·R · T

k4kh2(kh1 + k3T )R + k3rkh1(kh2 + k4rT )C
. (107)

This expression is identical to the first derivative of x8 with respect to ks at ks = 0

for the model without intermediates, as given in (59). Similarly, the sign of the
second derivative of x8 with respect to ks at ks = 0 equals the sign of:

Sy = S − CHk2k3kh1(k4y(k4rT + kh2) + Tk4k4yr)(Rz2 + CTz1)

− CHk2kh1(z2 − Tz1)((Cz1 +Rkh2k4)k3y + C(k4rT + kh2)k3k3yr) (108)

− C(kh1z1(C −H) + z3)(H(Cz1 +Rkh2k4)(k2k2yr + k2rk2y) + (Ckh1z1 + z3)k2y)

where S is given in (60) and

z1 := k3r(k4rT + kh2), z2 := kh2(k4R + k3rC), z3 := Rkh2k4(k3T + kh1).
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Recall that the condition for sigmoidality is Sy > 0. We have marked in blue the
only terms that can cause the term Sy to be positive. Namely, if S is negative (that
is, the model without intermediates is hyperbolic), C > H and z2 > Tz1, then the
model with intermediates is hyperbolic as well.
We deduce easily that

• If kh1 = 0, then sigmoidality cannot occur.

• If k3r = 0 then z1 = 0 and S < 0, and hence sigmoidality cannot occur.

Interpretation of the new rate constants.

The rate constants kiy, kiyr are the reciprocal of the Michaelis-Menten constants of
each intermediate Yi in each direction. These are the coefficients of the expression in
x1, . . . , x8 obtained by imposing ẋ9 = ẋ10 = ẋ11 = 0 and solving for x9, x10, x11. In
particular, at steady state we have:

x9 =
k2a

k2ar + k2b
x2x3 +

k2br
k2ar + k2b

x1x4 = k2yx2x3 + k2yrx1x4

x10 =
k3a

k3ar + k3b
x4x5 +

k3br
k3ar + k3b

x3x6 = k3yx4x5 + k3yrx3x6

x11 =
k4a

k4ar + k4b
x6x7 +

k4br
k4ar + k4b

x5x8 = k4yx6x7 + k4yrx5x8.

If we plug these values into the ODEs ẋi, i = 1, . . . , 8, we obtain a mass-action
system for the model without intermediates with modified rate constants where
ki = kibkiy and kir = kiarkiyr. This shows that the rate of formation of phosphoforms
in networks with intermediate formation is directly proportional to the strength
of the intermediate complex ( 1

Km
) and the rate at which the complex is formed

(kia), depending on the direction of the reaction. This new rate of phosphotransfer
(without terms representing variables in the network) indicates that the necessary
conditions for sigmoidality and hyperbolic response will remain the same as shown
in section (2.2.1.2).

2.3.2 Model with production and degradation

We investigate if the conditions for sigmoidality are altered by the introduction of
production and degradation in the model.

Reactions, equations and steady states.
We consider the system with reactions as described in section 2.2.1, together with
degradation (∅ represents removal of the protein from the network via degradation).
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HK
k1o−−→ ∅ HKp

k2o−−→ ∅ REC
k3o−−→ ∅ RECp

k4o−−→ ∅

Hpt
k5o−−→ ∅ Hptp

k6o−−→ ∅ RR
k7o−−→ ∅ RRp

k8o−−→ ∅

and production reactions for the unphosphorylated forms:

∅ k1i−→ HK ∅ k3i−→ REC ∅ k5i−→ Hpt ∅ k7i−→ RR

We define as usual

x1 = [HK], x2 = [HKp], x3 = [REC], x4 = [RECp],

x5 = [Hpt], x6 = [Hptp], x7 = [RR], x8 = [RRp].

The dynamics of the concentrations in time is modelled with a system of ODEs:

ẋ1 = −ksx1 − k2rx1x4 + k2x2x3 − k1ox1 + k1i (109)

ẋ2 = ksx1 + k2rx1x4 − k2x2x3 − k2ox2 (110)

ẋ3 = −k2x2x3 + kh1x4 + k2rx1x4 + k3x4x5 − k3rx3x6 − k3ox3 + k3i (111)

ẋ4 = k2x2x3 − kh1x4 − k2rx1x4 − k3x4x5 + k3rx3x6 − k4ox4 (112)

ẋ5 = −k3x4x5 + k3rx3x6 + k4x6x7 − k4rx5x8 − k5ox5 + k5i (113)

ẋ6 = k3x4x5 − k3rx3x6 − k4x6x7 + k4rx5x8 − k6ox6 (114)

ẋ7 = −k4x6x7 + kh2x8 + k4rx5x8 − k7ox7 + k7i (115)

ẋ8 = k4x6x7 − kh2x8 − k4rx5x8 − k8ox8. (116)

The system does not have any conservation law. Thus, the steady-state equations
are given by setting the derivative of the concentration to zero, that is ẋi = 0.

Hyperbolic vs. sigmoidal:

The procedure applied to our initial system in section 2.2.1.1 to obtain the inverse of
the signal-response curve, can be applied here to obtain an analytical expression for
the inverse of the signal-response curve. The role of the total amounts H,C, T and
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R is played by the quotients

K1 =
k1i
k1o

, K3 =
k3i
k3o

, K5 =
k5i
k5o

, K7 =
k7i
k7o

.

We do not reproduce the analysis here again. The procedure leads to the derivative of
the signal-response curve at zero. Alternatively, we can apply the procedure described
in the previous subsection to directly obtain the sign of the second derivative of the
signal-response curve at zero, without explicitly computing the signal-response curve.
The expression of the second derivative of the signal-response curve at zero is very
large, and hence we only provide here the positive monomials with the aim of
determining what architectures can exhibit sigmoidality.
We use the definition of K1, K3, K5, K7 above, together with

K2 =
k2o
k1o

, K4 =
k4o
k3o

, K6 =
k6o
k5o

, K8 =
k8o
k7o

.

The positive terms that can lead to sigmoidality are then

So,pos = k2K3K1(k8o + k4rK5 + kh2)
(
k4rk6ok

2
3K

2
5K6(k2K3 + k2o)

+K4K3k2k3r(kh1 + k4o)(k4rK5(k3rK3 + k6o) + (k8o + kh2)(k4K7 + k3rK3 + k6o))
)
.

We observe that if k3r = k4r = 0 then So,pos = 0 and sigmoidality cannot occur.
Contrary to the system without production and degradation, k3r = 0 does not
guarantee that sigmoidality cannot occur. This is due to the fact that now there is a
degradation of Hptp, which plays the role of the hydrolysis kh1 at RECp. There-
fore, the reverse phosphorelay between layers 3 and 4 can also account for sigmoidality.

In the system with production/degradation reactions, inclusion of intermediates
cannot alter steady-state properties such as the existence of sigmoidality. In recent
work, we have shown that in reaction schemes that do not give rise to conservation
relations, consideration of complex formation does not alter the system properties at
steady state [95].

2.3.3 Model with auto-dephosphorylation at HK

We extend the model given in section 2.2.1 to incorporate auto-dephosphorylation of
HK. That is, we enrich the system with a reaction

HKp
k5−→ HK.
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The ODE system modelling the protein concentrations is identical to (26-33) except
for the expressions for ẋ1, ẋ2 that become

ẋ1 = −ksx1 − k2rx1x4 + k2x2x3 + k5x2

ẋ2 = ksx1 + k2rx1x4 − k2x2x3 − k5x2.

The steps followed in section 2.2.1 can be applied here as well to obtain an analytical
expression for the inverse of the signal-response curve.The sign of the second derivative
of the signal-response curve at zero agrees with the sign of

Sd := (k5+k2C)S−k2k5H
(
(k3T+k2rH)k4kh2z3R+z1k3k2rCH(k3rz2C+k4kh2R)+kh1z

2
3

)
where

z1 = k4rT + kh2, z2 = k4T + kh2, z3 = k4kh2R + k3rz1C

and S is given in Eq. (60). We easily see that Sd can only be positive if S is positive.
Therefore, the necessary conditions for sigmoidality for the simple model are not
altered by explicitly modelling auto-dephosphorylation of HK.

2.3.4 Model with auto-dephosphorylation at Hpt

We extend the model given in section 2.2.1 to incorporate auto-dephosphorylation of
Hpt. That is, we enrich the system with a reaction

Hptp
k5−→ Hpt

We applied the steps described in section 2.3.1 to obtain an expression for the sign
of the second derivative of the signal-response curve at zero in terms of the rate
constants and total amounts. The sign is given by

S3 =S − k5z1
(
z1z2(kh1k3rC + k3k5T + (k2rH + kh1)(k3rC + k5)) + 2 k4kh2z2(Hk2r + z2)R

+ CH(k2k
2
3(k4 − k4r)T

2
+ (k2k3k4 − k2k3rk4r + k2rk3rk4r)kh1T

+ kh1kh2(k2k3 − k2k3r + k2rk3r))
)

(117)

where
z1 = k4rT + kh2, z2 = k3T + kh1
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and S is given in eq. (60). The terms highlighted in blue are the terms that can
possibly contribute to S3 being positive. The last two highlighted terms are also
highlighted in S in eq. (60) and further, they are multiplied by kh1. When k5 is set
to zero, the sign of the second derivative of the signal-response curve at zero agrees
with the corresponding sign for the model without auto-dephosphorylation at Hpt.
However, when k5 6= 0 then sigmoidality can arise even if kh1 = k3r = 0 but k4r > k4.
For this model, necessary conditions for sigmoidality of the signal-response curve are
either that

kh1 > 0 and k2 > k2r and (k3r > k3 or k3rk4r > k3k4).

or that
k5 > 0 and k4r > k4.

In other words, necessary conditions for sigmoidality of the signal-response curve are

kh1(k2−k2r)(k3r−k3) 6= 0 or kh1(k2−k2r)(k3rk4r−k3k4) 6= 0 or k5(k4r−k4) 6= 0.

These equations show the necessary conditions for sigmoidality, which are identical to
findings from models without dephosphorylation at Hpt (section 2.2.1). Biologically,
it shows that a stronger reverse phosphotransfer along with either a bifunctional
phosphatase activity (k5 > 0) or auto-dephosphorylation (kh1 6= 0) is essential for
sigmoidality.

2.4 Summary of Findings

In this chapter, we built models for a generic four protein phosphorelay and
examined the role of different biochemical reactions like reverse phosphorylation,
hydrolysis of phosphorylated aspartate residues, total protein concentration
etc. on the shape of the overall signal-response relationship observed in the
phosphorelays. We did this by generating different variants of the four layered phos-
phorelay architecture where the position of reverse phosphotransfer and hydrolysis
reactions were altered to study all theoretically possible relay structures of length four.

Using a recently developed recursive technique [96–98], we were able to find an
analytical description of the steady states of the ordinary differential equations
(ODEs) representing different phosphorelay architectures (see section 2.2). For a
phosphorelay containing monofunctional histidine kinase, we managed to derive
an explicit analytical description of the signal-response curve. Analysis of the
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relations among the concentrations at steady state revealed that 14 of the 32 possible
topologies result in non-responsive systems, where the level of phosphorylated RR
reaches its maximum for any non-zero signal (see Appendix B.1.1). Common to
all the 14 non-responsive topologies is the absence of a hydrolysis reaction on RR
(kh2 = 0) and, additionally, either there is no hydrolysis reaction on REC (kh1 = 0),
or there are no reverse phosphorylation reactions between REC-Hpt (k3r = 0) or
between Hpt-RR (k4r = 0). In other words, the ability of a four-layered phosphorelay
to respond to a range of signals necessitates the presence of either hydrolysis from
RR, or both hydrolysis from REC and reverse phosphorylation at one of the final
two layers.

For the remaining 18 responsive topologies we sampled 1000 parameter sets (rate
constants and total protein concentrations) from a biologically permissible range,
derived the signal-response curve for each parameter set and classified this curve
as hyperbolic or sigmoidal (see sections 2.2.1 and 2.2.1.3). The hyperbolic case
contains linear signal-response relationships with saturation. The sigmoidal case
indicates that the signal-response relationship includes an inflection point [40],
and could endow the cell with switch-like responses and decision-making [99]
via the phosphorelay. A sigmoidal signal-response relationship can also embed
ultrasensitivity [40, 100]. The classification of the signal-response curves resulting
from parameter sampling revealed that out of the 18 topologies, only 4 allowed
sigmoidality in any significant part (more than 2%) of the sampled parameter
space and when considering both equal and different total protein concentrations at
different layers (see table 2.4, figure 2.4 & figure 2.5).

Interestingly, common to all these topologies is a presence of reverse phosphorylation
between REC-Hpt and between Hpt-RR, as observed in nature [3]. Of the 4
topologies, only two (topologies labelled 14 and 30) resulted in an equal distribution
of sigmoidal and hyperbolic responses among the sampled parameter sets suggesting
that their signal-response relationship can easily be tuned (table 2.4). One of them
(topology 30) represents the configuration that is observed in a large number of four
protein phosphorelays studied to date with reverse phosphorylation at layers three
and four, combined with hydrolysis from layers two and four [29, 30, 101–103].

To further understand the effect of reverse phosphorylation in generating sigmoidality,
we compared the sampled parameter sets resulting in hyperbolic vs. sigmoidal
signal-response relationships. We found that a key difference between the two
parameter sets is the ratio between the forward and reverse phosphorylation rate
constants, where a mean ratio below one is observed in the case of sigmoidal
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Figure 2.4: Schematic representations of the four topologies that allowed sigmoidal signal-
response relationships in a significant part (more than 2%) of the sampled parameter
space when considering monofunctional HK and different total protein concentrations at
different layers (see table 2.4). Panels A, B, C and D show topologies 14, 16, 30 and 32
respectively, each corresponding to a specific set of reverse phosphotransfer and hydrolysis
reactions being present. Reactions are shown as directional arrows, where thickness of the
arrow indicates the relative strength of the reaction. In other words, arrows are weighted
by the mean reaction rate constant obtained from all sampled parameter sets producing
sigmoidality. For each layer and a given topology, a grey (open) backdrop indicates that
the mean of total protein concentration at that layer is high (low), based on all sampled
parameter sets producing sigmoidal signal-response curves.

signal-response relationships, , while in hyperbolic signal-response relationships, the
ratio is greater than one (see table 2.8, figures 2.4 & figure 2.5). To analytically
confirm if the reverse phosphorylation rate constant being higher than the forward
phosphorylation rate constant is a necessary condition for achieving sigmoidality in
phosphorelays, we computed analytically the second derivative of the signal-response
relationship (section 2.2.1). Note that a hyperbolic curve has negative second
derivative throughout its domain (in our case, for positive signals), while the second
derivative of a sigmoidal curve is initially positive and then it changes sign. Thus,
the sign of the second derivative of the signal-response curve at zero can be taken as
a test for sigmoidality. Using the analytical description of the second derivative of
the signal-response curve at zero we found three necessary analytical conditions for
achieving a sigmoidal signal-response relationship: (i) kh1 > 0, (ii) k2 > k2r and (iii)
k3r > k3 or k3rk4r > k3k4, where kh1 is the hydrolysis rate for REC and k2 (k2r),
k3 (k3r) and k4 (k4r) are the rate constants of forward (reverse) phosphotransfer
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Figure 2.5: Schematic representations of the four topologies 14, 16, 30 & 32 in a hyperbolic
signal-response regime. Arrows are weighted by the mean reaction rate constant obtained
from all sampled parameter sets producing hyperbolic signal-response curves. For each
layer and a given topology, a grey (open) backdrop indicates that the mean of total protein
concentration at that layer is high (low), based on all sampled parameter sets producing
hyperbolic signal-response curves. Panels A, B, C and D show topologies 14, 16, 30 and 32
respectively, each corresponding to a specific set of reverse phosphotransfer and hydrolysis
reactions being present. Reactions are shown as directional arrows, where thickness of the
arrow indicates the relative strength of the reaction.

reactions between HK-REC, REC-Hpt and Hpt-RR respectively. If either (i),
(ii) or (iii) are not fulfilled, then the signal-response curve is hyperbolic. As a
consequence, kh1 and k3r are required to be non-zero for sigmoidality to occur. This
analytical result is in full agreement with the classification of signal-response curves
resulting from parameter sampling. More particularly, the above mathematical
conditions explain why only topologies embedding hydrolysis at REC and reverse
phosphotransfer between REC-Hpt display sigmoidality, and why only topologies
where these reactions are coupled with reverse phosphotransfer between Hpt-RR
result in sigmoidality in a larger portion of the parameter space (see table
2.4 and figure 2.4). We further conclude that the rate constant of the reverse
phosphotransfer at HK-REC must be small for sigmoidality to arise (see section 2.2.1).

These results can be understood intuitively if we consider the phosphorelay as a set
of connected stations, through which phosphoryl groups flow at a rate dictated by
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Topology 14 Topology 30

Parameter Ratio Hyperbolic Regime Sigmoidal Regime Hyperbolic Regime Sigmoidal Regime
k3
k3r

3.731 0.8 5.552 0.831
k4
k4r

3.329 0.886 8.66 0.842

Table 2.8: The mean of the ratio of forward to reverse rate constants based on samples
resulting in hyperbolic and sigmoidal signal-response relationships. The results shown are
for topologies 14 and 30, assuming monofunctional HK, and using classifications based on
the second derivative of the signal-response curve at zero and from sampling all parameters
(with equal total protein concentrations at different layers). For additional results using
alternative classification and sampling schemes (different total protein concentrations at
different layers), assuming bifunctional HK, as well as for results from topologies 16 and 32,
see Appendix A.

the signal strength. Without the presence of reverse phosphorylation and hydrolysis
reactions in intermediate layers, phosphoryl groups accumulate at the bottom of the
relay at a constant rate, while intermediate layers can remain unphosphorylated
until the layers below them are saturated [33, 96]. When hydrolysis from the bottom
layer is absent, this saturation effect becomes immediate for the last layer, creating
a non-responsive system (as discussed above). Reverse phosphotransfer reactions
at layers 3 and 4 generate a back-flow from the layer that they are embedded at,
thereby increasing the signal level required for the saturation of the bottom layer
with phosphoryl groups. This buffering effect presents itself in the signal-response
curve of a given layer as sigmoidality, where the phosphorylated form in that layer
can remain at low levels despite high signal flow from the top of the relay. It can be
expected that implementation of subsequent reverse phosphotransfer and hydrolysis
reactions from a given layer would increase the buffering effect and result in higher
levels of sigmoidality in the signal-response relationship. This intuitive picture is in
line with the analytical results described above, which reveal kh1, k2, k3r and k4r

as the key parameters that control the shape of the signal-response relationship
(i.e. its sigmoidality) for the last layer (section 2.2.1). It should also be noted that
sigmoidality at the last layer of a phosphorelay could still be achieved in relays
of shorter or longer length, provided that the general principles outlined above
are met through the use of reverse (or cross) phosphotransfer and hydrolysis reactions.

The analyses described so far have several assumptions with regards to modeling
phosphorelay dynamics. Firstly, we have assumed bimolecular phosphotransfer
reactions without complex formation. This assumption would be satisfied if
phosphotransfer reactions, which are distinct from enzyme-driven reactions, happen
fast and any complexes formed are short-lived. While there is some indication
from in vitro phosphotransfer reactions that this might be the case (e.g. [104]), we
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have relaxed the assumption of no complex formation and developed a model that
includes complex formation at each layer of the relay. By suitable identification
of the rate constants of the system without intermediates to the rate constants
of the system with intermediates (see section 2.3.1), we show that the originally
identified condition - that reverse phosphorylation between layers 2-3, and hydrolysis
are necessary for sigmoidality - also holds when considering complex formation.

Secondly, we have assumed constant total protein concentrations in each layer,
ignoring the effects of any processes such as expression, degradation and dilution.
This assumption would be valid if such processes happen at much slower time
scales compared to the signalling dynamics of the relay. Relaxing this assumption
and considering production/degradation processes as simple in and out fluxes for
un-phosphorylated and phosphorylated proteins respectively, we derived analytically,
an expression for the second derivative of the signal-response curve at zero (see
section 2.3.2). Necessary conditions for sigmoidality in this system are either that
k3r (reverse phosphotransfer from Hpt to REC) or that k4r (reverse phosphotransfer
from RRp to Hpt) is non-zero. These conditions differ from the necessary conditions
for sigmoidality in the simple model. The main differences are that hydrolysis at the
second layer (i.e. kh1 > 0) is no longer a required condition, and that k3r can be zero
as long as k4r is not. The first difference arises because the degradation reaction of
phosphorylated REC mimics the role of kh1. Similarly, the second difference is due
to the degradation reaction of phosphorylated Hpt and RR in the third and fourth
layers. These equalise the roles of the reverse phosphotransfer reactions at the third
and fourth layers in controlling the shape of the signal-response curve.

Thirdly, we have assumed the absence of auto-dephosphorylation of HK and Hpt,
as these proteins get phosphorylated on a histidine residue which is indicated
to be stable against auto-dephosphorylation. We find that explicitly modelling
the auto-dephosphorylation of HK does not alter the conclusions with regards
to the necessary conditions for sigmoidality (section 2.3.3). When assuming
auto-dephosphorylation of Hpt, we find that the necessary conditions required for
sigmoidality are either that the necessary conditions for the simple model hold, or
that k4r > k4 (see section 2.3.4). As a consequence, sigmoidality can arise even
if kh1 and k3r are zero, that is, in the absence of hydrolysis at REC and reverse
phosphotransfer between Hpt and REC. This can be explained similarly to why
degradation reactions alter the necessary conditions for sigmoidality in the simple
model.

In the above treatment, we have also assumed a monofunctional HK, while it is
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known that several HKs can show both phosphorylation and dephosphorylation
activity towards their substrate (in this case REC). We find that considering such
a bifunctional HK does not alter the overall analytical conclusions regarding the
necessity of fast reverse phosphotransfer and presence of hydrolysis reactions for
enabling sigmoidality in the system (see Appendix C). We find that the addition of a
bifunctional HK can have significant effects on the distribution of the signal-response
relationship classification in specific topologies (see tables 2.6 & 2.7). In particular,
topologies with reverse phosphotransfer reactions in all layers exhibit a drop in
the number of parameter sets showing sigmoidality when HK is bifunctional, while
topologies lacking hydrolysis at REC can exhibit sigmoidality where they could not
under the simple model.

The latter finding is understandable as the bifunctional HK-mediated dephosphory-
lation can mimic the effects of hydrolysis at REC (kh1). We found that varying the
rate constant of the HK-mediated dephosphorylation at REC (k5) in comparison to
changing kh1 has similar but stronger effects on the shape of the signal-response
relationship (see figure 2.6). The additional dephosphorylation reaction mediated
by the bifunctional HK alters the analytical description of the signal-response
relationship in such a way that several previously non-responsive topologies become
responsive, while the maximal level of phosphorylated RR at steady state remains
unaltered (section 2.2.3). However, due to sequestration of phosphorylated REC
by the bifunctional HK and subsequent dephosphorylation, a higher signal level is
required when HK is bifunctional to achieve the same level of response as in the
monofunctional case (for a given set of parameters).

To understand the consequences of hyperbolic vs. sigmoidal signal-response
relationships in a phosphorelay, we focused on the two topologies that displayed
high levels of tunability between these two response types (topologies 14 and 30)
and further analyzed the signal-response relationship. As explained above, both
of these topologies embed reverse phosphotransfer reactions between REC-Hpt
and between Hpt-RR. They differ, however, in the implementation of hydrolysis
reactions; topology 30 embeds hydrolysis at the level of both REC and RR, while
topology 14 embeds hydrolysis only at the level of REC. For each topology we
picked 100 random parameter sets from both hyperbolic and sigmoidal regimes (i.e.
parameters resulting in hyperbolic and sigmoidal signal-response relationships), and
analyzed the noise properties and response time of the resulting systems (section
2.2.2.2). To understand the reliability of the response, we examine the network’s
noise in output i.e. we are measuring the standard deviation in the response
(RRp) levels with respect to different input (ks) levels. In this study, we did not
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Figure 2.6: Panels (A & B) show the effects of varying k5 (dashed line) and kh1 (dotted
line) on the signal-response curves in both the sigmoidal and hyperbolic regimes. Panels (C,
D, E and F) show that the shape of the signal-response curve can be tuned from one regime
to another by varying total protein levels at different layers of the relay. The x-axis is the
signal to the system (the HK auto-phosphorylation rate constant, ks), while the y-axis
corresponds to the concentration of phosphorylated RR. Each line represents a system
with varying total protein levels. Parameters used to generate the curves in this figure are
described in appendix A.2.
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introduce noise from outside the network but instead used PRISM to measure the
reliability of the network’s response when reactions in the network are modelled
as probabilistic processes i.e. we examined the intrinsic noise or variations in the
network. These variations are due to the probabilistic nature of chemical reactions
where collisions between reactants results in product formation, and therefore is
dependent on the probability of reactant molecules colliding with each other. We
find that for both topologies, the phosphorylated RR levels across the full signal
range displayed higher levels of noise in the sigmoidal regime compared to the
hyperbolic regime (figure 2.2). This finding is also in line with previous theoretical
findings, which showed that the level of noise in a dynamical system is proportional
to the level of signal amplification it implements [104]. The finding also fits the
experimental results of the B. subtilis sporulation phosphorelay, which embeds
topology 30 discussed here, and displays high levels of heterogeneity in its output [36].

In contrast to the results from the noise analysis, the results of the response time
analysis differed for the two topologies. Response time refers to the time required for
the phosphorylated RR levels to reach steady state following a step increase (or drop)
in signal levels (section 2.2.2.1). With the parameters set to result in sigmoidality,
topology 30 displayed a smaller response time compared to the case when parameters
were set to result in a hyperbolic signal-response relationship (see figures 2.2 & 2.3).
For topology 14, however, we did not observe any difference in response times under
hyperbolic and sigmoidal regimes. These results can be understood in light of the
different hydrolysis reactions present in these two topologies. Having both hydrolysis
reactions present, topology 30 displays a lower phosphorylated RR level at saturation
and requires a higher signal level to reach the same level compared to topology 14
(compare figure 2.2A & figure 2.2B). At the same time, however, the presence of
both hydrolysis reactions in topology 30 could allow more parameters for tuning the
level of sigmoidality and also enhance the effect of the difference between reverse
and forward phosphorylation rates from the third layer (see eq. (60)). This could
provide the basis for the observed improvement in response time in topology 30, i.e.
the ability to achieve sigmoidality via less pronounced reverse phosphorylation rates
between Hpt-RR, such that the response at the level of RR is not slowed down.

2.5 Discussion & Conclusions

In this chapter, we undertook an analytical and simulation based study to decipher
the functional role of the conserved features of these phosphorelays. The findings
demonstrated that either the presence of hydrolysis from RR, hydrolysis from REC
or reverse phosphorylation between REC-Hpt or Hpt-RR are necessary to achieve
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a responsive four-layered phosphorelay. These structural constraints to achieve a
functional signalling system are further refined if the signal-response relationship of
such a relay is to be sigmoidal. In particular, we prove that necessary conditions for
sigmoidality are the presence of hydrolysis at the second layer, high forward flow of
phosphoryl groups at the second layer, and high reverse flow of phosphoryl groups
at the third and final layers. The last condition directly controls the shape of the
signal-response relationship, with a ratio of forward to reverse phosphorylation rate
constants above (below) one strongly favouring a sigmoidal (hyperbolic) relationship.
The noise characteristics and response times are different in the two regimes resulting
in noisier and faster signalling from the phosphorelay when it operates in the
sigmoidal regime. We find that bifunctionality of a HK does not alter substantially
these conclusions.

These results provide mathematical proof that the way in which reverse phosphory-
lation in phosphorelays is implemented in natural systems endows functionality and
allows tuning of signal-response relationships between a hyperbolic and sigmoidal
regime. Together with previous mathematical analyses of phosphorelays, which
showed that the maximal level of phosphorylated RR and the signal-to-noise ratio
of the response saturate at a relay length of four [33, 96], these findings provide
a possible explanation for observed phosphorelay structures. It is plausible that
relay length and specific location of reverse phosphorylation and hydrolysis reactions
have evolved towards achieving signal processing capability. Evolution could
have then exploited specific regimes of rate constants to achieve higher plasticity
in the signal-response relationship phosphorelays could embed. In particular,
the naturally observed structure makes it possible to tune the signal-response
relationship of a phosphorelay both through genetic mutations affecting reaction
rate constants and through regulatory interactions. The latter could include
regulating the total protein concentrations at the different layers of the relay
(e.g. via transcriptional regulation or feedback), altering reaction rate constants
through binding of auxiliary proteins on relay components, and regulating the
bi-functional activity of a HK. Indeed, we find that all these parameters have a
significant effect on the shape of the signal-response relationship (figures 2.2 and
2.6). There is some empirical evidence that cells might be exploiting such alterations
as regulatory points. For example, the kinase and phosphatase activities of certain
bifunctional HKs may be regulated through binding of auxiliary ligands [17, 105] or
two-component proteins [106]. Experimental studies towards exploring the pres-
ence and extent of the other possibilities should be facilitated by the presented results.

All these finding are in line with the observations from the B. subtilis sporulation
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phosphorelay, which is the phosphorelay with the most extensive characterization
of response dynamics. This relay displays topology 30 presented here, and has
been recently shown to display ultrasensitivity [37] and high levels of noise [36]. It
has been so far not clear where the source of such ultrasensitivity lies [37]. The
presented results suggest that the relay dynamics itself could be the primary source
of these observed dynamics and noise. Indeed, we find that the in vitro measured
kinetic rates from this relay ([55]) fit the necessary conditions we derived here
for sigmoidality. More intriguingly, the B. subtilis relay features transcriptional
feedbacks to the second and fourth layers. As discussed above, such regulation on
the concentrations of relay components could allow tuning of the signal-response
relationship between hyperbolic and sigmoidal (see figure 2.6). This could contribute
to the observed complexity in the dynamics of this system [3, 36, 37]. Thus,
considering relay dynamics in light of the findings presented here could help design
future experiments to better understand the control of the sporulation decision in
B. subtilis. More generally, the presented findings allow for classification of the
signal-response relationship of a phosphorelay from in vitro constitution of its parts
and measurement of the specific phosphotransfer reaction rates using radiolabelled
phosphate groups. Such in vitro measurements are commonly employed in the study
of bacterial two-component systems [55, 107, 108], and while they cannot be entirely
conclusive about the in vivo rates, provide an insight about the parameter regime in
which the kinetics of a phosphotransfer reaction resides. Combined with the findings
presented here, such measurements would be informative for further experimental
designs (e.g. analysis of population level heterogeneity would be interesting to pursue
if signalling network dynamics indicates sigmoidal signal-response relationships).

In summary, the main conclusions of this part of the study are that phosphorelays
can embed hyperbolic or sigmoidal signal-response relationships, and that the latter
type is not possible without reverse phosphorylation and a hydrolysis reaction at the
second layer. Achieved either via dynamical tuning or through evolution of kinetic
rates, the hyperbolic and sigmoidal regimes should allow appropriate physiological
responses as needed by the cell. We would expect that sigmoidal dynamics would be
favoured when binary decision making is required. In contrast, hyperbolic or linear
signal-response relationships would be required to produce responses that track the
incoming signals. Classifying a given phosphorelay’s behaviour into these regimes
would be highly valuable, but is currently hampered as measuring the response of a
phosphorelay at different signal levels and/or different component concentrations is
highly difficult. Further, the signals feeding into phosphorelays are often unknown
or not feasible for experimental manipulation. The results presented here offer an
alternative, in which the shape of the signal-response relationship of the relay can
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be predicted from the measurement of forward and reverse phosphorylation rates.
These measurements are possible in most cases through in vitro phosphotransfer
experiments, as discussed above for the B.subtilis system, and hence can provide a
direct prediction of the in vivo signalling dynamics that can be further tested.

Mutations and gene duplications provide the mechanisms by which the structure and
dynamics of cellular interaction networks can be changed in evolution. Mathematical
and computational approaches such as the ones presented here allow mapping the
signal-response relationship of the possible systems that can be generated in this
way. This understanding is essential to grasp why evolution might have resulted
in the observed features of biological systems and how we might further modulate
them. Thus, our findings on phosphorelays should facilitate both understanding the
physiology mediated by these systems in a wide range of organisms and (re)engineering
these through synthetic biology.
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3
Unlimited multistability in microbial

signalling networks

Chapter Overview

Building on the detailed examination of different biochemical reactions occurring
in different phosphorelay architectures, we explore the dynamics of networks
containing multidomain sensor histidine kinase proteins and compare it with
networks which have sensor kinases where there is only one phosphotransfer domain.
This is important as unlimited multistability is known to arise from multi-site
phosphorylation seen in the signalling networks of eukaryotic cells, but a similar
universal mechanism has not been identified in microbial signalling networks.
This chapter explores the effects of multidomain proteins in prokaryotic signalling
networks and identifies how interconnected feedback loops amongst different
phosphoforms of these multidomain sensor histidine kinases tied to a downstream
substrate give rise to multistable signal response dynamics.

After identifying the core sub network in the overall signalling architecture that
implements multistability, we examine how the dynamics of sharing proteins
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and combining different inputs with a common response depends on the number
of shared proteins and its position in a phosphorelay. We find that there is
unbounded multistability with a direct co-relation between the number of steady
states and n sites of phosphorylation. By testing simple architectures with
two different sensor histidine kinases sharing common phosphotransfer proteins
acting on a common response regulator, we examine how combining multiple
inputs via shared components has a potential for implementing Boolean logic
in some network architectures. By sampling within biologically acceptable
parameter regimes, we identify parameters where these architectures with shared
components implement AND, OR and ADDER functions in cells. Using two
experimentally studied examples of two-component systems implementing hybrid
HKs, we show that bistability and implementation of logic functions are possible
under biologically feasible reaction rates. Microbial genomes contain significant
numbers of hybrid and unorthodox HKs, with some genomes having a larger
fraction of these proteins compared to regular HKs. We show that microbial
cells are thus theoretically unbounded in mapping distinct environmental sig-
nals onto distinct physiological states and performing complex computations on them.

Finally, we will discuss how findings from some of these simple theoretical architec-
tures are applicable to larger and more complex naturally occurring systems in a
cell and how these findings facilitate the understanding of natural two-component
systems and allow their engineering through synthetic biology.

3.1 Introduction

The ability to map environmental signals onto distinct internal physiological states
or programmes is critical for single-celled microbes. This ability requires mapping
different environmental signals, or combinations thereof, onto specific physiological
responses in a reliable fashion. A crucial systems dynamics feature underpinning such
an ability is multistability. Prokaryotic signalling systems contain two-component
systems comprising histidine kinase (HK) receptors and response regulator proteins
engaging in phosphotransfer reactions. Understanding the basis of this ability from
the viewpoint of systems dynamics, as well as biochemical implementations, is
thus crucial for the understanding of cellular behaviour in systems biology and its
re-engineering in synthetic biology.

From a systems dynamics perspective, multistable cellular systems such as signalling
networks can display abrupt transitions among different steady states when changes
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in specific system parameters cross threshold points [39]. Furthermore, the threshold
dynamics under multistability can allow cells to generate binary responses to
environmental signals, thereby providing the potential for implementing Boolean
logic [109]. This threshold dynamics is the hallmark of multistability and is
observed in several cellular responses including the all-or-none type responses seen in
eukaryotic cell fate determination [99] and cell cycle regulation [110] and is indicated
to underpin cellular differentiation [111].

From a mechanistic viewpoint, a key question is how multistability can be
implemented through biochemical reactions. Answering this question could allow us
to link observed biochemical features of natural systems to higher level response
dynamics and exploit certain biochemistries to engineer cell behaviour. There has
already been significant progress in both directions, with transcriptional feedback
[111, 112] and multi-site phosphorylation [113, 114] identified as key biochemical
mechanisms for implementing multistability. These mechanisms are found commonly
in nature and have already been exploited in synthetic biology to engineer bistable
gene expression and ultrasensitive signal processing [111, 112, 115–117]. In
particular, multi-site phosphorylation is proposed as a very general mechanism
to generate unbounded multistability [118, 119]. It has been mathematically
proven that a protein with n phosphorylation sites catalysed by enzymes in a
distributive, sequential manner can give rise to at least n+ 1 steady states [118, 119].
Subsequent theoretical studies show that a sharing of enzymes (i.e. kinases and phos-
phatases) among different phosphorylation steps and the linking of these steps are
crucial prerequisites for multistability in a multi-site phosphorylation system [97, 120].

Interestingly, multi-site, enzyme-mediated phosphorylation as seen in eukaryotic
systems is mostly lacking in microbes. Instead, microbes rely on the so-called two-
component systems for their environmental sensing and inter-cellular signalling [11].
Biochemically, two-component signalling is very distinct from enzyme-mediated
phosphorylation dominating eukaryotic signalling and relies on phosphotransfer
reactions between histidine and aspartate residues on histidine kinases (HKs)
and response regulator (RR) proteins [11]. Since this biochemistry precludes the
enzyme-mediated mechanisms of multistability generation [119] and phosphotransfer
occurs via collisions between unphosphorylated proteins and phosphate carrying
biomolecules in the absence of an enzyme, it raises the question of whether microbes
use a different mechanism for generating multistability or lack this feature altogether.
Although specific biochemical arrangements in some two-component systems are
shown to enable bistability [35, 121, 122] and several microbial phenotypes are
indicated to exhibit bistability [123, 124], a general mathematical framework for
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assessing the capacity of system dynamics in two-component signalling has been
lacking. Here, we develop such a framework and particularly consider the system
dynamics arising from multidomain sensor HKs in prokaryotic signalling.

We find that the presence of these multidomain proteins can allow the system to
display bistability, where systems with regular (also called classic or regular) HKs
cannot. We show that bistability arises from, and necessitates, the reactions among
the different phosphorylation states of the multidomain HK and a downstream
protein. Extending from this result, we provide a mathematical proof to show
that n multidomain HKs sharing the same downstream component can result in
a multistable system with 3n steady states. We find that this system dynamics
property is easily used to implement Boolean logic using multidomain HKs sensing
different signals. Finally, we find that two experimentally studied systems, found in
yeast osmoregulation and Vibrio harveyi quorum sensing, employ hybrid HKs and
display a capacity to implement logic functions and bistability with hysteresis as
expected by the presented theoretical framework. We begin with an introduction to
different types of multidomain proteins found in prokaryotic signalling networks.

3.1.1 Multi Domain Histidine Kinase and their phosphoforms

Two-component signalling networks and phosphorelays containing different two
component proteins [11] are present across all studied microbial genomes to date,
with some environmental bacteria showing more than 60 distinct two-component
systems [81, 125]. In some phosphorelays the four stages of phosphotransfer can be
encoded on separate proteins as seen for example in the phosphorelay regulating
Bacillus subtilis sporulation decision [3], or fewer proteins with multidomain sensor
kinase proteins where REC and Hpt domains can be embedded on a single protein
known as a hybrid HK or form an unorthodox HK (embedding both REC and Hpt
domains) [30] (figure 1.2). All three types of HKs, regular, hybrid and unortho-
dox, are found to coexist in many microbial genomes, as well as in plants [28, 30, 126].

With multidomain HKs having more than one phosphotransfer domain, they embed
multiple phosphotransfer reactions on the same protein, where each domain can
be either phosphorylated (P) or unphosphorylated (O). Unlike regular HKs which
have only two states: phosphorylated or unphosphorylated, depending on the
position of phosphate groups, hybrid and unorthodox HKs have 22 = 4 and 23 = 8

phosphoforms (see figure 1.2) respectively.
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A B
A B

Figure 3.1: Representative figure showing all possible transitions amongst different phos-
phoforms of HK. A hybrid HK has two phosphotransfer domains i.e. 22 = 4 phosphoforms
(HKOO, HKPO, HKOP and HKPP) (A) and an unorthodox HK with 3 phosphotransfer
domains has 23 = 8 phosphoforms (HKOOO, HKPOO, HKOPO, HKOOP, HKPOP, HKOPP,
HKPPP and HKPPO) (B). Arrows joining two different HK forms represent a biochemical
transition reaction that occurs between the two connected HK forms, with the arrow head
representing the direction of phosphotransfer.

In chapter 2, we carried out a thorough exploration of different four protein phos-
phorelay architectures, and examine the role that different biochemical reactions in
the network play in defining specific response dynamics to a phosphorelay. In this
chapter, we will focus on phosphorelays with different multidomain sensor proteins
and test if this leads to a reaction structure with a capacity for multistability in the
network.

3.2 Full, core, and shared components in multido-

main HK mediated phosphorelays

3.2.1 Full Hybrid HK mediated Phosphorelay

Phosphotransfer reactions in a hybrid HK mediated phosphorelay are similar to the
reactions seen in section 2.2.1, excluding those reactions which involve REC. As the
REC domain in a HK mediated phosphorelay is found on the same protein as the
histidine kinase, phosphate groups arriving at the HK travel via an intramolecular
phosphotransfer from HK to REC before reaching Hpt and RR. This results in the
occurrence of HK in different phosphoforms (see figure 3.1). The resulting full set of
phosphotransfer reactions are shown in reactions (118)-(124).

HKOO
k1→ HKPO

k2→ HKOP
k3→ HKPP (118)
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HKOP + Hpt
k4


k7

HKOO + Hptp (119)

HKPP + Hpt
k5


k8

HKPO + Hptp (120)

HKOP
k9→ HKOO (121)

HKPP
k10→ HKPO (122)

Hptp + RR
k11


k12

Hpt + RRp (123)

RRp
k13→ RR (124)

These reactions are initially examined using the CRNT Toolbox ([127–129]). We
find that the underlying chemical reaction network (CRN) has the capacity for
bistability (see section 1.2.6). To identify the reactions and proteins responsible
for this bistability, we iteratively remove reactions from the larger reaction network
described in reactions (118) -(124) until we derive a minimal core network which is
bistable .1 This minimal core network contains a hybrid HK occurring as different
phosphoforms (HKOO, HKPO, HKOP and HKPP) along with Hpt (as Hpt & Hptp).
The reactions in this core include forward phosphotransfer (reactions involving the
rates k1. . . k5 in (118)-(124)) and hydrolysis reactions at Hptp (125).

Hptp
k6→ Hpt (125)

In the original scheme represented by reactions (118)-(124), there is no hydrolysis
reaction at Hptp. But in the core hybrid network, we introduce reaction (125) to
ensure that phosphate groups are removed from Hptp and the core network generates
a non-constant steady state response represented by the concentration of Hptp in the
phosphorelay. We find that the core bistable network does not require any reverse
phosphotransfer (the reaction represented by k7 in (119)) and is therefore not one of
the necessary mechanisms responsible for introducing bistability. In summary, the
minimal core network shows that bistability in hybrid HK mediated phosphorelays
is due to transitions amongst different phosphoforms of HK, Hpt and Hptp.

To understand this better and identify necessary and sufficient conditions causing the
1We define a minimal bi(multi)stable network as one where any further removal of proteins or

reactions in the network results in the loss of bi(multi)stability.
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observed bistability in the network, we derive an ODE model representing reactions in
the bistable core and try to arrive at analytical expressions for variables in the system.

3.2.2 Modelling the core bistable network in a hybrid HK

mediated phosphorelay

Reactions occurring in a bistable minimal core network are:

HK00
k1 // HKP0

k2 // HK0P
k3 // HKPP HK0P + Hpt

k4 // HK00 + HptP

HptP
k6 // Hpt HKPP + Hpt

k5 // HKP0 + HptP.

Note that for notational convenience, we have renamed the relevant rate constants
as k1, . . . , k6 and denote the concentration of the species as follows:

x1 := [HK00] x2 := [HKP0] x3 := [HK0P] x4 := [HKPP]

x5 := [Hpt] x6 := [HptP].

Under the law of mass-action, we model the dynamics of the concentrations over
time by the following system of ordinary differential equations:

ẋ1 = k4x3x5 − k1x1 (126)

ẋ2 = k5x4x5 + k1x1 − k2x2 (127)

ẋ3 = k2x2 − k3x3 − k4x3x5 (128)

ẋ4 = k3x3 − k5x4x5 (129)

ẋ5 = k6x6 − k4x3x5 − k5x4x5 (130)

ẋ6 = −k6x6 + k4x3x5 + k5x4x5, (131)

Observe that
ẋ1 + ẋ2 + ẋ3 + ẋ4 = 0 and ẋ5 + ẋ6 = 0.

It follows that the sums of concentrations x1 + x2 + x3 + x4 and x5 + x6 are constant
over time. This leads to the extra equations

x1 + x2 + x3 + x4 = H, x5 + x6 = T. (132)

for some positive total amounts H,T > 0.
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3.2.2.1 Positive steady states

The positive steady states of the system are the solutions to the equations ẋ1, . . . , ẋ6 =

0, constrained by the conservation laws in eq. (132). Due to the conservation laws,
the equation ẋ6 = 0 is fulfilled provided ẋ5 = 0 is fulfilled, and similarly, ẋ4 = 0 is
fulfilled provided ẋ1 = 0, ẋ2 = 0, and ẋ3 = 0 are fulfilled. Therefore, the equations
ẋ6 = 0 and ẋ4 = 0 can be disregarded. Consider first the system of equations given
by ẋ1 = 0, ẋ2 = 0, ẋ3 = 0, and the first equation in (132). That is, consider the
system of equations:

0 = k4x3x5 − k1x1 (133)

0 = k5x4x5 + k1x1 − k2x2 (134)

0 = k2x2 − k3x3 − k4x3x5 (135)

H = x1 + x2 + x3 + x4. (136)

This system is linear in x1, x2, x3, x4 with coefficients involving the rate constants
and x5. We solve it and obtain the following algebraic expressions for x1, x2, x3, x4
at steady state, depending on the value of x5 at steady state:

x1 =
k2k4k5Hx

2
5

(k1 + k2k4)k5x25 + k1(k2 + k3)k5x5 + k1k2k3
(137)

x2 =
k1(k4x5 + k3)k5Hx5

(k1 + k2k4)k5x25 + k1(k2 + k3)k5x5 + k1k2k3
(138)

x3 =
k1k2k5Hx5

(k1 + k2k4)k5x25 + k1(k2 + k3)k5x5 + k1k2k3
(139)

x4 =
k1k2k3H

(k1 + k2k4)k5x25 + k1(k2 + k3)k5x5 + k1k2k3
. (140)

These expressions are positive provided x5 is positive. We use the second equation
in eq. (132) to determine the value at steady state of x6. Clearly, we have that
x6 = T − x5, which is positive provided x5 < T .

3.2.2.2 The steady state polynomial.

All concentrations are expressed as functions of x5, and we have not used the equation
ẋ5 = 0. We can replace the equation ẋ5 = 0 by any linear combination of the steady
state equations that involves this one. By doing so, the solutions to the equations do
not change. We replace it by the equation ẋ5 + ẋ1 − ẋ4 = 0. This cancels out the
quadratic terms in the equation ẋ5 = 0, and we obtain the equation

0 = k6x6 − k1x1 − k3x3. (141)
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Substituting into (141) the values of x1 and x3 in (137), (139), and further letting
x6 = T − x5, we obtain that, at steady state, it holds

0 = k6(T − x5)−
k1k2k4k5Hx

2
5 + k1k2k3k5Hx5

(k1 + k2k4)k5x25 + k1(k2 + k3)k5x5 + k1k2k3
. (142)

By clearing denominators, it can be shown that the positive solutions to (142) agree
with the positive solutions to the polynomial

p(x5) = k6(T − x5)((k1 + k2k4)k5x
2
5 + k1(k2 + k3)k5x5 + k1k2k3)− k1k2k4k5Hx25 − k1k2k3k5x5

= (k1 + k2)k4k5k6x
3
5 + (k1(Hk2k4 + k2k6 + k3k6)− T (k1 + k2)k4k6)k5x

2
5

+ (k1k2k3(Hk5 + k6)− Tk1(k2 + k3)k5k6)x5 − Tk1k2k3k6 (143)

The polynomial p(x5) has degree 3. Any root of the polynomial between 0 and
T corresponds to a positive steady state. From (142), if x5 ≥ T , this results in a
positive root of the polynomial, where we would have 0 equal to a negative number,
which is a contradiction. Therefore, any positive solution to the polynomial equation
must fulfil that x5 < T and hence provide a positive steady state. The polynomial
p(x5) has at most 3 positive roots. We show in section 3.2.2.4 that there exist choices
of rate constants and total amounts such that p(x5) indeed has 3 positive roots.
Therefore, there exist choices of rate constants and total amounts such that the
system has 3 positive steady states.

3.2.2.3 Necessary conditions for bistability

Following Descartes’ rule of signs, a necessary condition for p(x5) to have 3 positive
roots is that the coefficients of the polynomial have alternating signs. Since the
leading coefficient is positive and the independent term is negative, a necessary
condition is that the coefficient of degree 2 is negative and the co-efficient of degree
1 is positive, that is:

k1(Hk2k4 + k2k6 + k3k6) < T (k1 + k2)k4k6, k1k2k3(Hk5 + k6) > Tk1(k2 + k3)k5k6.

To derive the necessary condition for bistability, we consider equation (142) again.
We rewrite it as

k6T = k6x5 +
k1k2k4k5Hx

2
5 + k1k2k3k5Hx5

(k1 + k2k4)k5x25 + k1(k2 + k3)k5x5 + k1k2k3
. (144)

If the right-hand side of the equation, call it ϕ(x5), is an increasing function of x5
for positive x5, then for any value of T there will be a unique value of x5 such that
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(144) is fulfilled, and hence a unique positive steady state. Since (144) is derived
from (141), the function ϕ(x5) equals k6x5 + k1x1 + k3x3, with x1, x3 expressed as in
(137) and (139). Clearly, k6x5 is increasing in x5. The derivative of k1x1 + k3x3 with
respect to x5 is

Hk1k
2
2k5((k1 − k3)k4k5x25 + 2 k1k3k4x5 + k1k

2
3)

((k1 + k2k4)k5x25 + k1(k2 + k3)k5x5 + k1k2k3)2
.

The derivative is not necessarily positive for x5 > 0. However, if k1 > k3 then the
derivative of ϕ(x5) is positive, implying that ϕ is an increasing function, and, as
a consequence, bistability cannot arise for any value of T . To summarise, k1 > k3

implies that there is no bistability, and therefore, a necessary condition for bistability
is that k3 > k1.

3.2.2.4 Necessary and sufficient conditions for bistability

The conditions given above are only necessary for bistability, but their fulfilment
does not guarantee bistability. We provide here necessary and sufficient conditions on
all the parameters of the system for bistability. The parameters include the reaction
rate constants and the total amounts. To obtain them, we apply Sturm’s Theorem:

Theorem 1 (Sturm). Let p(x) be a real polynomial. Define recursively the Sturm
sequence by

p0(x) = p(x), p1(x) = p′(x), and pi+1(x) = −rem(pi−1, pi),

for i ≥ 1, where rem(pi−1, pi) denotes the reminder of pi−1 divided by pi. The sequence
stops when pi+1 = 0. Let pm be the last non-zero polynomial.
For c ∈ R, let σ(c) be the number of sign changes in the sequence p0(c), . . . , pm(c).
Let a < b and assume that neither a nor b are multiple roots of p(x). Then σ(a)−σ(b)

is the number of distinct roots of p(x) in the interval (a, b].

We are interested in the positive roots of the polynomial p(x) = p(x5) in (143).
In this case, a = 0, and we need to take b large enough, which is equivalent to
considering instead of the sequence p0(b), . . . , pm(b), the leading coefficients of the
polynomials p0, . . . , pm. This sequence is written as p0(+∞), . . . , pm(+∞). Observe
that a = 0 is not a root of p(x).

According to the theorem, σ(0)−σ(+∞) equals the number of distinct positive roots
of p(x). Since σ(0) − σ(+∞) ≥ 0 , the number of distinct roots will be 3, that is,
we will have three positive steady states, if and only if σ(0) = 3 and σ(+∞) = 0.
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We compute the Sturm sequence p0(x), . . . , p3(x) (p4(x) = 0) wherein, for a generic
polynomial of degree 3, p0(x) = a0x

3 + a1x
2 + a2x+ a3, the sequence is:

p0(x) = a0x
3 + a1x

2 + a2x+ a3

p1(x) = 3a0x
2 + 2a1x+ a2

p2(x) = −6a0a2x− 2a21x− 9a0a3 − a1a2
9a0

p3(x) = −9a0(27a20a
2
3 + 18 a0a1a2a3 + 4a0a

3
2 − 4a31a3 − a21a22)

4(3a0a2 − a21)2
.

In our case, the coefficients are:

a0 = (k1 + k2)k4k5k6 > 0

a1 = (k1(Hk2k4 + k2k6 + k3k6)− T (k1 + k2)k4k6)k5

a2 = (k1k2k3(Hk5 + k6)− Tk1(k2 + k3)k5k6)

a3 = −Tk1k2k3k6 < 0

Hence, p0(0) = a3 < 0. Therefore, for σ(0) = 3, we need p1(0) > 0, p2(0) < 0 and
p3(0) > 0. On the other hand,

p0(+∞) = a0 > 0 and p1(+∞) = 3a0 > 0.

Therefore, for σ(+∞) = 0 we require p2(+∞), p3(+∞) > 0.

The polynomial p3(x) has degree zero, and hence p3(0) = p3(+∞). Therefore, we
are left with 4 conditions on the parameters that fully characterise the region of
the parameter space with three steady states, namely p1(0), p3(0), p2(+∞) > 0 and
p2(0) < 0. Using that a0 > 0 and a3 < 0, these conditions simplify to the following
conditions, where a0, . . . , a3 need to be substituted by their expressions in equations
??-?? :

a2 > 0 (p1(0) > 0)

9a0a3 + a1a2 < 0 (p2(0) < 0)

27a20a
2
3 + 18a0a1a2a3 − 4a0a

3
2 + 4a31a3 − a21a22 < 0 (p3(0) > 0)

−6a0a2 + 2a21 > 0 (p2(+∞) > 0).

That is, the system has three positive steady states if and only if the 4 inequalities
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above are satisfied.

3.2.2.5 Analysis of the steady states of the reaction systems

In summary, solving ODEs representing core hybrid histidine kinase at steady state,
shows that positive steady states in the bistable core network are in one-to-one
correspondence with the positive roots of the following polynomial (see equation
(143)).

p(Hpt) = k6(T −Hpt)((k1 + k2k4)k5Hpt
2 + k1(k2 + k3)k5Hpt+ k1k2k3)−

k1k2k4k5HKtotalHpt
2 − k1k2k3k5Hpt(k1 + k2)k4k5k6Hpt

3+

(k1(HKtotalk2k4 + k2k6 + k3k6)−Hpttotal(k1 + k2)k4k6)k5Hpt
2+

(k1k2k3(Hk5 + k6)−Hpttotalk1(k2 + k3)k5k6)Hpt−Hpttotalk1k2k3k6 (145)

The reaction rates are as shown in eqs. (118) and (119) and the parameters T and
H stand for the total concentrations of Hpt and hybrid HK respectively. Using that
T = Hpt+Hptp, the polynomial is easily transformed into a polynomial which is a
function of Hptp. This polynomial has at most 3 positive roots and we showed in
section 3.2.2.4 that there exist choices of rate constants and total concentrations such
that the system has indeed 3 positive steady states, i.e. displays bistability (figure
3.2C). These results obtained for the core system are used to determine how many
steady states the full systems can have. We generalise the above analysis to systems
comprising n hybrid HKs. In this case we show that the positive steady states are in
one-to-one correspondence with the positive roots of a polynomial of degree 2n+1 in
the concentration of Hpt, implying that there can at most be 2n+1 positive steady
states. The coefficients of the polynomial depend on the reaction rate constants
and the total concentrations of each HK and Hpt. We subsequently show that there
is always a choice of parameters such that the 2n+1 roots of the polynomial are
all positive, thereby giving a choice of parameters such that the system has 2n+1
positive steady states (see section 3.2.4.3). Our reasoning involves the use of general
results on chemical reaction networks modeled with mass action kinetics. Specifically,
we use that if a network admits N steady states, then the network obtained after
making some reactions reversible [130] or adding intermediate complex formation
[95] can also admit at least N steady states. The following section describes this in
more detail.
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3.2.3 From core to full models

In previous sections we have analysed several systems based on a core sub network
of a larger phosphorelay signalling architecture i.e. we disregarded reverse reactions,
hydrolysis reactions, and complex formation in the phosphotransfer reactions. We
provide here arguments that guarantee that the properties on the number of steady
states of the different core models that we have considered extend to the full models.

3.2.3.1 Theoretical results

The results concerning the number of steady states extend to the full models. Two
mathematical results, valid for mass-action kinetics, are used for this claim ([95, 130]):

• Assume that a network has N non-degenerate) positive steady states. If
complex formation is taken into account, that is, a reaction is split into two
by adding an intermediate, then the new extended network also has N (non-
degenerate) positive steady states for some choice of rate constants and total
amounts [95].

• Assume that a network has N non-degenerate) positive steady states. If
reactions are added to the network, in such a way that the conservation laws
of the system are preserved, then the new network also has N non-degenerate)
positive steady states for some choice of rate constants and total amounts [130].

The non-degeneracy condition means that the Jacobian is non-singular relative to the
stoichiometric compatibility class described by the conservation laws (section 3.2.4.4).
This requirement is fulfilled in our case.

3.2.3.2 Full hybrid HK

The full model of a hybrid HK with reversible reactions and hydrolysis reactions,
consists of the reactions:

HK00
k1 // HKP0

k2 // HK0P
k3 // HKPP HK0P + Hpt

k4


k7

HK00 + HptP

HK0P
k9 // HK00 HKPP

k10 // HKP0 HKPP + Hpt
k5


k8

HKP0 + HptP

RRP
k13 // RR HptP + RR

k11


k11

Hpt + RRP.

(146)
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One might also consider complex formation, that is, substitute each phosphotransfer
reaction of the form A + B
C + D by

A + B
Y
C + D.

From section 3.2.2.4, we see that the core phosphorelay with a hybrid HK can have
3 positive steady states. Adding reversibility to some reactions does not change
the conservation laws, nor does including hydrolysis reactions. Therefore, by [130],
the full phosphorelay model with a hybrid HK can have 3 positive steady states for
some choice of rate constants and total amounts. This holds true even if hydrolysis
reactions are added on the other phosphorylation sites (that is, the first domain of
the hybrid HK and Hpt). Adding complex formation also maintains the maximal
number of steady states[95]. In both cases, however, a higher number of steady
states might be achievable. The same argument holds for all the models considered
in previous sections.

3.2.3.3 Unorthodox HK

Consider now the core model with unorthodox HK, obtained by removing some
hydrolysis reactions and reversibility. HK has now three phosphorylatable domains.
The reactions of the system are as follows:

HKPP0
k5
((

HK000
k1 // HKP00

k2 // HK0P0

k3 66

k4
((

HKP0P
k7 // HK0PP

k8 // HKPPP

HK00P
k6

66

HK00P + RR
k9 // HK000 + RRP HKP0P + RR

k10 // HKP00 + RRP

HK0PP + RR
k11 // HK0P0 + RRP HKPPP + RR

k12 // HKPP0 + RRP

RRP
k13 // RR

We show here that this model is essentially obtained by adding iteratively species
and reactions to the core hybrid HK model in subsection 3.2.2, in the sense allowed
by [130] and [95]. Not to confuse notation, we write the model in subsection 3.2.2
with the following labels for each species:

A1
// A2

// A3
// A4

A3 + B1
// A1 + B2 A4 + B1

// A2 + B2 B2
// B1.
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We perform the following modifications to the model:

(i) Add species C1, C2:

A1
// C1

// A2
// A3

// C2
// A4

A3 + B1
// A1 + B2 A4 + B1

// A2 + B2 B2
// B1.

(ii) Add a reaction from C1 to A3:

A2

))
A1

// C1
//

55

A3
// C2

// A4

A3 + B1
// A1 + B2 A4 + B1

// A2 + B2 B2
// B1.

(iii) Add a species between C1 and A3:

A2

**
A1

// C1

44

**

A3
// C2

// A4

C3

44

A3 + B1
// A1 + B2 A4 + B1

// A2 + B2 B2
// B1.

(iv) Add two reactions:

A2

**
A1

// C1

44

**

A3
// C2

// A4

C3

44

A3 + B1
// A1 + B2 A4 + B1

// A2 + B2 B2
// B1

C3 + B1
// A1 + B2 C2 + B1

// C1 + B2.

From [130] or [95], we see that each step preserves the number of positive steady
states of the network from the previous step. The network in (iv) is not exactly
the core model of an unorthodox HK, but almost. The core model of the
unorthodox HK requires an extra species C5, a reaction C5 → A1, and the reaction
C3 + B1 → A1 + B2 must be substituted by C3 + B1 → C5 + B2. That is, the
network we would like to have is
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A2

))
C4

η1 // A1
// C1

44

**

A3
// C2

// A4

C3

55

A3 + B1
// A1 + B2 A4 + B1

// A2 + B2 B2
// B1

C3 + B1
η2 // C4 + B2 C2 + B1

// C1 + B2.

The new species C4 is not an intermediate, but behaves exactly like one. Consider
the ODE system associated to this network. The steady state equation for [C4] gives

[C4] =
η2
η1

[C3][B1].

Plugging this value back into the ODE system to eliminate [C4], we obtain the
ODE system associated to the network in item (iv). This is the only characteristic
of the intermediates that allows one to prove that the number of steady states is
maintained. Therefore, the arguments given in [95] hold also for C4. We conclude
that the core model of the unorthodox HK has at least 3 positive steady states for
some choice of rate constants and total amounts, because this is the case for the
core model for the hybrid HK. This has also been confirmed using CRNT Toolbox
(https://crnt.osu.edu/LecturesOnReactionNetworks).

Using approaches discussed in previous sections, we examine networks which
contain multidomain HKs and share components (proteins) in the network to form
a branched signalling network. The aim is to understand the effect that sharing
components has on the overall number of steady states that the combined network
has. For this, we examine systems where hybrid HKs share a common Hpt and a
shared common RR.

3.2.4 The core model for n hybrid HKs competing for the

same Hpt

3.2.4.1 Model description

We study here the core system consisting of n hybrid HKs competing for the same
Hpt. We call such a system an nHK-Hpt system for short. In this case, there are
n hybrid HKs, which we denote by HKi, for i = 1, . . . , n, and we use subindices
00,P0, 0P,PP to denote the phosphorylation state of each of them. The set of
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reactions given in the previous subsection are reproduced for the n hybrid HKs.
That is, for i = 1, . . . , n, the reactions for the transfer of phosphate groups are as
follows:

HKi
00

ki,1 // HKi
P0

ki,2 // HKi
0P

ki,3 // HKi
PP HKi

0P + Hpt
ki,4 // HKi

00 + HptP

HKi
PP + Hpt

ki,5 // HKi
P0 + HptP

and there is further the dephosphorylation reaction

HptP
k6 // Hpt.

We denote the concentration of the species as follows:

xi,1 := [HKi
00], xi,2 := [HKi

P0], xi,3 := [HKi
0P], xi,4 := [HKi

PP],

x5 := [Hpt], x6 := [HptP],

for i = 1, . . . , n. Under the law of mass-action, we model the dynamics of the
concentrations over time by the following system of ordinary differential equations:

ẋi,1 = ki,4xi,3x5 − ki,1xi,1 (147)

ẋi,2 = ki,5xi,4x5 + ki,1xi,1 − ki,2xi,2 (148)

ẋi,3 = ki,2xi,2 − ki,3xi,3 − ki,4xi,3x5 (149)

ẋi,4 = ki,3xi,3 − ki,5xi,4x5 (150)

ẋ5 = k6x6 −
n∑
j=1

(kj,4xj,3x5 + kj,5xj,4x5) (151)

ẋ6 = −k6x6 +
n∑
j=1

(kj,4xj,3x5 + kj,5xj,4x5), (152)

for i = 1, . . . , n. The system has n+ 1 conservation laws for i = 1, . . . , n, we have

xi,1 + xi,2 + xi,3 + xi,4 = Hi (153)
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for some Hi > 0, and for T > 0,

x5 + x6 = T (154)

3.2.4.2 Positive steady states

The positive steady states of the system are the solutions to the equations ẋi,1 =

0, ẋi,2 = 0, ẋi,3 = 0, ẋi,4 = 0, for i = 1, . . . , n, together with ẋ5 = 0, ẋ6 = 0,
constrained by the conservation laws (153) and (154). We reason as discussed in
section 3.2.2.1 to disregard the steady state equations ẋ6 = 0 and ẋi,4 = 0, for
i = 1, . . . , n. Using the equations ẋi,1 = 0, ẋi,2 = 0, ẋi,3 = 0 and (153), namely

0 = ki,4xi,3x5 − ki,1xi,1
0 = ki,5xi,4x5 + ki,1xi,1 − ki,2xi,2
0 = ki,2xi,2 − ki,3xi,3 − ki,4xi,3x5 (155)

Hi = xi,1 + xi,2 + xi,3 + xi,4,

we obtain the algebraic expressions for xi,1, xi,2, xi,3, xi,4 at steady state, depending
on the value of x5 at steady state, analogous to the expressions (137)-(140):

xi,1 =
ki,2ki,4ki,5Hix

2
5

(ki,1 + ki,2ki,4)ki,5x25 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3
(156)

xi,2 =
ki,1(ki,4x5 + ki,3)ki,5Hix5

(ki,1 + ki,2ki,4)ki,5x25 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3
(157)

xi,3 =
ki,1ki,2ki,5Hix5

(ki,1 + ki,2ki,4)ki,5x25 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3
(158)

xi,4 =
ki,1ki,2ki,3Hi

(ki,1 + ki,2ki,4)ki,5x25 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3
. (159)

These expressions are positive provided x5 is positive. From (154) we have that
x6 = T − x5, which is positive provided x5 < T .
We replace the steady state equation ẋ5 = 0 by ẋ5 +

∑n
i=1(ẋi,1 − ẋi,4) = 0, and we

obtain the equation

0 = k6x6 −
n∑
i=1

(ki,1xi,1 + ki,3xi,3). (160)

Substituting into (160) the values of xi,1 and xi,3 in (156), (158), and further letting
x6 = T − x5, we obtain that, at steady state

0 = k6(T −x5)−
n∑
i=1

ki,1ki,2ki,4ki,5Hix
2
5 + ki,1ki,2ki,3ki,5Hix5

(ki,1 + ki,2ki,4)ki,5x25 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3
. (161)
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By clearing denominators, that is, by multiplying equation (161) by

n∏
i=1

(ki,1 + ki,2ki,4)ki,5x
2
5 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3,

we obtain a polynomial of degree 2n + 1 in x5. Any zero of the polynomial, that
lies between 0 and T , corresponds to a positive steady state. We argue again that,
if x5 ≥ T were a positive zero of the polynomial, equation (161) would give a
contradiction. Therefore, any positive solution to the polynomial equation must
fulfill that x5 < T and hence provide a positive steady state.

3.2.4.3 Existence of 2n+ 1 positive steady states.

We have shown that the positive steady states of the n HK-Hpt system are
determined by the positive solutions to (161). Solving for the positive solutions to
this equation is equivalent to solving for the positive solutions to a polynomial of
degree 2n + 1. By the fundamental theorem of algebra, a polynomial of degree
2n+ 1 has 2n+ 1 roots counted with multiplicity. Therefore, such a polynomial can
at most have 2n+ 1 distinct positive real roots.

We show in this section that there exist choices of rate constants k∗ and total
amounts Hi, T such that the polynomial has exactly 2n + 1 distinct positive real
roots. As a consequence, this proves that the nHK-Hpt system admits 2n + 1

positive steady states for some choice of rate constants and total amounts.

The proof consists of a series of simplifications and constructions. A key ingredient
of the proof is the following theorem:

Theorem 2 (Kurtz [131]). Let m ≥ 1 and let p(x) = x2m+1 − c1x2m + c2x
2m−1 +

· · · + c2mx− c2m+1 be a polynomial of odd degree 2m + 1 and with ci ≥ 0 for all i.
Let c0 = 1. If

c2i − 4ci−1ci+1 > 0 (162)

for all i = 1, . . . , 2m, then p(x) has 2m+ 1 distinct positive real roots.

For clarity, we provide the main arguments of our proof in the form of lemmas in
Appendix E. First of all observe that the steady states of the system are invariant
by multiplication of all rate constants by some scalar λ > 0. Therefore, we assume
that k6 = 1. For simplicity we write x for x5. We let
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αi,1 = ki,1ki,2ki,4ki,5Hi (163)

αi,2 = ki,1ki,2ki,3ki,5Hi (164)

αi,3 = (ki,1 + ki,2)ki,4ki,5 (165)

αi,4 = ki,1(ki,2 + ki,3)ki,5 (166)

αi,5 = ki,1ki,2ki,3, (167)

such that we write

ki,1ki,2ki,4ki,5Hix
2 + ki,1ki,2ki,3ki,5Hix

(ki,1 + ki,2ki,4)ki,5x25 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3
=

αi,1x
2 + αi,2x

αi,3x2 + αi,4x+ αi,5
.

Lemma 1. For any positive values αi,1, . . . , αi,5 > 0, there exist ki,1, . . . , ki,5 > 0

and Hi > 0 such that (163)-(167) are fulfilled.

As a consequence of Lemma 1, there exist rate constants and total amounts such
that (161) holds if we can find αi,1, . . . , αi,5 > 0 such that

0 = −T + x+
n∑
i=1

αi,1x
2 + αi,2x

αi,3x2 + αi,4x+ αi,5
. (168)

With this notation, we want to determine the positive real roots of the polynomial
obtained by clearing denominators in (168):

q(x) = (x−T )
n∏
i=1

(αi,3x
2+αi,4x+αi,5)+

n∑
i=1

(
(αi,1x

2+αi,2x)
∏
j 6=i

(αj,3x
2+αj,4x+αj,5)

)
.

(169)
The coefficient of degree 2n+ 1 of q(x) is

∏n
i=1 αi,3 and the independent term of q(x)

is −T
∏n

i=1 αi,5. We would like to apply Theorem 2 to such a polynomial. To this
end, the coefficients of monomials with even degree should be negative and those of
odd degree should be positive. The latter is guaranteed if αi,4 = 0, while the former
if αi,1 = 0. Setting these two constants to zero, for i = 1, . . . , n, does not change the
degree of the polynomial.

By the continuity of the isolated roots of a polynomial as functions of the coefficients
of the polynomial, if we can find αi,2, αi,3, αi,5 > 0 such that with αi,4 = 0, αi,1 = 0,
the polynomial q(x) has 2n+ 1 distinct positive real roots, then for αi,4, αi,1 small
enough, the polynomial q(x) still has 2n+ 1 distinct positive real roots.
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This is what we do next. We set αi,4 = 0, αi,1 = 0 and further αi,3 = 1 for all
i = 1, . . . , n, and T = 1. To ease the notation, we write ai = αi,2 and bi = αi,5, such
that the polynomial of interest is

p(x) = (x− 1)
n∏
i=1

(x2 + bi) +
n∑
i=1

(
aix
∏
j 6=i

(x2 + bj)
)
. (170)

We denote by [n] = {1, . . . , n}. In the next lemma we describe the coefficients of p(x).
The form of the coefficients depends on the parity of the degree of the coefficient.
Therefore the coefficients take two different forms, one for even subindices, that is
i = 2k, and one for odd subindices, that is i = 2k + 1.

Lemma 2. Let the polynomial (170) be written as p(x) = c0x
2n+1 + c1x

2n+ c2x
2n−1 +

· · ·+ c2nx+ c2n+1. Then it holds that:

c2k+1 = −
∑

{j1,...,jk}⊆[n]

k∏
`=1

bj`

c2k =
∑

{j1,...,jk}⊆[n]

k∏
`=1

bj` +
n∑
i=1

ai
∑

{j1,...,jk−1}⊆[n]\{i}

k−1∏
`=1

bj`

for k = 0, . . . , n, with the convention that the sum and the product over the empty
set equals 1.

For example, for n = 1 we have

p(x) = x3 − x2 + (a1 + b1)x− b1,

while for n = 2 we have

p(x) = x5 − x4 + (a1 + a2 + b1 + b2)x
3 − (b1 + b2)x

2 + (a1b2 + a2b1 + b1b2)x− b1b2.

All that is left is to show that we can find bi, ai such that the polynomial p(x) satisfies
the inequalities in Theorem 2. This is the content of the following lemmas. We
provide in Lemma 3 a choice of constants bi such that the inequalities (162) are
fulfilled for even indices i, that is, i = 2k for some k. In Lemma 4 we provide a
choice of constants ai such that the inequalities (162) are fulfilled for odd indices i,
that is, i = 2k + 1 for some k.

Lemma 3. Fix arbitrary a1, . . . , an > 0 and define bi =
a2i
4
for i = 1, . . . , n. Then,

c22k − 4c2k−1c2k+1 > 0

for all k = 1, . . . , n.
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Lemma 4. Let M > 0 and an > 0. For i = 1, . . . , n, define ai = an
M i−1 and bi =

a2i
4
.

Then, for M large enough and an small enough, it holds that

c22k+1 − 4c2kc2k+2 > 0

for all k = 0, . . . , n− 1.

We are ready to prove the main result on the number of positive steady states.

Theorem 3. For any n ≥ 1, there exists a choice of rate constants k6 > 0,
ki,1, ki,2, ki,3, ki,4 > 0 and total amounts T,Hi > 0, for i = 1, . . . , n, such that
the nHK-Hpt system has 2n+ 1 distinct positive steady states.

Proof. Pick an,M > 0 and define bi, ai, for i = 1, . . . , n, as in Lemma 4. By lemmas 4
and 3, by choosing M large enough and an small enough, the inequalities (162)
hold. We set αi,2 = ai, αi,5 = bi, αi,3 = 1, for i = 1, . . . , n, and T = 1. Then p(x) in
(170) has 2n+ 1 distinct positive real roots. We choose αi,1, αi,4 > 0 small enough
such that the polynomial q(x) in (169) has 2n+ 1 distinct positive real roots. We
set k6 = 1. By construction, any choice ki,1, ki,2, ki,3, ki,4 > 0 and Hi > 0 such that
(163)-(167) are fulfilled provides a set of parameters with 2n + 1 distinct positive
steady states. Such a choice exists by Lemma 1.

Observe that the proof is constructive. It gives a procedure to find sets of parameters
with the maximal number of steady states. The several checks that the proof
requires are easily implemented using most available mathematical software to solve
equations (e.g. Maple, Mathematica).

In general, we have observed that given any polynomial u(x) with 2n+ 1 distinct
positive real roots we can find ai, bi such that the coefficients of u(x) agree with ci in
Lemma 2, even if u(x) does not fulfil the conditions of Theorem 2. Such ai, bi can be
found using mathematical software like Maple.

3.2.4.4 n unstable steady states

In the subsection we show that, considering the 2n + 1 steady states ordered
increasingly by their value x = x5, then the steady states number 2, 4, . . . , 2n are
unstable relative to the stoichiometric compatibility class [132] they belong to, that is,
relative to the invariant subspaces described by the conservation laws (153) and (154).

Since the nHK-Hpt system has 4n + 2 variables and n + 1 conservation laws, the
Jacobian of f in ẋ = f(x) always has n + 1 zero eigenvalues. The remaining
3n + 1 eigenvalues (which could include zero) have corresponding eigenvectors
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in the stoichiometric subspace and dictate the dynamics around the steady
state and within the stoichiometric compatibility class. If the steady state is
locally stable relative to the stoichiometric compatibility class, then the product
of these 3n + 1 eigenvalues has sign (−1)3n+1. Therefore, if the sign of the
product of these eigenvalues is (−1)3n, then the steady state is necessarily locally
unstable relative to the stoichiometric compatibility class. We argue in the proof of
the next theorem that this is the case for the steady states in even position 2, 4, . . . , 2n.

Theorem 4. The 2, 4, . . . , 2n-th steady states are unstable relative to the stoichio-
metric compatibility class.

Proof. We order the variables of the system as
x1,1, x1,2, x1,3, x1,4, . . . , xn,1, xn,2, xn,3, xn,4, x6, x5. It follows from [133, Prop
5.3] that the product of the 3n+ 1 eigenvalues of the Jacobian with eigenvectors in
the stoichiometric space agrees with the determinant of the Jacobian of the function
g : R4n+2 → R4n+2 where

g4(i−1)+1(x) = xi,1 + xi,2 + xi,3 + xi,4 −Hi (171)

g4(i−1)+2(x) = ki,5xi,4x5 + ki,1xi,1 − ki,2xi,2 (172)

g4(i−1)+3(x) = ki,2xi,2 − ki,3xi,3 − ki,4xi,3x5 (173)

g4(i−1)+4(x) = x5 + ki,3xi,3 − ki,5xi,4, (174)

for i = 1, . . . , n and

g4n+1(x) = x5 + x6 − T,

g4n+2(x) = k6x6 −
n∑
j=1

(kj,4xj,3 + kj,5xj,4)x5.

We now apply the method described in [97], to determine the sign of the determinant
of the Jacobian of g from iterative eliminations. One can check that the expressions
in (156)-(159) are obtained from iteratively eliminating xi,1, . . . , xi,4 from the
equations g4(i−1)+1(x) = · · · = g4(i−1)+4(x) = 0, which are equivalent to (155), and
which correspond to the conservation law together with ẋi,2 = ẋi,3 = ẋi,4 = 0.

Let q(x5) be the polynomial obtained after clearing denominators in (161). Then, by
[97], the sign of the determinant of the Jacobian of g at a steady state agrees with the
sign of the derivative of q(x5), q′(x5), times (−1)3n. Therefore, if q′(x5) is positive,
then the corresponding steady state is locally unstable. Since q(0) is positive, the first
real root of q(x5) has negative derivative, and then the signs alternate. Therefore, the
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steady states corresponding to the 2, 4, . . . , 2n-th roots are locally unstable relative
to the stoichiometric compatibility class.

3.2.5 Multiple phosphorelays with a common RR

3.2.5.1 The core model for M hybrid phosphorelays competing for an
RR

In the previous section we showed that unlimited multistationarity arises by
increasing the number of hybrid HKs that compete for the same Hpt. In this
section we show that the same statement holds when the competition occurs at
the level of the response regulator RR. For example, we show that the system
consisting of two core hybrid phosphorelays, complete with their own Hpt, competing
for the same RR can have up to 9 steady states. This system consists of two
1HK-Hpt systems, where the two independent Hpt’s donate their phosphate group
to the same RR. We study such a system with full generality. We allow each
of the phosphorelays to have multiple hybrid HKs, as studied in the previous sections.

For example, consider a system with two His-containing phosphotransfer proteins
Hpt1 and Hpt2 that transfer the phosphate group to the same RR. Assume, for
instance, that Hpt1 receives the phosphate group from two hybrid HKs, HK1,1 and
HK1,2, and that Hpt2 receives the phosphate group from one hybrid HK, HK2,1. The
first upper index of HKi,j indicates the Hpt index, and the second index indicates
the index of the HK in the nHK-Hpt subsystem. By using the notation introduced
in the previous section to denote phosphorylated sites, the reactions of this example
system are as follows:

(i) Reactions within each HK:

HK1,1
00

k1,1,1 // HK1,1
P0

k1,1,2 // HK1,1
0P

k1,1,3 // HK1,1
PP

HK1,2
00

k1,2,1 // HK1,2
P0

k1,2,2 // HK1,2
0P

k1,2,3 // HK1,2
PP

HK2,1
00

k2,1,1 // HK2,1
P0

k2,1,2 // HK2,1
0P

k2,1,3 // HK2,1
PP

(ii) Phosphotransfer from HK1,1 and HK1,2 to Hpt1, and phosphotransfer from
HK2,1 to Hpt2:

114



HK1,1
0P + Hpt1

k1,1,4 // HK1,1
00 + Hpt1P, HK1,1

PP + Hpt1
k1,1,5 // HK1,1

P0 + Hpt1P

HK1,2
0P + Hpt1

k1,2,4 // HK1,2
00 + Hpt1P, HK1,2

PP + Hpt1
k1,2,5 // HK1,2

P0 + Hpt1P

HK2,1
0P + Hpt2

k2,1,4 // HK2,1
00 + Hpt2P, HK2,1

PP + Hpt2
k2,1,5 // HK2,1

P0 + Hpt2P

(iii) Phosphotransfer from Hpt1 and Hpt2 to RR:

Hpt1P + RR
k1,6 // Hpt1 + RRP Hpt2P + RR

k2,6 // Hpt2 + RRP

(iv) Dephosphorylation reaction for RR:

RRP
k7 // RR.

3.2.5.2 Multiple positive steady states

In general, consider M multiple hybrid phosphorelays competing for the same RR.
We let ni be the number of hybrid HKs of the ith system. That is, each phosphorelay
consists of a niHK-Hpt system with a further phosphotransfer to RR. In the above
example, we have M = 2 and n1 = 2, n2 = 1. We let HKi,j denote the jth hybrid
kinase of the ith multiple HK-Hpt system, where j runs from 1 to ni, and we let Hpti

denote the Hpt of the system. We denote the reaction rates by ki,j,∗ for those involving
HKi,j, the dephosphorylation reaction for Hpti by ki,6 and the dephosphorylation
reaction for RR by k7. The system has conserved total amounts of HKi,j, Hpti and
RR. We denote the concentration of the species as follows:

xi,j,1 := [HKi,j
00 ], xi,j,2 := [HKi,j

P0], xi,j,3 := [HKi,j
0P], xi,j,4 := [HKi,j

PP],

xi,5 := [Hpti], xi,6 := [HptiP], x7 = [RR], x8 = [RRP].

for i = 1, . . . ,M , j = 1, . . . , ni. Under the law of mass-action, we model the
dynamics of the concentrations over time by the following system of ordinary
differential equations:
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ẋi,j,1 = ki,j,4xi,j,3xi,5 − ki,j,1xi,j,1 (175)

ẋi,j,2 = ki,j,5xi,j,4xi,5 + ki,j,1xi,j,1 − ki,j,2xi,j,2 (176)

ẋi,j,3 = ki,j,2xi,j,2 − ki,j,3xi,j,3 − ki,j,4xi,j,3xi,5 (177)

ẋi,j,4 = ki,j,3xi,j,3 − ki,5xi,j,4xi,5 (178)

ẋi,5 = ki,6xi,6x7 −
ni∑
`=1

(ki,`,4xi,`,3 + ki,`,5xi,`,4)xi,5 (179)

ẋi,6 = −ki,6xi,6x7 +

ni∑
`=1

(ki,`,4xi,`,3 + ki,`,5xi,`,4)xi,5, (180)

ẋ7 = k7x8 −
M∑
`=1

k`,6x`,6x7 (181)

ẋ8 = −k7x8 +
M∑
`=1

k`,6x`,6x7, (182)

for i = 1, . . . ,M , j = 1, . . . , ni. Further, we have the following conservation law
equations:

xi,j,1 + xi,j,2 + xi,j,3 + xi,j,4 = Hi,j, xi,5 + xi,6 = Ti, x7 + x8 = R.

For each i, j, solving for ẋi,j,1 = 0, ẋi,j,2 = 0, ẋi,j,3 = 0 and the conservation law with
Hi,j, we get equalities analogous to (156)-(159), where we replace the subindex i by
the pair i, j. The steady state concentrations xi,j are expressed in terms of xi,5 and
are positive provided xi,5 is positive.

We further have xi,6 = Ti− xi,5. The equation ẋi,5 +
∑ni

j=1(ẋi,j,1− ẋi,j,4) = 0 replaces
ẋi,5 = 0 and leads to the steady state equation

0 = ki,6x7xi,6 −
ni∑
j=1

(ki,j,1xi,j,1 + ki,j,3xi,j,3), (183)

which transforms, as in (161), into the equation

0 = ki,6x7(Ti − xi,5)

−
ni∑
j=1

ki,j,1ki,j,2ki,j,5Hi,jxi,5(ki,j,4xi,5 + ki,j,3)

(ki,j,1 + ki,j,2)ki,j,4ki,j,5x2i,5 + ki,j,1(ki,j,2 + ki,j,3)ki,j,5xi,5 + ki,j,1ki,j,2ki,j,3
, (184)

for i = 1, . . . ,M .
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Finally, using the total amount R and ẋ7 = 0, we obtain:

x7 =
k7R

k7 +
∑M

`=1 k`,6x`,6
=

k7R

k7 +
∑M

`=1 k`,6(T` − x`,5)

x8 =
R
∑M

`=1 k`,6x`,6

k7 +
∑M

`=1 k`,6x`,6
=

R
∑M

`=1 k`,6(T` − x`,5)
k7 +

∑M
`=1 k`,6(T` − x`,5)

.

Observe that both x7, x8 are positive provided xi,5 < Ti for all i. By substituting
the expression for x7 into (184), we deduce that the steady states of the system are
found by finding positive solutions to (184) in x1,5, . . . , xM,5. The value at steady
state of the other concentrations are found using the expressions above. Recall that,
as seen in the previous section, a positive solution to (184) satisfies xi,5 < Ti and
hence xi,6 is positive.

Theorem 5. Consider the system with M multiple hybrid phosphorelays competing
for the same RR, and let ni be the number of hybrid HKs of the ith system. Then
there exists a choice of rate constants and total amounts such that the system has∏M

i=1 2ni + 1 positive steady states.

Proof. For each i = 1, . . . ,M , fix parameters ki,j,1, . . . , ki,j,5, Hi,j, Ti such that the
niHK-Hpt system has 2ni+1 steady states, when the dephosphorylation rate constant
for Hpti in the isolated system is set to one. By Theorem 3 such a choice exists.
With this choice, let

Ai :=

ni∑
j=1

ki,j,1ki,j,2ki,j,5Hi,jxi,5(ki,j,4xi,5 + ki,j,3)

(ki,j,1 + ki,j,2)ki,j,4ki,j,5x2i,5 + ki,j,1(ki,j,2 + ki,j,3)ki,j,5xi,5 + ki,j,1ki,j,2ki,j,3
,

which only depends on xi,5. Consider the map

ϕ : R× RM → RM

(S, x1,5, . . . , xM,5) 7→

(
(Ti − xi,5)

1 + S
∑M

`=1(T` − x`,5)
− Ai

)
i=1,...,M

.

For S = 0, the ith component of ϕ(0, x1,5, . . . , xM,5) = 0 is Ti − xi,5 − Ai = 0, which
is the steady state equation (161) for the i-th system HKi,∗ and Hpti with our
choice of rate constants. By the above choice, such equation has 2ni + 1 positive
solutions. Since the ith component of ϕ(0, x1,5, . . . , xM,5) depends only on xi,5,
it follows that the equation ϕ(0, x1,5, . . . , xM,5) = 0 has

∏M
i=1 2ni+1 positive solutions.
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The Jacobian of ϕ(0, x1,5, . . . , xM,5) at a solution (x∗1,5, . . . , x
∗
M,5) is a diagonal matrix,

whose ith entry is

∂

∂xi,5
ϕi(0, x1,5, . . . , xM,5) =

∂

∂xi,5
(Ti − xi,5 − Ai)

evaluated at x∗i,5. Since for each i, our set of positive solutions to Ti − xi,5 − Ai = 0

is maximal in number, there are no multiple solutions and such a derivative is non-zero.

Therefore, the Jacobian of ϕ(0, x1,5, . . . , xM,5) at a solution is non-singular.This
allows us to apply the implicit function theorem to ensure that for S > 0 small
enough, the equation ϕ(0, x1,5, . . . , xM,5) = 0 has precisely

∏M
i=1 2ni + 1 positive

solutions.

Fix any such S > 0 and define ki,6 = S, R = 1
S
, and k7 = 1. Then

(Ti − xi,5)
1 + S

∑M
`=1(T` − x`,5)

=
k7ki,6R(Ti − xi,5)

k7 +
∑M

`=1 k`,6(T` − x`,5)
,

which corresponds to the steady state equation (184). With this choice, the system
has

∏M
i=1 2ni + 1 positive steady states.

The proof gives a constructive way to find sets of parameters with
∏M

i=1 2ni + 1

positive steady states. We fix parameters for the individual nHK-Hpt systems that
have 2ni + 1 steady states, when the dephosphorylation rate constant for Hpti in the
isolated system is set to one. Then, let k7 = 1, ki,6 = 1/R and increase R until the
system has the desired number of steady states.

3.3 Summary of Findings

To understand the effect of multidomain sensor histidine kinases on the dynamics
of phosphorelays and test the question if multidomain HKs embed multistability,
we created mathematical models of a phosphorelays containing regular, hybrid and
unorthodox HKs (see section 3.2). All of these models implemented reactions which
have been shown to occur in experimental studies [82, 107] and included in previous
theoretical models of phosphorelays [3, 37, 85]. Analysing the resulting chemical
reaction systems for all the three models using CRNT toolbox revealed that a
network with a regular HK does not fulfil the theoretical requirements for bistability,
while systems with hybrid and unorthodox HKs do (see section 3.2).
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To better understand the source of this bistability in multidomain HKs, we focused
on a hybrid HK (represented as an entity with four states HKOO, HKPO, HKOP and
HKPP) containing phosphorelay (figure 3.2). By identifying a minimal (bistable) sub
network of the overall phosphorelay architecture involving this hybrid HK (figure
3.2 (a)) and analytically solving the steady-state equations arising from the set of
ordinary differential equations describing the dynamics of this core system, we derive
the set of necessary and sufficient conditions as a function of reaction rates and total
protein concentrations in the network (see sections 3.2.2.3 & 3.2.2.4).

3.3.1 Reactions among histidine kinase domains and their

downstream target gives rise to interconnected feed-

back loops

While the mathematical complexity of these conditions does not permit a simple
biological interpretation, one notable necessary condition for bistability in this core
model is that the rate constant of autophosphorylation of the hybrid-HK must
be higher when the REC site is phosphorylated compared to when it is not (i.e.
the auto-phosphorylation of the OP state must be higher than that of the OO
state, k3 > k1). Interestingly, these two reactions drive two connected feedback
loops, where one loop cycles from the OO state, to PO, OP, and then back to OO,
while the other cycles from the PO state, to OP, PP, and then back to PO (figure
3.2). This observation allows an intuitive understanding of bistability in this core
system. At low signal and high Hpt levels, the auto-phosphorylation of the HK can
be balanced between a flow of phosphate groups through Hpt, allowing the first
loop I (see figure 3.2) to dominate the dynamics. As the signal increases and Hpt
is consumed more and more, this balance is increasingly disrupted and there is
suddenly not enough Hpt to absorb all of the phosphate groups from the OP state.
This then allows OP to increasingly undergo auto-phosphorylation, which happens
faster under the condition of k3 > k1, and leads to the second loop (PO-OP-PP-PO)
to start dominating. This results in a sudden rise in PP and the phosphotransfer
rate to Hpt, overwhelming the latter and causing its phosphorylated state to make
a sudden jump. This jump is the bifurcation point that we observe in the system
dynamics. When loop I dominates, the system is at the lower steady state and when
loop II dominates, the system occupies the higher steady state. We find that this
intuitive narrative fits with the observed temporal and steady state concentrations
of the different phosphorylation states of the HK (figure 3.2) and also explains the
effect of increasing the ratio k3/k1 on the system dynamics (figure 3.3).
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Figure 3.2: Schematic representation showing the minimal core reaction network utilising
a hybrid HK that maintains the capacity for multistability. It contains two connected
feedback loops which are responsible for the bistability in the core network (A). Plot
(B) shows the fraction of steady state phosphorylated Hpt levels for a given input value
(appendix F). The change in input level is simulated by varying the auto-phosphorylation
rate constants of HK, k1 and k3, while keeping the ratio k3/k1 fixed. Solid and dotted lines
indicate stable and unstable steady states respectively. The steady state fraction of different
phosphoforms of HK are shown as a stacked bar (overlay). Here, HKPP is populated only
above a threshold input level. Time series plot showing the phosphorylated Hpt levels
approaching two different stable steady states depending on the initial conditions (C).
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Figure 3.3: Effect of varying the ratio k3/k1 on the signal-response plot for the minimal core
system shown in Figure 3.2. The signal-response plot shows the fraction of phosphorylated
Hpt at steady state while varying the auto-phosphorylation rate constants of HK, k1 and
k3, such that the ratio k3/k1 is fixed for each signal-response plot. The solid and dotted
lines indicate stable and unstable steady states respectively.
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Figure 3.4: Bipartite directed species-reaction graphs for the minimal core system shown in
Figure 3.2 (panel A) and several structural modifications of it (panels B-D). Modifications
are highlighted in blue and do not necessarily result in biologically realistic systems. Despite
containing the same number of feedback loops and components, the system shown in A
is bistable, while those in B, C, and D are not. On each graph circular and rectangular
nodes represent the biochemical species and reactions respectively. Dashed and solid edges
indicate flows in the following manner: a solid edge is drawn from a species to a reaction to
indicate that this species is consumed by that reaction, a solid (dashed) edge is drawn from
a reaction to a species to indicate that this species is produced (consumed) as a result of this
reaction. Three positive feedback loops are highlighted: the green and red positive feedback
loops involve only solid edges, while the blue positive feedback loop involves combination
of two dashed edges.

The aforementioned two feedback loops are complemented by a third feedback loop
that becomes visible when we display the core model as a bipartite reaction graph
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(figure 3.4). It is known that bistability requires at least one positive feedback loop
in such a graph [129, 134] however, we find that alternative reaction schemes of
the same size as the core system and implementing one or more feedback loops do
not allow for bistability (figure 3.4). This shows that the reaction scheme in the
core of the hybrid HK structure implements a particular, non-trivial mechanism
for generating bistability. This mechanism is still intact in the full hybrid and
unorthodox HK models, nested within a more complex reaction scheme that includes
hydrolysis and reverse-phosphotransfer reactions. We find that these additional
reactions allow tuning of the exact shape of the input-output response dynamics,
with reverse phosphorylation providing the possibility of achieving more pronounced
switch-like dynamics (figure 3.5). More broadly, we show that the mathematical
findings for multistability extend to the full hybrid and unorthodox HK models,
even when we take into account complex formation in the phosphotransfer reactions
(see section 3.2.3).

Figure 3.5: (A) Schematic representation of a full phosphorelay embedding a hybrid HK.
The associated model for this system implements all reactions shown in equations (118)-
(124). (B) Signal-response plot (i.e. dose-response) for the system in panel A, for a specific
set of parameters (see Appendix F). The plot shows the fraction of phosphorylated RR at
steady state while varying the auto-phosphorylation rate constants of HK, k1 and k3 (such
that the ratio k3

k1
is fixed). The solid and dotted lines indicate stable and unstable steady

states respectively.
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3.3.2 Unbounded multistability and implementation of

Boolean logic via component sharing

The key mechanisms for generating bistability in a single multidomain HK are the
feedback loops among its internal phosphostates and the interlinkage of these to
a downstream target. This rises the possibility that component sharing, in which
several multidomain HKs share (i.e. phosphotransfer to) the same downstream target
can lead to an increase in the number of steady states in the system. To address this
possibility we analysed a generalised model of n HKs transferring phosphates to the
same Hpt. We prove mathematically that such a system can attain 2n+1 steady
states under appropriate choices of parameters; to this end, we show that the steady
states of a system comprising of n HKs transferring phosphates to the same Hpt are
in correspondence with the positive roots of a polynomial of degree 2n+1 in the
concentration of phosphorylated Hpt (see sections 3.2.4 and figure 3.6). Of these
steady states, n are proven to be unstable, and simulations show that the remaining
n+1 steady states are, as expected, stable. Considering component sharing at the
level of RR, we show that the system with m modules that phosphotransfer to the
same RR, and where the i‘th module comprises n i hybrid HKs sharing a single
Hpt, allows for

∏m
i=1(2ni + 1) steady states (figure 3.4 D). In particular, the system

comprising n phosphorelays, each consisting of a hybrid HK and a Hpt domain
phosphotransferring to a common RR, can attain 3n steady states.
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Figure 3.6: (A) & (C) Schematic representation of sharing of downstream components
at the level of Hpt (panel (A)) or RR (panel (C)). (B) Plot of the polynomial function
(see section 3.2.4) characterising the steady state level of the phosphorylated Hpt for the
system shown in panel A for a specific set of parameter values (see section 3.2.5). Both the
polynomial and the variable are scaled to the shown window. The polynomial is plotted
in red, green, and blue for one, two, and three HKs respectively. Each crossing of the
polynomial with the x-axis is a steady state of phosphorylated Hpt. Stable and unstable
steady states are shown as filled and open circles respectively. (D) Signal-response plot for
a system with 2 hybrid HKs, each with separate Hpts that share the same RR (as shown in
panel (C), for n = 2). We assume that the auto-phosphorylation rate constants for HK1
and HK2 (when the REC site is unphosphorylated) are the same and determined by the
same signal (i.e. k1,1 = k2,1). The signal-response plot shows the fraction of phosphorylated
RR at steady state for a given input level (k1,1 = k2,1). The parameter values are chosen
such that the system displays 9 distinct steady states (see section 3.2.5). The solid and
dotted lines indicate stable and unstable steady states respectively.
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Figure 3.7: Schematic representation of a system with three hybrid HKs, each with their
own Hpt that share the same RR (A). Sample signal-response plot for the system shown
in panel (B). Assuming that the input level, that is, the phosphorylation rate constant
from OO to PO, is the same for each hybrid HK (i.e. k1,1 = k2,1 = k3,1) and the ratios
k1,3
k1,1

,
k2,3
k2,1

,
k3,3
k3,1

are held fixed, the signal-response plot shows the fraction of phosphorylated
RR at steady state for varying input level. The parameters are chosen (see Appendix F)
such that the system displays bistability for different intervals of input levels. The solid
and dotted lines indicate stable and unstable steady states respectively.

These mathematical proofs show that microbes can utilize individual hybrid and
unorthodox HKs to implement multistability and are theoretically unbounded in
their capacity to expand the number of available steady states through sharing of
downstream components (Hpt or RR) among such HKs. We find that component
sharing among multidomain HKs can also be utilized flexibly, and in other ways.
For example, component sharing at the level of RR and using HKs sensing the same
signal can be used to implement n bistable switches with distinct threshold signal

126



levels (figure 3.7). Perhaps more interestingly, HKs sensing different signals and
component sharing at the level of RR can be used to implement Boolean logic
gates. In particular, we could identify a simple architecture involving two HKs,
sharing the same Hpt, that can implement an AND and an OR gate (see figure
3.8 & section 3.4.1). The system could be tuned between implementing these
different logic gates simply by changing the total concentrations of components
and the dephosphorylation rate of phosphorylated RR (see parameters listed in
Appendix F). Furthermore, based on the above mechanistic understanding and
parameter sampling, we could identify parameter combinations for the same system
that allowed summation over the two signals (figure 3.8 B). This system response
qualitatively matches the observations from the quorum sensing system of Vibrio
harveyi, where 3 hybrid HKs share the same Hpt. Experiments with a modified
version of that system, and involving just 2 HKs, have shown that the ability to
perform a summation as shown in figure 3.8 is possible in a natural system.

3.4 Discussion & Conclusions

The ability to map environmental signals onto distinct internal physiological states
or programmes is expected to be critical for single-celled microbes that often need
to respond to signals arising from fluctuating environments and neighbouring
populations. This physiological capacity usually requires signalling systems that
can implement threshold dynamics or multistability. While previous studies have
identified multi-site phosphorylation as a key biochemical mechanism to attain
unbounded multistability, this mechanism is mostly lacking from microbial cells.
Instead these cells rely on phosphotransfer reactions in two-component signalling
for their environmental information processing. In this chapter, we mathematically
prove that multidomain (hybrid & unorthodox) HKs found in these systems can
display bistability by embedding multiple feedback loops within their own reaction
scheme using fewer components in comparison to eukaryotic signalling networks like
MAPK pathways [119].

When more than one multidomain HKs sharing the same downstream component,
we find that a system can attain unbounded multistability. We derived several
mathematical proofs relating the number of multidomain HKs sharing the same
component, the position of the shared component in a phosphorelay and the
number of steady states available to the system. These proofs extend to considering
complex formation and show that microbes can attain unbounded multistability by
employing two-component signalling. Furthermore, we find that the same principle of
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component sharing among multidomain HKs can also be employed by the networks
to implement Boolean logic gates when different HKs sense different signals.

Figure 3.8: (A) Schematic representation of a system with two hybrid HKs, that share the
same Hpt. (B - D) Implementation of different signal processing functions using the system
shown in panel A; an “adder”as seen experimentally in V. harveyi [32] (B), a Boolean AND
gate (C), and a Boolean OR gate (D). Each panel shows the fraction of phosphorylated RR
at steady state for different auto-phosphorylation rate constants (i.e. input levels) acting
on the two HKs. It is assumed that the two signals are specific for the two HKs (k1,1,k1,3
and k2,1, k2,3 respectively) and the ratios k1,1

k1,3
and k2,1

k2,3
are held fixed. The systems shown

in panels C and D are bistable, with the blank regions of the surfaces corresponding to
unstable regions. For the parameters used, see Appendix F.

3.4.1 Component sharing and Boolean Logic

In addition to unlimited multistability observed when networks share components,
there could be a capacity for implementing logic functions in the resulting shared
network. To determine whether reaction systems with multiple hybrid HKs can
implement response dynamics mimicking Boolean logic, we examined how different
HK-RR architectures respond to varying inputs to the system .2 We sampled

2For each combination of signal level, the systems were run to steady state where a system was
considered stable, only after simulating the ODEs for a sufficiently long duration and ensuring that
the measured fluctuation in the system‘s output was below 1e-5 and the output RRp levels have
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different reaction rate constants and total concentration of proteins in the network
to generate a steady state signal-response curve.

Representative parameter sets were found where these networks exhibited AND, OR
and ADDER functions. The presented theoretical framework fits well with the few
experimentally studied cases involving hybrid HKs. The quorum sensing system
of Vibrio harveyi implements component sharing as discussed above. It has been
experimentally shown that the system implements an ‘ADDER ’function [134] that
could be readily reproduced with the models presented here. Similarly, we found
that the osmosensing system from yeast, implementing a hybrid HK [82], displays
bistability and hysteresis under an experimentally measured and biologically feasible
parameter regime. These analyses lend further support to the idea that the observed
capacity for multistability arising from multidomain HKs is exploited by evolution
and is implemented in natural two-component systems.

While systematic analyses in Escherichia coli and Caulobacter crescentus found
mostly distinct HK-RR pairs [25, 135], a recent study suggest rapid diversification of
RRs after duplication [6], these studies focused primarily on regular HKs. Where
analysed, specific two-component systems involving multidomain HKs are found to
display significant cross-talk [136] and also the exact type of component sharing
described here (as seen in Vibrio harveyi [134]). The particular case of quorum
sensing in Vibrio harveyi, for example, involves 3 hybrid HKs sharing the same Hpt
and is indicated to perform a summation of at least two of the incoming signals
[134] and results in similar dynamics to that shown in figure 3.8.

In this chapter, we therefore argue that component sharing among multidomain
HKs could be seen as a design principle, which microbial cells can utilize flexibly to
generate unbounded numbers of physiological steady states and implement logic in
their operations.

converged to a steady state. All simulations were run using MATLAB and its native ode solvers
(ode15s).
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4
Biological significance of two component

signalling and phosphorelay networks.

Chapter Overview

To understand the biological context of the dynamics embedded in different
two component and phosphorelay architectures, we examine the distribution of
different sensor proteins (single and multidomain sensor HKs) across prokaryotic
genomes (and metagenomes) and annotate their partner response regulators (RR)
to correlate the identified function, (regulated) metabolic process and location
inside the cell of an RR with a network’s dynamics defined by the sensor kinase
present in the network. We examine the distribution of multidomain and regular
HKs across genomes and study how they vary with respect to the size of a
genome and a cell’s external environment. We test if specific types of sensor
kinase proteins are preferentially distributed in some organisms and examine if
this depends on the size of a genome or the specific environment in which an
organism occurs. For the former, we use genomic data available in P2CS, a two
component protein database and for the later, we use a classification scheme
that groups organisms as either extracellular, facultative intracellular or obligate
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intracellular [137]. By identifying organisms from P2CS found in [137], we were able
to examine the distribution of different types of HKs across species found in different
environments. From these distributions, we were unable to find a clear evidence of
correlation between genome size and the distribution of different HKs across genomes.

In addition to examining the distribution of different types of HKs, we examine
the functional significance of sequences representing RRs partnered by different
types of histidine kinases in a cell. We do this to find the physiological significance
of different networks by identifying the functions that their response controls.
We use BLAST2Go, a large scale functional annotation tool that identifies GO
(Gene Ontology) IDs representing predicted metabolic processes, function and
cellular locations of a response regulator protein using its sequence information
and comparing with known sequences in NCBI's (nr i.e. non redundant) protein
database. By annotating these response regulator proteins, we try to predict the
function and metabolic processes that signalling networks containing these proteins
regulate. Such an analysis allows us to predict the possible correlation between
dynamics that different types of sensor kinases have a capacity for, along with
the types of processes and functions that response regulator proteins regulated by
them are involved in. This gives us an insight into the possible biological context
in which theoretical findings regarding networks containing different proteins and
architectures (as discussed in chapters 2 and 3.4) are relevant.

4.1 Introduction

Two component systems and phosphorelays are widely distributed across a large
number of prokaryotes, archaea bacteria and in some eukaryotes. In genomes
containing several of these networks, these signalling networks can be involved in
regulating a number of different metabolic processes like sporulation (i.e. deciding
when to form protective spores that ensure cell survival in the face of adverse
environmental conditions) [3], osmoregulation (regulating internal osmotic pressure
by controlling salt concentration) [108], cell cycle control (i.e. deciding when the
cell divides and controlling the onset of different stages before the cell divides) [25],
chemotaxis (regulating the movement of a microbial cell towards a food source by
measuring the concentration of food in the environment) [10], and quorum sensing
[4]. In each of these roles, networks have different architectures and corresponding
response dynamics.

For example, processes like sporulation in Bacillus subtilis [3] embed a basic

131



tunable architecture (discussed in [85]) when regulating a cell’s decision to form
spores under environmental stress. This network integrates signals from quorum
molecules (signalling molecules that pass information between cells in a microbial
community) in the environment with signals of stress to calculate a food per cell
estimate that decides when the organism forms spores for survival. The nature
of this architecture is such that the response from this network can be tuned via
transcriptional feedback and dephosphorylation of Spo0F-p by Rap-A, a protein
responsible for integrating information from quorum signals into this pathway. In
([17, 105, 106]) we see signalling networks where ligand binding at a bifunctional
histidine kinase toggles its kinase/phosphatase activity and affects the overall
response characteristics of the network depending on the surrounding external
environment. In Vibrio harveyi, we find an ADDER function implemented by
LuxN and LuxPQ to control gene expression through a synergistic detection of
multiple inputs. In Ann et.al. [82], we see that Ypd1 dependent phosphotransfer
reactions display bistability and hysteresis under an experimentally measured
and biologically feasible parameter regime when regulating the osmotic pressure
in the cell. All these examples lend support to the idea that different dynamics
emerging from different signalling architectures are exploited in cells to uniquely
suit regulatory requirements of specific metabolic processes that the network
regulates. There could also be additional environmental dependence on these net-
works carrying out specific functions in the cell using a specific signalling architecture.

In previous chapters, we discussed phosphorelay architectures and their underlying
reaction schemes which embed tunability and multistability. We examined the
significance of different phosphorelay architectures and found that an interplay
between forward and reverse phosphotransfer along with a presence of hydrolysis
reactions at specific proteins in the network is essential for tunability in a network,
where the response from the same network can be either sigmoidal or hyperbolic,
depending on reaction parameters and total protein concentrations. Building on this,
by examining different types of histidine kinases (multidomain and single domain)
and their effects on the overall dynamics of a signalling networks we showed that
phosphorelays with multidomain proteins have a capacity for multiple steady states
due to the double negative feedback loops occurring in their chemical reaction
networks. We showed that a single additional phosphorelay domain on the sensor
HK (hybrid HK) and a downstream phosphate receiver domain can embed reactions
required in a system for it to be multistable. We also found that networks with
shared signalling architectures involving multidomain proteins have a capacity to
exhibit unlimited multistability and execute logical operations like AND, OR and
ADDER ([138]).
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Models built in chapters 2 and 3 mainly examine the theoretical signal processing
capabilities of different signalling networks. To understand more about the biological
significance of these findings, we examine the genomic distribution of different
types of histidine kinases and predict the function, cellular location and metabolic
processes involving response regulators partnering these HKs. By examining the
distribution of multidomain HKs with respect to regular HKs across genomes, we
explore if this distribution depends on the size of the genome. In addition to this,
with multistability in a network enabling a cell to achieve multiple steady states, we
test if prokaryotes with smaller genomes and especially those which occur in highly
variable environments have more multidomain proteins than regular HKs to leverage
multistability to perform more complex information processing using fewer resources
[139].

Using P2CS, a two component signalling database [140, 141] and environmental
classification defined by Bordenstein et.al. [142], we examine the distribution of
different types of HKs across genomes and also study the environmental impact on
the observed distribution of different types of HKs.

4.2 Understanding the biological context of sig-

nalling networks

Let us consider the examples of Treponema primitia ZAS-2 and Streptococcus
pyogenes. Treponema primitia ZAS-2, has three times more multidomain HKs [126]
than regular HKs and Streptococcus pyogenes, does not have any multidomain HKs
and contains only regular histidine kinases. When we compare the environment in
which the two species occur, we see that Treponema primitia ZAS-2 is a spirochete
from the gut microbiota while Streptococcus pyogenes is a human pathogen which
infects the respiratory tract and superficial layers of the skin. The environments in
which these organisms occur and the distribution of different HK types in these
genomes, coding density1 and cross talk (triad, tetrad, pentad genes) between the
TCS genes (see table 4.1) are all part of what we define here as the biological context
for a signalling network in a cell. The nomenclature of triad, tetrad and pentad
genes refers to the number of two component genes found in the same gene cluster
on the genome. This hints at the possible presence of branched signalling pathways

1The term coding density represents the percentage of genes in a genome which produce a
functional product.
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with sharing of components during signal transfer between different two component
proteins.

Species Name Streptococcus pyogenes HSC5 Treponema primitia ZAS-2

Total Genome Size 1818351 4059867

Coding Density 84.77 89.81

Average Gene Length 884 1035

Regular HK 12 11

Hybrid HK 0 16

Unorthodox HK 0 17

Orphan Genes 3 64

Paired Genes 11 16

Triad Genes 0 1

Tetrad Genes 0 1

Pentad Genes 0 1

Hexad Genes 0 0

Heptad Genes 0 0

Multidomain HK/Regular HK 0 3

Environment respiratory tract / skin termite hindgut

Table 4.1: Genomic information for Streptococcus pyogenes HSC5 and Treponema primitia
ZAS-2 from P2CS.

Table 4.2 shows a list of the top 20 genomes with more multidomain HKs than
regular HKs and table 4.3 shows the top 20 genomes with more regular HKs than
multidomain HKs. To understand if there is a broad correlation between genome size
and a selective distribution of different types of sensor kinases, we extract genomic
data for TCS proteins across all prokaryotic genomes listed in P2CS.
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4.2.1 Distribution of regular and multidomain HKs across

prokaryotic genomes in P2CS

P2CS, is a comprehensive repository of two component signalling systems, and
contains data from 1125 (July, 2013) prokaryotic and archaea bacterial genomes,
along with metagenomic data. We consider only 766 out of 1125 genomes as there
were several species with multiple subspecies included in the database. For these
organisms, we considered a single representative entry and exclude the others as they
had similar genomic composition. For these 766 species, we extracted information on
the number of different TCS genes, predicted signalling partners (includes HK-RR
pairs and multiples where more than one (n = 1, 2 . . . 5) HKs partner with an RR or
vice-versa) and database identifiers (GI IDs) for nucleotide and amino acid sequence
records for TCS genes in NCBI‘s [143] protein database.

We extract the number of different types of HKs found across all prokaryotic
genomes in P2CS, using raw data provided by Phillip and Barakat [140, 141] (via
personal correspondence) and by writing Perl scripts to directly fetch missing data
from http://p2cs.org. Using this data, we plotted the number of regular vs
multidomain HKs and the ratio of multidomain HKs vs total genome size (panels A
and B respectively in figure 4.1). The points highlighted in red (figure 4.1, panel
B) represents genomes where the ratio of multidomain to regular HK is > 1. From
(figure 4.1A), we do not see a meaningful correlation between the occurrence of
regular and multidomain HKs across genomes and in figure 4.1B, we find very few
genomes (40) with more multidomain HKs than regular HKs. When we examine
organisms with small genomes (< 1 Mbp2), i.e. those that fall in regions R1, R2 in
the plot, there are very few genomes with a ratio of multidomain HK to regular
HK > 1. Figure 4.2 shows that nearly 70 % of the genomes smaller than 1 Mbp
have no multidomain HKs, 13% have more regular HKs than multidomain HKs and
about 17% have more multidomain HKs than regular HKs. If we consider genomes
with sizes between 1 and 3.8 Mbp (the average genome size of of all genomes in
P2CS), we find that 204 out of 399 genomes included in the dataset, i.e. 51% of
the genomes, have no multidomain HKs at all, 46% have more regular HK than
multidomain HK and the remaining 3% of the genomes have more multidomain
HKs. 70% of the genomes (< 1 Mbp) and 51% of the genome ( > 1 Mbp & < 3.8
Mbp) have no multidomain proteins, and the remaining genomes (> 3.8 Mbp) shows
a clear majority presence of regular HKs (nearly 97%).

2Mbp stands for Mega base pair i.e. 106. It indicates the length of the DNA strand and
represents the number of base pairs in the genome.
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Figure 4.1: Shows the number of regular and multidomain HKs on the x-axis and y-axis
respectively. The dotted line is the reference correlation line for perfect positive correlation
(R = 1) and the continuous line represents the actual positive correlation of (R = 0.49)
between the number of regular and multidomain HKs (A). Shows the ratio of multidomain
to regular HKs plotted against total genome size of the organisms corresponding to that
ratio. Data points with values > 1 on the y-axis are highlighted in red and represent
genomes that harbour more multidomain than regular HKs. Genomes where there were no
multidomain proteins and/or no regular HKs are not included in this plot (B).

Figure 4.2: Plot (A) shows the distribution of regular and multidomain HKs amongst
genomes in P2CS with a genome sizes < 1 Mbp. The plot shows data from each genome
represented as a data point, with the x-axis and y-axis displaying regular and multidomain
HKs respectively. Data points with values > 1 on the y-axis are highlighted in red and
represent genomes that harbour more multidomain than regular HKs. (B) Histogram
representing the distribution of the ratio of multidomain HK vs regular HK (x-axis) and
the number of genomes (y-axis).
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As prokaryotic species occur in a variety of environments at different stages in their
life cycle, we carry out a similar examination of a subset of organisms considered
in figure 4.2 and study the genomic distribution of different sensor HKs in specific
environments to test if organisms occurring in highly variable environments have
more multidomain than regular HKs.

4.2.1.1 Distribution of regular and multidomain HKs in specific envi-
ronments

Previous studies [126, 144–149] on the evolution of two component systems have
shown that the evolution of different prokaryotic signalling architectures depends on
gene duplication, separation of domains and introduction of additional intermediate
domains on the same protein [126] via horizontal gene transfer and lineage specific
expansion. With organisms living in different environments at different stages in
their life cycle, different mechanisms are employed to evolve network architectures
that enable them to cope with their surrounding environment and regulate their
internal physiological state appropriately. In this section, we will examine a subset of
genomes (see figure 4.1) occurring in different environments (as characterised in [142])
and study their sensor HK distribution patterns. Depending on the environment
in which different stages of their life cycle occurs, organisms can be classified
as extracellular, facultative intracellular or obligate intracellular. Extracellular
organisms are those which reside outside a living host cell in all stages of their life
cycle. Facultative intracellular organisms are those which have parts of their life
cycle inside a host and some parts where they are outside the host cell. Obligate
intracellular organisms are those which only survive inside a host cell. Each of these
environments have different characteristics. Organisms occurring outside the cell,
i.e. extracellular, face a highly variable environment while facultative intracellular
organisms have stages of their life cycle where they are outside the cell, facing a
highly varying environment and other stages inside the cell where they are in a more
stable homoeostatic environment. For organisms which are obligate intracellular,
they are always found inside a host cell, in a stable, less variable environment.
Unlike facultative intracellular organisms, obligate intracellular organisms are always
inside a host and embed mechanisms that integrate themselves within the host cell
machinery. Depending on the environment, organisms evolve different strategies for
survival and can employ properties like a capacity for crosstalk and multistability
(chapter 3) [138] for processing multiple inputs and employ computational properties
observed in some signalling architectures (as discussed in chapter 3) implementing
logic functions like AND, OR and ADDER.

Of all the 384 organisms which were included in the study by Bordenstein et.al.,
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we found 124 extracellular, 24 facultative intracellular and 5 obligate intracellular
organism entries in P2CS. From these entries, we extract information regarding the
number of different types of HKs found in these organisms and generate the plots
shown in figure 4.3. From figure 4.3B, we see that there are very few genomes with
more multidomain HKs than regular HKs and in figures 4.3C and 4.3E, it can be
seen that, there are no organisms with more multidomain HKs than regular HKs.
This plot also shows limited representation of organisms characterised as facultative
intracellular and obligate intracellular and there isn’t sufficient information for us to
examine if organisms occurring in different environments have a specific distribution
of different sensor histidine kinase proteins.

A B

C D

E F

Figure 4.3: The genomic distribution of different HK types across three groups of organisms
classified on the basis of their external environment. Panels (A-B) represent extracellular
organisms, (C-D) represents facultative intracellular organisms and (E-F) represent obligate
intracellular organisms. Panels (A,C,E) show the ratio of multidomain HKs vs regular HKs
(y-axis) to total Genome Size (x- axis) and (B,D,F) show the number of multidomain HKs
(y-axis) vs the number of regular HKs (x- axis). In panel A, red colour has been used to
highlight genomes where the ratio of multidomain HKs vs regular HKs is greater than 1.
Genomes where there were no multidomain proteins and no regular HKs have been removed
from the plot.

Even as [142] considered 384 organisms, only 153 out of those organisms had
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corresponding data in P2CS (as of July 2013). In this study, we are using data
only from P2CS as it has a high accuracy of predicting proteins [141] found in two
component and phosphorelay networks.

In addition to examining the distribution of different types of histidine kinase proteins
across genomes and environments, we examine the signal transducer i.e. response
regulator proteins that these histidine kinases partner with. Analysing them can
help in identifying the metabolic processes, and functions that different HKs regulate
through their partner sensor HKs.

4.2.2 Functional Annotation of RR

To carry out a functional annotation of the RR proteins in the network, we use a
high throughput sequence annotation tool called BLAST2GO. Annotation of a (gene
or a protein) sequence is a process in which we identify the location (within the cell),
function (of the gene/protein) in the cell and the metabolic process involving the
protein (or gene). BLAST2GO [150–152], is a high throughput functional annotation
platform which can be used to identify the function, location and process involvement
of protein sequences representing all RRs identified as partners for different HKs
found across genomes in P2CS ([153]). It uses a homology based approach where it
identifies target sequences (with known function, metabolic process involvement
and location) similar to the query sequence and derives annotations for the query
sequence based on its similarity to a target sequence. By identifying multiple
sequences which are similar to the query sequence and using an annotation scoring
method, BLAST2GO derives the most appropriate ontology (GO: Gene Ontology)
IDs that represent the process, function and cellular location of the query sequence.

Gene ontology IDs represent the detectable attributes of a gene (or protein) and are
derived from a consensus database of terms representing different attributes of a
gene (or a protein) derived from sequences found across all species. This database
maintains a vocabulary of function, process and location of all genes and gene
products (proteins) in the cell. Each GO ID has a term name, an alphanumeric
identifier of the form GO:X1X2X3X4X5X6X7, where every X i (i = 1 · · · 7) can be any
number between 0 and 9, a citation for the source, and a namespace definition which
represents the domain of the term (i.e. molecular function, process and cellular
component). These terms annotate sequences and identify the role they play in a
cell.

In this study, we download protein sequences for RRs regulated by regular, hybrid
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and unorthodox HKs. Regular HK mediated RR sequences are categorised as
group-I and RRs mediated by hybrid and unorthodox HKs are classified as group-II
(see table 4.4). Sequences in these two datasets were separately annotated and
different stages in their annotation process are explained below. We begin by first
extracting protein sequences which will be annotated.

4.2.2.1 Extracting sequences from P2CS

A list of GI IDs 3 for all HKs found in P2CS, and their corresponding RR partners
were extracted using the raw data provided by Phillip and Barakat (personal
correspondence) and by writing Perl scripts that scanned (web-scraping scripts)
http://p2cs.org and extracted GI IDs representing HKs and RRs on P2CS.
EGquery and EFetch utilities within the E-utilities programme suite at NCBI
(http://www.ncbi.nlm.nih.gov/books/NBK25497/) were also used along with
writing another set of Perl scripts to query the protein database on NCBI and
download all the necessary protein sequences as a single batch.

# sequences

Group I (Regular HK mediated RR) 27095

Group II (Hybrid and multidomain HK mediated RR) 2357

Table 4.4: The number of RRs downloaded from NCBI (July, 2013). Group I: RRs regulated
by regular HKs; and Group II: RRs regulated by hybrid and unorthodox HKs.

The first step in the annotation process using BLAST2GO involves running a BLAST
[154] search to find other proteins which are similar to the query sequence.

4.2.2.2 BLAST

BLAST stands for Basic Local Alignment Search Tool and as part of this, each
query sequence is compared with all the sequences in the protein nr (non redundant)
database one at a time and the top 20 similar sequences are identified [154]. The
results from this blast search for all the sequences are compiled and stored as an
Xml file. The top BLAST hits ([155]) are then passed on through to the next step,
where appropriate GO IDs are assigned to sequences.

3GI ID stands for Genome Identifier IDs and represent the identifier used to refer to sequence
records in the NCBI database.
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4.2.2.3 GO mapping

Once the top 20 target sequences similar to all query sequences are identified,
BLAST2GO uses information available on public resources like NCBI [143], PIR
(http://pir.georgetown.edu/) and GO (http://geneontology.org/) to link
short-listed BLAST sequences (for every query protein) to GO IDs found in the
Gene Ontology database [155, 156]. This database contains millions of GO anno-
tated sequences. Each sequence can be assigned three different types of GO IDs
corresponding to the three attributes: process, component (location) and function.

4.2.2.4 Annotation

BLAST hits mapped to their GO-IDs ([155]) along with the query sequences are
passed on through to the annotation step, where using GO ID mappings on the
target hit sequences, BLAST2GO predicts GO IDs for every query sequence. The
BLAST2GO annotation algorithm examines the similarity between query and hit
sequences, the quality of the source of initial GO assignments to the target hit
sequences, and the structure of the GO Directed Acyclic Graph (DAG) [150] rep-
resentation of the context of biological dependences mapped using these GO IDs.
From this, an annotation score (AS) is computed ([150]) using the formula

DT = max(similarity · ECweight)

AT = (#GO − 1) ·GOweight

AS = DT + AT (185)

The AS is composed of a direct term (DT) that represents the highest similarity
value among the hit sequences bearing this GO term, weighted by a factor
corresponding to its evidence code (EC).4 ECweight used to calculate DT is an
indication of the reliability of the GO annotation. A GO term EC is present for
every annotation in the GO database and indicates the procedure of functional
assignment. ECs vary depending on the inferred mechanism, for example-Inferred
from Direct Assay (IDA) to unsupervised assignments such as Inferred by Electronic
Annotation (IEA). The second term (AT) introduces the possibility of abstraction
into the annotation algorithm. Abstraction is defined as the annotation to a
parent node when several child nodes are present in the GO candidate pool.

4EC or Evidence Code: All annotations are associated with an Evidence Code which provides
information about the quality of the functional assignment of the annotation, depending on the
method used to derive the annotation https://www.blast2go.com/images/b2g_pdfs/b2g_user_
manual.pdf.
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AT multiplies the number of total GOs unified at the node by a user defined
GOweight which controls the possibility and strength of abstraction. The expression
for AR shows how we select the lowest term per branch that lies over a user
defined threshold [151]. The GO distribution seen in figure 4.4 gives us an in-
dication of the number of GO IDs assigned to sequences in both group-I and group-II.

In this step, we set the E-value filter as 1e-6 and an annotation cut-off of 60. A GO
weight of 15 is used along with a Hsp-Hit coverage of 80. The default evidence code
weights set-up in BLAST2GO were retained and sequences from groups I and II were
annotated.

4.2.2.5 Comparing multidomain HKs with regular HKs

Once we derived the annotations for both regular and multidomain HKs (see table
4.4), we examined the annotations assigned to both groups and used enrichment
analysis5 [152] (http://resources.qiagenbioinformatics.com/manuals/isv/
Blast2GO/Blast2GO_PRO_User_Manual.pdf) along with Fischer’s exact test using
a robust False Discovery Rate (FDR) correction to asses the functional differences
between sets of functional annotations assigned to groups I and II. This was carried
out by BLAST2GO using the Gossip package ([157]) for statistical assessment of
differences in GO term abundance between two sets of sequences. We loaded all the
sequences found in Groups I and II (table 4.4) along with their annotations and
assigned sequences from Group II (multidomain) as a test set and sequences in
group I as the reference dataset. We then carried out a single-tailed analysis and
focussed on the well represented functions in these test groups, ignoring the under
represented annotations. By carrying out a positive enrichment analysis (with a
false discovery rate (FDR) threshold of 0.05), we derived a list containing significant
GO terms ranked according to their representation in the datasets (figures 4.5, 4.6 &
4.7). This gives us an insight into physiological differences between single domain
regular HKs and multidomain HKs.

5Enrichment analysis is an approach used to compare two different sets of genes or proteins with
annotations to identify significant over or under represented functions assigned to them.
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A

B

Figure 4.4: Shows the number of GO IDs annotated for query sequences from group I (A)
& group II (B) (table 4.4).
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GO Annotation: Cell component (Location)

From figure 4.5, we see that a significant number of Group II proteins have
predicted location inside the cell with the intracellular annotation (GO: 0005622
http://amigo.geneontology.org/amigo/term/GO:0005622) indicating that
RRs in group II are found in locations within (but not including) the plasma
membrane, and excluded large vacuoles and masses of secretory or ingested
material. In addition to this more than 32% of sequences in group II
have a predicted association with a macromolecular complex (GO:0032991,
http://amigo.geneontology.org/amigo/term/GO:0032991) and protein complex
(GO:0043234, http://amigo.geneontology.org/amigo/term/GO:0043234) while
< 2% of group I sequences have the same association. Around 17 % of the
annotated sequences in group II are also associated with transcription factor complex
(GO:0005667, http://amigo.geneontology.org/amigo/term/GO:0005667).

0 10 20 30 40 50 60 70 80 90 100

Cell

Intracellular

Cell	Part

Macromolecular	Complex

Protein	Complex

Transcription	Factor	Complex

Intracellular	Part

Protein	histidine	KInase	Complex

Regular	HK Multidomain	HK

Figure 4.5: Shows results from the analysis carried out to ascertain the statistically
significant functional differences between groups I and II. The y-axis shows significantly
enriched GO terms that represent the cellular locations of annotated proteins and the x-axis
gives the relative frequency of each term (i.e. % of all the sequences in the group which
were mapped to the GO ID represented by this GO term). Red bars correspond to group I
(regular) and blue bars correspond to group II (multidomain HKs).

GO Annotation: Molecular Function

When we examine the predicted molecular functions for annotated sequences
in group I and II, we find that a significant proportion of the sequences
in both groups are predicted to be involved in ion binding (GO:0043167,
http://amigo.geneontology.org/amigo/term/GO:0043167) and catalytic activ-
ity(GO:0003824, http://amigo.geneontology.org/amigo/term/GO:0003824).
The other molecular functions involving both groups are transferase ac-
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tivity (GO:0016740, http://amigo.geneontology.org/amigo/term/GO:

0016740), phosphorous-oxygen lyase activity (GO:0016849, http://amigo.

geneontology.org/amigo/term/GO:0016849) and lyase activity (GO:0016829,
http://amigo.geneontology.org/amigo/term/GO:0016829) (See figure 4.6).
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Protein	Kinase	Activity
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Figure 4.6: Shows results from the analysis carried out to ascertain the statistically
significant functional differences between groups I and II.The y-axis shows significantly
enriched GO terms that represent the molecular function that the annotated proteins are
involved in and the x-axis gives the relative frequency of the term (i.e.% of all the sequences
which were mapped to this GO ID represented by this GO term). Red bars correspond to
group I (regular HKs) and blue bars correspond to group II (multidomain HKs).
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Figure 4.7: Shows results from the analysis carried out to ascertain the statistically
significant functional differences between groups I and II. The y-axis shows significantly
enriched GO terms that represent the cellular processes that the annotated proteins are
involved in and the x-axis gives the relative frequency of the term (i.e. % of all the sequences
which were mapped to this GO ID). Red bars correspond to group I (regular HKs) and
blue bars correspond to group II (multidomain HKs).

GO Annotation: Metabolic Processes

Based on the predictions made regarding the metabolic processes that these
sequences are involved in (see figure 4.7), multidomain HK regulated RR
proteins in group II appear to have more than 60% of the sequences
annotated with a predicted role in regulating transcription (GO:0006355,
http://amigo.geneontology.org/amigo/term/GO:0006355) whereas less than
5% of sequences in group I have a similar annotation. The other significant
metabolic processes involving these RRs are related to nucleotide and cyclic
nucleotide biosynthetic processes, single organism metabolic processes (GO:0044710,
http://amigo.geneontology.org/amigo/term/GO:0044710) and small molecular
metabolic processes (GO:0044281, http://amigo.geneontology.org/amigo/term/
GO:0044281.

Based on these annotations, we find that a large majority of multidomain HK
regulated RRs have a predicted role in regulating transcription and with a direct
DNA binding activity. Unlike multidomain HK mediated RRs, regular HK mediated
RRs have nearly no predicted involvement in transcription and very little involvement
in nucleotide metabolism. The only commonly predicted functional annotations for
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regular HK mediated RRs is their involvement in ion binding and catalytic activity
(see figure 4.6).

4.3 Summary of Findings

In this chapter, we examined 766 prokaryotic genomes and metagenomes and find
that >70 % of genomes with sizes < 1 Mbp have no multidomain HKs. Using
available data, we do not find any evidence to show that multidomain HKs are
selectively preferred in smaller genomes over regular HKs (see figures 4.1B & 4.2),
nor do we find a specific distribution of histidine kinase in specific environments.
When we annotate sequences representing RRs regulated by different HK types, and
their predicted process, function and location, we find that multidomain HKs are
predominantly involved in nucleotide metabolism, regulate a number of catalytic,
lyase and phosphorous-oxygen lyase activities (see figure 4.6) and directly regulate
gene expression by binding to DNA (see figure 4.7).

4.4 Discussion & Conclusions

Following the theoretical findings discussed in chapters 2 and 3, we tried to find
the biological significance of these findings and attempted to correlate them with
different prokaryotic signalling architectures discussed before. By focussing on the
input and response regulating members of these networks, we tried to correlate the
theoretical signal processing properties of different signalling networks with the
genomic occurrence of proteins found in two component signalling networks and the
metabolic processes that the output from these networks control. With this, we tried
to define the biological context for different prokaryotic signalling architectures.

To characterise the biological context of the input, we examined the distribution of
different sensor proteins (HKs) across prokaryotic genomes and investigated whether
smaller genomes have a preference for multidomain HKs (per Mbp) than larger
genomes so as to leverage multistability in multidomain HK regulated networks and
enable the cell to sense multiple signals and occupy different physiological states
using fewer resources. With the data available on P2CS, we found that there wasn’t
sufficient evidence to show that there is a correlation between smaller genomes and
the distribution of multidomain HKs in them.
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To characterise the output regulated by these networks, we annotated sequences
representing response regulators. We found that > 60% of multidomain HK
regulated RRs have a predicted involvement in transcriptional regulation which
indicates that signals which different multidomain HKs sense, have a direct impact
on gene regulation when these regulators bind directly to the DNA. This indicates
that genomes with multidomain HKs can directly leverage multistability and
computational logic embedded in architectures containing multidomain HKs to
control gene expression using shared architectures described in section 3.4. Such
direct access to regulating gene expression via RRs make two component systems and
phosphorelays ideal candidates for synthetic biology applications where engineered
sensor and response regulators could be rewired [158, 159] to build synthetic circuits
that implement novel ligand sensing and protein expression strategies.
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5
Conclusions and Future Steps

In this study we discussed several of the most commonly occurring prokaryotic
signalling architectures (figure 5.1). We built models representing commonly found
four protein phosphorelay architectures to understand the significance of different
biochemical reactions that occur in these networks, and the role that they play in
prescribing different signal-response dynamics to the network. This exploration
lead to the initial finding that some architectures have a capacity for tunability
in their signal-response behaviour. Using steady state analytical solutions, we
found specific mathematical relationships between reaction parameters that define
when the necessary conditions for a system to exhibit either a sigmoidal or a
hyperbolic response occur. Investigations like this describe how cells containing
these commonly found phosphorelay architectures could employ mechanisms like
regulating bifunctional kinase-phosphatase HK activity via ligand binding; modifying
forward and reverse phosphotransfer reaction rates through mutations and regulating
transcriptional feedback (which introduces new copies of proteins in the phosphorelay)
to tune a signalling network’s response behaviour from one response regime to another.

When we examine architectures which have multidomain HKs (figures 5.1B,C,E,F
& G), we find that coupled double negative feedback loops occur in hybrid HK
mediated phosphorelays (figure 5.1B) and embed bistability in the network. The
occurrence of multistability in prokaryotic phosphotransfer mediated signalling
networks was not previously known, and with proofs described in this study, we show
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how signalling networks can embed unlimited multistability by sharing proteins, and
extract specific relationships between the number of steady states and the number of
signalling networks sharing the same protein (figure 5.1E, F and G). In addition to
multistability, these networks with shared proteins can also compute logic functions
like the AND, OR and ADDER functions.

As we examine findings from a simple two component signalling architecture (figure
5.1A) to a large network of networks with shared proteins (figure 5.1G), we see that
the modularity of a simple two component architecture allows the creation of these
larger networks, which give prokaryotes the ability to carry out a wide range of
simple and complex signal processing, while using components much simpler than
those seen in eukaryotic signalling.

Figure 5.1: Shows key architectures which were modelled in this study. Simple TCS (A),
hybrid HK mediated phosphorelay (B), unorthodox HK mediated phosphorelay (C), regular
HK mediated phosphorelay (D), shared signalling networks with shared Hpt (E), shared
RR(F) and shared Hpt and RR (G).

In addition to the insights that we have about the dynamic and computational
properties that these signalling networks exhibit, their high modularity, specificity
in signalling and a wide occurrence across hundreds of prokaryotic species make
them an ideal target for applications in synthetic biology. So far, engineering of
two-component systems have only concentrated on exploiting their signal sensing
properties [160, 161] and not their signal processing capacities. In particular, the
capacity for some of these architectures to implement multiple bistable switches
that can be controlled at different signal levels or through a combination of signals,
can inform the construction of novel synthetic logic gates at a protein level. With
multistable phosphorelay networks, we could build controllable multistable systems
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i.e. synthetic protein circuits and characterise them to extend the repertoire of tools
available in synthetic biology.
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A
APPENDIX

A.1 Parameters used to generate figure 2.1
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Reaction rates Hyperbolic Curve Sigmoidal Curve

k2 (Ms)−1 9.96E+03 2.73E+04

k3 (Ms)−1 8.56E+04 1.66E+04

k4 (Ms)−1 8.78E+04 5.68E+04

k2r (Ms)−1 0 0

k3r (Ms)−1 1.68E+04 6.42E+04

k4r (Ms)−1 1.85E+04 9.71E+04

kh1 (s−1) 0.061 0.086

kh2 (s−1) 0.093 0.015

Hktot (M) 1.04E-04 1.77E-04

Rectot (M) 1.04E-04 1.77E-04

Hpttot (M) 1.04E-04 1.77E-04

RRtot (M) 1.04E-04 1.77E-04

Table A.1: Parameters used to plot the curves in Figure 2.1.

Total protein concentrations are equal Total protein concentrations are unequal

Parameters Hyperbolic Regime Sigmoidal Regime Hyperbolic Regime Sigmoidal Regime

k2 (Ms)−1 4.87E+04 5.15E+04 4.85E+04 5.21E+04

k3 (Ms)−1 6.00E+04 3.84E+04 5.98E+04 4.01E+04

k4 (Ms)−1 5.98E+04 3.88E+04 5.93E+04 3.90E+04

k2r (Ms)−1 0 0 0 0

k3r (Ms)−1 4.04E+04 6.05E+04 4.06E+04 6.06E+04

k4r (Ms)−1 4.14E+04 6.10E+04 4.17E+04 6.13E+04

kh1 (s−1 ) 0.057 0.052 0.059 0.054

kh2 (s−1 ) 0 0 0 0

Hktot (M) 1.03E-04 1.04E-04 9.49E-05 1.02E-04

RECtot (M) 1.03E-04 1.04E-04 1.11E-04 1.09E-04

Hpttot (M) 1.03E-04 1.04E-04 9.75E-05 9.77E-05

RRtot (M) 1.03E-04 1.04E-04 9.79E-05 9.71E-05

mean (k2/k2r) Inf Inf Inf Inf

mean (k3/k3r) 3.718 0.801 3.914 0.827

mean (k4/k4r) 3.319 0.886 3.960 0.767

Table A.2: Mean parameter values calculated from parameter sampling runs implemented
using numerical simulations for topology 14 (phosphorelays regulated by mono functional
kinase).
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Total protein concentrations are equal Total protein concentrations are unequal

Parameters Hyperbolic Regime Sigmoidal Regime Hyperbolic Regime Sigmoidal Regime

k2 (Ms)−1 4.78E+04 6.83E+04 4.64E+04 6.76E+04

k3 (Ms)−1 5.27E+04 3.67E+04 5.23E+04 3.47E+04

k4 (Ms)−1 5.12E+04 3.52E+04 5.11E+04 3.51E+04

k2r (Ms)−1 5.47E+04 2.13E+04 5.69E+04 2.18E+04

k3r (Ms)−1 5.02E+04 6.19E+04 5.06E+04 6.39E+04

k4r (Ms)−1 4.96E+04 6.44E+04 5.05E+04 6.21E+04

kh1 (s−1 ) 0.055 0.051 0.054 0.054

kh2 (s−1 ) 0.000 0.000 0.000 0.000

HKtot (M) 1.01E-04 1.05E-04 9.97E-05 1.06E-04

RECtot (M) 1.01E-04 1.05E-04 1.07E-04 1.04E-04

Hpttot (M) 1.01E-04 1.05E-04 1.02E-04 9.84E-05

RRtot (M) 1.01E-04 1.05E-04 9.98E-05 9.92E-05

mean (k2/k2r) 2.453 11.147 1.757 15.092

mean (k3/k3r) 2.577 0.708 2.650 0.626

mean (k4/k4r) 2.218 0.696 2.842 0.778

Table A.3: Mean parameter values calculated from parameter sampling runs implemented
using numerical simulations for topology 16 (phosphorelays regulated by mono functional
kinase).
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Total protein concentrations are equal Total protein concentrations are unequal

Parameters Hyperbolic Regime Sigmoidal Regime Hyperbolic Regime Sigmoidal Regime

k2 (Ms)−1 4.85E+04 5.38E+04 4.97E+04 5.37E+04

k3 (Ms)−1 6.03E+04 3.91E+04 6.13E+04 3.77E+04

k4 (Ms)−1 5.98E+04 3.94E+04 5.85E+04 3.79E+04

k2r (Ms)−1 0.00E+00 0 0 0

k3r (Ms)−1 4.13E+04 6.08E+04 3.99E+04 6.06E+04

k4r (Ms)−1 3.92E+04 6.07E+04 4.08E+04 6.19E+04

kh1 (s−1 ) 0.049 0.052 0.050 0.051

kh2 (s−1 ) 0.051 0.049 0.052 0.050

HKtot (M) 1.02E-04 1.09E-04 9.87E-05 1.11E-04

RECtot (M) 1.015E-04 1.09E-04 9.84E-05 1.08E-04

Hpttot (M) 1.015E-04 1.09E-04 1.02E-04 1.02E-04

RRtot (M) 1.02E-04 1.09E-04 1.08E-04 9.39E-05

mean (k2/k2r) Inf Inf Inf Inf

mean (k3/k3r) 5.55E+00 0.831 6.294 0.794

mean (k4/k4r) 8.65E+00 0.842 6.250 0.824

Table A.4: Mean parameter values calculated from parameter sampling runs implemented
using numerical simulations for topology 30 (phosphorelays regulated by mono functional
kinase).
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Total protein concentrations are equal Total protein concentrations are unequal

Parameters Hyperbolic Regime Sigmoidal Regime Hyperbolic Regime Sigmoidal Regime

k2 (Ms)−1 4.95E+04 6.68E+04 5.08E+04 7.04E+04

k3 (Ms)−1 5.25E+04 3.56E+04 5.29E+04 3.14E+04

k4 (Ms)−1 5.34E+04 3.06E+04 5.19E+04 3.05E+04

k2r (Ms)−1 5.35E+04 1.85E+04 5.38E+04 2.07E+04

k3r (Ms)−1 4.81E+04 6.40E+04 4.87E+04 6.34E+04

k4r (Ms)−1 4.70E+04 6.03E+04 4.89E+04 5.87E+04

kh1 (s−1 ) 0.049 0.054 0.051 0.056

kh2 (s−1 ) 0.051 0.043 0.049 0.045

HKtot (M) 1.01E-04 1.03E-04 9.99E-05 1.07E-04

RECtot (M) 1.01E-04 1.03E-04 1.01E-04 1.07E-04

Hpttot (M) 1.01E-04 1.03E-04 9.98E-05 9.86E-05

RRtot (M) 1.01E-04 1.03E-04 9.85E-05 9.99E-05

mean (k2/k2r) 2.815 39.077 2.931 18.405

mean (k3/k3r) 6.265 0.763 3.683 0.568

mean (k4/k4r) 6.231 0.669 2.886 0.649

Table A.5: Mean parameter values calculated from parameter sampling runs implemented
using numerical simulations for topology 32 (phosphorelays regulated by mono functional
kinase).
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Total protein concentrations are equal Total protein concentrations are unequal

Parameters Hyperbolic Regime Sigmoidal Regime Hyperbolic Regime Sigmoidal Regime

k2 (Ms)−1 4.87E+04 5.15E+04 4.85E+04 5.21E+04

k3 (Ms)−1 6.00E+04 3.84E+04 5.98E+04 4.01E+04

k4 (Ms)−1 5.98E+04 3.88E+04 5.93E+04 3.90E+04

k2r (Ms)−1 0 0 0 0

k3r (Ms)−1 4.04E+04 6.05E+04 4.06E+04 6.06E+04

k4r (Ms)−1 4.14E+04 6.10E+04 4.17E+04 6.13E+04

kh1 (s−1 ) 0.057 0.052 0.059 0.054

kh2 (s−1 ) 0 0 0 0

HKtot (M) 1.03E-04 1.04E-04 9.49E-05 1.02E-04

RECtot (M) 1.03E-04 1.04E-04 1.11E-04 1.09E-04

Hpttot (M) 1.03E-04 1.04E-04 9.75E-05 9.77E-05

RRtot (M) 1.03E-04 1.04E-04 9.79E-05 9.71E-05

mean (k2/k2r) Inf Inf Inf Inf

mean (k3/k3r) 3.718 0.801 3.914 0.827

mean (k4/k4r) 3.319 0.886 3.960 0.767

Table A.6: Mean parameter values calculated from parameter sampling runs implemented
using numerical simulations for topology 14 (phosphorelays regulated by bi-functional
kinase).
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Total protein concentrations are equal Total protein concentrations are unequal

Parameters Hyperbolic Regime Sigmoidal Regime Hyperbolic Regime Sigmoidal Regime

k2 (Ms)−1 4.78E+04 6.83E+04 4.64E+04 6.76E+04

k3 (Ms)−1 5.27E+04 3.67E+04 5.23E+04 3.47E+04

k4 (Ms)−1 5.12E+04 3.52E+04 5.11E+04 3.51E+04

k2r (Ms)−1 5.47E+04 2.13E+04 5.69E+04 2.18E+04

k3r (Ms)−1 5.02E+04 6.19E+04 5.06E+04 6.39E+04

k4r (Ms)−1 4.96E+04 6.44E+04 5.05E+04 6.21E+04

kh1 (s−1 ) 0.055 0.051 0.054 0.054

kh2 (s−1 ) 0.000 0.000 0.000 0.000

HKtot (M) 1.01E-04 1.05E-04 9.97E-05 1.06E-04

RECtot (M) 1.01E-04 1.05E-04 1.07E-04 1.04E-04

Hpttot (M) 1.01E-04 1.05E-04 1.02E-04 9.84E-05

RRtot (M) 1.01E-04 1.05E-04 9.98E-05 9.92E-05

mean (k2/k2r) 2.453 11.147 1.757 15.092

mean (k3/k3r) 2.577 0.708 2.650 0.626

mean (k4/k4r) 2.218 0.696 2.842 0.778

Table A.7: Mean parameter values calculated from parameter sampling runs implemented
using numerical simulations for topology 16 (phosphorelays regulated by bi-functional
kinase).
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Total protein concentrations are equal Total protein concentrations are unequal

Parameters Hyperbolic Regime Sigmoidal Regime Hyperbolic Regime Sigmoidal Regime

k2 (Ms)−1 4.85E+04 5.38E+04 4.97E+04 5.37E+04

k3 (Ms)−1 6.03E+04 3.91E+04 6.13E+04 3.77E+04

k4 (Ms)−1 5.98E+04 3.94E+04 5.85E+04 3.79E+04

k2r (Ms)−1 0.00E+00 0 0 0

k3r (Ms)−1 4.13E+04 6.08E+04 3.99E+04 6.06E+04

k4r (Ms)−1 3.92E+04 6.07E+04 4.08E+04 6.19E+04

kh1 (s−1 ) 0.049 0.052 0.050 0.051

kh2 (s−1 ) 0.051 0.049 0.052 0.050

HKtot (M) 1.02E-04 1.09E-04 9.87E-05 1.11E-04

RECtot (M) 1.015E-04 1.09E-04 9.84E-05 1.08E-04

Hpttot (M) 1.015E-04 1.09E-04 1.02E-04 1.02E-04

RRtot (M) 1.02E-04 1.09E-04 1.08E-04 9.39E-05

mean (k2/k2r) Inf Inf Inf Inf

mean (k3/k3r) 5.55E+00 0.831 6.294 0.794

mean (k4/k4r) 8.65E+00 0.842 6.250 0.824

Table A.8: Mean parameter values calculated from parameter sampling runs implemented
using numerical simulations for topology 30 (phosphorelays regulated by bi-functional
kinase).
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Total protein concentrations are equal Total protein concentrations are unequal

Parameters Hyperbolic Regime Sigmoidal Regime Hyperbolic Regime Sigmoidal Regime

k2 (Ms)−1 4.95E+04 6.68E+04 5.08E+04 7.04E+04

k3 (Ms)−1 5.25E+04 3.56E+04 5.29E+04 3.14E+04

k4 (Ms)−1 5.34E+04 3.06E+04 5.19E+04 3.05E+04

k2r (Ms)−1 5.35E+04 1.85E+04 5.38E+04 2.07E+04

k3r (Ms)−1 4.81E+04 6.40E+04 4.87E+04 6.34E+04

k4r (Ms)−1 4.70E+04 6.03E+04 4.89E+04 5.87E+04

kh1 (s−1 ) 0.049 0.054 0.051 0.056

kh2 (s−1 ) 0.051 0.043 0.049 0.045

HKtot (M) 1.01E-04 1.03E-04 9.99E-05 1.07E-04

RECtot 1.01E-04 1.03E-04 1.01E-04 1.07E-04

Hpttot (M) 1.01E-04 1.03E-04 9.98E-05 9.86E-05

RRtot 1.01E-04 1.03E-04 9.85E-05 9.99E-05

mean (k2/k2r) 2.815 39.077 2.931 18.405

mean (k3/k3r) 6.265 0.763 3.683 0.568

mean (k4/k4r) 6.231 0.669 2.886 0.649

Table A.9: Mean parameter values calculated from parameter sampling runs implemented
using numerical simulations for topology 32 (phosphorelays regulated by bi-functional
kinase).
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A.2 Parameters used to generate figure 2.6

Parameters used to generate panels A-F in figure 2.6 are listed below. The values
are given in the order k2, k3, k4, k2r, k3r,k4r, kh1, kh2, k5, k5r, k6, HKtot, RECtot,
Hpttot, RRtot:

Panel A) (9343, 30201, 35826, 0, 7192, 99251, 0.0302, 0.00234, 1000, 0.012, 3.5,
1.2748e-04, 1.5755e-04, 1.3634e-04, 1.2516e-04)

Panel B) (186860, 90605, 35827, 0, 35963, 49626, 0.0302, 0.0023, 1000, 0.012, 3.5,
1.2748e-04, 1.5755e-04, 1.363e-04, 1.251e-04)

Panel C) (5, 0.1, 0.01, 0, 10, 0.10, 10, 0.001,-,-,-, 5, 1, 1, 10)

Panel D) (500, 0.1, 0.01, 0, 1, 0.10, 0.1, 0.001,-,-,-, 1, 0.005, 100000, 100)

Panel E) (5000, 0.1, 1, 0, 1, 0, 10, 100, 0, -,-,-,1, 10, 2000, 1)

Panel F) (5000, 0.1, 0.01, 0, 1, 0.001, 10, 1,-,-,-, 1, 0.1, 1, 30).
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B
APPENDIX

B.1 Proof of the claims made in section 2.2.1

B.1.1 Constant signal-response curves and zero solutions

• kh1 = kh2 = 0: From (46) we have that x1 = 0 (since ks 6= 0) and thus x2 = H

at steady state. From (47) it follows that x3 = 0 (since k2 6= 0) and thus
x4 = C. From (48) we have that x5 = 0 (since k3 6= 0) and so x6 = T and
finally from (49) it follows that x7 = 0 (since k4 6= 0) and x8 = R. This fact is
independent of the value of all other parameters.

• kh2 = k3r = 0: From (48) either x4 = 0 or x5 = 0. If x4 = 0 we have
that x3 6= 0. From (46), x1 = 0 and from (47) we have x2 = 0 which is a
contradiction. Therefore x5 = 0 and consequently, x6 = T 6= 0 and x7 = 0.
Thus x8 = R and x1, . . . , x4 fulfill (46), (47) and the equations for the total
amounts. Additionally, the signal-response curve for Hpt is also constant (that
is, at steady state x6 = T ), but the curves corresponding to HK and REC are
not constant.

• kh2 = k4r = 0: From (49) either x6 = 0 or x7 = 0. If x6 = 0 we have that
x5 6= 0. From (48) x4 = 0 and from (46) we have x1 = 0. By (47) we have
x2x3 = 0 which is a contradiction. Therefore x7 = 0, and then x8 = R 6= 0.
x1, . . . , x6 fulfill (46)-(48) and the equations for the total amounts. In this case
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the signal-response curves for HK, REC and Hpt are not constant.

Assume that none of the cases above hold, that is, that either kh2 6= 0 or kh2 = 0

and kh1k3rk4r 6= 0. Assume that all total amounts are positive. We show that in this
case any non-negative solution to the steady-state equations is positive, that is, all
concentrations are non-zero. As a consequence, the signal-response curve cannot be
constant (equal to R; because this would imply x7 = 0).

• If x1 = 0, then by (46) it must be that kh1x4 = kh2x8 = 0 and x2 6= 0. From
(47) it follows that x3 = 0 and hence x4 6= 0 (because C > 0) and thus kh1 = 0.
In this case kh2 6= 0 and hence x8 = 0. From (48) we have x5 = 0 and hence
x6 6= 0. From (49) we see that x7 = 0 contradicting R > 0.

• If x2 = 0 or x3 = 0 then from (47) we have kh1x4 = kh2x8 = k2rx1x4 = 0. It
follows from (46) that x1 = 0 and we reach a contradiction with the item above.

• If x4 = 0 or x5 = 0 then from (48) we have k3rx3x6 = kh2x8 = 0. If x4 = 0

using (46) we have that ksx1 = 0 and hence x1 = 0, which is a contradiction. If
x5 = 0 then from (49) we have k4x6x7 = 0. Since x6 6= 0 (because T > 0) and
k4 6= 0 by hypothesis, we have x7 = 0. As a consequence x8 6= 0. Hence kh2 = 0

and by hypothesis kh1k3rk4r 6= 0. If k3r 6= 0 we have x3 = 0 contradicting the
item above.

• If x6 = 0 or x7 = 0 then kh2x8 = k4rx5x8 = 0. Since we showed that x5 6= 0,
and kh2k4r 6= 0 by hypothesis, it follows that x8 = 0. If x7 = 0 we reach a
contradiction. If x6 = 0 then using (48) we have x4x5 = 0 which contradicts
the item above.

• If x8 = 0 then x7 6= 0 and hence by (49) x6 = 0 which contradicts the item
above.

B.1.2 Hyperbolic shape when phosphorelay rates are large

We prove here that if (62) holds, then the second derivative of ϕ at any value of ks
is negative.
We compute the second derivative of x4 with respect to x8 and find that its sign
equals the sign of

(k3 − k3r)(k4kh2R + k3rkh2C) + k3r(k3k4 − k3rk4r)C · T .

Consider now

x2 =
k2rHx4 + kh1x4 + kh2x8

k2x3 + k2rx4
=

(k2rH + kh1)x4 + kh2x8

(k2r − k2)x4 + k2C
.
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Let β = (k2rH + kh1)x4 + kh2x8 be the numerator of x2 and γ = (k2r − k2)x4 + k2C

be the denominator of x2. Both terms are positive. We take the second derivative of
x2 with respect to x8 and obtain:

x′′2 =
(β′′γ − βγ′′)γ − 2γ′(β′γ − βγ′)

γ3

=
((k2rH + kh1)γ − (k2r − k2)β)γx′′4 − 2(k2r − k2)x′4(β′γ − βγ′)

γ3
.

Let

A = ((k2rH + kh1)γ − (k2r − k2)β)γx′′4 = (k2r(Hγ − β) + kh1γ + k2β)γx′′4,

B = −2(k2r − k2)x′4(β′γ − βγ′)

such that x′′2 = (A + B)/γ3. The denominator is positive. Therefore, the sign of
x′′2 is determined by the sign of A + B. Since x2, x4 increase in x8 we have that
β′γ − βγ′ > 0 and x′4 > 0. Therefore, the sign of B equals the sign of k2 − k2r.
The term Hγ − β = −k2x4H + k2C ·H − kh1x4 − kh2x8 is positive in I because it
agrees with the numerator of x1. It follows that the sign of A equals the sign of x′′4.
If the signs of A and B agree, then x′′2 has a constant sign over I.
Consider now the inverse of the signal-response curve:

ks = f(x8) :=
kh1x4 + kh2x8

x1

and let δ = kh1x4 + kh2x8. The second derivative of f with respect to x8 is

f ′′ =
x1(kh1x

′′
4x1 − δx′′1) − 2x′1(δ

′x1 − δx′1)
x31

.

The term −2x′1(δ
′x1 − δx′1) is positive because x′1 < 0 and (δ′x1 − δx′1) > 0 (it is the

numerator of the derivative of f). If (kh1x
′′
4x1 − δx′′1) > 0, then the signal-response

curve is hyperbolic (because the sign of the second derivative of ϕ is minus the sign
of the second derivative of f). In particular, this is the case if x′′4 > 0 and x′′1 < 0.
For x′′1 < 0 we require x′′2 > 0.
Therefore, if x′′2, x′′4 > 0, then the signal-response curve is hyperbolic. Using the
computations above, we conclude that if

k2 − k2r > 0, and (k3 − k3r)(k4kh2R+ k3rkh2C) + k3r(k3k4 − k3rk4r)CT > 0,

then the curve is hyperbolic. These two inequalities are in particular fulfilled if

k2 > k2r, k3 > k3r, k4 > k4r,
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that is, if the forward phosphorelay rate constants are larger than their reverse
counterparts.
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C
APPENDIX

C.1 Analytical solution for phosphorelays with bi-

functional HK (section 2.2.3)

We consider the case in which the kinase HK is bifunctional, that is, HK acts as a
phosphatase for REC.

C.1.1 Reactions, equations and steady states

Reactions. The minimal set of reactions that the system has, consists of the
autophosphorylation reaction on HK and the forward phosphotransfer reactions

HK
ks // HKp HKp + REC

k2 // HK + RECp

RECp + Hpt
k3 // REC + Hptp Hptp + RR

k4 // Hpt + RRp,

together with the reaction for phosphatase activity of the histidine kinase HK:

HK + RECp
k5


k5r

HK− RECp
k6 // HK + REC.

We study the extensions of this minimal reaction mechanism obtained by adding
reverse phospho-transfer reactions involving the HK, REC, Hpt and the RR, as well
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as hydrolysis reactions for RECp and RRp:

HK + RECp
k2r // HKp + REC RECp

kh1 // REC

REC + Hptp
k3r // RECp + Hpt RRp

kh2 // RR

Hpt + RRp
k4r // Hptp + RR.

By setting some of the rate constants k∗r or kh∗ to zero, we obtain a total of 32
different topologies involving different combinations of reverse phosphorelay and
hydrolysis reactions, similarly to the situation where the HK kinase is monofunctional
(table 2.1). The minimal set of reactions is always part of the system, meaning that
k2, k3, k4, ks 6= 0 for all topologies.

Ordinary differential equations. We model the protein concentrations in the
system using ordinary differential equations (ODEs). To simplify the notation, we
define:

x1 = [HK], x2 = [HKp], x3 = [REC], x4 = [RECp],

x5 = [Hpt], x6 = [Hptp], x7 = [RR], x8 = [RRp], x9 = [HKRECp].

The dynamics of the concentrations in time is modeled with a system of ODEs:

ẋ1 = −ksx1 − k2rx1x4 + k2x2x3 − k5x1x4 + k5rx9 + k6x9

ẋ2 = ksx1 + k2rx1x4 − k2x2x3
ẋ3 = −k2x2x3 + kh1x4 + k2rx1x4 + k3x4x5 − k3rx3x6 + k6x9

ẋ4 = k2x2x3 − kh1x4 − k2rx1x4 − k3x4x5 + k3rx3x6 − k5x1x4 + k5rx9

ẋ5 = −k3x4x5 + k3rx3x6 + k4x6x7 − k4rx5x8
ẋ6 = k3x4x5 − k3rx3x6 − k4x6x7 + k4rx5x8

ẋ7 = −k4x6x7 + kh2x8 + k4rx5x8

ẋ8 = k4x6x7 − kh2x8 − k4rx5x8
ẋ9 = k5x1x4 − k5rx9 − k6x9.

This system has four conserved amounts:

H = x1 + x2 + x9, C = x3 + x4 + x9, T = x5 + x6, R = x7 + x8.

It is assumed that total amounts are positive.
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Steady-state equations. We proceed as in the monofunctional case and conclude
that the steady states of the system are given as the solutions to the following system
of equations:

H = x1 + x2 + x9

(186)

C = x3 + x4 + x9

(187)

T = x5 + x6 (188)

R = x7 + x8 (189)

0 = ksx1 + k2rx1x4 − k2x2x3 (190)

0 = k2x2x3 − kh1x4 − k2rx1x4 − k3x4x5
+ k3rx3x6 − k5x1x4 + k5rx9 (191)

0 = k3x4x5 − k3rx3x6 − k4x6x7 + k4rx5x8 (192)

0 = k4x6x7 − kh2x8 − k4rx5x8 (193)

0 = k5x1x4 − k5rx9 − k6x9. (194)

Rearrangement of the steady-state equations. We change equations (190)-
(194) by linear combinations of them. Specifically, we replace:

• (192) by (192)+(193),

• (191) by (191)+(192)+(193)+(194),

• (190) by (190)+(191)+(192)+(193)+(194),

and leave (193) and (194) as they are. This results in the following equivalent system
of equations:

H = x1 + x2 + x9

(195)

C = x3 + x4 + x9

(196)

T = x5 + x6 (197)

R = x7 + x8 (198)

0 = ksx1 − kh1x4 − kh2x8 − k6x9 (199)

0 = k2x2x3 − kh1x4 − k2rx1x4 − kh2x8 − k6x9 (200)

0 = k3x4x5 − k3rx3x6 − kh2x8 (201)

0 = k4x6x7 − kh2x8 − k4rx5x8 (202)

0 = k5x1x4 − k5rx9 − k6x9. (203)

Zero concentrations. We assume that k5, k5r, k6 6= 0, that is, the kinase is
bifunctional and acts as a phosphatase for the dephosphorylation of the receiver
protein. Additionally, we are assuming that ks, k2, k3, k4 6= 0 and that all total
amounts are positive. In this scenario, for topologies 9-13 and 15, the signal-response
curve is constant and equals x8 = R. All the other topologies have non-constant
signal-response curves and all concentrations at steady state are non-zero (see
Appendix C.2.1 for proofs).

Topologies 17-24 (kh1 = kh2 = 0) exhibit signal-response curves defined piecewise
and are treated differently. Zero steady-state values occur (see Appendix C.2.3 for
proofs).

173



C.1.2 Steady-state relations and signal-response curves

We proceed to find an expression for the signal-response curve. As in the previous
case, the signal is taken to be the value of the rate constant ks, and the response
is the steady-state value of phosphorylated response regulator (x8) corresponding
to ks (with all the other rate constants and total amounts fixed). Contrary to the
previous system, this system with the bifunctional kinase does not allow for an
explicit analytical relation. Instead, we infer the existence of an analytical function
relating ks and x8 and derive properties of this function. We start by establishing
relations between each concentration xi and x8 at steady state.

Steady-state relations. We study here the steady-state solutions that do not
have vanishing concentrations. We let

ky =
k5

k5r + k6
(204)

be the reciprocal of the Michaelis-Menten constant of HK. We express the concen-
trations of x1, . . . , x7 at steady state in terms of x8 and x9, independently of ks. In
addition, we find a relation between x8 and x9 at steady state.

Expression Behavior as function of x8 and x9

x7 = R− x8 x7 decreases in x8

x6 = x8(k4rT+kh2)
k4x7+k4rx8

x6 increases in x8

x5 = k4Tx7−kh2x8
k4x7+k4rx8

x5 decreases in x8

x4 = kh2x8+k3rx6(C−x9)
k3x5+k3rx6

x4 increases in x8 and decreases in x9

x3 = k3x5(C−x9)−kh2x8
k3x5+k3rx6

x3 decreases in x8 and in x9

x2 = k2rx4(H−x9)+k6x9+kh1x4+kh2x8
k2x3+k2rx4

x2 increases in x8

x1 = k2x3(H−x9)−k6x9−kh1x4−kh2x8
k2x3+k2rx4

x1 decreases in x8 and in x9

x9 = g(x8)

(205)

The first seven rows of (205) give an iterative way to find the steady-state values of
the concentrations of x1, . . . , x7 once the values of x8 and x9 are known. The last
entry gives the relation between x9 and x8. See Appendix C.2.2 for a proof.

The steady-state values are all positive if and only if x8 is in the interval (0, α),

174



where α is the first positive root of the degree-2 polynomial q2 given in (57) (that is,
the same as for the monofunctional case).

In (205), the variables x1, . . . , x7 are expressed as functions of x8, x9. The variable
x9 cannot explicitly be written as a function of x8. The function g is known to exist,
but we do not have an analytical expression for it. However, there is a procedure
to obtain the steady-state value of x9 corresponding to a given value of x8. For
each fixed x8 strictly between 0 and α, x9 is the first positive root of the following
polynomial G(x8, x9):

G(x8, x9) = c0(x8) + c1(x8)x9 + c2(x8)x
2
9 + c3(x8)x

3
9,

where if we denote

z1 := k3r(k4rT+kh2), z2 := k2k3(k4T+kh2), z3 := k4r−k4, z4 := z1−k3(k4T+kh2),

then the coefficients ci(x8) 1 ≤ i ≤ 3 are:

c0(x8) =kyx8(kh2(k4R + z3x8) + z1C)
(
kh2(z3(kh1 + k2H) + z4)x

2
8

+ (C(kh1z1 + z2H) + kh2k4R(k2H + k3T + kh1))x8 − k2k3k4CHTR
)

c1(x8) =
(

(k2rz1 − z2)Cx8 − kh2(k2 − k2r)(k4R + z3x8)x8 + k2k3k4CTR
)

(k3k4TR + z4x8)

+
(

(k2k3k4TR− x8z2)(kh2(x8z3 + k4R)(H + C) + z1(2H + C)C)

− kh2k2z1(x8z3 + k4R)(H + C)x8 − k2k2h2x8(x28z23 + k24R
2
)

− 2kh2z3(k2k4kh2R + z1kh1)x
2
8 + kh2x8(k6z3 − z1)(k3k4TR + z4x8)

+ (k6z4x8 − 2z1kh1x8 + k3k4k6TR)(z1C + kh2k4R)
)
x8ky

c2(x8) =
(
kh2z3(z2 + k2z1)x

2
8 + (kh1z

2
1 + (2z2C + k2kh2k4R− k6z4 + z2H)z1

− k4kh2R(k2k3z3T − z2))x8 − k3k4RT (k2k4kh2R + z1(k6 + 2Ck2 + k2H))
)
x8ky

− (k3k4TR + z4x8)(k2k3k4TR + (k2rz1 − z2)x8)

c3(x8) =z1(k2k3k4TR− z2x8)kyx8

Signal-response expression. Using the remaining steady-state equation, (199),
we express ks in terms of x8:

ks = fb(x8) =
kh1x4 + kh2x8 + k6x9

x1
, (206)

where x1, x4, x9 are given in terms of x8 as well (see (205) above) and x1 6= 0 at
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steady state. If x8 approaches α, then x1 tends to zero and ks tends to infinity. It
follows that α is precisely the maximal response of x8.
The function fb is continuous and differentiable in [0, α) and is strictly increasing
(see Appendix C.2.3). It admits an inverse

ϕb = f−1b ,

which is the signal-response curve. The signal-response curve is increasing, continuous
and differentiable in [0,+∞). When ks tends to infinity then the response x8 tends
to α.
If kh1 = kh2 = 0 then ϕb is defined by f−1b if ks ∈ [0, k6kyC] and ϕb = R for
ks > k6kyC.

Practical considerations. In order to plot the signal-response curve we use the
following procedure:

(i) Compute α (the first positive root of q2(x8) in x8) and choose a grid of values
for x8, strictly between 0 and α.

(ii) For each value of x8, find the first positive root of G(x8, x9) as a function of x9,
that is, for each value of x8 we find a value of x9.

(iii) Compute x1, x4 using (205) and the pair of values (x8, x9).

(iv) Compute ks using (206) in terms of x1, x4, x8, x9.

In this way, points on the signal-response curve (fb(x8), x8) are generated. Because
of the relationship between fb and ϕb, the points give a plot of the function ϕb.

C.1.3 Hyperbolic and sigmoidal signal-response curves

We apply the same indicator to classify a curve as sigmoidal or hyperbolic as in
the previous case. That is, we calculate the sign of the second derivative of the
signal-response curve at zero and classify the curve accordingly. We have computed
ϕ′′b (0) using the method introduced in section 2.3.1.

If ϕ′′b (0) > 0 then we classify the signal-response curve as sigmoidal, and if ϕ′′b (0) < 0

then we classify the signal-response curve as sigmoidal (section 1.2.5).

The sign of the second derivative of ϕb at 0 agrees with the sign of

Sb =S +H(α2H + α3)ky + α1Hk
2
y (207)
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where ky = k5
k5r+k6

and

α1 =C(k4rT + kh2)H
2k2k6k3r(k3rC(k4rT + kh2) + k4kh2R)

α2 =− C(k4rT + kh2)k2(Ck3k6k3r(k4T + kh2)− k23r(kh1C + k6)(k4rT + kh2)

+ k4kh2R(k6(k3 − k3r)− kh1k3r))

α3 =− (k3rC(k4rT + kh2) + k4kh2R)(k3rkh1(k4rCT + kh2) + k4kh2R(k3T + kh1))(k2C + k6)

The term α1 is always positive and the term α3 is always negative. The independent
term (obtained by setting ky = 0) is identical to the term given in the monofunctional
case (eq (60)). We have that if k3r = 0, then Sb < 0 and the function ϕb is hyperbolic.
However, when kh1 = 0 the system can show sigmoidality (because α1 6= 0).

Observe that the leading coefficient of the term Sb in (207) seen as a polynomial of
degree 2 in ky is positive. Therefore, by increasing ky enough, Sb becomes positive
and the curve sigmoidal. Recall that ky is the reciprocal of the Michaelis-Menten
constant of the enzyme HK for its dephosphorylation activity. Therefore, increasing
ky corresponds to making the enzyme mediated dephosphorylation of RECp more
efficient.

C.2 Proof of the claims: bifunctional case

This section provides a sketch of the proofs for the claims made earlier in section C.1.

C.2.1 Zero concentrations

We start by checking that the combinations kh2 = 0 and either k3r = 0 or k4r = 0

provide constant signal-response curves. Assume that kh2 = 0 and x4 = 0 at steady
state. Then by (203) x9 = 0. Consequently from (199) we have x1 = 0 and hence
x2 6= 0 (195). Similarly from (196) we have that x3 6= 0. But then (200) cannot hold.
Therefore, if kh2 = 0, x4 6= 0 at steady state.

• kh2 = k3r = 0: From (201) x5 = 0 because x4 6= 0 at steady state. Consequently,
x6 = T 6= 0 and from (202) it follows that x7 = 0. Thus x8 = R 6= 0 at steady
state.

• kh2 = k4r = 0: From (202) either x6 = 0 or x7 = 0. If x6 = 0 we have that
x5 6= 0. From (201) if follows that x4 = 0, which is a contradiction. Therefore
x7 = 0, and hence x8 = R 6= 0 at steady state.

Assume now that none of the two scenarios above occur, and further that
kh1 = kh2 = 0 does not occur. If x9 = 0 is a solution at steady state, then by (203)

177



we must either have x1 = 0 or x4 = 0. If x1 = 0 then x2 6= 0. Further from (199) we
have kh1x4 = kh2x8 = 0. Hence from (200) we have x3 = 0 and as a consequence
x4 6= 0. If kh1 6= 0 then kh1x4 6= 0, which is a contradiction. Hence, assume that
kh1 = 0. Then using (201) we deduce that x5 = 0 and hence x6 6= 0 from the
conservation law. From (202) we obtain x7 = 0 which contradicts (198) for R > 0

only if kh2 6= 0.

Assume now that x4 = 0. Then by (196) we have x3 6= 0. Further, from (201) we
have kh2x8 = 0. From (200) we have x2 = 0 and from (195) x1 6= 0, contradicting
(199).

Therefore, if kh1 6= 0 or kh2 6= 0 then x9 = 0 is not a solution at steady state. If one
of the concentrations x1, . . . , x4 is zero at steady state, then the positive term in one
of the equations (200),(201),(203) vanishes, implying that all the other monomials
must vanish as well. For any of the equations, it would follow imply that k6x9 = 0

contradicting x9 6= 0. That is, x1, . . . , x4 6= 0 at steady state. If x5 = 0 and k3r 6= 0

then using (201) and (197), x3 = 0 which is a contradiction. If k3r = 0 then kh2 6= 0

(by assumption) and hence x8 = 0. By (202) we have x6 = 0 or x7 = 0. The latter
contradicts (198) because x8 = 0. Hence x6 = 0. However this contradicts (197),
because x5 = 0.

Therefore, if kh2 6= 0 or if kh2 = 0 but k3rk4rkh1 6= 0, then there are no zero
concentrations at steady state.

C.2.2 Steady-state relations

Here we derive the expressions shown in (205). We study the concentrations at
steady state that are non-zero. We assume either (1) kh2 6= 0 or (2) kh2 = 0 and
k3rk4rkh1 6= 0.

(1) Using the total amount equation for R, we have

x7 = R− x8, (208)

such that x7 is expressed as a decreasing function of x8. We have x7, x8 > 0 if
and only if 0 < x8 < α1 := R.

(2) Using (202) and the total amount equation for T we obtain

x6 =
x8(k4rT + kh2)

k4x7 + k4rx8
, x5 =

k4Tx7 − kh2x8
k4x7 + k4rx8

. (209)
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The expression for x5 decreases in x8 and increases in x7. Since x7 decreases in x8,
we conclude that after substituting x7 with (208), x5 decreases in x8. Similarly
x6 increases in x8.

For x5, x6, x7 > 0, we require k4T (R− x8)− kh2x8 > 0, that is,

0 < x8 < α2 :=
k4T ·R
k4T + kh2

≤ α1.

Hence, 0 < x8 < α2 if and only if x5, x6, x7, x8 > 0.

(3) Using (201) and the total amount equation for C, we obtain:

x4 =
kh2x8 + k3rx6(C − x9)

k3x5 + k3rx6
, x3 =

k3x5(C − x9)− kh2x8
k3x5 + k3rx6

. (210)

x4 is positive provided 0 < x8 < α2 and 0 < x9 < C. x3 is positive provided
x8, x9 satisfy k3x5(C − x9) > kh2x8, that is,

x9 <
k3x5C − kh2x8

k3x5
≤ C.

The right-hand side decreases in x8. It is zero when k3x5C = kh2x8. If x8 > 0

then x5 > 0 and hence the value that makes the right-hand side zero satisfies
x8 < α2. Therefore, x3, . . . , x9 are positive for x8, x9 in the set

Ω1 :=

{
(x8, x9) ∈ R2

+|x9 <
k3x5C − kh2x8

k3x5

}
,

with x5 given by (208) and (209). For each value of 0 < x9 < C, let β(x9) be
the value of x8 for which x9 = k3x5C−kh2x8

k3x5
, that is, the upper-bound of allowed

values for x8. Note that β(x9) decreases in x9.

The expression for x4 in (210) increases in x8 and decreases in x5, x9. The
derivative of x4 with respect to x6 equals

k3rx3
(k3x5 + k3rx6)

,

and hence it is positive provided x3, x5, x6 > 0. Therefore, for (x8, x9) ∈ Ω1, x4
increases in x8 and decreases in x9. Similarly, x3 decreases in x8 and in x9.

(4) Using (200) and the total amount equation for H we obtain

x1 =
k2x3(H − x9)− k6x9 − kh1x4 − kh2x8

k2x3 + k2rx4
, x2 =

k2rx4(H − x9) + k6x9 + kh1x4 + kh2x8
k2x3 + k2rx4

.
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For (x8, x9) ∈ Ω1, x1 is positive provided that

k2x3(H − x9) > kh1x4 + kh2x8 + k6x9.

Fix a value of 0 < x9 < min(H,C). Then the left-hand side of the inequality is
a decreasing function of x8 and the right-hand side of the inequality is increasing
in x8. It follows that there exists a value γ(x9) such that the inequality is
fulfilled if and only if x8 < γ(x9).

If x8 = β(x9), then x3 = 0 while the right-hand side of the inequality is positive.
It follows that β(x9) > γ(x9). x2 is positive if x4, x3 are positive and x9 < H.
Therefore, x1, . . . , x9 are positive provided x8, x9 belong to

Ω2 := {(x8, x9) ∈ R2
+| x9 < min(H,C), k2x3(H − x9) > kh1x4 + kh2x8 + k6x9}.

It can be seen that in Ω2, x1 decreases in x9 and in x8. Similarly, x2 increases
in x8. Further, the numerator of x1 also decreases in x9. It follows that the
supremum of x8 in Ω2 is obtained by setting x9 = 0:

k2x3H − kh1x4 − kh2x8 = 0,

where x9 = 0 is inserted into the expression of x3, x4. The solution of this equation
is precisely the value α obtained in the monofunctional case (see equation 57).
Furthermore, the possible values of x8 in Ω2 are in I = (0, α).

(5) Using (203) we obtain another expression for x1 at steady state:

x1 =
(k5r + k6)x9

k5x4
=

x9
kyx4

,

where ky = k5/(k5r + k6). This expression decreases in x8. We equate the two
expressions for x1:

x9
kyx4

=
k2x3H − k2x3x9 − k6x9 − kh1x4 − kh2x8

k2x3 + k2rx4
(211)

in order to relate x8 and x9. This equality does not provide a linear equation
in x8 nor in x9, when substituting the expressions for x3, x4 in terms of x8, x9.
Thus, we have to proceed in a different way from what we have done so far. For
a fixed value of x8 in I, the left-hand side of the equation increases in x9 and the
right-hand side decreases in x9. Therefore, for a fixed value of x8 in I = (0, α),
the two sides of the equality intersect in exactly one point: x9 = g(x8). Since the

180



intersection point ensures that the right-hand side is positive, the intersection
point satisfies by construction that (x8, g(x8)) ∈ Ω2.

We do not have an analytical description of g but we have a procedure to
determine g(x8) from a given x8. The function g is given by the Implicit
Function Theorem. Let

G(x8, x9) = (k2x3(H − x9)− k6x9 − kh1x4 − kh2x8)kyx4 − x9(k2x3 + k2rx4) = 0.

Then, for every value of x8, g(x8) is the first positive root of G(x8, x9). It follows
that g is continuous in I and differentiable. The derivative of g with respect to
x8 is given by

g′(x8) = −(∂G/∂x8)(x8, g(x8))

(∂G/∂x9)(x8, g(x8))
.

The function g can be extended to x8 = 0 with g(0) = 0.

C.2.3 Signal-response curve

The entries of (205) are derived using all steady-state equations except for (199).
From (199) we obtain that

ks = fb(x8) =
kh1x4 + kh2x8 + k6x9

x1
. (212)

If x8 ∈ I, then fb(x8) is positive. Therefore, all concentrations at steady state are
positive. This function is continuous and differentiable. When x8 approaches the
upper bound of the interval I, α, then x1 tends to zero, x4 to some finite number and
x9 to zero. Hence ks grows to infinity (provided kh1 or kh2 are non-zero, see below for
the case kh1 = kh2 = 0). It follows that the image of fb is (0,+∞) which guarantees
the existence of at least one steady state. The function fb can be differentiably
extended at zero such that fb(0) = 0. Using the Chemical Reaction Network Toolbox
(https://crnt.osu.edu/LecturesOnReactionNetworks), we know that the system
does not admit multiple positive steady states. By continuity, it follows that fb must
be monotone, that is, an increasing function. By the Inverse Function Theorem,
there exists a continuous and differentiable function in (0,+∞),

x8 = ϕb(ks)

defined by ϕb(ks) = x8 if and only if ks = fb(x8).

If we increase ky while keeping k6 fixed, the right-hand side of (211) increases. It
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follows that the value g(x8) increases. Consequently, x4 increases and x1 decreases,
which implies that ks must increase as well. We conclude that as ky increases the
graphs of fb pile on top of each other and hence the graphs of ϕb lie below each other.

kh1 = kh2 = 0: First of all, an easy check shows that (0, H, 0, C, 0, T , 0, R, 0) is a
steady state for all values of ks. But for ks small enough, a second positive steady
state exists as well.
In this case we have α = R and

ks = fb(x8) =
k6x9
x1

.

Hence both the numerator and denominator of fb tend to zero as x8 tend to α = R.
By plugging the expression of x1 into fb, we have:

fb(x8) =
k6k3rk4rky(C − x9)x8
k3k4(R− x8)− k3rk4rx8

.

We deduce that when x8 = R, then x9 = 0 and fb(x8) = k6kyC. It follows that
ks = fb(x8) does not tend to infinity as x8 approaches the upper bound of I, R.
In this case, the signal-response curve is defined by f−1b for ks ∈ [0, k6kyC] and is
constant at R for ks > k6kyC.
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D
APPENDIX

D.1 PRISM script for the generic phosphorelay

model discussed in section 2.2.2.2

ctmc

const i n t HKInit ;
const i n t HKpInit = 0 ;
const i n t RECInit ;
const i n t RECpInit = 0 ;
const i n t HptIn it ;
const i n t HptpInit = 0 ;
const i n t RRInit ;
const i n t RRpInit = 0 ;

const i n t HKTot = HKInit+HKpInit ;
const i n t RECTot = RECInit+RECpInit ;
const i n t HptTot = HptInit+HptpInit ;
const i n t RRTot = RRInit+RRpInit ;
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const double ks ;
const double k2=9.99e−1;
const double k3=2.91e−1;
const double k4=4.14e−1;
const double k5=0.0178;
const double k2r=0;
const double k3r =1.16;
const double k4r =1.41;
const double k2h=6.64e−2;

module PR4r

HK : [ 0 . . HKTot ] i n i t HKInit ;
HKp : [ 0 . . HKTot ] i n i t HKpInit ;
REC : [ 0 . . RECTot ] i n i t RECInit ;
RECp : [ 0 . . RECTot ] i n i t RECpInit ;
Hpt : [ 0 . . HptTot ] i n i t HptIn it ;
Hptp : [ 0 . . HptTot ] i n i t HptpInit ;
RR : [ 0 . . RRTot ] i n i t RRInit ;
RRp : [ 0 . . RRTot ] i n i t RRpInit ;

// HK −> HKp
[ ks ] ks>0 & HK>0 −> ( ks∗HK) : \
(HK’=HK−1) & (HKp’=min (HKp+1, HKTot ) ) ;

// HKp + REC −> HK + RECp
[ k2 ] k2>0 & HKp>0 & REC>0 −> (k2∗HKp∗REC) :
(HKp’=HKp−1) & (REC’=REC−1) & (HK’=min (HK+1, HKTot))&
(RECp’=min (RECp+1, RECTot ) ) ;

// RECp + Hpt −> REC + Hptp
[ k3 ] k3>0 & RECp>0 & Hpt>0 −> (k3∗RECp∗Hpt ) :
(RECp’=RECp−1) & (Hpt’=Hpt−1) & (REC’=min (REC+1, RECTot) ) &
(Hptp’=min (Hptp+1, HptTot ) ) ;

// Hptp + RR −> Hpt + RRp
[ k4 ] k4>0 & Hptp>0 & RR>0 −> (k4∗Hptp∗RR) :
(Hptp’=Hptp−1) & (RR’=RR−1) & (Hpt’=min (Hpt+1, HptTot ) ) &
(RRp’=min (RRp+1, RRTot ) ) ;
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// RRp −> RR
[ k5 ] k5>0 & RRp>0 −> (k5∗RRp) : (RRp’=RRp−1) &
(RR’=min (RR+1, RRTot ) ) ;

// HK + RECp −> HKp + REC
[ k2r ] k2r>0 & HK>0 & RECp>0 −> ( k2r ∗HK∗RECp) :
(HK’=HK−1) & (RECp’=RECp−1)& (HKp’=min (HKp+1, HKTot) ) &
(REC’=min (REC+1, RECTot ) ) ;

// REC + Hptp −> RECp + Hpt
[ k3r ] k3r>0 & REC>0 & Hptp>0 −> ( k3r ∗REC∗Hptp) :
(REC’=REC−1) & (Hptp’=Hptp−1)& (RECp’=min (RECp+1, RECTot) ) &
(Hpt’=min (Hpt+1, HptTot ) ) ;

// Hpt + RRp −> Hptp + RR
[ k4r ] k4r>0 & Hpt>0 & RRp>0 −> ( k4r ∗Hpt∗RRp) : (Hpt’=Hpt−1) &
(RRp’=RRp−1)& (Hptp’=min (Hptp+1, HptTot ) ) &
(RR’=min (RR+1, RRTot ) ) ;

// RECp −> REC
[ k2h ] k2h>0 & RECp>0 −> (k2h∗RECp) :
(RECp’=RECp−1) & (REC’=min (REC+1, RECTot ) ) ;

endmodule

rewards "HK" true : HK; endrewards
rewards "HKp" true : HKp; endrewards
rewards "REC" true : REC; endrewards
rewards "RECp" true : RECp; endrewards
rewards "Hpt" t rue : Hpt ; endrewards
rewards "Hptp" true : Hptp ; endrewards
rewards "RR" true : RR; endrewards
rewards "RRp" true : RRp; endrewards

rewards "HK_sq" true : HK∗HK; endrewards
rewards "HKp_sq" true : HKp∗HKp; endrewards
rewards "REC_sq" true : REC∗REC; endrewards
rewards "RECp_sq" true : RECp∗RECp; endrewards
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rewards "Hpt_sq" true : Hpt∗Hpt ; endrewards
rewards "Hptp_sq" true : Hptp∗Hptp ; endrewards
rewards "RR_sq" true : RR∗RR; endrewards
rewards "RRp_sq" true : RRp∗RRp; endrewards

rewards " time" true : 1 ; endrewards

D.2 Converting kinetic rates to probabilistic param-

eters in PRISM

The table below shows how kinetic rate parameters and protein concentrations from
the ODE model discussed in section 2.2.1 can be converted to probabilistic rates and
molecule numbers for use in PRISM.

Parameters Mass Action Values Dimension Scaling by g= 53191(M−1) Stochastic Values Dimension

ks 0 .. 0.1 s−1 /1 0 .. 0.1 s−1

k2 3.96E+04 M−1s−1 /g 7.45E-01 s−1

k3 6.59E+04 M−1s−1 /g 1.24E+00 s−1

k4 1.63E+03 M−1s−1 /g 3.06E-02 s−1

k5 0.064663803 s−1 /1 0.017816822 s−1

k2r 0 M−1s−1 /g 0.064663803 s−1

k3r 8.84E+04 M−1s−1 /g 1.66E+00 s−1

k4r 2.69E+04 M−1s−1 /g 5.05E-01 s−1

k2h 0.092685844 s−1 /1 9.27E-02 s−1

HKtot 1.76E-04 M *g 9.38E+00 1

RECtot 1.76E-04 M *g 9.38E+00 1

Hpttot 1.76E-04 M *g 9.38E+00 1

RRtot 1.76E-04 M *g 9.38E+00 1

Table D.1: Shows the conversion of kinetic rates used in ODE models for topology 30 (in
the sigmoidal regime) to probabilistic rates used in the PRISM model.
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Parameters Mass Action Values Dimension Scaling by g= 53191(M−1) Stochastic Values Dimension

ks 0 .. 0.1 s−1 /1 0 .. 0.1 s−1

k2 6.16E+04 M−1s−1 /g 1.16E+00 s−1

k3 3.26E+03 M−1s−1 /g 6.12E-02 s−1

k4 1.72E+04 M−1s−1 /g 3.24E-01 s−1

k5 0 s−1 /1 0 s−1

k2r 0 M−1s−1 /g 0 s−1

k3r 2.31E+04 M−1s−1 /g 4.35E-01 s−1

k4r 2.55E+04 M−1s−1 /g 4.79E-01 s−1

k2h 4.15E-02 s−1 /1 4.15E-02 s−1

HKtot 1.84E-04 M *g 9.79E+00 1

RECtot 1.84E-04 M *g 9.79E+00 1

Hpttot 1.84E-04 M *g 9.79E+00 1

RRtot 1.84E-04 M *g 9.79E+00 1

Table D.2: Shows the conversion of kinetic rates used in ODE models for topology 14 (in
the sigmoidal regime) to probabilistic rates used in the PRISM model.

Parameters Mass Action Values Dimension Scaling by g= 53191(M−1) Stochastic Values Dimension

ks 0 .. 0.1 s−1 /1 0 .. 0.1 s−1

k2 6.99E+04 M−1s−1 /g 1.31E+00 s−1

k3 8.96E+04 M−1s−1 /g 1.68E+00 s−1

k4 4.88E+04 M−1s−1 /g 9.18E-01 s−1

k5 0 s−1 /1 0 s−1

k2r 0 M−1s−1 /g 0 s−1

k3r 3.71E+04 M−1s−1 /g 6.98E-01 s−1

k4r 3.91E+04 M−1s−1 /g 7.34E-01 s−1

k2h 9.23E-02 s−1 /1 9.23E-02 s−1

HKtot 1.04E-04 M *g 5.55E+00 1

RECtot 1.04E-04 M *g 5.55E+00 1

Hpttot 1.04E-04 M *g 5.55E+00 1

RRtot 1.04E-04 M *g 5.55E+00 1

Table D.3: Shows the conversion of kinetic rates used in ODE models for topology 14 (in
the hyperbolic regime) to probabilistic rates used in the PRISM model.
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E
APPENDIX

E.1 Proofs showing the existence of 2n + 1 positive

steady states as discussed in section 3.2.4.3

E.1.1 Proof of Lemma 1

To simplify the notation, we prove that for all α1, . . . , α5 > 0 there exist
k1, . . . , k5, H > 0 such that

α1 = k1k2k4k5H α2 = k1k2k3k5H (213)

α3 = k1k4k5 + k2k4k5 α4 = k1k2k5 + k1k3k5 α5 = k1k2k3. (214)

Using (214) we solve iteratively for k3, k5 and k4 and obtain:

k3 =
α5

k1k2
, k5 =

α4k2
k1k22 + α5

, k4 =
α3(k1k

2
2 + α5)

α4k2(k1 + k2)
. (215)

Using the first equation in (213), we have

H =
α2

k1k2k4k5
=
α2(k1 + k2)

α3k1k2
. (216)
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Finally, using the second equation in (213), we have

0 = α2 − k1k2k3k5H = α2 −
α2(k1 + k2)α4α5

α3k1(k1k22 + α5)
,

which is equivalent to

0 = α2α3k
2
2k

2
1 + α2α5(α3 − α4)k1 − α2α4α5k2. (217)

Fix any k2 > 0. Since the polynomial (217) is a polynomial in k1, with positive
leading coefficient and negative independent term, it has a unique positive real
root. As a consequence, for any k2 > 0, (213) and (214) hold with k1 defined such
that (217) holds, and k3, k4, k5, H > 0 as in (215), (216).

E.1.2 Proof of Lemma 2

We have that

p(x) = (x− 1)
n∏
i=1

(x2 + bi) +
n∑
i=1

(
aix
∏
j 6=i

(x2 + bj)
)

=
n∏
i=1

(x2 + bi) + x
( n∏
i=1

(x2 + bi) +
n∑
i=1

(
ai
∏
j 6=i

(x2 + bj)
))
.

If we write

p1(x) =
n∏
i=1

(x2 + bi) = β0x
2n + · · ·+ β2n−2x

2 + β2n,

then a standard computation shows that

β2k =
∑

{j1,...,jk}⊆[n]

k∏
`=1

bj` , and β2k+1 = 0,

for k = 0, 1, . . . , n. In particular, only coefficients of even degree are nonzero. The
second summand of p(x),

p2(x) = x
( n∏
i=1

(x2 + bi) +
n∑
i=1

(
ai
∏
j 6=i

(x2 + bj)
))
,

has only terms of odd degree. Therefore, c2k+1 = α2k as claimed and c2k is the
coefficient of degree 2n + 1 − 2k of p2(x). Note that the polynomial p2(x) can be
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written as:

p2(x) = xp1(x) + x

n∑
i=1

(
ai
∏
j 6=i

(x2 + bj)
)
.

As above, if we write
∏n

j 6=i(x
2 + bj) = γi,0x

2n−2 + · · ·+ γi,2n−4x
2 + γi,2n−2, then

γi,2k =
∑

{j1,...,jk}⊆[n]\{i}

k∏
`=1

bj` , and γ2k+1 = 0,

for k = 0, 1, . . . , n− 1. The coefficient of degree 2n+ 1− 2k of p(x) is then

c2k = β2k +
n∑
i=1

aiγi,2k−2,

as claimed.

E.1.3 Proof of Lemma 3

To simplify the presentation, we denote by Pk(n) the set of all subsets of [n] with k
elements. Similarly, given i ∈ [n], we denote by Pk−1(n, i) the set of all subsets of
[n] with k − 1 elements that do not contain i. We want to show that if we define
bi =

a2i
4
for i = 1, . . . , n, then,

c22k − 4c2k−1c2k+1 > 0

for all k = 1, . . . , n. Recall that we defined

c2k+1 = −
∑

L∈Pk(n)

∏
`∈L

b`, c2k =
∑

L∈Pk(n)

∏
`∈L

b` +
n∑
i=1

ai
∑

J∈Pk−1(n,i)

∏
j∈J

bj.

It is clear that if k ≥ 1, then

c22k >
( n∑
i=1

ai
∑

J∈Pk−1(n,i)

∏
j∈J

bj

)2
>

n∑
i=1

∑
J∈Pk−1(n,i)

a2i
∏
j∈J

b2j + 2
n∑
i=1

∑
J,L∈Pk−1(n,i)

J 6=L

a2i
∏
j∈J

bj
∏
`∈L

b`. (218)
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On the other hand,

4c2k+1c2k−1 = 4

 ∑
L∈Pk(n)

∏
`∈L

b`

 ∑
J∈Pk−1(n)

∏
j∈J

bj

 = 4
∑

L∈Pk(n)
J∈Pk−1(n)

(∏
`∈L

b`
∏
j∈J

bj

)

= 4

 n∑
i=1

∑
J∈Pk−1(n,i)

bi
∏
j∈J

b2j

+ 4
∑

L∈Pk(n)
J∈Pk−1(n),J 6⊆L

(∏
`∈L

b`
∏
j∈J

bj

)
. (219)

If we set bi =
a2i
4
, then the first two summands of (218) and (219) agree:

n∑
i=1

∑
J∈Pk−1(n,i)

a2i
∏
j∈J

b2j = 4
n∑
i=1

∑
J∈Pk−1(n,i)

a2i
4

∏
j∈J

b2j = 4

 n∑
i=1

∑
J∈Pk−1(n,i)

bi
∏
j∈J

b2j

 .

We let

B1 =
n∑
i=1

∑
J,L∈Pk−1(n,i)

J 6=L

a2i
∏
j∈J

bj
∏
`∈L

b` = 4
n∑
i=1

∑
J,L∈Pk−1(n,i)

J 6=L

bi
∏
j∈J

bj
∏
`∈L

b`

B2 = 2
∑

L∈Pk(n)
J∈Pk−1(n),J 6⊆L

(∏
`∈L

b`
∏
j∈J

bj

)
.

Then, to show that c22k > 4c2k+1c2k−1 it is enough to show that B1

4
≥ B2

2
. To this end,

observe that given any pair of sets L ∈ Pk(n) and J ∈ Pk−1(n), such that J 6⊆ L, we
can choose i ∈ L such that L′ := L \ {i} satisfies L′ 6= J . Therefore, every summand
of B2 is a summand of B1 as well. This finishes the proof.

E.1.4 Proof of Lemma 4

Let δk = c22k+1 − 4c2kc2k+2. For M > 0 and a1 > 0, we let ai = an
M i−1 and bi =

a2i
4
.

Therefore, we have that

bi =
a21

4M2(i−1) ,

for i = 1, . . . , n. With these substitutions, δk = δk(a1) becomes a polynomial in a1.
If there exists a choice of M > 0 such that the coefficient of smallest degree of δk
is positive for all k, then δk(a1) > 0, for a1 small enough and all k. Therefore, we
compute the coefficient of smallest degree of δk in a1.
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We use the notation introduced in the proof of Lemma 3. By definition, we have that

c22k+1(a1) =

 ∑
J∈Pk(n)

∏
j∈J

a21
4M2(j−1)

2

= a4k1

 ∑
J∈Pk(n)

∏
j∈J

1

4M2(j−1)

2

c2k(a1) =
∑

J∈Pk(n)

∏
j∈J

a21
4M2(j−1) +

n∑
i=1

a1
M i−1

∑
J∈Pk−1(n,i)

∏
j∈J

a21
4M2(j−1)

= a2k1

 ∑
J∈Pk(n)

∏
j∈J

1

4M2(j−1)

+ a2k−11

 n∑
i=1

1

M i−1

∑
J∈Pk−1(n,i)

∏
j∈J

1

4M2(j−1)


The polynomial c22k+1(a1) consists of one term of degree 4k in a1. The polynomial
c2k(a1) is a sum of a term of degree 2k and one of degree 2k − 1. Similarly, the
polynomial c2k+2(a1) is a sum of a term of degree 2k + 2 and one of degree 2k + 1.
Hence, the product c2kc2k+2 is a polynomial with lowest degree 4k. If the coefficient
of degree 4k of δk is nonzero, then it is the coefficient if smallest degree. By denoting
the coefficient of degree 4k by βk, we have:

βk =

 ∑
J∈Pk(n)

∏
j∈J

1

4M2(j−1)

2

− 4

 n∑
i=1

1

M i−1

∑
J∈Pk−1(n,i)

∏
j∈J

1

4M2(j−1)

 n∑
s=1

1

M s−1

∑
L∈Pk+1(n,s)

∏
`∈L

1

4M2(`−1)

 .

For M > 1, the largest summand in the positive summand of βk is given by the
choice of set J = {1, . . . , k} ∈ Pk(n) and takes the value

X1 :=
k∏
j=1

1

16M4(j−1) =
1

42kM4
∑k−1

`=0 `
=

1

42kM2k2−2k .

The largest summand in the negative summand of βk is given by the choice i =

k, s = k + 2, J = {1, . . . , k − 1} ∈ Pk−1(n, i), and L = {1, . . . , k + 1} ∈ Pk+1(n, s).
Proceeding as above, the term takes the value

X2 := 4

(
1

Mk−1
1

4k−1M (k−1)(k−2)

)(
1

Mk+1

1

4k+1M (k+1)k

)
=

1

42k−1M2k2+2
.

For M large enough, X1 > X2. It follows that for M large, X1 dominates, and hence
βk is positive. This finishes the proof.
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APPENDIX

F.1 Parameters used to generate all figures in Chap-

ter 3
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Constant
Fig 3.2 3.6B

Fig 3.6D
Fig 3.8b

Fig 3.5 Fig 3.7 Reactions
b ca n = 1 n = 2 n = 3 B C D

k1,1 0 .. 1.5 0.7329 1 0.1 0.591 0 .. 1.4 0 .. 2 0 .. 2 0 .. 2 0 .. 2.5 0 .. 5 HK1
00 → HK1

P0

k1,2 100 100 10 120 4050 10 100 100 100 100 100 HK1
P0 → HK1

0P

k1,3 100× k1,1 73.29 15 17.95 127.2 15 80× k1,1 100× k1,1 100× k1,1 100× k1,1 10× k1,1 HK1
0P → HK1

PP

k1,4 50 50 30 0.1795 5.986 0.1 50 50 50 50 50 HK1
0P + Hpt1 → HK1

00 + Hpt1P

k1,5 100 100 200 0.713 16.7 50 100 100 100 100 100 HK1
PP + Hpt1 → HK1

P0 + Hpt1P

k1,6 5 5 20 1 100 - - - - - - Hpt1P → Hpt1

k1,7 - - - - - - 10 10 10 10 - HK1
00 + Hpt1P → HK1

0P + Hpt1

k1,8 - - - - - - 10 10 10 10 - HK1
P0 + Hpt1P → HK1

PP + Hpt1

k1,9 - - - - - - 10 10 10 10 - HK1
0P → HK1

00

k1,10 - - - - - - 10 10 10 10 - HK1
PP → HK1

P0

k1,11 - - - - - 0.1 100 100 100 100 1 Hpt1P + RR→ Hpt1 + RRP

k1,12 - - - - - - 100 100 100 100 - Hpt1 + RRP → Hpt1P + RR

k2,1 - - - 0.002 0.363 k1,1 0 .. 2 0 .. 2 0 .. 2 - k1,1 HK2
00 → HK2

P0

k2,2 - - - 500 6500 200 100 100 100 - 100 HK2
P0 → HK2

0P

k2,3 - - - 160 24 50 80× k2,1 100× k2,1 100× k2,1 - 10× k1,1 HK2
0P → HK2

PP

k2,4
- - - 0.147 3.633 - 50 50 50 - - HK2

0P + Hpt1 → HK2
00 + Hpt1P

- - - - - 1 - - - - 50 HK2
0P + Hpt2 → HK2

00 + Hpt2P

k2,5
- - - 4.15 27.5 - 100 100 100 - - HK2

PP + Hpt1 → HK2
P0 + Hpt1P

- - - - - 10 - - - - 100 HK2
PP + Hpt2 → HK2

P0 + Hpt2P

k2,7 - - - - - - 100 10 10 - - HK2
00 + Hpt1P → HK2

0P + Hpt1

k2,8 - - - - - - 10 10 10 - - HK2
P0 + Hpt1P → HK2

PP + Hpt1

k2,9 - - - - - - 10 10 10 - - HK2
0P → HK2

00

k2,10 - - - - - - 10 10 10 - - HK2
PP → HK2

P0

k2,11 - - - - - 0.1 - - - - 2 Hpt2P + RR→ Hpt2 + RRP

k3,1 - - - - 0.0658 - - - - - k1,1 HK3
00 → HK3

P0

k3,2 - - - - 6000 - - - - - 100 HK3
P0 → HK3

0P

k3,3 - - - - 3.442 - - - - - 10× k1,1 HK3
0P → HK3

PP

k3,4
- - - - 0.658 - - - - - - HK3

0P + Hpt1 → HK3
00 + Hpt1P

- - - - - - - - - - 50 HK3
0P + Hpt3 → HK3

00 + Hpt3P

k3,5
- - - - 157.7 - - - - - - HK3

PP + Hpt1 → HK3
P0 + Hpt1P

- - - - - - - - - - 100 HK3
PP + Hpt3 → HK3

P0 + Hpt3P

k3,11 - - - - - - - - - - 5 Hpt3P + RR→ Hpt3 + RRP

k13 - - - - - 10 14.6019 10 7 20 10 RRP → RR

HK1
tot 1 1 7 6.38 16.93 140 0.18687 0.15 0.5 1 1

HK2
tot - - - 7.84 27.58 100 0.18687 0.15 0.5 - 1

HK3
tot - - - - 152 - - - - - 1

Hpt1tot 1 1 1 16.27 3.4 170 5 5 5 5 1

Hpt2tot - - - - - 90 - - - - 1

Hpt3tot - - - - - - - - - - 1

RRtot - - - - - 100 1 1 1 1 1

aFigure 3.2: initial concentrations are [HKP0]
initial = 0.031143, [HK0P]initial = 0.033794, [HKPP]initial = 0.065681, [HptP]initial = 0.3 .. 1

bFigure 3.8: the mesh size of the surface grid is 0.1

Reactions with corresponding rates set to zero in all analyses were not included in the table. There might be small differences between the
names for rate constants here and in chapter 3.
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G.1 List of Species used in section 4.2.1.1
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