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Abstract. Characterisation of bioaerosols has important im-
plications within environment and public health sectors.
Recent developments in ultraviolet light-induced fluores-
cence (UV-LIF) detectors such as the Wideband Integrated
Bioaerosol Spectrometer (WIBS) and the newly introduced
Multiparameter Bioaerosol Spectrometer (MBS) have al-
lowed for the real-time collection of fluorescence, size and
morphology measurements for the purpose of discriminating
between bacteria, fungal spores and pollen.

This new generation of instruments has enabled ever larger
data sets to be compiled with the aim of studying more
complex environments. In real world data sets, particularly
those from an urban environment, the population may be
dominated by non-biological fluorescent interferents, bring-
ing into question the accuracy of measurements of quantities
such as concentrations. It is therefore imperative that we val-
idate the performance of different algorithms which can be
used for the task of classification.

For unsupervised learning we tested hierarchical agglom-
erative clustering with various different linkages. For super-
vised learning, 11 methods were tested, including decision
trees, ensemble methods (random forests, gradient boosting
and AdaBoost), two implementations for support vector ma-
chines (libsvm and liblinear) and Gaussian methods (Gaus-
sian naïve Bayesian, quadratic and linear discriminant anal-
ysis, the k-nearest neighbours algorithm and artificial neural
networks).

The methods were applied to two different data sets pro-
duced using the new MBS, which provides multichannel UV-
LIF fluorescence signatures for single airborne biological
particles. The first data set contained mixed PSLs and the
second contained a variety of laboratory-generated aerosol.

Clustering in general performs slightly worse than the su-
pervised learning methods, correctly classifying, at best, only
67.6 and 91.1 % for the two data sets respectively. For super-
vised learning the gradient boosting algorithm was found to
be the most effective, on average correctly classifying 82.8
and 98.27 % of the testing data, respectively, across the two
data sets.

A possible alternative to gradient boosting is neural net-
works. We do however note that this method requires much
more user input than the other methods, and we suggest that
further research should be conducted using this method, es-
pecially using parallelised hardware such as the GPU, which
would allow for larger networks to be trained, which could
possibly yield better results.

We also saw that some methods, such as clustering, failed
to utilise the additional shape information provided by the
instrument, whilst for others, such as the decision trees, en-
semble methods and neural networks, improved performance
could be attained with the inclusion of such information.
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1 Introduction

Primary biological aerosol particles (PBAP) such as fungal
spores, bacteria and pollen have been linked to global at-
mospheric processes but their impact remains uncertain. In
particular, cloud and precipitation feedback mechanisms are
dependent on airborne concentrations and surface properties
of the particles. Quantification of the biogeography and sea-
sonal variability of such quantities is vital for better under-
standing the impacts of atmospheric aerosol on the environ-
ment.

It is thought that bacteria, pollen and fungal spores can
act as cloud condensation nuclei (CCN) and heterogeneous
ice nuclei (IN) (Möhler et al., 2007; Hoose and Möhler,
2012). For example, bacterial species such as Pseudomonas
syringae and Erwinia herbicola have been shown to be cat-
alysts for the formation of ice at temperatures as warm as
−2 ◦C (Gurian-Sherman and Lindow, 1993). Furthermore,
ice nucleation active (INA) bacteria have been recovered
from cloud water (Joly et al., 2013), demonstrating that
bioaerosols, acting as IN, can be found in the atmosphere,
at least where these clouds are present, and therefore may be
influencing various atmospheric processes.

Only a few bacterial and fungal species have been shown
to be INA at the higher range of sub-zero temperatures and
even in these cases only a small amount of cells nucleate
at these temperatures, leading some to question the signifi-
cance of bioaerosols as ice nucleators (Cziczo et al., 2013).
However, since ongoing research has led to the discovery of
new biological ice nucleators (Huffman et al., 2013), there
are likely more INA species to be found and under certain
conditions, such as during rainfall especially at warmer tem-
peratures, these particles may be having a much more pro-
found impact than previously thought (Huffman et al., 2013;
Hader et al., 2014; Prenni et al., 2013; Tobo et al., 2013).

The above recent research has led to the development of
the hypothesis of a bioprecipitation feedback cycle, whereby
plants release aerosol containing microorganisms and spores
that then act as ice catalysts at warmer temperatures than
other more common ice nucleators, such as mineral dusts.
This in turn facilitates precipitation, which is beneficial for
the growth of plants and microorganisms (Morris et al.,
2014). Within such a cycle it may be the case that biologi-
cal particles initiate secondary ice nucleation processes, also
at warmer temperatures (Crawford et al., 2012), leading to
more rapid cloud glaciation which may also impact the de-
velopment of precipitation. Emissions of certain bioaerosols
are also predicted to increase in a warming climate (Jacob-
son and Streets, 2009), resulting in changing patterns of plant
and animal disease spread (Kennedy and Smith, 2012).

Whilst the technology for identification and quantifica-
tion of specific airborne bioaerosols exists, measurements of
their concentrations and surface properties remain some way
off. Nonetheless, the practicality of long-term, continuous,
real-time monitoring and discrimination of at least some of

these properties for the more common types has already been
demonstrated, e.g. at rural and semi-rural background sites in
Germany, Ireland and Finland (Healy et al., 2014; Toprak and
Schnaiter, 2013; Schumacher et al., 2013).

Despite the limited observations of the concentrations of
bioaerosols, their effects on the outcomes of global and re-
gional aerosol models have been investigated (Spracklen and
Heald, 2014; Hummel et al., 2015). In Spracklen and Heald
(2014), simulated concentrations of fungal spores and bac-
teria are used in a global aerosol model from which they
conclude that, whilst PBAP contribute very little to average
global immersion freezing ice nucleating rates, PBAB dom-
inates ice nucleation at warmer temperatures at certain alti-
tudes. In Hummel et al. (2015), measurements from a num-
ber of field sites have also been used to test high-resolution
bioaerosol emission models on European regional scales,
from which it is suggested that simulated fluorescent biolog-
ical aerosol particle concentrations based on literature emis-
sion parametrisation are lower than the corresponding mea-
sured concentrations in key emission regions. As well as fur-
ther field research, evaluation of the algorithms discussed in
this paper could allow for more certainty in the measure-
ments of the concentrations, which would allow for better
validation of the above models.

Furthermore, there are other uncertainties which arise
from the potential misclassification from interferents, par-
ticularly in complex urban environments. Potential non-
biological fluorescent aerosol interferents may include black
carbon aerosols from seasonally varying solid fuel sources
(Herich et al., 2014). Addition of organic films via deposi-
tion of polycyclic aromatic hydrocarbons (PAHs) emitted by
vehicle exhausts is another potential interferent, as are com-
mon mineral dusts containing fluorescent rare-earth metals.
In addition to the compilation of larger data catalogues to
help address the issue of interferents (e.g. Hernandez et al.,
2016), there also needs to be a focus on testing the effective-
ness of approaches to distinguish between particles reliably
in real time.

Hierarchical cluster analysis (HCA), an unsupervised
learning technique, has been used previously to discriminate
between bioaerosol (Robinson et al., 2013; Crawford et al.,
2014, 2015). This technique has been shown to be successful
in discriminating between various polystyrene latex spheres
(PSLs) and has been applied to ambient data where correct
classification is unknown. In this paper we extend this re-
search to encompass laboratory samples where correct clas-
sification is known in an attempt to evaluate the performance
of such algorithms with data that are more similar to that
which could be produced during an ambient campaign.

To enhance our study, we also conduct analysis using a
range of supervised methods. There are many advantages and
disadvantages of supervised methods versus unsupervised
methods. Firstly, supervised techniques allow one to choose
training data and groupings that better reflect the research
problem at hand. For example, for discriminating between
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bacteria, fungal spores and pollen with the aim of studying
how they interact with the atmosphere, one could collect var-
ious different samples of the different groups and use this to
train supervised methods to identify the particles in ambient
data. Conversely, the results from the unsupervised methods
are dependent on natural differences in the data and cannot
be tailored towards a particular application.

Secondly, when faced with a previously unseen particle,
the supervised methods may be dependent on the data with
which they were trained. Unsupervised methods may offer an
advantage in these cases since they are not reliant on train-
ing data. Another factor that needs to be considered is the
time cost of the different methods. Supervised methods such
as decision trees and linear discriminant analysis (LDA) of-
fer much faster alternatives to hierarchical cluster analysis,
which would be important when considering real-time appli-
cations in the future.

Clearly, supervised methods may offer additional benefits
making their study worthwhile, but the laboratory data col-
lected prior to ambient studies will be of paramount impor-
tance. Specifically we test 11 methods available in the scikit-
learn package (Pedregosa et al., 2011) including decision
trees, ensemble methods (random forests, gradient boosting
and AdaBoost), two implementations for support vector ma-
chines (libsvm and liblinear), Gaussian methods (Gaussian
naïve Bayesian, quadratic discriminant analysis (QDA) and
LDA) and finally the k-nearest neighbours algorithm. In ad-
dition we test neural networks provided in the pycaffe pack-
age (Jia et al., 2014).

2 Methods

In the classification of biological aerosol the primary aim
is to attribute a label to each of the particles. Unsupervised
learning requires no prior knowledge and splits the particles
into different groups using natural differences in the data. Su-
pervised learning takes a subset of the data, which we will
call the “training set”, and uses this “learn” differences be-
tween groups. A testing stage on the remaining data, which
we will call the “testing set”, is then conducted. The percent-
age of the testing set correctly classified is then recorded to
evaluate how well the method has “learnt” how to distinguish
between the groups.

We split the data using five-fold cross validation. Here the
data are randomly split into five groups. We then progres-
sively take each group to be the test set and use the remain-
ing four groups to train each of the methods and then record
the percentage of the test group that was correctly classified.
Finally we average our results over the five tests.

For HCA we varied whether we (a) included both saturated
and non-fluorescent data, (b) included saturated data but not
non-fluorescent, (c) included only non-fluorescent data but
removed saturated data and (d) removed both. We concluded
that a particle was non-fluorescent if its eight fluorescence

measurements lay within 3 standard deviations of the mean
measurements when the instrument was empty. Such filter-
ing is common for previous studies using hierarchical clus-
tering but filtering was not considered for the supervised
learning methods since the methods should be able to incor-
porate some kind of filtering within their own classification
schemes. For example when using decision trees, removal of
non-fluorescent data would be replicated using branches that
split the data based on the fluorescence above and below a
certain threshold. We therefore conclude in the case of su-
pervised methods that it is beneficial to allow the method to
have full control of how the data are grouped for classifica-
tion rather than to filter any of the data ourselves.

For some of the methods it is necessary to standardise the
data before conducting the analysis. This is the case for clus-
ter analysis (Sect. 2.1), support vector machines (Sect. 2.5)
and neural networks (Sect. 2.6). The purpose of standardis-
ation is to consider each of the variables with equal weight.
For example, the fluorescent measurements are much larger
than the size measurements and for the aforementioned meth-
ods this would cause the fluorescent measurements to have
more of an influence on the classification than the other vari-
ables, which in turn leads to a significant drop in perfor-
mance. For decision trees and ensemble methods (Sect. 2.2)
we do not standardise as each of the variables are consid-
ered in isolation so standardisation is not necessary. For the
Gaussian methods (Sect. 2.3), standardisation is conducted
implicitly when the models are fitted so standardisation again
is not necessary. For K-nearest neighbours (Sect. 2.4), stan-
dardisation is usually recommended but with our initial tests
we found that it hindered performance for our data, so for our
results this method is produced from unstandardised data. In
order to standardise the data we apply the z score to each of
the variables since this is the method of standardisation that
is most commonly used in the literature (e.g Crawford et al.,
2015).

The structure of Sect. 2 is as follows: in Sect. 2.1 we dis-
cuss the only unsupervised method we tested – HCA. In
Sect. 2.2 we highlight decision trees and ensemble methods
encompassing everything from a single decision tree to any
method that can be used to combine multiple decision trees
in an attempt to create a better classifier (AdaBoost, gradi-
ent boosting and random forests). Gaussian methods are in-
troduced in Sect. 2.3; these include any method that fits a
Gaussian model to the data for classification, including LDA,
QDA and Gaussian naïve Bayesian. In Sect. 2.4 we highlight
the k-nearest neighbour classifier and in Sect. 2.5 we dis-
cuss the main differences between the two implementations
of support vector machines. Finally in Sect. 2.6 we discuss
neural networks.

2.1 Hierarchical cluster analysis

HCA is the only unsupervised method that we tested. Other
unsupervised methods such as k-means clustering and not
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Figure 1. An example of a small decision tree.

considered here since they rely on the user to input the num-
ber of clusters, which in an ambient situation is unlikely to be
known prior to the analysis. There are seven available link-
ages in the Fastcluster package (Müllner, 2013, 2011): single
(closest point), complete (furthest point), average (average
distance), weighted (weighted average distance), ward (min-
imisation of variance), centroid (difference between means)
and median (differences between medians). Prior to this anal-
ysis we used the z score to standardise the data.

2.2 Decision trees and ensemble methods

When using decision trees, data are split by sorting the data
by each variable and using a metric to find the best place to
split. An example of a decision tree is given in Fig. 1. In our
example there are two groups, blue particles and red parti-
cles, and the variable we use to split them is a measurement
of fluorescent intensity of the particle. In reality the tree will
be much more complicated with many more branches.

To construct the decision tree we consider all possible
splits within the data. For example if we had three particles
with fluorescent intensity (FL) of 180, 300 and 1400 arbi-
trary units, we would consider all possible splits to determine
the best split for the first branch. For three particles there
would be three possible cases for the first branch: FL> 180,
FL> 300 and FL> 1400. Each split then will be evaluated
using a criterion to determine how effective the split is to dis-
tinguish between the different groups. All of the other vari-
ables are then considered in the same fashion and the most
effective split for the first branch in the data is selected. The
process is then repeated to split the data multiple times, cre-
ating a larger tree with many branches. In the case of our
example we would have a tree with two splits. When clas-
sifying a new particle we simply start at the top of the tree,
evaluating the criteria until a conclusion about the particle is
made.

Multiple decision trees can be combined to create ensem-
ble classifiers. These classifiers often achieve improvements
in one of two ways. Firstly, classifiers such as bagging and
random forests take samples of the data and the variables,
which are used to produce different decision trees, each ca-
pable of classifying a particle. Averaging the classifications
made by each tree is then thought to give an overall better re-

sult. An alternative approach used by the AdaBoost classifier
and the gradient boosting classifier is to begin by weighting
all the data equally and over several iterations have decision
trees focus on the parts of the data that are being misclas-
sified most often. This can yield an improvement over the
single decision tree as the classifier is modified to correct the
mistakes that it is making. These ensemble methods could
be theoretically used with other classifiers but the simplicity
and speed of the decision trees mean that they are most often
used. We give further details of the ensemble methods below.

Bagging (Breiman, 1996) is where multiple samples of the
data are taken and a different tree is fitted to each of the sam-
ples. The samples taken are bootstrap samples, a common
statistical technique used to create multiple data sets from
one set of data. This can be thought as putting all the sam-
ples into a bag, taking out one sample at a time and putting it
back into the bag. This is repeated until a new data set which
is the same size as the original is obtained. Some samples will
have been selected more than once from the bag and others
may not get selected at all. This gives a subtly different data
set. This can be repeated multiple times in order to create
multiple versions of the data set. From each of the samples
a decision tree is constructed and the results from the dif-
ferent trees are then averaged to give an overall result. The
rationale behind the method is that slight differences in the
different versions of the data set will produce different trees
and in averaging the results we will get a better estimation of
which group the particle belongs to.

Bagging is extended to “random forests” in Breiman
(2001). Instead of selecting the best split when constructing
any particular tree, a random subset of variables is chosen
to build the tree. It is hypothesised that using only a subset
of the variables will produce trees that are more independent
and thus the improvement from averaging can be larger. Ran-
dom forests are generally considered to perform better than
bagging; hence we do not consider bagging in our analysis.

An alternative method for combining decision trees into
an ensemble classifier is AdaBoost (Freund and Schapire,
1995). Here weights are assigned to each of the particles and
very small decision trees are fitted to the data. Performance
is evaluated using a loss function (exponential loss function)
and the data are re-weighted to focus on particles that are
being misclassified most often. Gradient boosting is a gen-
eralisation of the AdaBoost algorithm to allow for different
loss functions.

2.3 Gaussian-based methods

An alternative approach to solve the classification problem is
to fit multivariate normal distributions to each of the groups
within the training data. This distribution is a generalisation
of the normal distribution for one variable and depends on
the means and covariance of the different variables.

Different assumptions of how the covariance between the
variables behaves leads to different classifiers. If one places
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Figure 2. An example of three fitted normal distributions.

no requirements on the covariance this results in QDA. The
assumption that each of the groups vary equally results in
LDA and finally making the assumption that each of the vari-
ables are independent of each other results in Gaussian naïve
Bayesian.

Once the normal distributions are fitted we can classify
new particles by calculating the probability that the particle
comes from each of the groups and assigning it to the group
that it is most likely to have come from.

As an example, in Fig. 2 we have plotted normal distri-
butions for three groups. If we were to observe a value of
x = 0 then the particle would be assigned to the blue group
as the probability that the particle comes from the blue group
is higher than that for the red and for the green.

2.4 K-nearest neighbour classification (KNN)

This method does not require a training step; instead, to clas-
sify a previously unseen particle the particle is compared to
each of the particles in the training set and the k-nearest
neighbours in the training set to the previously unseen par-
ticle are recorded. The previously unseen particle is then at-
tributed to the same group as the majority of its nearest neigh-
bours. This method can be regarded as recognition rather
than learning as it classifies a particle simply on how simi-
lar it is to particles that it has seen in the training data.

2.5 Support vector machines

A practical guide to support vector classification is given in
Hsu et al. (2003). The method transforms the data to a higher-
dimensional space and then splits the data using a linear deci-
sion function (Cortes and Vapnik, 1995). In two dimensions
this would be a line, in three a plane, etc. In two dimensions,
points to one side of the line are classified as coming from
one group; points on the other side of the line are classified

as coming from the other group. Points to either side of the
line correspond to positive and negative values of the deci-
sion function respectively. The line is selected on the basis
of how well it splits the data without giving too much prece-
dence to outliers.

In order to generalise this methods to multiple groups there
are two methods: one-vs.-rest and one-vs.-one. One-vs.-rest
involves fitting a support vector machine for each of the
groups against the rest of the groups and then attributing new
particles to the group with the highest value of the decision
function. One-vs.-one fits a classifier to each pair of groups
and then uses a voting scheme to attribute previously unseen
particles to a group. LinearSVC (linear support vector classi-
fication) uses the one-vs.-rest strategy whereas SVC (support
vector classification) uses the one-vs.-one strategy.

How the data are transformed to a higher-dimensional
space is dependent on the kernel chosen. There are two im-
plementations within scikit-learn (Pedregosa et al., 2011)
that can be used for support vector machines: SVC and Lin-
earSVC. The former allows many different kernels, whereas
the latter is a faster version of the first but is limited to the
linear kernel only. We test SVC using the RBF (radial basis
function) kernel and use linearSVC for the linear kernel.

The SVC implementation has parameters γ and C. Since
γ is a specific parameter for the RBF kernel, LinearSVC only
requires the input of the value of C. Using a sample of 10 %
of the data, we test the values of C equal to 1, 10, 100 and
1000 and in the case of the SVC function we test all pos-
sible combinations of C with γ equal to 0, 1, 10, 100 and
1000. The values are selected to test a wide range of possi-
ble values of each of the parameters to allow for appropriate
values to be selected. In future, it might be possible to get
better performance by either conducting this initial parame-
ter selection on a larger sample of the data or testing more
values, but within the scope of this paper we are intending
to select parameters that perform fairly well, which should
give us an appropriate estimation on the effectiveness of the
method. The values which perform best are used with the
five-fold cross validation to form our final result.

2.6 Artificial neural networks

Artificial neural networks are statistical models inspired
loosely by neurons within the brain. They have been shown to
be particularly effective for complex problems such as digit
classification (LeCun et al., 1998). As with support vector
machines, it is recommended that each of the variables are
standardised using the z score to ensure that each of the vari-
ables are given equal weighting when training the neural net-
work.

A neural network consists broadly of three components.
Firstly, an input layer, which is the fluorescence, size and
shape for each of the particles for the data presented. Next we
have hidden layers. The network may contain one or many
hidden layers and each hidden layer will contain many hid-
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den units, or neurons. Synapses connect the input layer to
the hidden layer(s) and from the hidden layer(s) to the out-
put layer. The synapses have a simple job of multiplying the
input value by a weight and producing an output value. The
neurons will sum the outputs of the synapses and apply an
activation function. Finally we have an output layer. For our
data this will be the classification of the particle, e.g. bacteria
or blue PSL. For this paper we experimented with using one
hidden layer with 10 hidden units and two hidden layers with
500 and 10 units respectively.

Initially the weights in the network are set randomly us-
ing a normal distribution with mean 0 and standard deviation
of 0.01. Since the weights have been initialised randomly at
this point the network will perform very poorly. However, as
data are passed through the network, the weights are adjusted
to minimise a loss function. Once training is completed the
weights should better reflect the learning task and then the
network is used to classify the testing set.

The scikit-learn package does not currently contain an im-
plementation for neural networks but is undergoing develop-
ment and will likely do so in the future. For this paper we
elect to use pycaffe (Jia et al., 2014), which is a fast package
for implementing a variety of different neural networks.

3 Instrumentation

The Multiparameter Bioaerosol Spectrometer (MBS) is a de-
velopment of the Wideband Integrated Bioaerosol Spectrom-
eter (WIBS) technology developed by the University of Hert-
fordshire (Kaye et al., 2005). Both instruments are designed
to acquire data relating to the size, shape and intrinsic fluo-
rescence of individual airborne particles and use these data
to detect and potentially classify those particles that are of
biological origin. However, whereas the WIBS instrument
records particle fluorescence over just two wavebands, ap-
proximately 310–400 and 420–650 nm (corresponding to the
maximum emissions from tryptophan and NADH), the MBS
records the fluorescence over eight equal wavelength bands
from approximately 310 to 640 nm. This is likely to provide
better discrimination between biological particles and “in-
terferent” non-biological particles that may exhibit similar
fluorescence properties. Similarly, while WIBS uses a sim-
ple 4 pixel detector to assess particle shape from the parti-
cle’s spatial light scattering pattern (Kaye et al., 1996; Kaye,
1998), the MBS uses an arrangement of two 512 pixel CMOS
detector arrays to record high-resolution details of the parti-
cle’s spatial light scattering pattern, allowing both the macro-
scopic shape of the particle and potentially particle surface
characteristics to be determined. Again, this can enhance the
prospects of particle classification and reduces false-positive
bio-particle detection. The key elements of the MBS are
shown in Fig. 3.

The MBS draws ambient aerosol through an inlet tube at
a rate of approximately 1.5 L min−1. Part of this flow is fil-

tered and used both as a “bleed” flow (to maintain cleanliness
of the inner optical chamber) and as a “sheath” flow which
surrounds and constrains the remaining “sample” flow. Parti-
cles carried in the remaining 300 mL min−1 sample flow are
forced to pass in single file through the sensing volume, de-
fined by the intersection between the particle detection laser
beam (see below) and the sample airflow column.

Each particle carried in the sample airflow is initially de-
tected by a low-power laser beam (12 mW at 635 nm). The
light scattered from the laser pulse is collected by the lens
assembly shown at the upper-right of Fig. 3 and a small pro-
portion of the light is directed by a pellicle beam splitter to
the photodiode trigger detector. The voltage output pulse of
this detector is proportional to the intensity of light falling on
it and is used to size the particle. The trigger signal also initi-
ates the firing of a second, high-power, pulsed laser (250 mW
at 637 nm) that irradiates the particle with sufficient inten-
sity to allow elements of the particle’s spatial light scatter-
ing pattern, which relates to particle morphology and orien-
tation (Kaye, 1998), to be captured by the arrangement of
two CMOS linear detector arrays.

About 10 µs after particle detection, the UV xenon source
illuminates the particle for approximately 1 µs with an in-
tense UV pulse at 280 nm wavelength. The resulting fluo-
rescent light from the particle is collected by two spherical
mirrors and directed through to the spectrometer optics. The
fluorescence spectrum, covering 310–650 nm, is recorded by
the eight-channel photomultiplier tube and the information
is digitised and recorded by the electronics control unit. The
particle then passes out of the chamber and the system is re-
armed. The total measurement process takes 30 µs. Despite
the fact that the system is capable of counting particles at a
rate greater than 1000 per second, the limiting factor is the
xenon recharge time (approximately 5 ms), which reduces
the data acquisition rate to approximately 100 particles a sec-
ond (this corresponds to measuring all particles to a concen-
tration of 2× 104 particles L−1.

Figure 4 below illustrates the type of data produced by the
MBS for an individual airborne particle. The particle fluo-
rescence spectrum, excited by the 280 nm UV xenon flash, is
denoted by the blue bars in the left-hand plot. The red bars
represent the average fluorescence values for the previous 25
particles measured. The right-hand plot shows the relative in-
tensity patterns of scattered light from the particle when illu-
minated by the high-power 637 nm laser pulse. The red and
green plots, extending left and right from the centre, corre-
spond to the relative intensities of light falling onto the two
linear CMOS detector arrays shown in Fig. 3. The symmetry
(or asymmetry), form and magnitude of these intensity distri-
butions are related to particle shape and surface structure and
are therefore characteristic of the morphology of the illumi-
nated particle, thus offering additional parameters by which
the particle may be classified.
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Figure 3. Schematic diagram of the Multiparameter Bioaerosol Spectrometer.

Figure 4. Typical fluorescence spectral data (left) and spatial light scattering data (right) recorded from a single aerosol particle by the MBS
instrument.

4 Data

In order to evaluate the performance of the various different
methods we use two different data sets. For each of the data
sets we have included a parallel coordinate plot to allow the
reader to see on average how each of the groups differ in their
fluorescent intensity and size (see Figs. 5 and 6).

4.1 Polystyrene latex spheres

From Fig. 5 it should be clear that the PSLs should be highly
separable by eye. This data set provides a benchmark of the
simplest separation task. We would expect a good classifica-
tion technique to perform well with this data set.

Six groups of spheres, five of which have been doped in
colouring, of varying sizes are used. Details of the sizes and
the doping of the different groups are given in Table 1. These
data are very similar to those used in Crawford et al. (2015),
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Figure 5. Average fluorescent intensity given in arbitrary units (AU)
for the eight fluorescent channels and the size given in micrometres
for the PSL data.

Figure 6. Average fluorescent intensity given in arbitrary units (AU)
for the eight fluorescent channels and the size given in micrometres
for the laboratory data. The fluorescent signatures for the paper mul-
berry sample are not included in the figure as the particles are much
larger and more fluorescent than the remaining samples and their
inclusion would cause the graph to be uninterpretable.

in which hierarchical agglomerative clustering was shown to
effectively discriminate particles of this kind.

4.2 Laboratory data

The laboratory data used here are an attempt to provide chal-
lenging aerosol particles that are more representative of those
occurring naturally in the environment and between which a
bioaerosol sensor will need to discriminate. These data con-
tain examples of various different fungal spores, pollen, bac-
teria and non-fluorescent material that might be found within
ambient data.

The materials listed in Table 2 were aerosolised into a
large, clean HEPA filtered containment chamber (incorpo-
rating a recirculation fan), from which the aerosol inlet of

Table 1. Sample sizes for PSLs.

Size Doping Number of
particles

2.2 µm Red 8704
3.1 µm Green 9651
3.1 µm Blue 10 076
0.72 µm Green 2702
1 µm Green 5274
4.17 µm None 4351

the MBS sensor drew the measurement samples. Liquids and
suspensions were nebulised using a medical mini-nebuliser
(e.g. Hudson RCI Micro-Mist nebuliser), while the dry mate-
rials were aerosolised directly from small quantities of pow-
der using a filtered compressed air jet.

The Bacillus atrophaeus (BG) and E. coli bacteria were
generated from suspensions in L-broth growth media, so
these aerosols also contain particles of L-broth. Some of the
BG spores were also washed before use (by filtering the sus-
pension and re-suspending the spores in distilled water) to
obtain relatively clean aerosolised spores.

Measurements of a rye grass pollen sample were taken but
only consisted of approximately 50 particles, substantially
less than the other samples, and so were removed.

The remaining particles were split into four broad groups:
bacteria, fungal spores, pollen and non-fluorescent material.
Details of the sample sizes and group classifications are given
in Table 2.

5 Results

5.1 General results

After being split into training and testing data, as outlined in
Sect. 2, the proportion of the testing data correctly classified
for each of the supervised methods for each of the data sets is
given in Figs. 7 and 8. In the case of the unsupervised method
(HCA) it was not necessary to split the data into training and
testing sets. Instead we applied the algorithm with all seven
available linkages to all the particles. The results for which,
for ease of comparison, are also given in Figs. 7 and 8.

We have also provided a subset of our time results. In
Fig. 9 we have the training and testing times for the super-
vised methods and the full time taken for the HCA for the
full mixed PSL data. The timings for the reduced data set
and for the laboratory-generated aerosol are omitted as they
show similar patterns. Note in particular that our training set
is four times bigger than our testing set since we have used
five-fold cross validation (see Sect. 2).

When applying HCA we investigated whether removal of
non-fluorescent particles and saturated particles gave bet-
ter performance. For the PSL data set the best results were
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Table 2. Classification, generator method and sample size of different samples from the laboratory data.

Material Generator method Classification No. of Particles

Bacillus atrophaeus spores (unwashed, in L-broth) Mini-nebuliser Bacteria 1831
Phosphate-buffered saline Nebuliser Non-fluorescent 1388
Puff ball spores Dry Fungal spores 2607
Poplar pollen Dry Pollen 469
Paper mulberry pollen Dry Pollen 1041
Aspen pollen Dry Pollen 466
Bacillus atrophaeus spores (washed, in distilled water) Mini-nebuliser Bacteria 1417
Escherichia coli MRE 162 (E. coli) cells (unwashed, in L-broth) Mini-nebuliser Bacteria 1991
Sodium chloride (fluka no. 71 376) 1% aqueous solution Mini-nebuliser Non-fluorescent 4502
Fuller’s earth dust Dry from mini-nebuliser Non-fluorescent 3238

Figure 7. Performance of the different methods in terms of particles
correctly classified for the mixed PSLs. The results on the left are
for the full data set and on the right are the results for the reduced
data set. Full names of each of the methods are given in Table 3.

achieved by using all the data in the HCA analysis (includ-
ing both saturated and non-fluorescent material), for the lab-
oratory data, it was beneficial to remove saturated and non-
fluorescent material before conducting HCA analysis. Pre-
filtering was not applied to the supervised methods as ex-
plained in the Sect. 2. Only the best results are listed in
Figs. 7 and 8; i.e. for the PSLs the results listed are from
when all the particles were included and for the laboratory
data the results obtained from the removal of non-fluorescent
and fluorescent material are listed.

With the inclusion of the 1024 shape measurements we
have a high-dimensional data set, without we have a rela-
tively low-dimensional data set (nine dimensions). To give
a good indication of the robustness of each algorithm to di-
mensionality as well as to ascertain whether the additional

Figure 8. Performance of the different methods in terms of particles
correctly classified and a breakdown of the errors for the laboratory-
generated aerosols. The results on the left are for the full data set and
on the right are the results for the reduced data set. Full names of
each of the methods are given in Table 3.

shape information yields any benefit, we provide results for
both the full data set (1024 shape measurements, 8 fluores-
cent measurements and 1 size measurement) and the reduced
data set (eight fluorescent measurements and one size mea-
surement).

In Fig. 5 we see that the dye-doped PSLs should be highly
separable by eye whereas in Fig. 6 it appears the laboratory
data would present more of a challenge to the different al-
gorithms. This is demonstrated also in our results where the
percentage of data correctly classified for the laboratory data
is in general much lower than that of the PSLs.

The exception to this is with HCA. For the full data the
algorithm performs relatively poorly for both the PSLs and
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Table 3. Key for the shortened names for the different methods given in the figures.

Key Method Subsection Key Method Subsection

SIN HCA (single linkage) 2.1 RF Random forest 2.2
COM HCA (complete linkage) 2.1 LDA Linear discriminant analysis 2.3
AVE HCA (average linkage) 2.1 QDA Quadratic discriminant analysis 2.3
WEI HCA (weighted linkage) 2.1 GNB Gaussian naïve Bayesian 2.3
WAR HCA (ward linkage) 2.1 KNN K Nearest-neighbour 2.4
CEN HCA (centroid linkage) 2.1 SVC Support vector classification 2.5
MED HCA (median linkage) 2.1 LSVC Linear support vector classification 2.5
DT Decision tree 2.2 NN1 Neural network – 1 Layer 2.6
GB Gradient boosting 2.2 NN2 Neural network – 2 Layers 2.7
ADA AdaBoost 2.2

Figure 9. Performance of the different methods in terms of the time
it takes for the method to train and test for the mixed PSLs.

the laboratory-generated aerosol. However, since we have
already placed the non-fluorescent material and saturated
material into groups on their own prior to analysis for the
laboratory-generated aerosol, we see better performance for
the laboratory data compared to the PSLs in this case. For the
reduced data, however, we can yield generally good perfor-
mance for the PSLs using the Ward linkage, but for the lab-
oratory data the performance is generally poorer compared
with the supervised methods regardless of whether the shape
information is included.

Should these methods be applied to real-time applications,
we would expect the testing data to contain much larger num-
ber of particles compared to the training data. For example,
we could collect between 104 and 105 particles of laboratory
data for training. However, over the space of several months
in an ambient contain we might collect 106 particles or more.
It is for this reason we conclude that methods such as the
ensemble methods and neural networks offer distinct advan-
tages over HCA. For HCA the time requirements increase
at a much faster rate than the number of particles (Müllner,

2011). In other words a doubling in the amount of data will
result in more than a doubling in the amount of time required.
A similar behaviour is true for the full support vector ma-
chines classifier.

The behaviour of the neural networks and the ensemble
methods is much more desirable. While the training times are
relatively large compared to other methods, once the model
is fitted the testing time requirements are under a second
for several thousand particles, which is much faster than the
maximum count rate of the instrument.

Some of the methods, in particular the cluster analysis and
the QDA perform poorer or equally as poor when the shape
information is included. This is a reflection of the methods’
ability to utilise high-dimensional data effectively rather on
the instrument itself. In the case of HCA we would suggest
that further research needs to be conducted in order to re-
duce the dimensionality of the data without losing informa-
tion from the shape channels before using this method for the
MBS. For QDA, the difficulty is in approximating the covari-
ance matrix when the number of samples is less or similar
to the number of dimensions. We would hence expect this
method to perform better as larger samples are collected.

Decision trees and ensemble methods appear to be rela-
tively robust to the introduction of the higher-dimensional
data. This is to be expected since most of the methods un-
dergo some kind of variable selection. Gradient boosting,
however, does seem to offer improvements on the AdaBoost
algorithm and random forests seem to improve on decision
trees as is suggested in the literature.

Overall the best performing method was LDA for the PSLs
and for laboratory-generated aerosols the gradient boost-
ing algorithm performed better. Note, however, that gradient
boosting only classified 0.23 % less of the data correctly than
LDA in the case of the PSLs data so overall our results indi-
cate that gradient boosting is the best performing algorithm.

A possible alternative to gradient boosting is the two-
layer neural network that performs nearly as well as gradient
boosting for the full data set. It may be possible to extend
the number of layers in order to yield further improvements
but we would suggest, due to the increased time requirements

Atmos. Meas. Tech., 10, 695–708, 2017 www.atmos-meas-tech.net/10/695/2017/



S. Ruske et al.: Evaluation of machine learning algorithms 705

with additional layers, that this should be done using a graph-
ics processing unit (GPU) which could offer significant gains
in the amount of time required to train the network. This is
a benefit over the gradient boosting algorithm, where it is far
less clear how the algorithm might be parallelised.

In contrast, neural networks are very difficult for the user
to tailor to achieve good performance. The results presented
are achieved after a lot of experimentation, especially in
terms of the learning rate. A learning rate that is too high
often will overshoot a minimum for the loss function and a
learning rate that is too low will fail to reach a minimum at
all. Overfitting, where the model fits very well for the train-
ing data but does not generalise well for the testing data, is
also an issue. Overfitting seems not to be a problem for the
gradient boosting algorithm, which also did not require any
parameter selection by the user.

5.2 Further analysis for the gradient boosting
algorithm

Due to the number of methods tested it is not practical to pro-
vide detailed information on all methods; instead we provide
additional analysis for the gradient boosting algorithm which
we found to offer, in general, better performance than the
other methods. In particular we provide a further breakdown
of the error term in Sect. 5.2.1. In Sect. 5.2.2 we split the lab-
oratory data into individual samples and repeat the analysis.
Finally in Sect. 5.2.3, we investigate the importance of the
variables and the implication of removal of lesser important
variables.

5.2.1 Breakdown of error

We can see in Figs. 7 and 8 that even for gradient boost-
ing we still have a significant error in the classification rate.
We therefore have elected to further break this error down
into the different classes in Table 4. What we can see is that
not only is a large proportion of the error due to fluorescent
material being misclassified as non-fluorescent but the fun-
gal spore sample is a particularly large source of error. How-
ever, amongst the material that was classified as fluorescent
misclassification between the fluorescent classes is relatively
small; e.g. only 67 fungal spores have been misclassified as
bacteria.

As further samples are collected, especially in the case of
fungal spores, we would hope these errors will start to de-
crease. However, an ongoing issue with the technique ap-
pears to be that a significant amount of particles within the
fluorescent samples are weakly fluorescent and hence are dif-
ficult to classify correctly.

5.2.2 Classification of individual species

Our analysis in Sect. 5.1 only considers the broad biological
classes: bacteria, fungal spores and pollen. In this subsection
we enhance this analysis to split the bacteria into the three

Table 4. Breakdown of error for the gradient boosting algorithm on
the full data set. For example, in the third row and first column we
can see 31 particles of the bacteria sampled were classified as fungal
spores.

Bacteria Fungal Pollen Non-
spores fluorescent

Bacteria 4637 67 66 174
Fungal spores 24 993 72 214
Pollen 31 58 1382 61
Non-fluorescent 547 1489 456 8679

individual samples (i) washed BG spores, (ii) unwashed BG
spores and (iii) unwashed E. coli. Similarly the pollen sam-
ples are also split up into (i) poplar pollen, (ii) aspen pollen
and (iii) paper mulberry.

From Table 5 we can see that in the case of the bacterial
samples we can effectively differentiate the washed sample
from the unwashed samples. Distinguishing between the E.
coli and the BG spores is also possible but with lesser suc-
cess. It is entirely possible to distinguish between the paper
mulberry and the other pollen samples but not between the
aspen and poplar pollen sample. This is to be expected as the
paper mulberry particles are significantly different from the
aspen and poplar pollen samples, but the differences between
the aspen and poplar pollen are very small.

Across all samples, excluding the particles which are in-
correctly classified as non-fluorescent, when particles are
misclassified they are most likely to be misclassified as a dif-
ferent sample from the same broad biological classes (bacte-
ria, fungal spores and pollen). For example for the BG spores
(w) sample, excluding the material that is misclassified as
non-fluorescent, the largest misclassification is from particles
being misclassified as E. coli (uw), which is still bacteria.

5.2.3 Variable importance

Since the instrument presented offers more information than
the WIBS for example, it seems necessary to evaluate which
of the variables presented offers the most information and
how much of an impact removing lesser important variables
has, on both time and the percentage of particles correctly
classified.

It is possible to evaluate the performance of variables us-
ing the ensemble methods, e.g. gradient boosting. This is be-
cause each of the decision trees that come together to form
the ensemble identifies which variables are best to split dur-
ing the training stage. It is therefore possible to find out how
often each of the variables are used to produce a split and this
will give an indication of how important each of the variables
are.

To determine which variables are most important for dis-
tinguishing between the different types of broad bio-type
classes, we remove each of the fluorescent classes one by one
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Table 5. Further breakdown of error for the gradient boosting algorithm on the full data set. The abbreviations (w) and (uw) are used for
washed and unwashed samples respectively.

BG spores BG spores E. coli Puffballs Paper Aspen Poplar Non-
(w) (uw) (uw) mulberry pollen pollen fluorescent

BG spores (w) 1127 12 71 5 0 4 2 39
BG spores (uw) 4 1373 197 19 6 9 16 27
E. coli (uw) 79 227 1385 20 6 8 15 41
Puffballs 3 16 13 1082 10 35 62 254
Paper mulberry 0 5 3 15 998 2 2 11
Aspen pollen 2 7 3 13 2 109 65 22
Poplar pollen 1 8 2 23 1 50 68 20
Non-fluorescent 201 183 317 1430 18 249 239 8714

and train the algorithm on the subset of the data and record
the importance of each of the variables. In Fig. 10 we show
the importance of the variables for the full data, bacteria vs.
fungal spores (pollen removed), bacteria vs. pollen (fungal
spores removed) and finally fungal spores vs. pollen (bacte-
ria removed). The top three most important variables always
contained a selection of four different variables, so we pro-
vide the importance for these four variables in Fig. 10.

Finally, we remove all but the top 512, 256, 128, . . . , 2
variables and repeat the analysis. The total time required and
the percentage of particles classified correctly are given in
Fig. 11.

What we can see from our analysis is that for the data set
with none of the broad biological classes (bacteria, pollen
and fungal spores) removed the most important variable is
the Size followed by the third fluorescent channel. For the
remaining subsets of the data tested the most important vari-
ables are a fluorescent variable followed by the size. From
Fig. 11, however, we can see that four variables alone, while
the most important, are not sufficient to maintain the results
possible with the full data set. Instead, reduction in the num-
ber of variables does necessarily lead to a reduction in per-
formance in someway. Nonetheless the decrease from 1024
variables to 128 produces a very small decrease in perfor-
mance and hence a smaller shape detector may be sufficient.

6 Conclusions

Ultraviolet light-induced fluorescence (UV-LIF) is becoming
a widely used and accepted method for collecting fluores-
cent signatures for bioaerosols. However, the applicability of
the method has yet to be demonstrated for routine real-time
monitoring and reporting applications for airborne biological
particles. In this paper we have combined the well-developed
and researched field of machine learning with the applica-
tion of identifying atmospheric aerosol. We have demon-
strated that previously used unsupervised methods may not
be best at discriminating between aerosol using single parti-
cle broadband UV-LIF spectrometers and using the MBS we

Figure 10. Variable importance for the different subsets of the data.

Figure 11. Variable importance for the different subsets of the data.

have identified the gradient boosting classifier as a possible
supervised alternative.

We have tested a variety of different methods that
could be used for discriminating between different types
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of bioaerosol. Cluster analysis, while working well for
the reduced data set for PSLs, seems to struggle for the
laboratory-generated aerosol and when applied to the higher-
dimensional data set, so we suggest that more research for
this method is required before it could be reasonably used
on ambient data collected using the MBS. For the Gaussian
methods it seems that the methods work reasonably well for
the PSLs, but we believe there are better alternatives when
discriminating between atmospheric aerosol.

For the k-nearest neighbours method we believe that a lim-
iting factor is in the time it takes for the method to classify
the testing data. Similarly, while the full support vector ma-
chine performs very well, the time requirements would be
inappropriate when larger samples are collected. Conversely,
while the linear version of the support vector machine per-
forms much faster, it is at the cost of performance, so we sug-
gest that support vector machines not be used for this task.

Overall, the method we suggest for classification of at-
mospheric aerosol is the gradient boosting algorithm which
produces the best results with limited user input but has the
drawback that it cannot easily be parallelised. Another possi-
ble alternative in the future, once more research is conduced,
is the neural network, which can be easily ported to a GPU
for substantial speedup in training but requires a much larger
input for the user and produces slightly worse results com-
pared to the gradient boosting algorithm.

From our further analysis of the gradient boosting algo-
rithm we also see that a disadvantage for the data we have
collected is in the sample of fungal spores, which is often
misclassified as non-fluorescent since a good proportion of
the particles is weakly fluorescent. We believe this issue can
be circumvented with collection of a wider range of fungal
spore samples in the future. Also, we see that for the MBS
we have reasonable success in discriminating between single
bacterial samples.

Finally we realise that performance can be maintained
while removing a reasonable number of the lesser important
variables, leading us to conclude that a smaller shape detec-
tor may be sufficient.

Since these supervised learning algorithms have yet to be
applied to the data produced using the WIBS it is not cur-
rently possible to draw any clear conclusions as to the per-
formance of the MBS versus the WIBS. Instead the authors
suggest that to provide direct comparison, further research
needs to be undertaken whereby both instruments are used
for identical samples.

7 Data availability

The data used to formulate the results in the pa-
per can be provided upon request by contacting the
first author, using the correspondence e-mail address (si-
mon.ruske@postgrad.manchester.ac.uk).
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