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ABSTRACT

Aims. It is commonly assumed that the two indirect exoplanet detection methods, the radial velocity method and astrometric method,
require observational periods exceeding the orbital period to produce positive results. Here we test this assumption in detail. We also
investigate the smallest ratio of observational timeline and orbital period required for positive detections.
Methods. We obtain full information on the orbital parameters by combining radial-velocity and astrometric measurements by means
of Bayesian inference, and sample the parameter probability densities of orbital and other model parameters with a Markov Chain
Monte Carlo (MCMC) method in simulated observational scenarios to test the detectability of planets with orbital periods longer than
the observational timelines.
Results. We show that, when fitting model parameters simultaneously to measurements from both sources, it is possible to extract
much more information from the measurements than when using either source alone. Currently available high-precision measurements
of radial velocity (with 1 m s−1 precision) and astrometric measurements achievable with the SIM space telescope (with a precision
of 1 μas) can be used together to detect a Jupiter analog 30 pc away with an observational timeline of only three years, approximately
one fourth of the orbital period. Such measurements are sufficient for determining all its orbital parameters, including inclination and
the true mass. Also, with accurate radial velocity measurements covering a timeline of 20 years, the true mass could be determined by
astrometric observations within a single year. These case studies demonstrate the potential power of the Bayesian inference of multiple
data sources in exoplanet observations. As an example, we show that using the currently available radial velocity measurements, the
inclination of HD 154345b could be determined with SIM in a year.
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1. Introduction

Since the discovery of 51 Peg b (Mayor & Queloz 1995), high-
precision radial velocity (RV) measurements have been used
successfully to detect planetary companions of nearby stars
(Butler et al. 2006). The finest instruments to date are capable
of achieving an RV precision of 1 m s−1 (Santos et al. 2004;
Moorwood & Masanori 2004). However, the exact nature of the
companions remains unknown when only RV measurements are
available, as these only yield the product of mass and sine of the
orbital inclination, giving the lower limit for the mass. Recently,
it has been claimed that an RV precision of 1 cm s−1 could be
technically possible in the future (Li et al. 2008). However, the
RV variations of stars of approximately 5 m s−1 to 50 m s−1 for
K to F stars, caused by star spots and irregular convective zones,
will likely prevent the detection of signals of the cm scale (Saar
& Donahue 1997; Saar et al. 1998).

Astrometric (A) measurements of the position of the target
star in the sky as a function of time can be used to detect the
inclination, and consequently the true mass of the companion.
But despite several trials (van de Kamp 1969; Neuhaeuser et al.
2008), the precision of these measurements has not been high
enough to verify the planetary nature of RV companions.

With the aid of telescopes and instruments capable of high-
precision astrometry (SIM, GAIA, PRIMA, etc.); however, this
situation is about to change. With an estimated astrometric pre-
cision of future telescopes of 1.0 μas (Unwin et al. 2008) or
8–10 μas (Casertano et al. 2008; Derie et al. 2002), it will be pos-
sible to determine the masses of the already detected RV com-
panions. It is commonly assumed that these detections require
observational periods longer than the orbital period of the target
system to be able to detect the periodic signal. Here we test this
assumption in detail.

In this article we simulate astrometric and RV measure-
ments to study the possibility of detecting planetary compan-
ions of nearby stars with various observational timelines. The
goal is to find the minimum timeline required for detecting
a planetary companion using high-precision RV and astromet-
ric measurements. These two sources of data are combined by
means of Bayesian inference, and the probability densities of or-
bital and inertial reference frame parameters are sampled using
Markov Chain Monte Carlo (MCMC) (Metropolis et al. 1953;
Hastings 1970) to find the full global solution to this multi-
data inverse problem (see Ford 2005, 2006; Maness et al. 2007).
Also, the probability densities are sampled to calculate the real-
istic error bars for parameters and to determine whether a pos-
itive detection has been made or not. We also analyse the RV
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measurements of HD 154345 (Wright et al. 2008) alone and to-
gether with simulated astrometric measurements to estimate the
minimum observational timeline of astrometry for the detection
of the true mass of HD 154345 b.

2. Modelling the data

The motion of a planet around a star was treated as a simple two-
body system, with masses m� and mp for the star and the plan-
etary companion, respectively. In Cartesian coordinates, when
the gravitational forces between the possible other planets in the
system are assumed negligible, the column position vector of the
star with respect to the barycentre of the system can be expressed
as a function of time (t) as (e.g. Green 1985)

R(t) = R(0) + Ṙ(0)t + P[cos E(t) − e]
+Q
√

1 − e2 sin E(t),
(1)

where E is the eccentric anomaly, satisfying the Kepler equation
E − e sin E = 2πn(t − t0), and n = P−1 is the orbital frequency,
P the orbital period and t0 the time of periastron. The velocity
and position Ṙ(0) and R(0) w.r.t. the observer are some constant
vectors defining the inertial reference frame. Vectors P and Q
are constant vectors, defined as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P = a�(l cosω + k sinω)
Q = a�(−l sinω + k cosω)
l = (sinΩ, cosΩ, 0)
k = (I cosΩ,−I sinΩ, sin i).

(2)

The parameters a�, e, Ω, I = cos i, and ω are the orbital pa-
rameters of the system: semimajor axis of the star, eccentricity,
longitude of ascending node, cosine of the inclination and the
longitude of pericentre, respectively. The semimajor axis of the
star can be expressed as a function of the masses of the gravita-
tionally interacting bodies,

a� = mpG1/3(n[m� + mp])−2/3. (3)

The models for astrometric and RV data are now simply Θ(t) =
[Θx(t),Θy(t)] = D−1[Rx(t),Ry(t)] for astrometry and ż(t) =
∂tRz(t) for RV. Here D is the distance of the system from the
observer. There are now 12 independent parameters describing
the system. The parameter vector u of parameter space U can be
written as u = (λx, λy, μx, μy, γ, a�, ω, I,Ω, e, t0, n) ∈ U, where
λx = D−1Ṙx(0), λy = D−1Ṙy(0), μx = D−1Rx(0), μy = D−1Ry(0)
and γ = Ṙz(0). To fully describe the system, the masses mp and
m� should be treated as independent unknown parameters, and
the distance D should also be included in vector u. Here we as-
sume that m� and D are known with sufficient accuracy by some
astrophysical techniques.

It is essential to include the parameters defining the inertial
reference frame to be able to fully investigate the probability
densities of the parameters. It is also assumed that the model
parameters do not change as a function of time during the obser-
vational timeline.

It is intuitively clear that the availability of both RV and
A data sets, instead of only one of them, should increase the
amount and the quality of information on the observed system.
This should be true even if one of the data sets is significantly
more inaccurate than the other. In what follows, we state this
principle more rigorously and present a practical method for
combining the two data sources. In fact, since RV and A data
are radial and tangential projection samples of orbital motion,
they are separate sources only in the instrumental sense, so we
could just as easily talk about full velocity data.

3. Simulations and fitting procedure

We simulated data sets to study the complementarity of astro-
metric and RV time series. Assuming that the errors εi for each
data point i = 1, ...,N are independent and identically distributed
and that their probability density functions (PDF’s) are Gaussian
(εi ∼ N(0, σ2

i )), the observed RV data are modelled as

żi = ż(u, ti) + εi. (4)

Equally, the two-dimensional astrometric model can be writ-
ten as

Θi = Θ(u, ti) + ε i. (5)

To avoid inversion crimes, i.e. to avoid using exactly the same
model to generate the measurements and to find the inverse so-
lution (see e.g. Kaipio & Somersalo 2005), an additional planet
of low mass was included in the model when generating the data.
This choice was made because small systematic errors make the
simulated measurements more realistic. Otherwise the simulated
measurements and the corresponding solutions would only help
for studying the model in Eq. (1), not necessarily situations en-
countered in reality.

Several data sets were generated, each with a different value
for the data parameter T , representing the length of the observa-
tional timeline. It was further assumed that the observation time
ti was evenly distributed in T .

When simulating the measurements, the timelines were set
to TA = TRV = 20.0, 10.0, 5.0, 3.0, 1.5, 1.2, 1.0 and 0.8 years.
The values of all the other data and orbital parameters and
masses were fixed in all these scenarios. These values were
set to (σRV, σA,NRV,NA) = (1.0 m/s, 1.0 μas, 100, 100) and
(a, e, ω, i,Ω, t0,mp,m�,D) = (5.0 AU, 0.1, 1.0, 1.0, 1.0, 1000.0d,
MJ, M�, 30 pc), where MJ is the mass of Jupiter. This simulated
system is called S1.

3.1. What is a positive detection?

In the simplest possible case, when e = 0 and i = π/2, the de-
tection threshold of full velocity data can be calculated analyt-
ically. Let N be the number of data points, T the length of the
timeline of observations, and σ the standard deviation of obser-
vations. Following the approach in Eisner & Kulkarni (2001a, b),
the detected signal of the velocity variation amplitude is a false
one produced by the uncertainties in the data with a probabil-
ity <1% if

a2
� > 4.61

⎡⎢⎢⎢⎢⎢⎣
( NRV

2σ2
c,RV

+
NA

2σ2
c,A

)−1

+

( NRV

2σ2
s,RV

+
NA

2σ2
s,A

)−1
⎤⎥⎥⎥⎥⎥⎦ (6)

where

σc,RV =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PσRV , TRV

P ≥ 1

2PσRV

[
1 − cos

(
πTRV

P

)]−1
, TRV

P < 1
(7)

σc,A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
DσA , TA

P ≥ 1

2DσA

[
1 − cos

(
πTA

P

)]−1
, TA

P < 1
(8)

σs,RV =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PσRV , TRV

P ≥ 1
2

PσRV

[
sin
(
πTRV

P

)]−1
, TRV

P <
1
2

(9)
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σs,A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
DσA , TA

P ≥ 2

2πDσA

[
πTA

P − sin
(
πTA

P

)]−1
, TA

P < 2
(10)

and σA is in radians. This approach excludes the uncertainties
in the orbital period and can therefore only yield the lower limit
for the detection threshold. Hence, if Eq. (6) does not hold, it
will be impossible to detect the signal. However, if it holds, the
detectability of such a companion needs to be examined more
closely by numerical simulations and by analysing the simulated
data using methods such as MCMC and Bayesian model selec-
tion criterion.

To fully investigate the ability to detect planetary compan-
ions, we must define when a positive detection has been made.
This question can be approached through Bayesian probabilities.
Let R1 be the model in Eq. (1) with one planetary companion
(corresponding 12 parameters in the RV and astrometry models),
and R0 a model without a planetary companion (5 parameters).
In general, let Rk be a model with k planets.

Using the Bayes theorem, it can be seen that the conditional
probability of model Rk representing the data (m) best, out of the
p + 1 alternatives to be tested, can be written as

P(Rk |m) = P(Rk)

⎡⎢⎢⎢⎢⎢⎣
p∑

j=0

Bk, j(m)P(R j)

⎤⎥⎥⎥⎥⎥⎦
−1

, (11)

where the Bayes factor Bk, j is defined as (e.g. Kass &
Raftery 1995)

Bk, j(m) =
P(m|Rk)
P(m|R j)

, (12)

and P(Rk) is the prior probability of the kth model, here set equal
for all k, because it is assumed that there is no prior information
available. Here the likelihood P(m|Rk), with parameters uk ∈ Uk
for the kth model, is

P(m|Rk) =
∫

uk∈Uk

p(m|uk, Rk)p(uk |Rk)du j, (13)

where p(m|uk, Rk) is the parameter likelihood function and
p(uk |Rk) the prior density.

Since the model probability, defined in this way, automati-
cally takes the Occamian principle of parsimony into account,
the model with the smallest number of parameters out of those
having almost equal probabilities will be selected. Hence, it can
be said that a detection has been made if (Jeffreys 1961)

P(R1|m)� P(R0|m). (14)

This criterion is used throughout this article when deciding
whether a statistically significant detection has been made or not.

3.2. Fitting method

The fitting was performed by requiring that the values of all the
least-squares cost-functions S x (astrometric x), S y (astrometric
y), S RV (RV), and their sum be minimized simultaneously. This
method, called multidata inversion, has been used successfully
with astrometric and RV measurements when detecting stellar
binaries (e.g. Torres 2007). See the discussion in Kaasalainen &
Lamberg (2006), where the multidata inversion was applied to
asteroid observations.

The models for astrometric position and RV of the two-body
system of interest are non-linear, so an iterative method of fitting

the model parameters is needed. The MCMC with Metropolis-
Hastings (M-H) algorithm was chosen because it is a global
method (Metropolis et al. 1953; Hastings 1970), it offers a di-
rect estimate of the posterior probability density, and because it
can be used to verify the existence and uniqueness of the so-
lution. Since the probability densities given the measurements
are available, MCMC can be used to calculate realistical error
estimates for the model parameters. These estimates are typi-
cally much larger than those calculated using traditional meth-
ods (e.g. Ford 2006), implying that MCMC should be preferred
when assessing the parameter errors. Assuming Gaussian errors
with zero mean, the likelihood function of the parameters with
respect to RV measurements can be written as

p( ż|u) ∝ exp(−0.5S RV). (15)

When applying MCMC, a parameter value (u0) is selected for
the first member of the chain. The next value uk+1 is found by
randomly selecting a proposal in the vicinity of uk. This is then
accepted by comparing the likelihoods of the two parameter val-
ues. Proposed parameter values uk+1 ăwith a greater likelihood
than that of uk are always selected as the next chain member,
but values with a smaller likelihood can also be selected ac-
cording to the criterion of Hastings (1970). Samples of at least
105 points were generated when sampling the parameter space.
For practical details on MCMC with astronomical data, see e.g.
Gregory (2005).

The parameter space U in this Keplerian two-body model
has a comparatively small dimension (dim U = 12), but in some
cases it already makes the sampling computationally expensive.
Especially when covariances between the parameters are large
and of non-linear nature, the space of reasonable probability
UR ⊂ U to be sampled can be very narrow and, as a result,
the next proposed value of parameter vector u in the Markov
chain is likely to be outside this subspace and thus rejected, con-
siderably increasing the time needed to generate a statistically
representative chain. For this reason, when using a multivariate
Gaussian density as a proposal, the acceptance rates were low,
approximately 0.1 in the MCMC samplings.

4. Taking advantage of Bayesian inference

With more than one source of measurements available, it is pos-
sible to get more information from the system of interest than
when relying on any single observation method alone. This is a
consequence of Bayesian inference.

Denoting the astrometric measurements by Θo and the RV
measurements by żo, the conditional probability of having pa-
rameter vector u ∈ U, is a product of the impacts the two sets of
measurements have on this hypothesis:

p(u| żo,Θo) =
p( żo|u)
p( żo)

p(Θo|u)
p(Θo)

p(u). (16)

Thus, there is always more information available on the system
– either in a narrower parameter density or in the possibility of
including more parameters in the model – when using multiple
data sources. This is due to complementary rather than just ad-
ditional information: the separate probability densities for com-
plementary sources are quite different from each other, so their
product (joint probability) is much more tightly bound than ei-
ther factor alone.

Equation (16) is in fact just another way of stating that we
simply minimized the sum S = S x + S y + S RV, as can be seen
by applying Eq. (15), while checking that each S i was still close



772 M. Tuomi et al.: Astrometric snapshots

to their minima. However, when calculating model probabilities
and parameter densities, the formulation in Eq. (16) has to be
used.

4.1. Correlations and complementarity

By having measurements made using two different observational
techniques has an effect on the parameter PDF’s. This happens
because the two measurements are modelled using a different
model with differing parameters for the inertial reference frame.
Therefore, it is expected that the two measurements contain
complementary information on different aspects of the system.

Generally, correlations between model parameters occur if,
for some small displacement of the parameter vector, δu, the
model R used to describe the system satisfies

R(u) − R(u + δu) ≈ 0. (17)

Now the parameter PDF’s are broadened or correlated until
Eq. (17) no longer holds.

In a stellar system with a single planetary companion, the
most obvious possible coupling, a positive correlation between t0
and ω, is a natural byproduct of the two-body Keplerian model.
When assuming e ≈ 0 and using Eq. (2), Eq. (1) becomes

R(t) ≈ m[l cos(ω + nt − nt0)
+k sin(ω + nt − nt0)] + Ṙ(0)t + R(0). (18)

Setting R(ω, t0) − R(ω + δω, t0 + δt0) = 0 implies δω = nδt0,
resulting in a positive linear correlation between parameters ω
and t0.

If it is also assumed that the observational timeline is much
shorter than the orbital period, T � P, more correlations take
place in this long-period system. As ti ∈ [−T/2, T/2] for all
i = 1, ...,N, when T/P → 0, each ti/P → 0 as well. Thus, this
assumption justifies cos(nt) ≈ 1 and sin(nt) ≈ nt and Eqs. (4)
and (5) become
{
Θ(t) ≈ D−1M

(
Pφ + Qφnt

)
+ λt + μ

ż ≈ Qφ,z − Pφ,znt + γ
(19)

where Pφ and Qφ are just the functions presented in Eq. (2) with
the angle ω + nt0 replaced with φ, and matrix M = M3×2 =
diag(1, 1).

Clearly, Eq. (17) holds if δPφ = −δμ and nδQφ + Qφδn =
−δλ. This means that it is possible to change the values of the
components of vector Pφ by any amount and a correspond-
ing negative change in the components of vector μ cancels this
change exactly. As a result, the components of these vectors can
correlate negatively. Also, the components of Qφ can correlate
similarly with the components of λ. For RV, Qφ,z can correlate
with γ, but the product Pφ,zn has no corresponding parameter
to correlate with. These are just the correlations described by
Eisner & Kulkarni (2001a,b, 2002).

From Eq. (19) it is also clear that the orbital frequency can
correlate with Pφ,z and Qφ making the detection of planetary sig-
nal harder and broadening the densities of the corresponding pa-
rameters.

Despite the existence of and due to the partially comple-
mentary nature of these correlations, it is possible to detect
the periodic signal of a long-period planetary companion in the
Bayesian model selection sense. The equiprobability contours
of parameter combinations (n, a�) and (I,Ω) with the simulated
system S1 are shown in Fig. 1 for TA = TRV = 3.0 years,
which is approximately one fourth of the orbital period. The

Fig. 1. Equiprobability contours containing 99%, 95%, 90%, and 50%
of parameter PDF’s showing the densities of and correlations between
parameters a� and n and parameters I and Ω. The simulated system
has a long-period planet with TA/P = TRV/P ≈ 1/4 (TRV = TA =
3.0 years).

Bayesian model probabilities were found to satisfy the condi-
tion of Eq. (14), and the contours in Fig. 1 demonstrate that it is
indeed possible to detect extrasolar planetary companions even
if the observational timeline is shorter than the orbital period.
Also, since clearly I < 1, the planetary nature of these compan-
ions can be verified in this scenario.

When using the two data sources, the planetary signal could
not be detected for TA = TRV < 3.0 years. For astrometric or RV
measurements alone, this signal was found to be undetectable
for TA = TRV < 10.0 years, which clearly demonstrates the ad-
vantages of the Bayesian inference of multiple datasets.

4.2. Astrometric snapshots and detection thresholds

Astrometric observations with the property TA < P < TRV
are called astrometric snapshots. This definition is made be-
cause the astrometric observations are now made in a fraction
of the time interval of the RV observations incapable of separat-
ing m and sin i. We modified the simulated system S1 by fixing
TRV = 20.0 years and denoting this by S2.

Using Bayesian inference between RV and astrometric mea-
surements made it possible to fit all the parameters in the model,
including I andΩ, to the measurements, even when the signal of
the planetary companion could not be detected using astrometric
observations alone. For the simulated system S2, the condition in
Eq. (14) was satisfied for values of TA as low as 1.0 years, which
is less than one tenth of the orbital period. The corresponding
densities of I and Ω in this scenario are shown in Fig. 2. It can
be seen that the maximum a posteriori estimates of these densi-
ties are very close to the values selected for the simulated system.
This implies that the true mass of the stellar companion is obtain-
able. Also, the density of I shows that certainly I < 1, implying
that a companion of planetary mass has indeed been detected as
claimed. The simulated RV and astrometric measurements and
the maximum a posteriori orbit are shown in Fig. 3 for this snap-
shot scenario.

The reason the parameters I and Ω can be fitted is that the
parameters in the RV model are now well-constrained by the RV
measurements. The only possibility for Eq. (17) to be true is
that a�n sin i, the amplitude of RV variations, remains unaltered
even if a� and i do not. This implies that a� ∝ (1 − I2)−1/2,
which is the correlation observed in the parameter densities of
a� and I (Fig. 4). Because of this correlation, the reference frame
parameters of astrometry can correlate freely with a�. This is
also demonstrated in Fig. 4.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810288&pdf_id=1
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Fig. 2. PDF’s of parameters I andΩ in a snapshot scenario with TA/P ≈
1/11 (TA = 1.0 years). The mode, mean (μ), standard deviation (σ),
skewness (μ3), and kurtosis (μ4) of the densities are shown. The solid
curve is a Gaussian function N(μ, σ2).

Fig. 3. Simulated RV and astrometric measurements and the maximum
a posteriori orbit.

Fig. 4. Equiprobability contours containing 99%, 95%, 90%, and 50%
of parameter probability densities. The correlations between a� and I
and of a� and λx in a snapshot scenario with TA/P ≈ 1/11 (TA =
1.0 years).

5. Case study: HD 154345b

Recently, Wright et al. (2008, hereafter W08) reported a de-
tection of a Jupiter analog orbiting a G8 dwarf HD 154345.
They claim that astrometric measurements over its 9-year pe-
riod would determine the orientation of the orbital plane and
as a consequence the true mass. The data published in W08
was re-examined and the orbital solution found using MCMC.
These data have 55 measurements over a period of 10.4 years.
The largest gap between two subsequent observations within
these measurements is 352 days. The orbital parameters were
calculated assuming the same jitter level as in W08, 2.5 m s−1,
and are listed in Table 1. This table shows the MAP estimates
of the parameters and their 99% confidence sets (CS). Missing
confidence sets indicate that the posterior density of the cor-
responding parameter has significant values everywhere in its
parameter space. The results of Wright et al. (2008) with 99%
confidence limits are shown for comparison. The corresponding
fit is shown in Fig. 5. The large uncertainties of parameters ω
and t0 (their 99% Bayesian confidence sets are equal to their pa-
rameter spaces) stem from these parameters being meaningless
for circular orbits.

Regardless of the fact that in W08 the RV movement of
the host star had been subtracted from the data, the constant

Fig. 5. RV measurements of HD 154345 and the maximum a posteriori
orbit of the planetary companion.

Table 1. The solution and error estimates of the HD 154345 system.

Parameter MAP 99% CS Wright et al.
P [years] 9.06 [8.56, 9.72] 9.15 ± 0.67
e 0.02 [0.00, 0.17] 0.044 ± 0.118
ω [◦] 90 – 68
t0[JD] 245 000 – 2 452 830 ± 850
mp sin i [MJup] 0.95 [0.80, 1.10] 0.947 ± 0.232
a [AU] 4.16 [4.01, 4.37] 4.19 ± 0.67
γ [m s−1] 0.01 [–1.42, 1.42] 0

movement parameter γ was fitted as well to be able to take its
uncertainty and its effect on the orbital parameters into account.
The orbital parameters were found consistent with but their con-
fidence intervals smaller than those reported in W08. This dif-
ference in the confidence intervals takes place likely because
the Bootstrap method was used to assess the parameter errors
in W08 instead of direct sampling of the posterior density.

Astrometric measurements with σA = 1 μas, NA = 100, and
TA = 10.0, 5.0, 3.0, 2.0, 1.5, 1.2, 1.0, and 0.8 years were gen-
erated to study the detectability of parameters I and Ω. These
measurements were generated assuming that there is a plane-
tary companion with orbital parameters in Table 1, and (I,Ω) =
(0.0, 1.0 rad). This simulated data was used together with the
real RV measurements published in W08 to find the limiting TA
for which the true mass of the planet could still be measured
with the SIM telescope. The selection I = 0 was made because
changing this value would result in a higher planetary mass and
hence in a stronger astrometric signal, making the detection of
orbital plane parameters even easier. Regardless of large error
bars, we found that it is possible to detect the orbital plane pa-
rameters with TA = 1.0 years. With this short timeline, the 99%
error bars of the parameters were [–0.30, 0.22] and [0.39, 1.54]
for I and Ω, respectively, demonstrating that it was indeed pos-
sible to determine their values.

6. Conclusions and discussion

The time needed to make a positive detection of an extrasolar
planetary conpanion candidate depends essentially on its orbital
period. It is commonly assumed that, to be able to detect the sig-
nature of such companion, an observational timeline longer than
the orbital period is required. Also, since most of the exoplanet
candidates have been detected using the RV method, only the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810288&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810288&pdf_id=3
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lower limit of their mass is available. With the aid of future
space telescopes and accurate astrometric measurements, it will
be possible to detect the inclination and thus the true mass of
planetary candidates.

We have shown that when high-precision RV and accurate
astrometric measurements are both available, it is possible to
detect the true mass of stellar companions with observational
timelines considerably shorter than their orbital periods. Also,
when the RV measurements have a long time span, astrometric
measurements can reveal the true mass of a stellar companion in
less time than one tenth of the orbital period of the system. This
ability is also demonstrated using the RV measurements of HD
154345 as an example. We find that, having these measurements
with TRV = 10.4 years in hand, astrometric observations with
SIM telescope are sufficient for obtaining the true mass, within
a single year.

Bayesian inference plays an important role when extracting
information from several sources of measurements. The ability
to use RV and astrometric measurements simultaneously makes
it possible to employ observational timelines below the orbital
ones and still be able to make positive exoplanet detections, thus
helping to extract the maximum amount of information from
measurements and increasing the time efficiency of observa-
tions.

In a forthcoming study, we plan to study the inclusion of ad-
ditional transit-photometry measurements to further tighten the
parameter probability densities in transiting scenarios. Also, the
approach used here should be extended to systems with two or
more planetary companions.
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