Myers, S. M. et al. (2016) High-throughput screening and hit validation of extracellular-related kinase 5 (ERK5) inhibitors. ACS Combinatorial
Science, 18(8), pp. 444-455. (doi:10.1021/acscombsci.5b00155)

This is the author's final accepted version.
There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.
http://eprints.gla.ac.uk/139945/

Deposited on: 31 August 2017

Enlighten - Research publications by members of the University of Glasgow http://eprints.gla.ac.uk33640

High-throughput screening and hit validation of extracellularrelated kinase 5 (ERK5) inhibitors.

Stephanie M. Myers ${ }^{1}$, Ruth H. Bawn ${ }^{1}$, Louise C. Bisset ${ }^{3}$, Timothy J. Blackburn ${ }^{1}$, Betty Cottyn ${ }^{1}$, Lauren Molyneux ${ }^{1}$, Ai-Ching Wong ${ }^{4}$, Celine Cano ${ }^{1}$, William Clegg ${ }^{2}$, Ross. W. Harrington ${ }^{2}$, Hing Leung ${ }^{5}$, Laurent Rigoreau ${ }^{4}$, Sandrine Vidot, ${ }^{1}$ Bernard T. Golding ${ }^{1}$, Roger J. Griffin ${ }^{1}$, Tim Hammonds ${ }^{4}$, David R. Newell ${ }^{3}$, Ian R. Hardcastle ${ }^{1 *}$
${ }^{1}$ Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
${ }^{2}$ School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
${ }^{3}$ Newcastle Cancer Centre, Northern Institute for Cancer Research, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
${ }^{4}$ Cancer Research Technology Ltd, Discovery Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building , Gower Street, London, WC1E 6BT, UK
${ }^{5}$ The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK

Abstract

The extracellular-related kinase 5 (ERK5) is a promising target for cancer therapy. A high-throughput screen was developed for ERK5, based on the IMAP FP Progressive Binding System, and used to identify hits from a library of 57,617 compounds. Four distinct chemical series were evident within the screening hits. Resynthesis and re-assay of the hits demonstrated that one series did not return active compounds, whereas three series returned active hits. Structure-activity studies demonstrated that the 4-benzoylpyrrole-2-carboxamide pharmacophore had excellent potential for further development. The minimum kinase binding pharmacophore was identified, and key examples demonstrated good selectivity for ERK5 over p38 α kinase.

INTRODUCTION

The extracellular-related kinase 5 (ERK5), also known as Big Map Kinase (BMK1), is a 816 amino acid protein kinase that forms part of a non-canonical MAP kinase pathway in cells. ${ }^{1}$ Extracellular stimulation, in the form of growth factors, such as epidermal growth factor (EGF), nerve growth factor (NGF), vascular endothelium growth factor (VEGF), and fibroblast growth factor-2 (FGF-2), initiates a signalling cascade from the cell surface to nuclear transcription factors via ERK5. ${ }^{2}$ Unlike the linear canonical Ras/Raf/MEK/ERK pathway, the ERK5 signalling cascade occurs independently of Raf. ${ }^{3}$ ERK5 is activated specifically by MEK5, which is in turn activated by MEKK2/3. ${ }^{\text {1a, } 4}$

ERK5 is structurally different from the other members of the ERK sub-families. A unique loop-12 structure and extended C-terminal domain (~ 400 amino acids) gives ERK5 its characteristic structure. ${ }^{2,4}$ The C-terminal extension harbours nuclear localisation and export sequences, two proline-rich domains, a transcriptional activating domain, and MEF2 interacting region. The large C-terminal unique to ERK5 is auto-phosphorylated at multiple sites, resulting in an increase in transcriptional activity. ${ }^{5}$

Phosphorylation of ERK5 results in activation of a number of transcription factors including MEF2, c-Myc, c-Jun, cFos, Fra-1, and NFKB. ${ }^{6}$ ERK5 also phosphorylates and activates p90 RSK, also involved in signal transduction. ${ }^{7}$ An increasing body of mechanistic data indicates that ERK5 plays a key role in tumor biology, i.e. cell proliferation and survival, invasion and metastasis, and angiogenesis. ${ }^{8}$

Expression of ERK5 is significantly up-regulated in advanced prostate cancer and has been identified as an independent prognostic biomarker for aggressive disease. ${ }^{9}$ ERK5 is over-expressed in 20% of breast cancer patients and its expression is an independent prognostic biomarker for reduced disease-free survival. ${ }^{10}$ In hepatocellular carcinoma (HCC), ERK5 overexpression has been reported, associated with gene amplification at the 17p11 chromosome fragment, harboring the MAPK7 gene. ${ }^{11}$ High levels of ERK5 were found to correlate with more aggressive and metastatic stages in fresh samples from human clear cell renal cell carcinoma. ${ }^{12}$

To date, three small-molecule inhibitors of the MEK5/ERK5 pathway have been described. The indolinone based inhibitors, BIX02188 (1a) and BIXO2189 (1b), are dual inhibitors of the MEK5/ERK5 cascade. Both compounds inhibit MEK5 with nanomolar potency, whereas modest activity was reported for ERK5. ${ }^{13}$ Benzo[e]pyrimido-[5,4-
b]diazepine-6(11H)-one (XMD8-92, 2) is a potent ERK5 inhibitor which exhibits anti-proliferative and anti-angiogenic effects on HeLa cells in mouse xenograft models. ${ }^{14}$ An X-ray crystal structure of $\mathbf{2}$ bound to ERK5 shows the inhibitor bound to the Met140 in the kinase hinge via a pair of hydrogen bonds from the aniline and pyrimidine nitrogens, and an additional water-bridged hydrogen bond from the diazepinone carbonyl to Asp200 and Glu102 in the DFG loop. ${ }^{15}$ However, some of the in vivo activity of $\mathbf{2}$ has been attributed to off-target activities e.g. inhibition of doublecortinlike kinase 1 (DCLK-1) in pancreatic cancer. ${ }^{16}$ Inhibition of ERK5 or siRNA knockdown has been shown to inhibit the growth of HCC cell lines, in vitro and in vivo. ${ }^{17}$ ERK5 signalling has been shown to be essential for chemically induced carcinogenesis in skin by erk5 gene deletion or ERK5 inhibition (with 2). ${ }^{18}$ The combination of doxorubicin and either erk5 gene deletion or ERK5 inhibition (with 2) was found to be additive in inflammation-driven tumour models. Thus, pharmacological inhibition of ERK5 may provide an opportunity for the treatment of inflammation-driven, invasive or metastatic cancers where ERK5 is deregulated. Given the strong link between ERK5 mediated signalling and malignancy, there remains a strong need to develop selective tool molecules to fully elucidate the effect of ERK5 inhibition in vivo. For this reason, we sought to discover novel ERK5 inhibitory chemotypes through high-throughput screening as chemical tools and for development as therapeutic agents.

In this paper, we describe the development of a high-throughput screening assay for ERK5 inhibition based on the IMAP FP format that was used to identify four discrete series of hit molecules. Validation of each series was attempted by resynthesis and retesting of selected members from each series. Preliminary structure activity studies were obtained resulting in the identification of one series for further optimisation.

DEVELOPMENT AND EXECUTION OF ERK5 IMAP SCREEN

Assay development

The discovery of kinase inhibitors using high-thoughput screening is well established. ${ }^{19}$ In our case, expression of active ERK5 protein required co-expression of MEK5. The screen was developed using the IMAP format (Molecular Devices) that relies on the high specificity interaction of phospho groups on a fluorescently tagged peptide with M^{3+} containing nanoparticles. The IMAP format was chosen as a robust and efficient method of determining kinase activity using a 'mix-and-measure' format with a non-radioactive, fluorescence output.

Preliminary experiments to determine a suitable peptide substrate for the IMAP FP assay used a commercial source of the enzyme and were based on sequence of the natural substrate of ERK5, and were augmented with a substrate finder kit. Five peptide sequences were designed based around the reported site of phosphorylation of MEF2C by ERK5, with the expected serine phosphorylation site highlighted in red (Table 1). ${ }^{1}$ The peptides were tested using the IMAP FP Progressive Binding System (Molecular Devices) in the absence and presence of ERK5 (Carna Biosciences).

The IMAP FP substrate finder kit for serine/threonine kinases plate 2 (Molecular Devices) covering CMGC, CK1, STE, and TKL portions of the kinome was used to identify potential peptide substrates phosphorylated by ERK5. The FAM-EGFR-derived peptide (LVEPLTPSGEAPNQK-5FAM-COOH) proved optimal.

Kinetic studies determined the ERK5 $K_{\mathrm{M}}{ }^{\text {app }}$ to be $300 \mu \mathrm{M}$. Ideally, kinase screens are run with the ATP concentration equal to the K_{M}, however, in this case the IMAP format did not return acceptable results at a high ATP concentration $(300 \mu \mathrm{M})$, presumably due to interference of ATP with the interaction of the phospho peptide with the metal nanoparticles. For this reason, the HTS assay was run at the maximum acceptable ATP concentration (100 $\mu \mathrm{M}$) to allow 'mix-and-measure' determinations.

High-throughput Screening for ERK5 inhibitors

To identify inhibitors of ERK5 the IMAP HTS assay was set up and a library of 57,617 small molecules was screened (final DMSO concentration of 4% and a total reaction volume of $40 \mu \mathrm{~L}$). The library was composed of a 48,479 member diverse library and a 9136 member kinase focussed library, both libraries were sourced from commercial vendors. Z^{\prime} factors for each plate were calculated using Equation 2 , and were typically $0.6-0.8$. Plates with Z^{\prime} factors below 0.4 were re-screened (Supporting Information).

HTS Results

The HTS assay returned 245 active compounds (0.5% hit rate), i.e. $>50 \%$ inh at $30 \mu \mathrm{M}$, from the 57,617 member library. Active compounds (245) showing $>50 \%$ inhibition in the screen were resupplied from stock or commercial vendors and retested at 30,10 and $3.3 \mu \mathrm{M}$. 71 active compounds, giving $>30 \%$ mean inhibition, were treated as confirmed hits (0.10% overall hit-rate) and assayed over a full $I C_{50}$ range. $I C_{50}$ determinations required a two stage process whereby the reaction occurred initially in the absence of the IMAP reagent, followed by subsequent addition of the IMAP reagent, to allow the K_{M} concentration of ATP to be used.

The hit compounds produced inhibition curves with IC_{50} values ranging from 0.6 to $76 \mu \mathrm{M}(1$ compound $>120 \mu \mathrm{M})$. Confirmed hits were clustered according to common structures, revealing four promising chemical series. SAR around the hits was expanded by assaying related in-house compounds and close analogues from commercial suppliers. From these results, four compound series were selected for validation by resynthesis prior to progressing to hit-to-lead studies: 2-amino- N, N-alkylbenzo[d]thiazole-6-sulfonamides (Table 2, 3a-c); 4-substituted-2-
(substitutedthio)-6-phenylnicotinonitriles (Table 3, 4a,b); 4-amino-2-(arylamino)pyrimidine-5-carbonitriles (Table 5, 5a-c); and 4-aroyl- N -alkyl-1H-pyrrole-2-carboxamides (Table 6, 6a-e).

SYNTHESIS

Benzothiazole Series 3

Numerous methods have been described for the synthesis of benzothiazoles. ${ }^{20}$ For the synthesis of compounds $\mathbf{3 a}, \mathbf{b}$ and analogues, we used the reported reaction of anilines with potassium thiocyanate-copper(II) sulfate (Scheme 1). ${ }^{21}$ The required 4-aminophenylsulfonamides (7a-c) were prepared by reduction of the corresponding nitro compounds ($8 \mathrm{a}-\mathrm{c}$). The nitro precursors were obtained by coupling the relevant amine with 4-nitrobenzenesulfonyl chloride. The 5-sulfonamide isomer 9a, was prepared via the same method (Scheme 2). Thus, 3-nitrobenzenesulfonyl chloride was reacted with pyrrolidine or N-methylethylamine, and the resulting sulfonamides $\mathbf{1 0} \mathbf{a}, \mathbf{b}$ were reduced to the
respective anilines $\mathbf{1 1 a , b}$ (Scheme 2). Reactions of $\mathbf{1 1 a , b}$ with with potassium thiocyanate-copper(II) sulfate gave in each case, besides the desired 5 -substituted benzothiazole $9 \mathbf{a}, \mathbf{b}$, a significant quantity of a thiocyanatobenzene (12a,b).

Nicotinonitrile Series 4

The first synthetic approach considered for the synthesis of 3-cyanopyridines was based on the route reported by Shestopalov et al. ${ }^{22}$ For example, 4-fluorochalcone 13a, prepared via Claisen-Schmidt condensation of acetophenone with 4-fluorobenzaldehyde, was treated with elemental sulfur and morpholine in ethanol at reflux, followed by malononitrile, to give pyridinethione 14a in moderate yield (Method A, Scheme 3). Isolation of the intermediate pyridinethiones 14 required extensive purification, attributed to the propensity of this intermediate to tautomerise, and its readiness to oxidise under atmospheric conditions.

Consideration of the likely mechanism of the one-pot sequence of the cyclisation reaction prompted the replacement of the sulfur and malononitrile with 2-cyanothioacetamide for the Michael addition in an alternative route (Method B, Scheme 3). Reactions were performed under nitrogen to avoid oxidative side-reactions. The crude intermediate 14 was used directly in the alkylation step, to avoid a lengthy purification, giving cyanopyridines 15a-k. Method B allowed isolation of 15a in an improved 54% yield over 2 steps. Deprotection with TFA gave acids 4a-k in near quantitative yield (99\%). The carboxamide 17 was prepared from 4a by a HBTU-mediated coupling with p methoxybenzylamine giving amide $\mathbf{1 6}$, which was deprotected with TFA.

Further variations to the thioether group were introduced via alkylation of 14a (Schemes 4-7). The acetamide derivatives 31 and 32 were prepared by the alkylation of 14 a and $\mathbf{1 4 g}$, respectively, with bromoacetamide 30 which was obtained by reaction of aminoacetone hydrochloride 29 with bromoacetylchloride (Scheme 8). ${ }^{23}$

Cyanopyrimidine Series 5

A small series of 4-amino-2-anilinopyrimidine-5-carbonitriles (5a-c) were prepared by the reaction of the appropriate aniline with chloropyrimidine (33) at $100^{\circ} \mathrm{C}$ in DMF (Scheme 9). ${ }^{24}$

4-Benzoylpyrrole-2-carboxamide Series 6

A selection of 4-benzoylpyrrole-2-carboxamides were prepared by Friedel-Crafts acylation of methyl 1H-pyrrole-2carboxylate (34) with a substituted benzoyl chloride giving pyrrole (35). Hydrolysis of the methyl ester with lithium hydroxide gave carboxylic acid 36 that was coupled with the appropriate amine using CDI to give the desired carboxamides (6a-r)(Scheme 10). The N-methyl derivative 6 m was prepared by methylation of ester 35 a , followed by hydrolysis and coupling with 3-pyridylmethylamine (Scheme 11).

2-Substituted-4-benzoylpyrrole derivatives

The alkene derivative 40 was prepared by aldol condensation of ketone 39 and isonicotinaldehyde (Scheme 12). Selective reduction was achieved by refluxing alkene 40 in aqueous ethanol with indium metal and ammonium
chloride giving alkane 41 in moderate yield. ${ }^{25}$ The cyclopropyl analogue 42 was prepared by a Corey Chaykovsky reaction. ${ }^{26}$ Thus, alkene 40 was reacted with trimethylsulfoxonium iodide and potassium tert-butoxide giving 42 in 12% yield. ${ }^{27}$ Diketone 44 was prepared via a Claisen condensation between 1-(1H-pyrrol-2-yl)ethanone and methyl isonicotinate diketone 43 (Scheme 13). Friedel-Crafts acylation with 2,3-dichlorobenzoyl chloride gave 44.

DISCUSSION

Selected examples of the HTS hits in the benzothiazole series ($\mathbf{3 a} \mathbf{a} \mathbf{3 b}, \mathbf{3 i}$) were synthesised and re-assayed. The ERK5 inhibitory activity for the resynthesized benzothiazoles were 1000-fold lower than for the library material (Table 2). Comparision of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and LCMS spectra of the resynthesized and screened samples of 3a suggested that the library material was the 5 -sulfonamide $\mathbf{9 a}$, so authentic samples of isomers $\mathbf{9 a}$ and $\mathbf{9 b}$ were prepared. In order to eliminate the possibility of mis-identification of the compounds by spectroscopic methods, the identity of isothiocyanate 12a and benzothiazoles 3a and 3i were elucidated by small-molecule X-ray crystallography (Figures 1$3)$.

The assay results for these isomers also failed to replicate the initial IC_{50} values from the screening samples. Interestingly, the isothiocyanate side-product 12a showed 10-fold greater potency than the benzothiazole, although this result was not replicated for the analogue 12b. Time-dependent enzyme inactivation by isothiocyanates, via their reaction with lysine residues, has been reported. ${ }^{28}$ Further investigations into the mechanism of action of 12a were not conducted. Some aminothiazoles have recently been identified as frequent hitters from a fragment screening set and dubbed promiscuous 2-aminothiazoles (PrATs). ${ }^{29}$ The reason for the discrepancy between the activity of the HTS sample and the resynthesized material is not clear. Numerous mechanisms for false positives in HTS are possible, including the presence of trace impurities or protein aggregation, and further effort was not expended eliminating these possibilities. ${ }^{30}$

Three HTS hits in the nicotinonitrile series (4a, 19, and 31) were synthesised and reassayed (Tables 3 and 4). The results for the glycine derivative $\mathbf{4 a}$ and proline methyl ester derivative 19 were in good agreement with the HTS IC I_{50} values. In contrast, the propan-2-one derivative 31 was 50 -fold less active than the HTS result. On this basis, a limited series of compounds was prepared to establish preliminary SARs and to determine the minimum inhibitory pharmacophore. The SARs for the 4- and 6-substitutents were delineated keeping the 2 -thio substituent as the glycine amide (Table 3). The 4,6-diphenyl, 4-phenyl-6-methyl and 4,6-dimethyl compounds (4d, 4j and 4k, respectively) were each devoid of activity. The 4-(2-fluorophenyl) derivative $\mathbf{4 c}$ was 7 -fold less active than the 4-(4fluorophenyl) derivative 4a, whereas the 4-(3-fluorophenyl) derivative 4b lacked measurable potency. The combination of 2 -fluoro and 4 -fluoro substituents (4f) was not additive and resulted in a 15 -fold loss of potency compared with $\mathbf{4 a}$. The 4-(4-pyridyl) derivative $\mathbf{4 g}$ exhibited a 13-fold loss in potency compared to 4a, despite the similar electronic properties of the rings. Substitution of the 4-phenyl group with 4-trifluoromethyl 4e, or 4-methoxy 4h resulted in loss of activity.

The SARs for the thioether side-chain were investigated (Table 4). The pyridine thiol $\mathbf{1 4 a}$ lacking the amide side-chain showed a 20 -fold loss in potency compared to $\mathbf{4 a}$. The glycine ethyl ester $\mathbf{1 5 I}$ showed similar activity to the proline methyl ester derivative 19, and was 4 -fold less potent than the corresponding glycine derivative $\mathbf{4 a}$. In contrast, the glycine amide $\mathbf{1 7}$ lacked measurable activity. The shorter, unsubstituted amide $\mathbf{2 0}$ showed weak activity, whereas the corresponding ester 21 was inactive. Two thioalkyl carboxylic acids 23a and 23b were inactive, as was the corresponding amine $\mathbf{2 8}$, demonstrating the requirement for the amide group in the sidechain for potency. Comparison of the 4-fluorophenyl propan-2-one derivative 31 with the 4 -pyridyl derivative $\mathbf{3 2}$ showed a 5 -fold loss in potency consistent with the results in the glycine amide series ($\mathbf{4 a}$ and $\mathbf{4 g}$).

Overall, each of the changes made to the hit compounds in the nicotinonitrile series (4a, 19, and 31) resulted in loss of potency. Modifications to the aromatic and side-chain substituents revealed a highly constrained pharmacophore and limited SAR. As a result, no further optimisation of this series was attempted. Interestingly, 3-cyano-4,6-diphenyl-pyridines have been identified recently as inhibitors of the PA-PB1 protein-protein interaction for influenza. ${ }^{31}$

The cyanopyrimidines 5a-c showed reasonable activity against ERK5, with IC_{50} values in the 12-88 $\mu \mathrm{M}$ range (Table 5), and generally consistent with the HTS values. The activity against ERK5 in this series was promising, but the series had also been selected for development against another target internally. For this reason, no further analogues were prepared. Kinase inhibitors incorporating a 5-cyanopyrimidine core have been reported, e.g. Wee1 inhibitors ${ }^{32}$, and CDK2 inhibitors ${ }^{33}$.

Five 4-benzoylpyrrole-2-carboxamides (6a-e) gave good potency in the HTS. Upon resynthesis and retesting, the 2,3-dichlorobenzoyl- N-(4-fluorobenzyl) substitued analogue 6 a maintained significant activity ($\mathrm{IC}_{50}=3.7 \mu \mathrm{M}$) despite a 5fold loss in potency compared to the HTS result (Table 6). Similarly, the 2-trifluoromethylbenzoyl-N-methyl substituted analogue $6 \mathbf{d}$ gave a two-fold drop in activity $\left(\mathrm{IC}_{50}=9.6 \mu \mathrm{M}\right)$ compared to the HTS result, and the benzoyl-N-methyl-3-pyridyl derivative 6 e gave a 3-fold drop in activity ($\mathrm{IC}_{50}=26 \mu \mathrm{M}$). In contrast, the resynthesized 2,4dichlorobenzoyl analogues $\mathbf{6 b}$ and $\mathbf{6 c}$ bearing either the N, N-dimethylamide or N-phenethylamide substituents, respectively, showed no activity.

Encouraged by these results, a small series of aroylpyrroles was prepared. Compounds were designed to establish the minimum kinase binding pharmacophore, and to explore possibilities to gain potency and selectivity by variation of the amide substituent. The benzoyl substituent was fixed as most potent 2,3-dichlorophenyl for all these examples.

Series (6f-n) was prepared to explore simple variations to the amide moiety (Table 7). Monomethyl amide $6 \mathbf{f}$ was equipotent with the parent 4-fluorobenzyl amide $\mathbf{6 a}$, whereas the dimethyl amide $\mathbf{6 g}$ was 7 -fold less potent. Introduction of the 3 -pyridylmethyl amide from $\mathbf{6 e}$ or the 4 -pyridylmethyl amide $\mathbf{6 h}$, retained potency, whereas the benzyl derivative $\mathbf{6 k}$ and 2 -pyridyl derivative $\mathbf{6 j}$ were less potent, and phenylethyl amide $\mathbf{6 I}$ was inactive. Similar to $\mathbf{6 g}, N$-methyl-(3-pyridylmethyl) amide derivative $\mathbf{6 n}$ was 7 -fold less potent than primary amide $\mathbf{6 i}$. Importantly,
methylation of the pyrrole $\mathrm{NH}(6 \mathrm{~m})$ completely abolished ERK5 activity, indicating an essential interaction with the kinase at this position. In contrast, the relatively small drop in activity for the secondary amides $\mathbf{6 g}$ and $\mathbf{6 n}$ suggested the amide NH was not forming a critical interaction, and that the drop in potency could be related to the conformational preference of the amide group. With this in mind, a limited number of conformationally restricted, 5and 6-membered cyclic secondary amides were investigated (Table 8). The 3,4-dihydro-2,6-naphthyridinyl and isoindolinyl derivatives ($\mathbf{6 0}$ and $\mathbf{6 q}$) were inactive. In contrast, 3,4-dihydroisoquinolinyl $\mathbf{6 p}$ was 5 -fold less potent than 6 h , a comparable to the loss in potency seen for the N -methyl analogues, whereas the pyrrolidinopyridinyl 6 r was equipotent with $\mathbf{6 h}$. Selected examples in this series were assayed in an orthogonal LANCE ${ }^{\text {TM }}$ assay format (see supporting information), based on time-resolved fluorescence resonance energy transfer (FRET), to eliminate the possibility of false positives. In all cases, the LANCE results were comparable with those obtained using the IMAP assay.

In order to establish the minimum kinase binding pharmacophore, systematic isosteric replacements to the amide group were made. The acetyl derivative 39 and the 1,3-diketone 44 were inactive (Table 9). In contrast, the unsaturated ketone 40 and the cyclopropyl ketone 42 retained similar activity to the parent 6a, whereas the saturated ketone 41 was 10 -fold less active. These results confirm that the amide NH is not required for activity, and that conformational rigidity at this position is favourable. The loss of activity for diketone 44 was explained by the preferred enol tautomer lacking an essential H-bond to the kinase via the ketone adjacent to the pyrrole.

The most potent pyrrole inhibitor 6h was submitted for a kinase selectivity screen and gave a promising selectivity profile. Of the 20 kinases, screened only one kinase (SAPK2a or p38 α MAP kinase) was inhibited at >50\% inhibition (10 $\mu \mathrm{M}$). Subsequent to our identification of pyrrole-2-carboxamides as ERK5 inhibitors, similar compounds, e.g. 45, have been independently identified as p38 α MAP kinase inhibitors with micromolar activity. ${ }^{34}$ The X-ray structure of 45 shows it bound to the hinge of the kinase via hydrogen bonds from the pyrrole NH and the carboxamide carbonyl, with the aryl portion occupying the lipophilic region close to the gatekeeper, and the furan binding in the outer lipophilic region. ERK5 shares 48% sequence homology with p38 α MAP kinase, and 58% homology in the kinase domain. In addition, the gatekeeper residues of the kinases are similar, with leucine in ERK5 and threonine in p38 α MAP kinase. The ERK5 SAR for our series is consistent with a similar binding mode to ERK5 as seen in the p38 X-ray structure, in particular the donor/acceptor doublet of H -bonds from the pyrrole NH and amide carbonyl to the kinase.

At this point, given the similarity between the published p38 MAP kinase inhibitors and our hit series, we needed to establish selectivity vs p38 α MAP kinase to provide useful ERK5 tool compounds or therapeutic agents. ${ }^{34-35}$ Thus, selected compounds were counterscreened against p38 α MAP kinase using a LANCE assay. As anticipated, the 2pyridyl derivatives $\mathbf{6 j}$ and 3,4-dihydroisoquinolinyl derivative $\mathbf{6 p}$ were equipotent for both p38 MAP kinase and ERK5. Importantly, the pyrrolidinopyridinyl derivative $6 r$ was inactive in the $p 38 \alpha$ assay. The ability to eliminate $p 38 \alpha$ MAP kinase activity whilst maintaining ERK5 activity by variation of the amide side chain was not readily predicted
from the published p38 α X-ray structure and points to differing structural requirements around the amide side-chain that may be exploited in further development of the series.

CONCLUSIONS

The IMAP FP high-throughput screen for ERK5 returned four distinct chemical series as hits. Synthesis of the hits and selected close analogues demonstrated that the HTS activity of the benzothiazoles $\mathbf{3}$ was not reproducable, activity for the cyanopyridine hits $(\mathbf{4 a}, \mathbf{1 9})$ was reproducable, but the limited scope to develop the SAR ruled this series out, and two series with confirmed active hits. The lack of activity of these hits was disappointing but not atypical in screening campaigns. The cyanopyrimidine hits $\mathbf{5 a - c}$ were not pursued for reasons of competition. The remaining series, the pyrrole carboxamides 6a-e, demonstrated consistent ERK5 activity, with SARs consistent with a kinase hinge binder. Selectivity against the close homologue p38 α MAP kinase was achieved without loss of ERK5 activity through minor structural modification, and a representative example $6 \mathbf{h}$ showed an acceptable kinase selectivity profile in a panel. At this stage the pyrrole carboxamides demonstrated tractable synthesis, intelligible preliminary SARs, and promising selectivity. The relatively modest kinase inhibitory activity achieved at this stage did not give any concern as the pharmacophore established presented opportunities to optimise potency at both the benzoyl and amide portions, indepenently. Having demonstrated the necessary requirements to progress to the hit-to-lead optimisation stage, further SAR studies were undertaken, with an initial focus on improving potency, which will be reported seperately. ${ }^{36}$

EXPERIMENTAL SECTION

IMAP Substrate mapping

Non-phosphorylated and phosphorylated versions of each ERK5 sequence (Table 1) were obtained from the CRUK Peptide Synthesis Research Services group. The substrate finder kit was used according to the manufacturer's instructions. Reaction buffer ($10 \mu \mathrm{~L}$) containing ATP ($100 \mu \mathrm{M}$) was added to wells of the plate to reconstitute 5-FAM labeled substrates. Reaction buffer ($10 \mu \mathrm{~L}$) with or without ERK5 ($6.4 \mathrm{ng} / \mu \mathrm{L}$) was added to appropriate wells of the plate, to generate background controls and positive controls. The reaction was incubated for 1 hour at ambient temperature after which IMAP Binding Solution ($60 \mu \mathrm{~L}$) was added. After a further 1 hour of incubation the fluorescence polarisation was measured. The results were analysed using the IMAP Substrate Mapper provided with the kit.

Kinetic characterisation of ERK5

Reactions were carried out with varying concentrations of ATP at constant substrate and enzyme concentrations. Due to limitations of the IMAP FP assay with respect to ATP concentrations, we utilised a transfer method to increase the maximum concentration of ATP that can be used. Reactions were conducted as normal in $10 \mu \mathrm{~L}$ reaction volume. After either $1,2,3$ or 4 hour incubation period at $37^{\circ} \mathrm{C}, 4 \mu \mathrm{~L}$ of the reaction was transferred to $196 \mu \mathrm{~L}$ of reaction buffer followed by a subsequent transfer of $10 \mu \mathrm{~L}$ of this solution to $30 \mu \mathrm{~L}$ of IMAP Binding Solution. Rates
of reaction at 1 hour reaction time at the range of substrate concentrations were determined, and kinetic parameters were determined by non-linear regression fitting of the data to the Michaelis-Menten equation (Equation 1) ; curve fitting was performed using GraphPad Prism software. ${ }^{37}$

ERK5 High-throughput Screen

Compounds were assayed in a $10 \mu \mathrm{~L}$ reaction mixture per well containing: 1 in 700 dilution of ERK5 stock from CRT, 100 nM peptide R7129 and $100 \mu \mathrm{M}$ of ATP. The reactions were performed with $10 \mathrm{mM} \mathrm{Tris-HCl}(\mathrm{pH} 7.2), 10 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 0.05 \% \mathrm{NaN}_{3}$ and 0.01% Tween-20. Reactions were incubated for 3 hours at $37^{\circ} \mathrm{C}$, followed by addition of 30 $\mu \mathrm{L}$ of IMAP binding solution (1 in 600 dilution of IMAP binding reagent in 60% Binding Buffer A and 40% Binding Buffer B) and a further incubation for 2 hours at ambient temperature. Plates were read on an Analyst HT microplate reader and the data analysed using ActivityBase.

ERK5 IC ${ }_{50}$ Determination (IMAP)

The enzyme reaction was run as described for the HTS but using $300 \mu \mathrm{M}$ ATP, 250 nM peptide and a reduced incubation time of 2 hours at $37^{\circ} \mathrm{C} .1 \mu \mathrm{~L}$ of this reaction was then transferred to a new assay plate and $9 \mu \mathrm{~L}$ of reaction buffer was added followed by $30 \mu \mathrm{~L}$ of IMAP binding solution.

X-ray crystallography

Data were collected on an Oxford Diffraction Gemini A Ultra diffractometer for 3i, using MoK α radiation ($\lambda=0.71073$ \AA) at 150 K , and on a Bruker Apex2 diffractometer for 3a and 12a, using synchrotron radiation ($\lambda=0.6946 \AA$; SRS station 9.8, Daresbury Laboratory) at 120 K because of the very small size of crystals available. Corrections were made for synchrotron beam decay and for absorption and other systematic effects on the basis of repeated and equivalent data. The structures were solved by direct methods and refined on all unique F^{2} values with anisotropic non-hydrogen atoms, with freely refined isotropic H atoms bonded to N , and with a riding model for H atoms bonded to C. All four structures are fully ordered; 3i have two independent molecules in the asymmetric unit, and the non-centrosymmetric but achiral crystal structure of $\mathbf{3 i}$ displays inversion twinning with essentially equal components. Full crystallographic details are given in the Supporting information. Programs were standard Oxford Diffraction CrysAlisPro ${ }^{38}$ and Bruker Apex2 ${ }^{39}$ for data collection and processing, and SHELXTL ${ }^{40}$ and SHELXL2014_ENREF_52_ENREF_53 ${ }^{41}$ for structure solution and refinement. CCDC references: 1410001, 141003, and 1410004.

ASSOCIATED CONTENT

Supporting Information

Additional screening and synthesis information, X-ray crystal structure data for compounds 12a, 3a, and 3i, synthetic procedures, ERK5 and p38 α LANCE assay protocols, kinase selectivity data for $\mathbf{6 h}$.

AUTHOR INFORMATION

Corresponding Author

*E-mail: lan.Hardcastle@ncl.ac.uk

Funding

This work was supported by Cancer Research UK (C240/A7409, C1296/A6963 and C2115/A21421), EPSRC equipment grant (EP/F03637X/1), and the synchrotron component of the UK National Crystallography Service 2001-2010 (EP/D07746X/1).

Notes

The authors declare no competing financial interests.

ACKNOWLEDGEMENTS

We thank CCLRC for access to synchrotron diffraction facilities at SRS. The use of the EPSRC National Mass Spectroscopy Facility, Swansea University is gratefully acknowledged.

REFERENCES

1. (a) Zhou, G.; Bao, Z. Q.; Dixon, J. E., Components of a New Human Protein Kinase Signal Transduction Pathway. J. Biol. Chem. 1995, 270 (21), 12665-12669; (b) Zhou, G. C.; Bao, A.; Guan, K. L.; Dixon, J. E., Specifical Interactions Between Newly Identified Human Kinases, Mek5 And Erk5. FASEB J. 1995, 9 (6), A1306-A1306; (c) Abe, J.; Kusuhara, M.; Ulevitch, R. J.; Berk, B. C.; Lee, J. D., Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J. Biol. Chem. 1996, 271 (28), 16586-16590.
2. Hayashi, M.; Lee, J. D., Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice. J. Mol. Med. 2004, 82 (12), 800-8.
3. English, J. M.; Pearson, G.; Hockenberry, T.; Shivakumar, L.; White, M. A.; Cobb, M. H., Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control. J. Biol. Chem. 1999, 274 (44), 31588-92.
4. Wang, X.; Tournier, C., Regulation of cellular functions by the ERK5 signalling pathway. Cell Signal 2006, 18 (6), 753-60.
5. Roberts, O. L.; Holmes, K.; Muller, J.; Cross, D. A.; Cross, M. J., ERK5 and the regulation of endothelial cell function. Biochem. Soc. Trans. 2009, 37 (Pt 6), 1254-9.
6. (a) Kato, Y.; Kravchenko, V. V.; Tapping, R. I.; Han, J.; Ulevitch, R. J.; Lee, J.-D., BMK1/ERK5 regulates seruminduced early gene expression through transcription factor MEF2C. EMBO J 1997, 16 (23), 7054-7066; (b) Yang, C. C.; Ornatsky, O. I.; McDermott, J. C.; Cruz, T. F.; Prody, C. A., Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Res 1998, 26 (20), 4771-4777; (c) Kato, Y.; Tapping, R. I.; Huang, S.; Watson, M. H.; Ulevitch, R. J.; Lee, J.-D., Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature 1998, 395 (6703), 713-716; (d) English, J. M.; Pearson, G.; Baer, R.;

Cobb, M. H., Identification of Substrates and Regulators of the Mitogen-activated Protein Kinase ERK5 Using Chimeric Protein Kinases. J. Biol. Chem. 1998, 273 (7), 3854-3860; (e) Kamakura, S.; Moriguchi, T.; Nishida, E., Activation of the Protein Kinase ERK5/BMK1 by Receptor Tyrosine Kinases. J. Biol. Chem. 1999, 274 (37), 2656326571; (f) Pearson, G.; English, J. M.; White, M. A.; Cobb, M. H., ERK5 and ERK2 Cooperate to Regulate NF-кB and Cell Transformation. J. Biol. Chem. 2001, 276 (11), 7927-7931; (g) Terasawa, K.; Okazaki, K.; Nishida, E., Regulation of c-Fos and Fra-1 by the MEK5-ERK5 pathway. Genes Cells 2003, 8 (3), 263-273.
7. (a) Hayashi, M.; Fearns, C.; Eliceiri, B.; Yang, Y.; Lee, J. D., Big mitogen-activated protein kinase 1/extracellular signal-regulated kinase 5 signaling pathway is essential for tumor-associated angiogenesis. Cancer Res. 2005, 65 (17), 7699-7706; (b) Nhat-Tu, L.; Heo, K.-S.; Takei, Y.; Lee, H.; Woo, C.-H.; Chang, E.; McClain, C.; Hurley, C.; Wang, X.; Li, F.; Xu, H.; Morrell, C.; Sullivan, M. A.; Cohen, M. S.; Serafimova, I. M.; Taunton, J.; Fujiwara, K.; Abe, J.-I., A Crucial Role for p90RSK-Mediated Reduction of ERK5 Transcriptional Activity in Endothelial Dysfunction and Atherosclerosis. Circulation 2013, 127 (4), 486-+; (c) Ranganathan, A.; Pearson, G. W.; Chrestensen, C. A.; Sturgill, T. W.; Cobb, M. H., The MAP kinase ERK5 binds to and phosphorylates p90 RSK. Arch. Biochem. Biophys. 2006, 449 (1-2), 8-16.
8. (a) Drew, B. A.; Burow, M. E.; Beckman, B. S., MEK5/ERK5 pathway: the first fifteen years. Biochim Biophys Acta 2012, 1825 (1), 37-48; (b) Lochhead, P. A.; Gilley, R.; Cook, S. J., ERK5 and its role in tumour development. Biochem. Soc. Trans. 2012, 40 (1), 251-6.
9. (a) Mehta, P. B.; Jenkins, B. L.; McCarthy, L.; Thilak, L.; Robson, C. N.; Neal, D. E.; Leung, H. Y., MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression and invasion. Oncogene 2003, 22 (9), 1381-1389; (b) McCracken, S. R.; Ramsay, A.; Heer, R.; Mathers, M. E.; Jenkins, B. L.; Edwards, J.; Robson, C. N.; Marquez, R.; Cohen, P.; Leung, H. Y., Aberrant expression of extracellular signal-regulated kinase 5 in human prostate cancer. Oncogene 2008, 27 (21), 2978-88.
10. Montero, J. C. O., A; Abad, M; Ortiz-Ruiz, M, J; Pandiella, A; Esparis-Ogando, A; Expression of ERK5 in Early Stage Breast Cancer and Association with Disease Free Survival Identifies this Kinase as a Potential Therapeutic Target. PLoS ONE 2009, 4 (5), 5565.
11. Zen, K.; Yasui, K.; Nakajima, T.; Zen, Y.; Zen, K.; Gen, Y.; Mitsuyoshi, H.; Minami, M.; Mitsufuji, S.; Tanaka, S.; Itoh, Y.; Nakanuma, Y.; Taniwaki, M.; Arii, S.; Okanoue, T.; Yoshikawa, T., ERK5 is a target for gene amplification at 17p11 and promotes cell growth in hepatocellular carcinoma by regulating mitotic entry. Genes Chrom. Cancer 2009, 48 (2), 109-120.
12. Arias-González, L.; Moreno-Gimeno, I.; del Campo, A. R.; Serrano-Oviedo, L.; Valero, M. L.; Esparís-Ogando, A.; de la Cruz-Morcillo, M. Á.; Melgar-Rojas, P.; García-Cano, J.; Cimas, F. J.; Hidalgo, M. J. R.; Prado, A.; CallejasValera, J. L.; Nam-Cha, S. H.; Giménez-Bachs, J. M.; Salinas-Sánchez, A. S.; Pandiella, A.; del Peso, L.; SánchezPrieto, R., ERK5/BMK1 Is a Novel Target of the Tumor Suppressor VHL: Implication in Clear Cell Renal Carcinoma. Neoplasia 2013, 15 (6), 649-659.
13. Tatake, R. J.; O'Neill, M. M.; Kennedy, C. A.; Wayne, A. L.; Jakes, S.; Wu, D.; Kugler Jr, S. Z.; Kashem, M. A.; Kaplita, P.; Snow, R. J., Identification of pharmacological inhibitors of the MEK5/ERK5 pathway. Biochem. Biophys. Res. Commun. 2008, 377 (1), 120-125.
14. Yang, Q.; Deng, X.; Lu, B.; Cameron, M.; Fearns, C.; Patricelli, M. P.; Yates, J. R.; Gray, N. S.; Lee, J.-D., Pharmacological Inhibition of BMK1 Suppresses Tumor Growth through Promyelocytic Leukemia Protein. Cancer Cell 2010, 18 (4), 396.
15. Elkins, J. M.; Wang, J.; Deng, X.; Pattison, M. J.; Arthur, J. S. C.; Erazo, T.; Gomez, N.; Lizcano, J. M.; Gray, N. S.; Knapp, S., X-ray Crystal Structure of ERK5 (MAPK7) in Complex with a Specific Inhibitor. J. Med. Chem. 2013, 56 (11), 4413-4421.
16. Sureban, S. M.; May, R.; Weygant, N.; Qu, D.; Chandrakesan, P.; Bannerman-Menson, E.; Ali, N.; Pantazis, P.; Westphalen, C. B.; Wang, T. C.; Houchen, C. W., XMD8-92 inhibits pancreatic tumor xenograft growth via a DCLK1-dependent mechanism. Cancer Lett 2014, 351 (1), 151-161.
17. Rovida, E.; Di Maira, G.; Tusa, I.; Cannito, S.; Paternostro, C.; Navari, N.; Vivoli, E.; Deng, X.; Gray, N. S.; EsparísOgando, A.; David, E.; Pandiella, A.; Dello Sbarba, P.; Parola, M.; Marra, F., The mitogen-activated protein kinase ERK5 regulates the development and growth of hepatocellular carcinoma. Gut 201564 (9), 1454-1465.
18. Finegan, K. G.; Perez-Madrigal, D.; Hitchin, J. R.; Davies, C. C.; Jordan, A. M.; Tournier, C., ERK5 Is a Critical Mediator of Inflammation-Driven Cancer. Cancer Res. 2015, 75 (4), 742-753.
19. (a) Collins, I.; Workman, P., New approaches to molecular cancer therapeutics. Nat Chem Biol 2006, 2 (12), 689700; (b) Hughes, J. P.; Rees, S.; Kalindjian, S. B.; Philpott, K. L., Principles of early drug discovery. British Journal of Pharmacology 2011, 162 (6), 1239-1249.
20. (a) Barton, D.; Ollis, W. D., Heterocyclic Compounds. Pergamon: Oxford, New York, 1979; Vol. 4; (b) Jordan, A. D.; Luo, C.; Reitz, A. B., Efficient Conversion of Substituted Aryl Thioureas to 2-Aminobenzothiazoles Using Benzyltrimethylammonium Tribromide. J. Org. Chem. 2003, 68 (22), 8693-8696; (c) Ding, Q.; He, X.; Wu, J., Synthesis of 2-Aminobenzothiazole via Copper(I)-Catalyzed Tandem Reaction of 2-lodobenzenamine with Isothiocyanate. J. Comb. Chem. 2009, 11 (4), 587-591; (d) Li, Z.; Xiao, S.; Tian, G.; Zhu, A.; Feng, X.; Liu, J., Microwave Promoted Environmentally Benign Synthesis of 2-Aminobenzothiazoles and Their Urea Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183 (5), 1124-1133; (e) Jordan, A. D.; Luo, C.; Reitz, A. B., Efficient Conversion of Substituted Aryl Thioureas to 2-Aminobenzothiazoles Using Benzyltrimethylammonium Tribromide. J. Org. Chem. 2003, 68 (22), 8693-8696.
21. Nagarajan, S. R.; De Crescenzo, G. A.; Getman, D. P.; Lu, H.-F.; Sikorski, J. A.; Walker, J. L.; McDonald, J. J.; Houseman, K. A.; Kocan, G. P.; Kishore, N.; Mehta, P. P.; Funkes-Shippy, C. L.; Blystone, L., Discovery of novel benzothiazolesulfonamides as potent inhibitors of HIV-1 protease. Bioorg. Med. Chem. 2003, 11 (22), 47694777.
22. Shestopalov, A. M.; Nikishin, K. G., One stage synthesis of 4,6-diaryl-3-cyanopyridine-2(1H)-thiones. Chem. Heterocycl. Compd. 1998, 34, 1093.
23. Hepworth, J. D., Aminoacetone Semicarbazone Hydrochloride. Organic Syntheses, Coll. Vol. 1973, 5, 27.
24. Schmidt, H.-W.; Koitz, G.; Junek, H., A convenient synthesis of 2-substituted 4-amino-5-pyrimidinecarbonitriles. J. Heterocycl. Chem. 1987, 24 (5), 1305-1307.
25. Ranu, B. C.; Dutta, J.; Guchhait, S. K., Indium metal as a reducing agent. Selective reduction of the carbon-carbon double bond in highly activated conjugated alkenes. Org. Lett. 2001, 3 (16), 2603-2605.
26. Corey, E. J.; Chaykovsky, M., Dimethyloxosulfonium methylide (($\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{SOCH}_{2}\right)$ and dimethylsulfonium methylide (($\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{SCH}_{2}\right)$. Formation and application to organic synthesis. J. Am. Chem. Soc. 1965, 87 (6), 1353-1364.
27. Ciaccio, J. A.; Aman, C. E., "Instant Methylide" Modification of the Corey-Chaykovsky Cyclopropanation Reaction. Synth. Commun. 2006, 36 (10), 1333-1341.
28. Wu, Q.; Caine, J. M.; Thomson, S. A.; Slavica, M.; Grunewald, G. L.; McLeish, M. J., Time-dependent inactivation of human phenylethanolamine N -methyltransferase by 7-isothiocyanatotetrahydroisoquinoline. Bioorg. Med. Chem. Lett. 2009, 19 (4), 1071-1074.
29. Devine, S. M.; Mulcair, M. D.; Debono, C. O.; Leung, E. W. W.; Nissink, J. W. M.; Lim, S. S.; Chandrashekaran, I. R.; Vazirani, M.; Mohanty, B.; Simpson, J. S.; Baell, J. B.; Scammells, P. J.; Norton, R. S.; Scanlon, M. J., Promiscuous 2-Aminothiazoles (PrATs): A Frequent Hitting Scaffold. J. Med. Chem. 2015, 58 (3), 1205-1214.
30. Baell, J. B.; Holloway, G. A., New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53 (7), 2719-2740.
31. Trist, I. M. L.; Nannetti, G.; Tintori, C.; Fallacara, A. L.; Deodato, D.; Mercorelli, B.; Palù, G.; Wijtmans, M.; Gospodova, T.; Edink, E.; Verheij, M.; de Esch, I.; Viteva, L.; Loregian, A.; Botta, M., 4,6-Diphenylpyridines as Promising Novel Anti-Influenza Agents Targeting the PA-PB1 Protein-Protein Interaction: Structure-Activity Relationships Exploration with the Aid of Molecular Modeling. J. Med. Chem. 2016, 59 (6), 2688-2703.
32. Thomas, A. P. Preparation and formulation of 4-amino-5-cyano-2-anilino-pyrimidines as inhibitors of cell-cycle kinases for pharmaceutical use in the treatment of cancer. 2001.
33. Marchetti, F.; Cano, C.; Curtin, N. J.; Golding, B. T.; Griffin, R. J.; Haggerty, K.; Newell, D. R.; Parsons, R. J.; Payne, S. L.; Wang, L. Z.; Hardcastle, I. R., Synthesis and biological evaluation of 5-substituted O4-alkylpyrimidines as CDK2 inhibitors. Org. Biolmol. Chem. 2010, 8 (10), 2397-2407.
34. Down, K.; Bamborough, P.; Alder, C.; Campbell, A.; Christopher, J. A.; Gerelle, M.; Ludbrook, S.; Mallett, D.; Mellor, G.; Miller, D. D.; Pearson, R.; Ray, K.; Solanke, Y.; Somers, D., The discovery and initial optimisation of pyrrole-2-carboxamides as inhibitors of p38[alpha] MAP kinase. Bioorg. Med. Chem. Lett. 2010, 20 (13), 39363940.
35. Workman, P.; Collins, I., Probing the Probes: Fitness Factors For Small Molecule Tools. Chem. Biol. 2010, 17 (6), 561-577.
36. Reuillon, T.; Miller, D.; Myers, S.; Molyneux, L.; Cano, C.; Hardcastle, I. R.; Griffin, R. J.; Rigoreau, L.; Golding, B. T.; Noble, M. E. N. Pyrrolcarboxamide Derivatives For The Inhibition of ERK5. WO/2016/042341.
37. Prism, 6; GraphPad Software Inc: 2014.
38. CrysAlisPro, Oxford Diffraction: Oxford, UK, 2008.
39. Apex2, Bruker AXS inc.: Madison, MI, USA, 2008.
40. Sheldrick, G., A short history of SHELX. Acta Crystallogr., Sect. A 2008, 64 (1), 112-122.
41. Sheldrick, G., Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C 2015, 71 (1), 3-8.

EQUATIONS

Equation 1

$$
\frac{v}{[E]}=\frac{k_{c a t}[S]}{\left(K_{m}+[S]\right)}
$$

Equation 2

$$
Z^{\prime}=1-\frac{3 \sigma_{c+}+3 \sigma_{c-}}{\left|\mu_{c+}-\mu_{c-}\right|}
$$

Where σ and μ represent the standard deviation and mean of the positive ($\mathrm{c}+$) and negative (c -) plate controls, respectively.

TABLES

Table 1

Number	Sequence
166	5-FAM-AGRSPVD
168	5-FAM-EAGRSPVDS
170	5-FAM-HEAGRSPVDSL
172	5-FAM-RHEAGRSPVDSLS
174	5-FAM-TRHEAGRSPVDSLSS

Table 2

	 A					 C
			ERK5 IC 50 ($\mu \mathrm{M}$)			
Compound	Structure	R^{1}	R^{2}	HTS		Resynthesized ${ }^{\text {a }}$
3a	A			0.057		51 ± 5.0
3b	A	Et	Me	0.087		85 ± 5.0
3 c	A	Me	H	0.087		-
3d	A	Et	H	0.11		-
3 e	A	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$	H	0.13		-
3 f	A	s-Bu	H	0.13		-
3 g	A	-(C		0.46		-
3h	A	$i-\mathrm{Pr}$	H	0.60		-
$3 i$	A	$n-\mathrm{Pr}$	H	0.89		$>120^{\text {b }}$
3j	A	Et	Et	0.93		-
3k	A	$-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}-$		5.13		-
9 a	B	$-\left(\mathrm{CH}_{2}\right)_{4}$ -		-		29 ± 1.3
9 b	B	Et	Me	-		21 ± 1.5
12a	C	$-\left(\mathrm{CH}_{2}\right)_{4}-$		-		2.3 ± 1.5
12b	C	Et	Me	-		$>120^{\text {b }}$

a) Values are the mean of at least 3 determinations $\pm S D ;$ b) $n=2$

Table 3: ERK5 inhibitory activity of nicotinonitrile series 4a-k.

Compd	R^{1}	$\mathrm{R}^{\mathbf{2}}$	ERK5 IC50 ($\mu \mathrm{M}$)	
			HTS	Resynthesized ${ }^{\text {a }}$
4a	4-F-Ph	Ph	1.6	4.9 ± 0.3
4b	3-F-Ph	Ph	-	$>120^{\text {b }}$
4c	2-F-Ph	Ph	-	34.3 ± 6.4
4d	Ph	Ph	-	$>120^{\text {b }}$
4e	4-(CF3)-Ph	Ph	-	$>120^{\text {b }}$
4f	2,4-di-F-Ph	Ph	-	72.9 ± 26.1
4 g	4-Py	Ph	-	65.1 ± 12.4
4h	4-MeOPh	Ph	-	$>120^{\text {b }}$
$4 i$	Ph	4-MeOPh	-	$>120^{\text {b }}$
4j	Ph	CH_{3}	-	$>120^{\text {b }}$
4k	CH_{3}	CH_{3}	-	$>120^{\text {b }}$

a) Values are the mean of at least 3 determinations $\pm S D ;$ b) $n=2$

Table 4: ERK5 inhibitory activity of nicotinonitrile series 14a,15I, 17,19-21, 23, 28 and 31-32.

Compound
a) Values are the mean of at least 3 determinations $\pm S D$ b) $n=1$; c) $n=2$; d)precipitation observed at 1.2 mM in 40\% DMSO;

Table 5: ERK5 inhibitory activity of pyrimidine series 5a-c.

Compound	R	ERK5 IC50 $(\mu \mathrm{M})$	
		HTS	Resynthesized $^{\text {a }}$
5a	$2-\mathrm{CH}_{3}$	26	88 ± 3
5b	$3-\mathrm{OCH}_{3}$	11	23 ± 7
5c	$4-\mathrm{F}$	6.5	12 ± 3

a) Values are the mean of at least 3 determinations \pm SD

Table 6 : ERK5 inhibitory activity of pyrrole carboxamides (6a-e)

Compound
a) Values are the mean of at least 3 determinations \pm SD; b) $n=2$

Table 7. ERK5 SAR for pyrrole carboxamides (6f-n)
$\mathbf{C o m}_{6}$
a) determinations \pm standard deviation (mean of $n=2$ unless otherwise stated); b) $I C_{50}$ mean of $n=4$; c) $I C_{50}$ mean of $n=6$; d) $I C_{50}$ mean of $\left.n=10 ; e\right) I C_{50} n=1$.

Table 8. SAR for cyclic pyrrole carboxamides ($\mathbf{6 j}$, 60-r) against ERK5 and p38 α.

Compound ID
a) determinations \pm standard deviation (mean of $n=2$ unless otherwise stated); b) IC_{50} mean of $\mathrm{n}=4$.

Table 9. ERK5 SAR for pyrroles (39-42, 44).

Compound ID
a) determinations $\pm \overline{\text { standard deviation (mean of } n=2 \text { unless otherwise stated); b) mean of } n=4 ; c \text {) mean of } n=6}$

Figure 1: Crystal structure of 3-(pyrrolidin-1-ylsulfonyl)-4-thiocyanatobenzenamine 12a.

Figure 2: Crystal structure of 6-(pyrrolidine-1-sulfonyl)-benzothiazol-2-ylamine 3a.

Figure 3: Crystal structure of 2-amino- N-propylbenzo[d]thiazole-6-sulfonamide 3i.

STRUCTURES

Scheme 1.

Reagents and conditions: a) pyrrolidine or N -methylethylamine or propylamine, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$; b) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOAc}$; c) KSCN, $\mathrm{Cu}(\mathrm{II}) \mathrm{SO}_{4}, \mathrm{MeOH}$.

Scheme 2.

Reagents and conditions: a) pyrrolidine or N -methylethylamine, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$; b) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOAc}$; c) $\mathrm{KSCN}, \mathrm{Cu}(\mathrm{II}) \mathrm{SO}_{4}$, MeOH .

16: $R=P M B \quad$
17: $R=H \quad \longleftrightarrow f$

Reagents and Conditions: a) $\mathrm{KOH}, \mathrm{EtOH}, \mathrm{RT}$; b) Method $\mathrm{A}, \mathrm{S}_{8}$, morpholine, $\mathrm{EtOH}, 80^{\circ} \mathrm{C} 30$ min then malononitrile; or Method B, 2-cyanothioacetamide, 1.6 M NaOMe in $\mathrm{MeOH}, 80^{\circ} \mathrm{C}$; c) tert-butyl or ethyl 2-(2bromoacetamido)acetate, $\mathrm{K}_{2} \mathrm{CO}_{3}$ or $\mathrm{KOH}, \mathrm{DMF}, 100^{\circ} \mathrm{C}$; d) TFA, RT; e) p-methoxybenzylamine, HBTU, DIPEA, DMF, 60 ${ }^{\circ} \mathrm{C}$; f) TFA, $70^{\circ} \mathrm{C}$. NB: No base was required in step c after step b (Method B), as an excess of NaOMe was used in step b

Scheme 4

Reagents and Conditions: a) bromoacetyl chloride, $\mathrm{CaCO}_{3}, \mathrm{CHCl}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{\circ} \mathrm{C}$; b) $\mathbf{1 4 a}, \mathrm{KOH}, \mathrm{DMF}$, reflux.
$14 a \xrightarrow{a}$

20: $\mathrm{X}=\mathrm{OCH}_{3}$
21: $\mathrm{X}=\mathrm{NH}_{2}$

Reagents and Conditions: a) methyl bromoacetate, $\mathrm{KOH}, \mathrm{DMF}$, reflux, or chloroacetamide, $\mathrm{NaOAc} .3 \mathrm{H}_{2} \mathrm{O}$, ethanol, reflux.

Scheme 6
$14 a \xrightarrow{a}$

22a: $\mathrm{n}=3, \mathrm{R}=t$ - Bu
22b: $\mathrm{n}=4, \mathrm{R}=t-\mathrm{Bu}$
23a: $n=3, R=H$
23b: $n=4, R=H$

bin

Reagents and Conditions: a) RBr, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{THF}, 100^{\circ} \mathrm{C}$; b) TFA, RT.

Scheme 7

Reagents and Conditions: a) ethanolamine, RT ; b) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}-\mathrm{RT}$; c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}-\mathrm{RT}$; d) $\mathbf{1 4 a}$, DMF, $100^{\circ} \mathrm{C} ;$ e) TFA, RT.

Reagents and Conditions: a)i) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, reflux; ii) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, reflux; b) bromoacetyl chloride, $\mathrm{CaCO}_{3}, \mathrm{DCM}$, reflux; c) $\mathbf{1 4 a}$ or $\mathbf{1 4 g}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 100^{\circ} \mathrm{C}$

Scheme 9

Reagents and Conditions: a) DMF, $100^{\circ} \mathrm{C}$.

Scheme 10

Reagents and Conditions: a) $\mathrm{ArCOCl}, \mathrm{AlCl}_{3}, \mathrm{DCM}, 0^{\circ} \mathrm{C}-\mathrm{RT}$; b) LiOH, THF, $\mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}$; c) i) $\mathrm{CDI}, \mathrm{THF}, 70^{\circ} \mathrm{C}$; ii) $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH}, 50$ ${ }^{\circ} \mathrm{C}$ - RT.

Reagents and Conditions: a) $\mathrm{NaH}, \mathrm{DMF}, \mathrm{MeI}$; b) $\mathrm{LiOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}$; c) i) $\mathrm{CDI}, \mathrm{THF}, 70^{\circ} \mathrm{C}$; ii) 3-pyridylmethylamine, $50^{\circ} \mathrm{C}$ - RT.

Scheme 12

Reagents and Conditions: a) AlCl_{3}, 2,3-dichlorobenzoyl chloride, $\mathrm{DCM}, 0^{\circ} \mathrm{C}-\mathrm{RT}, 18 \mathrm{~h} . ;$ b) Isonicotinaldehyde, KOH , $\mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{\circ} \mathrm{C}-\mathrm{RT}$, $18 \mathrm{~h} . ; \mathrm{c}$) Indium powder, $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}$, reflux, 8 h ; d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}^{+} \mathrm{I}^{-}, \mathrm{KO}^{t} \mathrm{Bu}, \mathrm{DMSO}, \mathrm{RT}, 24 \mathrm{~h}$.

Scheme 13

Reagents and Conditions: a) $\left.\mathrm{KO}^{t} \mathrm{Bu}, \mathrm{THF}, \mathrm{RT}, 6 \mathrm{~h} . \mathrm{b}\right) \mathrm{AlCl}_{3}, 2,3$-dichlorobenzoyl chloride, $\mathrm{DCM}, 0^{\circ} \mathrm{C}-\mathrm{RT}, 18 \mathrm{~h}$.

TOC graphic

57,617
member library

6
ERK5 HTS IC ${ }_{50}=8.0 \mathrm{uM}$

6p ERK5 IC ${ }_{50}=2.7 \mathrm{uM}$ p38 alpha = >120 uM

SUPPORTING INFORMATION

High-throughput screening and hit validation of extracellularrelated kinase 5 (ERK5) inhibitors.

Stephanie M. Myers, Ruth H. Bawn, Louise C. Bisset, Timothy J. Blackburn, Betty Cottyn, Lauren Molyneux, Ai-Ching Wong, Celine Cano, William Clegg, Ross. W. Harrington, Hing Leung, Laurent Rigoreau, Sandrine Vidot, Bernard T. Golding, Roger J. Griffin, Tim Hammonds, David R. Newell, Ian R. Hardcastle*

Screening

Z^{\prime} factors for each plate were calculated using Equation 2, and were typically 0.6-0.8. Plates with Z^{\prime} factors below 0.4 were re-screened.
A:

Figure S1: A) Z' factors for diversity library; b) Z' factors for kinase focussed library

Retest 1 vs.Retest 2

Figure S2: ERK5 retest data

ERK5 IC $_{50}$ Determination (LANCE)

Plates were read on a Pherastar microplate reader (BMG Labtech).

5 x Assay buffer was prepared freshly: 250 mM Tris pH 7.5, $25 \mathrm{mM} \mathrm{MgCl} 2,2.5 \mathrm{mM}$ EGTA, 10 mM DTT, 0.05% Triton x 100. ERK5 (In-house preparation, co-expressed with MEK5) 2.3 uM. Substrate- Perkin Elmer, Ulight-MBP Peptide, product number TRF0109, 5 nmoles (stock concentration of 5 uM). Antibody- Perkin Elmer, Europium-anti-phosphoMBP antibody. Stock concentration of 0.625 uM. Lance Detection Buffer- 10 x stock concentration. Used at 1 x final concentration. Adenosine 5'-triphosphate disodium salt. EDTA.

Assay buffer concentrations were 50 mM Tris pH $7.5,5 \mathrm{mM} \mathrm{MgCl} 2,0.5 \mathrm{mM}$ EGTA, $2 \mathrm{mM} \mathrm{DTT} 0.01 \$,$% Triton x 100$. Enzyme and Substrate/ATP reaction mix was made up in equivalent of 1 x buffer. ERK5 working solution $1.44 \mathrm{uM}, 15$ nM. Made up to $2 \times$ working stock concentration of 30 nM . Prepared in $1 \times$ Assay Buffer. For 1 plate, added $52 \mu \mathrm{l}$ of ERK5, 500μ l of $5 \times$ Assay Buffer and 1948μ of $\mathrm{H}_{2} \mathrm{O}$ and 0.5 ml of No Protein negative control- $100 \mu \mathrm{l}$ Assay Buffer, $400 \mathrm{HI}_{2} \mathrm{O}$. Substrate/ATP working solution: Km for ATP is 350 uM . Substrate final concentration 50 nM .2 .5 x working stock solution of ATP and Substrate mix - $875 \mu \mathrm{M}$ ATP working solution and 125 nM Substrate. For 1 plate, added 17.5μ l of 100 mM ATP stock $+50 \mu$ l of Substrate $+400 \mu \mathrm{l}$ of $5 \times$ Assay Buffer $+1532.5 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$. EDTA/Antibody Detection Reagent: Prepared a 2 x working stock of EDTA/Antibody mix, final concentrations in assay of 2 nM antibody and 5 mM EDTA. Stock concentrations of 0.625 uM and 0.5 M for Antibody and EDTA respectively. Diluted detection reagent in LANCE detection buffer at a working stock concentration of $1 \times$ from 10 x . For 1 plate, added $84 \mu \mathrm{l}$ of EDTA $+27 \mu \mathrm{l}$ of Antibody $+420 \mu$ l of LANCE Detection Buffer $+3669 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$.

Dry spotted 1μ of compound in 20% DMSO to test wells, or 20% DMSO to blanks and controls into the assay plate using a MATRIX PlateMate ${ }^{\circledR}$ Plus. Added 5μ l of ERK5 working solution to test and control wells and 5μ of no protein negative control solution to blanks using a Thermo Multidrop Combi or Matrix multichannel pipette. Added 4 $\mu \mathrm{l}$ of Substrate/ATP working solution to all wells using a Thermo Multidrop Combi or Matrix multichannel pipette. Incubated for 2 hours at $37^{\circ} \mathrm{C}$. Added 10μ of EDTA/Antibody to all wells using a Thermo Multidrop Combi or Matrix multichannel pipette. Incubated for 2 hours at room temperature in the dark then read on the Pherastar plate reader.

p38 alpha IC_{50} Determination (LANCE)

The p38 LANCE assay protocol was carried out as described for the ERK5 LANCE assay protocol using the same quantities and concentrations unless stated below. Km for ATP is $350 \mu \mathrm{M}$, as was determined for ERK5. p38 α /SAPK2a, active N-terminal GST-tagged recombinant full length protein (Millipore, Product \# 14-251). Supplied at $10 \mu \mathrm{~g} / 4 \mu \mathrm{l}$ was diluted down to $10 \mu \mathrm{~g} / 40 \mu \mathrm{l}$ by addition of $156 \mu \mathrm{l}$ of 50 mM Tris/HCL pH 7.5, $150 \mathrm{mM} \mathrm{NaCl}, 0.1 \mathrm{mM}$ EGTA, 0.03\% Brij-35, 50\% glycerol and 0.1\% 2-mercaptoethanol.

Synthesis

Benzothiazole Series 3

Reactions of $\mathbf{1 1 a , b}$ with with potassium thiocyanate-copper(II) sulfate gave in each case, besides the desired 5substituted benzothiazole $\mathbf{9 a , b}$, a significant quantity of a thiocyanatobenzene (12a,b). This can be rationalised by postulating the formation of the electrophilic species ${ }^{+} \mathrm{SCN}$ from $\mathrm{KSCN}^{2} \mathrm{CuSO}_{4}$, which attacks the aniline primarily at available ortho and para positions. The former leads, by cyclisation of an intermediate thiocyanatobenzene, to a benzothiazole, whereas the latter mode of attack is arrested at the thiocyanatobenzene.

The sequence described above is well exemplified by 3 -(pyrrolidin-1-ylsulfonyl)benzenamine 11a, which gave 3-(pyrrolidin-1-ylsulfonyl)-4-thiocyanatobenzenamine (12a) and (pyrrolidin-1-ylsulfonyl)benzo[d]thiazol-2-amine (9a). Structural identification by ${ }^{1} \mathrm{H}$ NMR was initially ambiguous because both compounds are $1,2,4$-trisubstituted benzenes and have a similar set of coupling constants. However, the structural assignment to 12a could be secured by crystal structure analysis (Supporting information: Figure S1). Further, the infrared spectrum of 12a showed $v_{\text {max }}$ $2155 \mathrm{~cm}^{-1}$, whereas the accompanying compound was silent in the absorption region for the SCN group and is therefore $\mathbf{9 a}$. The structures of the benzothiazoles $\mathbf{3 a}$ and $\mathbf{3 i}$ were also validated by X-ray analysis (Supporting information: Figures S 2 and S 3). The reactions leading to 3a-c only afforded benzothiazoles because there was only one intermediate thiocyanate in each case, i.e. with the SCN group ortho to the initial amino function.

Nicotinonitrile Series 4

Alkylation of 14a with tert-butyl 2-(2-bromoacetamido)acetate gave 15a, leading to $\mathbf{4 a}$ after deprotection using TFA. Similarly, reaction of $\mathbf{1 4 a}$ with ethyl 2-(2-bromoacetamido)acetate gave the ethyl ester $\mathbf{1 5 I}$. For $\mathbf{4 g}, 4$-pyridylchalcone 13g was prepared via Wittig reaction of 4-pyridine carboxaldehyde with (benzoylmethylene)triphenylphosphorane, following failure of the Claisen-Schmidt condensation (Scheme not shown).

The proline derivative 19 was prepared by reaction of proline methyl ester with bromoacetyl chloride giving 18, which was reacted with 14a as previously described (Scheme 4).

Further variations to the thioether group were introduced via alkylation of 14a. The shorter carboxamides $\mathbf{2 0}$ and $\mathbf{2 1}$ were prepared by alkylation of 14a with chloroacetamide and methyl-2-bromoacetate, respectively (Scheme 5). Alkylation of 14a with either t-butyl 4-bromobutanoate or t-butyl 5 -bromopentanoate, followed by treatment with TFA gave the simplified alkylcarboxylic acid derivatives 23a and b, respectively (Scheme 6). Similarly, the aminoacid derivative $\mathbf{2 8}$ resulted from the alkylation of 14a with the protected mesylate of N-(2-hydroxyethyl)glycine $\mathbf{2 6}$ giving 27, followed by deprotection to 28 . Mesylate $\mathbf{2 6}$ was obtained by reaction of t-butyl bromoacetate with ethanolamine giving 24, followed by sequential Boc protection and mesylation (Scheme 7).

The acetamide derivatives $\mathbf{3 1}$ and $\mathbf{3 2}$ were prepared by the alkylation of $\mathbf{1 4 a}$ and $\mathbf{1 4 g}$, respectively, with bromoacetamide $\mathbf{3 0}$ which was obtained by reaction of aminoacetone hydrochloride $\mathbf{2 9}$ with bromoacetylchloride (Scheme 8). ${ }^{1}$

4-Benzoylpyrrole-2-carboxamide Series 6

To prepare derivative $\mathbf{6 p}$ pyridyl amines $\mathbf{4 5}$ prepared as reported (Scheme S1). ${ }^{2}$ Starting from 3bromoisonicotinaldehyde 47, a Sonagashira reaction with ethynyltrimethylsilane afforded 3((trimethylsilyl)ethynyl)isonicotinaldehyde 48 in 98% yield. Cyclisation of 48 in the presence of ammonia afforded 2,6-naphthyridine $\mathbf{4 9}$. Selective reduction using platinum dioxide and calcium oxide in 2-methoxyethanol afforded amine 45 in 67% yield. CDI mediated amide coupling between carboxylic acid 36 a and amine 45 gave the target compound 6p in 55\% yield.

Scheme S1. (i) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{DABCO}, \mathrm{Cul}, \mathrm{THF}, \mathrm{RT}, 24$ h. (ii) $2.0 \mathrm{M} \mathrm{NH}_{3}$ in EtOH, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$. (iii) $\mathrm{PtO}_{2}, \mathrm{CaO}_{2}, \mathrm{H}_{2}, 2-$ methoxyethanol, RT, 16 h .

Crystal Structures

The principal aim of the crystallographic studies was a definitive identification of the compounds. The detailed molecular structures and crystallographic features require only brief comments, as bond lengths, angles and conformations are all normal and full results are provided. 12a has only one molecule in the asymmetric unit; there are no $\pi-\pi$ ring stacking interactions, and intermolecular NH...OS hydrogen bonds generate sheets of molecules (Figure S4). 3a and $\mathbf{3 i}$ are both benzothiazoles with the ring system substituted by an NH_{2} group and by a sulfonyl group bearing either a secondary (pyrrolidine, 3a) or a primary (n-propylamine, $\mathbf{3 i}$) amine substituent. 3a has one molecule in the asymmetric unit, from which centrosymmetric π-stacked dimers are formed; centrosymmetric dimer assembly also occurs through pairs of NH...N(thiazole) intermolecular hydrogen bonds (Figure S5), while NH...OS hydrogen bonds involving just one of the two sulfonyl O atoms link these dimers together in approximately planar ribbons from which pyrrolidine substituents protrude on both sides. $\mathbf{3 i}$ has two molecules with very similar conformations in the asymmetric unit, and there is no π-stacking at all in this structure; it contains the same type of hydrogen-bonded dimers as 3 (Figure S6), though here they are formed by pairs of crystallographically independent molecules and there is no precise inversion symmetry (it is only approximate), and the availability of an extra (sulfonamide) NH group means that all O atoms act as hydrogen bond acceptors in a complex three-dimensional network.

Figure S4. A hydrogen-bonded sheet of molecules of 3-(pyrrolidin-1-ylsulfonyl)-4-thiocyanatobenzenamine 12a. Cbound H atoms have been omitted for clarity. Here and in other Figures atoms are shown as 40% probability displacement ellipsoids.

Figure S5. A hydrogen-bonded centrosymmetric dimer of 6-(pyrrolidine-1-sulfonyl)-benzothiazol-2-ylamine 3a.

Figure S6. The approximately centrosymmetric hydrogen-bonded dimer of 2-amino- N-propylbenzo[d]thiazole-6sulfonamide $\mathbf{3 i}$.

Experimental Section

General Methods

Reagents were purchased from fine chemicals vendors, and used as received unless otherwise stated. Solvents were purified and stored according to standard procedures. Petrol refers to that fraction in the boiling range $40-60^{\circ} \mathrm{C}$. THF refers to anhydrous tetrahydrofuran, either by distillaton from sodium benzophenone, or from commercial sources. Melting points were obtained on a Stuart Scientific SMP3 apparatus and are uncorrected. Thin layer chromatography was performed using silica gel plates (Kieselgel 60F254; 0.2 mm), and visualized with UV light or potassium permanganate. Chromatography was conducted under medium pressure in glass columns or using a Biotage SP4 instrument in prepacked columns (FLASH+ Silica columns (40-63 $\mu \mathrm{m}, 60 \AA$). Proton $\left({ }^{1} \mathrm{H}\right)$ and carbon $\left({ }^{13} \mathrm{C}\right)$ nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Spectrospin AC $300 \mathrm{E}\left({ }^{1} \mathrm{H}\right.$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75 MHz), a Jeol JNM-LA500 spectrometer $\left({ }^{1} \mathrm{H}\right.$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 125 MHz$)$, or a Bruker Avance II $500\left({ }^{1} \mathrm{H}\right.$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 125 MHz) employing the solvent as internal standard. IR spectra were recorded on a Bio-Rad FTS 3000MX diamond ATR. Liquid Chromatography-Mass Spectrometry (MS) was carried out on a Micromass Platform instrument operating in positive and negative ion electrospray mode, employing a $50 \times 4.6 \mathrm{~mm}$ C18 column (Waters Symmetry or Waters Atlantis) 5 or 12 min gradient elution with 0.05% formic acid in methanol (10-90\%). Elemental analyses were performed by The School of Pharmacy, Analytical Facility, University of London, WC1N 1AX. Accurate masses were measured using a Finnigan MAR 95 XP or a Finnigan MAR 900 XLT at the EPSRC National Mass Spectrometry Service Centre (Chemistry Department, University of Wales, Swansea, Wales, SA2 8PP).

6-(Pyrrolidin-1-ylsulfonyl)benzo[d]thiazol-2-amine (3a) ${ }^{3}$

A suspension of 4-(pyrrolidin-1-ylsulfonyl)aniline ($410 \mathrm{mg}, 1.8 \mathrm{mmol}$), $\mathrm{KSCN}(4.43 \mathrm{~g}, 45 \mathrm{mmol}$) and anhydrous $\mathrm{Cu}(\mathrm{II}) \mathrm{SO}_{4}(3.53 \mathrm{~g}, 23 \mathrm{mmol})$ in $\mathrm{MeOH}(9 \mathrm{~mL})$ was heated at reflux for 3 h , then cooled and filtered. The filtrate was diluted with water ($5 \mathrm{~mL} / \mathrm{mmol}$) and heated to reflux and $\mathrm{EtOH}(11 \mathrm{~mL} / \mathrm{mmol}$) added. The reaction mixture was cooled, filtered and concentrated in vacuo. The residue was diluted with water ($5 \mathrm{~mL} / \mathrm{mmol}$), basified to pH 11 with aq. conc. ammonia and the product dissolved into EtOAc ($5 \times 10 \mathrm{~mL} / \mathrm{mmol}$). The combined organic layers were washed with aq. $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 25 \mathrm{~mL} / \mathrm{mmol})$, followed by brine $(25 \mathrm{~mL} / \mathrm{mmol})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in
vacuo. Chromatography (silica gel, 1:1 EtOAc:petrol) gave 3a as an off white solid ($480 \mathrm{mg}, 94 \%$): $\mathrm{R}_{\mathrm{f}}=0.40$ (EtOAc); $\mathrm{mp}: 248-249{ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 229,283$; IR $\left(\mathrm{cm}^{-1}\right) 3398(\mathrm{~N}-\mathrm{H}), 3290(\mathrm{~N}-\mathrm{H}), 1524$ (thiazole-C=N), $1329(\mathrm{~S}=\mathrm{O}), 1309$ $(\mathrm{S}=\mathrm{O}), 1145(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 1.61-1.65\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.10-3.14\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2}\right), 7.45(1 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}, \operatorname{ArH}), 7.60(1 \mathrm{H}, \mathrm{dd}, J=2.0$ and $8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 8.17(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$, DMSO- d_{6}): $25.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 48.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 117.7(\mathrm{ArC}), 121.1(\mathrm{ArC}), 125.4(\mathrm{ArC}), 132.1(\mathrm{ArC}), 156.7(\mathrm{ArC}), 170.3$ (ArC); LC-MS $(E S+) m / z=284.19\left[\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$284.0522, found 284.0518.

General procedure A - Synthesis of Nitrophenylsulfonamides

To a stirred solution of the amine (1 mol equiv.) and triethylamine (1.5 equiv.) in dichloromethane ($2 \mathrm{~mL} / \mathrm{mmol}$ amine) at $0-5^{\circ} \mathrm{C}$ was added the nitrobenzenesulfonyl chloride (0.5 equiv.) in small portions. The resulting yellow solution was stirred at room temperature for 3 h . The reaction mixture was diluted with dichloromethane (5 $\mathrm{mL} / \mathrm{mmol}$ amine), washed with aqueous sulfuric acid (1.0 M), followed by saturated aqueous sodium bicarbonate and brine (each $5 \mathrm{~mL} / \mathrm{mmol}$ amine). The organic phase was dried over MgSO_{4}, filtered and concentrated. The crude product was purified by recrystallisation from ethyl acetate/petrol.

1-((4-Nitrophenyl)sulfonyl)pyrrolidine (8a) ${ }^{4}$

General procedure A: p-nitrobenzenesulfonylchloride ($0.71 \mathrm{~g}, 3.2 \mathrm{mmol}$), pyrrolidine ($0.68 \mathrm{~g}, 0.80 \mathrm{~mL}, 9.6 \mathrm{mmol}$) and triethylamine ($0.97 \mathrm{~g}, 1.33 \mathrm{~mL}, 9.6 \mathrm{mmol}$) in DCM (6 mL). Recrystallisation from EtOAc gave $\mathbf{6 a}$ as an off white solid ($800 \mathrm{mg}, 98 \%$): $\mathrm{R}_{\mathrm{f}}=0.48$ (1:1 EtOAc:petrol); mp: $159-160^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 273$; IR ($\left.\mathrm{cm}^{-1}\right) 1472(\mathrm{~N}=0), 1347(\mathrm{~S}=\mathrm{O})$, $1300(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.77-1.85\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.27-3.31\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2}\right), 7.99-8.04(2 \mathrm{H}, \mathrm{m}, 2 \times$ ArH), 8.36-8.40 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $25.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 48.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 124.5(\mathrm{ArCH}), 128.8(\mathrm{ArCH})$, $144.2(\operatorname{ArC}), 150.6(\mathrm{ArC}) ;$ LC-MS (ES +) $m / z=256.15[\mathrm{M}+\mathrm{H}]^{+}$.

N-Ethyl- N -methyl-4-nitrobenzenesulfonamide (8b)

General procedure A. ($0.35 \mathrm{~g}, 72 \%$); mp $122-123^{\circ}{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.74(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{~N}$), $3.09\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$), $7.89-7.93(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}-\mathrm{Ar}), 8.29-8.33(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}-\mathrm{Ar}) ; \delta_{\mathrm{c}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $11.6,32.5,43.6,122.8,126.9,143.4,148.8 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=243.20[\mathrm{M}-\mathrm{H}]$.

4-Nitro-N-propylbenzenesulfonamide (8c)

General procedure A. ($0.41 \mathrm{~g}, 85 \%$); mp $88-89^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.82\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.39-1.52(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.89-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 4.61(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{NH}), 7.96-8.02(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}-\mathrm{Ar}), 8.28-8.33(2 \mathrm{H}, \mathrm{m}, 2 \times$ $\mathrm{H}-\mathrm{Ar}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.2,23.5,45.6,124.6,128.6,146.9 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=243.16[\mathrm{M}-\mathrm{H}]-$

1-(3-Nitrophenylsulfonyl)pyrrolidine (10a)

General procedure A. ($1.52 \mathrm{~g}, 89 \%$); mp 103-104 ${ }^{\circ} \mathrm{C}$ (lit mp 99-100 $\left.{ }^{\circ} \mathrm{C}\right) ;{ }^{17} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.74-1.80(4 \mathrm{H}, \mathrm{m}, 2 \times$ $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 3.22-3.26 (4H, m, $2 \times \mathrm{NCH}_{2}$), $7.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 8.08-8.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 8.37-8.41(1 \mathrm{H}, \mathrm{m}$,
$\mathrm{H}-\mathrm{Ar}), 8.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,1.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.7,48.4,122.7,127.1,130.6,133.0,140.9,149.0 ;$ MS (ES+) $m / z=256.43[\mathrm{M}+\mathrm{H}]^{+}$.

N-Ethyl-N-methyl-3-nitrobenzenesulfonamide (10b)

General procedure A. ($0.97 \mathrm{~g}, 89 \%$); mp 57-58 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.11\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.75(3 \mathrm{H}$, s , $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 3.12\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 7.69(1 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 8.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 8.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 8.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.4,34.3,45.4,122.6,127.1,130.6,132.9,141.6$, 149.0; $\mathrm{MS}(E S+) m / z=243.81[\mathrm{M}-\mathrm{H}]^{-}$.

General procedure B - Synthesis of Aminophenylsulfonamides

To the nitrophenylsulfonamide (1 mol equiv.) in ethyl acetate ($12 \mathrm{~mL} / \mathrm{mmol}$), was cautiously added palladium, 10 $w t \%$ on activated carbon (0.1 equiv.) and the reaction was stirred under H_{2} for 18 h . The resulting mixture was filtered through Celite and concentrated in vacuo to yield the product.

4-(Pyrrolidin-1-ylsulfonyl)benzenamine (7a)

General procedure B. ($0.32 \mathrm{~g}, 91 \%$); mp $167-168{ }^{\circ} \mathrm{C}$ (lit mp $\left.167.5-168^{\circ} \mathrm{C}\right) ;{ }^{15} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.65-1.70(4 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.11-3.15\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2}\right), 4.04\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 6.61-6.65(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}-\mathrm{Ar}), 7.53-7.56(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}-\mathrm{Ar})$; $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.5,48.1,114.4,129.8,130.0,150.2 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=227.25[\mathrm{M}+\mathrm{H}]^{+}$.

4-Amino-N-ethyl-N-methylbenzenesulfonamide (7b)

General procedure B. ($0.24 \mathrm{~g}, 94 \%$); mp $81-82^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.05\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.62(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 2.98\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.06\left(2 \mathrm{H}, \mathrm{br} s, \mathrm{NH}_{2}\right), 6.60-6.64(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}-\mathrm{Ar}), 7.46-7.51(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}-\mathrm{Ar})$; $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 13.3,34.2,45.1,114.4,129.8,150.8 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=215.25[\mathrm{M}+\mathrm{H}]^{+}$;

4-Amino-N-propylbenzenesulfonamide (7c)

General procedure B. $(0.28 \mathrm{~g}, 95 \%)$; mp $83-84^{\circ} \mathrm{C}\left(\right.$ lit $\left.\mathrm{mp} 85^{\circ} \mathrm{C}\right) ;{ }^{16} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.80\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 1.35-1.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 2.77-2.84 (2H, m, CH2NH), 4.05 (2H, br s, NH_{2}), $4.23(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{NH}), 6.59-6.64(2 \mathrm{H}$, $\mathrm{m}, 2 \times \mathrm{H}-\mathrm{Ar}), 7.54-7.59(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}-\mathrm{Ar}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.3,23.3,45.3,114.5,129.6,150.7 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=$ $215.24[\mathrm{M}+\mathrm{H}]^{+}$;

3-(Pyrrolidin-1-ylsulfonyl)benzenamine (11a)

General procedure B. (1.26 g, 93\%); mp 157-158 ${ }^{\circ} \mathrm{C}$ (lit mp $\left.155-156^{\circ} \mathrm{C}\right) ;{ }^{17} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.67-1.71(4 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.16-3.20\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2}\right), 3.84\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.79(1 \mathrm{H}, \mathrm{ddd}, J=1.2,2.1,7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $1.8,2.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.09-7.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.6,48.2,113.8$, 117.6, 119.0, 130.1, 138.9, 147.5; MS (ES+) $m / z=227.18[\mathrm{M}+\mathrm{H}]^{+}$.

3-Amino- N-ethyl- N-methylbenzenesulfonamide (11b)

General procedure B. $(0.80 \mathrm{~g}, 89 \%)$; mp $55-56{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.07\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.67(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 3.03\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 3.84\left(2 \mathrm{H}, \mathrm{br} s, \mathrm{NH}_{2}\right), 6.75-6.79(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=1.9,2.0 \mathrm{~Hz}, \mathrm{H}-$ Ar), 7.04-7.07 (1H, m, H-Ar), $7.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.4,34.3,45.2,113.6,117.4$, 118.9, 130.1, 147.5; $\mathrm{MS}(\mathrm{ES}+) m / z=215.25[\mathrm{M}+\mathrm{H}]^{+}$.

General procedure C - Benzothiazole Formation ${ }^{5}$

To the aminophenylsulfonamide (1 mol equiv.), KSCN (25 equiv.) and anhydrous $\mathrm{Cu}(I I) \mathrm{SO}_{4}$ (12 equiv.), was added anhydrous methanol ($5 \mathrm{~mL} / \mathrm{mmol}$ amine) with stirring. After boiling at reflux for 3 h the reaction mixture was cooled and filtered. The filtrate was diluted with water ($5 \mathrm{~mL} / \mathrm{mmol}$ amine) and heated to reflux. After addition of ethanol $(11 \mathrm{~mL} / \mathrm{mmol})$, the reaction mixture was cooled and filtered. The filtrate was concentrated and diluted with water (5 $\mathrm{mL} / \mathrm{mmol}$) and basified (pH 11) with aqueous ammonia. After extraction with ethyl acetate ($5 \times 10 \mathrm{~mL} / \mathrm{mmol}$), the combined organic layers were washed with saturated aqueous ammonium chloride ($2 \times 25 \mathrm{~mL} / \mathrm{mmol}$), brine (25 $\mathrm{mL} / \mathrm{mmol}$) and dried over MgSO_{4}. The mixture was filtered and concentrated in vacuo. The crude product was purified by recrystallisation from ethyl acetate-petrol or by medium pressure chromatography.

2-Amino-N-ethyl-N-methylbenzo[d]thiazole-6-sulfonamide (3b)

General procedure C. (0.02 g, 25\%); mp 179-180 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}, \mathrm{DMSO}) 1.03\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.63(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right) 2.97\left(2 \mathrm{H}, \mathrm{q}, ~ J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.44(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.56(1 \mathrm{H}, \mathrm{dd}, J=1.9,8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.96(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH_{2}), 8.13 (1H, s, H-Ar); $\delta_{\mathrm{c}}(75.5 \mathrm{MHz}, \mathrm{DMSO}) 13.2,34.3,44.8,117.7,120.9,125.2,156.6,170.2 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=$ $272.15[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ Calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$: 272.0522 Found 272.0524; $\mathrm{u}_{\max }($ film $) / \mathrm{cm}^{-1} 3400.2,3311.6$; UV $\lambda_{\text {max }}$ 229, 283 nm (EtOH).

2-Amino-N-propylbenzo[d]thiazole-6-sulfonamide (3i)

General procedure C. ($0.28 \mathrm{~g}, 95 \%$); mp $215-216^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}, \mathrm{DMSO}) 0.78\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.32-1.40$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.63-2.70 (2H, m, CH2NH), 7.40-7.45 (2H, m, NH, H-Ar), 7.58-7.61 (1H, m, H-Ar), 7.92 (2H, br s, NH_{2}), $8.10(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{Ar}) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}, \mathrm{DMSO}) 11.4,22.8,44.8,117.7,120.3,124.7,131.7,133.1,156.1,169.9 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=$ $272.13[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \mathrm{m} / z$ Calc. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: 289.0787 Found 289.0784; $\mathrm{u}_{\max }($ film $) / \mathrm{cm}^{-1} 3375.3$, 3302.1; UV $\lambda_{\max } 228,282 \mathrm{~nm}(E t O H)$.

3-(Pyrrolidin-1-ylsulfonyl)-4-thiocyanatobenzenamine (12a)

General procedure $\mathrm{C} .(0.31 \mathrm{~g}, 50 \%) ; \mathrm{mp} 99-100{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}, \mathrm{DMSO}) 1.82-1.87\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.24-3.28$ ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2}$), $6.21\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.88(1 \mathrm{H}, \mathrm{dd}, J=2.7,8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.19(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}, \mathrm{DMSO}) 25.1,48.1,116.1,119.5,121.8,136.6,153.4,168.7 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=284.53$ $[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}[\mathrm{M}+\mathrm{H}]^{+} m / z$ Calc.for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{O}_{2}$: 284.0522 Found 284.0523; $\mathrm{u}_{\max }($ film $) / \mathrm{cm}^{-1} 3435.2,3356.1,2154.5$; UV $\lambda_{\text {max }} 273 \mathrm{~nm}(\mathrm{EtOH})$.

General procedure $\mathrm{C} .(0.25 \mathrm{~g}, 49 \%)$; mp $59-60^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}, \mathrm{DMSO}) 1.10\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH} 2\right), 2.80(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 3.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 6.23\left(2 \mathrm{H}, \mathrm{br} s, \mathrm{NH}_{2}\right), 6.87(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.19(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}$, H-Ar), 7.54 (1H, d, J = 8.5, H-Ar); $\delta_{C}(75.5 \mathrm{MHz}, \mathrm{DMSO}) 13.3,33.8,44.5,104.0,112.1,115.6,118.4,135.6,140.3$, 151.5; MS (ES+) $m / z=272.05[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}[\mathrm{M}+\mathrm{H}]^{+} m / z$ Calc.for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{O}_{2}: 272.0522$ Found 272.0522; $\mathrm{u}_{\max }$ (film)/ $\mathrm{cm}^{-1} 3466.9,3373.5,2149.4 ;$ UV $\lambda_{\max } 273 \mathrm{~nm}(E t O H)$.

5-(Pyrrolidin-1-ylsulfonyl)benzo[d]thiazol-2-amine (9a)

General procedure C. (0.09 g, 14\%); mp 262-263 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}, \mathrm{DMSO}) 1.15-1.20\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.11-3.18$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2}\right), 7.36(1 \mathrm{H}, \mathrm{dd}, J=1.8,8.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.86\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.1, \mathrm{H}-\mathrm{Ar}) ; \delta_{\mathrm{c}}(75.5 \mathrm{MHz}, \mathrm{DMSO}) 25.3,47.9,115.6,118.7,135.2,151.2 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=284.25[\mathrm{M}+\mathrm{H}]^{+}$; HRMS $[\mathrm{M}+\mathrm{H}]^{+} m / z$ Calc.for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{O}_{2}$: 284.0522 Found 284.0522; $\mathrm{u}_{\max }($ film $) / \mathrm{cm}^{-1} 3346.5$; UV $\lambda_{\max } 273 \mathrm{~nm}$ (EtOH).

2-Amino-N-ethyl-N-methylbenzo[d]thiazole-5-sulfonamide (9b)

General procedure C. (0.08 g, 16\%); mp 232-233 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}, \mathrm{DMSO}) 1.03\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.65(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 3.00\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 7.36(1 \mathrm{H}, \mathrm{dd}, J=1.8,8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.58(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.86(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH_{2}), $7.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}) ; \delta_{c}(75.5 \mathrm{MHz}, \mathrm{DMSO}) 13.2,34.3,44.9,115.9,119.3,121.9,153.4,168.7 ; \mathrm{MS}(\mathrm{ES}+)$ $m / z=272.18[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS $[\mathrm{M}+\mathrm{H}]^{+} m / z$ Calc.for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{O}_{2}$: 272.0522 Found 272.0525; $\mathrm{u}_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3385.1$, 3249.1; UV $\lambda_{\max } 237 \mathrm{~nm}(E t O H)$.

General procedure D^{6}

To a solution of the required 2-thioxo-1,2-dihydropyridine-3-carbonitrile (1.0 eq) and the suitable α-halogen compound (1.0 eq) in dimethylformamide (20 ml) was added potassium hydroxide (1.2 eq) at $0^{\circ} \mathrm{C}$. The reaction mixture was heated under reflux for 24 h , allowed to cool and diluted with water. The precipitate was collected by filtration and either recrystallization (THF) or chromatography (silica; 20-100\% EtOAc/petrol) gave the desired 2pyridyl sulfide.

2-[3-Cyano-4-(4-methoxyphenyl)-6-phenylpyridin-2-ylsulfanyl]acetylamino\} acetic acid tert-butyl ester,15h

General procedure D: 4-(4-methoxyphenyl)-2-mercapto-6-phenylnicotinonitrile, 14h ($0.200 \mathrm{~g}, 0.6 \mathrm{mmol}$), tert-butyl 2-(2-bromoacetamido)acetate ($0.230 \mathrm{~g}, 0.52 \mathrm{mmol}$), $\mathrm{KOH}(0.034 \mathrm{~g}, 0.6 \mathrm{mmol})$, DMF (20 mL). Yellow solid (0.057 g , 20\%); m.p. $111.3^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$ 276, 339; IR $u_{\max } / \mathrm{cm}^{-1} 2212,1738,1660 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.38$ $\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 4.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.06(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.27$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), $7.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$-pyridine), $7.61(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.99\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}\right.$ and NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 28.3, 34.3, 42.0, 55.8, 115.1, 127.8, 129.2, 129.4, 130.2, 131.0, 82.5, 104.3, 117.2, 137.5, 154.9, 159.3, 161.9, 162.1, 168.4, 168.7; MS (ES+) $m / z=490.2[\mathrm{M}+\mathrm{H}]^{+}$.
[2-(3-Cyano-4,6-diphenylpyridin-2-ylsulfanyl)acetylamino]acetic acid tert-butyl ester, 15d

General procedure D: 4,6-diphenyl-2-mercaptonicotinonitrile ($0.200 \mathrm{~g}, 0.68 \mathrm{mmol}$), tert-butyl 2-(2bromoacetamido) acetate ($0.262 \mathrm{~g}, 0.1 \mathrm{mmol}$), KOH ($0.04 \mathrm{~g}, 0.68 \mathrm{mmol}$), DMF (20 mL). Yellow solid ($0.073 \mathrm{~g}, 23 \%$); $\mathrm{mp} 70.1^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}) 270,333 ; \mathrm{IR}_{\max } / \mathrm{cm}^{-1} 2158,1735,1652 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.51(9 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 3.99\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 4.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.10-7.65\left(9 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}\right.$ and CH -pyridine), $7.98(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 28.4,42.7,117.1,127.9,128.7,129.4,130.5,131.1,132.5,60.1,83.7,148.5,159.0,167.6,183.3$, 189.0, 189.6, 192.6; MS : $(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=460.2[\mathrm{M}+\mathrm{H}]^{+}$.

\{2-[3-Cyano-6-(4-methoxyphenyl)-4-phenylpyridin-2-ylsulfanyl]acetylamino\}acetic acid tert-butyl ester, 15i

General procedure D: 6-(4-methoxyphenyl)-2-mercapto-4-phenylnicotinonitrile 14i ($0.100 \mathrm{~g}, 0.31 \mathrm{mmol}$), tert-butyl 2-(2-bromoacetamido)acetate ($0.118 \mathrm{~g}, 0.47 \mathrm{mmol}$), $\mathrm{KOH}(0.034 \mathrm{~g}, 0.6 \mathrm{mmol})$, DMF (20 mL). Yellow solid (0.154 g , $61 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.39\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.02$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.27(4 \mathrm{H}, \mathrm{m}, \mathrm{NH}$ and $\mathrm{H}-\mathrm{Ar}), 7.52(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{pyridine}), 7.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 8.04(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7$ $\mathrm{Hz}, \mathrm{H}-\mathrm{Ar})$.

[2-(3-Cyano-6-methyl-4-phenylpyridin-2-ylsulfanyl)acetylamino]acetic acid tert-butyl ester, 15j

General procedure D: 6-phenyl-2-mercapto-4-methylnicotinonitrile ($0.100 \mathrm{~g}, 0.44 \mathrm{mmol}$), tert-butyl 2-(2bromoacetamido) acetate ($0.167 \mathrm{~g}, 0.66 \mathrm{mmol}$), $\mathrm{KOH}(0.024 \mathrm{~g}, 0.43 \mathrm{mmol})$, DMF (5 mL). Yellow solid ($0.143 \mathrm{~g}, 82 \%$); m.p. $126.1^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 262 ; \mathrm{IR}_{\max } / \mathrm{cm}^{-1} 3297,2218,1731,1682 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 1.40$ (9H, s, ($\left.\mathrm{CH}_{3}\right)_{3}$), $3.76\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 4.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.58(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 8.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$) $\delta \mathrm{ppm} 24.7,28.1,33.9,42.3,120.0,128.7,129.2,130.3 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=398.1$ $[\mathrm{M}+\mathrm{H}]^{+}$.

[2-(3-Cyano-4,6-dimethylpyridin-2-ylsulfanyl)acetylamino]acetic acid tert-butyl ester, 15k

General procedure D: 4,6-dimethyl-2-mercaptonicotinonitrile ($0.100 \mathrm{~g}, 0.6 \mathrm{mmol}$), tert-butyl 2-(2bromoacetamido) acetate ($0.226 \mathrm{~g}, 9.1 \mathrm{mmol}$), $\mathrm{KOH}(0.034 \mathrm{~g}, 0.6 \mathrm{mmol})$, DMF (20 mL). Yellow solid ($0.122 \mathrm{~g}, 61 \%$); m.p. $132.4^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$ 221, 266, 302; IR $u_{\max } / \mathrm{cm}^{-1} 2218,1737,1652 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.44(9 \mathrm{H}$, $\left.\mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.92\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.89\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}\right.$-pyridine) , $7.55(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 20.4, 24.8, 28.4, 33.8, 42.9, 121.1, 82.5, 100.0, 105.8, 114.7, 152.8, 162.2, 168.9, 168.9; MS (ES+) $m / z=336.1[M+]^{+} ;$Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 57.29 ; \mathrm{H}, 6.31 ; \mathrm{N}, 12.53$. Found.C, 57.48; $\mathrm{H}, 6.08 ; \mathrm{N}, 11.99$.

2-Bromo-N-(2-oxopropyl)acetamide, 30

A mixture of glycine ($10.0 \mathrm{~g}, 0.13 \mathrm{~mol}$), pyridine ($65 \mathrm{~mL}, 0.80 \mathrm{~mol}$) and acetic anhydride ($143 \mathrm{~mL}, 1.52 \mathrm{~mol}$) was refluxed 6 h , then allowed to cool and poured onto ice/water (500 mL). The mixture was extracted with DCM (3 x $100 \mathrm{~mL})$. The organic extracts were washed with water ($3 \times 100 \mathrm{~mL}$), dried (MgSO_{4}), and concentrated in vacuo giving acetamidoacetone ($4.22 \mathrm{~g}, 56 \%$) which was used without further purification.

A mixture of conc. hydrochloric acid (6 mL), water (6 mL) and acetamidoacetone ($2 \mathrm{~g}, 17.4 \mathrm{mmol}$) and the mixture was refluxed under N_{2} for 6 h , then concentrated in vacuo giving 1-aminopropan-2-one hydrochloride 29 (1.3 g, 68\%) which was used without further purification.

To a solution of 1-aminopropan-2-one hydrochloride ($1.0 \mathrm{~g}, 9.0 \mathrm{mmol}$) in DCM (20 ml), was added $\mathrm{CaCO}_{3}(5.0 \mathrm{eq})$ and bromoacetyl chloride (2.0 eq). The resulting mixture was refluxed 12 h , then allowed to cool and diluted with water, and filtered. Recrystallization (ex THF) gave $\mathbf{3 0}(0.71 \mathrm{~g}, 53 \%)$; m.p. $77.0^{\circ} \mathrm{C}$; $\mathrm{IR} \mathrm{u}_{\text {max }} / \mathrm{cm}^{-1} 3074,1724,1643 ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.17\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{~N}\right), 7.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.

1-(2-Bromoacetyl)pyrrolidine-2-carboxylic acid methyl ester (18)

A solution of proline methyl ester ($5.0 \mathrm{~g}, 30 \mathrm{mmol}$) in water (20 mL) was added to a stirred suspension of CaCO_{3} in CHCl_{3} at $0^{\circ} \mathrm{C}$, followed by dropwise addition of 2-bromoacetylchloride ($9.5 \mathrm{~g}, 60 \mathrm{mmol}$) in CHCl_{3} and stirring continued 16 h , then filtered. The filtrate washed with $\mathrm{HCl}(1 \mathrm{M}, 20 \mathrm{~mL})$, sodium carbonate ($\mathrm{sat} ., 20 \mathrm{~mL}$) and water $(20 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Recrystallisation (ether) gave $\mathbf{1 8}\left(6.62 \mathrm{~g}, 77 \%\right.$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta ~ p p m ~ 1.94(3 \mathrm{H}, \mathrm{m}), 2.14(2 \mathrm{H}, \mathrm{m}), 3.62(4 \mathrm{H}, \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{m})$.

General procedure E^{7}

A mixture of the corresponding aldehyde (1.2 eq), ketone (1.0 eq), and $\mathrm{KOH}(2.4 \mathrm{eq})$ in absolute ethanol (10 ml) was stirred at rt for 4 h , then water was added. The precipitate was collected by filtration and recrystallized (ethanol).

(E)-3-(4-Fluorophenyl)-1-phenylprop-2-en-1-one (13a)

General procedure E: acetophenone ($0.97 \mathrm{~mL}, 8.32 \mathrm{mmol}$), 4-fluorobenzaldehyde ($1.07 \mathrm{~mL}, 9.98 \mathrm{mmol}$), $\mathrm{KOH}(1.11 \mathrm{~g}$, $21 \mathrm{mmol})$. Yellow solid ($1.41 \mathrm{~g}, 75 \%$); m.p. $87^{\circ} \mathrm{C}\left(\mathrm{lit} . .^{8} 52^{\circ} \mathrm{C}\right) ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 309 ; \mathrm{IR} \mathrm{u}_{\text {max }} / \mathrm{cm}^{-1} 1656 ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} ; 7.14(2 \mathrm{H}, \mathrm{dd}, J=6.6$ and $8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.48-7.55(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.62(1 \mathrm{H}, \mathrm{ddd}, J=1.2,1.5$ and 7.4 $\mathrm{Hz}, \mathrm{H}-\mathrm{Ar}), 7.66(2 \mathrm{H}, \mathrm{dd}, J=5.4$ and $8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.80(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{COCH}), 8.03-8.05(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} ; 116.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=22.0 \mathrm{~Hz}\right), 121.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=2.2 \mathrm{~Hz}\right), 128.5,128.7,130.4\left(\mathrm{~d}, J_{\mathrm{CF}}=8.6 \mathrm{~Hz}\right), 131.2(\mathrm{~d}$, $\left.J_{\text {CF }}=3.1 \mathrm{~Hz}\right), 132.9,138.2,143.5,164.1\left(\mathrm{~d}, J_{\mathrm{CF}}=251.3 \mathrm{~Hz}\right), 190.3 ; \mathrm{MS}:(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=227.1[\mathrm{M}+\mathrm{H}]^{+}$.

(E)-3-(3-Fluorophenyl)-1-phenylprop-2-en-1-one (13b)

General procedure E: acetophenone ($1.03 \mathrm{~g}, 8.60 \mathrm{mmol}$), 3-fluorobenzaldehyde ($1.07 \mathrm{~mL}, 10.20 \mathrm{mmol}$), $\mathrm{NaOH}(0.82$ g, 20.60 mmol). Yellow crystals ($1.24 \mathrm{~g}, 64 \%$); m.p. $86-88^{\circ} \mathrm{C}$ (lit. ${ }^{9} 87-89^{\circ} \mathrm{CEtOH}$); $\lambda_{\text {max }}$ (EtOH/nm) 297, 379; IR $U_{\text {max }} / \mathrm{cm}^{-1} 1661,1594,1578,1481,1444,1338,1313,1267 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} ; 7.06$ ($1 \mathrm{H}, \mathrm{dddd}, \mathrm{J}=1.0$, $8.3,9.3$ and $10.8 \mathrm{~Hz}, \mathrm{H}-2), 7.13(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=0.9,7.6$ and $8.4 \mathrm{~Hz}, \mathrm{H}-5), 7.29-7.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 7.42-7.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.52\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.3,2.0\right.$ and $\left.7.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.56-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{COCHCH}$ and $\mathrm{H}-6), 7.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}$, $\mathrm{COCH})$, , 7.95-7.97 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$; $116.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=22.2 \mathrm{~Hz}\right.$), 123.0 ($\mathrm{d}, \mathrm{J}_{\mathrm{CF}}=11.3$ $\mathrm{Hz}), 124.5\left(\mathrm{~d}, J_{\mathrm{CF}}=3.4 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, J_{\mathrm{CF}}=7.3 \mathrm{~Hz}\right), 128.6,128.7,129.8\left(\mathrm{~d}, J_{\mathrm{CF}}=2.9 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{CF}}=8.8 \mathrm{~Hz}\right), 132.9$, $137.5,138.0,161.0\left(d, J_{C F}=253.1 \mathrm{~Hz}\right), 190.5 ; \mathrm{MS}(E S+) m / z=227.03[\mathrm{M}+\mathrm{H}]^{+}$.

(E)-3-(2-Fluorophenyl)-1-phenylprop-2-en-1-one (13c)

General procedure E : acetophenone ($1.03 \mathrm{~g}, 8.60 \mathrm{mmol}$), 2-fluorobenzaldehyde ($1.07 \mathrm{~mL}, 10.20 \mathrm{mmol}$), $\mathrm{NaOH}(0.82$ g, 20.60 mmol). Yellow crystals ($1.08 \mathrm{~g}, 56 \%$); m.p. $49-51^{\circ} \mathrm{C}$ (lit $47-48{ }^{\circ} \mathrm{CEtOH}$); $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 302,345$; $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1}$ $1659,1603,1572,1482,1447,1335,1317,1280 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} ; 7.11-7.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.35-7.42$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.51-7.55(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ and $\mathrm{H}-\mathrm{Ar}), 7.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6$ and $7.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.8 \mathrm{~Hz}, \mathrm{COCH})$, 8.02-8.04 (2H, m, H-Ar); MS (ES+) m/z = $227.04[\mathrm{M}+\mathrm{H}]^{+}$.

(E)-3-(2,4-Difluorophenyl)-1-phenylprop-2-en-1-one (13f)

General procedure E: acetophenone ($0.82 \mathrm{~mL}, 7.0 \mathrm{mmol}$), 2,4-difluorobenzaldehyde ($1.3 \mathrm{~mL}, 7.0 \mathrm{mmol}$), $\mathrm{NaOH}(350$ $\mathrm{mg}, 8.80 \mathrm{mmol})$. Yellow crystals ($1.40 \mathrm{~g}, 80 \%$); m.p. $59-61{ }^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 311$; $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 1659,1604,1589$, 1497; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm $7.25(1 \mathrm{H}, \mathrm{ddd}, J=2.5,8.5$ and $10.9 \mathrm{~Hz}, \mathrm{H}-3), 7.41(1 \mathrm{H}, \mathrm{ddd}, J=2.5,9.3$ and 11.5 Hz, H-5), 7.58-7.61 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$ and $\mathrm{H}-5^{\prime}$), $7.70\left(1 \mathrm{H}, \mathrm{ddd}, J=1.2,1.3\right.$ and $\left.7.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.8 \mathrm{~Hz}$, COCHCH), $7.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.8 \mathrm{~Hz}, \mathrm{COCH}), 8.15-8.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 8.24(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.8,8.9$ and $15.5 \mathrm{~Hz}, \mathrm{H}-$ $6) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 104.6\left(\mathrm{dd}, J_{\mathrm{CF}}=26.2\right.$ and 26.3 Hz), 112.6 (dd, $J_{\mathrm{CF}}=3.5$ and 21.7 Hz), 119.2 (dd, $J_{C F}=3.8$ and 11.6 Hz), $123.8\left(\mathrm{dd}, J_{\mathrm{CF}}=2.3\right.$ and 3.7 Hz$), 128.6,128.8,130.7\left(\mathrm{dd}, J_{\mathrm{CF}}=3.8\right.$ and 10.0 Hz$), 133.4,134.2$ (dd, $J_{C F}=1.4$ and 3.7 Hz), 137.2, $161.1\left(\mathrm{dd}, J_{\mathrm{CF}}=12.5\right.$ and 254.5 Hz), 163.1 (dd, $J_{\mathrm{CF}}=13.1$ and 252.1 Hz), 188.9; MS $(\mathrm{ES}+) \mathrm{m} / z=245.2[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$245.0772, found 245.0771.

(E)-1-Phenyl-3-(pyridin-4-yl)prop-2-en-1-one (13g) ${ }^{10}$

A mixture of 4-pyridine carboxaldehyde ($0.56 \mathrm{~g}, 5.20 \mathrm{mmol}$) and (benzoylmethylene) triphenylphosphorane (1.97 g , 5.20 mmol) in anh. toluene (10 mL) was refluxed for 3.5 h , then allowed to cool and concentrated in vacuo. The residue was triturated with petrol until a solid formed, then filtered, washing with $1 \mathrm{M} \mathrm{HCl}(25 \mathrm{~mL})$. The filtrate was neutralised with 2.5 M NaOH . The resulting precipitate was filtered and dried in vacuo giving $\mathbf{1 3 g}$ as a yellow solid ($0.85 \mathrm{~g}, 78 \%$). m.p. $75-77^{\circ} \mathrm{C}$ (lit. $73-74.5^{\circ} \mathrm{C}$); $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 282$; IR $u_{\max } / \mathrm{cm}^{-1} 3058,3034,1659,1593,1578,1480$, 1445, 1427; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} ; 7.41-7.7 .56(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}, \mathrm{COCHCH}$ and COCH$), 7.63(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}$,

4-(4-Fluorophenyl)-2-mercapto-6-phenyInicotinonitrile (14a) ${ }^{11}$

A mixture of (E)-3-(4-fluorophenyl)-1-phenylprop-2-en-1-one (13a) ($2.0 \mathrm{~g}, 8.85 \mathrm{mmol}$), malononitrile ($0.595 \mathrm{~g}, 8.85$ $\mathrm{mmol})$, sulfur ($0.34 \mathrm{~g}, 10.6 \mathrm{mmol}$) and morpholine ($1.0 \mathrm{~mL}, 11.5 \mathrm{mmol}$) in ethanol (25 ml) was heated to reflux with stirring for 2 h , then cooled to $20^{\circ} \mathrm{C}$, acidified with hydrochloric acid, and filtered. Chromatography (silica; 50% ethyl acetate, petrol) gave 14 a as a yellow solid ($0.353 \mathrm{~g}, 68 \%$); m.p. $222.6^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 271,330$; $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 3066$, 2214; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.10-7.23(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}$ and $\mathrm{H}-\mathrm{Ar}), 7.23-7.37(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.46-7.59(3 \mathrm{H}, \mathrm{m}$, CH-pyridine and $\mathrm{H}-\mathrm{Ar}$), 7.83-7.94 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 104.5,115.4 ; 116.5,116.8$, $117.8,127.8,130.8,131.2,132.4,132.5134 .6 ; 137.2,154.2,159.6 ; 161.3,162.8,166.1 ; \mathrm{MS}(E S+) \mathrm{m} / \mathrm{z}=306[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{FN} \mathrm{N}_{2} \mathrm{~S}: \mathrm{C}, 70.57$; H, 3.62; N, 9.14. Found.C, $70.71 ; \mathrm{H}, 3.58 ; \mathrm{N}, 9.45$; HPLC assay system: 87.5%

General procedure \mathbf{F}^{11}

A mixture of the required chalcone (1.0 eq.), malononitrile (1.0 eq .), sulfur (1.2 eq.) and morpholine (1.3 eq.) in ethanol (25 ml) was heated to reflux with stirring for 2 h , then cooled to $20^{\circ} \mathrm{C}$, acidified with hydrochloric acid, and filtered. The precipitate was purified by chromatography (silica; 50% ethyl acetate, petrol).

4,6-Diphenyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile, 14d

General procedure F: (E)-3-phenyl-1-phenylprop-2-en-1-one, 13d ($5.0 \mathrm{~g}, 24 \mathrm{mmol}$), malononitrile ($1.58 \mathrm{~g}, 24 \mathrm{mmol}$), sulfur ($1.0 \mathrm{~g}, 28.8 \mathrm{mmol}$) and morpholine ($2.7 \mathrm{~mL}, 31 \mathrm{mmol}$). Yellow solid ($3.52 \mathrm{~g}, 50 \%$); m.p. $192.4^{\circ} \mathrm{C} ; \lambda_{\text {max }}(E t O H / \mathrm{nm})$ 206, 269; IR U $\mathrm{max} / \mathrm{cm}^{-1} 2215$ (CN); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.41(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.59(3 \mathrm{H}, \mathrm{m}$, H-Ar), 7.66 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}$-pyridine, $\mathrm{H}-\mathrm{Ar}$), 7.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 115.5,127.8,128.9$, 129.2, 129.4, 130.5, 131.1, 137.3, 155.3; MS (ES +) $\mathrm{m} / \mathrm{z}=289.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC 88.5\%; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}$, 74.97; H, 4.19; N, 9.71. Found.C, 74.87; H, 4.01; N, 9.57.

6-(4-Methoxyphenyl)-4-phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile, 14i

General procedure F: (E)-3-phenyl-1-(4-methoxyphenyl)prop-2-en-1-one, 13i ($2.0 \mathrm{~g}, 8.4 \mathrm{mmol}$), malononitrile (0.56 $\mathrm{g}, 8.4 \mathrm{mmol}$), sulfur ($0.321 \mathrm{~g}, 10 \mathrm{mmol}$) and morpholine ($0.95 \mathrm{~g}, 10.9 \mathrm{mmol}$). Yellow solid ($1.47 \mathrm{~g}, 55 \%$); $\lambda_{\text {max }}$ ($\mathrm{EtOH} / \mathrm{nm}$) 303; $\mathrm{IR} \mathrm{u}_{\text {max }} / \mathrm{cm}^{-1} 2214(\mathrm{CN}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.90(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.28$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 7.53 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$-pyridine), 7.62 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 7.98 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$).

2-[3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylsulfanyl]acetamide, 20

To a suspension of $14 \mathrm{a}(1.0 \mathrm{eq})$ and sodium acetate trihydrate (1.1 eq) in ethanol (10 ml) was added chloroacetamide (1.0 eq). The resulting mixture was heated under reflux for 24 hours. A precipitate formed upon cooling which was collected and recrystallised from ethanol to give $\mathbf{2 0}$ as pale yellow needles ($119 \mathrm{mg}, 71 \%$). m.p. $236.2^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 230,270$ and 342 ; $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 1635(\mathrm{CO}), 2210(\mathrm{CN}), 3162$ and $3360(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 4.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.28\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Hd}, \mathrm{Hd}^{\prime}\right.$ and NH_{2}), $7.54(3 \mathrm{H}, \mathrm{m}, \mathrm{Hb}, \mathrm{Hb}$ and He$), 7.62(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-$ pyridine, Hc and Hc^{\prime}), $8.10\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ha}, \mathrm{Ha}^{\prime}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 34.4,116.1,116.4,128.2$, 129.2, 131.1, 131.4, 131.5, 153.2, 158.6, 160.0, 162.7, 169.1; MS (ES+) $m / z=364.1[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{OS}: \mathrm{C}, 66.10 ; \mathrm{H}, 3.88 ; \mathrm{N}, 11.56$. Found.C, 66.08; H, 3.86; N, 11.54.

General procedure G: ${ }^{6}$

To a mixture of the required 2-thioxo-1,2-dihydropyridine-3-carbonitrile (1.0 eq) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{eq})$ in THF was added the required α-halo-compound (1.0 eq). The reaction mixture was heated under reflux for 24 h , allowed to cool and diluted with water. The precipitate was collected by filtration and either recrystallization (THF) or chromatography (silica; 20-100\% EtOAc, petrol) gave the desired 2-pyridyl sulfide.

2-(2-(3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylthio)acetamido)acetic acid (4a)

15a ($91 \mathrm{mg}, 0.19 \mathrm{mmol}$), was dissolved in TFA ($29 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) and the resulting mixture was stirred at room temperature for 30 minutes, then concentrated in vacuo and washed (petrol) to give 4 a as a white solid (80 mg , $99 \%) . R_{f}=0.37(E t O H) ;$ m.p. $169-172{ }^{\circ} \mathrm{C}$; $\lambda \max (\mathrm{EtOH} / \mathrm{nm}) 270,342$; IR umax/cm ${ }^{-1} 3260,2215,1730,1622 ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta \mathrm{ppm} 3.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right), 4.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 7.43-7.54(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.82-7.87$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), $7.94(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{pyridine}), 8.28-8.30(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 8.64(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{NH}), 12.62(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}) ; \mathrm{MS}$ (ES+) $m / z=422.2[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 422.0976$, found 422.0969.

tert-Butyl 2-(2-(3-cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylthio)acetamido)acetate (15a)

A 1.6 M solution of NaOMe was prepared by slowly dissolving sodium metal in MeOH at rt . To $\mathbf{1 3 a}$ ($88 \mathrm{mg}, 0.39$ $\mathrm{mmol})$, and 2-cyanothioacetamide ($39 \mathrm{mg}, 0.39 \mathrm{mmol}$) was added sodium methoxide ($1.6 \mathrm{M} \mathrm{in} \mathrm{MeOH}, 0.60 \mathrm{~mL}, 0.94$ $\mathrm{mmol})$, The resulting solution was heated at $80^{\circ} \mathrm{C}$ for 1.5 h , then allowed to cool to rt and concentrated in vacuo. The crude material was redissolved in DMF ($1 \mathrm{~mL} / \mathrm{mmol}$) and tert-butyl 2-(2-bromoacetamido)acetate (149 mg, 0.59 $\mathrm{mmol})$ was added. The solution was heated at $100^{\circ} \mathrm{C}$ for $3-4 \mathrm{~h}$, then cooled, diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). Combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo. Chromatography (silica; 0-50\% EtOAc/petrol) gave 15 a as a white solid (71 mg , $38 \%)$. m.p. $172-174{ }^{\circ} \mathrm{C}$; $\lambda \max (\mathrm{EtOH} / \mathrm{nm})$ 270, 342; $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 3279,2977,2214,1740,1657 ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO) δ ppm $1.39(9 \mathrm{H}, \mathrm{s}, \mathrm{CH} 3), 3.77(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH} 2-\mathrm{NH}), 4.21(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH} 2), 7.47(1 \mathrm{H}, \mathrm{dd}, J=8.3 \mathrm{and} 9.1 \mathrm{~Hz}$, $\mathrm{H}-3^{\prime}$ and $\left.\mathrm{H}-5^{\prime}\right), 7.54-7.55\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right.$ and $\left.\mathrm{H}-4^{\prime}\right), 7.84(2 \mathrm{H}, \mathrm{dd}, J=5.5$ and $8.8 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.95(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-$ pyridine), 8.29-8.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-5$), $8.65(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{NH}) ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=478.2[\mathrm{M}+\mathrm{H}]+$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 478.1595$, found 478.1602 .

tert-Butyl 2-(2-((3-cyano-4,6-dimethylpyridin-2-yl)thio)acetamido)acetate (15k)

General Procedure G: 2-mercapto-4,6-dimethylnicotinonitrile ($110 \mathrm{mg}, 0.69 \mathrm{mmol}$), tert-butyl 2-(2bromoacetamido)acetate ($210 \mathrm{mg}, 0.83 \mathrm{mmol}$), $\mathrm{KOH}(39 \mathrm{mg}, 0.69 \mathrm{mmol})$ and DMF ($2 \mathrm{~mL} / \mathrm{mmol}$). White solid (120 $\mathrm{mg}, 52 \%$); m.p. $132-134{ }^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 266.0,302.0 ; \mathrm{IR} u_{\max } / \mathrm{cm}^{-1} 2218,1737,1652 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.92-3.93\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NH}-\mathrm{CH}_{2}\right.$ and S-CH2$), 6.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-$ pyridine), $7.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 20.4,24.8,28.4,33.8,42.9,82.0,105.8,114.7,121.1$, 152.8, 162.2, 168.9, 168.9; $\mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=336.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 336.1376$, found 336.1377.

\{2-[3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylsulfanyl]acetylamino\}acetic acid ethyl ester (15I)

General procedure G: 4-(4-fluorophenyl)-2-mercapto-6-phenylnicotinonitrile 14a (0.30 g, 0.98 mmol$)$, (2bromoacetylamino) acetic acid ethyl ester ($0.218 \mathrm{~g}, 0.98 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.16 \mathrm{~g}, 1.2 \mathrm{mmol})$, THF (20 mL), chromatography. Yellow solid ($0.251 \mathrm{~g}, 57 \%$). m.p. $171.8^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 270,341$; $\mathrm{IR} u_{\max } / \mathrm{cm}^{-1} 3259,2214,1743$, $1665 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.20\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.00\left(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.96-4.06(4 \mathrm{H}, \mathrm{m}$, CH_{2}), 7.20-7.52 (3H, m, NH and H-Ar), 7.46-7.52 (3H, m, H-Ar), 7.59-7.68 (3H, m, CH-pyridine and H-Ar), 8.08-8.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 14.3,34.3,42.1,61.6,116.5,116.8,116.9,127.8,129.5,130.7,131.2$,
129.3, 154.2, 159.7, 162.2, 166.1, 168.2, 169.5; MS (ES+) $m / z=450.1[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{C}, 64.13$; H, 4.48; N, 9.35. Found.C, 63.89; H, 4.49; N, 9.48.

1-\{2-[3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylsulfanyl]acetyl\}pyrrolidine-2-carboxylic acid methyl ester

 (19)General procedure G: 4-(4-fluorophenyl)-2-mercapto-6-phenylnicotinonitrile 14 a ($0.30 \mathrm{~g}, 0.98 \mathrm{mmol}$), 1-(2-bromoacetyl)pyrrolidine-2-carboxylic acid methyl ester, 18 ($0.281 \mathrm{~g}, 0.98 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.16 \mathrm{~g}, 1.2 \mathrm{mmol})$, THF (20 mL), chromatography. Yellow solid ($0.256 \mathrm{~g}, 55 \%$). m.p. $212.7^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}) 270,342$; $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 2922,2212$, 1734,$1645 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.00-2.22\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.71-3.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 4.19-4.28 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 4.46-4.58 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 7.14-7.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 7.41-7.57 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$ and CH -pyridine), 7.57$7.66(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.91-8.02(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 25.3,29.5,34.3,47.7,52.4,59.8,116.4$, 116.7, 138.0, 129.2, 130.7, 130.8, 154.0, 172.4; MS (ES $+m / z=476.1[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 65.67$; H, 4.66; N, 8.84. Found.C, 65.68; H, 4.55; N, 8.65.

[3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylsulfanyl]acetic acid methyl ester (21)

General procedure G: 4-(4-fluorophenyl)-6-phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile ($0.500 \mathrm{~g}, 1.6 \mathrm{mmol}$), methyl 2-bromoacetate ($0.24 \mathrm{~mL}, 2.4 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.45 \mathrm{~g}, 0.32 \mathrm{mmol})$, DMF (40 mL). Yellow solid ($0.34 \mathrm{~g}, 55 \%$). m.p. $185.5^{\circ} \mathrm{C} ; \lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}) 269$ and $339 ; \mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 1731(\mathrm{CO}), 2212(\mathrm{CN}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 3.77$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Hd}\right.$ and $\left.\mathrm{Hd}^{\prime}\right), 7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{Hb}, \mathrm{Hb}$ and He$), 7.63(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}$-pyridine, Hc and Hc^{\prime}), 8.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ha}, \mathrm{Ha}^{\prime}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 33.1,52.8,104.2,115.4,116.4,116.7,127.8,129.3$, 130.7, 130.8, 131.1, 132.6, 137.5; MS (ES +) $m / z=379.1[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 66.65 ; \mathrm{H}, 4.00 ; \mathrm{N}$, 7.40. Found.C, 66.92; H, 3.79; N, 7.42

2-[3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylsulfanyl]-N-(2-oxopropyl)acetamide (31)

General procedure G: 14a ($0.30 \mathrm{~g}, 0.98 \mathrm{mmol}$), 2-bromo- N -(2-oxopropyl)acetamide $\mathbf{3 0}(0.19 \mathrm{~g}, 0.98 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.16 \mathrm{~g}, 1.2 \mathrm{mmol}$), THF (10 mL), chromatography. Yellow solid ($0.137 \mathrm{~g}, 31 \%$); m.p. $232.1^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 270$, $338 ; \operatorname{IR} \mathrm{u}_{\text {max }} / \mathrm{cm}^{-1} 3280,2920,2216,1732,1658 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $4.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.21-7.41(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.50-7.70(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-$ pyridine and $\mathrm{H}-\mathrm{Ar}), 8.05-8.14(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 30.0,34.3,50.3,116.5,116.8,116.9$, 127.8, 129.4, 130.7, 130.9, 131.2, 159.6, 168.2; MS (ES+) $m / z=420.1176[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}$, 65.86; H, 4.33; N, 10.02. Found.C, 65.84; H, 4.31; N, 10.01.

General procedure \mathbf{H}

The pyridine t-butyl ester (1.0 eq) was dissolved in trifluoroacetic acid (5 ml). The resulting mixture was stirred at RT for 30 minutes. The solvent was removed and the residue was treated with ethyl acetate. The precipitate was collected and washed several times with petroleum ether to give the product.

2-(2-(3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylthio)acetamido)acetic acid (4a)

General procedure H: 15a ($91 \mathrm{mg}, 0.19 \mathrm{mmol}$), was dissolved in TFA ($29 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) gave 4a as a white solid (80 $\mathrm{mg}, 99 \%) . \mathrm{R}_{\mathrm{f}}=0.37(\mathrm{EtOH}) ; \mathrm{m} . \mathrm{p} .169-172{ }^{\circ} \mathrm{C} ; \lambda \max (\mathrm{EtOH} / \mathrm{nm}) 270,342 ; \mathrm{IR}$ umax$/ \mathrm{cm}^{-1} 3260,2215,1730,1622 ;{ }^{1} \mathrm{H}-$ NMR ($\left.300 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta \mathrm{ppm} 3.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right), 4.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 7.43-7.54(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.82-$ $7.87(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.94(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$-pyridine), 8.28-8.30(2H, m, H-Ar), $8.64(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{NH}), 12.62(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH})$; MS (ES+) $m / z=422.2[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$422.0976, found 422.0969.

2-(2-(3-Cyano-4-(3-fluorophenyl)-6-phenylpyridin-2-ylthio)acetamido)acetic acid (4b)

General procedure H: tert-butyl 2-(2-(3-cyano-4-(3-fluorophenyl)-6-phenylpyridin-2-ylthio)acetamido)acetate 15b ($35 \mathrm{mg}, 0.067 \mathrm{mmol}$), TFA ($11 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$). White solid ($28 \mathrm{mg}, 100 \%$); m.p. 221-224 ${ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 279.0$, 348.5; IR U $\mathrm{max} / \mathrm{cm}^{-1} 3241,2217,2174,1735,1624,1574,1525 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm} 3.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.5.7 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right), 4.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 7.44-7.48(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.54-7.58(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.61-7.71(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.99$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{pyridine}), 8.31-8.33(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 8.68(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}), 12.67(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}) ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=422.2$ $[\mathrm{M}+\mathrm{H}]^{+}, 420.1[\mathrm{M}-\mathrm{H}]^{-} ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 422.0967$, found 422.0967.

2-(2-((3-Cyano-4-(2-fluorophenyl)-6-phenylpyridin-2-yl)thio)acetamido)acetic acid (4c)

General procedure H: tert-butyl 2-(2-(3-cyano-4-(2-fluorophenyl)-6-phenylpyridin-2-ylthio)acetamido)acetate 15c ($18 \mathrm{mg}, 0.038 \mathrm{mmol}$), TFA ($6 \mu \mathrm{~L}, 0.076 \mathrm{mmol}$). White solid ($16 \mathrm{mg}, 99 \%$); m.p. 200-202 ${ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 340.0$, 270.5; IR $u_{\max } / \mathrm{cm}^{-1} 2220,1719,1653,1573,1526 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}\right) \delta \mathrm{ppm} 3.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}-$ $\left.\mathrm{CH}_{2}\right), 4.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 7.44-7.51(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.52-7.55\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}\right.$ and $\left.\mathrm{H}-4^{\prime}\right), 7.64-7.71(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 8.00(1 \mathrm{H}$, s, CH-pyridine), 8.28-8.30 (2H, m, H-Ar), $8.67(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}), 12.67(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}) ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=422.2$ $[\mathrm{M}+\mathrm{H}]^{+}, 420.1[\mathrm{M}-\mathrm{H}] ;$ HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 422.0967$, found 422.0968.

[2-(3-Cyano-4,6-diphenylpyridin-2-ylsulfanyl)acetylamino]acetic acid (4d)

General procedure H: tert-butyl 2-(2-((3-cyano-4,6-diphenylpyridin-2-yl)thio)acetamido)acetate, 15d (0.200 g, 0.44 mmol), TFA (2 mL). White solid ($0.155 \mathrm{~g}, 88 \%$); m.p. $222.5^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(E t O H / n m) 269$ and 339 ; $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 1645$ (CO), 1724 (CO), $2214(\mathrm{CN}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 3.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.54(3 \mathrm{H}$, m, Ha, Ha' and He $)$, $7.60\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Hd}, \mathrm{Hd}^{\prime}\right.$ and He), $7.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Hb}\right.$ and $\left.\mathrm{Hb}^{\prime}\right)$, 7.93 (1H, s, CH-pyridine), $8.29(2 \mathrm{H}, \mathrm{m}$, Hc and $\left.\mathrm{Hc}^{\prime}\right), 8.64(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{NH}), 12.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 34.2,41.6,128.1$, $129.2,130.4,131.1,136.2,137.1115 .9,116.5,116.7,154.7,158.6,162.4,167.6,171.0 ; \mathrm{MS}(E S+) \mathrm{m} / \mathrm{z}=404.1$ $[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 65.49 ; \mathrm{H}, 4.25 ; \mathrm{N}, 10.42$. Found.C, 65.44; H, 3.68; $\mathrm{N}, 6.23$.

2-(2-((3-Cyano-6-phenyl-4-(4-(trifluoromethyl)phenyl)pyridin-2-yl)thio)acetamido)acetic acid (4e)

General procedure H: tert-butyl 2-(2-((3-cyano-6-phenyl-4-(4-(trifluoromethyl)phenyl)pyridin-2yl)thio)acetamido)acetate $15 \mathrm{e}(100 \mathrm{mg}, 0.19 \mathrm{mmol})$, TFA ($29 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$). White solid ($80 \mathrm{mg}, 90 \%$); m.p. 243-244 ${ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 345.0,268.0 ; \mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 3285,3069,2214,1738,1667 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta \mathrm{ppm} 3.82$
($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}$), $4.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right)$, $7.54-7.56(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$ and $\mathrm{H}-4$) $)$, 7.99-8.01 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$ and $\mathrm{CH}-$ pyridine) $8.30-8.32(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 8.67(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}), \mathrm{COOH}$ not visualised; ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ ppm 33.8, 41.3, 102.7, 115.4, 116.0, $124.0\left(q, J_{C F}=273.4 \mathrm{~Hz}\right), 125.7\left(q, J_{C F}=3.6 \mathrm{~Hz}\right), 127.8,128.9,129.8,130.2\left(q, J_{C F}\right.$ $=32.2 \mathrm{~Hz}$), 130.9, 136.4, 139.7, 152.7, 158.3, 162.1, 167.1, 171.0; MS (ES+) $m / z=472.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 472.0937$, found 472.0932 .

2-(2-((3-Cyano-4-(2,4-difluorophenyl)-6-phenylpyridin-2-yl)thio)acetamido)acetic acid (4f)

General procedure H: tert-butyl 2-(2-((3-cyano-4-(2,4-difluorophenyl)-6-phenylpyridin-2-yl)thio)acetamido)acetate $15 \mathrm{f}(450 \mathrm{mg}, 0.91 \mathrm{mmol})$, TFA (139 $\mu \mathrm{L}, 1.82 \mathrm{mmol})$. White solid ($400 \mathrm{mg}, 100 \%$); m.p. $226-227^{\circ}{ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$ $339.5,270.5$; $\operatorname{IR} u_{\max } / \mathrm{cm}^{-1} 3259,3079,2221,1728,1619 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta \mathrm{ppm} 3.75(2 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}$, $\left.\mathrm{NH}-\mathrm{CH}_{2}\right), 4.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 7.30(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.1,8.4$ and $10.6 \mathrm{~Hz}, \mathrm{H}-5), 7.53-7.60(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}, \mathrm{H}-4$ and H-3) 7.77 ($1 \mathrm{H}, \mathrm{ddd}, J=6.6,8.7$ and $15.1 \mathrm{~Hz}, \mathrm{H}-6$), $7.99(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$-pyridine), 8.27-8.29 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), $8.60(1 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}, \mathrm{NH}$), $12.62(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}$) $\delta \mathrm{ppm} 33.7,41.1,104.1,104.8$ (dd, $J_{\mathrm{CF}}=26.8$ and 26.9 Hz), 112.4 (dd, $J_{C F}=3.4$ and 21.7 Hz), 115.0, 117.2, $120.1\left(\mathrm{dd}, J_{C F}=4.0\right.$ and 15.0 Hz$) 127.8,128.9,131.0,132.8\left(\mathrm{dd}, J_{\mathrm{CF}}=3.8\right.$ and $10.3 \mathrm{~Hz}), 136.3,148.1,158.3,159.1$ ($\mathrm{dd}, J_{\mathrm{CF}}=12.7$ and 250.3 Hz), 161.6, 163.4 ($\mathrm{dd}, J_{\mathrm{CF}}=12.3$ and 250.7 Hz), 167.2, 171.0; MS (ES+) $m / z=440.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 440.0875$, found 440.0874 .

2-(2-((3-Cyano-6-phenyl-[4,4'-bipyridin]-2-yl)thio)acetamido)acetic acid (4g)

General procedure H: tert-butyl 2-(2-(3-cyano-6-phenyl-4-4'-bipyridin-2-ylthio)acetamido)acetate 15 g ($80 \mathrm{mg}, 0.17$ $\mathrm{mmol})$, TFA ($26 \mu \mathrm{~L}, 0.34 \mathrm{mmol}$). White solid ($67 \mathrm{mg}, 98 \%$); m.p. $268-271^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 348.5,276.5,249.0$; IR $U_{\max } / \mathrm{cm}^{-1} 3267,2212,1726,1665,1570,1520 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 3.82\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right)$, $4.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 7.54-7.57\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}\right.$ and $\left.\mathrm{H}-4^{\prime}\right)$, $7.78(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}$-pyridine), $8.02(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{pyridine})$, 8.30-8.32 (2H, m, H-Ar), 8.66 (1H, t, J = 5.7 Hz, NH), $8.83\left(2 \mathrm{H}, \mathrm{d} J=6.1 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}\right.$-pyridine), $12.64(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ ppm 33.7, 41.1, 102.5, 115.2, 116.0, 123.1, 127.8, 128.9, 131.0, 136.3, 143.1, 150.2, 151.6, 158.4, 162.2, 167.2, 171.0; $\mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=405.2[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 405.1016$, found 405.1015 .

\{2-[3-Cyano-4-(4-methoxyphenyl)-6-phenylpyridin-2-ylsulfanyl]acetylamino\}acetic acid (4h)

General procedure H: tert-butyl 2-(2-((3-cyano-4-(4-methoxyphenyl)-6-phenylpyridin-2-yl)thio)acetamido)acetate, 15h ($0.200 \mathrm{~g}, 0.41 \mathrm{mmol}$), TFA (2 mL). White solid ($0.165 \mathrm{~g}, 93 \%$); m.p. $221.3^{\circ} \mathrm{C} ; \lambda_{\max }(E t O H / \mathrm{nm}) 275 ; \mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1}$ 1659 (CO), 1742 (CO), $2214(\mathrm{CN}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 3.80\left(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $4.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.16\left(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{Ha}\right.$ and $\left.\mathrm{Ha}^{\prime}\right), 7.53\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Hd}, \mathrm{Hd}^{\prime}\right.$ and He$), 7.76(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{Hb}$ and $\left.\mathrm{Hb}^{\prime}\right), 7.89\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}\right.$-pyridine), $8.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Hc}\right.$ and $\left.\mathrm{Hc}^{\prime}\right), 8.63(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{NH}), 12.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{DMSO}^{2}$) $\delta \mathrm{ppm} 34.2,41.6,55.9114 .9,128.1,130.6,131.0,137.2,147.6,103.3116 .0,116.4,128.2,154.3$, 158.4, 161.4, 162.4, 167.7, 171.1; $\mathrm{MS}(E S+) \mathrm{m} / \mathrm{z}=434.1[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 63.73 ; \mathrm{H}, 4.42 ; \mathrm{N}$, 9.69. Found.C, 63.58; H, 4.49; N, 9.61.

\{2-[3-Cyano-6-(4-methoxy-phenyl)-4-phenyl-pyridin-2-ylsulfanyl]-acetylamino\}-acetic acid (4i)

General procedure G: $14 \mathrm{i}(0.100 \mathrm{~g}, 0.31 \mathrm{mmol})$, tert-butyl 2-(2-bromoacetamido)acetate ($0.118 \mathrm{~g}, 0.47 \mathrm{mmol}), \mathrm{KOH}$ $(0.018 \mathrm{mg}, 0.31 \mathrm{mmol})$, DMF (10 mL). The crude material was used directly in the next step.

General procedure H: $15 \mathrm{i}(0.154 \mathrm{~g}, 0.31 \mathrm{mmol})$, TFA (2 mL). White solid ($0.082 \mathrm{~g}, 61 \%$); m.p. $224.7^{\circ} \mathrm{C} ; \lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm})$ 272; IR $u_{\max } / \mathrm{cm}^{-1} 1659$ (CO), 1730 (CO), 2214 (CN), 2932 (COOH), 3265 (NH); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm}$ $3.84\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 4.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.07\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{Hd}\right.$ and $\left.\mathrm{Hd} \mathrm{d}^{\prime}\right), 7.59(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Hb}, \mathrm{Hb}^{\prime}$ and He), $7.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ha}\right.$ and $\left.\mathrm{Ha}^{\prime}\right), 7.85\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}\right.$-pyridine), $8.28\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Hc}\right.$ and $\left.\mathrm{Hc}^{\prime}\right), 8.62(1 \mathrm{H}, \mathrm{t}, J$ $=1.5 \mathrm{~Hz}, \mathrm{NH}), 12.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 14.4,55.8,60.0,114.8,128.9,129.2$, 129.5, 129.9, 130.3, 115.7, 136.3, 154.5, 162.1, 162.2, 167.7, 171.1; MS (ES+) $m / z=434.1[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 63.73 ; \mathrm{H}, 4.42 ; \mathrm{N}, 9.69$. Found.C, $61.15 ; \mathrm{H}, 4.62 ; \mathrm{N}, 6.93$.

[2-(3-Cyano-6-methyl-4-phenylpyridin-2-ylsulfanyl)acetylamino]acetic acid (4j)

General procedure G: 6-methyl-4-phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile ($0.100 \mathrm{~g}, 0.44 \mathrm{mmol}$), tert-butyl 2-(2-bromoacetamido)acetate ($0.167 \mathrm{~g}, 0.66 \mathrm{mmol}$), $\mathrm{KOH}(0.024 \mathrm{~g}, 0.43 \mathrm{mmol})$, DMF (5 mL). The crude material was used directly in the next step.

General procedure H: 15 j ($0.100 \mathrm{~g}, 0.25 \mathrm{mmol}$), TFA (2 mL). White solid ($0.051 \mathrm{~g}, 60 \%$); m.p. $217.4^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$ 261; IR $u_{\max } / \mathrm{cm}^{-1} 1626$ (CO), 1715 (CO), 2215 (CN), 3294 (NH); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 4.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{pyridine}), 7.57(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 8.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 12.56(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{COOH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 23.1,32.3,40.0,114.2,118.4,127.1,127.7,128.7,134.4,152.2,160.2$, 160.8, 166.2, 169.5; MS (ES+) $m / z=342.1[\mathrm{M}+\mathrm{H}]^{+}$.

[2-(3-Cyano-4,6-dimethylpyridin-2-ylsulfanyl)acetylamino]acetic acid (4k)

General procedure H: tert-butyl 2-(2-((3-cyano-4,6-dimethylpyridin-2-yl)thio)acetamido)acetate 15k (0.050 g, 1.5 $\mathrm{mmol})$, TFA (10 mL). White solid ($0.035 \mathrm{~g}, 81 \%$); m.p. $219.0^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(E t O H / \mathrm{nm}) 222,265$ and $304 ; \mathrm{IR}_{\mathrm{max}} / \mathrm{cm}^{-1} 1632$ (CO), 1717 (CO), $2214(\mathrm{CN}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 2.41\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.76\left(2 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right)$, $4.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.11\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}\right.$-pyridine), $8.45(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, \mathrm{NH}), 12.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, DMSO-d ${ }_{6}$) δ ppm 19.9, 24.5, 33.7, 44.5, 120.9, 115.2, 152.7, 161.8, 167.8, 171.0, 173.6, 193.2; MS (ES+) $m / z=$ $280.0748[\mathrm{M}+\mathrm{H}]^{+} ;$Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 51.60 ; \mathrm{H}, 4.69 ; \mathrm{N}, 15.04$. Found.C, 47.10; H, 2.83; N, 14.27.

4-(3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylthio)butanoic acid (23a)

General procedure H: tert-butyl 4-(3-cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylthio)butanoate 22a (100 mg, 0.22 mmol), TFA ($34 \mu \mathrm{~L}, 0.44 \mathrm{mmol}$). White solid ($64 \mathrm{mg}, 72 \%$); m.p. $160-164{ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 272.0,346.0 ; \mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1}$ 2924, 2217, 1711, 1596, 1568, 1525, 1509; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 1.95\left(2 \mathrm{H}\right.$, quint, $J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-$ $\left.\mathrm{CH}_{2}\right), 2.38\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}\right), 3.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CO}\right), 7.40(2 \mathrm{H}, \mathrm{dd}, J=8.8$ and $8.9 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5)$, 7.49-7.50 (3H, m, H-Ar), 7.78 ($2 \mathrm{H}, \mathrm{dd}, J=5.4$ and $8.8 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6$), $7.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{pyridine}), 8.24-8.26(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$

Ar), $12.12(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH})$; $\mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=393.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 393.1068$, found 393.1069.

5-(3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylthio)pentanoic acid (23b)

General procedure H: tert-butyl 5-(3-cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylthio)pentanoate 22b (120 mg, $0.26 \mathrm{mmol})$, TFA ($40 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$). White solid ($58 \mathrm{mg}, 54 \%$); m.p. 205-206 ${ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}) 270.0,345.5$; IR $U_{\max } / \mathrm{cm}^{-1} 2898,2210,1695 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm} 1.69-1.83\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 2.30(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.4 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}\right), 3.42\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CO}\right), 7.44(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.7$ and $8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.55-7.57(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.84$ $\left(2 \mathrm{H}, \mathrm{dd}, J=5.5\right.$ and $8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}$ and $\left.\mathrm{H}-4^{\prime}\right), 7.91\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}\right.$-pyridine), 8.27-8.30(2H, m, H-Ar), $12.05(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$) δ ppm 23.8, 28.3, 29.6, 33.2, 103.1, 115.7, 115.8 (d, J $\mathrm{J}_{\mathrm{CF}}=21.8 \mathrm{~Hz}$), 116.0, 127.5, 129.0, $130.8,131.2\left(\mathrm{~d}, J_{\mathrm{CF}}=8.9 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{CF}}=2.7 \mathrm{~Hz}\right), 136.7,153.2,157.9,162.7,163.2\left(\mathrm{~d}, J_{\mathrm{CF}}=248.3 \mathrm{~Hz}\right), 174.3 ; \mathrm{MS}$

General Procedure I

To the relevant chalcone 13 (1 eq.) and 2-cyanothioacetamide (1 eq.) was added a freshly prepared solution of $\mathrm{NaOMe}(1.6 \mathrm{M}$ in $\mathrm{MeOH}, 2.4 \mathrm{eq}$.$) . The resulting solution was heated at 80^{\circ} \mathrm{C}$ for 1.5 h , then cooled to RT and concentrated in vacuo. The crude material was redissolved in DMF ($1 \mathrm{~mL} / \mathrm{mmol}$) and the relevant bromoacetamide or bromoalkyl (1.5 eq.) was added. The solution was heated at $100^{\circ} \mathrm{C}$ for $3-4 \mathrm{~h}$, then cooled and diluted with $\mathrm{H}_{2} \mathrm{O}(20$ $\mathrm{mL})$ and the product extracted into EtOAc ($3 \times 100 \mathrm{~mL}$). Combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL}$ and brine (50 mL) dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Chromatography gave the products.
tert-Butyl 2-(2-(3-cyano-4-(3-fluorophenyl)-6-phenylpyridin-2-ylthio)acetamido)acetate (15b)

General Procedure I: 13b ($88 \mathrm{mg}, 0.39 \mathrm{mmol}$), $8.5 \% \mathrm{w} / \mathrm{v}$ sodium methoxide in $\mathrm{MeOH}(0.60 \mathrm{~mL}, 0.94 \mathrm{mmol})$, 2cyanothioacetamide ($39 \mathrm{mg}, 0.39 \mathrm{mmol}$) followed by tert-butyl 2-(2-bromoacetamido)acetate ($149 \mathrm{mg}, 0.59 \mathrm{mmol}$). White solid ($86 \mathrm{mg}, 46 \%$); m.p. $173-174^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 270.0,339.5$; $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 2980,2932,2218,1724,1649$, 1570, 1526, 1483, 1437, 1366; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.84\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right)$, $4.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 7.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.17-7.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.26(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.2,2.3$ and $9.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.36-7.38$ (1H, ddd, J = 1.0, 2.2 and $7.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}$), 7.43-7.49 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 7.53 (1H, s, CH-pyridine), 7.99-8.01 (2H, m, H-Ar); MS $(E S+) m / z=478.1[\mathrm{M}+\mathrm{H}]^{+}$.

tert-Butyl 2-(2-(3-cyano-4-(2-fluorophenyl)-6-phenylpyridin-2-ylthio)acetamido)acetate (15c)

General Procedure I: 13c ($54 \mathrm{mg}, 0.23 \mathrm{mmol}$), $8.5 \% \mathrm{w} / \mathrm{v}$ sodium methoxide in $\mathrm{MeOH}(0.35 \mathrm{~mL}, 0.55 \mathrm{mmol})$, 2cyanothioacetamide ($35 \mathrm{mg}, 0.23 \mathrm{mmol}$) followed by tert-butyl 2-(2-bromoacetamido)acetate ($88 \mathrm{mg}, 0.35 \mathrm{mmol}$). White solid (22 mg, 20\%); m.p. $164-168^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 270.0,341.5$; IR $u_{\max } / \mathrm{cm}^{-1} 2972,2216,1730,1653,1616$, $1573,1525,1485 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.84\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right), 4.03(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-$ CH_{2}), 7.09 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), 7.20-7.27 (2H, m, H-Ar), 7.40-7.49 (5H, m, H-Ar), 7.56 (1H, s, CH-pyridine), 7.98-8.00 (2H, m, $\mathrm{H}-\mathrm{Ar}) ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=478.1[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 478.1595$, found 478.1590.

tert-Butyl 2-(2-((3-cyano-6-phenyl-4-(4-(trifluoromethyl)phenyl)pyridin-2-yl)thio)acetamido)acetate (15e)

General Procedure I: 13e ($320 \mathrm{mg}, 1.14 \mathrm{mmol}$), $8.5 \% \mathrm{w} / \mathrm{v}$ sodium methoxide in $\mathrm{MeOH}(1.75 \mathrm{~mL}, 2.74 \mathrm{mmol})$, 2cyanothioacetamide ($170 \mathrm{mg}, 1.71 \mathrm{mmol}$) and tert-butyl 2-(2-bromoacetamido)acetate ($860 \mathrm{mg}, 3.42 \mathrm{mmol}$). White solid (170 mg, 28\%); m.p. 203-205 ${ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 269.0,340.5 ; \mathrm{IR} \mathrm{U}_{\max } / \mathrm{cm}^{-1} 3294,2982,2212,1743,1660,1572$, $1525 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.30\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.83\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right), 4.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 7.03(1 \mathrm{H}$, $\mathrm{t}, J=5.1 \mathrm{~Hz}, \mathrm{NH}), 7.43-7.45(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.53(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$-pyridine)) $7.67(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.75(2 \mathrm{H}, \mathrm{d}, J=8.2$ $\mathrm{Hz}, \mathrm{H}-\mathrm{Ar}$), 7.98-8.00 (2H, m, H-Ar); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 28.0,34.0,42.3,82.3,103.9,114.9,116.5,126.2$ ($q, J_{C F}=3.9 \mathrm{~Hz}$), 127.5, 128.9, 129.2, 131.1, 136.5, 139.4, 153.3, 159.5, 162.0, 167.8, 168.4, C-F3, C-CF ${ }_{3}$ and quaternary carbons are not visualised; $\mathrm{MS}(E S+) m / z=528.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 528.1563$, found 528.1560.
tert-Butyl 2-(2-((3-cyano-4-(2,4-difluorophenyl)-6-phenylpyridin-2-yl)thio)acetamido)acetate (15f)

General Procedure I: (E)-3-(2,4-difluorophenyl)-1-phenylprop-2-en-1-one 13 f ($590 \mathrm{mg}, 2.43 \mathrm{mmol}$), 8.5\% w/v sodium methoxide in $\mathrm{MeOH}(3.70 \mathrm{~mL}, 5.83 \mathrm{mmol})$, 2-cyanothioacetamide ($370 \mathrm{mg}, 3.65 \mathrm{mmol}$) and tert-butyl 2-(2bromoacetamido)acetate ($1.83 \mathrm{~g}, 7.29 \mathrm{mmol}$). White solid ($490 \mathrm{mg}, 41 \%$); m.p. $156-158^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 274.0$, 328.0, 380.5; $\mathrm{IR}_{\max } / \mathrm{cm}^{-1} 3326,2973,2924,2218,1729,1655,1618 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.30(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.83\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right), 4.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 6.94-7.02(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.05(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{NH}), 7.40-$ $7.46(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\mathrm{H}-\mathrm{Ar}), 7.51(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}),, 7.97-7.98(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $27.9,33.9,42.3,82.3,105.2\left(\mathrm{dd}, J_{C F}=25.4\right.$ and 25.5 Hz$), 105.3,112.4\left(\mathrm{dd}, J_{C F}=3.9\right.$ and 21.8 Hz$), 114.7,117.6\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$ 1.9 Hz), $120.0\left(\mathrm{dd}, J_{\mathrm{CF}}=3.9\right.$ and 14.6 Hz$), 127.5,129.2,131.0,131.7\left(\mathrm{dd}, J_{\mathrm{CF}}=3.8\right.$ and 10.0 Hz$), 136.5,148.5,159.3$, $159.7\left(\mathrm{dd}, J_{\mathrm{CF}}=12.3\right.$ and 253.5 Hz$), 161.5,164.2\left(\mathrm{dd}, J_{\mathrm{CF}}=11.9\right.$ and 253.6 Hz$), 167.9,168.4 ; \mathrm{MS}(E S+) \mathrm{m} / \mathrm{z}=496.3$ $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$496.1501, found 496.1498.

tert-Butyl 2-(2-(3-cyano-6-phenyl-4-4'-bipyridin-2-ylthio)acetamido)acetate (15g)

General Procedure I: $13 \mathrm{~g}(140 \mathrm{mg}, 0.67 \mathrm{mmol}), 8.5 \% \mathrm{w} / \mathrm{v}$ sodium methoxide in $\mathrm{MeOH}(1.0 \mathrm{~mL}, 1.68 \mathrm{mmol})$, 2cyanothioacetamide ($67 \mathrm{mg}, 0.67 \mathrm{mmol}$) followed by tert-butyl 2-(2-bromoacetamido)acetate ($0.25 \mathrm{~g}, 1.01 \mathrm{mmol}$). White solid (114 mg, 39\%); m.p. $166-168^{\circ} \mathrm{C}$; $\lambda_{\max }(E t O H / n m) 221.0,249.0,276.5,347.5 ; \mathrm{IR} u_{\max } / \mathrm{cm}^{-1} 2938,2863$, 2212, 1665; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.94\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right), 4.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right)$, $7.03(1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}), 7.56-7.57(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.65(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{pyridine}), 7.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6), 8.10(2 \mathrm{H}$, $\mathrm{dd}, J=2.5$ and $6.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 8.95(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 28.0,34.0,42.3$, 82.5, 103.2, 114.3, 115.8, 121.2, 124.5, 127.7, 129.4, 131.6, 136.1, 146.7, 150.1, 160.2, 162.7, 167.4, 168.5; MS (ES+) $m / z=461.3[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 461.1642$, found 461.1636.

tert-Butyl 4-(3-cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylthio)butanoate (22a)

General Procedure I: 13a ($75 \mathrm{mg}, 0.33 \mathrm{mmol}$), $8.5 \% \mathrm{w} / \mathrm{v}$ sodium methoxide in $\mathrm{MeOH}(0.50 \mathrm{~mL}, 0.80 \mathrm{mmol})$, 2cyanothioacetamide ($33 \mathrm{mg}, 0.33 \mathrm{mmol}$) followed by tert-butyl bromobutyrate ($112 \mathrm{mg}, 0.50 \mathrm{mmol}$). White solid (50
$\mathrm{mg}, 34 \%$); m.p. $104-105^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm})$ 271.0; IR $u_{\max } / \mathrm{cm}^{-1}$ 2978, 2930, 2212, 1721, 1603, 1570; ${ }^{1} \mathrm{H}-\mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.15\left(2 \mathrm{H}\right.$, quint, $\left.J=7.3 \mathrm{~Hz}^{2} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 2.48\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}\right), 3.48(2 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CO}\right), 7.24(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4$ and $8.6 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.51-7.55\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$-pyridine, $\mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}$ and $\mathrm{H}-$ $\left.5^{\prime}\right), 7.61-7.66(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-6), 8.09-8.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-\mathrm{6}^{\prime}\right)$; $\mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=449.1[\mathrm{M}+\mathrm{H}]^{+}$.

tert-Butyl 5-(3-cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylthio)pentanoate (22b)

General Procedure I: 13a ($118 \mathrm{mg}, 0.52 \mathrm{mmol}$), $8.5 \% \mathrm{w} / \mathrm{v}$ sodium methoxide in $\mathrm{MeOH}(0.80 \mathrm{~mL}, 1.25 \mathrm{mmol})$, 2cyanothioacetamide ($52 \mathrm{mg}, 0.52 \mathrm{mmol}$) followed by tert-butyl bromovalerate ($185 \mathrm{mg}, 0.78 \mathrm{mmol}$). White solid ($140 \mathrm{mg}, 58 \%$); m.p. $120-121^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 272.0,347.5$; $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 2984,2936,2214,1707,1595,1566 ;{ }^{1} \mathrm{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm $1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.80-1.92\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 2.30\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}\right)$, $3.43\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CO}\right), 7.25(2 \mathrm{H}, \mathrm{dd}, J=8.4$ and $8.6 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$-pyridine), 7.51-7.56 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.61-7.65(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-6), 8.09-8.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}) δ ppm 24.4, 28.1, 28.7, 30.3, 35.1, 80.3, 103.7, 115.4, 115.8, $116.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=23.0 \mathrm{~Hz}\right.$), 127.3, 129.0, $130.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}\right.$ $=8.7 \mathrm{~Hz}), 130.7,132.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=3.4 \mathrm{~Hz}\right), 137.4,153.4,158.6,164.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=254.6 \mathrm{~Hz}\right), 164.3,172.7 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=$ $463.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 463.1850$, found 463.1848.

2-((3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-yl)thio)-N-(2-oxopropyl)acetamide (31)

General Procedure I: 4-fluorochalcone 13a ($15 \mathrm{mg}, 0.067 \mathrm{mmol}$), $8.5 \% \mathrm{w} / \mathrm{v}$ sodium methoxide in $\mathrm{MeOH}(0.10 \mathrm{~mL}$, $0.16 \mathrm{mmol})$, 2-cyanothioacetamide ($7 \mathrm{mg}, 0.067 \mathrm{mmol}$) and 2-bromo- N -(2 -oxopropy) acetamide $\mathbf{3 0}$ ($20 \mathrm{mg}, 0.10$ mmol). White solid ($10 \mathrm{mg}, 36 \%$); m.p. 231-233 ${ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}) 270.0,338.0$; IR $\mathrm{u}_{\max } / \mathrm{cm}^{-1} 3281,2920,2216,1732$, 1659 ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 4.04\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right), 7.16-$ 7.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 7.26 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), 7.44-7.45 (3H, m, H-Ar), 7.52 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$-pyridine), 7.56-7.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 7.99-8.00 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$); MS (ES+) $\mathrm{m} / \mathrm{z}=420.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 420.1177$, found 420.1180 .

2-((3-Cyano-6-phenyl-[4,4'-bipyridin]-2-yl)thio)-N-(2-oxopropyl)acetamide (32)

General Procedure I: 4-pyridylchalcone ($48 \mathrm{mg}, 0.23 \mathrm{mmol}$), $8.5 \% \mathrm{w} / \mathrm{v}$ sodium methoxide in $\mathrm{MeOH}(0.35 \mathrm{~mL}, 0.56$ mmol), 2-cyanothioacetamide ($46 \mathrm{mg}, 0.23 \mathrm{mmol}$) and 2-bromo- N -(2-oxopropyl)acetamide $\mathbf{3 0}$ ($67 \mathrm{mg}, 0.35 \mathrm{mmol}$). Purification via column chromatography (silica; 0-15\% MeOH/DCM). White solid ($72 \mathrm{mg}, 78 \%$); m.p. $238-240^{\circ} \mathrm{C}$; $\lambda_{\text {max }}$ (EtOH/nm) 345.0, 277.0, 249.0; IR $\mathrm{umax}_{\text {max }} / \mathrm{cm}^{-1} 2913,2213,1730,1657,1570,1517 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ ppm $2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.98\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right), 4.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 7.55-7.56\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}\right.$ and $\left.\mathrm{H}-4^{\prime}\right), 7.78(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}$-pyridine $), 8.03(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$-pyridine), $8.30-8.32(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 8.61(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{NH}), 8.83(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=6.9 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}$-pyridine); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 26.9,33.7,49.5,102.5,115.2,116.0,123.1,127.8$, 128.9, 131.0, 136.3, 143.1, 150.2, 151.6, 158.4, 162.2, 167.2, 204.3; MS (ES +) $m / z=403.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 403.1223$, found 403.1218.

To a solution of ethanolamine ($3.0 \mathrm{~mL}, 49.7 \mathrm{mmol}$) in THF ($0.5 \mathrm{~mL} / \mathrm{mmol}$) was added tert- butyl bromoacetate (2 mL , 13.5 mmol) dropwise. The resulting solution was stirred at RT for 72 h . The mixture was concentrated in vacuo and the residue redissolved in DCM (50 mL). The organic phase was washed with an aqueous solution of saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (50 mL), then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give 24 as a yellow oil (1.96 $\mathrm{g}, 82 \%)$. IR $u_{\max } / \mathrm{cm}^{-1} 3399,2970,1730,1638 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.49\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.82(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}-\mathrm{NH}\right), 3.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{CO}\right), 3.65\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{OH}\right), \mathrm{NH}$ and OH not visualised; $\mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=176.2$ $[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl 2-((tert-butoxycarbonyl)(2-((3-cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-yl)thio)ethyl)amino)acetate (27)

To a solution of tert-butyl 2-(2-hydroxyethylamino) acetate 24 ($0.53 \mathrm{~g}, 3.03 \mathrm{mmol}$) in DCM ($3 \mathrm{~mL} / \mathrm{mmol}$) was added Boc anhydride ($0.80 \mathrm{~g}, 3.64 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.51 \mathrm{~mL}, 3.64 \mathrm{mmol})$ and DMAP ($10 \mathrm{~mol} \%$). The resulting solution was stirred at RT for 3 h . The mixture was diluted with water $(15 \mathrm{~mL})$ and the product extracted with DCM ($2 \times 15 \mathrm{~mL}$). Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting solid was redissolved in DCM ($3 \mathrm{~mL} / \mathrm{mmol}$). Mesyl chloride ($0.28 \mathrm{~mL}, 3.64 \mathrm{mmol}$) and triethylamine ($0.63 \mathrm{~mL}, 4.55 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$. The resulting solution was warmed to RT and stirred for 16 h . The reaction mixture was quenched with an aqueous solution of NaHCO_{3} and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). Combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting oil was redissolved in DMF (4 mL) and 4-(4-fluorophenyl)-6-phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile 14a ($90 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{KOH}(17 \mathrm{mg}, 0.32 \mathrm{mmol}$) were added. The resulting solution was heated to $100^{\circ} \mathrm{C}$ for 3 h , cooled, diluted with water and extracted with DCM (3 x 20 mL). Combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification via column chromatography (silica; 0-50\% EtOAc/petrol) gave 27 as a white solid ($20 \mathrm{mg}, 12 \%$). m.p. $152-154{ }^{\circ} \mathrm{C}$; $\lambda_{\max }$ ($\mathrm{EtOH} / \mathrm{nm}$) 338.0, 270.0; $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 3282,2926,2215,1653,1526,1508 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.25(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.34\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.38\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}\right), 3.57\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}-\mathrm{CH}_{2}\right), 7.17-$ $7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{dd}, \mathrm{J}=8.6$ and $8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.39-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.57-7.80(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$ and CH-pyridine), 8.02-8.09 (2H, m, H-Ar); MS (ES+) m/z = $564.7[\mathrm{M}+\mathrm{H}]^{+}$.

2-((2-((3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-yl)thio)ethyl)amino)acetic acid (28)

General procedure H: tert-butyl 2-((tert-butoxycarbonyl)(2-((3-cyano-4-(4-fluorophenyl)-6-phenylpyridin-2yl)thio)ethyl)amino)acetate 27 ($15 \mathrm{mg}, 0.027 \mathrm{mmol}$), TFA ($5 \mu \mathrm{~L}, 0.054 \mathrm{mmol}$). White solid ($10 \mathrm{mg}, 91 \%$); m.p. 193-194 ${ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 339.0,269.0$; $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 3285,3073,2926,2215,1653,1508 ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{MeOD}) \delta \mathrm{ppm}$ $3.17\left(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.45-7.51(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.54-7.62(3 \mathrm{H}, \mathrm{m}$, H-Ar), 7.83-7.88 (2H, m, H-Ar), 7.97 (1H, s, CH-pyridine), 8.30-8.39 (2H, m, H-Ar); MS (ES+) $m / z=408.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-}$406.1031, found 406.1026.

2-(3-Cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-ylthio)-N-(2-(4 methoxybenzylamino)-2-oxoethyl)acetamide, 16

To a solution of 2-(2-(3-cyano-4-(4-fluoropheny)-6-phenylpyridin-2-ylthio)acetamido)acetic acid 4a ($180 \mathrm{mg}, 0.43$ $\mathrm{mmol})$ in DMF (20 mL) was added HBTU ($200 \mathrm{mg}, 0.52 \mathrm{mmol}$), DIPEA ($50 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$) and p-methoxybenzylamine $(0.56 \mathrm{~mL}, 4.3 \mathrm{mmol})$. The resulting mixture was heated at $60^{\circ} \mathrm{C}$ for 4.5 h . The mixture was cooled and water (10 mL) added, which resulted in precipitation of the product. Filtration gave 16 as a white solid ($110 \mathrm{mg}, 47 \%$). m.p. 216-220 ${ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(E t O H / n m) 269.5,339.0$; $\mathrm{IR}_{\mathrm{max}} / \mathrm{cm}^{-1} 3281,3069,2212,1632,1547,1508 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ ppm $3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.77\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CO}\right), 4.17\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}-\mathrm{Ar}\right), 4.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right)$, $6.84(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.43-7.53$ (5H, m, H-Ar), 7.80-7.83 (2H, m, H-Ar), 7.93 (1 H , s , CH-pyridine), 8.21-8.30 ($3 \mathrm{H}, \mathrm{m}, \mathrm{NH}$ and H-Ar), $8.63\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{NH}\right.$); MS (ES+) $\mathrm{m} / \mathrm{z}=541.6[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 541.1704$, found 541.1700.

N-(2-Amino-2-oxoethyl)-2-((3-cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-yl)thio)acetamide, 17

General procedure H: 2-((3-cyano-4-(4-fluorophenyl)-6-phenylpyridin-2-yl)thio)-N-(2-((4-methoxybenzyl)amino)-2oxoethyl)acetamide 16 ($50 \mathrm{mg}, 0.093 \mathrm{mmol}$), TFA ($5 \mathrm{~mL} / \mathrm{mmol}$) gave 17 as a white solid ($11 \mathrm{mg}, 52 \%$). m.p. 231-232 ${ }^{\circ} \mathrm{C} ; \lambda_{\text {max }}(E t O H / \mathrm{nm}) 338.0,269.5$; IR $u_{\text {max }} / \mathrm{cm}^{-1} 3285,3073,2926,2215,1653,1508 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ ppm $3.57\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2}\right), 4.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{S}-\mathrm{CH}_{2}\right), 7.24\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 7.35(2 \mathrm{H}, \mathrm{dd}, J=8.6$ and $8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar})$, 7.42-7.43 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$ and $\mathrm{H}-4^{\prime}$), $7.72(2 \mathrm{H}, \mathrm{dd}, J=5.4$ and $8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$-pyridine), 8.17-8.19 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-\mathrm{Ar}), 8.40(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{NH}) ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=421.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 421.1129$, found 421.1130.

General procedure J

A mixture of 2-amino-6-chloro-pyrimidine-3-carbonitrile 33 (1.0 eq), and the corresponding aniline (1.0 eq) in DMF (2 ml) was heated to $100^{\circ} \mathrm{C}$ for 24 hours, then allowed to cool to rt, poured into water (20 mL) water and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with water ($3 \times 20 \mathrm{~mL}$) and brine (20 $\mathrm{mL})$,dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Recrystallization (ethanol) gave the product.

4-Amino-2-(2-tolylamino)pyrimidine-5-carbonitrile (5a) ${ }^{12,13}$

General procedure J: 4-amino-2-chloropyrimidine-5-carbonitrile ($0.200 \mathrm{~g}, 1.29 \mathrm{mmol}$), o-toluidine ($0.089 \mathrm{~mL}, 1.29$ $\mathrm{mmol})$ and DMF (2 mL) gave $\mathbf{5 a}$ as a white solid ($0.145 \mathrm{~g}, 50 \%$); m.p. $186.7^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}) 260$ and 302 ; IR $\mathrm{U}_{\max } / \mathrm{cm}^{-1} 2208(\mathrm{CN}) ; 3163(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm} 2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.09\left(6 \mathrm{H}, \mathrm{m}, \mathrm{NH}_{2}\right.$ and $\left.\mathrm{H}-\mathrm{Ar}\right)$, $8.26(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 9.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm} 18.2,80.4,117.2,125.6,126.3,126.7,130.6$, 133.6, 137.5, 161.8, 162.4, 163.6; MS (ES +) $m / z=226.1[\mathrm{M}+\mathrm{H}]^{+}$.

4-Amino-2-(3-methoxyphenylamino)pyrimidine-5-carbonitrile (5b)

General procedure J: 4-amino-2-chloropyrimidine-5-carbonitrile ($0.200 \mathrm{~g}, 1.29 \mathrm{mmol}$), 3-methoxyaniline (0.100 mL , $1.29 \mathrm{mmol})$ and DMF (2 mL). Yellow solid ($0.121 \mathrm{~g}, 39 \%$); m.p. $196.0^{\circ} \mathrm{C} ; \lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}) 313 ; \mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 2214(\mathrm{CN})$; $3435(\mathrm{NH})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm} 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 6.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Hc}), 7.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, \mathrm{Hb}), 7.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ha}), 7.36-7.48\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Hd}\right.$ and $\left.\mathrm{NH}_{2}\right), 8.34(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 9.64(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$
$\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 55.5,80.9,106.6,108.4,113.0,117.0,129.5,141.1,160.0,160.6,162.2,163.4 ; \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}$ $=242.1[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 59.74 ; \mathrm{H}, 4.60 ; \mathrm{N}, 29.03$; found $\mathrm{C}, 59.80 ; \mathrm{H}, 4.40 ; \mathrm{N}, 28.99$

4-Amino-2-(4-fluorophenylamino)pyrimidine-5-carbonitrile (5c)

General procedure J: 4-amino-2-chloropyrimidine-5-carbonitrile ($0.200 \mathrm{~g}, 1.29 \mathrm{mmol}$), 4-fluoroaniline ($0.123 \mathrm{~mL}, 1.29$ $\mathrm{mmol})$ and DMF (2 mL). Yellow solid ($0.129 \mathrm{~g}, 44 \%$); m.p. $264.6^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 310$; IR $u_{\max } / \mathrm{cm}^{-1} 2214$ (CN); 3329 (NH); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 7.10(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{Ha}$ and Hd$), 7.48\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.76(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Hb}$ and Hc), $8.35(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 9.73(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm} 80.9,115.0,115.5,117.0,122.2$, 122.4, 136.4, 156.6, 160.6, 162.2, 163.5; $\mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=230.1[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{FN}_{5}$ requires $\mathrm{C}, 57.64 ; \mathrm{H}, 3.52 ; \mathrm{N}, 30.55$; found C, 57.81; H, 3.42; N, 30.35

General procedure K:

Methyl pyrrole-2-carboxylate ($1.01 \mathrm{~g}, 8.04 \mathrm{mmol}$) was added to a stirred solution of aluminium trichloride (1.54 g , $16.1 \mathrm{mmol})$ and the benzoylchloride derivative $(3.35 \mathrm{~g}, 16.1 \mathrm{mmol})$ in $\mathrm{DCM}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 4 h at rt . The reaction was quenched by careful addition of water, diluted by addition of an equal amount of EtOAc and water, and extracted with EtOAc ($3 x$). The combined organic layers were washed with NaHCO_{3} (sat., aq.), water and brine before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Chromatography ($\mathrm{SiO}_{2} ; 40-80 \%$ EtOAc, petroleum ether) and precipitation (EtOAc/MeOH/petroleum ether) gave 35 a as a yellow solid ($1.24 \mathrm{~g}, 52 \%$)

Methyl 4-(2,3-dichlorobenzoyl)-1H-pyrrole-2-carboxylate (35a)

General procedure K: methyl pyrrole-2-carboxylate ($1.01 \mathrm{~g}, 8.04 \mathrm{mmol}$), aluminium trichloride ($1.54 \mathrm{~g}, 16.1 \mathrm{mmol}$), 2,3-dichlorobenzoylchloride derivative ($3.35 \mathrm{~g}, 16.1 \mathrm{mmol}$) in DCM $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, gave 35 a as a yellow solid (1.24 g , $52 \%) ; m p 189.9-190.7^{\circ} \mathrm{C}$. $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 285 . \mathrm{IR}_{\max } / \mathrm{cm}^{-1} 3285,3113,2953,1687,1656 .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO$\left.d_{6}\right) \delta_{\mathrm{H}} 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.02(1 \mathrm{H}$, s, pyrrole-CH), 7.44-7.50(3H, m, pyrrole-CH, ClCCHCHCH, CICCHCHCH), $7.79(1 \mathrm{H}$, $\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, \mathrm{ClCCHCHCH}), 12.87\left(1 \mathrm{H}, \mathrm{br} s\right.$, pyrrole-NH). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{c} 51.6,115.1,124.3$, $124.8,126.9,127.5,128.6,130.4,131.5,132.3,141.3,160.3,187.2 . \mathrm{MS}^{\left(E S^{+}\right)} \mathrm{m} / \mathrm{z}=299.48[\mathrm{M}+\mathrm{H}]^{+}$

Methyl 4-(2,4-dichlorobenzoyl)-1H-pyrrole-2-carboxylate (35b)

General procedure K: methyl pyrrole-2-carboxylate ($3.0 \mathrm{~g}, 24 \mathrm{mmol}$), aluminium chloride ($5.52 \mathrm{~g}, 60 \mathrm{mmol}$) and 2,4dichlorobenzoylchloride ($10.1 \mathrm{~g}, 48 \mathrm{mmol}$) 35b was obtained as a yellow solid ($4.54 \mathrm{~g}, 64 \%$). $\mathrm{mp} 173-174{ }^{\circ} \mathrm{C}$, $\lambda_{\max }$ ($\mathrm{EtOH} / \mathrm{nm}$) 284. IR $\mathrm{u}_{\max } / \mathrm{cm}^{-1} 3190,3114,1705,1628,1582,1555,1481,1447,1393 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{H}$ 3.79 (s, 3H, OCH_{3}), $7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PyrH}), 7.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PyrH}), 7.48-7.57(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.74($ app. d, 1H, J=1.2 Hz, ArH), $12.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}^{2}$) $\delta_{\mathrm{C}} 51.0,114.7,123.9,124.7,127.0,129.1,129.6,130.4,134.6,137.7$, 159.9, 186.7. $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 315.0298$, found, $315.0296\left({ }^{35} \mathrm{Cl}\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{3}$: C , $52.37 \%, \mathrm{H}, 3.04 \%, \mathrm{~N}, 4.70 \%$. Found: C, $52.25 \%, \mathrm{H}, 3.09 \%, \mathrm{~N}, 4.71 \%$

General procedure K: methyl pyrrole-2-carboxylate ($3.0 \mathrm{~g}, 24 \mathrm{mmol}$), aluminium chloride ($5.8 \mathrm{~g}, 60 \mathrm{mmol}$) and 2trifluoromethylbenzoylchloride ($10.0 \mathrm{~g}, 48 \mathrm{mmol}$) 35 c was obtained as a yellow solid ($1.43 \mathrm{~g}, 20 \%$). $\mathrm{mp} 141-142{ }^{\circ} \mathrm{C}$, $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm})$ 279, 232. IR $u_{\max } / \mathrm{cm}^{-1} 3273,1707,1640,1553,1439,1385,1308,1274 .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO$\left.d_{6}\right) \delta_{H} 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.98(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.39(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{ArH}), 7.66-7.81(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH})$, $7.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArH}), 12.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta_{\mathrm{c}} 50.8,114.5,119.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}\right.$, C_{3}), 123.8, 125.1, $125.7\left(q, J_{C-F}=31 \mathrm{~Hz}, C C F_{3}\right), 126.1\left(q, J_{C-F}=4.7 \mathrm{~Hz}, \mathrm{ArH}\right.$), 127.6, 129.2, 129.6, 131.8, 138.6, 160.0, 188.3. $\mathrm{HRMS}\left(E S^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 298.0686$, found, 298.0688. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{3}$ requires C , $56.57 \%, H, 3.39 \%$, N, 4.71%. Found: C, 56.64%, H, 3.59\%, N, 4.89\%

4-Benzoyl-1H-pyrrole-2-carboxylate (35d)

General procedure K: methyl pyrrole-2-carboxylate ($3.0 \mathrm{~g}, 24 \mathrm{mmol}$), aluminium chloride ($5.52 \mathrm{~g}, 60 \mathrm{mmol}$) and benzoylchloride ($6.7 \mathrm{~g}, 48 \mathrm{mmol}$) 35d was obtained as a yellow solid ($1.83 \mathrm{~g}, 90 \%$); mp $148-149^{\circ} \mathrm{C}$, $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$ 285 and 238. IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3293,1715,1620,1596,1555,1446,1384 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{H} \mathrm{ppm} 3.81(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.15(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.48-7.67(\mathrm{~m}, 4 \mathrm{H}, 3 \times \mathrm{ArH}$ and $=\mathrm{CH}), 7.73-7.83(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 12.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}^{-} \mathrm{d}_{6}$) $\delta_{\mathrm{c}} \mathrm{ppm} 30.1,115.5,123.2,124.2,128.0,128.7,131.3,138.6,160.1,188.6 . \mathrm{HRMS}^{(E S}{ }^{+}$) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 230.0812$, found, 230.0811. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}$: $\mathrm{C}, 68.11 \%, \mathrm{H}, 4.84 \%, \mathrm{~N}, 6.11 \%$. Found: C , 68.33\%, H, 4.78\%, N, 6.21\%

1-(4-(2,3-Dichlorobenzoyl)-1H-pyrrol-2-yl)ethanone (39)

General procedure K: 2-acetyl pyrrole ($600 \mathrm{mg}, 5.40 \mathrm{mmol}$), 2,3-dichlorobenzoyl chloride ($2.30 \mathrm{~g}, 11.0 \mathrm{mmol}$) and aluminium chloride ($1.32 \mathrm{~g}, 13.7 \mathrm{mmol}$) in DCM (10 mL). Chromatography (silica gel, 3:2 EtOAc/petrol) gave 39 as a pale pink solid ($850 \mathrm{mg}, 56 \%$); $\mathrm{R}_{\mathrm{f}}=0.65$ (2:3 EtOAc/petrol); mp: $144-146{ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 290$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3348(\mathrm{~N}-\mathrm{H})$, $1655(\mathrm{C}=\mathrm{O}), 1519(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 3.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}$, pyrrole-H), 7.32$7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and pyrrole-H), $7.37(1 \mathrm{H}, \mathrm{dd}, J=7.7$ and $7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.68(1 \mathrm{H}, \mathrm{dd}, J=1.7$ and $7.8 \mathrm{~Hz}, \mathrm{ArH}), 12.5(1 \mathrm{H}$, s br, NH); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$) $\delta 25.8\left(\mathrm{CH}_{3}\right), 116.5,124.8,126.9,127.5,128.6,131.4,131.5,132.3,133.6$, 141.4, $187.4(\mathrm{C}=\mathrm{O})$, $188.4(\mathrm{C}=\mathrm{O})$; HRMS calcd. for $\mathrm{C}_{13} \mathrm{H}_{10}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$282.0083, found 282.0083.

(Z)-3-(4-(2,3-Dichlorobenzoyl)-1H-pyrrol-2-yl)-3-hydroxy-1-(pyridin-4-yl)prop-2-en-1-one (44)

General procedure K: 43 ($200 \mathrm{mg}, 0.71 \mathrm{mmol}$), aluminium chloride ($400 \mathrm{mg}, 2.50 \mathrm{mmol}$) and 2,3-dichlorobenzoyl chloride ($135 \mathrm{mg}, 1.40 \mathrm{mmol}$) in DCM (10 mL). Chromatography (silica, 4:1 EtOAc/petrol) gave 44 as a pale yellow solid ($150 \mathrm{mg}, 55 \%$); mp: $243-245^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 358$, 294; IR $\left(\mathrm{cm}^{-1}\right) 3125,1619,1598 ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d ${ }_{6}$) δ ppm $7.36(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCO}), 7.49-7.54(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}), 7.64(1 \mathrm{H}, \mathrm{s}$, pyrrole-H), $7.82(1 \mathrm{H}, \mathrm{dd}, J=1.5$ and 7.0 Hz, ArH $), 7.84(1 \mathrm{H}, \mathrm{s}$, pyrrole-H), $7.99(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, 2 \times$ pyridyl-H), $8.79(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, 2 \times$ pyridyl-H), 12.95 ($1 \mathrm{H}, \mathrm{s}$ br, NH), $15.90(1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta \mathrm{ppm} 95.2,117.2,120.1,125.7,127.1,127.6$, 128.7, 131.6, 131.8, $132.4,132.5,140.5,141.3,150.5,173.4,182.9,187.4$; HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{13}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 387.0298 , found 387.0296 .

General procedure L:

Lithium hydroxide ($6.4 \mathrm{~g}, 268 \mathrm{mmol}$) was added to a stirred solution of the appropriate methyl pyrrole-2-carboxylate $(2.0 \mathrm{~g}, 6.7 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$. The resulting mixture was stirred at $65^{\circ} \mathrm{C}$ for 20 h , then $\mathrm{HCl}(1 \mathrm{M})$ was added to pH 7 , and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organics were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Chromatography ($\mathrm{SiO}_{2} ; 50-80 \% \mathrm{EtOAc} /$ petroleum ether) and precipitation (EtOAc/MeOH/petroleum ether) gave the product.

4-(2,3-Dichlorobenzoyl)-1H-pyrrole-2-carboxylic acid (36a)

General procedure L: Lithium hydroxide ($6.4 \mathrm{~g}, 268 \mathrm{mmol}$), 35a ($2.0 \mathrm{~g}, 6.7 \mathrm{mmol}$) in THF (50 mL) and $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$. gave 36a as a slightly pink solid (88\%); mp 249-250 ${ }^{\circ} \mathrm{C}$, $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}) 285,238$. IR $\mathrm{u}_{\max } / \mathrm{cm}^{-1} 3300$ (OH), 1672 (CO), 1638, 1550, 1443, 1384. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta_{H} 6.97$ (app. t, $1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{PyrH}$), 7.34-7.40 (m, 1H, PyrH), 7.40-7.52 (m, 2H, $2 \times \mathrm{ArH}$), 7.76 (dd, $1 \mathrm{H}, \mathrm{J}=7.2$ and $2.4 \mathrm{~Hz}, \mathrm{ArH}), 12.66$ (s, $1 \mathrm{H}, \mathrm{NH}$), 12.90 (br s, $1 \mathrm{H}, \mathrm{COOH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d d_{6}) $\delta_{c} 114.3,124.4,125.3,126.5,127.3,128.1,129.2,131.0,132.1,141.3,160.8,186.7$. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{12} \mathrm{H}_{7}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 301.0141$, found, 301.0139. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{3}: \mathrm{C}, 50.73 \%, \mathrm{H}, 2.48 \%, \mathrm{~N}$, 4.93\%. Found: C, 50.59%, H, $2.26 \%, N, 4.78 \%$.

4-(2,4-Dichlorobenzoyl)-1H-pyrrole-2-carboxylic acid (36b)

General procedure L: 35b ($1.0 \mathrm{~g}, 3.35 \mathrm{mmol}$) gave $\mathbf{3 6 b}$ as slightly pink solid ($785 \mathrm{mg}, 82 \%$); mp $213-214{ }^{\circ} \mathrm{C}$, $\lambda_{\text {max }}$ ($\mathrm{EtOH} / \mathrm{nm}$) 284, 233. IR $u_{\text {max }} / \mathrm{cm}^{-1} 3299(\mathrm{NH}), 1674(\mathrm{CO}), 1641,1584,1553,1499,1439,1385,1279,1223,1101,880$, 861, 756 (CI). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}} 3.42(\mathrm{OH}), 6.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PyrH}), 7.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PyrH}), 7.46-7.57(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{x}$ ArH), 7.74 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), $12.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta_{c} 114.2,124.6,125.4,127.0,129.07,129.13$, 129.6, 130.4, 134.5, 137.9, 160.9, 186.8. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{12} \mathrm{H}_{7}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 282.9798$, found, 282.9797 (${ }^{35} \mathrm{Cl}$). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{7}^{35} \mathrm{Cl}_{2} \mathrm{NO}_{3}$: C, $50.73 \%, \mathrm{H}, 2.48 \%, \mathrm{~N}, 4.93 \%$. Found: C, $50.88 \%, \mathrm{H}, 2.33 \%, \mathrm{~N}, 4.79 \%$

4-(2-(Trifluoromethyl)benzoyl)-1H-pyrrole-2-carboxylic acid (36c)

General procedure L: 35c ($1.0 \mathrm{~g}, 3.36 \mathrm{mmol}$) gave $\mathbf{3 6 c}$ as a slightly pink solid ($762 \mathrm{mg}, 80 \%$); mp 221-222 ${ }^{\circ} \mathrm{C}$, $\lambda_{\text {max }}$ (EtOH/nm) 279, 232. IR $u_{\text {max }} / \mathrm{cm}^{-1} 3317$ (NH), 1639 (CO), 1557, 1443, 1388, 1313, 1281, 1227. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO $-d_{6}$) $\delta_{H} 6.93$ (app. t, $1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz},=\mathrm{CH}$), $7.26-7.36(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 7.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{ArH}$), 7.66-7.81(m, 2 H , $2 \times \mathrm{ArH}$), 7.86 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{ArH}$), $12.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 12.90$ (br s, $1 \mathrm{H}, \mathrm{COOH}$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\mathrm{\delta c}_{\mathrm{c}}$ $114.0,123.1\left(q, J_{C-F}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.7,124.8,125.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=31.4 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 125.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=4.6 \mathrm{~Hz}, \mathrm{ArH}\right), 127.4$, 128.5, 129.3, 131.5, 138.4, 160.6, 188.1. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right.$, 284.0529, found, 284.0527.

4-Benzoyl-1H-pyrrole-2-carboxylic acid (36d)

General procedure L: 35d ($1.0 \mathrm{~g}, 3.36 \mathrm{mmol}$) gave 36d was obtained as a slightly pink solid ($811 \mathrm{mg}, 86 \%$); mp 225$226{ }^{\circ} \mathrm{C}$, $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}) 285,237 . \operatorname{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 3333,1667,1624,1549,1426,1382 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ_{H}
ppm $7.11(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.44-7.67(\mathrm{~m}, 4 \mathrm{H}, 3 \times \mathrm{ArH}$ and $=\mathrm{CH}), 7.72-7.84(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 12.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{c} \mathrm{ppm} 115.1,124.1,124.6,128.1,128.4,131.4,138.8,161.1,188.8$. $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}, 216.0655$, found, 216.0655. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{3}: \mathrm{C}, 66.97 \%, \mathrm{H}, 4.22 \%, \mathrm{~N}, 6.51 \%$. Found: $\mathrm{C}, 66.81 \%, \mathrm{H}$, 4.17\%, N, 6.33\%.

4-(2,3-Dichlorobenzoyl)-1-methyl -1H-pyrrole-2-carboxylic acid (36e)

To a solution of $\mathbf{3 5 a}(100 \mathrm{mg}, 0.34 \mathrm{mmol})$ in DMF (3 mL) was added sodium hydride ($12 \mathrm{mg}, 0.51 \mathrm{mmol}$) with stirring at $0^{\circ} \mathrm{C}$, followed by methyl iodide ($72 \mathrm{mg}, 0.51 \mathrm{mmol}$). The mixture was allowed to warm to rt and stirring continued 18h, then evaporated. Precipitation from EtOAc, petrol gave the ester. The crude material was treated according to General Procedure L to give 36e (97 mg, 72\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{H}} \mathrm{ppm} 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 7.03(\mathrm{~d}, \mathrm{~J}=1.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PrH}), 7.40-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PrH}$ and ArH$), 7.58-7.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.75-7.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, DMSO- d_{6}) δ_{c} ppm 36.6, 116.8, 121.8, 125.1, 126.5, 127.3, 128.1, 131.0, 132.0, 134.9, 141.2, 160.9, 186.3.

General procedure M :

A solution of carbonyldiimidazole (2.0 eq.) and the required carboxylic acid (1.0 eq .) in THF ($5 \mathrm{~mL} / \mathrm{mmol}$) was heated to $80^{\circ} \mathrm{C}$ for 4 h . The appropriate amine (2.5 eq .) was added and the mixture heated at $50^{\circ} \mathrm{C}$ for 3 h then at RT for 18 h. The product was extracted into EtOAc ($50 \mathrm{~mL} / \mathrm{mmol}$), washed with water ($50 \mathrm{~mL} / \mathrm{mmol}$), brine ($50 \mathrm{~mL} / \mathrm{mmol}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and the crude product purified as specified.

4-(2,3-Dichlorobenzoyl)-N-(4-fluorobenzyl)-1H-pyrrole-2-carboxamide (6a)

General procedure M: CDI ($55 \mathrm{mg}, 0.34 \mathrm{mmol}$) and $\mathbf{3 6 a}$ ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$), THF (3 mL), 4-fluorobenzylamine (70 $\mathrm{mg}, 0.56 \mathrm{mmol})$. Chromatography ($\mathrm{SiO}_{2} ; 30 \% \mathrm{EtOAc}$, petrol) gave $\mathbf{6 a}$ as a white solid ($60 \mathrm{mg}, 44 \%$); $\mathrm{mp} 222-223^{\circ} \mathrm{C}$, $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$ 288, 237. IR $u_{\max } / \mathrm{cm}^{-1} 3364(\mathrm{OH}), 3172(\mathrm{NH}), 3119(\mathrm{NH}), 2922,2851,2372,1616(\mathrm{CO}), 1568,1505$, 1391, 1288, 1223, 1150 (CF), 851, 797, 744, 696 (CI). HPLC (Method A): 99.7\% $R_{t}=18.6 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta_{H} 4.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.10-7.24(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{ArH}$ and $=\mathrm{CH}), 7.27-7.37(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{ArH}$ and $=\mathrm{CH}), 7.40-7.52(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{xArH}), 7.77(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.5$ and $1.8 \mathrm{~Hz}, \mathrm{ArH}), 8.90(\operatorname{app} . \mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}), 12.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta_{\mathrm{C}} 41.1\left(\mathrm{CH}_{2}\right), 110.2(=\mathrm{CH}), 114.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}, 2 \times \mathrm{ArH}\right), 124.1(\mathrm{C}), 126.5(\mathrm{ArH}), 127.3(\mathrm{C}), 128.0(\mathrm{C}-$ $\mathrm{Cl}), 128.1$ ($=\mathrm{CH}$ and ArH), 128.9 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, 2 \times \mathrm{ArH}$), 130.9 (ArH), 132.0 (C, Ar), $135.3\left(\mathrm{CH}_{2} \mathrm{C}\right), 141.6$ (C-Cl), 159.5 (CON), 160.9 (d, $\left.J_{C-F}=245 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}\right), 187.0(\mathrm{CO}) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{13}{ }^{35} \mathrm{Cl}_{2} \mathrm{FN}_{2} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 408.0676$, found, 408.0672. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{FN}_{2} \mathrm{O}_{2}$: C, 58.33\%, H, 3.35\%, N, 7.16\%. Found: C, 58.33\%, H, 3.45\%, N, 7.18\%.

4-(2,4-Dichlorobenzoyl)-N,N-dimethyl-1H-pyrrole-2-carboxamide (6b)

General procedure M: CDI (114 mg, 0.7 mmol), 36b (100 mg, 0.35 mmol), THF (4 mL), dimethylamine (2 M in THF; $0.44 \mathrm{~mL}, 0.88 \mathrm{mmol})$. Chromatography ($\mathrm{SiO}_{2} ; 5-10 \% \mathrm{MeOH} / E t \mathrm{OAc}$) and precipitation (EtOAc/MeOH/petroleum ether) gave 6 b as a white solid ($80 \mathrm{mg}, 73 \%$); $\mathrm{mp} 208-209^{\circ} \mathrm{C}$, $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 287$. $\mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 3151,1640,1586$, 1553, 1484, 1377, 1341. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{H}} 3.07$ (br s, 3H, CH C_{3}), 3.17 (br s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PyrH}$),
7.21 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{PyrH}$), 7.47-7.56 (m, 2H, $2 \times \mathrm{ArH}$), $7.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 12.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{c} \mathrm{ppm}$ 36.7, 111.2, 124.1, 126.9, 127.0, 127.9, 129.0, 129.6, 130.5, 134.4, 138.0, 160.9, 186.8. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{14} \mathrm{H}_{12}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 311.0349$, found, 311.0345. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 54.04 \%, \mathrm{H}, 3.89 \%, \mathrm{~N}$, 9.00\%. Found: C, 53.94\%, H, 3.68\%, N, 8.98\%

4-(2,4-Dichlorobenzoyl)-N-phenethyl-1H-pyrrole-2-carboxamide (6c)

General procedure M: CDI (114 mg, 0.7 mmol), 36b (100 mg, 0.35 mmol), THF (4 mL), phenylethylamine (107 mg , $0.88 \mathrm{mmol})$. Chromatography ($\mathrm{SiO}_{2} ; 50 \% \mathrm{EtOAc}$, petrol) and precipitation ($\mathrm{EtOAc} / \mathrm{MeOH} /$ petroleum ether) gave $\mathbf{6 c}$ as a white solid ($80 \mathrm{mg}, 59 \%$); mp $226-227^{\circ} \mathrm{C}$, $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}) 288,239 . \mathrm{IR} \mathrm{u}_{\max } / \mathrm{cm}^{-1} 3356$ (NH), 1643 (CO), 1602, 1570, 1533, 1493, 1288. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta_{H} 2.81\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), 3.40-3.51 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $7.15(\mathrm{~s}, 1 \mathrm{H}$, PyrH), 7.15-7.34 (m, 6H, PyrH and $5 \times \mathrm{ArH}$), 7.45-7.59 (m, 2H, $2 \times \mathrm{ArH}$), 7.75 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}), 8.35-8.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 12.35$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{c} \mathrm{ppm} 34.8,39.8,109.8,124.2,125.6,126.9,127.7,127.9,128.1,128.4$,
 387.0666. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 62.03 \%, \mathrm{H}, 4.16 \%, \mathrm{~N}, 7.23 \%$. Found: $\mathrm{C}, 61.88 \%, \mathrm{H}, 3.98 \%, \mathrm{~N}, 7.13 \%$

N-Methyl-4-(2-(trifluoromethyl)benzoyl)-1H-pyrrole-2-carboxamide (6d)

General procedure M: CDI (113 mg, 0.7 mmol$), 36 \mathrm{c}(100 \mathrm{mg}, 0.35 \mathrm{mmol})$, THF (4 mL), methylamine (2 M in THF, 0.44 $\mathrm{mL}, 0.88 \mathrm{mmol})$. Chromatography ($\mathrm{SiO}_{2} ; 40-95 \% \mathrm{EtOAc}$, petrol) and precipitation (EtOAc/MeOH/petroleum ether) gave 6 d as a white solid ($71 \mathrm{mg}, 68 \%$); mp $223-224^{\circ} \mathrm{C}$, $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}) 284,235 . \operatorname{IR} u_{\max } / \mathrm{cm}^{-1} 3381$ (NH), $3178(\mathrm{NH})$, 3119,1621 (CO), 1574, 1535, 1487, 1394, 1314, 1288, 1240. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{H}} 2.72(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 7.10(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.14(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{ArH}), 7.67-7.81(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1$ $\mathrm{Hz}, \mathrm{ArH}$), 8.28 (app. d, $1 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{NH}$), $12.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{C}} 24.8,109.3,123.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=272 \mathrm{~Hz}, \mathrm{CF}_{3}$), 124.4, 125.4 ($\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}, \mathrm{CCF}_{3}$), 125.6 ($\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=4.7 \mathrm{~Hz}, \mathrm{ArH}$), 127.1, 127.4, 128.0, 129.1, 131.4, 138.7, 159.8, 188.2. $\mathrm{HRMS}\left(E S^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 297.0845$, found, 297.0843.

4-Benzoyl-N-pyridin-3-ylmethyl-1H-pyrrole-2-carboxamide (6e)

General procedure M: CDI (113 mg, 0.7 mmol), 36d ($75 \mathrm{mg}, 0.35 \mathrm{mmol}$), THF (4 mL), 3-pyridylmethylamine (61 mg , 0.56 mmol) 6 e was obtained as a white solid ($104 \mathrm{mg}, 73 \%$); mp $214-215{ }^{\circ} \mathrm{C}$, $\lambda_{\max }\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{nm}\right) 289$ and 242 . IR $\left.U_{\max } / \mathrm{cm}^{-1} 3340,3181,3055,1668\right), 1532,1423 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 4.47\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 7.30-7.40 (m, 2H, ArH and $=C H$), $7.43(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.47-7.66(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{ArH}), 7.67-7.83(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{ArH}), 8.46(\mathrm{~d}, 1 \mathrm{H}$, $J=3.9 \mathrm{~Hz}, \mathrm{ArH}$), $8.55(\mathrm{brs}, 1 \mathrm{H}, \mathrm{ArH}), 8.93(\mathrm{app} . \mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{NH}), 12.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ_{c} ppm 39.6, 111.1, 122.9, 123.8, 127.1, 127.3, 128.0, 131.1, 134.6, 134.7, 139.0, 147.7, 148.5, 159.9, 188.9. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 306.1237$, found, 306.1233. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: $\mathrm{C}, 70.81 \%, \mathrm{H}, 4.95 \%, \mathrm{~N}$, 13.76\%. Found: C, 70.20%, H, 4.78%, N, 13.41\%.

4-(2,3-Dichlorobenzoyl)-N-methyl-1H-pyrrole-2-carboxamide (6f)

General procedure M: CDI ($55 \mathrm{mg}, 0.34 \mathrm{mmol}$) and 36a ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$), THF (3 mL), methylamine (2 M in THF, $0.44 \mathrm{~mL}, 0.88 \mathrm{mmol}) 6 \mathrm{f}$ was obtained as a white solid ($72 \mathrm{mg}, 69 \%$); mp 254-255 ${ }^{\circ} \mathrm{C}$, $\lambda_{\max }\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{nm}\right) 287$ and 235. $I R u_{\max } / \mathrm{cm}^{-1} 3362,3187,3130,1619,1580,1537,1491 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 2.73(a p p . \mathrm{d}, 3 \mathrm{H}, \mathrm{J}=3.6$ $\mathrm{Hz}, \mathrm{CH}_{3}$), $7.11(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.24(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.40-7.52(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.77(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{and} 1.2 \mathrm{~Hz}, \mathrm{ArH}), 8.29$ (app. d, 1H, J = $3.3 \mathrm{~Hz}, \mathrm{NH}$), $12.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d ${ }_{6}$) $\delta_{c} \mathrm{ppm} 24.8,109.4,123.8,126.2,127.0$, 127.5, 127.8, 128.2, 130.6, 131.7, 141.3, 159.7, 186.7. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{13} \mathrm{H}_{10}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 297.0192$, found, 297.0194. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 52.55\%, H, 3.39\%, N, 9.43\%. Found: C, 52.25\%, H, 3.10\%, N, 9.20\%.

4-(2,3-Dichlorobenzoyl)-N,N-dimethyl-1H-pyrrole-2-carboxamide (6g)

General procedure M : CDI ($55 \mathrm{mg}, 0.34 \mathrm{mmol}$) and $\mathbf{3 6 a}(100 \mathrm{mg}, 0.35 \mathrm{mmol})$, THF (3 mL), dimethylamine (2 M in THF, $0.44 \mathrm{~mL}, 0.88 \mathrm{mmol}) 6 \mathrm{~g}$ was obtained as a slightly brown solid ($105 \mathrm{mg}, 96 \%$); mp $223-224{ }^{\circ} \mathrm{C}, \lambda_{\max }\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{nm}\right) 286$ and 233. IR $u_{\max } / \mathrm{cm}^{-1} 3200,3117,2922,2851,1647,1599,1541,1505,1406 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm}$ 3.04 (br s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.02 (br s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $6.92(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}$), 7.21 (dd, $1 \mathrm{H}, \mathrm{J}=3.3$ and $1.2 \mathrm{~Hz},=\mathrm{CH}$), 7.41-7.52 (m, $2 \mathrm{H}, 2 \mathrm{x}$ ArH), 7.77 (dd, $1 \mathrm{H}, \mathrm{J}=6.9$ and $1.2 \mathrm{~Hz}, \mathrm{ArH}$), $12.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{c} \mathrm{ppm} 36.7,36.8,111.2$, 123.9, 126.5, 127.1, 127.3, 128.0, 130.9, 132.0, 141.4, 160.9, 186.7. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{14} \mathrm{H}_{12}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 311.0349, found, $311.0347\left({ }^{35} \mathrm{Cl}\right)$.

4-(2,3-Dichlorobenzoyl)-N-(pyridin-4-ylmethyl)-1H-pyrrole-2-carboxamide (6h)

General procedure M: CDI (114 mg, 0.7 mmol), 36a (100 mg, 0.35 mmol), THF (4 mL), 4-pyridylmethylamine (61 mg , $0.56 \mathrm{mmol}) 6 \mathrm{~h}$ was obtained as a white solid ($128 \mathrm{mg}, 97 \%$); $\mathrm{mp} 244-245^{\circ} \mathrm{C}, \lambda_{\max }\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{nm}\right) 285$ and 236 . IR $U_{\max } / \mathrm{cm}^{-1} 3337,3121,3057,2920,2850,1618,1564,1527,1491,1410 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm} 3.59(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.39(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.42(\mathrm{~d}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 6.46(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.54-6.66(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH})$, $6.91(\mathrm{dd}, 1 \mathrm{H}, J=7.5$ and $2.1 \mathrm{~Hz}, \mathrm{ArH}), 7.64(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 8.12(\operatorname{app}, \mathrm{t}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{NH}), 11.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{-}$) δ_{c} ppm 40.9, 110.4, 121.8, 124.1, 126.5, 127.3, 127.9, 128.1, 130.8, 132.0, 141.5, 148.0, 149.1, 159.8, 186.9. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{18} \mathrm{H}_{13}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 374.0458$, found, 374.0459.

4-(2,3-Dichlorobenzoyl)- N -(pyridin-3-ylmethyl)-1H-pyrrole-2-carboxamide (6i)

General procedure M: CDI (114 mg, 0.7 mmol$)$, 36a ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$), THF (4 mL), 3-pyridylmethylamine (61 mg , $0.56 \mathrm{mmol}) 6 \mathrm{i}$ was obtained as a white solid ($79 \mathrm{mg}, 60 \%$); mp $178-179^{\circ} \mathrm{C}$, $\lambda_{\text {max }}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{nm}\right) 287$ and 237 . IR $U_{\max } / \mathrm{cm}^{-1} 3435,3168,1624,1575,1541,1489,1392,1293 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 4.47(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 7.20(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.30(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.32-7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.40-7.52(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8$ $\mathrm{Hz}, \mathrm{ArH}), 7.76(\mathrm{dd}, 1 \mathrm{H}, J=7.5$ and $1.8 \mathrm{~Hz}, \mathrm{ArH}), 8.45(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, \mathrm{ArH}), 8.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.93($ app. $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.7$ $\mathrm{Hz}, \mathrm{NH}), 12.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d ${ }_{6}$) δ_{c} ppm 41.2, 110.3, 123.0, 124.1, 126.5, 127.3, 128.0, 128.1, $130.9,132.0,134.5,134.7,141.5,147.7,148.5,159.7,187.0$. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{18} \mathrm{H}_{13}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 374.0458$, found, 374.0456.

General procedure M: CDI (114 mg, 0.7 mmol), 36a ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$), THF (4 mL), 2-pyridylmethylamine (61 mg , $0.56 \mathrm{mmol}) 6 \mathrm{j}$ was obtained as a white solid ($111 \mathrm{mg}, 84 \%$); $\mathrm{mp} 228-229^{\circ} \mathrm{C}$, $\lambda_{\max }\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{nm}\right) 286$ and 236 . IR (Diamond ATR) $U_{\max } / \mathrm{cm}^{-1} 3372,3165,3121,1621,1570,1526,1494,1291,1211,904,745,698$. HPLC (Method A): $99.9 \% R_{t}=10.9 \mathrm{~min} ;\left(\right.$ Method B): $99.8 \% \mathrm{R}_{\mathrm{t}}=14.0 \mathrm{~min} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm} 4.52(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}$, CH_{2}), 7.20-7.35 (m, 4H, $2 \times=\mathrm{CH}$ and $2 \times \mathrm{ArH}$), 7.40-7.54 (m, $2 \mathrm{H}, 2 \times \mathrm{ArH}$), 7.70-7.82 (m, $2 \mathrm{H}, 2 \times \mathrm{ArH}$), $8.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $3.9 \mathrm{~Hz}, \mathrm{ArH}$), 8.96 (app. t, $1 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{NH}$), $12.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{c} \mathrm{ppm} 43.9\left(\mathrm{CH}_{2}\right), 110.4$ (=CH), 120.7 (ArH), 121.6 (ArH), 124.1 (C), 126.5 (ArH), 127.3 (C), $128.0(\mathrm{ArH}), 128.1$ (=CH), 128.2 (ArH), $130.8(\mathrm{ArH})$, 132.0 (C, Ar), 136.2 (ArH), 141.6 (C-Cl), 148.4 (ArH), 158.3 (C, Ar), 159.7 (CON), 186.9 (CO). HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{18} \mathrm{H}_{13}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 374.0458$, found, $374.0459\left({ }^{35} \mathrm{Cl}\right)$. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{C}, 57.77 \%, \mathrm{H}, 3.50 \%, \mathrm{~N}$, 11.23%. Found: C, 57.75%, H, 3.23%, N, 11.20\%.

N-Benzyl-4-(2,3-dichlorobenzoyl)-1H-pyrrole-2-carboxamide (6k)

General procedure M: CDI (114 mg, 0.7 mmol), 36a ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$), THF (4 mL), benzylamine ($60 \mathrm{mg}, 0.56$ mmol), $6 \mathbf{k}$ was obtained as a white solid ($62 \mathrm{mg}, 46 \%$); mp $223-224{ }^{\circ} \mathrm{C}$, $\lambda_{\max }\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{nm}\right) 286$ and 237 . IR $\mathrm{u}_{\max } / \mathrm{cm}^{-1}$ $3347,3161,3123,2922,1620,1570,1533,1491,1410 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 4.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}$, CH_{2}), 7.17-7.37 (m, $7 \mathrm{H}, 2 \mathrm{x}=\mathrm{CH}$ and 5 xArH), $7.40-7.51(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{xArH}), 7.76(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.5$ and $2.1 \mathrm{~Hz}, \mathrm{ArH}), 8.88$ (app. t, 1H, J = 6.0 Hz, NH), $12.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{c} \mathrm{ppm} 42.1,110.4,124.4,126.6,126.7$, 127.2, 127.5, 128.1, 128.2, 128.3, 128.5, 131.1, 132.2, 139.4, 141.9, 159.8, 187.2. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{19} \mathrm{H}_{14}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 373.0505$, found, 373.0502.

4-(2,3-Dichlorobenzoyl)-N-phenethyl-1H-pyrrole-2-carboxamide (6I)

General procedure M: CDI (114 mg, 0.7 mmol$), 36 \mathrm{a}(100 \mathrm{mg}, 0.35 \mathrm{mmol})$,THF (4 mL), phenethylamine ($68 \mathrm{mg}, 0.56$ mmol), 6 I was obtained as a white solid ($56 \mathrm{mg}, 41 \%$); mp 232-233 ${ }^{\circ} \mathrm{C}$, $\lambda_{\max }\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{nm}\right) 288$ and 236 . IR $\mathrm{u}_{\max } / \mathrm{cm}^{-1}$ 3404, 3332, 3125, 2924, 2854, 1655, 1618, 1572, 1533, 1492, 1433, 1392, 1288, 1242, 1192, 1141, 747, 696. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left.\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 2.80\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.44(a p p . \mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{NHCH})_{2}\right), 7.13(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.15-$ $7.33(\mathrm{~m}, 6 \mathrm{H},=\mathrm{CH}$ and $5 \times \mathrm{ArH}), 7.39-7.52(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.77(\mathrm{dd}, 1 \mathrm{H}, J=7.8$ and $1.8 \mathrm{~Hz}, \mathrm{ArH}), 8.42(\mathrm{app} . \mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $5.6 \mathrm{~Hz}, \mathrm{NH}$), 12.37 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{c} \mathrm{ppm} 34.8,39.8,109.8,124.0,125.6,126.5,127.3$, 127.8, 127.9, 128.0, 128.2, 128.4, 130.8, 132.0, 139.1, 141.6, 159.5, 186.9. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{20} \mathrm{H}_{16}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}, 387.0662$, found, 387.0662 .

4-(2,3-Dichlorobenzoyl)-1-methyl-N-(pyridin-3-ylmethyl)-1H-pyrrole-2-carboxamide (6m)

General procedure M: CDI (88 mg, 0.54 mmol$)$, $36 \mathrm{e}(80 \mathrm{mg}, 0.27 \mathrm{mmol})$,THF (4 mL), 3-pyridylmethylamine (73 mg , 0.68 mmol), 6 m was obtained as a white solid ($63 \mathrm{mg}, 61 \%$); mp $183-184{ }^{\circ} \mathrm{C}$, $\lambda_{\max }\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{nm}\right) 284$ and 240 . IR $U_{\max } / \mathrm{cm}^{-1} 3106,1641,1518,1281 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm} 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.41\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$,
$7.24(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.35(\mathrm{dd}, 1 \mathrm{H}, J=7.2$ and $5.1 \mathrm{~Hz}, \mathrm{ArH}), 7.39-7.57(\mathrm{~m}, 3 \mathrm{H},=\mathrm{CH}$ and 2 xArH$), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$, ArH), $7.77(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 8.45(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}, \mathrm{ArH}), 8.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.91(a p p . \mathrm{t}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) δ_{c} ppm 36.5, 112.5, 121.5, 122.9, 126.4, 127.3, 127.5, 128.0, 130.8, 132.0, 133.8, 134.55, 134.62, 141.4, 147.6, 148.5, 160.3, 186.3. $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{15}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 388.0614$, found, 388.0611 . Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 58.78\%, H, 3.89\%, N, 10.82\%. Found: C, 58.49\%, H, 3.71\%, $\mathrm{N}, 10.41 \%$

4-(2,3-Dichlorobenzoyl)-N-methyl-N-(pyridin-3-ylmethyl)-1H-pyrrole-2-carboxamide (6n)

General procedure M : CDI ($114 \mathrm{mg}, 0.7 \mathrm{mmol}$), 36a ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$), THF (4 mL), N-methyl-1-(pyridin-3yl)methanamine ($68 \mathrm{mg}, 0.56 \mathrm{mmol}$), 6 n was obtained as a white solid ($68 \mathrm{mg}, 50 \%$); $\mathrm{mp} 175-176{ }^{\circ} \mathrm{C}$, $\lambda_{\max }$ $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{nm}\right) 286$ and 235 . IR $\mathrm{u}_{\max } / \mathrm{cm}^{-1} 3225,3061,1649,1597,1548,1481,1449,1410 .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{DMSO}-$ $\left.d_{6}\right) \delta \mathrm{ppm} 3.21\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.74\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.25(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.32-7.51(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{ArH}$ and $=\mathrm{CH}), 7.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, \operatorname{ArH}), 7.75(\mathrm{dd}, 1 \mathrm{H}, J=7.2$ and $2.1 \mathrm{~Hz}, \mathrm{ArH}), 8.50(\mathrm{dd}, 1 \mathrm{H}, J=4.7$ and $1.7 \mathrm{~Hz}, \mathrm{ArH}), 8.52(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 12.43(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta_{c} \mathrm{ppm} 35.6,49.4,111.5,123.2,124.0,126.5,126.6,127.3,128.0,128.3$, 130.9, 132.0, 132.6, 134.6, 141.3, 148.1, 148.4, 161.3, 186.7. HRMS (ES ${ }^{+}$) calcd for $\mathrm{C}_{19} \mathrm{H}_{15}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 388.0614$, found, 388.0613. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 58.78\%, H, 3.89\%, $\mathrm{N}, 10.82 \%$. Found: $\mathrm{C}, 58.77 \%, \mathrm{H}, 4.01 \%, \mathrm{~N}$, 10.61\%

(4-(2,3-Dichlorobenzoyl)-1H-pyrrol-2-yl)(3,4-dihydro-2,6-naphthyridin-2(1H)-yl)methanone (6o)

General procedure M: 36a ($50 \mathrm{mg}, 0.18 \mathrm{mmol}$), CDI ($60 \mathrm{mg}, 0.35 \mathrm{mmol}$), 1,2,3,4-tetrahydro-2,6-naphthyridine (60 $\mathrm{mg}, 0.45 \mathrm{mmol}$) in THF (3 mL). Chromatography (KP-NH silica, 1:9 MeOH/EtOAc) gave 60 as a white solid (40 mg , $55 \%) ; \mathrm{mp}: 225-227^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 287$; IR $\left(\mathrm{cm}^{-1}\right) 3202,1604,1551 ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 2.95(2 \mathrm{H}$, s, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), $3.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 4.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 7.04(1 \mathrm{H}, \mathrm{s}$, pyrrole-H), $7.27(1 \mathrm{H}, \mathrm{s}$, pyrrole-H$), 7.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 5.1 Hz, pyridyl-H), $7.46-7.51(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}), 7.79(1 \mathrm{H}, \mathrm{dd}, J=2.0$ and $7.4 \mathrm{~Hz}, \mathrm{ArH}), 8.37(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}$, pyridyl-H), 8.43 (1H, s, pyridyl-H), 12.45 (1H, s br, NH); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta \mathrm{ppm} 121.3,124.2,127.0,127.6,128.5$, $130.5,131.4,132.3,141.6,142.0,147.0,161.3(\mathrm{C}=\mathrm{O})$, 187.2 ($\mathrm{C}=\mathrm{O}$); HRMS calcd. for $\mathrm{C}_{20} \mathrm{H}_{16}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 400.0614$, found 400.0618 .

(4-(2,3-Dichlorobenzoyl)-1H-pyrrol-2-yl)(isoindolin-2-yl)methanone (6p)

General procedure $\mathrm{M}: \mathbf{3 6 a}(50 \mathrm{mg}, 0.18 \mathrm{mmol}), \mathrm{CDI}(60 \mathrm{mg}, 0.35 \mathrm{mmol})$, isoindoline ($55 \mathrm{mg}, 0.05 \mathrm{~mL}, 0.45 \mathrm{mmol}$) in THF (3 mL). Chromatography (silica gel, 1:1 EtOAc/petrol) gave 6 p as a white solid ($54 \mathrm{mg}, 78 \%$); mp: 290-292 ${ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }}$ ($\mathrm{EtOH} / \mathrm{nm}$) 285; IR $\left(\mathrm{cm}^{-1}\right) 3191,1606,1585 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 4.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 5.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right)$, 7.22-7.23 (1H, m, pyrrole-H), $7.26(1 \mathrm{H}, \mathrm{s}$ br, pyrrole-H), 7.33-7.35 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}$), 7.41-7.45 (2H, m, $2 \times \mathrm{ArH}$), 7.47$7.52(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}), 7.80(1 \mathrm{H}, \mathrm{dd}, J=2.0$ and $7.4 \mathrm{~Hz}, \mathrm{ArH}), 12.47\left(1 \mathrm{H}, \mathrm{s}\right.$ br, NH); ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ 53.0, 53.3, 111.8, 122.8, 123.1, 124.8, 127.0, 127.4, 127.6, 127.8, 128.6, 129.7, 131.4, 132.3, 135.2, 137.1, 141.5, 159.2, 187.3; HRMS calcd. for $\mathrm{C}_{20} \mathrm{H}_{15}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 385.0505$, found 385.0505 .

(4-(2,3-Dichlorobenzoyl)-1H-pyrrol-2-yl)(3,4-dihydroisoquinolin-2(1H)-yl)methanone (6q)

General procedure M: 36a ($50 \mathrm{mg}, 0.18 \mathrm{mmol}$), CDI ($60 \mathrm{mg}, 0.35 \mathrm{mmol}$), 1,2,3,4-tetrahydroisoquinoline ($60 \mathrm{mg}, 0.06$ $\mathrm{mL}, 0.45 \mathrm{mmol}$) in THF (3 mL). Chromatography (silica gel, 1:1 EtOAc/petrol) gave $\mathbf{6 q}$ as a white solid ($65 \mathrm{mg}, 91 \%$); mp: 192-194 ${ }^{\circ} \mathrm{C} ; \lambda_{\max }(E t O H / n m) 286 ;$ IR $\left(\mathrm{cm}^{-1}\right) 3202,1604,1548 ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 2.93(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 4.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 7.01(1 \mathrm{H}, \mathrm{s}$, pyrrole-H$), 7.20-7.28(5 \mathrm{H}, \mathrm{m}$, pyrrole-H, $4 \times \mathrm{ArH})$, 7.47-7.49 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}$), $7.79(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $7.1 \mathrm{~Hz}, \mathrm{ArH}), 12.38\left(1 \mathrm{H}, \mathrm{s}\right.$ br, NH); ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ δ ppm 124.2, 126.2, 126.4, 126.6, 127.0, 127.2, 127.6, 128.3, 128.5, 129.3, 131.4, 132.3, 133.3, 134.8, 141.6, 187.3 (C=O); HRMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{17}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$399.0662, found 399.0662.

(4-(2,3-Dichlorobenzoyl)-1H-pyrrol-2-yl)(1H-pyrrolo[3,4-c]pyridin-2(3H)-yl)methanone (6r)

General procedure M: 36a ($55 \mathrm{mg}, 0.2 \mathrm{mmol}$), CDI ($65 \mathrm{mg}, 0.4 \mathrm{mmol}$), 2,3-dihydro- 1 H -pyrrolo[3,4-c]pyridine hydrochloride ($60 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (3 mL). Chromatography ($\mathrm{KP}-\mathrm{NH}$ silica, 1:9 MeOH/EtOAc) gave 6 r as a white solid (43 mg, 56\%); mp: 258-260 ${ }^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}) 286$; IR (cm^{-1}) 3181, 1633, 1577 ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ ppm $4.94\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 5.18\left(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 7.22(1 \mathrm{H}$, s, pyrrole-H$), 7.24(1 \mathrm{H}, \mathrm{s}$, pyrrole-H), 7.31 $(1 \mathrm{H}, \mathrm{dd}, J=1.6$ and $7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.35(1 \mathrm{H}, \mathrm{dd}, J=7.6$ and $7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.41-7.43(1 \mathrm{H}, \mathrm{m}$, pyridyl-H$), 7.60(1 \mathrm{H}, \mathrm{dd}, J=$ 1.6 and $7.7 \mathrm{~Hz}, \mathrm{ArH}), 8.40\left(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}\right.$, pyridyl-H), $8.53\left(1 \mathrm{H}, \mathrm{s}\right.$, pyridyl-H), $13.24\left(1 \mathrm{H}, \mathrm{s}\right.$ br, pyrrole-NH); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ ppm 51.4, 52.7, 111.9, 118.5, 124.9, 127.6, 128.5, 129.8, 131.4, 131.9, 132.2, 141.5, 144.6, 148.0, 159.2, 187.3; HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{14}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 386.0458$, found 386.0460.

(E)-1-(4-(2,3-Dichlorobenzoyl)-1H-pyrrol-2-yl)-3-(pyridin-4-yl)prop-2-en-1-one (40)

A mixture 39 ($200 \mathrm{mg}, 0.70 \mathrm{mmol}$) and 4-pyridine carboxaldehyde ($75 \mathrm{mg}, 0.07 \mathrm{~mL}, 0.70 \mathrm{mmol}$) in EtOH (1 mL) was cooled to $0^{\circ} \mathrm{C}$, potassium hydroxide (40%, 285 mg in $0.7 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) was added dropwise and the resulting solution stirred at rt for 18 h . Upon addition of $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ a precipitate formed which was collected by filtration.
Recrystallisation (EtOH) gave 40 as a beige solid ($245 \mathrm{mg}, 95 \%$); mp: 262-265 ${ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}$) 324, 286, 219; IR $\left(\mathrm{cm}^{-1}\right) 3225,1649,1588 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 7.49-7.52(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}), 7.59(1 \mathrm{H}, \mathrm{s}$, pyrrole-H), $7.68(1 \mathrm{H}$, d, $J=16.0 \mathrm{~Hz}$, alkene-H), $7.82(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $7.0 \mathrm{~Hz}, \mathrm{ArH}), 7.87(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, 2 \times$ pyridyl-H), $7.92(1 \mathrm{H}, \mathrm{s}$, pyrrole-H), $8.07\left(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}\right.$, alkene-H), $8.67\left(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, 2 \times\right.$ pyridyl-H), $12.92(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $_{6}$) $\delta 117.8,122.6,125.3,126.5,127.1,127.6,128.7,131.6,132.4,132.8,134.4,139.5 .141 .4,141.7$, 149.5, 150.3, 178.6, 187.5; HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{11}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 369.0203$, found 369.0201.

1-(4-(2,3-Dichlorobenzoyl)-1H-pyrrol-2-yl)-3-(pyridin-4-yl)propan-1-one (41)

To ammonium chloride ($205 \mathrm{mg}, 3.85 \mathrm{mmol}$), in ethanol $(0.30 \mathrm{~mL})$ and water (0.30 mL) was added $40(75 \mathrm{mg}, 0.20$ mmol) followed by indium powder ($35 \mathrm{mg}, 0.30 \mathrm{mmol}$). The mixture was heated at reflux for 8 h , cooled to RT and diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The solid was extracted into EtOAc $(2 \times 25 \mathrm{~mL})$, washed with brine $(25 \mathrm{~mL})$ and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated. Chromatography(C18 silica, $70 \% \mathrm{MeCN}, 0.1 \%$ formic acid, water) gave 41 as an off-white solid ($20 \mathrm{mg}, 27 \%$); mp: 249-251 ${ }^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$ 294, 237; IR (cm^{-1}) 1640, 1551; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(500} \mathrm{MHz}, \mathrm{DMSO-d} \mathrm{~d}_{6}\right) \delta$ $2.93\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.26\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 7.31(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, 2 \times$ pyridyl-H), $7.42(1 \mathrm{H}, \mathrm{s}$, pyrrole-H), $7.44(1 \mathrm{H}, \mathrm{dd}, J=1.7$ and $7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.46(1 \mathrm{H}, \mathrm{s}$ br, pyrrole-H), $7.49(1 \mathrm{H}, \mathrm{dd}, J=7.7$ and $7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.79$
($1 \mathrm{H}, \mathrm{dd}, J=1.7$ and $7.9 \mathrm{~Hz}, \mathrm{ArH}$), $8.45\left(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, 2 \times\right.$ pyridyl-H), $12.66(1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 30.4,38.7,117.3,125.8,126.8,127.9,129.2,129.9,132.6,132.8,134.7,134.8,142.9,149.7,153.6,190.3$, 191.0; HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{15}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 373.0505$, found 373.0509.

(E)-(4-(2,3-Dichlorobenzoyl)-1H-pyrrol-2-yl)(2-(pyridin-4-yl)cyclopropyl)methanone (42)

A solution of (E)-1-(4-(2,3-dichlorobenzoyl)-1H-pyrrol-2-yl)-3-(pyridine-4-yl)prop-2-en-1-one 40 (100 mg, 0.26 mmol$)$ in DMSO (1 mL) was added to a mixture of trimethylsulfoxonium iodide ($70 \mathrm{mg}, 0.32 \mathrm{mmol}$) and potassium tertbutoxide ($35 \mathrm{mg}, 0.32 \mathrm{mmol}$). The resulting solution was stirred at rt for 24 h then further trimethylsulfoxonium iodide ($70 \mathrm{mg}, 0.32 \mathrm{mmol}$) and potassium tert-butoxide ($35 \mathrm{mg}, 0.32 \mathrm{mmol}$) was added, and stirring continued for a further 24 h until complete by LCMS. The mixture was treated with brine $(10 \mathrm{~mL})$ and the product extracted with $\operatorname{EtOAc}(2 \times 10 \mathrm{~mL})$, washed with water $(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. HPLC (C18 silica 1:1 0.1% Formic acid, MeCN) gave 42 as a white solid ($30 \mathrm{mg}, 24 \%$); mp: $125-127^{\circ} \mathrm{C} ; \lambda_{\max }(E t O H / n m) 293,234 ; \mathrm{IR}^{\left(\mathrm{cm}^{-1}\right)}$ 3119, 1636, 1548; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 1.41\left(1 \mathrm{H}\right.$, ddd, $J=4.2,6.4$ and $\left.8.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.63(1 \mathrm{H}$, ddd, $J=$ 4.2, 5.4 and $\left.9.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.44(1 \mathrm{H}, \mathrm{ddd}, J=4.2,6.4$ and 9.2 Hz, cyclopropane -CH$), 2.87(1 \mathrm{H}, \mathrm{ddd}, J=4.2,5.4$ and 8.4 Hz , cyclopropane-CH), $7.10(2 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, 2 \times$ pyridyl-H), $7.18(1 \mathrm{H}, \mathrm{dd}, J=1.6$ and $7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.23(1 \mathrm{H}, \mathrm{dd}, J=$ 7.6 and $7.8 \mathrm{~Hz}, \mathrm{ArH}$), $7.27(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}$, pyrrole-H), $7.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}$, pyrrole-H), $7.50(1 \mathrm{H}, \mathrm{dd}, J=1.6$ and 7.8 $\mathrm{Hz}, \mathrm{ArH}), 8.22\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \times\right.$ pyridyl-H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CD ${ }_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 19.9,28.3,30.0,117.8,123.0$, 127.0, 128.0, 129.2, 132.7, 132.8, 134.8, 142.9, 150.0, 152.9, 189.4, 190.4; HRMS calcd. for $\mathrm{C}_{20} \mathrm{H}_{15}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 385.0505, found 385.0506.

1-(Pyridin-4-yl)-3-(1H-pyrrol-2-yl)propane-1,3-dione (43)

To a stirred solution of potassium tert-butoxide ($370 \mathrm{mg}, 3.3 \mathrm{mmol}$) in THF (5 mL) was added 2-acetyl pyrrole (165 $\mathrm{mg}, 1.5 \mathrm{mmol}$) followed by ethyl isonicotinate ($500 \mathrm{mg}, 3.3 \mathrm{mmol}$). The resulting mixture was stirred at RT for 6 h . The mixture was acidified to pH 4 with aq. $\mathrm{HCl}(1.0 \mathrm{M})$ and water $(50 \mathrm{~mL})$ added, upon which the product precipitated. The product was collected by filtration and recrystallised from EtOH to give $\mathbf{4 3}$ as a yellow solid (230
 pyrrole-H), $7.17(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCO}), 7.27(1 \mathrm{H}, \mathrm{s}$, pyrrole-H), $7.41(1 \mathrm{H}, \mathrm{s}$, pyrrole-H), $7.94(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, 2 \times$ pyridyl-H), $8.78\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \times\right.$ pyridyl-H), $12.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 16.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 94.9$, 111.0, 117.7, 119.9, 127.3, 129.9, 141.0, 150.5, 172.2, 182.1; HRMS calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 215.0815$, found 215.0817.

Kinase Selectivity for 6h

Kinase selectivity screening was conducted by Millipore.

Kinase	\%inhibition @ 10 uM
$\operatorname{Abl}(\mathrm{h})$	8
Aurora-A(h)	11
CDK2/cyclinA(h)	5

c-RAF(h)	-27
cSRC(h)	0
DAPK1(h)	-6
EGFR(h)	-14
GSK3 $\alpha(\mathrm{h})$	14
IKK (h)	-14
IR(h)	-4
IRAK4(h)	7
JAK3(h)	-5
JNK111(h)	27
MAPK1(h)	45
MAPKAP-K2(h)	11
MEK1(h)	-9
PKB3(h)	4
PKC $\alpha(\mathrm{h})$	-6
SAPK2a(h)	76
SGK(h)	5

References

1. Hepworth, J. D., AMINOACETONE SEMICARBAZONE HYDROCHLORIDE. Organic Syntheses, Coll. Vol. 1973, 5, 27.
2. Numata, A.; Kondo, Y.; Sakamoto, T., General Synthetic Method for Naphthyridines and Their N-Oxides Containing Isoquinolinic Nitrogen. Synthesis 1999, 1999 (02), 306-311.
3. Nagarajan, S. R.; De Crescenzo, G. A.; Getman, D. P.; Lu, H.-F.; Sikorski, J. A.; Walker, J. L.; McDonald, J. J.; Houseman, K. A.; Kocan, G. P.; Kishore, N.; Mehta, P. P.; Funkes-Shippy, C. L.; Blystone, L., Discovery of novel benzothiazolesulfonamides as potent inhibitors of HIV-1 protease. Bioorg. Med. Chem. 2003, 11 (22), 47694777.
4. Sun, A.; Yoon, J.-J.; Yin, Y.; Prussia, A.; Yang, Y.; Min, J.; Plemper, R. K.; Snyder, J. P., Potent Non-Nucleoside Inhibitors of the Measles Virus RNA-Dependent RNA Polymerase Complex. J. Med. Chem. 2008, 51 (13), 37313741.
5. Wang, M.; Gao, M.; Mock, B. H.; Miller, K. D.; Sledge, G. W.; Hutchins, G. D.; Zheng, Q.-H., Synthesis of carbon11 labeled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agents. Bioorg. Med. Chem. 2006, 14 (24), 8599-8607.
6. Erian, A. W.; Konno, A.; Fuchigami, T., Electrolytic Partial Fluorination of Organic Compounds. 19. A Novel Synthesis of Fluorothieno[2,3-b]pyridines Using Anodic Fluorination of Heterocyclic Sulfides as a Key Step. J. Org. Chem. 1995, 60 (23), 7654-7659.
7. Robl, J. A.; Duncan, L. A.; Pluscec, J.; Karanewsky, D. S.; Gordon, E. M.; Ciosek, C. P.; Rich, L. C.; Dehmel, V. C.; Slusarchyk, D. A., Phosphorus-containing inhibitors of HMG-CoA reductase. 2. Synthesis and biological activities of a series of substituted pyridines containing a hydroxyphosphinyl moiety. J. Med. Chem. 1991, 34 (9), 2804-2815.
8. Kanagarajan, V.; Thanusu, J.; Gopalakrishnan, M., Synthesis and in vitro microbiological evaluation of an array of biolabile 2-morpholino-N-(4,6-diarylpyrimidin-2-yl)acetamides. Eur J Med Chem 2010, 45 (4), 1583-1589.
9. Baumstark, A. L.; Chrisope, D. R.; Keel, R. A.; Boykin, D. W., A carbon-13 Nmr assignment study of 3,5diarylisoxazoles. J. Heterocyclic Chem. 1980, 17 (8), 1719-1721.
10. Cardinal-David, B.; Raup, D. E. A.; Scheidt, K. A., Cooperative N-Heterocyclic Carbene/Lewis Acid Catalysis for Highly Stereoselective Annulation Reactions with Homoenolates. J. Am. Chem. Soc. 2010, 132 (15), 5345-5347.
11. Shestopalov, A. M.; Nikishin, K. G., One stage synthesis of 4,6-diaryl-3-cyanopyridine-2(1H)-thiones. Chemistry of Heterocyclic Compounds 1998, 34, 1093.
12. Schmidt, H.-W.; Koitz, G.; Junek, H., A convenient synthesis of 2-substituted 4-amino-5pyrimidinecarbonitriles. J. Heterocyclic Chem. 1987, 24 (5), 1305-1307.
13. Ludovici, D. W.; De Corte, B. L.; Kukla, M. J.; Ye, H.; Ho, C. Y.; Lichtenstein, M. A.; Kavash, R. W.; Andries, K.; de Bethune, M. P.; Azijn, H.; Pauwels, R.; Lewi, P. J.; Heeres, J.; Koymans, L. M.; de Jonge, M. R.; Van Aken, K. J.; Daeyaert, F. F.; Das, K.; Arnold, E.; Janssen, P. A., Evolution of anti-HIV drug candidates. Part 3: Diarylpyrimidine (DAPY) analogues. Bioorg. Med. Chem. Lett. 2001, 11 (17), 2235-9.

X-ray Crystallography

Table S1. Crystal data and structure refinement for irh34 (12a).

Identification code
CCDC reference
Chemical formula (moiety)
Chemical formula (total)
Formula weight
Temperature
Radiation, wavelength
Crystal system, space group
Unit cell parameters

Cell volume
Z
Calculated density
Absorption coefficient μ
F(000)
Crystal colour and size
Reflections for cell refinement
Data collection method
θ range for data collection
Index ranges
Completeness to $\theta=24.6^{\circ}$
Reflections collected
Independent reflections
Reflections with $\mathrm{F}^{2}>2 \sigma$
Absorption correction
Min. and max. transmission
Structure solution
Refinement method
Weighting parameters a, b
Data / restraints / parameters
Final R indices [$\mathrm{F}^{2}>2 \sigma$]
R indices (all data)
Goodness-of-fit on F^{2} Largest and mean shift/su
Largest diff. peak and hole
irh34
1410001
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$
283.36

120(2) K
synchrotron, $0.6946 \AA$
monoclinic, $\mathrm{P} 2_{1} / \mathrm{n}$
$\mathrm{a}=7.826(3) \AA \quad \alpha=90^{\circ}$
$\mathrm{b}=9.969(4) \AA \quad \beta=98.843(4)^{\circ}$
$\mathrm{c}=16.338(6) \AA \quad \gamma=90^{\circ}$
$1259.5(8) \AA^{3}$
4
$1.494 \mathrm{~g} / \mathrm{cm}^{3}$
$0.344 \mathrm{~mm}^{-1}$
592
colourless, $0.040 \times 0.040 \times 0.010 \mathrm{~mm}^{3}$
959 (θ range 2.3 to 28.5°)
Bruker APEX2 CCD diffractometer
thin-slice ω scans
3.3 to 29.7°
$\mathrm{h}-11$ to $11, \mathrm{k}-14$ to $14,1-22$ to 22
99.2 \%

12427
$3627\left(\mathrm{R}_{\text {int }}=0.0336\right)$
2752
multi-scan
0.983 and 0.996
direct methods
Full-matrix least-squares on F^{2}
0.0717, 0.4971

3627 / 0 / 171
$\mathrm{R} 1=0.0449, \mathrm{wR} 2=0.1180$
$\mathrm{R} 1=0.0643, \mathrm{wR} 2=0.1295$
1.034
0.001 and 0.000
0.48 and $-0.50 \mathrm{e}^{\circ} \AA^{-3}$

Table S2. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for irh 34. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U_{eq}
S1	$0.45275(6)$	$0.22259(5)$	$0.61587(3)$	$0.02745(13)$
S2	$0.30115(7)$	$0.53007(5)$	$0.58625(3)$	$0.03477(15)$
O1	$0.58167(18)$	$0.12389(15)$	$0.60562(9)$	$0.0329(3)$
O2	$0.50063(19)$	$0.33638(15)$	$0.66871(9)$	$0.0347(3)$
N1	$0.3157(2)$	$0.14337(19)$	$0.30508(11)$	$0.0324(4)$
N2	$0.2995(2)$	$0.14560(17)$	$0.65177(11)$	$0.0301(4)$
N3	$0.0974(3)$	$0.7440(2)$	$0.50956(14)$	$0.0483(5)$
C1	$0.3714(2)$	$0.28568(19)$	$0.51623(12)$	$0.0266(4)$
C2	$0.3757(2)$	$0.19692(19)$	$0.45052(12)$	$0.0271(4)$
C3	$0.3048(2)$	$0.2314(2)$	$0.36934(12)$	$0.0276(4)$
C4	$0.2301(3)$	$0.3586(2)$	$0.35621(13)$	$0.0313(4)$
C5	$0.2293(3)$	$0.4478(2)$	$0.42095(13)$	$0.0313(4)$
C6	$0.2988(2)$	$0.4141(2)$	$0.50191(12)$	$0.0287(4)$
C7	$0.1571(3)$	$0.2202(2)$	$0.68066(17)$	$0.0434(5)$
C8	$0.0229(3)$	$0.1145(3)$	$0.68861(16)$	$0.0423(5)$
C9	$0.0617(4)$	$-0.0015(3)$	$0.6380(3)$	$0.0702(10)$
C10	$0.2360(3)$	$0.0155(2)$	$0.61470(16)$	$0.0402(5)$
C11	$0.1779(3)$	$0.6545(2)$	$0.53731(14)$	$0.0363(5)$

Table S3. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for irh34.

S1-O1	1.4374(16)	S1-O2	1.4399(16)
S1-N2	$1.6086(17)$	S1-C1	1.770 (2)
S2-C6	1.797(2)	S2-C11	1.694(2)
N1-H1A	0.86(3)	N1-H1B	0.91(3)
N1-C3	1.381(3)	N2-C7	1.477 (3)
N2-C10	1.485(3)	N3-C11	$1.145(3)$
C1-C2	1.396 (3)	C1-C6	$1.405(3)$
C2-H2	0.950	C2-C3	$1.400(3)$
C3-C4	1.399(3)	C4-H4	0.950
C4-C5	1.383(3)	C5-H5	0.950
C5-C6	$1.392(3)$	C7-H7A	0.990
C7-H7B	0.990	C7-C8	1.507(3)
C8-H8A	0.990	C8-H8B	0.990
C8-C9	1.480(4)	C9-H9A	0.990
C9-H9B	0.990	C9-C10	1.482(3)
C10-H10A	0.990	C10-H10B	0.990
O1-S1-O2	119.11(9)	O1-S1-N2	106.97(9)
O1-S1-C1	107.21(9)	O2-S1-N2	107.29(9)
O2-S1-C1	107.17(9)	N2-S1-C1	108.78(9)
C6-S2-C11	99.85(10)	H1A-N1-H1B	118(3)
H1A-N1-C3	112.8(19)	H1B-N1-C3	110.9(17)
S1-N2-C7	121.21(15)	S1-N2-C10	119.32(14)
C7-N2-C10	110.40(17)	S1-C1-C2	115.75(14)
S1-C1-C6	123.77(15)	C2-C1-C6	120.42(18)
C1-C2-H2	119.3	C1-C2-C3	121.35(18)
H2-C2-C3	119.3	N1-C3-C2	120.17(19)
N1-C3-C4	122.19(18)	C2-C3-C4	117.60(18)
C3-C4-H4	119.4	C3-C4-C5	121.11(19)
H4-C4-C5	119.4	C4-C5-H5	119.2
C4-C5-C6	121.65(19)	H5-C5-C6	119.2
S2-C6-C1	120.14(15)	S2-C6-C5	122.00(16)
C1-C6-C5	117.85(18)	N2-C7-H7A	110.9
N2-C7-H7B	110.9	N2-C7-C8	104.23(19)
H7A-C7-H7B	108.9	H7A-C7-C8	110.9
H7B-C7-C8	110.9	C7-C8-H8A	110.3
C7-C8-H8B	110.3	C7-C8-C9	107.03(19)
H8A-C8-H8B	108.6	H8A-C8-C9	110.3
H8B-C8-C9	110.3	C8-C9-H9A	109.8
C8-C9-H9B	109.8	C8-C9-C10	109.3(2)
H9A-C9-H9B	108.3	H9A-C9-C10	109.8
H9B-C9-C10	109.8	N2-C10-C9	105.00(19)
N2-C10-H10A	110.7	N2-C10-H10B	110.7
C9-C10-H10A	110.7	C9-C10-H10B	110.7
H10A-C10-H10B	108.8	S2-C11-N3	174.9(2)

Table S4. Torsion angles [${ }^{\circ}$] for irh34.

O1-S1-N2-C7	$171.32(17)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 2-\mathrm{C} 10$	$-44.80(18)$
O2-S1-N2-C7	$42.44(19)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 2-\mathrm{C} 10$	$-173.68(16)$
C1-S1-N2-C7	$-73.18(19)$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 2-\mathrm{C} 10$	$70.69(18)$
O1-S1-C1-C2	$29.00(17)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$-153.84(16)$
O2-S1-C1-C2	$157.96(15)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$-24.88(19)$
N2-S1-C1-C2	$-86.35(16)$	$\mathrm{N} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$90.82(18)$
S1-C1-C2-C3	$175.70(14)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-1.6(3)$
C1-C2-C3-N1	$177.92(18)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.4(3)$
N1-C3-C4-C5	$-176.34(19)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.1(3)$
C3-C4-C5-C6	$-1.5(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{S} 2$	$179.10(16)$
C4-C5-C6-C1	$0.3(3)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{S} 2$	$5.4(2)$
S1-C1-C6-C5	$-175.86(15)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{S} 2$	$-177.61(14)$
C2-C1-C6-C5	$1.2(3)$	$\mathrm{C} 11-\mathrm{S} 2-\mathrm{C} 6-\mathrm{C} 1$	$-172.97(16)$
C11-S2-C6-C5	$8.29(19)$	$\mathrm{S} 1-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$166.45(16)$
C10-N2-C7-C8	$19.7(3)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-19.5(3)$
C7-C8-C9-C10	$12.8(4)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2$	$-0.7(4)$
S1-N2-C10-C9	$-159.6(2)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	$-12.1(3)$

Table S5. Anisotropic displacement parameters $\left(\AA^{2}\right)$ for irh34. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
S1	$0.0243(2)$	$0.0263(2)$	$0.0300(2)$	$0.00216(17)$	$-0.00146(17)$	$-0.00299(17)$
S2	$0.0385(3)$	$0.0260(3)$	$0.0381(3)$	$-0.00274(19)$	$0.0004(2)$	$-0.00121(19)$
O1	$0.0262(7)$	$0.0331(7)$	$0.0378(8)$	$0.0058(6)$	$0.0001(6)$	$0.0018(6)$
O2	$0.0345(8)$	$0.0305(8)$	$0.0355(8)$	$-0.0018(6)$	$-0.0061(6)$	$-0.0051(6)$
N1	$0.0348(9)$	$0.0311(9)$	$0.0300(9)$	$0.0012(7)$	$0.0005(7)$	$0.0015(7)$
N2	$0.0286(8)$	$0.0277(8)$	$0.0343(9)$	$0.0004(7)$	$0.0059(7)$	$-0.0040(6)$
N3	$0.0579(14)$	$0.0351(10)$	$0.0518(13)$	$0.0006(9)$	$0.0084(10)$	$0.0077(9)$
C1	$0.0235(8)$	$0.0259(9)$	$0.0292(9)$	$0.0033(7)$	$0.0002(7)$	$-0.0040(7)$
C2	$0.0241(9)$	$0.0244(9)$	$0.0321(10)$	$0.0036(7)$	$0.0019(7)$	$-0.0020(7)$
C3	$0.0239(9)$	$0.0296(10)$	$0.0291(9)$	$0.0011(7)$	$0.0034(7)$	$-0.0042(7)$
C4	$0.0308(10)$	$0.0310(10)$	$0.0309(10)$	$0.0042(8)$	$0.0014(8)$	$-0.0006(8)$
C5	$0.0307(10)$	$0.0251(9)$	$0.0372(11)$	$0.0050(7)$	$0.0023(8)$	$0.0005(7)$
C6	$0.0258(9)$	$0.0250(9)$	$0.0346(10)$	$0.0001(7)$	$0.0032(7)$	$-0.0035(7)$
C7	$0.0390(12)$	$0.0391(12)$	$0.0555(14)$	$-0.0104(10)$	$0.0185(11)$	$-0.0042(9)$
C8	$0.0373(12)$	$0.0462(13)$	$0.0454(13)$	$0.0002(10)$	$0.0132(10)$	$-0.0029(10)$
C9	$0.0514(17)$	$0.0477(16)$	$0.123(3)$	$-0.0266(17)$	$0.0494(19)$	$-0.0202(13)$
C10	$0.0398(12)$	$0.0319(11)$	$0.0519(13)$	$-0.0072(9)$	$0.0164(10)$	$-0.0112(9)$
C11	$0.0383(11)$	$0.0282(10)$	$0.0429(12)$	$-0.0022(8)$	$0.0072(9)$	$-0.0026(8)$

Table S6. Hydrogen coordinates and isotropic displacement parameters $\left(\AA^{2}\right)$ for irh34.

	x	y	z	U
H1A	$0.237(4)$	$0.157(3)$	$0.2631(18)$	$0.047(8)$
H1B	$0.334(3)$	$0.058(3)$	$0.3243(17)$	$0.044(7)$
H2	0.4279	0.1114	0.4611	0.033
H4	0.1791	0.3842	0.3019	0.038
H5	0.1802	0.5343	0.4099	0.038
H7A	0.1104	0.2897	0.6400	0.052
H7B	0.1968	0.2637	0.7347	0.052
H8A	0.0282	0.0876	0.7473	0.051
H8B	-0.0944	0.1495	0.6683	0.051
H9A	-0.0258	-0.0077	0.5875	0.084
H9B	0.0575	-0.0855	0.6700	0.084
H10A	0.2295	0.0176	0.5537	0.048
H10B	0.3134	-0.0587	0.6372	0.048

Table S7. Hydrogen bonds for $\operatorname{irh} 34$ [\AA and ${ }^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
N1-H1A...O2a	$0.86(3)$	$2.22(3)$	$3.065(3)$	$168(3)$
N1-H1B...O1b	$0.91(3)$	$2.19(3)$	$3.084(3)$	$166(2)$

Symmetry operations for equivalent atoms
a $x-1 / 2,-y+1 / 2, z-1 / 2 \quad$ b $-x+1,-y,-z+1$

Table S8. Crystal data and structure refinement for irh33 (3a).

Identification code
CCDC reference
Chemical formula (moiety)
Chemical formula (total)
Formula weight
Temperature
Radiation, wavelength
Crystal system, space group
Unit cell parameters

Cell volume
Z
Calculated density
Absorption coefficient μ
F(000)
Crystal colour and size
Reflections for cell refinement
Data collection method
θ range for data collection
Index ranges
Completeness to $\theta=24.6^{\circ}$
Reflections collected
Independent reflections
Reflections with $\mathrm{F}^{2}>2 \sigma$
Absorption correction
Min. and max. transmission
Structure solution
Refinement method
Weighting parameters a, b
Data / restraints / parameters
Final R indices [$\mathrm{F}^{2}>2 \sigma$]
R indices (all data)
Goodness-of-fit on F^{2}
Largest and mean shift/su
Largest diff. peak and hole
irh33
1410003
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$
283.36

120(2) K
synchrotron, $0.6946 \AA$
triclinic, $\mathrm{P} \overline{1}$
$a=6.3088(11) \AA \quad \alpha=92.623(2)^{\circ}$
$\mathrm{b}=9.4321(16) \AA \quad \beta=106.331(2)^{\circ}$
$\mathrm{c}=11.166(2) \AA \quad \gamma=105.543(2)^{\circ}$
609.02(18) \AA^{3}

2
$1.545 \mathrm{~g} / \mathrm{cm}^{3}$
$0.356 \mathrm{~mm}^{-1}$
296
colourless, $0.100 \times 0.060 \times 0.040 \mathrm{~mm}^{3}$
956 (θ range 3.2 to 29.7°)
Bruker APEX2 CCD diffractometer
thin-slice ω scans
3.1 to 29.7°
$\mathrm{h}-8$ to $8, \mathrm{k}-13$ to $13, \mathrm{l}-15$ to 15
95.1 \%

5928
$3259\left(\mathrm{R}_{\text {int }}=0.0154\right)$
2992
multi-scan
0.905 and 0.985
direct methods
Full-matrix least-squares on F^{2}
$0.0614,0.2169$
3259 / 0 / 171
$\mathrm{R} 1=0.0350, \mathrm{wR} 2=0.0964$
$\mathrm{R} 1=0.0374, \mathrm{wR} 2=0.0989$
1.061
0.001 and 0.000
0.47 and $-0.37 \mathrm{e}^{\circ}{ }^{-3}$

Table S9. Atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for irh33. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U_{eq}
S1	$1.26080(5)$	$0.76007(3)$	$0.82726(3)$	$0.01752(10)$
S2	$0.71598(5)$	$0.17379(3)$	$0.72181(3)$	$0.01532(10)$
O1	$0.58683(18)$	$0.08027(11)$	$0.79114(9)$	$0.0215(2)$
O2	$0.92256(17)$	$0.14878(11)$	$0.70740(9)$	$0.0210(2)$
N1	$0.95529(19)$	$0.80431(12)$	$0.93174(10)$	$0.0166(2)$
N2	$1.2484(2)$	$1.01893(12)$	$0.93190(11)$	$0.0184(2)$
N3	$0.54162(19)$	$0.15819(13)$	$0.58099(10)$	$0.0185(2)$
C1	$1.1430(2)$	$0.87383(13)$	$0.90441(11)$	$0.0155(2)$
C2	$1.0334(2)$	$0.60795(13)$	$0.82872(11)$	$0.0155(2)$
C3	$0.9865(2)$	$0.46098(13)$	$0.77987(11)$	$0.0165(2)$
C4	$0.7895(2)$	$0.35855(13)$	$0.79122(11)$	$0.0154(2)$
C5	$0.6441(2)$	$0.40232(14)$	$0.85089(12)$	$0.0172(2)$
C6	$0.6944(2)$	$0.54971(14)$	$0.89994(12)$	$0.0175(2)$
C7	$0.8898(2)$	$0.65449(13)$	$0.88922(11)$	$0.0150(2)$
C8	$0.3007(2)$	$0.16057(18)$	$0.56295(14)$	$0.0271(3)$
C9	$0.2750(3)$	$0.2817(2)$	$0.47955(17)$	$0.0346(4)$
C10	$0.4228(3)$	$0.26626(19)$	$0.39552(15)$	$0.0297(3)$
C11	$0.6329(2)$	$0.23542(17)$	$0.48523(13)$	$0.0231(3)$

Table S10. Bond lengths [\AA] and angles [${ }^{\circ}$] for irh 33 .

S1-C1	1.7744(12)	S1-C2	$1.7405(13)$
S2-O1	$1.4399(10)$	S2-O2	$1.4350(10)$
S2-N3	1.6197(12)	S2-C4	$1.7589(13)$
N1-C1	$1.3157(16)$	N1-C7	$1.3815(15)$
N2-H2A	0.82(2)	N2-H2B	0.85(2)
N2-C1	$1.3299(17)$	N3-C8	1.4823 (18)
N3-C11	$1.4826(17)$	C2-C3	1.3881(16)
C2-C7	$1.4140(16)$	C3-H3	0.950
C3-C4	$1.3964(17)$	C4-C5	1.4061(17)
C5-H5	0.950	C5-C6	1.3890 (17)
C6-H6	0.950	C6-C7	$1.3969(17)$
C8-H8A	0.990	C8-H8B	0.990
C8-C9	1.520(2)	C9-H9A	0.990
C9-H9B	0.990	C9-C10	1.525(2)
C10-H10A	0.990	C10-H10B	0.990
C10-C11	1.527(2)	C11-H11A	0.990
C11-H11B	0.990		
C1-S1-C2	88.63(6)	O1-S2-O2	120.23(6)
O1-S2-N3	106.50(6)	O1-S2-C4	107.91(6)
O2-S2-N3	106.39(6)	O2-S2-C4	107.34(6)
N3-S2-C4	107.95(6)	C1-N1-C7	110.37(10)
H2A-N2-H2B	122(2)	H2A-N2-C1	119.2(14)
H2B-N2-C1	118.3(15)	S2-N3-C8	119.93(9)
S2-N3-C11	118.53(9)	C8-N3-C11	110.42(11)
S1-C1-N1	115.66(9)	S1-C1-N2	119.28(10)
N1-C1-N2	125.05(12)	S1-C2-C3	128.51(9)
S1-C2-C7	109.51(9)	C3-C2-C7	121.98(11)
C2-C3-H3	121.1	C2-C3-C4	117.78(11)
H3-C3-C4	121.1	S2-C4-C3	118.79(9)
S2-C4-C5	119.90(9)	C3-C4-C5	121.23(11)
C4-C5-H5	119.9	C4-C5-C6	120.23(11)
H5-C5-C6	119.9	C5-C6-H6	120.2
C5-C6-C7	119.65(11)	H6-C6-C7	120.2
N1-C7-C2	115.81(11)	N1-C7-C6	125.05(11)
C2-C7-C6	119.13(11)	N3-C8-H8A	111.0
N3-C8-H8B	111.0	N3-C8-C9	103.62(12)
H8A-C8-H8B	109.0	H8A-C8-C9	111.0
H8B-C8-C9	111.0	C8-C9-H9A	111.2
C8-C9-H9B	111.2	C8-C9-C10	102.67(13)
H9A-C9-H9B	109.1	H9A-C9-C10	111.2
H9B-C9-C10	111.2	C9-C10-H10A	111.1
C9-C10-H10B	111.1	C9-C10-C11	103.52(12)
H10A-C10-H10B	109.0	H10A-C10-C11	111.1
H10B-C10-C11	111.1	N3-C11-C10	103.93(11)
N3-C11-H11A	111.0	N3-C11-H11B	111.0
C10-C11-H11A	111.0	C10-C11-H11B	111.0
H11A-C11-H11B	109.0		

Table S11. Torsion angles [${ }^{\circ}$] for irh33.

O1-S2-N3-C8	$43.50(12)$	O1-S2-N3-C11	$-176.03(10)$
O2-S2-N3-C8	$172.89(10)$	O2-S2-N3-C11	$-46.64(11)$
C4-S2-N3-C8	$-72.16(12)$	C4-S2-N3-C11	$68.31(11)$
C7-N1-C1-S1	$-1.58(14)$	C7-N1-C1-N2	$179.50(12)$
C2-S1-C1-N1	$1.62(10)$	C2-S1-C1-N2	$-179.40(11)$
C1-S1-C2-C3	$178.50(12)$	C1-S1-C2-C7	$-1.12(9)$
S1-C2-C3-C4	$-179.06(10)$	C7-C2-C3-C4	$0.51(18)$
C2-C3-C4-S2	$176.17(9)$	C2-C3-C4-C5	$-0.44(18)$
O1-S2-C4-C3	$153.40(10)$	O1-S2-C4-C5	$-29.95(12)$
O2-S2-C4-C3	$22.45(12)$	O2-S2-C4-C5	$-160.89(10)$
N3-S2-C4-C3	$-91.87(11)$	N3-S2-C4-C5	$84.79(11)$
S2-C4-C5-C6	$-176.52(10)$	C3-C4-C5-C6	$0.06(19)$
C4-C5-C6-C7	$0.28(19)$	C1-N1-C7-C2	$0.66(15)$
C1-N1-C7-C6	$-178.19(12)$	C5-C6-C7-N1	$178.60(12)$
C5-C6-C7-C2	$-0.21(18)$	S1-C2-C7-N1	$0.53(14)$
S1-C2-C7-C6	$179.46(9)$	C3-C2-C7-N1	$-179.11(11)$
C3-C2-C7-C6	$-0.19(19)$	S2-N3-C8-C9	$126.45(12)$
C11-N3-C8-C9	$-16.92(15)$	N3-C8-C9-C10	$34.68(16)$
C8-C9-C10-C11	$-39.86(16)$	S2-N3-C11-C10	$-151.76(10)$
C8-N3-C11-C10	$-7.81(15)$	C9-C10-C11-N3	$29.39(16)$

Table S12. Anisotropic displacement parameters (\AA^{2}) for irh33. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}^{11}+\ldots+2 h k a * b^{*} \mathrm{U}^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
S1	$0.01638(16)$	$0.01554(16)$	$0.02077(17)$	$-0.00111(11)$	$0.00896(12)$	$0.00200(11)$
S2	$0.01746(16)$	$0.01347(16)$	$0.01568(16)$	$0.00091(10)$	$0.00729(11)$	$0.00341(11)$
O1	$0.0283(5)$	$0.0164(4)$	$0.0218(5)$	$0.0040(3)$	$0.0136(4)$	$0.0031(4)$
O2	$0.0204(5)$	$0.0203(5)$	$0.0249(5)$	$0.0010(4)$	$0.0091(4)$	$0.0082(4)$
N1	$0.0183(5)$	$0.0143(5)$	$0.0183(5)$	$0.0011(4)$	$0.0082(4)$	$0.0040(4)$
N2	$0.0196(5)$	$0.0147(5)$	$0.0224(5)$	$0.0014(4)$	$0.0102(4)$	$0.0037(4)$
N3	$0.0167(5)$	$0.0213(5)$	$0.0156(5)$	$-0.0001(4)$	$0.0058(4)$	$0.0021(4)$
C1	$0.0161(5)$	$0.0167(5)$	$0.0140(5)$	$0.0006(4)$	$0.0048(4)$	$0.0055(4)$
C2	$0.0150(5)$	$0.0153(5)$	$0.0153(5)$	$0.0010(4)$	$0.0056(4)$	$0.0022(4)$
C3	$0.0162(6)$	$0.0170(6)$	$0.0165(6)$	$-0.0004(4)$	$0.0059(4)$	$0.0045(5)$
C4	$0.0175(5)$	$0.0143(5)$	$0.0143(5)$	$0.0008(4)$	$0.0058(4)$	$0.0037(4)$
C5	$0.0190(6)$	$0.0157(5)$	$0.0176(5)$	$0.0017(4)$	$0.0086(4)$	$0.0030(4)$
C6	$0.0195(6)$	$0.0172(6)$	$0.0181(6)$	$0.0015(4)$	$0.0098(4)$	$0.0050(5)$
C7	$0.0166(5)$	$0.0153(5)$	$0.0134(5)$	$0.0015(4)$	$0.0051(4)$	$0.0046(4)$
C8	$0.0161(6)$	$0.0354(8)$	$0.0269(7)$	$0.0014(6)$	$0.0063(5)$	$0.0036(5)$
C9	$0.0300(8)$	$0.0432(9)$	$0.0343(8)$	$0.0062(7)$	$0.0086(6)$	$0.0179(7)$
C10	$0.0329(8)$	$0.0332(8)$	$0.0212(7)$	$0.0047(5)$	$0.0049(6)$	$0.0103(6)$
C11	$0.0245(6)$	$0.0277(7)$	$0.0172(6)$	$0.0034(5)$	$0.0093(5)$	$0.0048(5)$

Table S13. Hydrogen coordinates and isotropic displacement parameters $\left(\AA^{2}\right)$ for irh33.

	x	y	z	U
H2A	$1.361(4)$	$1.055(2)$	$0.908(2)$	$0.029(5)$
H2B	$1.185(4)$	$1.073(3)$	$0.964(2)$	$0.037(6)$
H3	1.0851	0.4311	0.7400	0.020
H5	0.5110	0.3308	0.8577	0.021
H6	0.5965	0.5791	0.9406	0.021
H8A	0.2769	0.1849	0.6445	0.033
H8B	0.1893	0.0636	0.5212	0.033
H9A	0.3336	0.3809	0.5301	0.042
H9B	0.1118	0.2649	0.4293	0.042
H10A	0.4688	0.3588	0.3586	0.036
H10B	0.3392	0.1831	0.3267	0.036
H11A	0.6957	0.1716	0.4406	0.028
H11B	0.7559	0.3290	0.5244	0.028

Table S14. Hydrogen bonds for irh 33 [\AA and ${ }^{\circ}$].

D-H...A	$d(D-H)$	$d(H . . . A)$	$d(D . . . A)$	$<(D H A)$
N2-H2A...O1a	$0.82(2)$	$2.16(2)$	$2.9448(15)$	$159(2)$
N2-H2B...N1b	$0.85(2)$	$2.11(2)$	$2.9608(16)$	$172(2)$

Symmetry operations for equivalent atoms
a $\mathrm{x}+1, \mathrm{y}+1, \mathrm{z} \quad$ b $-\mathrm{x}+2,-\mathrm{y}+2,-\mathrm{z}+2$

Table S15. Crystal data and structure refinement for irh32 (3i).

Identification code
CCDC reference
Chemical formula (moiety)
Chemical formula (total)
Formula weight
Temperature
Radiation, wavelength
Crystal system, space group
Unit cell parameters

Cell volume
Z
Calculated density
Absorption coefficient μ F(000)
Crystal colour and size
Reflections for cell refinement
Data collection method
θ range for data collection
Index ranges
Completeness to $\theta=25.2^{\circ}$
Reflections collected
Independent reflections
Reflections with $\mathrm{F}^{2}>2 \sigma$
Absorption correction
Min. and max. transmission
Structure solution
Refinement method
Weighting parameters a, b
Data / restraints / parameters
Final R indices [$\mathrm{F}^{2}>2 \sigma$]
R indices (all data)
Goodness-of-fit on F^{2}
Absolute structure parameter
Largest and mean shift/su
Largest diff. peak and hole
irh32
1410004
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$
271.35

150(2) K
$\mathrm{MoK} \alpha, 0.71073 \AA$
orthorhombic, $\mathrm{Pca} 2_{1}$
$\mathrm{a}=14.3612(3) \AA \quad \alpha=90^{\circ}$
$\mathrm{b}=9.07325(14) \AA \quad \beta=90^{\circ}$
$\mathrm{c}=18.9809(4) \AA \quad \gamma=90^{\circ}$
$2473.26(8) \AA^{3}$
8
$1.457 \mathrm{~g} / \mathrm{cm}^{3}$
$0.424 \mathrm{~mm}^{-1}$
1136
colourless, $0.200 \times 0.100 \times 0.100 \mathrm{~mm}^{3}$
6930 (θ range 3.0 to 29.6°)
Oxford Diffraction Gemini A Ultra diffractometer
thin-slice ω scans
3.0 to 29.6°
$\mathrm{h}-14$ to $19, \mathrm{k}-12$ to $11,1-20$ to 25
99.8 \%

11183
$5361\left(\mathrm{R}_{\text {int }}=0.0237\right)$
4330
multi-scan
0.920 and 0.960
direct methods
Full-matrix least-squares on F^{2}
0.0501,

5361 / 1/327
$\mathrm{R} 1=0.0319, \mathrm{wR} 2=0.0764$
$\mathrm{R} 1=0.0432, \mathrm{wR} 2=0.0790$
0.964
0.40(4)
0.001 and 0.000
0.38 and $-0.39 \mathrm{e}^{\AA^{-3}}$

Table S16. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for irh32. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	y	Z	$\mathrm{U}_{\text {eq }}$
S1	0.27921(6)	0.01637(9)	0.19391(5)	0.0214(2)
S2	0.06800(6)	0.01041(8)	$0.43813(5)$	0.01748(19)
O1	0.03330(17)	-0.1245(2)	0.40849 (14)	0.0243(6)
O2	$0.09346(19)$	0.0121(2)	0.51156(13)	0.0245(6)
N1	0.3895(2)	0.1910(3)	0.26541(15)	0.0196(6)
N2	0.4384(2)	0.1442(3)	0.15061(17)	0.0252(7)
N3	-0.0120(2)	0.1342(3)	0.42809(17)	$0.0195(6)$
C1	0.3793(2)	0.1281(3)	0.20342(19)	0.0185(7)
C2	0.2480 (2)	0.0606(3)	0.28081(19)	0.0179(7)
C3	0.1724(2)	0.0127(3)	0.3184(2)	0.0171(8)
C4	0.1650(2)	0.0621(3)	$0.38776(19)$	0.0180(7)
C5	0.2310(2)	0.1556(3)	$0.41747(19)$	0.0216(7)
C6	0.3069(2)	0.2022(3)	0.37883(18)	0.0210(7)
C7	0.3167(2)	0.1543(3)	0.30941(18)	0.0166(7)
C8	-0.0438(2)	0.1655(3)	0.35604(17)	0.0212(7)
C9	-0.1386(2)	0.2409(3)	$0.3574(2)$	0.0252(7)
C10	-0.1353(2)	0.3953(3)	0.3869(2)	0.0260(7)
S3	0.70877(6)	0.51415 (9)	$0.24353(5)$	0.0221(2)
S4	0.92127(6)	0.49211(8)	-0.00048(5)	0.0185(2)
O3	0.88497(17)	0.4912(2)	-0.07063(14)	0.0261(6)
O4	0.95704(18)	0.6280(2)	0.02740(14)	0.0259(6)
N4	0.5566(2)	0.3766(4)	0.29375(18)	0.0285(7)
N5	0.61468(19)	0.2999(3)	0.18474(16)	0.0201(6)
N6	1.0033(2)	0.3732(3)	0.00170(17)	0.0198(6)
C11	0.6179(2)	0.3836(3)	0.2410(2)	0.0191(7)
C12	0.7450(2)	0.4505(3)	0.16152(18)	0.0163(7)
C13	0.8175(2)	0.5012(3)	0.1199(2)	0.0194(8)
C14	0.8307(2)	0.4335(3)	0.05510(19)	0.0175(7)
C15	0.7743(2)	0.3169(3)	0.0326(2)	0.0205(7)
C16	0.7022(2)	0.2683(3)	0.07430(19)	0.0206(7)
C17	0.6858(2)	0.3360(3)	0.13921(18)	0.0179(7)
C18	1.0790(3)	0.3723(4)	0.0535(2)	0.0370(10)
C19	1.0834(3)	0.2378(4)	0.0980(2)	0.0459(12)
C20	1.0053(4)	0.2283(5)	0.1518(3)	0.0586(13)

Table S17. Bond lengths [\AA] and angles [${ }^{\circ}$] for irh 32 .

S1-C1	1.768(3)	S1-C2	1.756(4)
S2-O1	1.437(2)	S2-O2	1.441(3)
S2-N3	1.618(3)	S2-C4	1.753(3)
N1-C1	1.316(4)	N1-C7	1.379(4)
N2-H2A	0.93(4)	N2-H2B	0.75(4)
N2-C1	1.322(5)	N3-H3	0.79(4)
N3-C8	1.469(4)	C2-C3	$1.369(5)$
C2-C7	1.412(4)	C3-H3A	0.950
C3-C4	$1.396(5)$	C4-C5	1.391(5)
C5-H5	0.950	C5-C6	$1.381(5)$
C6-H6A	0.950	C6-C7	$1.395(5)$
C8-H8A	0.990	C8-H8B	0.990
C8-C9	1.524(4)	C9-H9A	0.990
C9-H9B	0.990	C9-C10	1.509(4)
C10-H10A	0.980	C10-H10B	0.980
C10-H10C	0.980	S3-C11	1.763(3)
S3-C12	1.740(4)	S4-O3	1.430 (3)
S4-O4	1.436(2)	S4-N6	$1.598(3)$
S4-C14	1.757(3)	N4-H4A	0.94(4)
N4-H4B	0.87(4)	N4-C11	$1.335(5)$
N5-C11	1.311(4)	N5-C17	$1.378(4)$
N6-H6	0.86(3)	N6-C18	1.466 (5)
C12-C13	$1.385(5)$	C12-C17	$1.408(4)$
C13-H13	0.950	C13-C14	$1.389(5)$
C14-C15	1.400(4)	C15-H15	0.950
C15-C16	$1.376(5)$	C16-H16	0.950
C16-C17	$1.397(5)$	C18-H18A	0.990
C18-H18B	0.990	C18-C19	1.485(6)
C19-H19A	0.990	C19-H19B	0.990
C19-C20	1.519(7)	C20-H20A	0.980
C20-H20B	0.980	C20-H20C	0.980
C1-S1-C2	88.91(16)	O1-S2-O2	118.43(15)
O1-S2-N3	107.38(16)	O1-S2-C4	106.85(16)
O2-S2-N3	106.66(16)	O2-S2-C4	108.84(17)
N3-S2-C4	108.34(15)	C1-N1-C7	110.7(3)
H2A-N2-H2B	122(4)	H2A-N2-C1	119(3)
H2B-N2-C1	119(3)	S2-N3-H3	108(3)
S2-N3-C8	117.7(2)	H3-N3-C8	116(3)
S1-C1-N1	115.5(3)	S1-C1-N2	120.5(3)
N1-C1-N2	124.0(3)	S1-C2-C3	128.2(3)
S1-C2-C7	108.7(2)	C3-C2-C7	123.1(3)
C2-C3-H3A	121.6	C2-C3-C4	116.7(3)
H3A-C3-C4	121.6	S2-C4-C3	119.3(2)
S2-C4-C5	118.9(3)	C3-C4-C5	121.8(3)
C4-C5-H5	119.7	C4-C5-C6	120.6(3)
H5-C5-C6	119.7	C5-C6-H6A	120.5
C5-C6-C7	119.1(3)	H6A-C6-C7	120.5
N1-C7-C2	116.3(3)	N1-C7-C6	125.0(3)
C2-C7-C6	118.7(3)	N3-C8-H8A	109.6
N3-C8-H8B	109.6	N3-C8-C9	110.4(3)
H8A-C8-H8B	108.1	H8A-C8-C9	109.6
H8B-C8-C9	109.6	C8-C9-H9A	108.9
C8-C9-H9B	108.9	C8-C9-C10	113.3(3)
H9A-C9-H9B	107.7	H9A-C9-C10	108.9
H9B-C9-C10	108.9	C9-C10-H10A	109.5

C9-C10-H10B	109.5	C9-C10-H10C	109.5
H10A-C10-H10B	109.5	H10A-C10-H10C	109.5
H10B-C10-H10C	109.5	C11-S3-C12	$88.52(16)$
O3-S4-O4	$118.60(15)$	O3-S4-N6	$106.78(16)$
O3-S4-C14	$106.71(16)$	O4-S4-N6	$107.85(16)$
O4-S4-C14	$107.65(16)$	N6-S4-C14	$109.00(15)$
H4A-N4-H4B	$124(4)$	H4A-N4-C11	$119(3)$
H4B-N4-C11	$117(3)$	C11-N5-C17	$110.3(3)$
S4-N6-H6	$108(2)$	S4-N6-C18	$124.6(2)$
H6-N6-C18	$124(2)$	S3-C11-N4	$120.0(3)$
S3-C11-N5	$116.0(3)$	N4-C11-N5	$124.0(3)$
S3-C12-C13	$128.6(3)$	S3-C12-C17	$109.5(2)$
C13-C12-C17	$121.9(3)$	C12-C13-H13	121.3
C12-C13-C14	$117.4(3)$	H13-C13-C14	121.3
S4-C14-C13	$120.0(2)$	S4-C14-C15	$118.3(3)$
C13-C14-C15	$121.8(3)$	C14-C15-H15	119.9
C14-C15-C16	$120.1(3)$	H15-C15-C16	119.9
C15-C16-H16	120.2	C15-C16-C17	$119.6(3)$
H16-C16-C17	120.2	C12-C17-C12	$115.8(3)$
N5-C17-C16	$125.0(3)$	N6-C18-H18B	$119.2(3)$
N6-C18-H18A	108.6	H18A-C18-H18B	108.6
N6-C18-C19	$114.7(3)$	H18B-C18-C19	107.6
H18A-C18-C19	108.6	C18-C19-H19B	108.6
C18-C19-H19A	108.9	H19A-C19-H19B	108.9
C18-C19-C20	$113.4(4)$	H19B-C19-C20	107.7
H19A-C19-C20	108.9	C19-C20-H20B	108.9
C19-C20-H20A	109.5	H20A-C20-H20B	109.5
C19-C20-H20C	109.5	109.5	109.5
H20A-C20-H20C		109.5	

Table S18. Torsion angles [${ }^{\circ}$] for irh32.

O1-S2-N3-C8	-58.1(3)	O2-S2-N3-C8	174.0(2)
C4-S2-N3-C8	56.9(3)	C7-N1-C1-S1	-0.5(3)
C7-N1-C1-N2	179.7(3)	C2-S1-C1-N1	0.8(2)
C2-S1-C1-N2	-179.4(3)	C1-S1-C2-C3	-178.8(3)
C1-S1-C2-C7	-0.7(2)	S1-C2-C3-C4	178.4(2)
C7-C2-C3-C4	0.6 (5)	C2-C3-C4-S2	177.8(2)
C2-C3-C4-C5	0.1(5)	O1-S2-C4-C3	24.6(3)
O1-S2-C4-C5	-157.6(3)	O2-S2-C4-C3	153.6(2)
O2-S2-C4-C5	-28.7(3)	N3-S2-C4-C3	-90.8(3)
N3-S2-C4-C5	87.0(3)	S2-C4-C5-C6	-178.1(2)
C3-C4-C5-C6	-0.4(5)	C4-C5-C6-C7	0.1(5)
C1-N1-C7-C2	-0.1(4)	C1-N1-C7-C6	179.6(3)
C5-C6-C7-N1	-179.2(3)	C5-C6-C7-C2	0.5(4)
S1-C2-C7-N1	0.7(3)	S1-C2-C7-C6	-179.1(2)
C3-C2-C7-N1	178.9(3)	C3-C2-C7-C6	-0.9(5)
S2-N3-C8-C9	160.5(2)	N3-C8-C9-C10	68.7(4)
O3-S4-N6-C18	158.0(3)	O4-S4-N6-C18	29.6(3)
C14-S4-N6-C18	-87.0(3)	C17-N5-C11-S3	-0.2(3)
C17-N5-C11-N4	178.4(3)	C12-S3-C11-N4	-178.4(3)
C12-S3-C11-N5	0.2(3)	C11-S3-C12-C13	177.7(3)
C11-S3-C12-C17	-0.2(2)	S3-C12-C13-C14	-178.3(2)
C17-C12-C13-C14	-0.7(5)	C12-C13-C14-S4	180.0(2)
C12-C13-C14-C15	-1.0(5)	O3-S4-C14-C13	-139.9(3)
O3-S4-C14-C15	41.0(3)	O4-S4-C14-C13	-11.6(3)
O4-S4-C14-C15	169.3(2)	N6-S4-C14-C13	105.1(3)
N6-S4-C14-C15	-74.0(3)	S4-C14-C15-C16	-179.6(2)
C13-C14-C15-C16	1.4(5)	C14-C15-C16-C17	0.0(5)
C11-N5-C17-C12	0.0(4)	C11-N5-C17-C16	-179.8(3)
C15-C16-C17-N5	178.3(3)	C15-C16-C17-C12	-1.6(5)
S3-C12-C17-N5	0.1(3)	S3-C12-C17-C16	180.0(2)
C13-C12-C17-N5	-177.9(3)	C13-C12-C17-C16	2.0(5)
S4-N6-C18-C19	119.1(3)	N6-C18-C19-C20	-71.7(5)

Table S19. Anisotropic displacement parameters (\AA°) for irh32. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}^{11}+\ldots+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
S1	0.0226(4)	0.0284(4)	0.0130(5)	-0.0035(4)	0.0012(3)	-0.0059(3)
S2	0.0220(4)	0.0165(4)	0.0139(5)	0.0003 (4)	0.0037(3)	-0.0005(3)
O1	$0.0332(14)$	0.0187(10)	$0.0211(16)$	$0.0005(10)$	$0.0076(11)$	-0.0040(9)
O2	$0.0332(13)$	0.0263(12)	$0.0141(14)$	0.0024(10)	0.0024(11)	$0.0032(10)$
N1	0.0214(14)	0.0232(13)	$0.0141(15)$	-0.0012(12)	0.0003(12)	-0.0013(12)
N2	0.0288(16)	0.0348(17)	0.0121(17)	-0.0028(14)	0.0018(15)	-0.0072(14)
N3	$0.0219(14)$	0.0188(12)	$0.0177(16)$	-0.0055(12)	-0.0010(13)	$0.0008(11)$
C1	0.0214(16)	0.0193(14)	0.0150(19)	0.0033(14)	$0.0004(15)$	-0.0016(12)
C2	0.0214(16)	0.0182(14)	0.0140(18)	-0.0013(14)	0.0001(14)	$0.0028(13)$
C3	0.0184(17)	0.0167(15)	0.016(2)	-0.0013(13)	0.0007(12)	-0.0012(12)
C4	0.0178(15)	0.0180(14)	0.0182(18)	0.0017(14)	0.0026(14)	0.0014(12)
C5	$0.0252(17)$	$0.0255(14)$	0.0141(18)	-0.0040(13)	0.0019(15)	-0.0004(13)
C6	0.0243(17)	0.0228(14)	0.0160(18)	-0.0058(14)	-0.0007(15)	-0.0039(13)
C7	0.0183(17)	0.0153(13)	0.0161(18)	0.0012(13)	-0.0007(14)	0.0003(12)
C8	0.0279(17)	0.0236(15)	0.0120(17)	-0.0008(14)	-0.0010(14)	-0.0002(13)
C9	0.0241(16)	0.0285(16)	0.0231(19)	-0.0016(15)	-0.0056(16)	-0.0022(14)
C10	0.0252(17)	0.0255(15)	0.027(2)	-0.0009(15)	-0.0017(16)	0.0034(14)
S3	0.0242(4)	0.0277(4)	0.0144(5)	-0.0048(4)	0.0025 (4)	-0.0061(3)
S4	$0.0227(4)$	0.0174(4)	0.0156(5)	0.0009(3)	0.0039(4)	-0.0003(3)
O3	0.0275(13)	0.0371(13)	$0.0138(14)$	0.0020(10)	0.0047(11)	0.0050(10)
O4	0.0366(15)	0.0174(10)	$0.0236(16)$	-0.0032(10)	0.0122(12)	-0.0058(10)
N4	$0.0298(17)$	0.0398(17)	0.0158(18)	-0.0053(14)	$0.0083(15)$	-0.0144(15)
N5	0.0215(14)	0.0232(12)	0.0157(16)	0.0002(12)	0.0021(12)	-0.0036(11)
N6	0.0191(14)	0.0184(12)	0.0219(17)	-0.0079(12)	-0.0015(13)	-0.0033(11)
C11	0.0202(17)	0.0229(14)	0.0142(18)	0.0040(15)	-0.0010(16)	0.0001(12)
C12	0.0196(15)	0.0187(14)	0.0106(17)	0.0001(13)	-0.0031(14)	0.0033(12)
C13	0.0231(19)	0.0160(16)	0.019(2)	0.0003(13)	-0.0022(14)	-0.0026(12)
C14	0.0205(16)	0.0169(14)	0.0153(19)	0.0022(13)	$0.0045(14)$	$0.0017(12)$
C15	0.0251(17)	0.0196(14)	0.0168(18)	-0.0032(13)	0.0009(15)	0.0025(13)
C16	0.0214(15)	0.0205(14)	0.0200(18)	-0.0026(13)	-0.0025(15)	-0.0040(13)
C17	0.0196(16)	0.0179(14)	0.0161(18)	0.0013(13)	$0.0005(15)$	0.0001(12)
C18	0.035(2)	0.0339(19)	0.042(3)	-0.0041(18)	-0.0134(19)	-0.0023(16)
C19	0.055(3)	0.036(2)	0.046 (3)	-0.0012(19)	-0.023(2)	0.004(2)
C20	0.072(3)	0.051(2)	0.053(3)	0.015(2)	-0.012(3)	-0.015(2)

Table S20. Hydrogen coordinates and isotropic displacement parameters $\left(\AA^{2}\right)$ for irh32.

	x	y	z	U
H2A	$0.493(3)$	$0.198(4)$	$0.158(2)$	0.030
H2B	$0.426(3)$	$0.114(4)$	$0.115(2)$	0.030
H3	$0.002(3)$	$0.203(4)$	$0.451(2)$	0.023
H3A	0.1273	-0.0511	0.2982	0.020
H5	0.2237	0.1878	0.4648	0.026
H6A	0.3519	0.2660	0.3993	0.025
H8A	-0.0482	0.0723	0.3291	0.025
H8B	0.0019	0.2300	0.3321	0.025
H9A	-0.1637	0.2447	0.3089	0.030
H9B	-0.1819	0.1810	0.3862	0.030
H10A	-0.1976	0.4390	0.3851	0.039
H10B	-0.0922	0.4552	0.3589	0.039
H10C	-0.1139	0.3920	0.4359	0.039
H4A	$0.506(3)$	$0.310(4)$	$0.290(2)$	0.034
H4B	$0.566(3)$	$0.436(4)$	$0.329(2)$	0.034
H6	$0.986(2)$	$0.297(4)$	$-0.0227(19)$	0.024
H13	0.8567	0.5793	0.1352	0.023
H15	0.7857	0.2712	-0.0116	0.025
H16	0.6638	0.1892	0.0591	0.025
H18A	1.0718	0.4591	0.0846	0.044
H18B	1.1389	0.3830	0.0282	0.044
H19A	1.1439	0.2360	0.1230	0.055
H19B	1.0808	0.1499	0.0671	0.055
H20A	1.0165	0.1446	0.1833	0.088
H20B	0.9458	0.2146	0.1274	0.088
H20C	1.0033	0.3195	0.1794	0.088

Table S21. Hydrogen bonds for irh 32 [\AA and $\left.{ }^{\circ}\right]$.

D-H \ldots.A	d(D-H)	d(H...A)	d(D...A)	<(DHA)
N2-H2A...N5	$0.93(4)$	$2.04(4)$	$2.970(4)$	$173(4)$
N2-H2B...O2a	$0.75(4)$	$2.19(4)$	$2.935(4)$	$173(4)$
N3-H3..O4b	$0.79(4)$	$2.19(4)$	$2.973(4)$	$172(4)$
N4-H4A...N1	$0.94(4)$	$2.05(5)$	$2.981(4)$	$168(4)$
N4-H4B..O3c	$0.87(4)$	$2.09(4)$	$2.900(4)$	$154(4)$
N6-H6...O1d	$0.86(3)$	$2.06(4)$	$2.915(4)$	$170(3)$

Symmetry operations for equivalent atoms
a $-x+1 / 2, y, z-1 / 2$
b $-\mathrm{x}+1,-\mathrm{y}+1, \mathrm{z}+1 / 2$
c $-\mathrm{x}+3 / 2, \mathrm{y}, \mathrm{z}+1 / 2$
d $-x+1,-y, z-1 / 2$

