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PDE6d-mediated sorting of INPP5E into the
cilium is determined by cargo-carrier affinity
Eyad Kalawy Fansa1,*, Stefanie Kristine Kösling1,*, Eldar Zent1, Alfred Wittinghofer1 & Shehab Ismail2

The phosphodiesterase 6 delta subunit (PDE6d) shuttles several farnesylated cargos between

membranes. The cargo sorting mechanism between cilia and other compartments is not

understood. Here we show using the inositol polyphosphate 50-phosphatase E (INPP5E) and

the GTP-binding protein (Rheb) that cargo sorting depends on the affinity towards PDE6d and

the specificity of cargo release. High-affinity cargo is exclusively released by the ciliary

transport regulator Arl3, while low-affinity cargo is released by Arl3 and its non-ciliary

homologue Arl2. Structures of PDE6d/cargo complexes reveal the molecular basis of the

sorting signal which depends on the residues at the � 1 and � 3 positions relative to far-

nesylated cysteine. Structure-guided mutation allows the generation of a low-affinity INPP5E

mutant which loses exclusive ciliary localization. We postulate that the affinity to PDE6d and

the release by Arl2/3 in addition to a retention signal are the determinants for cargo sorting

and enrichment at its destination.
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P
rimary cilia are antenna-like microtubule-based cell surface
protrusions which can be found on eukaryotic cells and
serve as sensory organelles. Genetic disorders affecting

structure or function of cilia result in a large number of diseases
collectively termed ciliopathies1,2. While the cilium appears as a
protrusion in the plasma membrane that is open to the cell body,
the ciliary content and membrane composition are different than
that of the cell body and plasma membrane3,4. This is in part
achieved by the presence of a diffusion and transport barrier,
where entry and exit decisions of ciliary components have to be
taken5,6.

PDE6d is a prenyl-binding protein that was originally
discovered as the delta subunit of rod photoreceptor-specific
phosphodiesterase PDE6 (ref. 7). It was found as a solubilizing
factor for the prenylated subunits of this enzyme and was later
shown to be a general prenyl-binding protein (hence also called
PrBP/PDE6d)8–11. PDE6d was shown to bind prenylated peptides
or proteins of the Ras subfamily with approximately micromolar
affinity12,13 and to play a critical role in their cellular
distribution14–16. Since it is believed to be crucial for the
localization and thus the activity of the oncoprotein Ras,
inhibitors of the Ras-PDE6d complex were actually considered
as promising Ras drug candidates17.

INPP5E belongs to the inositol polyphosphate 50-phosphatase
family that hydrolyzes the 50-phosphate of phosphatidylinositols
and localizes to primary cilia18,19. The importance of the
50-phosphatase activity for ciliary function is underscored by
the finding that INPP5E is mutated in Joubert syndrome, a
ciliopathy characterized by motor and intellectual disabilities18–20,
and that the gene mutated in the OCRL (Oculocerebrorenal) or
Lowe syndrome also encodes an inositol polyphosphate
50-phosphatase21,22. INPP5E contains a C-terminal CaaX motif
where the C-terminal residue Cys644 is farnesylated23. A mutation
encoding a stop codon near to the CaaX motif (Q627) of INPP5E
was identified in a family with MORM syndrome18, a ciliopathy
characterized by intellectual disability, obesity, retinal dystrophy
and micropenis24. This mutation was shown to affect INPP5E
ciliary localization, which in combination with other reports25

indicates the importance of the C-terminus and its farnesylation
for the ciliary localization of INPP5E (ref. 18).

Recently, PDE6d was co-purified with INPP5E and siRNA-
mediated knockdown of PDE6d resulted in impaired ciliary
localization of INPP5E (ref. 26). Moreover, a PDE6d deletion
mutation, which was identified in Joubert syndrome, was
shown to impair the targeting of farnesylated INPP5E protein
to the primary cilium25. Knockdown of PDE6d also impeded the
transport of GRK1 and PDE6 catalytic subunits to photoreceptor
outer segments, which are considered specialized forms of
cilia27,28.

The homologous small Arf-like GTP-binding proteins Arl2
and Arl3 have been shown to act as nucleotide-dependent-specific
release factors of farnesylated cargo from PDE6d in vitro and
in vivo. Structural and kinetic analyses have shown that Arl2/3 act
allosterically to increase the dissociation rate constants for cargo-
carrier complexes13,15,29,30. In contrast, it was shown recently by
pull-down experiments with cellular extracts that Arl3 but
not Arl2 can efficiently release INPP5E from its complex with
PDE6d (ref. 25).

In analogy to nuclear localization signals a number of different
ciliary localization signals have been identified for different
transmembrane proteins31–33. However, not much is known
about the molecular mechanism of how these signals are
recognized and how decisions on ciliary entry based on these
signals are made. For certain membrane-associated, post-
translationally modified proteins carrying an N-terminal
myristoyl or a C-terminal prenyl motif, it has been shown that

the import into cilia is dependent on the carrier proteins PDE6d,
UNC119a and UNC119b and on Arl3 as displacement
factor13,25,28,30,34. However, it has been extensively documented
that Ras proteins as well as Rheb require PDE6d for their proper
localization at the plasma membrane or internal membranes, but
do not appear to be localized in cilia15,16.

This begs the question about the mechanism of PDE6d-
mediated sorting of farnesylated cargo between the cilium and
other cellular compartments. Thus, we set out to investigate the
molecular basis of farnesylated cargo sorting using ciliary INPP5E
and non-ciliary Rheb as an example. Here, we show that a
100-fold difference in the binding affinity of farnesylated cargo
with PDE6d and the specific release of high-affinity cargo by
activated Arl3�GTP determines cargo sorting into cilia, while
low-affinity cargo can be released by both Arl3�GTP and
Arl2�GTP and stays outside the cilium. Moreover, we show by
structural, biochemical and cell biological approaches, how and
why the binding affinity is dependent on the residues at the � 1
and � 3 positions preceding the farnesylated cysteine and that
sorting of farnesylated cargo can be manipulated by changing the
affinity to PDE6d.

Results
INPP5E and Rheb localization and binding affinity to PDE6d.
Using IMCD3 cells stably expressing either INPP5E or Rheb fused
to a localization and tandem affinity purification (LAP) tag35, we
can show that INPP5E localizes almost exclusively to the primary
cilium with very small fraction in the cell body (Fig. 1a; upper),
which is consistent with previous reports18,19,26. In contrast, Rheb
mainly localizes to endomembranes (Fig. 1a; lower), this
observation is consistent with previous reports13,36. Given that
the prenyl-binding protein PDE6d is the shuttle factor mediating
the localization of INPP5E and Rheb13,16,18,25,26, we set out to
characterize the interaction of PDE6d with INPP5E and Rheb.
Previously we have shown that farnesylated C-terminal peptides
derived from Rheb or KRas bind to PDE6d in exactly the same
way and with similar affinities as the full-length farnesylated
proteins12,13. Hence, we used a fluorescently labelled C-terminal
farnesylated and carboxy-methylated peptide of INPP5E (residues
637–644) and Rheb (residues 175–181) to measure the affinity to
PDE6d by fluorescence polarization. Figure 1b (left) shows that
PDE6d binds to INPP5E peptide with low nanomolar affinity
(Kd¼ 3.7 nM±0.2,±indicates s.d., n¼ 9). In contrast, the affinity
between PDE6d and the farnesylated C-terminal peptide of Rheb
falls into the submicromolar range (Kd¼ 445±83 nM,±indicates
s.d., n¼ 10) (Fig. 1b; right), which is in the same range with the
previously described values12,13. These data raised the question,
whether the almost 100-fold higher affinity of INPP5E towards
PDE6d as compared to Rheb is involved in the sorting
mechanism of these two proteins to different destinations.

High-affinity cargo is specifically released by Arl3�GTP.
Towards an explanation for the possible sorting mechanism that
leaves some PDE6d-cargo in the cell body but allows others to be
enriched in the cilia we turned to the release activities of Arl2 and
Arl3. Both GTP-binding proteins in their active conformation
have been shown to be responsible for releasing cargo from
PDE6d. While Arl2 is a non-ciliary protein, Arl3 localizes along
the length of the cilium37. Using fluorescence polarization, we
measured the release of INPP5E and Rheb peptides from PDE6d
by the addition of Arl2 or Arl3 bound to the non-hydrolysable
GTP analogue GppNHp. The data show that Rheb peptide can be
released by both Arl2�GppNHp and Arl3�GppNHp (Fig. 2a),
supporting earlier observations13. In contrast, INPP5E peptide
can only be released by Arl3�GppNHp under the same conditions
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(Fig. 2b). To compare the cargo release kinetics of Arl2�GppNHp
and Arl3�GppNHp, we measured the dissociation rate constants
of INPP5E and Rheb peptides from PDE6d in the presence and
absence of Arl3�GppNHp or Arl2�GppNHp, by adding a large
excess of unlabelled peptide to silence the back reaction. In
the absence of Arl2/3, Rheb showed an intrinsic dissociation
rate (koff¼ 0.95±0.004 s� 1,±indicates s.d., n¼ 4), while no
measurable dissociation rate could be observed for INPP5E in a
reasonable time window. This observation is in line with the
almost 100-fold difference in the binding affinity between
both peptides determined from the steady state equilibrium
measurements. The presence of Arl3�GppNHp or Arl2�GppNHp
has a similar acceleration effect on the dissociation rate of Rheb
peptide from PDE6d (koff¼ 27.2±0.7 and 15.3±0.3 s� 1,
respectively, ±indicates s.d., n¼ 4) (Fig. 2c,d). However,
the release of INPP5E peptide in the presence of
Arl3�GppNHp shows an estimated 10,000-fold acceleration
(koff¼ 10.7±0.2 s� 1,±indicates s.d., n¼ 4), while release by
Arl2�GppNHp (koff¼ 0.018±0.0005 s� 1,±indicates s.d., n¼ 4)
is almost 600-fold slower (Fig. 2e,f). Taken together, our data
suggest that high-affinity farnesylated cargo can be specifically
released by Arl3, while low-affinity cargo can be released similarly
by both Arl2 and Arl3.

Role of Arl3 N-terminal helix in the release mechanism.
Previously we have shown that the N-terminal helix of Arl3 is

important to release myristoylated cargo from a complex with
the shuttle factor UNC119 (ref. 30). To find out whether the
N-terminus of Arl3 and/or Arl2 has a similar if any role in the
interaction with PDE6d, fluorescence polarization measurements
using full-length Arl3 (Arl3fl) or an N-terminal truncated form
(Arl3DN) were performed. Supplementary Fig. 1 shows that
Arl3DN is unable to release the INPP5E peptide from PDE6d as
compared with Arl3fl. To investigate the role of the N-terminal
helix of Arl3 in the release mechanism, we measured association
and dissociation rate constants to determine the affinity of PDE6d
towards Arl2 and Arl3 in both full-length and N-terminal trun-
cated forms. Association rate constants between the four proteins
Arl3fl, Arl3DN, Arl2fl and Arl2DN are rather similar although
association is almost twice as fast for full-length Arl3 as compared
with Arl2 (Fig. 3a,b). In contrast, determination of the dissocia-
tion rate constants shows large differences. While the difference
in koff between full-length protein Arl2fl and N-terminal deleted
Arl2DN is only threefold, Arl3fl shows a
26-fold higher residence time with PDE6d, as compared with
Arl3DN (Fig. 3c–e). By calculating the equilibrium dissociation
constants (Kd¼ koff/kon), Arl3DN, Arl2fl and Arl2DN exhibit affi-
nities in the submicromolar range (217±4.3, 149±19 and

GFP Acetyl-tubulin Mergea

b

IN
P

P
5E

R
he

b

0.3

0.25

0.2

0.15

0.1

0.3

0.25

0.2

0.15

0.1

0.05

0 0.02 0.04 0.06 0 0.5 1 1.5 2

P
ol

ar
iz

at
io

n

P
ol

ar
iz

at
io

n

PDE6δ (μM) PDE6δ (μM)

Kd= 3.7 ± 0.2 nM Kd= 445 ± 83 nM

INPP5E Rheb
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(a) Localization of INPP5E and Rheb in IMCD3 cells. Stably expressed GFP-

INPP5E colocalizes with acetylated tubulin, as shown by immunostaining of

acetylated tubulin (red) and GFP fluorescence (LAP-tagged) (green), while

GFP-Rheb (green) localizes to endomembranes and is almost absent from

cilia. White bar indicates 5 mm. (b) 0.01mM TAMRA-labelled farnesylated

peptide (SQNSSTIC(Far)-OMe) from INPP5E (left) and 0.5mM FITC-

labelled peptide (SQGKSSC(Far)-OMe) from Rheb (right) were titrated

with increasing concentrations of PDE6d and the increase in fluorescence

polarization was plotted against the PDE6d concentration. The data were

fitted to a quadratic equation giving the indicated dissociation constants
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316±6.3 nM, respectively,±indicates s.d., n¼ 4), whereas
Arl3fl has an affinity in the low nanomolar range
(Kd¼ 5.8±0.5 nM,±indicates s.d., n¼ 4) (Fig. 3f). The Kd values
for Arl2fl and Arl3fl differ from previously determined values38,
likely because of the different techniques used.

Our data suggest that the N-terminal helix of Arl3 makes a
significant contribution to the interaction with PDE6d and
increases the affinity between the proteins by 37-fold. This
additional input of Arl3 compared with Arl2 is probably a major
factor in the ability of Arl3 to release high-affinity farnesylated
cargo from PDE6d. A similar effect was shown for the
Arl3/UNC119 complex where in contrast to Arl2 (and any other
Arf protein), the N-terminal helix of Arl3 did not detach from the
surface of the protein after the GDP-GTP conformational change
and actively participates in the release mechanism in the closed
position30.

The sorting signal of PDE6d-related farnesylated cargo. To
investigate the nature of the affinity difference between INPP5E
and Rheb peptides towards PDE6d in more details, we solved the

crystal structure of the INPP5E peptide in complex with PDE6d
at 1.85 Å resolution (data collection and refinement statistics
summarized in Supplementary Table 1). Superimposition of the
INPP5E peptide/PDE6d complex with the structure of PDE6d in
complex with Rheb (PDB code: 3T5G) shows that the immu-
noglobulin-like b-sandwich folds of PDE6d overlay well with an
r.m.s. deviation of 0.5731 Å. The proteins show a hydrophobic
cavity, where the farnesyl moieties of INPP5E and Rheb are
inserted (Fig. 4a; upper). The prenyl groups overlay well and
make an identical interaction pattern with the surrounding
hydrophobic residues of PDE6d (Fig. 4a; lower). However, the
side chains of the residues on the � 1 and � 3 positions
upstream of the farnesylated cysteine (the 0 position) in INPP5E
and Rheb show different contacts with PDE6d. As shown in
Fig. 4b (upper), the serine side chain of Rheb on the � 1 position
makes a hydrogen bond with the side chain of glutamic acid
(Glu88) from PDE6d, whereas the hydrophobic side chain of the
isoleucine of INPP5E at the equivalent position is situated in a
highly hydrophobic environment mediated by five hydrophobic
residues of PDE6d (Val80, Trp90, Met118, Leu123 and Ile128).
On the other hand, the lysine side chain of Rheb at the � 3
position is pointing away from the binding pocket of PDE6d,
while the serine side chain of INPP5E at the equivalent position
makes a hydrogen bond with the side chain of glutamic acid
(Glu88) (Fig. 4b; lower).

Thus, we reasoned that the different contact patterns of
INPP5E and Rheb peptides with PDE6d are responsible for the
difference in affinities. To prove this, we generated two peptides,
where the amino acids on the � 1 and � 3 positions were
swapped between INPP5E and Rheb, creating INPP5E(KS)
(S641K/I643S) and Rheb(SI) (K178S/S180I) peptides. Affinities
of the swapped peptides to PDE6d were determined by titrating
increasing amounts of unlabelled INPP5E(KS) and Rheb(SI) into
a preformed complex of fluorescent Rheb peptide with PDE6d
and monitoring the displacement by the decrease in fluorescence
polarization. Analysis of the data with a competition model
derived from the law of mass action as described17,39 shows that
the affinities to PDE6d can be reversed, with a Kd values of
(697±54 nM,±indicates s.d., n¼ 14) for INPP5E(KS) and
(12±2.7 nM,±indicates s.d., n¼ 12) for Rheb(SI) (Fig. 4c).

To confirm the conclusion relating to the � 1 and � 3
positions, we measured the affinities of farnesylated peptides
derived from rhodopsin kinase GRK1 and the g-subunit of
transducin GNGT1 (Tg) with PDE6d. It is important to note that,
GRK1 carries Met and Ser at � 1 and � 3 positions similarly
with INPP5E, whereas GNGT1 (Tg) carries Gly and Lys at � 1
and � 3 positions similarly with Rheb (Supplementary Fig. 2a).
The results showed high binding affinity (7.2±1.3 nM,
±indicates s.d., n¼ 12) of GRK1 and low binding affinity
(6,573±477 nM,±indicates s.d., n¼ 9) of Tg for PDE6d
(Supplementary Fig. 2b). These data suggest that the binding
affinity between PDE6d and farnesylated cargo is dependent on
the sequence of the farnesylated C-terminus, in particular on the
� 1 and � 3 positions relative to the farnesylated cysteine.

Dependency of INPP5E ciliary localization on PDE6d and Arl3.
To test whether reducing the affinity of INPP5E to PDE6d is
affecting its ciliary localization, we stably transfected the
INPP5E(KS) mutant into IMCD3 cells and compared its locali-
zation with INPP5E(WT). Figure 5a shows that INPP5E(KS)
mutant is not enriched in cilia anymore but is localized all over
the cell including the cilium, while INPP5E(WT) is highly enri-
ched in cilia with only a minor fraction in the cell body (Fig. 1a).
Evaluation of mean fluorescence intensity ratio between cilia and
whole cell shows that INPP5E(WT) has a 5.3-fold enrichment in
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performed using CellProfiler. Error bars indicate s.d., nZ35 (Po0.05; Student’s t-test). (c) GST pull-downs were performed using GST-PDE6d along with

the IMCD3 cell lysates stably expressing INPP5E(WT) (left) or INPP5E(KS) (right). Formed complexes in the pulldown experiment were incubated with

Arl2 or Arl3 as indicated. The amount of GFP-tagged interacting proteins bound to GST-PDE6d was detected by immunoblotting with an antibody against

GFP.
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the cilia, while the INPP5E(KS) mutant loses its ciliary enrich-
ment and is more evenly distributed over the entire cell (Fig. 5b
and Supplementary Fig. 3).

We propose that the mislocalization of INPP5E(KS) mutant
could result from its weak affinity to PDE6d, which enables its
release by Arl2 outside the cilium, resulting in its retention at the
endomembranes. To support this assumption, we used the stably
transfected IMCD3 cells expressing INPP5E(WT) or mutant
INPP5E(KS) and performed a GST pull-down experiment with
PDE6d in the presence and absence of Arl3�GppNHp or
Arl2�GppNHp. The results show that the INPP5E(KS) mutant
can indeed be released by both Arl2�GppNHp and
Arl3�GppNHp, while INPP5E(WT) is specifically released
only by Arl3�GppNHp (Fig. 5c). Confirming with this, siRNA-
mediated knockdown of Arl3 shows loss of dominant ciliary
localization of INPP5E and its redistribution between cilia and
cellular endomembranes (Fig. 6 and Supplementary Fig. 4).

In line with these experiments, we tested whether increasing
the affinity of Rheb to PDE6d permits its ciliary entry. For this we
stably transfected the Rheb(SI) mutant into IMCD3 cells and
compared its localization to that of Rheb(WT). Rheb(SI) showed
a more than fourfold increase in ciliary localization as compared
with Rheb(WT) (Fig. 7). This result indicates that increasing the
affinity of Rheb towards PDE6d shifts the equilibrium of Rheb
distribution towards the cilium as compared to the entire cell.
The non-exclusive ciliary localization of Rheb(SI) mutant could
be explained by the absence of a Rheb specific retention signal
inside the cilia.

Taken together, our data suggest that the high binding affinity
between INPP5E and PDE6d and the specific release by
Arl3�GTP are essential determinants for the ciliary localization
of INPP5E.

Discussion
Consistent with our previous reports12,13, here we show that non-
ciliary farnesylated cargo such as Rheb binds to PDE6d with
submicromolar affinity. Interestingly, the binding affinity between
PDE6d and the ciliary farnesylated protein INPP5E is in the low
nanomolar range. Structural analysis revealed that the residues at
the � 1 and � 3 positions relative to the farnesylated cysteine are
the determinants for the binding affinity to PDE6d. This finding
was confirmed by mutational analysis and by the binding affinity
measurements of farnesylated peptides derived from rhodopsin

kinase (GRK1) and the g-subunit of transducin (Tg). The high
binding affinity of GRK1 to PDE6d could explain its
mislocalization in the outer segment of photoreceptor in the
absence of PDE6d, while Tg, which has a low-affinity to PDE6d,
is only minimally affected28. The latter suggests that another
farnesyl binding protein might exist to take over the role as a
shuttle factor for Tg or that the ciliary entry of the heterotrimeric
transducin does not rely solely on the farnesylated g-subunit. Our
findings suggest that the affinity of farnesylated cargo is an
essential determinant of its PDE6d-mediated sorting into the
ciliary compartment.

It has been reported that Arl3 is localized in the cytoplasm and
inside cilia37, while no ciliary localization for Arl2 has been
reported so far. Considering that the complex between high-
affinity cargo such as INPP5E or GRK1 with PDE6d can be
released specifically by Arl3 and that both proteins are highly
enriched in cilia, one would have to predict that the active
GTP-bound form of Arl3 is only localized inside the cilium and
thus is able to release cargo exclusively in this compartment. This
assumption is supported by our recent study which showed that
the ciliary protein Arl13B is the specific guanine nucleotide
exchange factor for Arl3 (ref. 40) as well as by studies showing
that retinitis pigmentosa 2 (RP2), the GTPase activating protein
of Arl3, localizes at the basal body of the cilium or the preciliary
region41,42, so that Arl3�GTP should reside exclusively inside the
cilium and would get hydrolyzed to Arl3�GDP while exiting
the cilium. Confirming with this, Arl3 does not seem to take over
the role of Arl2 in releasing low-affinity farnesylated cytosolic
cargo, as siRNA-mediated knockdown of Arl2 was shown to be
sufficient to mislocalize KRas (ref. 15). Thus, our data suggest that
high-affinity farnesylated cargo is specifically released by Arl3
inside cilia and Arl2 is specific for the release of low-affinity cargo
outside cilia.

Our results are apparently not in agreement with previous
results25,26, who showed that the transport of INPP5E is
independent of Arl3. In these reports, data were analysed in
terms of ciliary localization (INPP5E-positive cilia), not taking
the distribution of INPP5E between cilia and the entire cell into
account. Such analysis has enabled us to determine the fold
enrichment of INPP5E inside cilia and how it is affected by either
changing the affinity to PDE6d or by Arl3 knockdown. The
redistribution of INPP5E in the cells, which were treated with
siRNA against Arl3, showed similar but generally weaker effect as
compared with the redistribution of the low-affinity mutant
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Figure 6 | INPP5E ciliary enrichment is dependent on Arl3. (a) Localization of INPP5E (green) in IMCD3 cells which were stably transfected with the

LAP-tagged protein followed by the transfection with either negative control siRNA or siRNA directed against Arl3. White bar indicates 5 mm. (b) Bar chart

showing ratio of GFP intensity in cilia to the total GFP intensity, indicating the enrichment of GFP-tagged protein in cilia. Data have been collected for 90

cells which were treated with control siRNA and for 82 cells which were treated with siRNA against Arl3 and analysis was performed using CellProfiler.

Error bars indicate s.d., nZ82 (Po0.05; Student’s t-test).
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INPP5E(KS) (Figs 5b and 6b). The effect of Arl3 knockdown
might be limited by the incomplete knockdown and by the fact
that staining of INPP5E inside cilia does not differentiate between
free or PDE6d-bound phosphatase.

Both ciliary cargo and Arl3 seem to bind to PDE6d with high
affinities, non-ciliary cargo and Arl2 on the other hand bind to
PDE6d with low affinities. Thus we assume that the cargo release
by Arl3 inside cilia or Arl2 in the cytosol might not be complete
at comparable concentrations of all components. As a conse-
quence an additional signal would be required to drive the
equilibrium to completion and to retain cargo at its destination. A
retention signal could be achieved by the interaction with
membrane or other interacting partners. The endomembrane
system offers a large surface area and could play the role as
retention signal for cytosolic farnesylated cargo such as Rheb.
A possible ciliary retention signal for INPP5E could be Arl13B.
The specific ciliary protein Arl13B has been shown to directly
interact with INPP5E and its knockdown results in INPP5E
mislocalization26.

In this report, we propose a three step model for PDE6d-
mediated sorting of farnesylated cargo into different cellular
compartments. The binding affinity of farnesylated cargo to
PDE6d is the first fundamental step in the sorting mechanism,
followed by the specific release of high-affinity cargo by Arl3
inside cilia or the release of low-affinity cargo by Arl2 in the
entire cell. Finally, a retention signal keeps the farnesylated cargo
at its destination (Fig. 8). Interfering with any of these steps can
provide valuable insights in studying the role of INPP5E in
ciliopathies especially that a mutation which influences its
localization to cilia is associated with MORM syndrome.
Furthermore INPP5E localization studies for Arl13B patient
mutations associated with Joubert syndrome will deepen our
understanding of the molecular basis of ciliopathies. Finally it
would be interesting to exploit available small molecules that
inhibit the interaction of PDE6d with farnesylated cargo in
studying the role of INPP5E in cilia and ciliopathies.

Methods
Plasmids. Vectors for transfection of IMCD3 Flp-In cells were generated using the
Gateway cloning technology (Life technologies) following the manufactureŕs
recommendations. Mouse INPP5E and Rheb PCR fragments were amplified using
the following primers: INPP5E (F-50- ATGCCATCCAAGTCAGCTTGCCTG-30 ,
R-50- TCAGGACACGGTGCAAACTGCACTGG-30), Rheb (F-50-ATGCCGCA
GTCCAAGTCCCGGAAG-30 , R-50- TCACATCACCGAGCATGAAGACTT
GCC-30). Entry clones were obtained by integration of the PCR fragments into
pCR8/GW/TOPO vector (Life technologies). Mouse INPP5E and Rheb entry clones
were located to pG-LAP3 destination vector (Addgene)43 by LR recombination.
The pG-LAP3 vector encoded a LAP-tag (GFP-TEV-site-S-peptide) N-terminal to
INPP5E and Rheb. INPP5E S641K/V643S (INPP5E(KS)) and Rheb K178S/S180I
(Rheb (SI)) clones were created using INPP5E-pG-LAP3 and Rheb-pG-LAP3 as

template and following single mutagenesis primers: INPP5E V643S (F-50-GCCAG
AGCTCCAGTGCAAGTTGCACCGTGTCCTGAAAGGGCG-30), INPP5E S641K
(F-50-GCCAGAGCTCCAAAGCAGTTTGCACCGTGTCCTGAAAGGGCG-30).
Rheb K178S (F-50-GGGGCAGCTTCACAAGGCTCGTCTTCATGCTCGG
TGATG-30), Rheb S180V (F-50-GCTTCACAAGGCTCGTCTGTATGCTCGG
TGATGTGAAAGG-30).

Proteins. All proteins were expressed in Escherichia coli strain BL21-Codon-
Plus(DE3)-RIL. Cells were induced at OD B0.6 with 100 mM IPTG and incubated
at 20 �C overnight. Cells were harvested and lysed in lyses buffer (25 mM Tris-HCl,
pH 7.5, 150 mM NaCl and 1 mM b-mercaptoethanol, 1 mM PMSF) using French
press. Supernatants of C-terminal histidine-tagged full-length Arl3, Arl2 and
N-terminal histidine-tagged PDE6d were loaded onto a Ni-NTA column
(QIAGEN). Proteins were eluted with elution buffer (25 mM Tris-HCl, pH 7.5,
150 mM NaCl and 1 mM b-mercaptoethanol, 250 mM imidazole), followed by gel
filtration on a Superdex 75 S26/60 column using elution buffer without imidazole.
Supernatants of N-terminal GST-tagged truncated Arl3 and Arl2 (aa 18-177,
17-178, respectively) were expressed, harvested and lysed similar to the histidine-
tagged proteins. The supernatants were loaded onto GSH-column (Amersham
Biosciences). Proteins were eluted with elution buffer (25 mM Tris-HCl, pH 7.5,
150 mM NaCl and 1 mM b-mercaptoethanol, 20 mM glutathione). The GST-fusion
proteins were separated from the tag by proteolytic cleavage followed by gel fil-
tration on a Superdex 75 S26/60 column using elution buffer without glutathione.
Nucleotide exchange of the GDP bound Arl3 and Arl2 proteins was achieved
by overnight incubation at 4 �C with 4 U mg� 1 alkaline phosphatase (Roche
Diagnostics) and 1.5-fold excess of the non-hydrlysable GTP analogue (GppNHp)
or the fluorescently labelled GppNHp (mantGppNHp) and followed by gel
filtration.
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Figure 7 | Ciliary entry of Rheb is dependent on the affinity to PDE6d. (a) Localization of Rheb(SI) mutant (green) in IMCD3 cells which were stably
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two independent experiments for each Rheb(WT) (38 and 87 cells per experiment) and Rheb(SI) (92 and 126 cells per experiment). Error bars indicate
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Peptides. Fluorescently labelled, farnesylated and carboxy-methylated Rheb
peptide (Fluorescein-SQGKSSC(Far)-OMe) and INPP5E peptide (SQNSSTIC
(Far)-OMe) were obtained from JPT. Farnesylated and carboxy-methylated
Rheb(SI) (SQGSSIC(Far)-OMe), INPP5E(KS) (SQNSKTSC(Far)-OMe), GRK1
(SSSKSGMC(Far)-OMe) and Tg (FKELKGGC(Far)-OMe) peptides were obtained
from CambridgePeptides.

Crystallization and structure determination. The INPP5E-peptide
(SQNSSTIC(Far)-OMe) was dissolved in DMSO and mixed with 500 mM solution
of PDE6d at 1:1 molar ratio in a buffer containing 25 mM Tris-HCl (pH 7.5),
150 mM NaCl and 3 mM DTE. The crystals appeared in Protein Complex suite
from Qiagen, 1.4 M sodium malonate (at 20 �C) and were flash frozen in a
cryoprotectant solution that contains the mother liquor in addition to 16% (v/v)
glycerol. Diffraction data set was collected at the X10SA beamline of the Suisse
Light Source, Villigen. XDS program was used for data processing. The structure
was solved by molecular replacement using Molrep from CCP4 (suite) and PDE6d
from the PDE6d-farnesylated Rheb complex (PDB code: 3T5G) as a search model.
The farnesylated INPP5E peptide was built using WinCoot and refinement was
done with REFMAC5. Refinement and data collection statistics are summarized in
Supplementary Table 1. Structure coordinates were deposited in the Protein Data
Bank (PDB code 5F2U). A stereo image of a portion of the electron density map is
displayed in Supplementary Fig. 5.

Fluorescence polarization measurements. All fluorescence polarization
measurements were performed at 20 �C in a buffer containing 25 mM Tris-HCl
(pH 7.5), 50 mM NaCl and 3 mM DTE. For the titration measurement, data were
recorded with Fluoromax-4 spectrophotometer (HORIBA Jobin Yvon, Munich,
Germany) with excitation and emission wavelengths at 530 and 580 nm for
TAMRA-labelled INPP5E peptide and at 495 and 520 nm for fluorescein-labelled
Rheb peptide. The kinetic measurements were monitored by a stopped-flow
apparatus (Applied Photophysics) in the polarization mode using an excitation
wavelength of 366 nm and filter with 420 nm cutoff for mantGppNHp bound
Arl protein, excitation wavelength of 495 nm and filter with 520 nm cutoff for
fluorescein-labelled Rheb peptide and excitation wavelength of 530 nm and filter
with 570 nm cutoff for TAMRA-labelled INPP5E peptide. Data analysis was done
with GraFit 5.0 program (Erithracus Software). Concentrations used for each
experiment are indicated in the corresponding figure legend.

Cell culture and stable cell line generation. Mouse renal epithelial cells from the
inner medullary collecting duct containing a stably integrated FRT cassette
(IMCD3 Flp-In, kind gift from M.V. Nachury lab; Flp-In cell line technology by
Life technologies) were cultured at 37 �C and 5% CO2 in DMEM/F-12, HEPES
(Life technologies) complemented with 10% fetal bovine serum and 2 mM
L-Glutamine. Stable cell lines were generated as previously described43,44. Briefly,
IMCD3 cells were seeded in six-well plates at a density of 100,000 cells per well. On
the following day the cells with a confluence of 40–60% were cotransfected with the
pG-LAP3 vector (Addgene) containing the gene of interest and pOG44 vector
(Life technologies) encoding the FLP recombinase using Lipofectamine 2,000
(Life technologies). Transfected cells were selected with hygromycine in a
concentration of 100–200 mg ml� 1 complemented culture medium. Expression
of the respective proteins was proven by immunoblotting with an anti-GFP
antibody (1:500; Santa Cruz Biotechnology sc-9996).

Immunostaining and microscopy. IMCD3 cells stably expressing GFP-tagged
protein were plated on poly-L-lysine coated coverslips in six-well plates, each well
containing 100,000 cells. Twenty-four hours later, cilia were induced by 48 h
serum starvation. Cells were washed in PBS and fixed with 4% formaldehyde in
cytoskeletal buffer (2,75 M NaCl, 100 mM KCl, 25 mM Na2HPO4, 8 mM KH2PO4,
40 mM MgCl2, 40 mM EGTA, 100 mM PIPES, 100 mM Glucose, pH 6.0) for
20 min. After two washes with PBS cells were permeabilized with 0.3% Triton X100
in cytoskeletal buffer for 10 min. Cells were rinsed in 0.1% Tween20 in PBS and
blocked in 10% FBS in PBS for 30 min. For immunostaining of primary cilia,
mouse 6-11B-1 anti-acetylated tubulin antibody (1:5,000; Sigma T6793) in 10%
FBS in PBS was incubated overnight at 4 �C. Alexa Fluor 647 anti-mouse secondary
antibody (1:800; Life technologies A-31571) was added for 45 min at room
temperature after washing four times with 0.1% Tween20 in PBS. Coverslips were
rinsed three times in 0.1% Tween20 in PBS and afterwards in PBS. Nuclei were
stained with DAPI (Serva), diluted 1:10,000 in PBS for 1 min. After three washes
with PBS, coverslips were fixed on glass slides with Mowiol (Merck). Images were
taken using an Olympus IX81 microscope with a CCD camera and a 60x NA 1.35
oil immersion objective.

Knockdown experiment. The INPP5E(WT) stable cell line was plated on poly-L-
lysine coated coverslips in six-well plates at a density of 100,000 cells per well. After
24 h cells were transiently transfected with Lipofectamine 2,000 with siRNAs
directed against mouse Arl3 and a negative control siRNA, following the
manufactureŕs recommendations. The siRNAs against Arl3 and for a negative
control were provided from Qiagen with the following sequences: for Arl3

(sense: 50-GGGUCAGGAACUAACGGAATT-30 , antisense: 50-UUCCGUUAGU
UCCUGACCCGT-30); for negative control (sense: 50-UUCUCCGAACGUGUC
ACGUdTdT-30 , antisense: 50-ACGUGACACGUUCGGAGAAdTdT-30). Eighty-
four hours later, cells were serum-starved for 24 h and subsequently treated for
immunofluorescence microscopy as described before. Image collection was
performed utilizing identical settings for every sample.

GST pull-down assay. IMCD3 cells stably expressing GFP-INPP5E(WT) or
GFP-INPP5E(KS) were lysed in lysis buffer containing 75 mM Hepes pH 7.5,
150 mM KCl, 1.5 mM EGTA, 1.5 mM MgCl2, 15% glycerol, 0.2% NP-40 and
one protease inhibitor cocktail tablet (Roche). Cell lysates were cleared and
supernatants were incubated for 1 h at 4 �C with 100 ml GSH-beads conjugated with
20 mM GST-PDE6d. For the release assay, 20 mM of either Arl2 or Arl3 were added
to the previous mixture and incubated for further 1 h at 4 �C. After 5 times washing
with the lysis buffer, the complexes were analysed by western blotting using
anti-GFP antibody (1:500; Santa Cruz Biotechnology sc-9996) and anti GST
(1:5,000; home source). Full scans of western blots are provided in Supplementary
Fig. 6.

References
1. Badano, J. L., Mitsuma, N., Beales, P. L. & Katsanis, N. The ciliopathies: an

emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet.
7, 125–148 (2006).

2. Novarino, G., Akizu, N. & Gleeson, J. G. Modeling human disease in humans:
the ciliopathies. Cell 147, 70–79 (2011).

3. Emmer, B. T., Maric, D. & Engman, D. M. Molecular mechanisms of protein
and lipid targeting to ciliary membranes. J. Cell Sci. 123, 529–536 (2010).

4. Tyler, K. M. et al. Flagellar membrane localization via association with lipid
rafts. J. Cell Sci. 122, 859–866 (2009).

5. Nozawa, Y. I., Lin, C. & Chuang, P. T. Hedgehog signaling from the primary
cilium to the nucleus: an emerging picture of ciliary localization, trafficking and
transduction. Curr. Opin. Genet. Dev. 23, 429–437 (2013).

6. Goetz, S. C., Ocbina, P. J. & Anderson, K. V. The primary cilium as a Hedgehog
signal transduction machine. Methods Cell Biol. 94, 199–222 (2009).

7. Gillespie, P. G., Prusti, R. K., Apel, E. D. & Beavo, J. A. A soluble form of bovine
rod photoreceptor phosphodiesterase has a novel 15-kDa subunit. J. Biol.
Chem. 264, 12187–12193 (1989).

8. Florio, S. K., Prusti, R. K. & Beavo, J. A. Solubilization of membrane-bound rod
phosphodiesterase by the rod phosphodiesterase recombinant delta subunit.
J. Biol. Chem. 271, 24036–24047 (1996).

9. Zhang, H. et al. Photoreceptor cGMP phosphodiesterase delta subunit
(PDEdelta) functions as a prenyl-binding protein. J. Biol. Chem. 279, 407–413
(2004).

10. Hanzal-Bayer, M., Renault, L., Roversi, P., Wittinghofer, A. & Hillig, R. C. The
complex of Arl2-GTP and PDE delta: from structure to function. EMBO J. 21,
2095–2106 (2002).

11. Nancy, V., Callebaut, I., El Marjou, A. & de Gunzburg, J. The delta subunit of
retinal rod cGMP phosphodiesterase regulates the membrane association of Ras
and Rap GTPases. J. Biol. Chem. 277, 15076–15084 (2002).

12. Chen, Y. X. et al. Synthesis of the Rheb and K-Ras4B GTPases. Angew Chem.
Int. Ed. Engl. 49, 6090–6095 (2010).

13. Ismail, S. A. et al. Arl2-GTP and Arl3-GTP regulate a GDI-like transport
system for farnesylated cargo. Nat. Chem. Biol. 7, 942–949 (2011).

14. Zhang, H., Constantine, R., Frederick, J. M. & Baehr, W. The prenyl-binding
protein PrBP/delta: a chaperone participating in intracellular trafficking. Vision.
Res. 75, 19–25 (2012).

15. Schmick, M. et al. KRas localizes to the plasma membrane by spatial cycles of
solubilization, trapping and vesicular transport. Cell 157, 459–471 (2014).

16. Chandra, A. et al. The GDI-like solubilizing factor PDEdelta sustains the spatial
organization and signalling of Ras family proteins. Nat. Cell Biol. 14, 148–158
(2012).

17. Zimmermann, G. et al. Small molecule inhibition of the KRAS-PDEdelta
interaction impairs oncogenic KRAS signalling. Nature 497, 638–642 (2013).

18. Jacoby, M. et al. INPP5E mutations cause primary cilium signaling defects,
ciliary instability and ciliopathies in human and mouse. Nat. Genet. 41,
1027–1031 (2009).

19. Bielas, S. L. et al. Mutations in INPP5E, encoding inositol polyphosphate-5-
phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat.
Genet. 41, 1032–1036 (2009).

20. Travaglini, L. et al. Phenotypic spectrum and prevalence of INPP5E mutations
in Joubert syndrome and related disorders. Eur. J. Hum. Genet. 21, 1074–1078
(2013).

21. Pirruccello, M. & De Camilli, P. Inositol 5-phosphatases: insights from the
Lowe syndrome protein OCRL. Trends Biochem. Sci. 37, 134–143 (2012).

22. Conduit, S. E., Dyson, J. M. & Mitchell, C. A. Inositol polyphosphate 5-
phosphatases; new players in the regulation of cilia and ciliopathies. FEBS Lett.
586, 2846–2857 (2012).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11366

8 NATURE COMMUNICATIONS | 7:11366 | DOI: 10.1038/ncomms11366 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


23. De Smedt, F., Boom, A., Pesesse, X., Schiffmann, S. N. & Erneux, C.
Post-translational modification of human brain type I inositol-1,4,5-
trisphosphate 5-phosphatase by farnesylation. J. Biol. Chem. 271, 10419–10424
(1996).

24. Hampshire, D. J. et al. MORM syndrome (mental retardation, truncal obesity,
retinal dystrophy and micropenis), a new autosomal recessive disorder, links to
9q34. Eur. J. Hum. Genet. 14, 543–548 (2006).

25. Thomas, S. et al. A homozygous PDE6D mutation in Joubert syndrome impairs
targeting of farnesylated INPP5E protein to the primary cilium. Hum. Mutat.
35, 137–146 (2014).

26. Humbert, M. C. et al. ARL13B, PDE6D, and CEP164 form a functional network
for INPP5E ciliary targeting. Proc. Natl Acad. Sci. USA 109, 19691–19696
(2012).

27. Zhang, H. et al. Mistrafficking of prenylated proteins causes retinitis
pigmentosa 2. FASEB J. 29, 932–942 (2014).

28. Zhang, H. et al. Deletion of PrBP/delta impedes transport of GRK1 and PDE6
catalytic subunits to photoreceptor outer segments. Proc. Natl Acad. Sci. USA
104, 8857–8862 (2007).

29. Watzlich, D. et al. The interplay between RPGR, PDEdelta and Arl2/3
regulate the ciliary targeting of farnesylated cargo. EMBO. Rep. 14, 465–472
(2013).

30. Ismail, S. A. et al. Structural basis for Arl3-specific release of myristoylated
ciliary cargo from UNC119. EMBO J. 31, 4085–4094 (2012).

31. Nachury, M. V., Seeley, E. S. & Jin, H. Trafficking to the ciliary membrane: how
to get across the periciliary diffusion barrier? Annu. Rev. Cell Dev. Biol. 26,
59–87 (2010).

32. Hsiao, Y. C., Tuz, K. & Ferland, R. J. Trafficking in and to the primary cilium.
Cilia 1, 4 (2012).

33. Garcia-Gonzalo, F. R. & Reiter, J. F. Scoring a backstage pass: mechanisms of
ciliogenesis and ciliary access. J. Cell Biol. 197, 697–709 (2012).

34. Wright, K. J. et al. An ARL3-UNC119-RP2 GTPase cycle targets myristoylated
NPHP3 to the primary cilium. Genes Dev. 25, 2347–2360 (2011).

35. Cheeseman, I. M. & Desai, A. A combined approach for the localization and
tandem affinity purification of protein complexes from metazoans. Sci. STKE
2005, pl1 (2005).

36. Buerger, C., DeVries, B. & Stambolic, V. Localization of Rheb to the
endomembrane is critical for its signaling function. Biochem. Biophys. Res.
Commun. 344, 869–880 (2006).

37. Zhou, C., Cunningham, L., Marcus, A. I., Li, Y. & Kahn, R. A. Arl2 and Arl3
regulate different microtubule-dependent processes. Mol. Biol. Cell 17,
2476–2487 (2006).

38. Veltel, S., Kravchenko, A., Ismail, S. & Wittinghofer, A. Specificity of Arl2/Arl3
signaling is mediated by a ternary Arl3-effector-GAP complex. FEBS Lett. 582,
2501–2507 (2008).

39. Roehrl, M. H., Wang, J. Y. & Wagner, G. A general framework for development
and data analysis of competitive high-throughput screens for small-molecule
inhibitors of protein-protein interactions by fluorescence polarization.
Biochemistry 43, 16056–16066 (2004).

40. Gotthardt, K. et al. A G-protein activation cascade from Arl13B to Arl3
and implications for ciliary targeting of lipidated proteins. Elife 4, e11859
(2015).

41. Evans, R. J. et al. The retinitis pigmentosa protein RP2 links pericentriolar
vesicle transport between the golgi and the primary cilium. Hum. Mol. Genet.
19, 1358–1367 (2010).

42. Hurd, T. et al. The retinitis pigmentosa protein RP2 interacts with polycystin 2
and regulates cilia-mediated vertebrate development. Hum. Mol. Genet. 19,
4330–4344 (2010).

43. Torres, J. Z., Miller, J. J. & Jackson, P. K. High-throughput generation of tagged
stable cell lines for proteomic analysis. Proteomics 9, 2888–2891 (2009).

44. Sang, L. et al. Mapping the NPHP-JBTS-MKS protein network reveals
ciliopathy disease genes and pathways. Cell 145, 513–528 (2011).

Acknowledgements
The funding was supported by the European Research Council (ERC Grant 268782),
Sonderforschungsbereich-DFG (SFB 642) and CRUK core funding award to S.I.
(A19257). We thank C. Körner and J.A. Seidel for expert technical assistance. We thank
the staff of the beamline X10SA at the Swiss Light Source for their support and Prof E.
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