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We present a formally zero-valent compound, [Co(Mabiq)Na(OEt2)]2 (1). The complex was 

characterized by crystallographic, spectroscopic and DFT computational methods. The electronic 

structure is described as a CoII–(ligand-biradical). Compound 1 is reactive toward proton 

sources; CoI or CoII products result, depending on the source of protons used. The redox non-

innocence of the Mabiq ligand, which accepts both protons and electrons, has important 

ramifications for reactivity. 

The advancement of solar fuel technologies is vital for the global progression toward renewable energy 

sources.1 The development of robust and inexpensive catalysts for the conversion of protons or CO2 

into energy-rich chemicals is integral to these efforts.2-4 Among the suitable noble-metal free 

complexes, molecular cobalt compounds have demonstrated significant promise as both electro- and 

photocatalysts for both reactions.5-8 These compounds encompass a diverse array based on unsaturated 

N4-macrocyclic, pyridyldiimine, polypyridine, triphos and dithiolene ligands.9-17 The reactivity of the 

complexes hinges on the formation of low-valent forms: typically a CoI species is invoked in catalytic 

cycles for H2 evolution.6,7 However, in several cases, generation of the more nucleophilic Co0 species is 

required for reactivity of the complexes.6,7,9,15,17-19 A few CoI compounds have been isolated among 

known catalysts.9,14,20 However, the Co0 species remains elusive among these systems, its properties 

gleaned only on the basis of indirect and theoretical evidence.21,22 The electronic structure of the zero-

valent intermediate is of further intrigue, as this reduced form might in actuality possess substantial 

ligand radical character. A true Co0 compound may well be supported by triphos and macrocyclic 

aminopyridine ligands.9,14 However, the alternative CoIL• description is recognized as a more accurate 

depiction of the doubly-reduced species among compounds containing porphyrin and diimine-based 

ligands, for example.6,18,19,23 This ligand non-innocence may have important consequences for proton 

coupled electron transfer processes associated with both H2 evolution and CO2 activation.12,18,19,23-25 

The Co0 complex is, therefore, a missing yet pivotal piece of mechanistic puzzles. Furthermore, the 



reactivity of this supernucleophile remains unexplored. Insight into the electronic structure of the 

doubly reduced species will guide our understanding of its chemistry. 

Toward this end, we have now isolated a doubly reduced, formally zero-valent compound, 

[Co(Mabiq)Na(OEt2)]2 (1, Scheme 1), based on our N4-macrocyclic Mabiq ligand. Compound 1 

completes the electron transfer series of our Co-Mabiq complexes, which already included the 

formally monovalent Co(Mabiq) (2),26 and now encompasses the full complement of formal 

oxidation states (0 → +3) invoked in the catalytic cycles of the HER and CO2 reduction. The 

characterization of 1 by crystallographic, spectroscopic and DFT computational methods is 

described herein. Preliminary studies examining the reactivity of 1 toward proton source also 

are presented. The results already highlight ramifications of proton and electron storage by the 

redox-active Mabiq ligand for reactivity. 

In association with the present work, a new form of the cobaltous-Mabiq complex, 

[Co(Mabiq)(THF)](PF6) (3), also was synthesized. The molecular structure (Figure S1) 

resembles that of the previously isolated Co(Mabiq)Cl,26 except a solvent molecule occupies 

the axial position in lieu of the chloride ligand. Compound 3 was deemed more suitable for 

comparison of products obtained in the reaction of 1. The electronic spectrum of 3 closely 

resembles that of Co(Mabiq)Cl, with minor shifts in the absorption bands. The EPR spectrum 

recorded at room temperature is consistent with a low-spin CoII center (Figure 1). The 8-line 

pattern from coupling with the 59Co I = 7/2 (100%) isotope is larger than for [Co(Mabiq)Cl].26 

The title Co0 compound was obtained upon treatment of Co(Mabiq) with one equivalent of Na 

in THF, yielding the dark red 1. The compound is dimeric in the solid state (Figure 2); the two 

bipyrimidine (bpm) units are within π-stacking distance (3.47 Å). A sodium ion coordinates the 

external diimine group of each monomeric unit, and further promotes association of the two 

macrocycles. The short contacts between the alkali metal situated in the bpm moiety of one 



molecule, and the N-atom of the neighboring bpm (Na–N1a = 2.676(3) Å) betrays significant 

electron density on the biquinazolines.27 The shortened C–C and longer C–N bond distances of 

the bpm diimine moiety, in comparison to those of 2 and 3 (Table S2), allude to ligand-centered 

reduction. 

The electronic spectrum of 1 (Figure S5) shares several features with that of 2, notably intense 

bands centered at 525 nm, along with NIR absorptions, none of which appear in the spectrum of 

the cobaltous 3. However, compound 1 exhibits a unique, pronounced transition at 442 nm, as 

well as shoulders (ca. 600 and 650 nm) to the 532 nm absorption. A transition at 429 nm also 

features in the spectrum of 3, which otherwise is distinguished by a series of bands in the 

visible region (550 – 700 nm).  Compound 1 most likely exists as a monomer in solution; the π- 

and intermolecular Na-N interactions that govern association of the macrocycles in the solid 

state are unlikely to persist in solvent.  The EPR spectrum of 1 is diagnostic of a ligand-

centered unpaired spin with a featureless line, with giso = 2.0029 (Figures 1 and S25). A 

satisfactory fit included a miniscule A{59Co} coupling of 1.05 × 10–4 cm–1 commensurate with 

the <0.5% Co content of the SOMO (vide infra). The addition of 15-Crown-5 to a solution of 1 

had no effect on the EPR spectrum.  

The electronic structure of 2 was previously described by CoI(Mabiq−) ↔ CoII(Mabiq2−•) 

resonance forms on the basis of density functional (DFT) calculations.26 [CoI(Mabiq2−•)]− and 

[CoII(Mabiq3−)]−, containing the one- or two-electron reduced macrocycle, likewise offer 

alternate formulations of the formally zero-valent complex. DFT (B3LYP) calculations on the 

monomeric form of the compound, [Co(Mabiq)Na(OEt2)], yielded an open-shell solution 

supporting the [CoII(Mabiq3−)]− description of 1. The DFT-derived spin-density map (Figure 3) 

depicts two electrons of alpha-spin on the macrocycle, and one electron of beta-spin on the 

metal ion. Three doubly occupied metal-based orbitals can be identified by inspection of the 



DFT-derived molecular orbitals (Figure S4) and the Loewdin population analysis. The unpaired 

electron on the cobalt ion resides in the xz orbital. The corresponding ligand-centered radical of 

opposite spin occupies a diketiminate π* orbital, as seen in the neutral series of compounds: 

CoII(Mabiq2−•), FeII(Mabiq2−•) and ZnII(Mabiq2−•).26,28 However, the final SOMO in the MO 

depiction of 1 represents a bpm-based π* orbital. Although the first ligand-centered reduction 

consistently involves the diketiminate, the bpm clearly also is redox-active. The DFT results, 

denoting antiferromagnetic coupling between an S = 1/2 CoII ion and an S = 1 Mabiq di-radical, 

are consistent with the EPR data. 

Compound 1 is indeed reactive toward proton sources (product spectra, Figure S6). A solution 

of 1 in THF immediately changes color from red to purple, upon addition of benzoic acid (5 

equiv.). The product absorption spectrum indicates the formation of a CoI species. The reaction 

of 1 with one equiv. pCA also produces a CoI species; the product spectrum is again similar, but 

not identical, to that of 2.  At higher acid concentrations, further conversion to a CoII-containing 

compound occurs. The product spectrum typifies a CoII species, with the characteristic 

absorption features in the visible region, but does not precisely match that of 3. For comparison, 

the addition of pCA to a solution of 2 likewise yields a CoII compound; in this case, the product 

spectrum is superimposable with that of 3 (Figure S6), suggesting clean conversion to the 

oxidized form. The monovalent compound does not react with benzoic acid; as expected, the 

doubly-reduced 1 is more nucleophilic than 2, such that it reacts even with weak acids.The 

products of the 1/acid reaction mixtures were further analyzed by 1H NMR spectroscopy 

(Figure S7 – S15). Two diamagnetic products are produced in the 1/benzoic acid and 1/pCA 

reactions (5 equiv. benzoic acid; 1 equiv. pCA), which could be separated by chromatography. 

The primary reaction product corresponds to 2, as evidenced by the NMR spectrum (Figure 4, 

bottom). The NMR spectrum of the second product (30 – 50%) exhibits eleven proton 



resonances in the aromatic region, denoting desymmetrization of the macrocyclic ligand (Figure 

4, top). Three singlets are present at 7.47, 7.30 and 6.52 ppm. The resonance at 7.30 ppm can be 

assigned to the diketiminate proton. The additional two signals at 6.52 and 7.47 ppm 

correspond to protons situated at bpm N and C atoms, respectively, based on the COSY, HSQC 

and HMBC spectra (Figure S13 – S15).  

The one-electron oxidized, diamagnetic [Co(MabiqH2)] ([2-H2]), containing a doubly 

protonated Mabiq ligand describes the second product in the reaction of 1 with acid. The 

molecular structure of [2-H2] (Figure S29) offers further evidence that the bpm unit is altered. 

The negatively charged diimine component of 1 readily takes up the acidic protons. No 

evidence of H2 was observed by NMR for any of the 1/acid reactions. We thus propose that the 

formation of [2-H2] could proceed according to Scheme 2. 

The initial protonation of 1 leads to the formation of a [CoII(MabiqH2)]
- species. Subsequent 

intermolecular electron transfer involving a second molecule of 1 yields a mixture of 2 and [2-

H2], as observed by NMR. 

We note that ligand protonation does not generally ensue under acidic conditions. Mass 

spectrometry data (Figures S16 – S23) of 3/acid mixtures shows only a peak of m/z = 600 

([M]+), corresponding to the parent complex. Ligand protonation also does not occur upon 

addition of benzoic acid to a solution of 2, whereas with pCA, an additional peak of m/z = 602 

([M+2]+) is observed, as for the 1/acid reactions. Radical character in 2 may likewise render the 

macrocycle susceptible to modification by strong acids.  

The reactivity of 1 parallels the behavior predicted in computational studies for low-valent 

porphyrin compounds. The generation of a phlorin intermediate in the mechanism of H2 

evolution by ‘Co0’-porphyrins is thermodynamically favored over metal-hydride formation.23 

The preferred ligand protonation is a consequence of porphyrin radical character in the zero-



valent form. Doubly protonated porphyrin intermediates are generated in the HER by hangman 

porphyrins and require further reduction to effect H2 release.23,29  

Compound [2-H2] does not appear to release H2. No change was observed in the NMR 

spectrum of [2-H2], even upon heating of a sample to 50 °C. [2-H2] also does not react 

appreciably with proton sources. Only minor changes in the absorption spectrum are observed 

upon addition of pCA (up to 15 equiv., THF; Figure S30). [2-H2] also does not react with 

TEMPO-H. 

Interestingly, the CV of [2-H2] shows that the values for the CoIII/II and CoII/I redox potentials 

are similar to those of 3 (Figure S31). Protonation of the bpm moiety appears to have a 

negligible influence on the metal center. Furthermore, the formal CoII/I couple may involve 

reduction of the diketiminate unit, as observed for 3. This group is situated furthest away from 

the ligand protonation site. The CoI/0 couple of the modified Mabiq complex exhibits the largest 

shift, by -100 mV, consistent with reduction of the bpm unit upon addition of the second 

electron. The electronic structure of [2-H2] is analogous to that of 2: the DFT-derived (B3LYP, 

BS1,1) spin density plot (Figure S32) again depicts the radical character of the ligand, with 

electron density localized on the diketiminate moiety. The differing reactivity of 2 and [2-H2] 

toward proton sources is thus surprising. The reactivity of these one-electron reduced forms 

remains to be examined in detail. 

The current work, focusing on the properties and reactivity of the formally zero-valent 1, 

highlights important lessons for the use of redox active ligands in proton coupled electron 

transfer processes. The generation of zero-valent compounds is thought to be necessary for the 

reduction of weak acids by numerous HER catalysts. Since reduction of our cobaltous 

compound is clearly ligand-centered, the macrocycle rather than the metal takes up added 

protons. Consequently, our doubly reduced CoII–(ligand-biradical) complex appears to be 



unviable for the hydrogen evolution reaction. The ‘zero-valent’ and MIL• intermediates cited 

among other molecular systems should be examined in greater detail. A genuine Co0 

intermediate likely will react with protons in a different manner to our complex, via a metal-

hydride species that could effectively release H2. However, among the many cobalt systems 

containing redox-active ligands, the ligand may likewise compete with the metal center for both 

electrons and protons. A greater understanding of the scenarios under which such ligand 

frameworks inhibit or support reactivity will be important for HER catalyst design. Regardless, 

the incorporation of non-innocent ligands in coordination complexes offers a powerful tool for 

other redox reactions,30 and may in fact favor CO2 redution.19 The broader reactivity of the 

doubly-reduced 1 toward other substrates, including CO2, will be explored in future work. 

 

The authors thank Prof. Klaus Köhler for the use of his EPR spectrometer, and Dr. Carmen 

Haeßner for technical assistance. MK and PA thank the TUM Graduate School for financial 

support. 

 

Notes and References 

1. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci, 2006, 103, 15729-15735. 

2. J. R. McKone, N. S. Lewis and H. B. Gray, Chem. Mater., 2014, 26, 407-414. 

3. S. Berardi, S. Drouet, L. Francàs, C. Gimbert-Suriñach, M. Guttentag, C. Richmond, T. Stoll and 

A. Llobet, Chem. Soc. Rev., 2014, 43, 7501-7519. 

4. M. Rakowski DuBois and D. L. DuBois, Acc. Chem. Res., 2009, 42, 1974-1982. 

5. N. Kaeffer, M. Chavarot-Kerlidou and V. Artero, Acc. Chem. Res., 2015, 48, 1286-1295. 

6. N. Queyriaux, R. T. Jane, J. Massin, V. Artero and M. Chavarot-Kerlidou, Coord. Chem. Rev., 

2015, 304-305, 3-19. 



7. J. R. McKone, S. C. Marinescu, B. S. Brunschwig, J. R. Winkler and H. B. Gray, Chem. Sci., 

2014, 5, 865-878. 

8. J. Bonin, A. Maurin and M. Robert, Coord. Chem. Rev., 2017, 334, 184-198. 

9. S. C. Marinescu, J. R. Winkler and H. B. Gray, Proc. Natl. Acad. Sci. U.S.A., 2012, 109, 15127-

15131. 

10. V. Artero and M. Fontecave, Chem. Soc. Rev., 2013, 42, 2338-2356. 
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Scheme 1 Electron transfer series of Co-Mabiq compounds with formal metal valencies of 0 → +2 

 

 

Fig. 1 X-band EPR spectra of 3 (CH2Cl2/toluene) and 1 (THF) Experimental data are represented by 

the black line and simulation by the red trace: 3, giso = 2.224; Aiso = 74.2 × 10–4 cm–1; 1, giso = 2.0029; 

Aiso = 1.05 × 10–4 cm–1. 

 

  



 

 

Fig. 2 Molecular structure of 1 (50% probability ellipsoids). Hydrogen atoms omitted for clarity. 

 

Fig. 3 DFT-derived (B3LYP) spin-density plot for the monomeric unit of 1 based on Löwdin 

population analysis. 

 

  



 

Fig. 4 1H NMR spectra (aromatic region; benzene-d6 (▲)) of the two products of the 1/benzoic 

reaction mixture: 2 (bottom) and ([2-H2] (top). The diketiminate proton is denoted by the asterisk (*). 

Scheme 2 Proposed reaction of 1 with acid to form [2-H2] 
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Experimental 

Materials and methods 

Chemicals were purchased from Sigma Aldrich and used as received unless otherwise noted. Metal 

compounds were synthesized in an inert atmosphere glove box (argon), using anhydrous solvents. The 

solvents were dried by passage over activated alumina columns from MBraun, deoxygenated by four 

freeze-pump-thaw cycles and stored over 3 Å (MeCN) or 4 Å activated molecular sieves. Triethyla-

mine was degassed by sparging with argon and stored over 3 Å molecular sieves. [Co(CH3CN)6](PF6)2 

was synthesized according to the literature procedure for the synthesis of [Co(CH3CN)6](BF4)2, using 

NO(PF6) instead of NO(BF4) as the oxidant.[1] p-Cyanoanilinium tetrafluoroborate (pCA) was prepared 

as described in the literature.[2] Tetrabutylammonium hexafluorophosphate was recrystallized in EtOH 

four times before use. Ferrocene was sublimed before use. H(Mabiq) and Co(Mabiq) were synthesized 

as previously described.[3-5] 

Solution state NMR spectra were measured on a Bruker Avance Ultrashield (400 MHz 1H) spectrome-

ter. X-band EPR spectra were recorded on a Bruker ELEXSYS E500 spectrometer or on a JEOL JES-

FA 200 spectrometer, and simulations performed with Bruker’s Xsophe software package.[6] Electronic 

spectra were measured on a Shimadzu UV-3600 Plus UV-vis-NIR spectrophotometer or an Agilent 

Cary 60 UV-vis spectrophotometer. ESI mass spectra were measured on a Thermo ScientificTM
  Ulti-

MateTM 3000 HPLC System using the loop mode. Microanalyses were carried out at the Technische 

Universität München. Electrochemical measurements were carried out with an EmStat3+ potentiostat 

using a three-electrode cell equipped with glassy carbon working electrode, a Pt wire counter electrode 

and a Ag/AgNO3 reference electrode. Potentials are reported with reference to an internal standard of 

ferrocenium/ferrocene (Fc+/0). 
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Single crystal X-ray diffraction  

General: For crystallization, pentane was allowed to diffuse slowly into a THF solution of compound 

1. Compound 2 was crystallized by slow evaporation of a concentrated Et2O solution. Data were col-

lected on an X-ray single crystal diffractometer equipped with a CMOS detector (Bruker Photon-100), 

a rotating anode (Bruker TXS) with MoKα radiation (λ = 0.71073 Å) and a Helios mirror optic by using 

the APEX III software package.[7] The measurements were performed on a single crystal coated with 

perfluorinated ether. The crystal was fixed on top of a microsampler and transferred to the diffractome-

ter. The crystal was frozen under a stream of cold nitrogen. A matrix scan was used to determine the 

initial lattice parameters. Reflections were merged and corrected for Lorentz and polarization effects, 

scan speed, and background using SAINT.[8] Absorption corrections, including odd and even ordered 

spherical harmonics, were performed using SADABS.[8] Space group assignments were based upon 

systematic absences, E statistics, and successful refinement of the structures. Structures were solved by 

direct methods with the aid of successive difference Fourier maps, and were refined against all data 

using SHELXLE[9] in conjunction with SHELXL-2014[10]. Hydrogen atoms were assigned to ideal po-

sitions and refined using a riding model with an isotropic thermal parameter 1.2 times that of the at-

tached carbon atom (1.5 times for methyl hydrogen atoms). If not mentioned otherwise, non-hydrogen 

atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements 

were carried out by minimizing Σw(Fo2-Fc2)2 with SHELXL-97[11] weighting scheme. Neutral atom 

scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were 

taken from International Tables for Crystallography.[12] Images of the crystal structures were generated 

by PLATON.[13-14]  
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Special: 

[Co(Mabiq)(THF)](PF6) (3): Geometrical restraints have been applied for disordered PF6
− anions (see 

CIF). 

 

[Co(Mabiq)Na(OEt)]2 (1): Geometrical restraints have been applied for disordered parts of the ligand 

(see CIF). The unit cell contains four diethyl ether molecules close to a special position, which have 

been treated as a diffuse contribution to the overall scattering without specific atom positions by 

PLATON/SQUEEZE.15 

 

 

 

The above figure shows the ORTEP style representation of 1 with one equivalent of diethyl ether co-

crystallized close to a special position, which has been treated as a diffuse contribution to the overall 

scattering without specific atom positions by PLATON/SQUEEZE[15] in the subsequent refinement 

process. Ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.  
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Density Functional Theory calculations 

Density Functional Theory (DFT) calculations were performed with the ORCA program package.[16] 

Geometry optimizations of the complexes were performed at the B3LYP[17-19] level of DFT. The all-

electron Gaussian basis sets were those developed by the Ahlrich's group.[20-21] Triple-ζ quality basis 

sets (TZV(P)) with one set of polarization functions on the metals and on the atoms directly coordinat-

ed to the metal center were used.[21] For the carbon and hydrogen atoms, slightly smaller polarized 

split-valence SV(P) basis sets were used that were of double-ζ quality in the valence region and con-

tained a polarizing set of d functions on the non-hydrogen atoms. Auxiliary basis sets used to expand 

the electron density in the resolution-of-the-identity (RI) approach were chosen,[22-23] where applicable, 

to match the orbital basis. SCF calculations were tightly converged (1 × 10-8 Eh in energy, 1 × 10-7 Eh 

in the density change, and 1 × 10-7 Eh in maximum element of the DIIS error vector). Geometry opti-

mizations were carried out in redundant internal coordinates without imposing symmetry constraints. In 

all cases the geometries were considered converged after the energy change was less than 5 × 10-6 Eh, 

the gradient norm and maximum gradient element were smaller than 1 × 10-4 and 3 × 10-4 Eh Bohr-1, 

respectively, and the root-mean square and maximum displacements of all atoms were smaller than 2 × 

10-3 and 4 × 10-3 Bohr, respectively. Orbital/spin density plots were created using GaussView.[24]  
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Syntheses 

[Co(Mabiq)Na(OEt2)]2 (1). Sodium (3.3 mg, 0.14 mmol) was added to a solution of Co(Mabiq) 

(86.2 mg, 0.14 mmol) in THF (10 mL) and the mixture was stirred for 48 h. The resultant dark red so-

lution was filtered through celite and the solvent evaporated. The crude product was dissolved in ether 

and precipitated with hexane to give a dark red solid (80 mg, 80% yield). Single crystals were grown 

by slow evaporation of a concentrated solution of 1 in Et2O. 

Anal. Calcd. for Co(Mabiq)Na(OEt2), C37H43Co N8NaO: C, 63.69; H, 6.21; N, 16.06. Found: C, 63.51; 

H, 6.19; N, 15.95. 

UV-Vis λmax (nm (ε, M-1 cm-1)) in THF: 340 (3.6 x 104), 401 (2.6 x 104), 442 (1.6 x 104), 534 (1.5 x 

104), 870 (3.4 x 103), 1038 (2.1 x 103), 1206 (1.9 x 103). 

 

[Co(Mabiq)(THF)](PF6) (3). [Co(CH3CN)6](PF6)2 (105 mg, 0.18 mmol) was added to a suspension of 

HMabiq (96 mg, 0.18 mmol) and triethylamine (26 µL, 0.19 mmol) in MeCN (5 mL). The suspension 

was stirred overnight and the resultant brown mixture was filtered through celite. After evaporation of 

the solvent, the crude product was dissolved in DCM and precipitated with hexane to give a red solid 

(120 mg, 82% yield). Single crystals were obtained by slow diffusion of pentane into a concentrated 

solution of 3 in THF.  

Anal. Calcd. for C37H41CoF6N8OP: C, 54.35; H, 5.05; N, 13.70. Found: C, 54.24; H, 5.08; N, 13.46. 

ESI-MS(+) (m/z): 600.65 [M-(THF + PF6)]
+

. 

UV-Vis λmax (nm (ε, M-1 cm-1)) in THF: 316 (3.1 x 104), 429 (9.5 x 103), 570 (3.5 x 103), 607 (2.7 x 

103), 658 (1.3 x 103). 
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General procedure for reactions of 1 and 2 with acid (pCA, benzoic acid) 

All reactions were carried out in an inert atmosphere (argon) glovebox. 0.5 mL of 1 or 2 (0.015 M solu-

tion in THF-d8) were placed in a J-Young NMR tube and frozen. Subsequently, 20 or 100 µL (1 or 5 

equiv.) of a 0.36 M solution of acid in THF-d8 were added to the frozen sample. The NMR tube was 

sealed and kept frozen until the measurement of the NMR spectrum. Aliquots of each reaction mixture 

were analyzed by absorption spectroscopy and ESI mass spectrometry. 

Alternatively, 0.5 mL of 1 or 2 (0.015 M solution in THF) were placed in a vial and 20 or 100 µL (1 or 

5 equiv.) of a 0.36 M solution of acid in THF were added. The mixtures were stirred for 30 min and 

analyzed by absorption spectroscopy and ESI mass spectrometry. 

 

Isolation of [2-H2] from the 1/benzoic acid reaction 

Compound 1 (70 mg, 0.1 mmol) was dissolved in THF (5 mL) and a solution of benzoic acid (61 mg, 

0.5 mmol) in THF (1 mL) was added. The reaction mixture was stirred for 30 min, filtered and the sol-

vent removed in vacuo. The solid was subsequently washed with MeCN to remove excess benzoic ac-

id. The remaining purple solid was a mixture of 2 and [2-H2], from which [2-H2] was separated by col-

umn chromatography (THF:hexane = 1:6, Rf = 0.43, silica gel , pore size 60 Å, 230-400 mesh particle 

size, 40-63 µm) as a purple solid (21 mg, 35% yield). Single crystals of [2-H2] were obtained by slow 

diffusion of pentane into a concentrated solution of [2-H2] in THF. 

1H NMR (400 MHz, benzene-d6, 25 °C, TMS): δ= 1.16 (s, 3H, CH3, Ha), 1.26 (s, 3H, CH3, Ha), 1.27 (s, 

3H, CH3, Ha), 1.28 (s, 3H, CH3, Ha), 1.33 (s, 3H, CH3, Ha), 1.34 (s, 3H, CH3, Ha), 1.38 (s, 3H, CH3, 

Ha), 1.39 (s, 3H, CH3, Ha), 6.52 (s, 1H, NH, He), 6.56 (dd, J = 8.0, 1.1 Hz, 1H, CH, Hc), 6.89 - 6.82 (m, 

1H, CH, Hd), 7.22 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H, CH, Hd’), 7.30 (s, 1H, CH, Hb), 7.34 (m, 1H, CH, Hd), 
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7.47 (s, 1H, CH, Hf), 7.76 (ddd, J = 8.2, 6.9, 1.4 Hz, 1H, CH, Hd’), 8.14 (d, J = 8.1 Hz, 1H, CH, Hc’), 

8.82 (dd, J = 7.8, 1.4 Hz, 1H, CH, Hc), 9.17 (dd, J = 8.2, 1.3 Hz, 1H, CH, Hc’). 
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Table S1. Crystallographic data for 3 and 1 at 100K. 

 3 1 

Empirical formula  4(C37H41CoN8O), 4(F6P), 

C4H8O 

C74H86Co2N16Na2O2 

Formula weight  3342.82 1395.43 

Crystal system  monoclinic monoclinic 

Space group  C 2/c P 21/c 

a (Å)  71.25(3) 12.6857(8) 

b (Å)  10.283(4) 14.0773(10) 

c (Å)  20.132(8) 21.3596(13) 

α (°)  90 90 

β (°)  91.821(3) 99.336(2) 

γ (°)  90 90 

Volume (Å3)  14743(10) 3763.9(4) 

Z  4 2 

ρcalc (mg/mm3)  1.506 1.231 

μ (mm-1)  0.585 0.507 

F(000)  6928 1468 

Reflections collected  57304 116385 

Independent refl., Rint  12999, 0.0955 6647, 0.0796 

Data/restraints/parameters  12999/262/1141 6647/137/502 

Goodness-of-fit on F2  1.057 1.137 

Final R1 indexes [I ≥ 2σ(I)]  0.0594 0.0643 

Final wR2 indexes [all data]  0.1425 0.1698 

Δρmin,max (e Å-3)  0.741/-0.651 0.906/-0.538 
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Table S2. Select bond distances for 3 and 1. 

 3a 1 

Co1–N1 1.915(3) (Co2–N10 1.920(3)) 1.890(3) 

Co1–N2 1.918(3) (Co2–N9 1.913(3)) 1.890(3) 

Co1–N3 1.899(3) (Co2–N12 1.898(3)) 1.868(3) 

Co1–N4 1.896(3) (Co2–N11 1.887(4)) 1.878(3) 

   

N3–C13 1.347(5) (N12–C52 1.350(5)) 1.361(5) 

C13–C14 1.388(6) (C52–C51 1.391(6)) 1.392(6) 

C14–C15 1.387(6) (C51–C50 1.379(6)) 1.374(6) 

N4–C15 1.354(5) (N11–C50 1.350(5)) 1.367(5) 

   

C9–N2 1.341(5) (N9–C56 1.346(5)) 1.355(5) 

N2–C2 1.394(5) (N9–C38 1.380(5)) 1.400(5) 

C2–N6 1.299(5) (C38–N13 1.300(5)) 1.347(5) 

N6–C3 1.370(5) (N13–C62 1.380(5)) 1.365(5) 

C2–C1 1.476(5) (C38–C39 1.491(6)) 1.422(5) 

C19–N1 1.345(5) (C46–N10 1.348(5)) 1.350(5) 

N1–C1 1.377(5) (N10–C39 1.376(5)) 1.396(5) 

C1–N5 1.303(5) (C39–N14 1.300(5)) 1.328(5) 

N5–C25 1.378(5) (N14–C40 1.374(5)) 1.373(5) 

   

Na1–N5  2.335(5) 

Na1–N6  2.381(5) 

Na1–N1a  2.676(4) 
a the asymmetric unit of 3 contains two independent molecules. The corresponding values for the second molecule are there-

fore are also given, in parentheses. 
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Table S3. DFT-derived (B3LYP, UKS) Löwdin atomic charges and spin populations for the monomer-

ic unit of 1. 

------------------------------------------------------------------------------- 

LOEWDIN ATOMIC CHARGES AND SPIN POPULATIONS 

------------------------------------------------------------------------------- 

   0 Co:    0.203739   -0.816272 

   1 Na:    0.561383    0.002865 

   2 O :   -0.510054   -0.000041 

   3 N :   -0.524272    0.171834 

   4 N :   -0.334200    0.015500 

   5 N :   -0.463625   -0.013663 

   6 N :   -0.357907   -0.014087 

   7 N :   -0.355380   -0.017871 

   8 N :   -0.463054   -0.015552 

   9 N :   -0.337051    0.019538 

  10 N :   -0.524120    0.169344 

  11 C :    0.266964    0.145579 

  12 C :    0.144285   -0.013562 

  13 C :   -0.135262    0.067259 

  14 C :   -0.108143   -0.007405 

  15 C :   -0.147193    0.071894 

  16 C :   -0.088307   -0.000909 

  17 C :   -0.021925    0.042405 

  18 C :    0.295532    0.090286 

  19 C :    0.309011    0.092826 

  20 C :   -0.041985    0.001927 

  21 C :   -0.289496    0.000492 

  22 C :   -0.288040    0.005560 

  23 C :   -0.050619   -0.002990 

  24 C :   -0.289918    0.014472 

  25 C :   -0.296877    0.003772 

  26 C :    0.136131    0.268386 

  27 C :   -0.168528   -0.077270 

  28 C :    0.136224    0.269745 

  29 C :   -0.050629   -0.002919 

  30 C :   -0.290046    0.014553 

  31 C :   -0.296607    0.003799 

  32 C :   -0.041944    0.001623 

  33 C :   -0.289465    0.000704 

  34 C :   -0.288124    0.006040 

  35 C :    0.306546    0.102113 

  36 C :    0.294418    0.095657 

  37 C :   -0.021523    0.040438 

  38 C :   -0.088203    0.001405 
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  39 C :   -0.147120    0.069999 

  40 C :   -0.108716   -0.004848 

  41 C :   -0.137463    0.065752 

  42 C :    0.143635   -0.011571 

  43 C :    0.268444    0.142056 

  44 C :   -0.313234    0.000085 

  45 C :    0.013416    0.000023 

  46 C :    0.014440    0.000014 

  47 C :   -0.323159   -0.000006 

  48 H :    0.120654   -0.002136 

  49 H :    0.114837    0.000230 

  50 H :    0.116021   -0.002360 

  51 H :    0.136615    0.000076 

  52 H :    0.115021    0.000047 

  53 H :    0.122067    0.000094 

  54 H :    0.107191    0.000208 

  55 H :    0.120781   -0.000118 

  56 H :    0.115629   -0.000112 

  57 H :    0.109934    0.000536 

  58 H :    0.117140   -0.000380 

  59 H :    0.110118    0.002634 

  60 H :    0.111585   -0.000057 

  61 H :    0.114308    0.000239 

  62 H :    0.111160   -0.000079 

  63 H :    0.112454    0.000519 

  64 H :    0.122693    0.002391 

  65 H :    0.117146   -0.000371 

  66 H :    0.111543   -0.000093 

  67 H :    0.110162    0.002592 

  68 H :    0.112290    0.000542 

  69 H :    0.110987   -0.000074 

  70 H :    0.114207    0.000244 

  71 H :    0.122096    0.000084 

  72 H :    0.114910    0.000038 

  73 H :    0.106900    0.000229 

  74 H :    0.120632   -0.000139 

  75 H :    0.109887    0.000551 

  76 H :    0.115485   -0.000104 

  77 H :    0.136548    0.000004 

  78 H :    0.116028   -0.002297 

  79 H :    0.114988    0.000146 

  80 H :    0.121690   -0.002084 

  81 H :    0.142112   -0.000010 

  82 H :    0.139441    0.000013 

  83 H :    0.134789    0.000010 

  84 H :    0.113135    0.000000 
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  85 H :    0.114371    0.000009 

  86 H :    0.129079   -0.000004 

  87 H :    0.115068    0.000001 

  88 H :    0.127504    0.000001 

  89 H :    0.129184   -0.000000 

  90 H :    0.119633    0.000001 

 

  



 

 

15 

Table S4. DFT-optimized (B3LYP, UKS) geometry (.XYZ format) for the monomeric unit of 1. 

-------------------------------------------------------------- 

CARTESIAN COORDINATES (ANGSTROEM) 

-------------------------------------------------------------- 

  Co     0.097797    0.117993   -0.168999 

  Na     0.374752   -5.527592   -0.230111 

  O      0.626188   -7.791673   -0.561952 

  N     -1.122565   -3.790384   -0.248507 

  N     -1.121508   -1.363234   -0.259888 

  N     -3.176049   -0.180010   -0.406245 

  N     -1.350033    1.361575   -0.124509 

  N      1.415329    1.497530   -0.069812 

  N      3.391791    0.138629   -0.264154 

  N      1.455849   -1.236551   -0.198962 

  N      1.690660   -3.651472   -0.164765 

  C     -0.485507   -2.601909   -0.231377 

  C     -2.486877   -3.787959   -0.301818 

  C     -3.204564   -5.012849   -0.315473 

  C     -4.591788   -5.024234   -0.375702 

  C     -5.314580   -3.816876   -0.424975 

  C     -4.629296   -2.603736   -0.412952 

  C     -3.224493   -2.571478   -0.351031 

  C     -2.463802   -1.322865   -0.332869 

  C     -2.654241    1.012868   -0.325424 

  C     -3.528487    2.253022   -0.523069 

  C     -4.955999    2.081261    0.010367 

  C     -3.598854    2.501364   -2.051475 

  C     -2.657706    3.338275    0.210293 

  C     -2.976879    3.393210    1.726966 

  C     -2.787972    4.758023   -0.362450 

  C     -1.268802    2.722410    0.053531 

  C     -0.070376    3.414864    0.162547 

  C      1.194207    2.843017    0.098311 

  C      2.508160    3.592551    0.311279 

  C      2.750603    3.683935    1.840413 

  C      2.521021    5.016175   -0.266592 

  C      3.513043    2.595690   -0.374750 

  C      4.923988    2.562422    0.224691 

  C      3.629471    2.846836   -1.899486 

  C      2.754639    1.276617   -0.210239 

  C      2.791425   -1.066556   -0.214680 

  C      3.668286   -2.236327   -0.186772 

  C      5.071200   -2.135086   -0.187725 

  C      5.868858   -3.277195   -0.151367 

  C      5.263702   -4.547608   -0.111248 
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  C      3.880004   -4.668534   -0.111321 

  C      3.049512   -3.517708   -0.152388 

  C      0.942159   -2.531519   -0.192741 

  C      1.300112   -7.160928   -2.791343 

  C      1.084221   -8.310705   -1.822687 

  C      0.397005   -8.785925    0.452822 

  C     -0.920650   -9.535136    0.289249 

  H     -2.640887   -5.952434   -0.278379 

  H     -5.126493   -5.980131   -0.385331 

  H     -6.407479   -3.831734   -0.472885 

  H     -5.165342   -1.654015   -0.451355 

  H     -4.977018    1.735797    1.055767 

  H     -5.494799    1.331109   -0.591283 

  H     -5.510644    3.035972   -0.054732 

  H     -4.043801    1.620793   -2.545848 

  H     -2.599139    2.668641   -2.488634 

  H     -4.228997    3.378061   -2.283511 

  H     -2.929628    2.393210    2.191837 

  H     -3.982131    3.812577    1.910888 

  H     -2.240744    4.035834    2.240851 

  H     -2.414309    4.835156   -1.396226 

  H     -2.223550    5.482281    0.251549 

  H     -3.844517    5.083381   -0.351804 

  H     -0.127397    4.493593    0.319536 

  H      2.779281    2.685625    2.310400 

  H      1.932138    4.252783    2.315067 

  H      3.700414    4.200201    2.067166 

  H      3.536738    5.449228   -0.210488 

  H      1.856872    5.680790    0.314311 

  H      2.189642    5.050243   -1.316880 

  H      5.555379    1.857267   -0.340365 

  H      4.927975    2.231162    1.274823 

  H      5.393687    3.562409    0.170355 

  H      4.184748    2.015537   -2.366522 

  H      4.175868    3.783647   -2.107939 

  H      2.639161    2.908121   -2.383508 

  H      5.516248   -1.139094   -0.216454 

  H      6.959242   -3.187173   -0.151615 

  H      5.887035   -5.447721   -0.078336 

  H      3.406268   -5.656098   -0.074751 

  H      2.056483   -6.448304   -2.414576 

  H      0.357823   -6.616789   -2.986972 

  H      1.663758   -7.550650   -3.758176 

  H      0.338798   -9.021431   -2.227031 

  H      2.027962   -8.867273   -1.654761 

  H      0.405630   -8.234462    1.409005 
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  H      1.254648   -9.486405    0.467310 

  H     -1.773639   -8.833663    0.277301 

  H     -1.058625  -10.228022    1.138876 

  H     -0.949133  -10.134955   -0.637051 
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Figure S1. ORTEP style representation of 3 (one of two molecules in the asymmetric unit). Ellipsoids 

are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. 
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Fig. S2. Cyclic voltammogram of 3 (0.84 mM) in MeCN; 0.1 M [N(n-Bu)4]PF6; scan rate: 0.1 V/s.  
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Figure S3. ORTEP style representation of the monomeric unit of 1. Ellipsoids are shown at the 50% 

probability level. Hydrogen atoms omitted for clarity. 
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Figure S4. DFT-derived (B3LYP) qualitative molecular orbital diagram of the monomeric unit 

([Co(Mabiq)Na(OEt2)]) of 1. 
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Fig. S5. Electronic spectra of 1 (blue), 2 (red) and 3 (black) in THF. Inset NIR region of the spectra of 

1 and 2. 
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Figure S6. UV-vis spectra of the reaction products of 1 and 2 with pCA and benzoic acid. 
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Figure S7. Full 1H NMR spectrum for the product of 1 ([Co] = 0.015 mM) plus 5 equiv. benzoic acid in THF-d8;  benzoic acid,  Et2O,  

THF-d8. 
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Figure S8. Full 1H NMR spectrum for the product of 1 ([Co] = 0.015 mM) plus 1 equiv. p-cyanoaniline in THF-d8;  pCA,  Et2O, 

 THF-d8.
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Figure S9. Full 1H NMR spectrum of. [2-H2] in benzene-d6;  benzene-d6,  hexane. 
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Figure S10. Full 1H NMR spectrum of. [2-H2] in THF-d8;  THF-d8,  hexane, silicon grease. 
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Figure S11. 1H NMR spectrum of a mixture of 2 and 5 equiv. benzoic acid in THF-d8;  benzoic acid,  THF-d8. 
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Figure S12. 1H NMR spectrum of. [2-H2] including proton assignments;  benzene-d6,  hexane. 
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Figure S13. COSY NMR spectrum of. [2-H2] in benzene-d6. 
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Figure S14. HSQC NMR spectrum of. [2-H2] in benzene-d6. The HSQC NMR spectrum of [2-H2] shows, that the proton signal at 6.52 ppm 

(e) is not coupled to a carbon atom, such that the proton can be assigned to an N-H proton. In contrast, the proton resonance at 7.47 ppm (f) 

can be assigned to a C-bound proton. 
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Figure S15. HMBC NMR spectrum of. [2-H2] in benzene-d6. 

The proton resonance at 7.30 ppm (b) in the HMBC NMR spectrum of [2-H2] could be assigned to a H atom bound to C14, as only coupling 

of this resonance to quaternary carbon atoms (C12, 13, 14, 16) is observed. The quaternary carbon atom signals couple to the proton signals 

of the Mabiq methyl groups, justifying the assignment of the singlet at 7.30 ppm to the diketiminate proton. The proton signal at 7.47 ppm 

(f) also is coupled solely to quaternary protons, indicating that the proton is attached to C1 or C2. The proton signal at 6.52 ppm (NH, e) is 

coupled to resonances corresponding to the aromatic C-H atoms and the carbon atom bound to Hf, and is therefore assigned to a proton 

bound to a bpm nitrogen atom. 

 



 

 

34 

 

Figure S16. ESI-MS spectrum of 3. 
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Figure S17. ESI-MS spectrum of a mixture of 3 and 5 equiv. pCA. 



 

 

36 

 

 Figure S18. ESI-MS spectrum for the product of 1 plus 1 equiv. pCA. 
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Figure S19. ESI-MS spectrum for the product of 1 plus 5 equiv. pCA. 
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Figure S20. ESI-MS spectrum for the product of 1 plus 5 equiv. benzoic acid. 
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Figure S21. ESI-MS spectrum of 2. 
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Figure S22. ESI-MS spectrum for the product of 2 plus 5 equiv. pCA. 

 



 

 

41 

 

Figure S23. ESI-MS spectrum for the product of 2 plus 5 equiv. benzoic acid. 
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Figure S24. X-band EPR spectrum of 3 recorded in CH2Cl2/toluene solution at 130 K (experimental 

conditions: frequency, 9.4293 GHz; power, 0.63 mW; modulation, 0.3 mT). Experimental data are rep-

resented by the black line; simulation is depicted by the red trace: g = (2.285, 2.258, 2.006); A{59Co} = 

(26, 22, 113) × 10–4 cm–1; Gaussian linewidths W = (10, 8, 6) × 10–4 cm–1; g-strain σg = (-0.006, 0.006, 

0.0007); A-strain σA = (-5, 1, -4). 
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Figure S25. X-band EPR spectrum of 1 recorded in THF solution at 293 K (experimental conditions: 

frequency, frequency, 9.8612 GHz; power, 0.63 mW; modulation, 0.01 mT). Experimental data are 

represented by the black line and the simulation by the gray trace: giso = 2.0029; Aiso{
59Co} = 1.05 × 

10–4 cm–1; Gaussian linewidth W = 4.1 × 10–4 cm–1. 
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Figure S26. X-band EPR spectrum of 1 recorded in THF solution at 77 K (experimental conditions: 

frequency, frequency, 9.6311 GHz; power, 2.0 mW; modulation, 0.6 mT). Experimental data are repre-

sented by the black line; simulation is depicted by the red trace: g = (2.0056, 2.0042, 1.9941); A{59Co} 

= (0, 1.5, 1.6) × 10–4 cm–1; Gaussian linewidths W = (1.4, 13, 6.5) × 10–4 cm–1; g-strain σg = (0.0009, 0, 

0.0006). 



 

 

45 

SC-XRD determination of compound [2-H2] 

We performed a single-crystal XRD study on a crystalline specimen of [2-H2]. Although the sample 

was of small size and limited quality, we were able to obtain a decent model of the structure. The re-

finement was possible until a stage, where we see strong indications of the addition of H-atoms. How-

ever, we were not able to proceed to the point, at which the crystal structure can be presented as a struc-

tural proof alone, but together with our results from the NMR experiments, the results from the diffrac-

tion experiments are presented as a supporting indication for the hydrogen addition to the ligand. 

General crystal data 

A dark violet plate-like specimen of C33H35CoN8, approximate dimensions 0.008 mm x 0.115 mm x 

0.220 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured 

on a Bruker D8 Venture system equipped with a Helios optic monochromator and a Mo TXS rotating 

anode (λ = 0.71073 Å).     

The total exposure time was 20.15 hours. The frames were integrated with the Bruker SAINT software 

package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell 

yielded a total of 82225 reflections to a maximum θ angle of 25.03° (0.84 Å resolution), of which 4932 

were independent (average redundancy 16.672, completeness = 99.9%, Rint = 6.94%, Rsig = 2.63%) 

and 4123 (83.60%) were greater than 2σ(F2). The final cell constants of a = 9.993(2) Å, b = 20.714(5) 

Å, c = 27.024(6) Å, volume = 5594.(2) Å3, are based upon the refinement of the XYZ-centroids of 153 

reflections above 20 σ(I) with 4.776° < 2θ < 41.17°. Data were corrected for absorption effects using 

the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 

0.895. 
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The final anisotropic full-matrix least-squares refinement on F2 with 524 variables converged at R1 = 

7.72%, for the observed data and wR2 = 15.18% for all data. The goodness-of-fit was 1.219. The larg-

est peak in the final difference electron density synthesis was 0.466 e-/Å3 and the largest hole was -

0.809 e-/Å3 with an RMS deviation of 0.075 e-/Å3. On the basis of the final model, the calculated den-

sity was 1.426 g/cm3 and F(000), 2512 e-. 

Table S5. Sample and crystal data for [2-H2]. 

 

 

 

Table S6. Data collec-

tion and structure re-

finement for 2-H2.

Diffractometer Bruker D8 Venture 

Radiation source TXS rotating anode, Mo  

Theta range for data collection 2.38 to 25.03° 

Index ranges -11<=h<=11, -24<=k<=24, -32<=l<=32 

Reflections collected 82225 

Independent reflections 4932 [R(int) = 0.0694] 

Coverage of independent 

reflections 
99.9% 

Absorption correction Multi-Scan 

Refinement method Full-matrix least-squares on F2 

Refinement program SHELXL-2014/7 (Sheldrick, 2014) 

Function minimized Σ w(Fo
2 - Fc

2)2 

Data / restraints / parameters 4932 / 188 / 524 

Goodness-of-fit on F2 1.219 

Identification code KasMa27 

Chemical formula C33H35CoN8 

Formula weight 600.60 g/mol 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal size 0.008 x 0.115 x 0.220 mm 

Crystal habit dark violet plate 

Crystal system orthorhombic 

Space group P b c a 

Unit cell dimensions a = 9.993(2) Å α = 90° 

 
b = 20.714(5) Å β = 90° 

 
c = 27.024(6) Å γ = 90° 

Volume 5594.(2) Å3 
 

Z 8 

Density (calculated) 1.426 g/cm3 

Absorption coefficient 0.653 mm-1 

F(000) 2512 
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Δ/σmax 0.001 

Final R indices 4123 data; I>2σ(I) 
R1 = 0.0772, wR2 = 

0.1457 

 
all data 

R1 = 0.0930, wR2 = 

0.1518 

Weighting scheme 
w=1/[σ2(Fo

2)+(0.0142P)2+25.6150P] 

where P=(Fo
2+2Fc

2)/3 

Largest diff. peak and hole 0.466 and -0.809 eÅ-3 

R.M.S. deviation from mean 0.075 eÅ-3 
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Refinement 

First, we refined the structure using restraints (SAME, RIGU) for the split-layer positions of the ali-

phatic groups in the ligand backbone. The resulting intermediate model showed overall prolonged 

ADPs (Figure S31). Therefore, we also checked for lower symmetries and superstructure reflections, 

both not yielding improved results.   

 

Figure S27. Refined structure of [2-H2] showing prolonged ADPs especially at the bpm-moieties. 

The ADPs for the distal nitrogen atoms in the bpm moiety and their adjacent central carbon atoms are 

significantly more elongated than their neighboring atoms. This is usually a sign for disorder, which is 

the first indication that the hybridization of these atoms could have be altered from sp2 (compound 2) to 

sp3 after addition of hydrogen. The next indication for the presence of hydrogen atoms is the existence 

of positive peaks of residual electron density in close proximity of these elongated ADPs (Figure S32). 

The peaks are situated on opposite sides of the central complex plane and therefore could likely corre-

spond to hydrogen atoms bound to the central carbon atom and the distal nitrogen atom, respectively. 
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Figure S28. Refined structure of [2-H2] showing two peaks in the positive residual electron density at 

the central atoms of the bpm-moieties. (The residual electron density at the metal atoms is caused by 

termination effects.) 

A split-layer refinement was then performed, modelling a partial occupation of the sp2-atoms (flat) or 

the sp3-atoms, whereafter the two residual electron density peaks are in a meaningful distance to re-

semble N-H or C-H bonds respectively (Figure S33).  

 

Figure S29. Refined structure of [2-H2] showing the split-layer refinements with the two peaks in the 

positive residual electron density at the central atoms of the bpm-moieties. (The residual electron densi-

ty at the metal atoms is caused by termination effects.) 
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This is the best model we were able to refine, since the addition of the protons at the peak positions 

does not enable the possibility to freely refine them (since their positions are refined towards the neigh-

boring heavier atoms). We refrained from additional restraints to fix the H-positions and to model the 

same effect on the opposing side of the ligand, since the indications are already visible. Therefore, the 

SC-XRD determination strongly indicates, that the observed existence of additional H-atoms in the 

solution NMR-experiments can also be observed in the solid state. 
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Figure S30. Electronic spectra of the reaction products of [2-H2] with pCA. 
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Fig. S31. Cyclic voltammogram of [2-H2] (1.0 mM) in MeCN; 0.1 M [N(n-Bu)4]PF6; scan rate: 

0.1 V/s. 
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Fig. S32. DFT-derived (B3LYP) spin density plot for [2-H2] based on Löwdin population analysis. 
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