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Abstract 

Aims: Predicting incident diabetes could inform treatment strategies for diabetes prevention, but 

the incremental benefit of recalculating risk using updated risk factors is unknown. We used 

baseline and 1-year data from the Nateglinide and Valsartan in Impaired Glucose Tolerance 

Outcomes Research (NAVIGATOR) Trial to compare diabetes risk prediction using historical or 

updated clinical information. 

Methods: Among non-diabetic participants reaching 1 year of follow-up in NAVIGATOR, we 

compared the performance of the published baseline diabetes risk model with a “landmark” 

model incorporating risk factors updated at the 1-year time point. The C-statistic was used to 

compare model discrimination and reclassification analyses to demonstrate the relative accuracy 

of diabetes prediction.  

Results: A total of 7527 participants remained non-diabetic at 1 year, and 2375 developed 

diabetes during a median of 4 years of follow-up. The C-statistic for the landmark model was 

higher (0.73 [95% CI 0.72–0.74]) than for the baseline model (0.67 [95% CI 0.66–0.68]). The 

landmark model improved classification to modest (<20%), moderate (20%–40%), and high 

(>40%) 4-year risk, with a net reclassification index of 0.14 (95% CI 0.10–0.16) and an 

integrated discrimination index of 0.01 (95% CI 0.003–0.013). 

Conclusions: Using historical clinical values to calculate diabetes risk reduces the accuracy of 

prediction. Diabetes risk calculations should be routinely updated to inform discussions about 

diabetes prevention at both the patient and population health levels. 

 

Keywords: diabetes risk prediction, impaired glucose tolerance 
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1. Introduction 

The use of diabetes risk prediction tools is advocated to identify high-risk individuals who 

should be screened more frequently for the development of diabetes or who may benefit from 

intensive diabetes prevention strategies [1-3]. The available risk calculators and outcome 

prediction tables use a given set of risk factors to model the likelihood of developing diabetes 

over a defined follow-up period. There is little consensus as to which risk prediction tool is most 

appropriate, and most have limited applicability due to the small size or limited ethnic variability 

in the populations from which they were derived. 

With the rising global incidence of diabetes, there is interest in improving the 

performance of risk prediction tools, at both an individual and a population health level. Some 

have sought to improve prediction by adding additional genetic [4], laboratory [5, 6], or clinical 

[7] parameters to the traditional sociodemographic risk factors of ethnicity, family history of 

diabetes, personal history of gestational diabetes, and physical inactivity. Comparatively little is 

known about the impact of change in common risk factors over time on risk prediction [8]. Using 

data from the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research 

(NAVIGATOR) study (ClinicalTrials.gov NCT00097786), we investigated the incremental 

benefit to diabetes risk prediction of updating risk factors after 1 year of follow up [9-11].   

 

2. Materials and Methods 

The NAVIGATOR study design and results have been previously published [9-11]. Briefly, 

9306 participants with impaired glucose tolerance (IGT) and cardiovascular disease or 

cardiovascular risk factors were enrolled from 40 countries between January 2002 through 

January 2004. Subjects were randomized to nateglinide and/or valsartan in a balanced 2 × 2 
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factorial design; all participants received a study-specific lifestyle modification program. After 

randomization, fasting plasma glucose was measured every 6 months for 3 years and annually 

thereafter. Oral glucose tolerance tests (OGTTs) were performed annually. HbA1c was measured 

only at baseline. Progression to diabetes occurred if the participant had a fasting plasma glucose 

level ≥126 mg/dL (≥7.0 mmol/L) or ≥200 mg/dL (≥11.1 mmol/L) 2 hours after a glucose 

challenge, confirmed by OGTT within the following 12 weeks. The date of diabetes onset was 

the date of the first elevated glucose value. Among 183 patients, diabetes was diagnosed outside 

of the study but confirmed by an independent adjudication committee. Subjects were followed 

for a median of 5 years for the incidence of diabetes.  

A model using baseline characteristics to predict 5-year incident diabetes has been 

previously published [12]. Here, we compared the performance of the baseline model to a Cox 

proportional hazards regression model whose inputs included information obtained after 1 year 

of trial follow-up (referred to as updated values). This model (hereafter referred to as the 

landmark model) predicts 4-year incident diabetes among patients who survived to 1 year 

without developing diabetes. The selection of predictors followed that used for creation of the 

baseline model: 10 baseline variables were forced into the model, selected according to clinical 

judgment rather than statistical significance (age, sex, race, body mass index [BMI], systolic 

blood pressure, family history of diabetes, history of cardiovascular disease, fasting glucose, 2-

hour glucose, and HbA1c). Subsequently, candidate variables were added by forward selection 

with a P-value of <0.05. Where updated risk factor measurements (collected at 1 year) were 

available, they replaced the baseline variables. Updated measurements were available for history 

of cardiovascular events, BMI, systolic blood pressure, fasting and 2-hr glucose levels, and 

platelet count. Updated risk factor measurements were not available for time constant covariates 
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(e.g., race, region), HbA1c, LDL, or HDL. In addition, wherever both baseline and 1-year risk 

factor measurements were available, the change from baseline to 1 year (calculated as the 

baseline value minus the 1-year value) was a candidate variable.  

Because the baseline model was developed in a different population, possibly hindering 

its performance relative to the landmark model, we also refitted the baseline model covariates to 

the 1-year follow-up population, resulting in a model that used only baseline data but was 

calibrated to the population of interest. For a sensitivity analysis, we repeated the comparisons 

using this alternative baseline model. The competing risk of death was handled by modeling the 

cause-specific hazard of diabetes progression, with censoring at the time of death. This 

methodology mirrors that used for analyzing the diabetes endpoint for the primary trial.    

As previously reported, less than 3% of data were missing for baseline covariates except 

HbA1c, which had 15% missing [12]. For the 1-year updated values, the highest missing rate was 

10% for platelet count. The missing data were handled by multiple imputation, and the final 

model results, standard errors, C-indices, and predicted probabilities reflect the combined results 

from five imputed data sets. Baseline and landmark models were compared according to the C-

index, which is a measure of a model’s ability to discriminate risk ranging from 0.5 (poor) to 1 

(perfect) [13]. Model calibration was assessed graphically with observed event rates plotted 

against predicted event rates over deciles of predicted risk.  

As a second comparison of model performance, risk classification tables were created to 

compare the baseline and landmark models for predicting transition to diabetes. Participants 

were classified by risk of progression to diabetes: modest risk (0–5%/year or 0–20% 4-year risk), 

moderate risk (>5–10%/year or >20–40% 4-year risk), or high risk (>10%/year or >40% 4-year 

risk). This clinically motivated classification paradigm is identical to that previously described 
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and is based on the annual diabetes risk seen in the placebo groups of other diabetes prevention 

studies [9]. Risk reclassification tables show the differences in classification, when compared to 

observed Kaplan-Meier event rates. Net reclassification index (NRI) and the integrated 

discrimination index (IDI) are also reported, using methods for censored data [14, 15].  

SAS statistical software (Version 9.2, SAS Institute, Cary, NC, USA) was used for all 

statistical analyses. 

 

3. Results 

The population for this analysis included 7527 participants who did not die, convert to diabetes, 

or drop out of the study before the 1-year landmark time point (Table 1). Within this population, 

2375 converted to diabetes within the next 4 years of follow-up. The results of prediction in the 

baseline and landmark population are shown in Table 2 (see Supplemental Material for 

predictive equation). The C-index of 0.73 (95% CI 0.72–0.74) indicates improved discrimination 

of 4-year incident diabetes in the landmark model compared with the baseline model (C-index 

0.67 [95% CI 0.66–0.68]), although both had good calibration (not shown). All of the updated 

values made significant contributions to the model, with the exception of updated history of 

cardiovascular disease and platelet count. Change variables for fasting and 2-hour glucose and 

BMI made significant contributions to the model, but change in systolic blood pressure, the 

history of cardiovascular disease, platelet count, and hemoglobin did not.  

Table 3 compares the predicted 4-year incident diabetes risk for each model with the 

observed risk from Kaplan-Meier probability estimates. The landmark model consistently 

predicts observed event rates more accurately than the baseline model, with the exception of 77 

(1.0%) participants predicted to be of modest risk when the actual risk was moderate (predicted 
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risk <20%, observed risk 24%). The corresponding NRI was 0.14 (95% CI 0.10–0.16), and the 

IDI was 0.01 (95% CI 0.003–0.013). In the sensitivity analysis, where baseline data were fit to 

the landmark population, we saw very little difference in performance (C-index of 0.67 [95% CI 

0.66–0.69], NRI 0.20 [95% CI 0.17–0.22], and IDI 0.06 [95% CI 0.05–0.06]). 

 

4. Discussion 

We have demonstrated that updating risk factor values for a few key variables improves risk 

prediction for incident diabetes. These key variables are typically available in routine care of at 

risk patients: BMI, systolic blood pressure, measures of glucose, and hemoglobin. The change 

over 1-year follow-up in fasting and 2-hour blood glucose and BMI is also important. Based on 

hazard ratios and chi-square values in Table 2, the absolute level of blood glucose (fasting or 2-

hour values) is a stronger predictor of progression to diabetes than changes in glucose, but the 

change in BMI has a greater impact on risk prediction than the absolute level. This may imply 

that greater emphasis should be placed on large weight changes rather than absolute weight 

values when considering diabetes risk. The interim occurrence of cardiovascular events or 

change in systolic blood pressure does not impact prediction for diabetes.   

Baseline variables shown here to be significantly associated with diabetes prediction are 

largely consistent with those in other predictive models. Increasing age and HDL-cholesterol 

levels predict decreased risk of incident diabetes, while family history of type 2 diabetes and 

increasing HbA1c are associated with increased diabetes risk. Of interest is our finding that 

higher baseline LDL-cholesterol levels are associated with a reduced risk for 4-year incident 

diabetes as other diabetes risk models have not identified LDL-cholesterol as an independent 

predictor of diabetes [3, 6, 16].  Associations between LDL-cholesterol subfractions, e.g., 
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lipoprotein (a), and risk for diabetes have been inconsistent [17, 18]. However, lipid lowering 

with statin medications has been associated with increased diabetes risk in both epidemiological 

studies [19-22] and meta-analyses of prospective clinical trials [23-25]. Whether these findings 

and ours indicate a possible direct link with LDL-cholesterol or whether there is confounding as 

a result of statin therapy deserves further consideration.   

Examination of the chi-square values demonstrates that glucose measures are the 

strongest predictors of progression, in both baseline and landmark models.  The next largest chi-

square values are seen for the change in fasting and 2-hour glucose. Closer examination appears 

to show a counterintuitive result: an increased hazard if glucose values decrease from baseline to 

1 year. To understand this apparent paradox, it is important to remember that when change 

variables are added to the model, the effects are interpreted holding all other covariates (e.g., the 

absolute glucose value) constant (Figure 1). Among two people with equivalent 1-year fasting 

glucose, the individual whose glucose decreases over 1 year of follow-up had a higher glucose, 

on average, than a person who increases to the same point. Therefore, a person with higher 

average glucose is more likely to progress to diabetes than a person with lower average glucose. 

Our results suggest that the change in glucose values is important, in that it captures information 

about previous levels.  

The reclassification table demonstrates the incremental benefit of updating risk 

calculations. In every case of discrepancy between the models, the observed event rates were 

consistent with the landmark model classification but not the baseline model classification. A 

striking example is the 481 patients classified as moderate risk (20-40%) by the baseline model 

but high risk (>40%) by the landmark model. The observed 4-year event rate in these patients 

was 59%. If applied across a population health setting, this degree of misclassification could 
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result in highly inaccurate estimates of the cost and effort required for diabetes prevention 

interventions to be effective. 

There are important limitations to these findings. First, the NAVIGATOR population was 

constrained at entry by baseline glucose values. To be eligible, participants were required to have 

either IGT or fasting plasma glucose of at least 95 mg/dL (5.3 mmol/L) but <126 mg/dL (7.0 

mmol/L). Therefore, our models are only generalizable to populations first identified to have 

elevated fasting glucose or IGT and then followed forward for 1 year. This is a particularly 

important limitation given the strength of the fasting and 2-hour glucose levels as predictors in 

both the baseline and landmark models. By definition, there is a wider distribution of glucose 

values in the population at the 1-year time point, potentially contributing to the improved 

discrimination seen in the landmark model. Another limitation is that, due to the study design, 

updated 1-year values were not available for all variables (e.g., LDL, HDL), but it seems 

unlikely that the impact of these variables would outweigh that seen for the glucose variables. 

Lifestyle modification [26, 27] and metformin treatment [26] have proven efficacy for 

diabetes prevention. However, patients often find it difficult to implement and maintain the 

changes in diet and exercise required to reap the benefits. Furthermore, although recommended 

by the American Diabetes Association and other international guidelines [28], metformin is not 

formally approved for diabetes prevention, causing some payers not to reimburse its use for 

patients with IGT. These barriers, combined with poor uptake of screening for diabetes in many 

health care systems, decrease the ability to cope with the growing incidence of diabetes 

worldwide. Diabetes prediction tools could help to better target individuals at highest risk of 

conversion to diabetes for receipt of diabetes prevention interventions. However, our findings 

demonstrate that using historical data to inform diabetes risk calculations may underestimate the 
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true magnitude of the problem. In a cohort with IGT followed in clinical practice, diabetes risk 

calculations should be routinely updated to inform discussions about diabetes prevention at both 

the patient and population health levels. 
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Table 1 – Baseline characteristics of the overall NAVIGATOR population and those included in 

the landmark analysis. Categorical variables are presented as n/N, and proportion and continuous 

variables are presented as N, median (25th - 75th percentile).   

 

Characteristic 

Baseline Value (All 

Navigator patients) 

(N=9306) 

Baseline Value 

(Patients in 1-year 

model) 

(N=7527) 

Year 1 Value 

(Patients in 1-year 

model) 

(N=7527) 

Age  9306, 63.0 (58.0-69.0) 7527, 63.0 (58.0-69.0)  

Female 4711/9306 (50.6%) 3815/7527 (50.7%)  

Racea    

White 7734/9306 (83.1%) 6212/7527 (82.5%)  

Black 236/9306 (2.5%) 175/7527 (2.3%)  

Oriental 613/9306 (6.6%) 537/7527 (7.1%)  

Other 723/9306 (7.8%) 603/7527 (8.0%)  

Region    

Asia 552/9306 (5.9%) 487/7527 (6.5%)  

Europe 4909/9306 (52.8%) 3958/7527 (52.6%)  

Latin America 1406/9306 (15.1%) 1176/7527 (15.6%)  

North America 2146/9306 (23.1%) 1658/7527 (22.0%)  

Other 293/9306 (3.1%) 248/7527 (3.3%)  

Family History of Diabetes 3547/9306 (38.1%) 2845/7527 (37.8%)  

Prior Cardiovascular Diseaseb 7838/9306 (84.2%) 6346/7527 (84.3%) 222/7527 (2.9%) 

    

BMI kg/m2  9303, 29.7 (26.8-33.3) 7524, 29.5 (26.7-33.1) 7408, 29.3 (26.4-33.0) 

Systolic BP, mmHg  9282, 140.0 (128.0-150.0) 7510, 140.0 (128.0-150.0) 7419, 133.5 (122.5-144.0) 

Fasting Glucose, mmol/L  9300, 6.1 (5.7-6.4) 7522, 6.1 (5.7-6.4) 7358, 5.9 (5.5-6.3) 

Two Hour Glucose, mmol/L  9301, 9.0 (8.4-9.9) 7523, 9.0 (8.3-9.9) 6953, 7.9 (6.6-9.3) 

HbA1c, %  7905, 5.8 (5.6-6.1) 6481, 5.8 (5.5-6.1) 1146, 5.8 (5.5-6.1) 

LDL, mmol/L  8890, 3.2 (2.6-3.9) 7200, 3.2 (2.6-3.9) 206, 3.1 (2.5-3.6) 

HDL, mmol/L  9146, 1.2 (1.0-1.5) 7401, 1.2 (1.0-1.5) 215, 1.2 (1.0-1.5) 

Platelet, 10-9/L  9050, 251.0 (212.0-294.0) 7323, 251.0 (212.0-295.0) 6760, 246.0 (207.0-290.0) 

Hemoglobin, g/L  9137, 147.0 (138.0-155.0) 7397, 146.0 (138.0-155.0) 6825, 144.0 (136.0-153.0) 

    

Variables Not in Model     

Medical History    

   Family History of Premature Coronary Heart 

Disease 

1544/9306 (16.6%) 1229/7527 (16.3%)  

   Renal Dysfunction 90/9306 (1.0%) 66/7527 (0.9%)  

   Atrial Fibrillation/Flutter 356/9306 (3.8%) 272/7527 (3.6%)  

   Pulmonary Embolism or Deep Vein Thrombosis 129/9306 (1.4%) 99/7527 (1.3%)  
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Characteristic 

Baseline Value (All 

Navigator patients) 

(N=9306) 

Baseline Value 

(Patients in 1-year 

model) 

(N=7527) 

Year 1 Value 

(Patients in 1-year 

model) 

(N=7527) 

   COPD, Emphysema, or Chronic Bronchitis 451/9306 (4.8%) 333/7527 (4.4%)  

Current Smoker 1025/9306 (11.0%) 792/7527 (10.5%)  

Height (cm)   9303, 165.0, 158.0-173.0 7524, 165.0, 158.0-173.0  

Weight (kg)  9306, 82.0, 71.5-93.5 7527, 81.8, 71.0-92.8  

Waist Circumference (cm)  9297, 100.0, 92.0-109.0 7522, 100.0, 92.0-108.0  

Diastolic BP, mmHg  9282, 82.0, 76.0-90.0 7510, 82.0, 76.0-90.0  

Pulse, bpm  9267, 70.0, 63.0-77.0 7499, 70.0, 63.0-77.0  

ECG Interpretation (N)    

Normal 4400/9061 (48.6%) 3610/7349 (49.1%)  

Clinically Insignificant Abnormality 3271/9061 (36.1%) 2634/7349 (35.8%)  

Clinically Significant Abnormality 1390/9061 (15.3%) 1105/7349 (15.0%)  

Total Cholesterol, mmol/L 9266, 5.36, 4.67-6.10 7496, 5.36, 4.68-6.10  

Triglycerides, mmol/L  9261, 1.69, 1.22-2.36 7492, 1.69, 1.22-2.35  

eGFR, mL/min per 1.73 m2  9267, 79.7, 68.6-91.1 7497, 79.9, 68.8-91.3  

Log of Albumin/Creatinine Ratio, mg/mmol  9062, -0.22, -0.67-0.49 7344, -0.22, -0.69-0.47  

a Regions are defined as Asia: China (mainland), Hong Kong, Malaysia, Singapore, Taiwan; Europe: Austria, 

Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, 

Poland, Russia, Slovakia, Sweden, Switzerland, Spain, Turkey, UK; Latin America: Argentina, Brazil, Chile, 

Colombia, Ecuador, Guatemala, Mexico, Peru, Uruguay; North America: Canada, USA (incl. Puerto Rico); Other: 

Australia, New Zealand, South Africa.  
b Prior cardiovascular disease: history of myocardial infarction, unstable angina, percutaneous coronary intervention, 

coronary artery bypass grafting, stroke, or congestive heart failure. 
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Table 2 – Landmark proportional hazards model for 4-year incident diabetes.  

Main NAVIGATOR Model Variable HR (95% CI) Chi-Square P Value 

Age (per 10 years) a 0.89 (0.83–0.94) 13.53 0.0002 

Female sex a 1.11 (1.00–1.23) 3.83 0.051 

Region (vs. North America) b 

   Asia 0.94 (0.77–1.13) 0.48 0.49 

Europe 0.87 (0.77–0.97) 6.48 0.011 

Latin America 0.96 (0.83–1.11) 0.35 0.56 

Other 0.87 (0.68–1.11) 1.22 0.27 

Race (vs. White) a 

   Other 0.95 (0.80–1.13) 0.30 0.59 

Black 0.90 (0.68–1.19) 0.57 0.45 

Family history of type 2 diabetes mellitus a 1.13 (1.04–1.23) 7.66 0.0056 

LDL (mmol/L) 0.93 (0.89–0.98) 8.57 0.0034 

HDL (mmol/L) 0.76 (0.66–0.87) 15.51 <0.0001 

HbA1c (%)a 1.71 (1.54–1.89) 101.77 <0.0001 

Values at 1 year 

   Fasting glucose (mmol/L) a 1.68 (1.59–1.79) 298.54 <0.0001 

2-hour glucose (mmol/L) a 1.43 (1.37–1.49) 250.88 <0.0001 

BMI (kg/m2) a 1.01 (1.00–1.02) 5.24 0.022 

Prior cardiovascular disease, baseline/1 year a,c 1.07 (0.98–1.17) 2.09 0.15 

Systolic BP (per 10 mm Hg) a 1.03 (1.01–1.06) 5.31 0.021 

Hemoglobin (per 10 g/L) 1.08 (1.04–1.12) 16.06 <0.0001 

Change from baseline to 1 yeard 

   Fasting glucose (mmol/L) 1.35 (1.23–1.49) 38.50 <0.0001 

2-hour glucose (mmol/L) 1.22 (1.17–1.28) 78.91 <0.0001 

BMI (kg/m2) 0.88 (0.85–0.91) 53.11 <0.0001 

For each dataset: N=7527, Event=2375, C-index=0.73.  
a Forced into model.  
b Regions are defined as Asia: China (mainland), Hong Kong, Malaysia, Singapore, Taiwan; Europe: Austria, 

Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, 

Poland, Russia, Slovakia, Sweden, Switzerland, Spain, Turkey, UK; Latin America: Argentina, Brazil, Chile, 

Colombia, Ecuador, Guatemala, Mexico, Peru, Uruguay; North America: Canada, USA (incl. Puerto Rico); Other: 

Australia, New Zealand, South Africa.  
c Prior cardiovascular disease: history of cardiovascular disease includes myocardial infarction, unstable angina, 

percutaneous coronary intervention, coronary artery bypass grafting, stroke, or congestive heart failure. 
d Change is calculated as the baseline minus 1-year value. Therefore, an increase in the change value reflects 

improvement in the clinical situation.   
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Table 3 – Reclassification table for baseline versus landmark diabetes prediction models.   

Baseline Model Landmark Model 

 
Modest risk (<20%) Moderate risk (20–40%) High risk (>40%) Total 

Modest  risk (<20%) 
2071a 648 b 58 b 

2777 
(0.09) (0.25) (0.60) 

Moderate risk (20–40%) 
948 b 1795 a 481 b 

3224 
(0.15) (0.29) (0.59) 

High risk (>40%) 
77 b 648 b 801 a 

1526 
(0.24) (0.37) (0.62) 

Total 3096 3091 1340 7527 

Kaplan-Meier (KM) estimates of the 4-year risk of diabetes progression. In each cell, the number of individuals in 

each risk category is shown, followed by the observed 4-year incident diabetes risk according to KM probability 

estimates. C index from baseline model 0.67, from landmark model 0.73.  
a KM rates are consistent with the landmark and baseline model classifications. 
b KM rates are consistent with the landmark model classification, but not the baseline. 

 



  Page 21 of 21 

Figure 1 – Clinical example illustrating interpretation of change values for fasting glucose.  

Change values in the model are interpreted holding all other variables constant. Therefore, 

among two individuals with an equivalent 1-year fasting plasma glucose (FPG), Individual A, 

whose fasting glucose decreases over time, had a higher baseline glucose value than an 

individual whose glucose increases to the same point. Therefore, Individual A carries a higher 

overall risk for developing diabetes. The change value captures information about the absolute 

change in glucose level and some information about the baseline value as well.   

 

 


