
\

Hussain, M. A., Badar, R. and Nabi, S. W. (2017) Comparison of Hand-

Written RTL code against High-Level Synthesis for Blowfish and Tiny

Encrpytion Algorithm (TEA). 2017 International Conference on FPGA

Reconfiguration for General-Purpose Computing (FPGA4GPC), Hamburg,

Germany, 9-10 May 2017.

The material cannot be used for any other purpose without further

permission of the publisher and is for private use only.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/138537/

 Deposited on 20 March 2017

Enlighten – Research publications by members of the University of

 Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/164308/
http://eprints.gla.ac.uk/

Comparison of Hand-Written RTL code against High-
Level Synthesis for Blowfish and Tiny Encrpytion

Algorithm (TEA)
Muhammad Awais Hussain

Electrical Engineering Department,
National Central University,

Zhongli. Taiwan
105521601@cc.ncu.edu.tw

Rabiah Badar

Electrical Engineering Department,
COMSATS Institute of Information

Technology, Islamabad. Pakistan
rabiah.badar@comsats.edu.pk

Syed Waqar Nabi

School of Computing Science
University of Glasgow,

UK
syed.nabi@glasgow.ac.uk

Abstract—Cryptography is the backbone of a secure and

reliable communication system. Data security while transmission
depends upon the strength of cryptographic algorithm. In this
work, Tiny Encryption Algorithms (TEA) and Blowfish
algorithms has been implemented using the High Level Synthesis
(HLS) and hand-written Register Transfer Level (RTL)
approaches in Xilinx Vivado HLS and Xilinx ISE. Comparative
evaluation for both implementation approaches has shown that
RTL approach is outperforming HLS approach in both
algorithms for different parameters like throughput, frequency
etc., due to flexibility of designing modules in RTL as compared
to HLS approach.

Keywords—cryptograpphy; blowfish; TEA; FPGA; High Level
Synthesis; RTL

I. INTRODUCTION
Data communication is an essential part of many man made

systems to ensure their reliable operation. Data communication
is not only important for normal daily life of common man but
also for systems like power system, control systems, military
applications, etc. However, the security of data being stored or
transmitted in a communication system is of primary
importance to ensure user privacy and secure operation of a
system. However, threat of breach of data privacy known as
eavesdropping from a simple mobile communication of
common person to high level communication of armed forces
and agencies, is always there.

Cryptography is a process which ensures the data security
while transmission over insecure channel by converting data
into some uninterpretable format using keys. These keys
change the form of original data into random unreadable data
such that the data could be received and decrypted only by the
intended receiver. The receiver already knows the shared keys
to retrieve the original data.

With the passage of time, there has been evolution in
encryption algorithms used in cryptography. Tiny Encryption
Algorithm (TEA), Blowfish Encryption Algorithm, Advanced
Encryption Standard and International Data Encryption
Algorithm (IDEA) are some examples of encryption algorithms
which have been playing an important role in data security. For
the current case study, TEA and Blowfish Encryption

algorithm have been selected because both algorithms have
feistel network structure, 64-bit processing of data and both are
symmetrical key algorithm. Both algorithms are competing
algorithms and can be used for replacing DES and IDEA [1],
[2].

FPGAs have been a strong choice for energy efficient
accelerated computing. For this purpose, Hardware Descriptive
Languages (HDLs) have remained primary choice for hardware
designers. Verilog and VHDL played an important role for a
long time in digital chip industry. In 2005, System Verilog
joined HDLs which was also a hardware verification language.
Increase in chip complexity with passage of time demanded the
design automation at higher functional level which eventually
led to the emergence of High Level Synthesis (HLS) tool.

Due to advancement in hardware platforms and
development tools, System-on-Chip (SoC) has drawn attention
of researchers for implementation of cryptographic algorithms
to take benefits of hardware acceleration. Huge literature can
be found for implementation of these cryptographic algorithms
considering different performance dimensions and applications
like changing key structure, pipelining, Internet of Things
(IOT), etc. [3]–[7]. Modern HLS tools can facilitate to reduce
the design time for applications with critical time to market.

Early development of HLS mainly targeted ASIC designs,
however, with improved capacity, speed and programmability
of FPGAs many HLS tools have been developed specifically
for FPGAs. Advanced Encryption Standard (AES)
implementation using HLS has been discussed showing the
tradeoffs for use of both tools in [8]–[10] and they show that
HLS is outperforming software implementations. In [11] a
detailed survey of HLS development for different applications
and input programming languages has been presented. Previous
studies mostly focused on comparison of software and HLS
implementation. Although [12] and [13] have done comparison
of performance of HLS and handwritten RTL code but their
study focus is on filters and image processing rather than
cryptography. [7] shows comparison of RTL and high level
synthesis approach in domain of cryptography but for AES
only.

In 2004, commercial HLS products were introduced to
synthesize circuits specified at C level to Register Transfer

mailto:105521601@cc.ncu.edu.tw
mailto:rabiah.badar@comsats.edu.pk
mailto:rabiah.badar@comsats.edu.pk
mailto:syed.
mailto:syed.

Level (RTL) [11]. Currently, HLS tools can generate RTL
descriptions from some popular high level languages like
CUDA, MATLAB, C, C++ and OpenCL etc. [14].

The aim of this work is to;

• Check whether handwritten RTL code outperforms
HLS generated codes for cryptographic algorithms.

• Compare handwritten RTL implementation of TEA
and Blowfish algorithm in case of selection of specific
algorithm for application on the basis of speed,
resources usage etc.

The rest of the paper is organized as follows; section II
presents the structural details and operation of cryptographic
algorithms. Section III presents the simulation results and their
analysis, whereas, section IV finally concludes the findings of
this research.

II. CRYPTOGRAPHIC ALGORITHMS
Based on the nature of key, encryption algorithms have two

types; symmetric and asymmetric key algorithm. Asymmetric
key algorithm uses different while symmetric key algorithms
use the same key for encryption and decryption. The
encryption strength of symmetric key algorithm depends upon
the strength of keys. Symmetric key algorithms are almost
1000 times faster than asymmetric key algorithms and thus are
more suitable to encrypt large amount of data. Also,
asymmetric algorithm must use strong key as compared to
symmetric to achieve the same security level.

Symmetric key algorithms can further be divided into block
and stream ciphers. Stream cipher processes the digital data
stream bit by bit or byte by byte, whereas, block cipher
encrypts data in the form of blocks of plain text. In this work,
two symmetric key block algorithms, Tiny Encryption
Algorithm (TEA) and Blowfish Encryption Algorithm, are
analyzed to evaluate their hardware implementation using HLS
and RTL approaches because software implementation of both
algorithms is slow although it is easier than hardware
implementation. So, one of our aims is to attain speed up along
with comparison of RTL and HLS implementation.

A. Blow Fish Algorithm
Blowfish is a Feistel network which iterates

encryption/decryption function 16 times. It was first proposed
by Brute Schneider in 1993. It is still unpatented and has high
security feature. Blowfish runs faster than DES or AES
because it does not require changing of keys frequently [15].
This property makes it best for applications where small
number of data packages are sent e.g. emergency control
signals. Blowfish is a symmetric key algorithm. The key length
may vary from 42 to 448 bits. Fig. 1 shows the complete
encryption process for Blowfish.

The algorithm has 4 sub-key arrays named S1, S2, S3, S4
and P. S1, S2, S3 and S4 has 256 entries while P array has 18
entries of 32 bits. There are 16 rounds in the process. Each
round r has 4 actions as described in following relations;

()1k k k ky F y P z+ = ⊕ ⊕ (1)

1k k kz y P+ = ⊕ (2)

Where, F is Feistel function.

In last round, following operations are carried out without
swapping the data from preceding round;

 18 17 18y y P= ⊕ (3)

()18 16 17z F z P= ⊕ ⊕ (4)

Where, ky and kz are left and right halves of input data,
respectively.

Decryption algorithm for Blowfish follows the same
process with P blocks used in reverse order.

The hex digits of pi are used to initialize the values of S-
boxes and P-boxes. These values are XORed with variable
length user input key. Then a block of zeros is encrypted and
results of this encryption are used for P1 and P2 entries. The
resulting cipher-text from zero block is encrypted again and
results are used for P3 and P4 box. This whole process is
repeated again and again until all entries of P-box and S-box
have been replaced completely. This complex key scheduling
makes Blowfish an effective and high security cryptographic
algorithm.

Fig. 1. Generalized depiction of encryption for Blowfish algorithm

B. Tiny Encryption Algorithm (TEA)
Tiny Encryption Algorithm (TEA) was introduced by

David Wheeler and Roger Needham in 1994 at Cambridge
University [1]. TEA uses generic algebraic operations like
addition, XOR and shift operations. It is known as block cipher
because it encrypts and decrypts plain text in blocks of specific
size [16].

It uses a large number of rounds for encryption rather than
a big and complicated program. Nonlinear iterations of
different number of rounds make it secure [17]. The memory
requirements of TEA is one fourth the requirements of AES
[18]. TEA is suitable for embedded implementation due to
simple arithmetic operations. TEA has weakness for small
number of rounds and it can be seen in Avalanche effect which
was found for 6 rounds [1]. Fig. 2 shows the block diagram of
complete encryption and decryption round for TEA.

The algorithm processes data in the form of two blocks of
32 bits by splitting the input data of 64 bits into left and right
halves. The keys are generated using simple key scheduling
algorithm by splitting the 128 bit key into four groups of 32
bits each i.e. 0 1 2 3, , ,k k k k . The key is known to both encryption
and decryption processes. In order to improve the reliability,
the algorithm is applied for more than one round by repeating
the basic module. It could normally be repeated for 16 or 32
cycles to get sufficiently secured results.

The addition and subtraction operation would be performed
depending upon the encryption or decryption module,
respectively. The 64-bit input is divided into two halves of 32
bits, y and z. The values of y and z for a single round are
updated using following relation;

()() () ()(){ }1 0 14 ^ ^ 5k k k k m ky y z k z Delta z k+ = ± + ± +  (5)

1 ()k k kz z G y+ = ± (6)
Where, ()kG y is a functional of ky and is given as;

() ()() () ()()1 2 1 1 34 ^ ^ 5k k k n kG y y k y Delta y k+ + += + ± +  (7)
Where, ‘<<’, ‘>>’ and ‘^’ are left, right shift and XOR

operators respectively.

A constant delta is used to ensure the distinct sub-keys
generation and is derived from golden number ratio using the
following relation;

() 315 1 2inDelta = − (8)

 In order to ensure the convergence, the value of delta is
updated at the end of every round using the following relation;

1k in kDelta Delta Delta+ = + (9)
A dummy variable sum has been introduced to update the

value of delta.

Fig. 2. Generalized depiction of encryption and decryption for TEA

III. METHODOLOGY
For Verilog implementation of both algorithms, whole codes
were broken down into different modules which made it easy
to access specific module in case of any errors.
In Blowfish implementation, array data was converted into
linear register before passing it into modules, wherever it was
necessary, due to the limitations of IEEE standards of Verilog
[19]. In start integer manipulation was done, whose output was
used to calculate sub-keys. Selected sub-keys were used in
calculation of encrypted and decrypted results. After one
round of encryption and decryption was performed, a specific

signal was triggered to reset values of specific registers and to
load new inputs for next round of encryption and decryption.
In calculation of sub-keys and performing operations of
encryption and decryption, sequential and combinational
design techniques were used at different parts to speed up
operations. Sub-keys are calculated using combinational
technique and these selected keys are used in main operations
of encryption and decryption, which are being performed
under sequential technique.
In implementation of TEA, ‘if’ statements are being checked
on a single clock edge. Depending upon count of specific
counter, multiple operations are performed under single clock
edge. This brings parallelism in design. Specific counter is
increased at every clock cycle and after completion of single
round of encryption or decryption, its value is reset to perform
operations on new input.

IV. SIMULATION RESULTS AND DISCUSSION
Blowfish and TEA are implemented for comparison in HLS

tool and handwritten HDL code. Details of reference software
implementation of C code of TEA and Blowfish can be found
in [1], [17], [20]. Functional correctness was ensured by
creating test benches for C code in HLS tool. Vivado HLS
2014.2 is used for synthesis of HDL code for HLS-based
approach.

In order to validate the RTL Verilog implementation of
TEA and Blowfish algorithms the behavioral simulation results
were achieved using ISIM simulator included in Xilinx ISE
Design Suite 14.5.

After ensuring the validity of design using behavior
simulation the place and route simulation results were
synthesized for the device Spartan 6-xc6slx45 with package
CSG324C and speed grade of -3. XPower Analyzer, a tool in
Xilinx ISE 14.5 package has been used for power utilization
results.

The results shown in Fig. 3 give the details of hardware
resource utilization for 16 rounds of encryption and decryption
modules for TEA block cipher using HLS and RTL
approaches. Throughput and throughput in terms of area has
been calculated using the following formulae;

 no. of bits processed Throughput= (/)
no. of clock cycles clock period

Mb s
×

 (10)

()ThroughputArea Throughput= /
Area slices

Mb slice (11)

RTL design has much higher working clock frequency as
compared to HLS approach with significantly low latency
which in turns results in high throughput for RTL based
implementation. HLS approach is taking almost 8 times more
clock cycles than RTL code. RTL implementation has less
utilization of Look Up Tables (LUTs) as compared to HLS
based design. However, HLS implementation has efficient use
of slice registers as compared to RTL based approach. Due to
high throughput of RTL based approach, throughput/area is
also higher in RTL implementation as compared to HLS based
implementation.

Fig. 3. RTL and HLS results for TEA

Fig. 4. RTL and HLS results for Blowfish

Fig. 4 summarizes the results of hardware resource
utilization for Blowfish in RTL Verilog and HLS. Results for
clock frequency, latency, throughput and throughput/area
follow the same trend as in case of TEA algorithm. However,
LUTs and slice register utilization is opposite to that of TEA
for HLS and RTL. Latency for HLS based implementation is
almost double as compared to RTL based implementation.

V. CONCLUSION
This article presents FPGA implementation of two

cryptographic algorithms i.e. Blowfish and TEA, using HLS
and RTL based approaches. Firstly, the comparative evaluation
of both cryptographic algorithms has been done based on
resource utilization and different performance evaluation
parameters. Then the comparison has been made in context of
HLS or handwritten RTL code. Both algorithms were
implemented using Verilog HDL. The accuracy results for both
algorithms are same, however, TEA having relatively simple
computational structure utilizes less resources as compared to
Blow fish algorithm. Furthermore, it has been found that RTL
based approach is outperforming HLS for different
performance measures. HLS based approach has efficient
usage of LUTs and Slice registers. The results show that TEA
is a good choice for delay sensitive applications, however, the
strong key scheduling and complex encryption scheme makes
Blowfish a suitable choice for high level of data protection. In

Verilog RTL code, speed of both algorithms can further be
improved by introducing pipeline approach. Creating RTL
code in Verilog is more time consuming as compared to HLS
code generation. A hardware designer can exploit the time
saving feature in HLS based designs to optimize the code for
efficient utilization of FPGA area and better clock frequency.

REFERENCES
[1] D. J. Wheeler and R. M. Needham, “TEA, a tiny

encryption algorithm,” Fast Softw. Encryption, vol.
1008, no. 3, pp. 363–366, 1995.

[2] D. Salomon, Data Privacy and Security: Encryption
and Information Hiding. Springer Science & Business
Media, 2003.

[3] B. Cody, J. Madigan, S. Macdonald, K. W. Hsu, and
S. Industries, “High Speed SOC Design for Blowfish
Cryptographic Algorithm,” pp. 284–287, 2007.

[4] S. R. Chatterjee, S. Majumder, B. Pramanik, and M.
Chakraborty, “FPGA Implementation of Pipelined
Blowfish Algorithm,” in 2014 Fifth International
Symposium on Electronic System Design, 2014, pp.
208–209.

[5] P. Israsena, “Design and Implementation of Low
Power Hardware Encryption for Low Cost Secure
RFID Using TEA,” pp. 1402–1406, 2005.

[6] P. Israsena, “On XTEA-based
Encryption/Authentication Core for Wireless
Pervasive Communication,” Int. Symp. Commun. Inf.
Technol. 2006. Isc. ’06, pp. 59–62, 2006.

[7] E. Homsirikamol and K. Gaj, “Can High-Level
Synthesis Compete Against a Hand-Written Code in
the Cryptographic Domain ? A Case Study ∗,”
ReConFig, pp. 1–8, 2014.

[8] K. Rupnow, Y. Liang, Y. Li, and D. Chen, “A study of
high-level synthesis: Promises and challenges,” Proc.
Int. Conf. ASIC, pp. 1102–1105, 2011.

[9] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K.
Vissers, and Z. Zhang, “High-level synthesis for
FPGAs: From prototyping to deployment,” IEEE
Trans. Comput. Des. Integr. Circuits Syst., vol. 30, no.
4, pp. 473–491, 2011.

[10] M. Watanabe, K. Iwai, H. Tanaka, and T. Kurokawa,
“High-Speed Implementation of Encryption Circuit
using a High-Level Synthesis Tool,” vol. 3, no. 1, pp.
63–66, 2014.

[11] G. Martin and G. Smith, “High-Level Synthesis: Past,
Present, and Future,” Ieee Dtc, vol. 26, no. 4, pp. 18–
25, 2009.

[12] T. Damak, L. A. Ayadi, N. Masmoudi, and S.
Bilavarn, “HLS and manual Design methodology for
H.264/AVC deblocking filter,” 2015 World Congr.
Inf. Technol. Comput. Appl. WCITCA 2015, 2015.

[13] M. D. Zwagerman, “High Level Synthesis , a Use

Case Comparison with Hardware Description
Language,” 2015.

[14] Y. Liang, K. Rupnow, Y. Li, D. Min, M. N. Do, and
D. Chen, “High-Level Synthesis: Productivity,
Performance, and Software Constraints,” J. Electr.
Comput. Eng., vol. 2012, pp. 1–14, 2012.

[15] S. R. Chatterjee, S. Majumder, and B. Pramanik,
“2014 Fifth International Symposium on Electronic
System Design FPGA Implementation of Pipelined
Blowfish Algorithm,” pp. 208–209, 2014.

[16] S. Gaba, I. Aggarwal, and S. Pandey, “Design of
Efficient XTEA Using Verilog,” vol. 2, no. 6, pp. 1–5,
2012.

[17] Rajashekarappa, S. K M, and Devi Sumithra, “Study
on Cryptanalysis of the Tiny Encryption Algorithm,”
Int. J. Innov. Technol. Explor. Eng., vol. 2, no. 3, pp.
88–91, 2013.

[18] V. Venugopal and D. M. Shila, “High throughput
implementations of cryptography algorithms on GPU
and FPGA,” Conf. Rec. - IEEE Instrum. Meas.
Technol. Conf., pp. 723–727, 2013.

[19] “IEEE Standard Verilog Hardware Description
Language,” p. 0_1-856, 2001.

[20] Y. Hara, H. Tomiyama, S. Honda, and H. Takada,
“Proposal and Quantitative Analysis of the CHStone
Benchmark Program Suite for Practical C-based High-
level Synthesis,” J. Inf. Process., vol. 17, pp. 242–254,
2009.

	Cover Sheet (AFV)
	138537
	I. Introduction
	II. Cryptographic Algorithms
	A. Blow Fish Algorithm
	B. Tiny Encryption Algorithm (TEA)

	III. Methodology
	IV. Simulation Results and Discussion
	V. Conclusion
	References

