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Abstract—Recently parallel / distributed processing ap-
proaches have been proposed for processing k-Nearest Neigh-
bours (kNN) queries over very large (multi-dimensional)
datasets aiming to ensure scalability. However, this is typically
achieved at the expense of efficiency. With this paper we offer
a novel approach that alleviates the performance problems
associated with state of the art methods. The essence of our
approach, which differentiates it from related research, rests
on (i) adopting a coordinator-based distributed processing al-
gorithm, instead of those employed over data-parallel execution
engines (such as Hadoop/MapReduce or Spark), and (ii) on a
way to organize data, to structure computation, and to index
the stored datasets that ensures that only a very small number
of data items are retrieved from the underlying data store, com-
municated over the network, and processed by the coordinator
for every kNN query. Our approach also pays special attention
to ensuring scalability in addition to low query processing
times. Overall, kNN queries can be processed in just tens of
milliseconds (as opposed to the (tens of) seconds required by
state of the art. We have implemented our approach, using
a NoSQL DB (HBase) as the data store, and we compare it
against the state-of-the-art: the Hadoop-based Spatial Hadoop
(SHadoop) and the Spark-based Simba methods. We employ
different datasets of various sizes, showcasing the contributed
performance advantages. Our approach outperforms the state
of the art, by 2-3 orders of magnitude, and consistently for
dataset sizes ranging from hundreds of millions to hundreds
of billions of data points. We also show that the key constituent
performance overheads incurred during query processing (such
as the number of data items retrieved from the data store, the
required network bandwidth, and the processing time at the
coordinator) scale very well, ensuring the overall scalability of
the approach.
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I. INTRODUCTION

We live in the era of big data, where devices are con-

tinuously generating large amounts of data, particularly

multi-dimensional (m-d) data such as spatial data, geo-

tagged data, etc. However, traditional methods that have been

used for querying such (typically much smaller) datasets

in centralized systems, have proved inadequate to handle

ever growing data. The urgent need for big data analytics

has led to the development of several distributed/parallel

data-processing frameworks. Arguably, the most popular of

such frameworks are Hadoop-MapReduce (MR) [7] and

Apache Spark [27]. MR and Spark are designed for batch

processing in parallel over a large cluster of commodity

hardware and have been used to solve many large-scale data

analytics problems scalably. In spite of their popularity, such

frameworks cannot always provide an ideal solution for ad

hoc big data querying. However, many a researcher continue

to propose solutions for big data query processing based on

these frameworks, even when this is flawed. As an example,

let us consider using MR or Spark SQL [3] to compute k
Nearest Neighbour (kNN) queries. Both approaches access

the whole dataset regardless of the size of the dataset or

the value of k. Briefly, executing kNN queries in this way

is very costly in terms of query response times, memory

usage, cpu usage, and network and disk bandwidth.

In order to process m-dimensional (m-d) kNN queries

efficiently, several authors propose accessing only rele-

vant subsets of the dataset at query time. The latest such

works are the MR-based SHadoop [8] and the Spark-based

Simba[23] systems. From a design philosophy point of view,

both approaches: (i) divide a dataset into several partitions

(subsets), each of which contains data elements that are

located relatively close to each other in the Euclidean space;

(ii) build a local m-d index over each data partition in order

to avoid linear scanning of the partition; (iii) build a m-

d global index over the entire dataset in order to prune

out irrelevant partitions during query execution. This design

philosophy improves the efficiency of query precessing.

However, the size of a partition is determined by the

settings in which a particular method operates. For example

[8] operates within the Hadoop ecosystem. As such, it

defines the minimum size of a data partition to be at

least as large as the block size of the Distributed File

System (e.g., HDFS) where data reside; for HDFS, this

translates to partitions being at least 128MB each (default

HDFS block size). Similarly, [23] operates within the Spark

ecosystem and thus calculates the size β of a partition as:

β = λ((1−α)M/c), where λ is a system parameter (usually

0.8) capturing run-time memory overheads, c is the number

of cores, M is the total memory reserved for Spark on each

worker node, and α is the fraction of M reserved for RDD

caching; thus, β is usually in the hundreds of MBs if not

GBs. Regrettably, though, setting the minimum partition size

to such large values has a negative impact on overall query

processing time as explained below.

Motivating Example: Consider a kNN query over a check-



in dataset of spatial points stored in HDFS. Assume each

point is represented by X and Y coordinates in a 2-d space.

Here, each coordinate is represented by a double precision

floating point number, thus a point needs 2× 8 = 16 bytes

in total. During kNN query execution, when k = 10 (resp.

k = 100 or k = 1000), the optimal would be that only 160

(resp. 1600 or 16000) bytes of data are to be retrieved as the

final answer to the query. Unfortunately, the-state-of-the-art

methods [8] [23] would process at least one partition (128

MB), containing ≈ 8.4 × 106 points to compute the final

answer. This clearly shows that data organization, storing

partitions into HDFS blocks (or similar), is highly inefficient

due to the facts that: (i) even though most of the time the

value of k is small, high volumes of data must be scanned

and loaded into memory, and (ii) many points that are

located relatively far from each other (in Euclidean distance)

would be packed and stored together in one partition, solely

in order to meet the lower size requirement of a partition.

Consequently, as the DFS block size increases, the chance

of compacting non-neighbours into one partition increases,

and so does the chance of accessing data items that do not

contribute to the final kNN answer, thus wasting time and

resources.

But why the above approaches do not employ smaller

partition sizes and/or smaller block sizes? When these

methods run over HDFS, their rationale for enforcing such a

constraint is guided by [1], [14], [30], [29]: the meta-data for

all partitions in HDFS are managed by a centralized node

called the NameNode; too many small files (one per par-

tition) can easily overload the NameNode, thus potentially

compromising the overall health of the cluster.

Departing from the existing systems that link the size of

a partition to the DFS block size, we propose a coordinator-

based approach, which partitions and indexes large-scale

data into several small data partitions (hereinafter referred

to as cells) whose size is determined only with respect to

the desired performance of kNN query processing. Conse-

quently, at query time, our approach is capable of surgically

accessing significantly smaller subsets of the dataset.

Specifically, our major technical contributions are:

• Revisit the design philosophy that underpins kNN

query processing over very large datasets, going against

the grain and state-of-the-art.

• Offer a different way to index and organize the dataset

that enables surgical accesses to only very small subsets

of the dataset.

• Offer coordinator-based query processing algorithms

that exploit the above and which overall ensure:

– High performance: up to 3 orders of magnitude lower

query processing times than the state of the art.

– High scalability: ensuring that compute-storage-

network resources are utilized efficiently, for datasets

of various sizes, ensuring also high scalability.

• Offer an implementation and extensive performance

evaluation of our approach versus the state of the

art (Spatial Hadoop, Simba), which substantiates and

quantifies our performance and scalability claims.

The paper is structured as follows: Section II reviews

background and related work. Section III presents the prob-

lem analysis and fundamentals. Section IV explains the

rationale of our approach while Sections V and VI elaborate

implementation details. Section VII reports on experimental

results. Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

A dataset is a collection of d-dimensional vectors, here-

inafter referred to as points. We overview the background

upon which all query processing methods rely. We then

review the state of the art in detail.

A. Background

1) Multidimensional Indices: are crucial for locating data

relevant to a given query without accessing the whole

dataset. Traditional data indexing methods are not suitable

for indexing m-d data, giving rise to several m-d indexing

solutions [4], [5], [9], [11], [20], [16]. For concreteness, we

adopt the Quad Tree (QT) [9] indexing method. QT can

efficiently index uniformly and non-uniformly distributed

points. When skewed data are provided, QT divides the most

populated region recursively, so that all leaf nodes of the tree

contain approximately an equal number of points.

2) kNN Query Processing: Most tree-based indexing

methods have two steps in order to compute the kNN

answer: (Step 1) Computing an initial solution, and (Step 2)

Verifying correctness of said solution. In Step 1, the closest

cell (leaf node) to the query point is identified by traversing

the index tree. Subsequently, the k-nearest neighbours that

reside in that cell are determined. In Step 2, a circle with

a specific radius centred at the query point is considered.

Any cell that overlaps with the circle is checked whether it

contains some points, whose distance to the query point is

less than any distance of a point that belongs to the initial

kNN answer set from Step 1. If such a point exists in any

of the candidate cells, then it is inserted into the kNN set

and the furthest point is removed.

A body of research has focused on computing the optimal

radius size. For example [19], also adopted by [2], estimates

a radius size through the distance between the query point

and the furthest corner of the cell which encompass the

query point. This is achieved without accessing the dataset

but only utilizing the information stored in the index. How-

ever, this estimated radius size might be quite larger than it

should be, and thus a high number of candidate cells may

be accessed at query time. A variant to this approach is

discussed in [8], where the radius size is estimated by the

distance between the query point and the k-th nearest point

that lies within the cell that contains the query point. In this

case, the dataset must be accessed to compute the radius



size. The radius size could be smaller compared to [19] but

several data accesses would be required to compute the kNN.

3) HBase: An Overview: Large-scale data can hardly be

stored in a centralized server. Even large-scale distributed

relational databases are viewed as non-scalable. Thus, typi-

cally modern distributed database systems, such as NoSQL

databases or DFSs (such as HDFS) are being used. Arguably,

HBase [10] is one of the most popular NoSQL databases,

offering an implementation of the BigTable[6] model. HBase

is highly available and scalable, provides a simple key-value

API and is designed to store large datasets. We have chosen

HBase in our implementation as the basic data store because

it does not need to retrieve the entire DFS block into memory

during query execution [21]. A table in HBase is divided

horizontally (i.e., at rowkey boundaries) into regions, each

of which, in turn, has several HFiles. An HFile stores a

sorted list of key-value pairs on disk. Additionally, each

HFile contains a simple index of the rowkeys it contains, and

HBase keeps track of which storage nodes and regionservers

are responsible for every region. These features enable

HBase to support efficient random data accesses.

B. Related Work

1) Hadoop/MR-based Approaches: Hadoop GIS [1] is

a scalable and high performance spatial data warehousing

system for running large scale spatial queries in Hadoop.

However, Hadoop GIS only supports 2-dimensional data.

The state-of-the-art SHadoop [8] divides a dataset into a

number of partitions, each of which has equal size to a

HDFS block. SHadoop employs two indices: a global index

and a local index, which are used to prune out irrelevant

data elements. In order to answer kNN queries, SHadoop

might require two MR jobs to ensure the correctness of the

final kNN answer. Interestingly, although not discussed in

the academic papers describing SHadoop, the source code

the authors have (thankfully) made available also includes

a non-MR approach – a sign that they also realize the

tension between distributed operation and high performance.

Nonetheless, to be fair, we will compare the performance of

our approach against both variants of SHadoop (MR and

non-MR). However, we should clarify that SHadoop as a

whole is a good step forward for scalable spatial queries,

offering an overall system for many types of spatial queries

and not just kNN queries. The point we make in this paper

is that the SHadoop approach is lacking in terms of per-

formance for kNN query processing and that our approach

reconciles the performance-scalability tension better – we

do not discuss other types of spatial queries, such as kNN

joins, spatial joins, etc. AQWA[2] is another recent method

for KNN query processing. Like SHadoop, AQWA splits the

dataset into many cells each of which has the same size as

the block size of the underlying HDFS. Unlike SHadoop,

AQWA only has a global index and does not employ local

indexes within cells/partitions; all points that reside within a

selected cell are loaded into memory and scanned one by one

in order to deliver the kNN list. Therefore, it has significant

extra CPU time overhead compared to SHadoop.

2) Approaches on HBase: Several methods have been

proposed to expedite spatial query processing using HBase.

The MD-HBase system [17] builds a m-d index over a

dataset stored in HBase. MD-HBase uses k-d trees and

QTs to quantize the space, and Z-ordering to convert m-

d points into 1-d rowkeys. The system in [13] proposes a

novel key-formulation schema, based on R+ trees over a

dataset stored in HBase. These studies investigate how to

effectively access a dataset by employing m-d indices. The

main focus of both of the above works is different from

ours: they stress on design of HBase row key. HGrid [12]

builds a m-d hybrid index structure over HBase, using QT

and a regular grid. HGrid adapts QT to partition the space

into a number of sub-spaces each of which is further divided

into several cells using regular grid. The leaf nodes of the

QT correspond to rows in HBase, while each cell of the

regular grid corresponds to a column in a row. In addition,

HGrid stores a small number of points per cell to improve

query response time. Our approach differs from HGrid in

several ways: (1) HGrid does not include a systematic way of

ensuring that a very small number of data points is accessed,

and (2) to save memory space of the QT, HGrid opts to add

many columns in a row; however, as the number of columns

increases (e.g., above several hundreds), query performance

deteriorates significantly [12].

3) Spark Based Approaches: Spark [27] is another

cluster-based batch-oriented big data-parallel processing

platform. The main advantage of Spark is the ability to run

computations in memory. Spark defines resilient distributed

datasets (RDD). RDDs represent a collection of items dis-

tributed across many nodes that can be manipulated in

parallel. Spark has several extensions that provide different

features: Spark SQL [3] for working with structured data,

Spark Streaming [28] for processing of live streams of data,

MLlib [15] with machine learning algorithms, and GraphX

[24] for manipulating graphs.

In order to improve m-d kNN query processing in Spark,

several works have been proposed: GeoSpark [26], Spa-

tialSpark [25] (kNN joins and spatial joins over geometric

objects), and Simba [23]. Simba [23] extends Spark SQL

by adding specialised spatial indices and by using them

during query planning and execution. More specifically,

Simba employs global and local indices in order to access

relatively small amount of data. According to its authors,

Simba has the best performance compared against all above

Spark-based competitors. Due to this fact, we decided to

compare our solutions against Simba.

Compared to our solutions, Simba has two drawbacks.

First, considering the value of k is small, Simba needs to

load relatively large RDDs in memory; the main focus of

indexing in Simba is to reduce only the CPU cost, failing



to reduce disk IO and networking costs. Second, during

query execution, the global index of Simba might select

unnecessary RDDs; this is due to the fact that the circle

centred at the query (q), which is used to identify relevant

RDDs, has a much larger radius than needed, because it is

computed as the distance between q and the furthest corner

of Ri, where Ri is the closest RDD (partition) to q.

III. PROBLEM FUNDAMENTALS

Definition 1: A cell C in a d-dimensional space R
d is

defined by the triplet:

C := 〈w, r, |C|〉,

where w = [w1, . . . , wd] ∈ R
d is the lower boundary point,

r > 0 is a fixed width in each dimension, and |C| refers to

the number of d-dimensional points in the cell.

Definition 2: A grid G in a d-dimensional space R
d is a

set of m non-overlapping cells G =
⋃m

i=1 Ci.
Definition 3: A query point q ∈ R

d is a d-dimensional

vector: q = [q1, . . . , qd]; a point p in grid G is a d-

dimensional row: p = [p1, . . . , pd]. The Euclidean distance

between query q and point p is:

‖q− p‖ =

(

d
∑

i=1

(qi − pi)
2

)

1

2

.

Definition 4 ([19]): The minimum distance of a query

point q from a given cell C ∈ G with lower boundary point

w and width r, denoted by f(q, C), is:

f(q, C) = ‖q− s‖,

where s = [s1, . . . , sd] and

si =











wi, if qi < wi;

wi + r, if qi ≥ wi + r;

qi, otherwise.

Definition 5: Given m > 0, a dataset D =
{p1, . . . ,p|D|} of d-dimensional points is divided into m
partitions Di, i = 1, . . . ,m, such that it holds: (D =
⋃m

i=1 Di) ∧ (Di 6= ∅) ∧ (i 6= j ⇒ Di ∩ Dj = ∅).
|D| is the cardinality of the set D.

Definition 6: Given α > 0, the upper-bound of points

stored in a partition Di is α ≥ |D|/m where m is the number

of partitions.

Definition 7: Given a partition Di, cell Ci is the smallest

(sub)space within which all points of Di lie.

Definition 8: Given a balanced tree data structure, let x
denote the maximum number of children per node. In a tree

of height h, the total number of nodes z and the number of

leaf nodes l are, respectively:

z =
h
∑

i=0

xi , l = xh.

Definition 9: Given a query point q and a dataset D, the

k Nearest Neighbours (kNN) of q is the set A:

(A ⊆ D) ∧ (|A| = k) ∧ (∀p ∈ A, ∀p′ ∈ D \ A, ‖p− q‖ ≤ ‖p′ − q‖).

Definition 10: Let a vertical or horizontal closed interval

in a number line in 1-dimensional space starts at 0 and be

divided into n finite consecutive half-open smaller intervals,

each of which has equal length r. For a given random number

q that lays on the ith small interval, the starting number of

the ith interval is defined by ⌊ q

r
⌋ · r.

IV. RATIONALE

In this section we focus on designing cells that are as

small as possible and discuss the implications on scalability.

A. Cell Size Determination

Quad tree (QT) divides a dataset D into m cells, each of

which contains at most α points. Every cell, Ci corresponds

to a partition Di ⊂ D, thus |Di| ≤ α. Every cell (tree leaf

node) of the QT is associated with a unique corresponding

row in the key-value data store (HBase table). Equation (1)

shows an upper bound on the cell size α, given |D| points

and the total number of cells (leaf nodes) is xh:

α ≥ |D|/xh, (1)

where x is the maximum number of children per node (4

for QTs). The maximum number of points α stored in a

cell has significant impact on query response time. The

higher the value of α, the higher the query response time

as there are more points to consider. Hence, the value of α
is desired to be small in order to improve query response

time. But smaller values for α have negative implications for

scalability: the coordinator has a finite memory available to

store the index and smaller α values increase the size of the

index; for very large dataset sizes this will pose scalability

problems at the coordinator.

Question 1: How small can the value of α be? The value

of α is dependent on the amount of available memory, β,

at the coordinator. In order to determine α using (1), before

constructing the index tree, the height of the tree h should be

defined in terms of β. Hence, α is defined as a function of

β, i.e., α = α(β), as shown in (5). In Lemma 1 we provide

a determination of α in terms of β.

Lemma 1: Let β, b, x and z be the total available memory,

the size of a node of the tree in bytes, the maximum number

of children per node, and the total number of nodes in a tree,

respectively. The upper bound on the number of points α that

can be stored in a cell (leaf node) is:

α(β) ≥ |D| × x1−logx((β/b)(x−1)+1)

Proof: The total number of nodes in a given tree is:

z =

h
∑

i=0

xi = 1 + x+ x2 + ...+ xh (2)



Also z can be determined based on a maximum available

free memory, β and the size of a node of a tree in bytes, b,

z ≤
β

b
(3)

From (2) we obtain that:

z =
(x(h+1) − 1)

x− 1
⇐⇒

(h+ 1)logxx = logx(z(x− 1) + 1) ⇐⇒

h = logx(z(x− 1) + 1)− 1 (4)

Given that α(β) ≥ |D|/xh and substituting z from (3):

α(β) ≥ |D| × x1−logx((β/b)(x−1)+1) (5)

In (5), when the value of β increases, the value of α
decreases. Therefore, the value of α decays exponentially

w.r.t β. Fig. 1 shows that α(β) is an exponential decay

function (|D| = 90 · 109, x = 2, b = 32 bytes).

B. Candidate Cells Determination

In general, there will be cases where more than one cell

must be accessed in order to answer a kNN query. Without

loss of generality, assume a query point q lies within a

cell Cc close to a boundary line. Possibly, some points that

reside in adjacent cells to Cc might be part of the kNN list.

Accordingly, adjacent cells to Cc should be checked in order

to answer a kNN query correctly.

Question 2: Is it possible to identify the relevant cells that

contain relevant points without accessing the whole dataset?

If so, w.r.t improving query response time:

Question 3: How can the smallest possible number of

adjacent cells be identified?

Those are fundamental questions in order to compute the

kNN list efficiently and are addressed in this section. As

mentioned, the most popular technique to identify adjacent

cells to the cell Cc that overlaps q is by creating a circle

centred at q with a radius ρ. Then, all adjacent cells that

overlap with the circle are selected as candidate cells. In the

literature, methods for determining the value of the radius ρ
include: (i) by the distance between q and the k-th nearest

data element that lies within Cc [8], or (ii) by the distance

between q and the furthest corner of Cc from q [2].

In our approach, the value of ρ is determined through

the distance between q and the k-th nearest point p ∈ Cc.

We adopted this method due to two key facts. (F1) In

spite of the fact that this approach requires to access the

back-end data store twice, it has almost negligible overhead

compared to the high initialization overhead cost of MR-

based approaches [8]. (F2) Contrary to [2], which estimates

the value of ρ generously, our approach calculates the

tightest possible value of ρ, thus avoiding unnecessary data

accesses as much as possible.
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Figure 1: As β increases α decreases exponentially.
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Figure 2: Correlation radius (ρ) with (a) query response time

and (b) number of accessed data points.

We study the impact of ρ on query response time as well

as on the number of candidate cells. Using our approach and

different values for ρ we generate the relevant plots in Fig.

2a and Fig. 2b. Fig. 2a shows that there is a strong positive

correlation between ρ and query response time; i.e., as the

value of ρ increases, query response time also increases.

As illustrated in Fig. 2b, there is also a positive correlation

between ρ and number of points that are accessed at query

time. Hence, in order to reduce the value of ρ, unlike existing

works [2], our approach calculates the exact value of ρ by

accessing all points that reside in the closest cell.

V. COORDINATOR WITH INDEX (COWI)

We now turn to our coordinator-based distributed query

processing algorithm, armed with the knowledge of the

importance of accessing only small but relevant cells for

query response times. The first solution, coined COWI, iden-

tifies relevant cells using a QuadTree (QT) index, without

accessing or looking into the whole dataset.

QT accepts as input the entire dataset D and grid G, and

hierarchically divides G into several sub-spaces Ci ⊂ G until

each sub-space Ci contains less than α points; i.e., |Di| < α
and D =

⋃p
i=1 Di. Each cell Ci is a leaf node of the QT. We

store only the tree structure of the QT in the coordinator’s

memory. The actual data contained in a cell Ci are stored

in a corresponding row in a HBase table. Every leaf node



(cell) Ci is represented in the coordinator’s memory by only

the matching row key for the i-th row and the total number

of points belonging to this row in the HBase table.

At query time, a query q traverses the QT starting from

the root and descending to the child node that overlaps

with q until it reaches a leaf node, Ci. When a node Ci
encompasses a query q, the minimum distance between Ci
and q is 0; i.e., f(q, Ci) = 0.

A. QT Index Construction

Initially, using equation (5) the value of α (maximum

number of points in a cell) is determined based on the

available memory. Then a summary grid is created with

a fine granularity. The number of points that reside in a

cell in the summary grid is counted using MR; therefore,

each cell of the summary grid contains two important pieces

of information: (i) the coordinates of the cell and (ii) the

number of points that lie within the cell. The summary grid

is used to construct a QT as follows: (Step 1) Assign each

cell of the summary grid to a corresponding leaf node, C∗,

of the QT that overlaps with the cell completely; (Step 2)

Increment the count of C∗ by the number of points in the

summary grid cell that has been assigned to it; (Step 3) If

the total number of points in C∗ exceeds α, split C∗ into four

children leaf nodes and redistribute all the summary grid’s

cells that have been assigned to C∗ to the new leaf nodes

based on the distance f ; see [19]; (Step 4) Otherwise store

the coordinates of the summary grid cell in C∗. At the end

of this process, the QT has its final structure. Then, all the

coordinates of the summary grid cells that have been stored

in each leaf node are deleted because those coordinates are

needed only to identify which summary grid cells must be

reassigned to which new leaf nodes when a node splits. At

this point, the count of each QT leaf node refers to the

total number of points that are going to be stored in the

corresponding row in the HBase table.

B. Query Processing: COWI

KNN query processing proceeds as follows: (Step 1)

Identify the closest cell, that is, C∗ = argmin
∀Ci∈C

f(q, Ci),

and check if there are enough points (i.e., ≥ k) in the row

corresponding to C∗. If there are not enough points, get the

second closest, third closest and so on, until the total number

of points that reside in the retrieved rows exceeds k. (Step

2) Retrieve all points that reside in the furthest cell Cf found

in Step 1; then, compute the initial kNN answer. (Step 3)

Use the distance from q to the k-th point in the initial kNN

answer as a radius in order to draw a circle centred at q.

Then, retrieve all cells from the QT that overlap with the

circle, and store them in a queue based on their distance.

(Step 4) For each candidate cell in the queue, starting from

the closest cell, check if there are points that reside in it

and are located in a closer distance to q than points that are

selected as members of the initial kNN answer. If so, add
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Figure 3: Three rows with different values of α and k.
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Figure 4: Conceptual nodes are connected by dotted line.

the closer points to the initial kNN answer and remove the

furthest points from it. At the end of this process, the kNN

answer is the final correct kNN list.

VI. COORDINATOR WITH NO INDEX (CONI)

Tree-based indexing approaches might produce large in-

dex tree that might not fit in memory, especially when the

value of α is small. Some times the storage cost of the

index exceeds the dataset itself [22]. Therefore, tree-based

approaches such as COWI, can not scale well with extremely

big datasets because decreasing the storage cost of the tree

requires increasing the value of α. However, as shown in

Fig.3 when the value of α increases from 2,000, to 20,000

and to 200,000, significant increase in query processing time

are observed for different values of k.

In order to avoid the scalability issue of COWI, we

propose the coordinator with no index in-memory (CONI)

approach. Storing some parts of the index tree in a key-

value store table rather than in main memory makes CONI

robust and scalable. The main advantage of this approach is,

therefore, that both scalability and efficiency are achieved

without sacrificing one for the other. Please note that CONI

does not store any index in memory.

Indexing: In CONI there are two different indexing

processes. (i) A dataset is indexed using a QT based on

a small number of α that is determined only with respect to

the desired performance of kNN as explained in VI-A and

the contents of each leaf node are stored in a row in a key

value table (coined the data-table). (ii) The row keys of the

data-table are indexed separately (as if they are a separate

dataset) and are stored in a row in a key value table (coined

the meta-table). A row in meta-table contains several row

keys of the data-table, each of which points to a row in

data-table.



As a QT divides highly populated regions rigorously, the

final structure of the QT might not be a balanced tree. In

order the coordinator to be able to identify relevant rows of

the meta-table without maintaining index in memory, the QT

of the meta-table has to be a balanced tree, which means that

all its leaf nodes must have equal width and length (see VI-A

for more detail). To balance the QT of the meta-table, as

shown in fig. 4, conceptual nodes (nodes that are connected

by dot lines) are added. Thus, the QT has two types of nodes:

actual nodes and conceptual nodes. Each actual leaf node

contains several unique row keys of the data-table, whereas

each conceptual leaf node only contains copies of row keys

(of the data-table) inherited from its (actual) parent node. In

general, CONI manages:

• to store a small number of points α per row data-table

regardless of β and the size of the dataset;

• stores the index in meta-table

• does not store index in memory

It is important to note that, instead of using a second

key-value “meta-table”, one could think of using secondary

storage at the coordinator for this. However, this would vio-

late several tenets of big data systems as the index contents

then would not be highly available, easily recoverable, and

easily accessible. Hence we opted to use a second table

in HBase for this purpose. At query time, CONI has an

additional (relatively small) overhead cost compared to the

COWI approach. This is due to the fact that, during query

execution, CONI has to access two data store tables: the

meta-table and data-table.

A. How CONI Works

In CONI the value of α is determined based on two

principles: (i) in HBase it is more efficient to retrieve fewer

’fatter’ rows than many ’thin’ rows [13]; (ii) query q or

the value of k may not be necessarily known in advance.

However, we can still select a value for α that is large

enough to accommodate a reasonable expectation that all

kNN points will be included in a single data cell. For

example, if k is expected to be up to 1000, α should be

a (small) multiple of this value. The tension here is that we

wish to have α as small as possible, but certainly larger than

k-values that typical users are interested in; e.g, for k=1 to

1000 as mentioned in [18]. Accordingly, CONI determines

the value of α based on the most frequently used value of

k or the maximum value of k queried for so far. For our

experiments, we used a value of α = 2000.

Remark: Recall that the lower left coordinate of a cell

is used as a row key. All cells that corresponds to the

rows of the meta-table has equal height and width (balanced

QT). According to definition 10, if the height or width of

each dimension is divided into equal intervals then for any

random number q the starting point of the ith interval in

which the random number lies can be found by ⌊ q

r
⌋ · r

where r is the width or height of the intervals. Therefore, by

applying definition 10, for any given point we can identify

the row key of the meta-table, in which the point resides as

in the following example.

Example: Assume a random point (2.05, 1.8) lies in the

10th cell in Fig. 4. Suppose the cell in which the random

point is contained is not known in advance and we are

interested to find the row key of the cell. As shown in

definition 10 applying ⌊ q

r
⌋ · r where r on each dimension of

the point, the row key of the relevant cell can be determined

as follows: given r = 1 the lower left x-coordinate of the

relevant cell is ⌊(2.05/1)⌋ ·1 and the lower left y-coordinate

of the corresponding cell is ⌊(1.8/1)⌋·1 that is, (2,1), which

is exactly the lower left coordinate of the 10th cell in figure

4.

In CONI, kNN query processing proceeds as follows:

(Step 1) Identify the closest cell (winner meta-cell) of the

meta-data table to the query point using ⌊(q÷ r)⌋ · r , and if

there are not enough points in the data rows that lie within

the winner meta-cell, using algorithm 1, get the second

closest meta cell by assuming ρ = 2 · r, third closest meta

cell by considering ρ = 3 ·r and so on until the total number

of points that resides within those cell exceeds k (N.B.: due

to space limitations we omit the proof of algorithm 1 but

interested readers can consult Euclid’s Elements, Book IV,

Proposition 7, from which we adapt the algorithm). (Step

2) Retrieve all data rows keys that were identified in Step

1 and sort them in ascending order based on f(q, Ci) see

definition 4. (Step 3) From the list of row keys that are

identified in Step 2, select the short-listed candidates the

closest least number of row keys which contain k or more

points in total. Retrieve all points that reside in the furthest

row from the short-listed candidates and compute the initial

kNN answer based on the Euclidean distance. (Step 4) Use

the Euclidean distance from q to the k-th point in the initial

kNN answer as a radius in order to draw a circle centred at

q. Then, retrieve all points that reside in data-rows, whose

keys are in turn stored in meta-rows, which overlap the circle

using algorithm 1. (Step 5) Check if there are points that are

retrieved in Step 3 and 4 and are located at a closer distance

to q than those points that are selected as members of the

initial kNN answer. If so, add them to the kNN answer and

remove the furthest points. At the end, the kNN answer will

contain the correct set of points.

VII. PERFORMANCE EVALUATION

A. Experimental set up

We now provide a comprehensive experimental study

of the performance of our approaches (COWI and CONI

variants) compared against the state of the art: SHadoop

(SH) [8] representing the best solution from the Hadoop

ecosystem, and Simba [23] representing the best solution

from the Spark ecosystem. We used the publicly available

code for both systems. Experiments were ran on a 5-node



Algorithm 1: Retrieve cells that intersect a given range

circle

Input: query point q, radius ρ, cell width r

Output: the set P of candidate cells

P = ∅; // initialize candidate priority queue

double xmin = q[0] - ρ
double xmax = q[0] + ρ
double ymin = q[1] - ρ
double ymax = q[1] + ρ
for i = xmin; i ≤ xmax; i += r do

for j = ymin; j ≤ ymax; j += r do
rowKey = ⌊(Point(i, j)/r)⌋ · r

cell = Cell(rowKey, r)

distance = f(q, cell)
if distance ≤ ρ then

P .put(cell, distance);

end

end

end

return P;

cluster; each node is a Dell R720 server with 4 Intel Xeon(R)

CPUs (8 cores each), 64GB RAM, and 9TB of disk space.

Datasets. We experiment with datasets of various sizes in

terms of the number of two-dimensional (d = 2) points.

We use ten synthetic datasets in our experiments. The

first dataset contains around 600 million 2-d points with a

total size of 20GB. The second dataset contains around 1

billion points with a total size of around 35GB. The third

dataset contains circa 7 billion points, with a total size of

250GB. The fourth dataset contains around 29 billion points,

with a total size of 1TB. The fifth dataset contains circa

100 billion points with a total size of 3.5TB. Note that in

terms of total storage space, the fifth dataset is the largest

dataset that our cluster could accommodate (as data needs

to be stored in both HBase and HDFS). In the same way

as in SH [8] all the above datasets are generated in an area

of 1M · 1M units and all the points are generated based on

uniform distribution. We also generated another five datasets

that have the same sizes, as explained above, but using a

multi-modal distribution to generate data points.

As the performance results and conclusions remain the

same across the different distributions, for space reasons, we

report only the results for the uniformly distributed datasets.

As in [8] we randomly select 104 query points from the

input files and issued over the datasets for different values

of k ∈ {10, 100, 1000}.

Performance metrics. We measure the query response

time in milliseconds (ms). Each method executes all queries

sequentially and we compute the average query response

time. We also considered three other qualitative measures:

(i) average number of rows (cells) retrieved per query, (ii)

average number of data points accessed per query, and (iii)
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Figure 5: Dataset: 600 Million data points (20GB)
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Figure 6: Dataset: 1 Billion data points (35GB)

the time that is required at the coordinator to process the

contents of the retrieved rows and produce the final kNN

answer. These three measures are all important to consider

in order to showcase the scalability of the proposed design.

SHadoop can employ two m-d alternative indexing meth-

ods: Grid and R-Tree. However, using the available code,

indexing the datasets using MapReduce for the R-Tree

index was not possible, as the MR processes would hang

repeatedly during indexing of our datasets. For this reason,

we compared our approach against SHadoop with Grid

for the uniformly distributed datasets (however, please note

that for the uniformly distributed datasets, as the SHadoop

authors point out, the grid-file indexing is performing fine).

Additionally, by examining the code of SHadoop, we discov-

ered that it can execute a query using both MR and without

MR; that is, by retrieving files directly from HDFS without

using MR jobs. Thus, we compare the performance of our

approach against both variants of SHadoop: SH with MR

(SH-MR) and SH with HDFS without MR (SH-HDFS).

Similarly, we used the publicly available Simba code.

However, creating an index for datasets bigger than 1 billion

points was not possible; Simba repeatedly crashed while

creating the index for the bigger datasets. For that reason,

Simba is compared against our approach using only the

25GB and 35GB datasets, each of which contains 600

million and 1 billion data points respectively. Please note that

this is enough to showcase the superiority of our approach

against Simba: even for smaller datasets Simba is shown to

be up to two orders of magnitude slower than CONI/COWI

(even when the latter run over the bigger datasets).

B. Performance assessment

As shown in Figures 5 and 6 we compare the kNN query

response time of COWI against SH-MR, SH-HDFS and
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Figure 7: Dataset: 7.3 Billion data points (250GB)
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Figure 8: Dataset: 29.1 Billion data points (1TB)

Simba on the 20GB and 35GB datasets. We measured kNN

query response time in milliseconds (ms) for different values

of k. In our approach, query response time varies from

22ms-32ms. In SH-MR, the query response time is from

34,000ms – 35,000ms, in SH-HDFS 8,100ms – 8900ms,

and in Simba 3,000ms – 5,000ms. The results concerning

the performance of Simba and SH approaches are in line

with those reported by the authors of Simba, with respect

to the relative performance of SH and Simba. However,

these results clearly indicate that COWI achieves query

performance gains up to two orders of magnitude compared

to Simba. We wish to stress that the query response time

of Simba can only increase (to more than 5 seconds) when

the dataset sizes increase (i.e., for the larger datasets that

could not be indexed and thus could not be tested here).

Also note that COWI achieves query performance gains of

more than two orders of magnitude, compared against both

implementations of SH.

The same conclusions hold for the 250GB and 1TB

datasets, shown in Figure 7 and 8 respectively. Also, note

that all approaches show excellent scalability; i.e., a very

small increase in query response time occurs despite an

increase of about 2 orders of magnitude in the dataset size.

To further stress-test our approach, quantifying also how

the size of a cell affects query times, we increased the size

of the dataset to 3.5 TB. With COWI, we store 106 data

elements per cell, whereas using CONI we manage to reduce

the row size to 2,000. As shown in Fig. 9, query processing

time of COWI increases more than 10×(to between 526ms

and 595.87ms), with CONI query processing time is within

the range of 91.4ms - 185ms. Thus, CONI continues to offer

gains of orders of magnitude, in addition to those benefits

of CONI stemming from not requiring memory resources at

the coordinator.
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Figure 9: Dataset: 100 Billion data points (3.5TB)

Please note that the above experiments showcase that both

of our key design choices pay off significantly. Namely,

avoiding Hadoop-MR-based and Spark-based approaches

and ensuring surgical access to only small but relevant data

items (again unlike Simba, SH or Aqwa) can improve query

response time considerably. The above experiments and

comparisons actually quantify the relevant costs associated

with each design choice.

In order to evaluate the scalability of our approach, we

also measure the number of rows (cells) and total number

of points accessed, on average, per query. This is funda-

mental for any coordinator-based approach, as the network

bandwidth of the coordinator can be saturated and the same

holds for the CPU processing data items retrieved from the

data store.

As shown in Fig. 10, the average number of rows that

are accessed by both of our approaches remains tamed with

increased size datasets. As expected, it increases with larger

k values. In our smallest dataset (20GB), when the value of

k = 10 and α = 2000, COWI accesses on average 1.17 rows

(cells) per query. For the same values of k and α, when the

dataset size increases to 250GB and 1TB, on average only

1.17 and 1.176 rows per query are accessed, respectively.

Thus, COWI scales very well in terms of the average number

of rows accessed per query with increasing dataset sizes.

When the value of k increases to 1000 and α = 2000, on

average 2.8, 2.89 and 2.909 rows are accessed per query for

20GB, 250GB and 1TB dataset sizes, respectively.

Last but not least, when the dataset size is 3.5TB and

α = 2000, CONI accesses on average 2.16, 2.73, 3.29 rows

for k equal to 10,100 and 1000, respectively. On the other

hand, COWI for α = 100000 accesses on average 1.01, 1.07

and 1.24 rows when k is 10, 100 and 1000, respectively. On

average COWI accesses fewer rows than CONI in the 3.5TB

dataset. This is because CONI has to access more rows of

the meta-table in order to identify the closest cell, C∗. With

this result we start to see and quantify the tensions between

CONI and COWI: CONI can reduce the value for α, but at

the expense of needing to access additional meta-table rows

from HBase. On the other hand, COWI needs no additional

HBase accesses, as the results above show, but must use a

much higher value for α.

Fig. 10 shows that in both COWI and CONI the average
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Figure 10: Average number of rows accessed per query.
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Figure 11: Average number of data points accessed per query.

number of rows accessed per query increases by a very small

value when the dataset increases significantly. Similarly to

the average number of rows accessed per query, the average

number of points accessed per query is not significantly af-

fected by the size of the underlying dataset in our solutions.

As illustrated in Fig. 11, for k=10 and α = 2000 COWI has

accessed on overage 2,340, 2,340 and 2,339 points when

the dataset size is 20GB, 250GB and 1TB, respectively.

Simultaneously, CONI accessed on average 2,471 elements

per query when k = 10 and α = 2, 000 when the dataset

is 3.5TB. However, when using the largest 3.5TB dataset,

COWI accessed 99,312 data elements for k = 10. This is

because the parameter α must now be set to a much greater

value (e.g., α = 100, 000) retrieving thus many more data

points with every cell accessed. This demonstrates that when

α >> k, many irrelevant points (i.e., that do not contribute

to the kNN list) are accessed as a result query response time

is affected negatively; see Fig. 9. Fundamentally, the results

in Fig. 11 show with COWI or CONI, on average, relatively

the same number of points per query are accessed across

widely varying dataset sizes.

Finally, it is also fundamental to scalability, in addition to

the above two qualitative measures, to see how processing

time at the coordinator (needed to process retrieved data

points) is affected. Figure 12 shows the relevant results. It is

again clear that dataset size increases have a very small effect

on the time the coordinator must devote to data crunching.

Note that, as expected, the processing time at the coordinator

with COWI increases significantly with the largest dataset,

as α assumes greater values, as this, in turn, leads to a

very large number of points that must be (communicated

to and) processed by the coordinator to produce the final

query answer.
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Figure 12: Coordinator Processing Time.

VIII. CONCLUSIONS

In this paper, we propose a novel approach to process

kNN queries. This approach centres on two key features:

First, it is based on a coordinator-based distributed query

processing algorithm. This goes against state of the art ap-

proaches, which are based on scalable data-parallel process-

ing engines, such as Hadoop/MR and Spark. The key point

put forward here is that scalability should not come at the

expense of query processing efficiency; using Hadoop/MR

or Spark based solutions may achieve scalability but unnec-

essarily sacrifice efficiency. We have shown that computing

a kNN query should and could be a matter of a few tens

of milliseconds and not several (tens of) seconds. Second,

we have paid attention to the data organization, storage,

and indexing in a way that allows surgical accesses to only

relevant data points. Why should an algorithm retrieve from

storage, communicate, and process millions of other data

items, when processing a 10NN query? We have investigated

the relations of the cell size with key scalability factors,

such as the size of available memory at the coordinator.

We have provided two versions of our approach, COWI and

CONI, while respecting the need of maintaining small cell

sizes, depending on available memory on the coordinator and

dataset sizes. We have conducted performance evaluations

of COWI/CONI and compared against the state of the art

(Hadoop-based) SH and (Spark-based) Simba solutions. The

results showcased and quantified performance improvements

of two to three orders of magnitude. We also studied all fun-

damental factors affecting the the scalability of our proposed

approach, showing that the overall query processing times

scale excellently with dataset sizes: We studied measures,

such as the number of cells and data points retrieved,

communicated, and processed, as they depend on dataset

sizes, as well as the processing times at the coordinator.

All those results further substantiate the scalability of our

approach.
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