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as modulators of immunity and pathology. Am J Physiol Gastrointest Liver
Physiol 312: G537-G549, 2017. First published March 16, 2017; doi:10.1152/
ajpgi.00024.2017.—Helminth parasites are highly prevalent in many low- and
middle-income countries, in which inflammatory bowel disease and other immu-
nopathologies are less frequent than in the developed world. Many of the most
common helminths establish themselves in the gastrointestinal tract and can exert
counter-inflammatory influences on the host immune system. For these reasons,
interest has arisen as to how parasites may ameliorate intestinal inflammation and
whether these organisms, or products they release, could offer future therapies for
immune disorders. In this review, we discuss interactions between helminth
parasites and the mucosal immune system, as well as the progress being made
toward identifying mechanisms and molecular mediators through which it may be

possible to attenuate pathology in the intestinal tract.

HELMINTH INFECTIONS are highly prevalent in most tropical and
developing countries, yet notably, these areas also suffer rela-
tively low levels of “diseases of modernity” associated with
hyperactive immune responsiveness (105, 181). While eco-
nomic development has reduced or eliminated helminth infec-
tions, there has been an inexorable rise in the incidence of
immunological disorders such as allergy, autoimmunity, and
inflammatory bowel disease. One possible explanation is that
helminths (and the immunomodulatory molecules they pro-
duce) directly modulate the host immune system to attenuate
development of antiparasite immunity, in a manner that may
also dampen bystander immune pathologies (104, 116).

Helminths are multicellular worm parasites that have
evolved to occupy a vast range of niches, including the gas-
trointestinal tract of vertebrate hosts (Table 1). In general, they
establish long-lived, chronic infections characterized by wide-
spread downmodulation of both the innate and adaptive arms
of host immunity. Hence, the presence of intestinal helminths
may block the same inflammatory pathways that are responsi-
ble for allergies and autoimmunity, raising the potential for
novel therapies based on the molecules and/or the pathways
that parasites have evolved to suppress host immune reactions
(51, 69, 113).
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Even today, helminth infections affect around one quarter of
people in the world (74, 140) and in historic times would
have been near universal in the human population, so that
these parasites have been long-term companions acting to
shape the immune system. Indeed, helminth parasitism of
the vertebrate gastrointestinal tract has been noted in fossils
dating to the early Cretaceous period, ~125 million years ago
(MYA) (138); additionally, the ubiquitous presence of geohel-
minths, such as the genus Trichuris, in many animal species
suggests that parasite coevolution paralleled the mammalian
adaptive radiation, starting 65 MYA. In fact, gastrointestinal
helminth parasitism is likely present in virtually every mammal
residing in a “natural” habitat.

Obviously, some parasitic species, especially those of rela-
tively recent introduction to humans, are a major public health
scourge and cause significant morbidity and mortality world-
wide (75). On the other hand, the long coevolutionary history
of helminths and their hosts has resulted in many parasites
being relatively well tolerated and even contributing through
their subtle dampening of inflammation to an optimal immu-
nological balance (1). Thus, in modern times, the absence of
helminths may lead to the immune system ‘“overshooting” and
mounting deleterious responses to harmless environmental and
self-antigens.

Importantly, in many instances, a host’s environment in-
cludes external and endogenous microbes, which must be
tolerated or even accepted as beneficial. In immunological
terms, there is a continuum from commensal microbes through
to the “macrobionts,” such as helminths (55). Across this entire
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Table 1. Major helminth parasites including species implicated in modulating colitis

Phylum Species

Notes

Cestodes (Tapeworms) Echinococcus granulosus

Hymenolepis diminuta
Taenia saginata, T. solium

Nematodes (Roundworms) Ancylostoma caninum, A. ceylanicum, A.

duodenale
Anisakis simplex

Ascaris lumbricoides

Brugia malayi
Heligmosomoides polygyrus

Necator americanus
Strongyloides stercoralis
Toxascaris leonina
Trichinella spiralis
Trichuris trichiura
Wuchereria bancrofti

Clonorchis sinensis
Schistosoma japonicum

Trematodes (Flukes)

Schistosoma mansoni

Causes hydatid cysts of the liver following ingestion of eggs from dogs.

Small tapeworm of rats; other members of genus can infect humans.

Human tapeworms, transmitted through undercooked beef or pork; can
cause cysticercosis and neurocysticercosis.

Hookworms of dogs and humans, larvae in soil penetrate skin and home
to gut via the lungs.

Parasite of marine mammals; larvae in fish can infect humans if eaten
raw.

Common roundworm of human; infects ~800 million people; direct
fecal-oral transmission through eggs in environment.

Lymphatic filarial parasite, mosquito-borne, causes elephantiasis

Mouse intestinal nematode related to hookworm, widely used model
system.

Human hookworm; together with A. duodenale infects ~600 million
people.

Threadworm, infects intestinal tract and causes strongyloidiasis. Can
autoinfect the host, hence lifelong infection.

Large roundworm of cats and canids, closely related to Ascaris in
humans.

Pork worm, contracted from undercooked meat, larvae invade muscle
cells of the host.

Whipworm in large intestine; infects ~600 million people. Related
species from pigs (7. suis) used in helminth therapy.

Lymphatic filarial parasite, mosquito-borne, causes elephantiasis.

Liver fluke prevalent in Asia, can cause cholangiocarcinoma.

Causes schistosomiasis japonica, hepatosplenic disease; transmitted
through intermediate snail host releasing water-borne invasive
cercarial larvae.

Widespread cause of schistosomiasis, together with S. hematobium and
S. japonicum, afflicting ~200 million people.

“multibiome” (49), wherever pathogenic consequences are
minimal, an immunological equilibrium or truce is adaptive for
both parasite and host; thus, to promote its own survival in the
host during a chronic infection, a parasite may limit pathology,
which significantly affects the host’s fitness, and to avoid
serious collateral damage to its own tissues, a host may
attenuate its immune responses to the parasite.

At present, there is increasing molecular definition of how
microbes contribute to healthy immunological homeostasis in
the gut (3, 49, 73, 147). In what follows, we will provide
evidence that demonstrates that certain helminth species may
similarly restrain excessive reactivity of the mucosal immune
system, often in a highly directed manner (43, 71, 160). These
findings have led to the currently intensifying interest in
helminth-derived agents as potential new therapeutic tools for
allergic, autoimmune, and inflammatory bowel diseases (44,
114, 126, 137).

Helminths and the Hygiene Hypothesis

In 1989, in an epidemiological survey of family size and
birth order in British school children with hay fever and
eczema, Strachan (165) found that the prevalence of both of
these conditions was reduced in younger siblings within larger
families. Strachan proposed that this protective effect might be
due to early childhood infections, a supposition which later
evolved into various forms of the “hygiene hypothesis” (11,
101, 164, 178, 185). These and many other authors have
significantly elaborated on the hygiene hypothesis concept,
first by encompassing the full range of allergic and autoim-
mune conditions, asthma, type 1 diabetes, rheumatoid arthritis,
ulcerative colitis, Crohn’s disease, and multiple sclerosis, to

consider the upsurge in inflammatory disorders in the devel-
oped world (11, 101, 185). Second, early forms of the hygiene
hypothesis proposed that early life microbial infections pro-
tected against allergy by promoting Thl-type responses at the
expense of the proallergic Th2 arm of immunity, which medi-
ates allergy. However, most nonallergic inflammatory condi-
tions are themselves Thl (and/or Th17) mediated, arguing
against a simple Th1/17 vs. Th2 seesaw determining inflam-
matory status. With the recognition that eukaryotic parasites
are also very effective at dampening immunological reactivity
of their host through regulatory T-cell (Treg) expansion (101,
183), the hygiene hypothesis expanded to evoke immunosup-
pressive regulatory cells as a key pathway by which infectious
agents could impact on the control of allergies and autoimmu-
nity (50, 102).

Further significant reformulations of the hygiene hypothesis
include the “Old Friends hypothesis” (146), which emphasizes
protection provided by evolutionary ancient commensal and
environmental microbiota, as well as the “Microflora hypoth-
esis” (129, 148), which focuses on the role of gut bacteria in
shaping systemic immune responses and extends the role of
dietary metabolites (171), and finally, the “Biodiversity hy-
pothesis” (67), which underscores potential health effects in a
biosphere impacted by loss of biodiversity and by climate
change. Bringing all this together, Filyk and Osborne (49) have
introduced the term “multibiome” to comprehensively describe
the bacteria, viruses, fungi, and multicellular organisms, which
together colonize the gastrointestinal system and influence
immune homeostasis in health and disease. Thus, while hel-
minth parasites share the host environment with multiple other
forms of life, it is notable that numerous epidemiological,
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animal model, and clinical investigations have identified a
prominent role of helminths in putative protection from allergy
and autoimmunity, often linked to the regulatory arm of the
immune system (59, 68, 105, 161). It is interesting to note that
Tregs are also implicated in many studies of the microbiota’s
influence on host immunity (57). In particular, Bacteroides
fragilis expresses polysaccharide A, which induces Tregs to
protect mice from colitis (149). Similarly, species of Bifido-
bacterium (131), Clostridium (8, 9), and Lactobacillus (83)
have all been shown to induce Tregs in the gut, which are
important in creating a stable anti-inflammatory environment
(145). Failure or an imbalance in this process may result in
pathology, most notably, inflammatory bowel disease (IBD)
(13).

The association between parasite infection and reduced
prevalence of immune disorders was first noted by Greenwood
(62) in 1968 with respect to rtheumatoid arthritis in African
populations with high endemic helminth exposure. Subse-
quently, the first clear evidence of the role of parasitic infec-
tions in modulating allergy came from studies on Gabonese
school children in an area endemic for schistosomiasis; in-
fected children had lower reactivity (measured by skin prick
testing) than uninfected contemporaries (174); moreover, when
infected children were given antihelminth therapy, they
showed an increase in mite skin test positivity (175). Similar
data linking helminth infections with attenuated allergy have
been reported in South American populations by independent
investigators (5, 28).

Helminths may also modulate many other inflammatory and
autoimmune conditions in humans. A series of reports on
multiple sclerosis patients in Argentina linked remission of
disease with acquisition of gastrointestinal helminth infections
(29) and found disease relapses following clearance of para-
sites in a subset of these patients (30). In a population-based
study in Zimbabwe, schistosome-infected subjects bore lower
levels of circulating autoimmune antinuclear antibody, which
increased significantly following antischistosome therapy
(125). Finally, with respect to inflammatory bowel diseases,
there are both case reports (17) and small-scale trials indicating
that helminth infections can confer a protective effect on
patients (44, 181).

The original hygiene hypothesis focused on early life im-
printing of the immune system by environmental exposure to
microbes; however, helminths may similarly exert lifelong
effects. Parasite-specific tolerance was induced in children of
mothers exposed to the filarial nematode parasite Wuchereria
bancrofti in pregnancy (163). Early life exposure to helminths
also modulates responses to allergens, as shown by a study in
which antihelminthic treatment of pregnant mothers resulted in
a higher incidence of atopic eczema in infants than in those
born to untreated infected mothers (124). Furthermore, child-
hood exposure to helminths was found to be protective against
both Crohn’s disease and ulcerative colitis (24).

This fascinating interaction between environmental imprint-
ing during infection and the known genetic predisposition of
humans to inflammatory diseases (155) raises an interesting
question of mechanism, which may be answered by arena field
of epigenetics. Epigenetics refers to stable and inheritable
alterations in gene expression without altering the DNA nucle-
otide sequence but through chemical modification of DNA
bases (e.g., methylation) and DNA-associated histone proteins
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(by methylation and acetylation) (7). Prime examples of plas-
ticity following environmental challenge are epigenetic alter-
ations in innate immune cells, such as macrophages (151), as
well as activated effector and T lymphocytes (182). Indeed,
reports are already emerging on epigenetic control of the
response to helminth parasites (21, 27, 72), as well as in a
range of inflammatory diseases (7, 98, 132), suggesting that
epigenetic research will provide a strong theoretical and em-
pirical basis for understanding the modulatory effects of hel-
minths in the gastrointestinal tract during autoimmunity and
allergy.

The increase in immunological reactivity following antihel-
minthic clearance demonstrates, however, that the immune
system is not always immutably imprinted by parasite expo-
sure, but responsive to its current infection status. In fact,
helminth infection in later life can very clearly downmodulate
immune hyperactivity (104, 116, 181), leading as discussed
below to trials using live parasites to treat inflammatory con-
ditions such as IBD (168) and celiac disease (51, 112).

Helminths and the Immune System

Helminth parasites encompass a myriad of different life
histories with particular dynamics and properties, which
drive a wide diversity of immune responses (Table 1).
Together with multiple environmental variables (coinfec-
tions, comorbidities, diet, and climate) and polymorphisms
in host immune response genes, it is not surprising that
different helminth infections may either exacerbate or ame-
liorate allergy and autoimmunity (111, 153, 161), and con-
sideration of immune modulation by helminths must take
these other factors into account.

In humans and livestock, intestinal helminths include the
nematode roundworms and the cestode tapeworms. Each spe-
cies possesses a particular migratory cycle and tropism and
generally localizes to a specialized anatomical niche. For
example, schistosomes, hookworms, and Strongyloides larvae
penetrate unbroken skin and travel to the lung before migrating
either to the mesenteric vasculature or the lumen of the gut.
Other parasites, such as immature stages of tapeworms and the
nematode Trichinella, leave the gut to encyst in muscle for
transmission to a new carnivorous host. Such helminths can
cause severe inflammation as in the case of schistosome trem-
atodes, releasing eggs that either transit through the intestinal
wall or lodge in the liver causing fibrosis (16, 48). However,
apart from the blood-feeding hookworms, many of the para-
sites that establish in the intestinal lumen are not directly
pathogenic to their surrounding tissue.

The immune response to helminths is generally dominated
by the type 2/Th2 pathway that serves to directly trap, kill, or
expel parasites, alongside an expanded Treg compartment that
modulates and dampens inflammation (63, 100). This creates
an environment in which helminths cannot thrive while also
promoting repair of the physical damage caused by the worms
(1, 54) and is in contrast to the classical inflammatory type 1
response targeted at bacterial and viral microorganisms.

The type 2 response is principally effected through the
IL-4Ra and STAT6 pathways (1, 173), driven by either or both
IL-4 and IL-13. In helminth infections, type 2 immunity is
initiated at the site of invasion by epithelial cells, which release
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the alarmins IL-25 and IL-33, inducing innate lymphoid cells
(ILCs) to produce IL-13 and other cytokines. In the absence of
either IL-25 or IL-33, resistance to helminth infections is
severely impaired (127), as is the case in IL-4Ra or STAT6
deficiency (173).

The IL-4Ra-dependent adaptive immune response includes
antigen-specific Th2 lymphocytes that produce cytokines IL-4,
IL-5, IL-9, and IL-13 (176), and type 2 phenotype (M2)
alternatively activated macrophages (90). Type 2 macrophages
are centrally involved in the antihelminth response and repair
mechanisms through molecules such as arginase-1, TIMP1 and
-2 (inhibitors of metalloproteases), and IGF-1, which promotes
fibroblasts and myofibroblast matrix formation (2, 90).

Tregs police the immune system to prevent untoward in-
flammatory reactions against self-antigens and innocuous en-
vironmental substances, while also terminating responses to
pathogens when no longer required (152). They characteristi-
cally express the transcription factor Forkhead box P3 (Foxp3)
and suppress both effector Thl and Th2 cells through both
direct cell surface interactions and by the secretion of TGF-f3
and IL-10. A defect in the Foxp3 gene results in fatal autoim-
munity in mice and the IPEX syndrome in humans (immune
dysregulation, polyendocrinopathy, enteropathy, X-linked syn-
drome) with extensive inflammation, particularly in the gastro-
intestinal tract (10). Tregs have a dual role in helminth infec-
tions: they protect the host from excessive inflammatory re-
sponse to infection, but they also may reduce protective
immunity and, thereby, permit infections to establish chronic-
ity (34, 154, 159, 170). Reflecting the dependence of helminths
on the regulatory compartment, it has been found that some
helminths are able to induce the development of Tregs to
modulate the immune response (61, 186).

It is important to recognize also that the immune response to
helminth infection may evolve dramatically over time, follow-
ing developmental changes in parasite migration or maturation,
and/or time-dependent switches in immune activation or reg-
ulation. A classic example is in schistosomiasis, in which an
initial Th1 response is superseded by a dominant Th2 mode
once parasite egg release has commenced (135). Similarly,
Nutman (130) and Santiago and Nutman (153) have mapped
the evolution of a typical immune response to helminths, from
the initiation of infection at mucosal surfaces, when a broad
and robust inflammation, primarily mediated by effector Thl,
Th2, and Th17 CD4™ cells, attempts to abort the infection; if
unsuccessful, a period of weeks or months following, during
subacute or latent infection is characterized by a more limited
or focused Th2 reaction, primarily mediated by Th2 CD4™"
cells, IL-4, IL-5, and eosinophils, which together minimize
parasitic load. If a chronic infection is established over the
succeeding months or years, the host response becomes essen-
tially immunomodulatory and is primarily mediated by regu-
latory cells (1, 44, 50, 161) and anti-inflammatory cytokines
(e.g., IL-10 and TGF-f) to assure that low levels of helminths
are tolerated and immune homeostasis prevails. While this
vignette is, of course, oversimplified, it well illustrates the
alternative modes of antihelminth immune responsiveness
and is important in considering whether immune modulation
is differentially evoked during different phases of infection
(45, 97).

HELMINTHS IN THE GASTROINTESTINAL TRACT

Immune Mechanisms in the Gastrointestinal Tract

The intestine is the crucial barrier surface that must both
obtain nutrition and protect the host. In this milieu, the immune
system is constantly exposed to pathogens and foreign anti-
gens, and its cells must discriminate pathogenic from harmless
stimuli to mount protective responses, while maintaining ho-
meostasis by tolerating food antigens, nonpathogenic bacteria,
and helminths (79, 136). In addition, the immune system must
compensate for the effects of the pathogen, reducing both the
damage caused by the pathogen itself and the collateral immu-
nity-mediated damage necessary to clear the invading organ-
ism (22).

The epithelial cells of the intestine, which are the first
responders to gut infection, consist of the enterocytes, goblet
cells, neuroendocrine cells, Paneth cells, and tuft cells. To-
gether, the intestinal epithelial cells perform an essential bar-
rier role, including intercellular tight junctions, which prevent
pathogens from breaching the GI tract (6). The epithelial cells
express pattern recognition receptors, such as Toll-like recep-
tors and nucleotide-binding oligomerization domain-like re-
ceptors to sense pathogenic bacterial products such as LPS.
Epithelial cells also respond to physical invasion and trauma by
releasing alarmin cytokines that stimulate innate lymphoid and
dendritic cells to initiate an immune response.

Distributed along the small intestinal epithelium, particu-
larly in the more distal ileum, are lymphoid aggregates known
as Peyer’s patches (82). Each patch is surrounded by follicle-
associated epithelium, which consists of follicle-associated
enterocytes and M cells that sample the surrounding microen-
vironment. M cells and other specialized cells beneath the
epithelial barrier generate the antigen-specific response neces-
sary for antibody production and generation of immunological
memory. M cells have microfolds instead of microvilli and a
basolateral pocket containing T and B lymphocytes, macro-
phages, and dendritic cells (92). Activated dendritic cells travel
via the lymphatics to the gut-draining mesenteric lymph nodes,
where they present antigens to naive T cells and coordinate
adaptive responses (64).

Interestingly in helminth infections, three specialized epithe-
lial cell subtypes are prominent: the goblet cells, Paneth cells,
and tuft cells. Goblet cells secrete mucins, trefoil peptides, and
resistin-like molecules, which make up mucus (88). These are
secreted by exocytosis in response to external stimuli, such as
microbes, cytokines, and inflammation. The mucus functions
as a lubricant and helps maintain the barrier between the
epithelium and the intestinal microbiota (109). Paneth cells are
present at the base of crypts in the small intestine and play a
dual role in nourishing adjacent intestinal stem cells and
releasing important antimicrobial molecules (25), including
lysozyme, phospholipase A2, and antimicrobial defensins.
Very recently, a little-studied epithelial cell type, the tuft cell,
has been discovered to play a major role in antihelminth
immunity, through the production of the alarmin IL-25 (56, 76,
177). Mice lacking the transcription factor required for tuft cell
differentiation, Pou2f3, are devoid of Tuft cells and unable to
expel intestinal helminths unless exogenous IL-25 is adminis-
tered (56).

In intestinal helminth infection, alarmin release and produc-
tion of Th2 cytokines stimulate muscle peristalsis and epithe-
lial fluid egress, constituting a “weep and sweep” model for
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helminth expulsion. As well as goblet cell mucus release, mast
cell proteases degrade tight junctions and allow intestinal fluids
to leak into the intestinal lumen (110), and the smooth muscle
contracts to effectively sweep the helminths away (4, 99, 103).
In addition, epithelial cells increase their rate of turnover to
produce an “epithelial escalator” to expel the helminth (26).

Inflammatory Bowel Diseases

Ulcerative colitis (UC) and Crohn’s disease (CD) are both
IBDs that result in significant long-term morbidity and mor-
tality (118). CD results in predominantly gastrointestinal
symptoms, including abdominal pain, fever, and diarrhea with
blood and mucus (14). The disease can manifest anywhere
along the GI tract and can also result in nongastrointestinal
features such as uveitis and enteropathic arthritis. UC affects
the colonic mucosa and predominantly presents with bloody
diarrhea (134), and also differs immunologically from CD in
displaying an atypical Th2-like inflammatory condition (35).

Celiac disease is an autoimmune gluten-sensitive small-
intestinal enteropathy triggered by gluten in cereals (123, 162).
This can present with diarrhea, abdominal pain, distension, and
vitamin deficiency, as well as failure to thrive in children.
Celiac disease is treated by consuming a gluten-free diet;
however, there are cases of refractory disease that may benefit
from immunomodulatory therapies.

IBD is accompanied by a high level of T-cell cytokine
production, in particular, expansion of inflammatory Thl cells;
under control of the transcription factor Tbet, Thl cells pro-
duce IFN-y and TNF in response to appropriate costimulatory
signals from gut antigen-presenting dendritic cells (DCs) and
macrophages. In experimental mouse models of IBD, the effect
of regulatory T cells is decisive in determining disease pro-
gression. In mice lacking T and B cells, [for example, SCID or
recombination-activating gene (RAG) deficient], the lympho-
cyte compartment can be reconstituted by the transfer of
syngeneic cells from wild-type donors. However, if regulatory
T cells are depleted from the transferred population, the re-
maining CD4™" effector T-cell populations cause a chronic
colitis with a Thl pattern of cytokine synthesis (IFN-y and
TNF) (106, 139).

IBD-like colitis can also be generated by stimulating innate
cells in RAG-deficient mice with anti-CD40 activating anti-
bodies (172) or by causing gross epithelial damage with agents,
such as dextran sodium sulfate (DSS) (133). Blocking TNF
reduces the severity of DSS colitis in mouse models (89), and,
indeed, as discussed below, UC and CD have been successfully
treated by blocking antibodies to TNF.

In addition to IFN-y and TNF, the IL-23/IL-17 axis is
prominent in IBD; for example, Th17 cytokines are elevated in
human IBD (52). In a model of innate gut inflammation driven
by Helicobacter hepaticus infection in RAG™'~ mice, IL-23
instigates colitis and is produced by an innate lymphoid cell
population, the ILC3 subset (19). In immunologically intact
mice, Th17 cells also produce IL-22, a member of the IL-10
family of cytokines, which may protect against colitis. In
mouse DSS-induced colitis, IL-22 delivery attenuated disease
(166), while IL-227/~ mice suffered greater weight loss com-
pared with wild-type mice. Likewise, in a T-cell transfer model
of colitis, transfer of IL-227/~ T cells resulted in a more severe
phenotype of colitis than in mice infused wild-type T cells
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(187). Innate lymphoid cell production of IL-22, stimulated
through the prostaglandin pathways, is also required to maintain
gut barrier integrity (39). While in human ulcerative colitis,
IL-227 T cells were linked to amelioration of symptoms (17),
in Crohn’s disease, the expression of IL-22 T cells within
inflamed mucosa act to increase expression of inflammatory
cytokines within subepithelial myofibroblasts, and so the role
of IL-22 may be highly context dependent.

As type 2 immune cells (e.g., Th2 and M2 macrophages)
drive contrasting responses to Thl and Th17 cell phenotypes,
they may be beneficial where the latter subsets mediate pathol-
ogy. One route by which type 2 responses can counteract
colitis is through the intestinal macrophage population, the
largest of any tissue in the body (12). In mouse models of IBD,
IL-4/IL-13 has been used to polarize macrophages to the M2
phenotype, and transferring these macrophages results in an
ameliorated phenotype of colitis (31, 78). Tregs are also key
mediators of protection against colitis, as their inclusion to-
gether with effector T cells results in protection against disease
in the T-cell transfer model (122, 158).

The crucial role of Treg-associated cytokines is supported by
the observation that TGF-f3,-deficient mice develop multiorgan
lymphoproliferative disease of the gut (94, 96) while, IL-10~/~
and IL-10R ™/~ mice develop a spontaneous colitis (93, 157).
Again, macrophages are implicated in pathogenesis, as when
lacking IL-10R, they are intrinsically proinflammatory and
cause spontaneous colitis in mice, while pediatric patients with
mutations in the IL-10 receptor have more proinflammatory
macrophages and an IBD-like phenotype (157, 190).

Anticytokine therapy is a key current treatment of IBD, with
the use of anti-TNF antibodies, such as infliximab and adali-
mumab. The antibody ustekinumab, which acts against p40
(the common subunit of IL-23 and IL-12), may be useful in
IBD because of its role in blocking the differentiation of naive
T cells to Thl and Th17 cells; however, other anticytokine
reagents show little effect or make disease worse (e.g., secuki-
numab: anti [L-17A antibody), implying individual cytokines
may have proinflammatory and anti-inflammatory effects
(128). Vedolizumab is a monoclonal antibody against osf37-
integrin and results in gut-specific anti-inflammatory activity
(46, 85). SMAD7, an intracellular protein that blocks TGF-3
signaling, can be targeted in vivo. Mongersen, an oral SMAD7
antisense  oligonucleotide, upregulates anti-inflammatory
TGF-B effects and also shows promising results in therapy of
Crohn’s disease (119).

Newer approaches to treatment of IBD include a trial of Treg
therapy (36). Peripheral blood Tregs were isolated from pa-
tients and expanded in vitro in the presence of ovalbumin,
before reinfusion into the same individual; this resulted in a
reduction in the Crohn’s disease activity score but did not reach
clinical significance (36). With growing interest in the immu-
nomodulatory properties of helminth parasites, the use of
helminths or their products has also attracted attention as a
potential novel therapy, as outlined below.

Modulation of IBD by Helminths and Their Products

As discussed above, epidemiological studies have indicated
that populations with higher helminth parasite burdens suffer
fewer immune inflammatory conditions, such as allergy (114)
and inflammatory bowel disease, and Crohn’s disease is known

AJP-Gastrointest Liver Physiol - doi:10.1152/ajpgi.00024.2017 « www.ajpgi.org

LTOZ ‘6T 8un( uo Z'€€°0zz 0T Aq /610°ABojoisAyd-16dfe;/:dny wouy pspeojumoq



http://ajpgi.physiology.org/

G542

to be less frequent in helminth-endemic countries (40). A
substantial number of experimental animal models have also
been used to show amelioration of colitic disease by helminth
infections (Table 2), with studies encompassing all three of the
helminth taxonomical groups: the cestodes, nematodes, and
trematodes. Interestingly, reports from two different parasite
models (with cestode and trematode infections) have impli-
cated macrophage populations in helminth-generated protec-
tion against intestinal pathology (78, 160). Mechanistically,
induction of IL-10 has been a recurrent theme in analyses of
cytokine levels in helminth-infected mice (77) alongside a
generalized switch from Th1 to Th2 cytokine production (169),
while the helminth-induced expansion of Tregs that suppress
colitis has also been demonstrated (66).

Colitis can be induced in a number of animal models, in each
of which, authors have demonstrated the effectiveness of
helminth infections, or exposure to helminth eggs, in reducing
disease severity scores, improving histological inflammation,
and in dampening inflammatory cytokine profiles, such as
IFN-v and IL-17 (Table 2). The impact of different species in
each model reflects the ability of helminths to promote chro-
nicity of infection and immunological tolerance through a
variety of mechanisms (113, 161).

One widely studied helminth model is the murine intestinal
nematode Heligmosomoides polygyrus (144). In early studies,
it was shown that the propensity of IL-10-deficient mice to
develop colitis (exacerbated by administration of the nonsteroi-
dal anti-inflammatory drug piroxicam) was ameliorated by H.
polygyrus infection (42), and the same protective effect was
observed when transferring IL-10-deficient T cells to RAG-
deficient mice, which normally develop severe colitis (115). In
more direct, and acute, models of colitis, it has been found that
both BALB/c and C57BL/6 mice given infective H. polygyrus
larvae orally showed reduced severity of trinitrobenzenesulfo-
nic acid (TNBS) colitis (156, 169), and increased mucosal
electrical resistance, indicating improved barrier function
(156). In addition, the fourth-stage larvae of the same parasite
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improved disease score and histopathology in BALB/c mice
suffering the effects of DSS-induced colitis (37).

The H. polygyrus model has also been very instructive at the
mechanistic level. Foxp3™ Treg cells isolated from the mes-
enteric lymph node of H. polygyrus-infected mice were adop-
tively transferred into RAG ™/~ mice and conferred protection
from piroxicam-induced colitis, whereas Foxp3™ Treg cells
from uninfected animals did not (15, 66); these data correlate
with the known potency of H. polygyrus to activate the host
Treg cell compartment (159). In addition, adoptive transfer of
dendritic cells from H. polygyrus-treated mice in a RAG™/~
T-cell transfer model improved histological inflammation:
these DCs were able to block ovalbumin (OVA)-induced
cytokine secretion in vitro (15).

Other live helminth infections found to be protective include
the rat cestode tapeworm Hymenolepis diminuta; mice infected
with this parasite showed improved clinical scores and histo-
pathology in a dinitrobenzene sulfonic acid (DNBS)-induced
model of colitis (77, 78). Interesting mechanistic studies in this
system have shown that protection required established infec-
tion, as STAT6-deficient mice both cleared the parasite and
developed severe colitis (77); moreover, protection by infec-
tion was abolished by anti-IL-10 blocking antibodies (77).
Protection was found to be mediated via the dominant popu-
lation of alternatively activated macrophages (AAMs) gener-
ated by H. diminuta infection; macrophage depletion with
clodronate-loaded liposomes reduced the effects of H.
diminuta, while adoptive transfer of in vitro-generated AAMs
was protective (78). Furthermore, protective myeloid cells
could be generated in vivo by injection of H. diminuta antigens,
with the resultant CDIIb* F4/80*Ly6CMGr-1' population able to
block DSS-induced colitis in recipient animals (143). A
broader network of regulatory cells are, however, generated
during this infection, such that splenic regulatory B cells can
also confer protection against colitis (141), as well as dendritic
cells pulsed with H. diminuta antigen were also successfully
transferred to treat a DNBS colitis (108). Most recently, the

Table 2. Effects of helminth infection or exposure on intestinal inflammation

Model Detail Suppression Reference
Heligmosomoides polygyrus (Nematoda)
IL-10-deficient colitis C57BL/6 piroxicam-induced Histopathology, IFN-y and IL-12 (42)
RAG transfer model ~ IL-10—/— T cells + piroxicam Histopathology (115)
TNBS colitis C57BL/6 d14 infection, d4 colitis Histopathology (156)
TNBS colitis BALB/c d10 infection, d4 colitis Histopathology, IFN-y and TNF (169)
RAG transfer model IL-10—/— T cells + piroxicam Histopathology, IFN-y and IL-17 (15, 65, 66)
OVA-specific colitis ~ OVA-specific T cells and oral OVA Histopathology, IFN-v, and IL-17 95)
DSS colitis BALB/c mice, up to 18 days Weight loss and fecal blood (37)
Hymenolepis diminuta (Cestoda)
DNBS colitis Infection 8 days before DNBS Clinical score, histopathology and Myeloperoxidase, IL-10 dependent  (77)
DNBS colitis Infection 8 days before DNBS Clinical score, histopathology, and myeloperoxidase (78)
DNBS colitis Infection 8 days before DNBS Protection IL-25 dependent (142)
Schistosoma japonicum and S. mansoni (Trematoda)
DSS colitis Sm Infection 8 wk before DSS Weight loss, colon shortening, disease activity index (160)
TNBS colitis Mice exposed to Sm eggs Histopathology, IFN-y, and mortality (41)
TNBS colitis Mice exposed to Sj eggs Histopathology, IFN-y (117)
TNBS colitis Mice exposed to Sj eggs (freeze-thawed) Histopathology, IFN-v, and bacterial translocation (188)
TNBS colitis Rats infected with Sm 7 days before TNBS  Histopathology and myelo-peroxidase (120)
Trichinella spiralis (Nematoda)
DNBS colitis Infection 21 days before DNBS Histopathology, IL-12 and myeloperoxidase (84)
TNBS colitis Infection 21 days after TNBS Histopathology, myeloperoxidase and mortality (189)

RAG, recombination activating gene; TNBS, trinitrobenzenesulfonic acid; OVA, ovalbumin; DSS, dextran sodium sulfate; DNBS, dinitrobenzene sulfonic

acid.
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protective effects of H. diminuta infection, and of the myeloid
population induced by the parasite, have been shown to be
inhibited by IL-22, but promoted by IL-25, with disease scores
in DNBS-induced colitis exacerbated by anti-IL-25 antibody
treatment (142).

In a similar manner, Schistosoma mansoni infections have
also been shown to reduce the severity of experimental colitis
in both DSS (160) and TNBS (120) models, again with in-
volvement of the macrophage compartment (160). A number
of investigators have also tested the ability of schistosome
eggs, known to be potent immunomodulators, to influence
colitis; eggs of both S. mansoni and a related species S.
Jjaponicum show protective effects, and Treg cells were found
to be increased in spleens of S. japonicum-egg treated TNBS
mice compared with TNBS alone (117). The exposure to S.
Jjaponicum eggs also resulted in reduced idiopathic bacterial
transfer during TNBS colitis (188).

Finally, in another nematode infection system, Trichinella
spiralis was also found to ameliorate both DNBS- and TNBS-
induced colitis (84, 189) but not the type 2-mediated oxazolone
colitis (189). Although few mechanistic insights into this
system are as yet available, there is a clear indication of a
cytokine switch, resulting from infection, with reduced IL-12
and higher levels of type 2 cytokines in infected mice chal-
lenged with the colitis model (84, 189).

Human Therapy

Deliberate infection of humans with live parasites has al-
ready been tested for the potential to modulate these gut
inflammatory diseases. In UC, a notable report was that from a
single individual who self-medicated with Trichuris trichiura,
the human whipworm (17). The patient’s symptoms resolved,
and this was associated with increased IL-22 from T-helper
cells, consistent with a protective effect for this cytokine, as
discussed above. Experimental trials have also been performed
with the hookworm Necator americanus in celiac disease
patients (32, 33), whose clinical outcome demonstrated sup-
pression of inflammatory cytokines (112). Infection also al-
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lowed patients with celiac disease to tolerate increasing gluten
load and increased gut microbial richness (58).

The most widely used agent, however, has been the pig
whipworm Trichuris suis, which was selected because it is
short-lived in humans and minimally pathogenic (180). Ad-
ministration of 7. suis ova has been used successfully in
small-scale trials to alleviate active CD and UC (44, 167, 168);
however, two larger-scale trials, one including over 200 pa-
tients, were recently discontinued due to unusually high pla-
cebo response rates (44), and hence, the future of this approach
has yet to be determined. A recent Cochrane review concluded
that there is insufficient evidence to determine the safety and
efficacy of helminth therapy for human IBD (53). Further
randomized controlled trials are required to assess the efficacy
of helminth infections as a treatment of inflammatory bowel
disease.

A recent study on idiopathic chronic diarrhea in captive
macaques also found alleviation of disease by deliberate hel-
minth infection (18). Interestingly, this implied an increase in
diversity of microbiota in association with 7. trichiura infec-
tion. Potentially, the helminth infection restored intestinal
diversity, an important cofactor to consider for future studies.

Currently, the landscape for live helminth therapy is uncer-
tain; treatments have generally proven to be safe, but promis-
ing case reports and small-scale trials have not progressed
successfully through large trials for a variety of logistical
reasons, leaving us still short of an unequivocal randomized
controlled study that would establish efficacy (44, 45).

Molecular Approaches

Although there is strong evidence that live parasite infec-
tions exert profound down-modulatory effects on the immune
system of their hosts, the therapeutic application of deliberate
parasite infection is fraught with ethical and practical problems
(45, 81). Hence, the use of defined molecular products from the
same parasites is being explored as potential immunomodula-
tors. A number of groups are testing parasite products in
immunological disorders of the gastrointestinal tract (Table 3).

Table 3. Helminth products and proteins in intestinal inflammation

Molecules Detail Suppression Reference

Nematode extracts and ES

Ancylostoma. caninum ES DSS colitis Histopathology, cytokines, weight loss (47)

A. caninum soluble proteins TNBS colitis in Swiss mice Histopathology, MPO (150)

Ancylostoma ceylanicum extract, ES DSS colitis in BALB/c mice Histopathology, cytokines, MPO (20)

Trichinella spiralis larval extract DNBS colitis in C57BL/6 mice  Histopathology, MPO, IL-1p response; raised TGF-3, IL-13 (121)

T. spiralis ES DSS colitis in C57BL/6 mice Histopathology, disease activity, cytokines (184)
Nematode proteins

Anisakis simplex MIF homolog DSS colitis in C57BL/6 mice Disease activity index, weight loss (23)

Brugia malayi asparaginyl-tRNA synthase ~ T-cell transfer model Histopathology 91)

B. malayi cystatin DSS colitis in BALB/c mice Disease activity score, histopathology (85)

B. malayi ALT 2 protein DSS colitis Disease activity score, myeloperoxidase activity (86)

Toxascaris leonina galectin DSS colitis in C57BL/6 mice Disease activity index, weight loss; raised TGF-3, IL-10 (87)
Trematode extracts

Schistosoma mansoni soluble proteins TNBS colitis in Swiss mice Histopathology, MPO, IFNy response (150)

S. mansoni soluble extract T-cell transter model Clinical disease score, colonoscopy, myeloperoxidase (70)
Trematode proteins

Clonorchis sinensis cystatin DSS colitis in C57BL/6 mice Disease activity index (80)

S. mansoni 28-kDa glutathione S- TNBS colitis in rats Reduced clinical and histological scores, 50% reduction in (38)

transferase (P28GST) colonic MPO

Schistosoma japonicum cystatin TNBS colitis in BALB/c mice Histology, cytokine responses (179)

ES, excitatory/secretory; MIF, migration inhibitory factor.
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In earlier studies, parasite extracts or collections of excreto-
ry/secretory (ES) products were first tested for their protective
effects against disease activity in a variety of mouse IBD
models. Soluble extracts of the dog hookworm Ancylostoma
caninum reduced clinical disease scores and abated the profile
of inflammatory cytokines (IFN-v, IL-17, and TNF) in both
DSS- and TNBS-induced colitis models (20, 150). Likewise,
both somatic extract and ES products from the closely related
A. ceylanicum also suppressed DSS-induced colitis in mice
(20), as did extract and ES from the pork nematode Trichinella
spiralis (121, 184). Within the trematode models, soluble
extracts of S. mansoni have protected mice against both TNBS-
induced colitis (150), and in the T-cell transfer model into
RAG-deficient hosts (70).

More recently, it has become possible to test individual
defined products from helminth parasites, expressed as recom-
binant proteins; in principle, this approach should accelerate
the translation from helminth infection to a molecular therapy
for colitis. To date, however, only limited information has
appeared, often lacking appropriate control proteins (such as
inactive mutants, or even unrelated proteins expressed in the
same recombinant vector). Nevertheless, it has been reported
that Brugia malayi cytoplasmic asparaginyl-tRNA synthetase
(BMAsnRS) improved colitis scores in a T-cell transfer model,
an improvement attributed by the authors to the ability of
BMAsnRS to bind IL-8 (91). Other B. malayi proteins linked
to protection from colitis include ALT-2 (86), an abundantly
expressed larval product previously shown to inhibit IFN-vy
signaling (60) and CPI-2 or cystatin (85), which blocks antigen
processing in mammalian cells (107). However, control inac-
tive mutants of these proteins were not tested in the published
reports.

Some studies have further explored the cellular mechanisms
through which helminth products may protect from colitis.
Similar to the parasites themselves, parasite-derived molecules
predominantly stimulate a type 2 response in innate cells, as
well as activate Tregs (Table 3). Innate immunity, in particular,
plays an important role in ameliorating colitis severity, linked
to IL-10 production. Interestingly, the macrophage migration
inhibitory factor (MIF) homolog from Anisakis simplex (As-
MIF) has also been shown to induce upregulation of IL-10 in
both lymph node and intestinal epithelial cells, and also in-
creases Foxp3™ Treg expression in mice subject to DSS-
induced colitis (23). Returning to the cystatin family of inhib-
itors, a recombinant cystatin from S. japonicum (rSjcystatin)-
induced Foxp3" Treg cells and improved disease activity
scores in TNBS-induced colitis (179), while a more distant
homolog (CsStefin-1) from the liver fluke Clonorchis sinenis
was shown to increase IL-10-positive macrophages in the
DSS-induced colitis model (80).

In a similar vein, the galectin from the feline intestinal
nematode Toxascaris leonina, provided modest protection
against disease activity in DSS-induced colitis, while raising
IL-10 and TGF-3 responses (87), while a schistosome enzy-
matic protein, the 28-kDa glutathione-S-transferase, P28GST)
conferred a protective effect that was dependent on eosinophil
infiltration, as the effect was absent in IL5~/~ mice (38).
Notably, each of the studies quoted here tested a single recom-
binant protein in the absence of controls that would exclude
trivial immune deviation effects (from administration of an
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exogenous antigen) or potential contaminants introduced
through the recombinant expression system.

Conclusions and Outlook

Inflammatory bowel diseases have been treated with pow-
erful immunosuppressive medications such as Infliximab,
which severely dampens the body’s ability to mount a protec-
tive response in an infection. Helminths have existed symbi-
otically with humans for many millennia and have developed
sophisticated means of manipulating the immune system to
their advantage without greatly compromising antimicrobial
defenses. The discovery that helminths and helminth-derived
products can alleviate colitic disease in model systems may,
thus, be key in deriving novel compounds that are effective
against a range of autoimmune diseases, while maintaining the
ability to fight bacterial infections.
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