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ABSTRACT 

We investigated a chemical strategy to boost the trypanocidal activity of 2,4-

dihydroxybenzoic acid (2,4-DHBA)- and salicylhydroxamic acid (SHAM)-based 

trypanocides with triphenylphosphonium and quinolinium lipophilic cations (LC). 

Three series of LC conjugates were synthesized that were active in the submicromolar 

(5a–d and 10d–f) to low nanomolar (6a–f) range against wild-type and multi-drug 

resistant strains of African trypanosomes (Trypanosoma brucei brucei and T. 

congolense). This represented an improvement in trypanocidal potency of at least 200-

fold, and up to >10,000-fold, compared with the non-LC coupled parent compounds 

2,4-DHBA and SHAM. Selectivity over human cells was >500 and reached >23,000 for 

6e. Mechanistic studies showed that 6e did not inhibit the cell cycle but affected parasite 

respiration in a dose-dependent manner. Inhibition of the trypanosome alternative 

oxidase (TAO) and the mitochondrial membrane potential was also studied for selected 

compounds. We conclude that effective mitochondrial targeting greatly potentiated the 

activity of these compound series. 
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INTRODUCTION 

Human African trypanosomiasis (HAT) is a parasitic disease caused by two 

subspecies of trypanosomes, Trypanosoma brucei gambiense and Trypanosoma brucei 

rhodesiense, which are transmitted by the bite of infected tsetse flies.
1
 Other species and 

subspecies of trypanosomes infect cattle and cause enormous economical loss in the 

tsetse belt in Africa.
2
 Because the therapeutic options are limited and threatened by drug 

resistance,
3
 and HAT is a fatal disease if left untreated, the search for new safe and 

effective trypanocidal drugs remains an important goal in tropical medicine. 

In contrast to mammalian cells, which contain hundreds of mitochondria per 

cell, trypanosomes possess a single mitochondrion that is involved in vital cellular 

functions including maintenance and expression of genetic information, energy 

metabolism, RNA editing, Fe-S cluster biogenesis, etc.
4
 Hence, this essential organelle 

represents a good chemotherapeutic target for the development of trypanocidal drugs.
5-7

 

Among the many validated mitochondrial targets of T. brucei (e.g. kDNA and 

topoisomerases, tRNA import, fatty acid biosynthesis),
8
 the mitochondrial respiration of 

the parasite is a particularly attractive target.
9
 In effect, during their life-cycle, 

trypanosomes adapt their energy metabolism to the availability of nutrients in their 

environment.
10

 Hence, procyclic forms of T. brucei have a fully functional respiratory 

chain and synthesize ATP by oxidative phosphorylation in the mitochondrion. In 

contrast, bloodstream trypomastigotes of T. brucei (i.e. the form present in the 

mammalian host) rely exclusively on glycolysis for energy production as they have no 

oxidative phosphorylation, no cytochrome-mediated electron transport systems, and no 

tricarboxylic acid cycle.
4, 11

 Clarkson et al have shown that respiration of T. b. brucei 

trypomastigotes is dependent on a plant-like alternative oxidase known as the 

trypanosome alternative oxidase (TAO), which is localized in the inner mitochondrial 
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 5

membrane.
12

 Because it is essential to the viability of bloodstream trypanosomes, and 

because it has no counterpart in the mammalian host, TAO is considered an excellent 

target for chemotherapy.
9, 13-15

  

Earlier reports in the literature have shown that very simple chemical structures 

containing the 2,4-dihydroxybenzoic acid (2,4-DHBA, 1) and benzhydroxamic acid 

(SHAM) scaffolds were trypanocidal in the low micromolar range against T. brucei 

(Chart 1).
16-21

 Although these compounds did inhibit the respiration and growth of the 

parasite in a dose-dependent manner, an effect that was thought to be related to the 

inhibition of TAO, their trypanocidal activity proved disappointing - probably because 

the inhibitors did not effectively cross the inner mitochondrial membrane to reach their 

target.  

 

 

Chart 1. Examples of 2,4-dihydroxybenzoic acid and benzhydroxamic acid derivatives 

showing low micromolar activity against T. brucei. 

 

In the present work, we investigated a strategy to enhance the antitrypanosomal 

potency of this class of compounds based on the conjugation of these trypanocides with 

a mitochondrion-targeting lipophilic cation (LC).
22

 The triphenylphosphonium (TPP) 

cation is one of the most successful LC for mitochondria targeting,
23-25

 and the use of 
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 6

the “TPP strategy” to deliver trypanocidal drugs to the mitochondrion of trypanosomes 

has recently been demonstrated.
7, 26

 Lipophilic cations can cross lipid bilayers by non-

carrier mediated transport and accumulate specifically into mitochondria driven by the 

plasma and mitochondrial transmembrane potentials.
27-30

 The strong accumulation of 

dications by the charged mitochondria allows the targeting of its various essential 

functions with relatively low extracellular drug concentrations.
6, 31, 32

 In addition, LCs 

can cross the blood–brain barrier (BBB) and generate therapeutically effective 

concentrations in the brain,
24

 which is particularly relevant for the treatment of late-

stage sleeping sickness. Importantly, TPP-conjugates appear to be generally safe. For 

instance, the TPP-coupled antioxidant MitoQ was safely administered as a daily oral 

tablet to patients for a year in a controlled study with human volunteers.
33

  

In this paper, we report the synthesis and characterization of three series of LC 

conjugates based on the 2,4-DHBA and SHAM scaffolds (Figure 1). Two different 

cationic groups were tested as mitochondrion targeting moieties: the bulky TPP cation 

and the flat heterocyclic 1-quinolinium cation. The position of conjugation of the 

lipophilic moiety via the benzoic acid group was motivated by the precedents in the 

literature showing that benzoate derivatives of related compounds, e.g. 3,4-

dihydroxybenzoic acid, are better TAO inhibitors and have superior activity against 

trypanosomes than acid derivatives.
19, 21, 34

 Linkers from 8 to 16 CH2 units were chosen 

based on previous studies with esters of 3,4-dihydroxybenzoic acid
18, 21

 showing that 

long methylene chains are preferred for higher activity against T. brucei. The 

compounds were evaluated in vitro against multiple African trypanosome species (T. b. 

brucei, T. congolense), including wild-type and multi-drug resistant strains. To assess 

whether these compounds do indeed target the parasite’s mitochondrion, their effects on 
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 7

the mitochondrial membrane potential, cell cycle, and parasite respiration were also 

evaluated. 

 

 

Figure 1. Design and general structure of the SHAM and 2,4-DHBA conjugates 

 

RESULTS 

Chemistry. The hydroxamic acid derivatives 5a–d were synthesized in 3 steps starting 

from 2,4-dihydroxybenzoic acid (Scheme 1). Coupling of the THP-protected 

hydroxylamine
35

 (THPO-NH2) with 2,4-DHBA (1) using EDC/HOBt as coupling 

agents and microwave irradiation (MWI) yielded 2 which was isolated by silica 

chromatography (45%). Selective substitution of 2 with dibromoalkanes to get the 4-

substituted bromoalkyl hydroxamic acid derivatives proved very tricky leading to very 

low yields of the desired product. Hence, we decided to use a convergent synthesis to 

prepare 4a–d. The THP-protected hydroxamate 2 reacted under mildly basic conditions 

(NaHCO3/CH3CN/65 ºC/72h) with bromoalkyltriphenylphosphonium salts (3a–d) 

synthesized previously
36

 to give 4a–d. Addition of a catalytic amount of sodium iodide 

was useful to speed up this sluggish reaction. Removal of the THP group by acidolysis 
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 8

using a catalytic amount of p-toluenesulfonic acid in methanol gave the target 

compounds 5a–d. The 2,4-dihydroxybenzoate derivatives 6a–d were obtained in one 

step by reacting 2,4-DHBA with 3 using a similar protocol as for the hydroxamate 

derivatives (but without NaI).  

 

Scheme 1. Synthesis of Salicylhydroxamate and 2,4-Dihydroxybenzoate 

Derivatives 5a–d and 6a–d
a 

 

a
Reagents and conditions: (i) THPONH2, EDC, NMM, HOBt, DMF, MWI, 120 ºC, 30 

min; (ii) Br-(CH2)n-PPh3
+
Br

-
 (3a–d: n = 8, 10, 12), NaHCO3, NaI, CH3CN, 65 ºC, 3 

days; (iii) TsOH (cat.), MeOH, rt; (iv) Br-(CH2)n-PPh3
+
Br

-
 (3a–d: n = 8, 9, 10, 12), 

NaHCO3, CH3CN, 5 min at 120 ºC then 65 ºC, 3 days. 

 

Alternatively, the quinolinium and phosphonium analogues were obtained by a route 

involving the synthesis of the bromoalkyl benzoate precursors 7c–f (Scheme 2). As 

expected, the reaction of 1 equivalent of 2,4-DHBA with 1 equivalent of dibromoalkane 

in the presence of 1 equivalent of sodium bicarbonate led to a nearly 50/50 mixture of 

bromoalkyl benzoate 7c–f and the dimeric compound 9c–f. A minor formyl by-product 

(8c–f) was also isolated and characterized. This compound most probably results from 
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 9

the formylation of 7c–f in the presence of DMF as reaction solvent.
37

 The reaction of 

7d–f in the presence of quinoline or triphenylphosphine in CH3CN at 80 ºC yielded the 

quinolinium (10d–f) and phosphonium compounds (6e–f).  

 

Scheme 2. Synthesis of 2,4-Dihydroxybenzoate Derivatives 10d–f and 6e–f
a 

OH

HO

O

OH

OH

O

O

OH

(CH2)nR
i

n = 10, 7c: R = Br (37%)
8c: R = OCHO (6%)

n = 12, 7d: R = Br (48%)
8d: R = OCHO (4%)

n = 14, 7e: R = Br (36%)
8e: R = OCHO (1%)

n = 16, 7f: R = Br (32%)
8f: R = OCHO (10%)

OH

9c: n = 10 (24%)
9d: n = 12 (24%)
9e: n = 14 (18%)
9f: n = 16 (3%)

O

O

7d, 7e, 7f
ii

n = 12, 10d (29%)

n = 14, 10e (31%)
n = 16, 10f (37%)

OH

O

O

OH

(CH2)nP

n = 14, 6e (20%)

n = 16, 6f (28%)

Br-

7e, 7f iii

HO

OH O

O (CH2)n

OH

OH

O

O

OH

(CH2)nN

Br-

 

a
Reagents and conditions: (i) Br-(CH2)n-Br (n = 10, 12, 14, and 16; 1 equiv.), NaHCO3, 

DMF, 65 ºC; (ii) Quinoline, CH3CN, 80 ºC; (iii) PPh3, CH3CN, 80 ºC. 

 

Biology 

In vitro activity against T. b. brucei and T. congolense wild type and resistant 

strains. SHAM and 2,4-DHBA were active in the micromolar range against 

bloodstream trypomastigotes of T. b. brucei s427 (WT) (Table 1). The SHAM–TPP 

conjugates (5a–d) and the 2,4-DHBA-quinolinium conjugates (10d–f) displayed 

submicromolar EC50 values (0.1 to 0.4 µM) against this trypanosome strain. In contrast, 

the 2,4-DHBA–TPP derivatives (6a–f) were 10- to 66-times more active, with low to 
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 10

mid-nanomolar EC50 values (0.0012 to 0.073 µM), i.e. in the same range as the 

reference drugs pentamidine and diminazene (Table 1). There was no absolute 

correlation as regards to the influence of the linker length on the activity against T. 

brucei but linkers with more than 8 methylene units seemed to be favored: 12 > 10 > 8 

methylene units for 5a–d, 10 > 14 > 12 ≈ 9 > 16 >> 8 for 6a–f, and 14 ≈ 16 > 12 for 

10d–f, which is in agreement with previous reports.
18, 21

 The synthetic intermediates 7d, 

7f, and 8c, lacking the TPP or 1-quinolinium cations, displayed micromolar range 

activities similar (7d) or approximately 2-fold lower than 2,4-DHBA (7f, 8c) against T. 

brucei. This shows that the LC-carrier moiety greatly enhances the trypanocidal activity 

of the compounds whereas the linker does not seem to contribute favorably to the 

trypanocidal activity of the 2,4-DHBA scaffold.  

Very little difference in activity was observed between WT and B48 cell lines, with 

resistance factors (RF) consistently close to 1 (Table 1). In general, the compounds’ 

cytotoxicity against human cell lines was low (>200 µM), except for 6a–e which 

displayed a cytostatic (as opposed to cytotoxic) effect in the low micromolar range. In 

most cases the selectivity indices (SI) were >500, and 6e and 6f reached SI>23,000. 

[Table 1] 

The compounds were generally less active against T. congolense strain IL3000 grown in 

culture (from 5- to 140-fold). However, with EC50 values for the best compounds (6c–

6f) in the submicromolar range (Table 1), close to or better than that of the widely used
2
 

reference drug diminazene (EC50 = 0.15 µM), several compounds showed significant 

potential for use against this species.  

 

Mode of action studies 
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 11

Dynamics of trypanocidal action, mitochondrial membrane potential and DNA 

content. Propidium iodide assays were performed to monitor the effects of two 

representative 2,4-DHBA–LC conjugates (i.e. TPP and quinolinium derivatives with the 

same linker and high activity/selectivity profile) on T. b. brucei in real time. The effects 

of 6e and 10e on T. brucei s427 trypomastigotes was dose-dependent; at doses near their 

EC50 values the compounds increased rates of PI influx only marginally compared with 

untreated control cells, over the 6 hours of the experiments. For both compounds, at ~3-

fold of their EC50 values (1.5 nM and 100 nM, respectively), killing of the 

trypanosomes was complete in approximately 4 h (Figure 2). These results show that 

there is no immediate disruption of the plasma membrane from the administration of 

these nanomolar concentrations of LC conjugates. 
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Figure 2. Viability assay for 6e and 10e. Top panel: cells were incubated with 10 µM 

digitonin (a) or with test compound 6e at 6× (b), 4× (c) or 2× EC50 (d), or no test 

compound (e) in the presence of 9 µM propidium iodide. Background fluorescence was 

recorded for wells containing media only (f). Lower panel: parallel experiment with 

compound 10e, at 3× (b), 2× (c) and 1× EC50 (d). An increase in fluorescence recorded 

as arbitrary units (A.U.) correlates with increased permeability to propidium iodide, 

reflecting membrane integrity. 

 

If the lipophilic cations are, as designed, accumulating in the T. brucei mitochondrion, it 

is expected that this will impact on the mitochondrial membrane potential Ψm, as the 
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result of (1) the accumulation of cations in the mitochondrial matrix, and (2) disruption 

of mitochondrial functions involved in maintaining the ion gradients. Similar effects 

have been shown for various diamidines, choline-derived dications and bisphosphonium 

compounds.
5, 6, 31, 38

 We thus determined Ψm by flow cytometry and found that 6e 

indeed rapidly depolarized the mitochondrial membrane, as measured by the fluorescent 

probe TMRE. Figure 3 shows the percentage of cells in the population that accumulated 

>200 artificial units of TMRE fluorescence, which was set at 50% for the 0 time point 

of untreated cells; any increase in fluorescence such as induced by troglitazone signifies 

a hyperpolarization of the mitochondrial membrane and a decrease in fluorescence 

indicates depolarization. It is thus clear that 6e rapidly decreases Ψm, although not as 

rapidly as the potassium ionophore valinomycin (Fig. 3). The reduced fluorescence is 

not simply the result of an increasing percentage of the cells dying, as can be seen from 

the narrow, monophasic peaks in the histograms of TMRE fluorescence for the 

individual determinations (Fig. S1), and thus represents a genuine collapse of Ψm that 

was highly reproducible and remarkably homogeneous throughout the cell population. 

The observed homogeneity is consistent with our expectations, in that these LC 

conjugates are believed to diffuse passively through the applicable membranes, and 

their rate of accumulation is therefore not subject to variable levels of expression of 

transport proteins as is often the case with less lipophilic drugs. 
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Figure 3. Mitochondrial membrane potential (%Ψm) of treated and untreated T. b. 

brucei s427 WT cells. Data points represent average and SEM of flow cytometric 

determinations of TMRE fluorescence and are expressed as the percentage of cells that 

exhibit >200 A.U. of fluorescence intensity in the analyzed populations. Valinomycin 

and Troglitazone were used as controls for hyperpolarization and depolarization, 

respectively. Statistically significant differences from untreated control populations 

were assessed using an unpaired Student’s t-test; *, P<0.05; **, P<0.01; ***, P<0.001. 

 

We have recently shown that treatment of T. b. brucei trypomastigotes with a different 

class of lipophilic cations, consisting of symmetrical bisphosphonium compounds, led 

to a rapid inhibition of the cell cycle by preventing initiation of S-phase; these 

compounds were shown to inhibit the mitochondrial FoF1 ATPase.
6
 We thus 

investigated whether the LC conjugates might have a similar effect on the cell cycle. 

Figure S2 shows that 6e did not exhibit a cell cycle-specific effect, as 0.005 µM of 6e 
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had no effect on the percentage of cells in G1, S or G2 phase after as much as 24 h, 

while the lipophilic bisphosphonium compounds CD38 and AHI-9 significantly reduced 

the percentage of S-phase cells after 8 and 12 h of incubation, respectively.
6
  

Effect on parasite respiration. In order to determine whether the antitrypanosomal 

activity displayed by these compounds might be related to the inhibition of parasite 

respiration, the susceptibility assays were repeated in the presence of 5 mM glycerol, 

which inhibits the T. brucei anaerobic ATP production pathway
39

, which is essential 

when the aerobic respiration is disabled. During anaerobiosis or when TAO is inhibited, 

glycerol kinase (GK) becomes essential to BSF trypanosomes because it contributes to  

glycolysis via a thermodynamically unfavorable mechanism consisting in the catalysis 

of the transphosphorylation of ADP with a phosphoryl group from glycerol 3-phosphate 

(G3P), forming ATP (i.e. net production of 1 mole of ATP per glucose molecule 

consumed) and glycerol.
40-43

 Hence, the co-administration of TAO inhibitors and 

glycerol is known to effectively kill the parasites
44

 because the added glycerol competes 

with G3P as GK substrate, and thus inhibits anaerobic ATP production by mass 

action.
40

 

 Co-incubation with glycerol significantly (P<0.05) increased the trypanocidal activities 

of 6e, 6f, 10d, 10f, and SHAM, whereas it had no effect on the efficacy of control drugs 

pentamidine and diminazene (Table 2). This result indicates that the aerobic glycolytic 

pathway may be involved in the MOA of these test compounds.  

As respiration of BSF trypanosomes is entirely dependent on TAO as the terminal 

oxidase, we next investigated whether the compounds were inhibitors of purified rTAO 

enzyme
45

 in the ubiquinol oxidase assay. Unlike previously published inhibitor 

studies,
45

 we used the physiological form of the enzyme, without its N-terminal 25 
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amino acid mitochondrial targeting sequence (MTS), which is cleaved off in the 

mitochondrion.
46

 Two compounds (6e, 10e) inhibited rTAO, with IC50 values of 1.46 

and 1.36 µM, respectively. A further three compounds (6f, 10d, 10f), SHAM (IC50 = 

5.93 µM), and 2,4-DHBA (IC50 = 120 µM)  displayed IC50 values >5 µM.  

Some of the compounds were further tested on a T. b. brucei line overexpressing TAO, 

as a further test for activity through inhibition of TAO, as it is not possible to delete the 

TAO gene, or even reduce its expression by RNAi. Of the compounds tested, only 6e 

and SHAM were significantly less effective against this cell line than against the wild-

type control, by 2.6 (P=0.0001) and 1.6-fold (P<0.01), respectively - a further indication 

of TAO involvement in the MOA of both compounds. However, the level of 

overexpression was really modest, as established by qPCR (Figure S3), owing to the 

already very high expression level of TAO in T. brucei trypomastigotes.  

Compound 3c, which lacks either a SHAM or a 2,4-DHBA group, but does have a 

mitochondrial targeting group (TPP), had no effect on rTAO activity at 10 µM, and 

displayed no differential effects against T. b. brucei in the presence of 5 mM glycerol, 

or against the AOX-OE line, indicating that indeed it was not an inhibitor of TAO. 

However, with an EC50 of just 1.8 ± 0.4 nM and a selectivity >3000 it might be worth 

investigating its mode of action separately. 
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Table 1. EC50 values (µM) against Wild Type and Resistant Strains of T. b. brucei, T. congolense, and Cytotoxicity against 

Human Cells (CC50, µM).  

Cmpd T. brucei WT
a
 SI

b 
T. brucei B48

c 
RF

d
 T. congolense WT

e
 SI

f Human 

cells
g,h

 

3c 0.0018 ± 0.0004 3339 0.0012 ± 0.0001 0.7 0.95 ± 0.05 6.3 6.01 ± 1.47
g
 

5a 0.40 ± 0.14 >1000 nd
i 

 27.2 (n=1) >14.7 >400
g
 

5c 0.20 ± 0.04 >2043 nd  nd  >400
g
 

5d 0.14 ± 0.01 >2857 nd  46.4 (n=1) 8.6 >400
g
 

6a 0.073 ± 0.003 106 0.068 ± 0.001 0.94 4.3 ± 1.6 1.8 7.73 ± 0.79
g
 

6b 0.0059 ± 0.0025 789 0.0074 ± 0.0006 1.24 0.41 ± 0.13 11.5 4.68 ± 1.26
g
 

6c 0.0013 ± 0.0010 1768 0.0011 ± 0.0001 0.86 0.18 ± 0.02 13.2 2.33 ± 0.53
g
 

6d 0.0012 ± 0.0012 1334 0.0012 ± 0.0002 0.96 0.042 ± 0.003 5.5 1.65 ± 0.42
g
 

6e 0.0015 ± 0.0003 23378 0.0012 ± 0.0001 0.78 0.061 ± 0.005 982 59.7± 6.4
h
 

6f 0.009 ± 0.001 27714 0.008 ± 0.001 0.91 0.122 ± 0.006 2038 249 ± 66
h 

7d 14.5 ± 1.0 >28 14.9 ± 1.0 1.03 52.1 ± 3.7 >7.7 >400
g
 

7f 45.7 ± 1.5 >9 49.0 ± 0.6 1.07 >100  >400
g
 

8c 31.8 ± 0.9  >12 22.1 ± 4.1 0.69 >100  >400
g
 

10d 0.33 ± 0.01 609 0.347 ± 0.002 1.05 7.0 ± 0.3 28.7 202 ± 7
h
 

10e 0.10 ± 0.01 1657 0.125 ± 0.015 1.21 3.8 ± 0.2 45.3 172 ± 14
h
 

10f 0.14 ± 0.01 2410 0.14 ± 0.01 1.01 3.0 ± 0.1 115 345 ± 24
h
 

2,4-DHBA
j 

17.1 ± 1.0  nd  nd  nd 

SHAM
k 

38.7 ± 4.8  nd  nd  nd 

Pentamidine 0.0028 ± 0.0003  0.94 ± 0.03 98 nd  nd 
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Diminazene 0.065 ± 0.007  0.78 ± 0.04  0.151   

PAO
l
 

0.0011 ± 

0.00003 
     

0.036 ± 0.004
f 

0.29 ± 0.02
g 

a
Trypomastigotes of T. b. brucei s427 (n ≥ 4).

 b
Selectivity index (SI) = CC50/EC50 (T.brucei. WT). 

c
T. b. brucei strain resistant to 

pentamidine, diminazene, and melaminophenyl arsenicals. 
d
Resistance factor relative to WT. 

e
Trypomastigotes of T. congolense 

IL3000 (n = 2). 
f
Selectivity index (SI) = CC50/EC50 (T. congolense WT). 

g
Cytostatic activity on human embryonic kidney cells; no 

cytotoxic activity was observed up to 50 µM (n = 3). 
h
Cytotoxicity on Human Foreskin Fibroblast (HFF) cells (n = 2). 

i
Not 

determined. 
j
2,4-Dihydroxybenzoic acid.

 k
Salicylhydroxamic acid. 

l
Phenylarsine oxide. 
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Table 2. EC50 values (µM) against T. b. brucei WT in the presence of glycerol (5 mM)  

Cmpd T. b. brucei
a 

RF
b 

t-test
c 

5d 0.158 ± 0.009 1.13 0.187 

6a 0.084 ± 0.015 1.16 0.330 

6b 0.005 ± 0.002 0.88 0.857 

6c 0.002 ± 0.0001 1.26 0.829 

6d 0.0012 ± 0.0003 1.01 0.996 

6e 0.0008 ± 0.0001 0.55 0.116 

6f 0.005 ± 0.0005 0.60 0.079 

10d 0.23 ± 0.01 0.69 2.76E
-3

 

10e 0.078 ± 0.012 0.75 0.190 

10f 0.089 ± 0.003 0.62 0.024 

2,4-DHBA
d 19 ± 1 1.11 0.261 

SHAM
e 7.0 ± 0.3 0.18 1.36E

-11
 

Pentamidine
 0.004 ± 0.0006 1.32 0.135 

Diminazene
 0.063 ± 0.002 0.97 0.838 

a
Trypomastigotes of T. b. brucei (n = 3). 

b
Resistance factor relative to WT without 

glycerol: RF = EC50 (in the presence of glycerol)/EC50 (without glycerol). 
c
Unpaired 

Student’s t-test compairing EC50 values against the WT strain in the presence and 

absence of 5 mM glycerol. 
d
2,4-Dihydroxybenzoic acid.

 e
Salicylhydroxamic acid. 
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The effect of 6e on oxygen consumption by T. b. brucei bloodstream trypomastigotes 

was tested using a fluorescent oxygen reporter probe, and it was found to inhibit oxygen 

consumption of WT trypanosomes in a dose-dependent manner. The level of inhibition 

of 6e corresponded with a similar effect as the TAO inhibitor SHAM when both were 

used at ~2×EC50 (Figure 4). These results clearly indicate an effect of 6e on the 

respiration of T. brucei trypomastigotes. 
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U
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Figure 4. Oxygen consumption assay of 6e on T. b. brucei s427, using the 

MitoXpress®-Xtra HS kit (Cambridge Bioscience), which generates a fluorescence 

signal inversely proportional to the oxygen concentration. Glucose oxidase was used to 

rapidly deplete the cell suspension of oxygen, generating a maximum (plateau) signal 

for reference, whereas wells without cells were used to establish a null/background 

fluorescence level. Trypanosomes near-depleted the medium of oxygen in 

approximately 90 min (drug free control), a rate that was dose-dependently reduced by 

6e and by SHAM. Symbols represent the average and SEM of 2 independent 

determinations. 
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DISCUSSION 

The chemotherapy of HAT is still deficient despite recent efforts to discover new 

treatments effective for both stages of the illness.
47

 Moreover, drugs against animal 

African trypanosomiasis (AAT, or nagana) are even more urgently needed than for the 

corresponding human condition.
2
 As current drugs are becoming ineffective due to drug 

resistance, cross-resistance between existing drugs and new ones is one of the most 

important issues that must be tackled early in the search for new antitrypanosomal 

agents.
48

  

In this work, two trypanocidal scaffolds (i.e. 2,4-dihydroxybenzoic acid and 

salicylhydroxamic acid) known to interact with mitochondrial targets
9, 12, 17

 were 

conjugated with one of two mitochondrion-targeting lipophilic cations in order to boost 

their potency against trypanosomes. The activities against WT and multi-drug resistant 

T. brucei strains, and to a T. congolense strain, were studied in vitro. The first important 

result came from the low nanomolar range activities displayed by the 2,4-DHBA–TPP 

derivatives (6a–f), and the submicromolar activities of the 2,4-DHBA–quinolinium 

derivatives (10d–f), as compared with the micromolar EC50 values of the parent 

compound. In contrast, the SHAM–TPP derivatives displayed somewhat lower 

activities, even though this still represented an approximately 100-fold improvement in 

potency relative to SHAM. The superior antitrypanosomal activities observed with the 

TPP vs 1-quinolinium conjugates is consistent with earlier studies on diphenyl cationic 

trypanocides
28

, and probably reflects the higher lipophilicity and charge dispersion 

around the phosphorus atom in the TPP cation, which is optimal for membrane 

permeation and accumulation in the mitochondrion. Secondly, the insignificant 

differences in susceptibility between the WT and the multi-drug resistant B48 cell lines 
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means that cross-resistance with existing first line HAT and AAT drugs, including 

pentamidine, diminazene, cymelarsan and melarsoprol, is highly unlikely to appear with 

these compounds, despite the diamidines, at least, also having mitochondrial targets.
5, 49

 

Indeed, some compounds (e.g. 6e) were, if anything, slightly more effective against the 

T. brucei B48 resistant line compared to WT, although this did not reach statistical 

significance. The lack of cross-resistance of 2,4-DHBA and SHAM–LC conjugates with 

diamidines can be attributed to the fact that diamidine resistance in T. brucei is 

associated with the loss of specific cell surface transporters,
50, 51

 whereas the lipophilic 

LC conjugates are likely to diffuse across biological membranes.  

Also noteworthy is the submicromolar activity displayed by compounds 6b–6f against 

T. congolense, the principal etiological agent of AAT. Their EC50 values are similar to 

the veterinary drug diminazene and their utility against AAT should be investigated 

further, as drugs against this condition are even more urgently needed than for HAT.
52

  

Our preliminary study of the MOA of these compounds showed that, contrary to 

reported bisphosphonium salt derivatives that inhibit the mitochondrial FoF1 ATPase,
6
 

these compounds do not inhibit progression through the cell cycle. Since the compounds 

described here were designed as potential mitochondrion-targeted molecules, we studied 

their effect on parasite respiration and mitochondrial function, and investigated whether 

TAO might be involved in the observed antitrypanosomal activity. Compounds 6e-f, 

10d-f and the control drug SHAM (inhibitor of the cyanide-insensitive respiration 

pathway) were significantly more active against T. brucei when co-administered with 

glycerol, indicating that the aerobic energy metabolic pathway may be a target of these 

compounds. Indeed, compound 6e inhibited oxygen consumption of T. brucei WT in a 

similar dose-dependent manner as SHAM and rapidly depolarized the mitochondrial 

membrane. As TAO is essential for the respiration of bloodstream form trypanosomes 
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we investigated whether some of the compounds were inhibitors of rTAO. Five 

compounds were found to inhibit purified rTAO in the low micromolar range (i.e. 

similar to the reference compound SHAM), two of which were 2,4-DHBA–TPP 

conjugates (6e, 6f), and three were 2,4-DHBA–quinolinium conjugates (10d, 10e, 10f). 

In contrast, 2,4-DHBA was > 20-times weaker inhibitor of rTAO (IC50 = 120 µM) and 

its trypanocidal activity was not potentiated when co-administered with glycerol. Since 

2,4-DHBA is 2-fold more potent than SHAM against BSF trypanosomes in vitro, TAO 

is probably not its main trypanosomal target. Siedow et al. have shown that, in isolated 

mung bean mitochondria, free carboxylates have no effect on the alternative pathway 

but a single hydroxyl group in para position relative to a benzoate ester is sufficient to 

inhibit the cyanide-insensitive electron transfer pathway.
34

 These results are consistent 

with our findings and show that the free carboxylate group in 2,4-DHBA may possibly 

be involved in the binding to TAO by coordinating the iron atoms in the active site. 

However, the presence of a lipophilic side chain (e.g. ACB41, Ki = 5 µM)
17

 seems 

essential to enhance the interactions of the inhibitor with the TAO active site. 

Interestingly, the C14 methylene linker (6e, 10e), which seemed optimal for 

trypanocidal action also provided improved inhibitory activity against the pure 

recombinant TAO enzyme. However, the correlation between inhibition of purified 

rTAO and the trypanocidal effects of the reported LC conjugates is much complicated 

by the fact that the local concentration of the test compounds in functional, charged 

mitochondria, remains unknowable for the moment. As intended, this makes the 

apparent EC50 concentration in vitro much lower than the IC50 concentration against the 

isolated enzyme, exactly as reported for the inhibition of the T. brucei F1Fo ATPase by 

lipophilic bisphosphonium compounds.
6
 Although the evidence suggests that some of 

the LC conjugates have sufficiently low IC50 values to act principally through inhibition 
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of mitochondrial TAO, the possibility that (some of) the compounds also impact on 

other mitochondrial functions cannot be excluded.  

CONCLUSION 

In this work, several highly potent trypanocidal agents against T. brucei and T. 

congolense with very high selectivity indices (from >500 to >23,000 for 6e and 6f) and 

no cross resistance with existing trypanocidal drugs were synthesized. We showed that 

the linking of a lipophilic cation to the 2,4-DHBA or SHAM scaffold improved 

drastically the activity against T. brucei in vitro. The 2,4-DHBA scaffold gave the most 

potent compounds and the 14-methylene linker seemed optimal for trypanocidal action 

and TAO inhibition.  

Compound 6e in particular inhibited trypanosome growth with EC50 in the low 

nanomolar range (further enhanced in the presence of glycerol) with outstanding 

selectivity. Preliminary mechanistic studies indicated that its activity was not cell cycle-

specific, in that it did not act on cells in a specific phase of the cell cycle, and that 

parasite respiration was a target of 6e. Even though TAO was inhibited (in the low 

micromolar range) by some of the compounds reported here, more data will be needed 

to confirm the nature of the main target of these 2,4-DHBA–LC conjugates in whole 

cells. As benzoate derivatives may be susceptible to hydrolysis in vivo by serum 

hydrolases,
20

 in vivo stability studies will have to be taken into account in the future 

development of these series of compounds. Further SAR studies with these series are in 

progress. 

 

EXPERIMENTAL SECTION 
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Chemistry. Anhydrous solvents were purchased to Aldrich/Fluka in SureSeal™ bottles 

and used as received. Reactions heated under microwave irraditation were carried out in 

a Biotage Initiatior microwave oven reactor (frequency: 2045 GHz). Thin Layer 

chromatography (TLC) was performed on silica gel 60 F254 aluminum TLC plates 

(MERCK). Medium pressure silica chromatography was performed on a FlashMaster 

Personal system using FlashPack SI prepacked columns (2, 5, 10, 20, and 50 g). Melting 

points were measured with a Reichert-Jung Thermovar apparatus and are uncorrected. 

LC-MS spectra were recorded on a WATERS apparatus integrated with a HPLC 

separation module (2695), PDA detector (2996) and Micromass ZQ spectrometer. Three 

different cone voltages were used (20, 40 and 60 ēV) and detection was in positive or 

negative mode (ES
+
 or ES

-
). Analytical HPLC was performed with a SunFire C18-3.5 

µm column (4.6 mm × 50 mm). Mobile phase A: CH3CN + 0.08% formic acid and B: 

H2O + 0.05% formic acid. UV detection was carried over 190 to 440 nm. 
1
H NMR and 

13
C NMR spectra were registered on a Bruker Avance-300, Varian Inova-300, Varian 

Inova-400, Varian-Mercury-400, and Varian-system-500 spectrometers. Chemical shifts 

of the 
1
H NMR spectra were referenced to tetramethylsilane (δ 0) for CDCl3 or the 

residual proton resonance of the deuterated solvents: DMSO-d6 (δ 2.50), CD3CN (δ 

1.94), and CD3OD (δ 3.31). Chemical shifts of the 
13

C NMR spectra were referenced to 

CDCl3 (δ 77.16), DMSO-d6 (δ 39.52), CD3CN (δ 1.32), and CD3OD (δ 49.0). Coupling 

constants J are expressed in hertz (Hz). Accurate mass were measured with an Agilent 

Technologies Q-TOF 6520 spectrometer using electrospray ionization. All of the 

biologically tested compounds were ≥ 95% pure by HPLC. 

 

2,4-Dihydroxy-N-((tetrahydro-2H-pyran-2-yl)oxy)benzamide (2). The synthesis was 

carried out in parallel in 4 microwave tubes. Each tube was charged with 2,4-dihydroxy 
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benzoic acid (150 mg, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (287 

mg, 1.5 mmol), HOBt (6.7 mg, 0.05 mmol), and O-(tetrahydro-2H-pyran-2-

yl)hydroxylamine
35

 (234 mg, 2 mmol). The tubes were purged with argon and 

anhydrous DMF (4 mL) and N-methylmorpholine (274 µL, 2.5 mmol) was added in 

each tube [Note 1: working at higher concentration leads to lower yields due to the 

formation of by-products]. The reaction mixture was heated 60 min at 120 ºC in the 

microwave oven reactor to give a clear yellow reaction mixture [Note 2: conventional 

heating, during approximately 12 h, can be used as well even though MWI heating give 

cleaner reaction mixtures]. The content of the 4 tubes was transferred to a round-

bottomed flask and the solvent was removed under vacuum. The resulting yellow oil 

was partitioned between CH2Cl2 and water. The aqueous phase was acidified with 5% 

aqueous citric acid solution and extracted with CH2Cl2. The combined organic extracts 

were washed with brine, dried (Na2SO4) and evaporated. The crude product was 

purified by silica chromatography with CH2Cl2/EtOAc (100/0 → 85/15) to yield 2 as 

colorless foam (460 mg, 45%). 
1
H NMR (300 MHz, CDCl3) δ 9.93 (s, 1H), 7.36 (d, J = 

8.7 Hz, 1H), 6.40 (d, J = 2.4 Hz, 1H), 6.31 (dd, J = 2.4, 8.7 Hz, 1H), 5.00 (t, J = 3.1 Hz, 

1H), 4.02 (ddd, J = 3.4; 8.6; 11.7 Hz, 1H), 3.61 (m, 1H), 1.82 (m, 3H), 1.58 (m, 3H). 

13
C NMR (75 MHz, CD3CN) δ 169.4, 164.1, 163.4, 129.1, 108.3, 105.9, 104.1, 103.1, 

62.9, 28.8, 25.8, 19.3. HPLC (UV) = 95%. LRMS (ES
+
) m/z = 254 [M+H]

+
. 

A) General procedure for the synthesis of 4a, 4c, and 4d. A mixture of 2 (100 mg, 

0.4 mmol, 1 equiv.), sodium bicarbonate (0.48 mmol, 1.2 equiv), sodium iodide (0.08 

mmol, 0.2 equiv.) and bromoalkyltriphenylphosphonium salt (3a, 3c, and 3d; 0.32 

mmol, 0.8 equiv.) in anhydrous acetonitrile (5 mL) was stirred at 65 ºC under an argon 

atmosphere for 3 days. The white precipitate was filtered off and the filtrate was 

evaporated under vacuum. The crude residue was purified by silica chromatography (5g 
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SI prepacked column) using CH2Cl2/MeOH (100/0 → 90/10) as eluent to give 4a, 4c, 

and 4d as colorless solids. 

 (8-(3-Hydroxy-4-(((tetrahydro-2H-pyran-2-

yl)oxy)carbamoyl)phenoxy)octyl)triphenylphosphonium bromide (4a). Starting from 3a 

(173 mg, 0.492 mmol) and following the general procedure, we obtained 4a as colorless 

solid (16%). HPLC (UV) > 95%. 
1
H NMR (300 MHz, CDCl3) δ 10.38 (s, 1H), 7.94 (s, 

1H), 7.80 (d, J = 8.7 Hz, 1H), 7.75 – 7.53 (m, 15H), 6.84 (s, 1H), 6.52 (dd, J = 1.9, 8.7 

Hz, 1H), 4.90 (s, 1H), 4.0–3.78 (m, 3H), 3.59–3.29 (m, 3H), 1.83 – 1.41 (m, 4H), 1.50–

1.10 (m, 14H). 
13

C NMR (101 MHz, CDCl3) δ 164.5, 163.0, 158.1, 135.3 (d, J = 2.9 

Hz), 133.7 (d, J = 10.0 Hz), 133.1 , 130.7 (d, J = 12.6 Hz), 118.2 (d, J = 85.9 Hz), 

110.4, 109.4, 102.3, 100.7, 94.8, 68.9, 62.5, 30.8, 28.5, 28.2 (d, J = 12.2 Hz), 25.6, 25.2, 

25.2 (d, J = 39.5 Hz), 22.7 (d, J = 49.6 Hz), 22.5, 19.9, 18.8. LRMS (ES
+
) m/z 626 (M

+
). 

 (10-(3-Hydroxy-4-(((tetrahydro-2H-pyran-2-

yl)oxy)carbamoyl)phenoxy)decyl)triphenylphosphonium bromide (4c). Starting from 3c 

(190 mg, 0,395 mmol) and following the general procedure, we obtained 4c as colorless 

solid (90 mg, 31%). HPLC (UV) > 95%; mp = 118 ºC. 
1
H NMR (300 MHz, CDCl3) δ 

10.45 (s, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.83–7.59 (m, 16H), 6.90 (d, J = 2.2 Hz, 1H), 

6.55 (dd, J = 8.7, 2.0 Hz, 1H), 4.96 (t, J = 3.0 Hz, 1H), 4.01 (t, J = 6.4 Hz, 2H), 3.91 (m, 

1H), 3.59 (dd, J = 11.0, 5.1 Hz, 1H), 3.43 (m, 2H), 1.93 – 1.69 (m, 2H), 1.69–1.09 (m, 

20H). 
13

C NMR (75 MHz, CDCl3) δ 164.5, 163.0, 158.2, 135.3 (d, J = 3.4 Hz), 133.7 

(d, J = 9.9 Hz), 133.0, 130.7 (d, J = 12.7 Hz), 118.3 (d, J = 85.8 Hz), 110.3, 109.4, 

102.3, 100.6, 68.9, 62.4, 30.4 (d, J = 15.9 Hz), 28.9, 28.8, 28.7, 28.7, 28.5, 28.1, 25.3 (d, 

J = 15.6 Hz), 22.8 (d, J = 50.3 Hz), 22.7 (d, J = 5 Hz), 22.5, 18.8. LRMS (ES
+
) m/z 654 

(M
+
). 
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 (12-(3-Hydroxy-4-(((tetrahydro-2H-pyran-2-

yl)oxy)carbamoyl)phenoxy)dodecyl)triphenylphosphonium bromide (4d). Starting from 

3d (160 mg, 0,322 mmol) and following the general procedure, we obtained 4d as 

colorless solid (18%). HPLC (UV) > 95%; mp = 117 ºC. 
1
H NMR (500 MHz, CDCl3) δ 

10.41 (s, 1H), 9.62 (brs, 1H), 7.81 (d, J = 8.7 Hz, 1H), 7.70 – 7.60 (m, 15H), 6.90 (d, J 

= 2.1 Hz, 1H), 6.52 (dd, J = 2.1, 8.7 Hz, 1H), 4.94 (t, J = 3.3 Hz, 1H), 4.00 (t, J = 6.5 

Hz, 2H), 3.89 (ddd, J = 2.6, 9.4, 11.8 Hz, 1H), 3.59 – 3.53 (m, 1H), 3.46 (ddd, J = 5.7, 

9.5, 12.8 Hz, 2H), 1.89–1.65 (m, 6H), 1.44–0.97 (m, 20H). 
13

C NMR (126 MHz, 

CDCl3) δ 164.5, 163.0, 158.3, 135.3 (d, J = 3.1 Hz), 133.7 (d, J = 9.9 Hz), 133.0, 130.7 

(d, J = 12.5 Hz), 118.3 (d, J = 86.0 Hz), 110.3, 109.3, 102.3, 100.5, 68.8, 62.4, 36.6, 

30.5 (d, J = 15.7 Hz), 29.8, 29.1, 28.9, 28.9, 28.9, 28.7, 28.3, 28.1, 25.4 (d, J = 30.4 Hz), 

22.83 (d, J = 50.0 Hz), 22.81, 22.78. LRMS (ES
+
) m/z 682 (M

+
). 

B) General procedure for the synthesis of 5a, 5c, and 5d. To a stirred solution of 4a-

d (tipically 30–40 mg, 1 equiv.) in methanol (1 mL) was added p-toluenesulfonic acid 

(0.1 equiv.). The solution was stirred at room temperature until complete disappearance 

of the starting material as shown by TLC eluting with CH2Cl2/MeOH (9/1). The product 

was purified either by silica chromatography (5a, 5d) eluting with CH2Cl2/MeOH 

(100/0 → 90/10) or via ether-mediated precipitation from the reaction mixture (5c). 

 (8-(3-Hydroxy-4-(hydroxycarbamoyl)phenoxy)octyl)triphenylphosphonium 

bromide (5a). Starting from 4a (25 mg, 0.046 mmol) and following the general 

procedure, we obtained 5a as colorless hygroscopic solid (20%). HPLC (UV) > 95%; 

1
H NMR (400 MHz, CD3OD) δ 7.91 – 7.70 (m, 16H), 7.23 (d, J = 8.4 Hz, 2H), 6.48 (s, 

1H), 4.09 (t, J = 6.2 Hz, 2H), 3.50 – 3.34 (m, 2H), 1.90 – 1.26 (m, 12H). 
13

C NMR (101 

MHz, CD3OD) δ 163.5, 159.8, 136.3 (d, J = 3.0 Hz), 134.8 (d, J = 9.9 Hz), 133.4, 131.5 

(d, J = 12.6 Hz), 129.8, 127.0, 120.0 (d, J = 86.4 Hz), 109.1, 100.9, 70.0, 31.3 (d, J = 
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16.4 Hz), 29.8, 29.5, 26.9, 23.4 (d, J = 5.1 Hz), 22.6 (d, J = 51.1 Hz), 21.3. LRMS (ES
+
) 

m/z 542 (M
+
). HRMS (ES

+
) m/z 542.2469 (calculated for C33H37NO4P: 542.2460). 

 (10-(3-Hydroxy-4-(hydroxycarbamoyl)phenoxy)decyl)triphenylphosphonium 

bromide (5c). Starting from 4c (23 mg, 0.031 mmol) and following the general 

procedure, the crude product was precipitated by addition of Et2O and the tube was 

allowed to stand at 4 ºC overnight. The precipitate was triturated in Et2O to give an off-

white amorphous hygroscopic solid (10.4 mg, 51%). HPLC (UV) = 95%; 
1
H NMR (300 

MHz, CD3OD) δ 8.07 – 7.65 (m, 16H), 6.58 – 6.42 (m, 2H), 4.10 (t, J = 6.17 Hz, 2H), 

3.43 – 3.33 (m, 2H), 2.04 – 1.22 (m, 16H). 
13

C NMR (75 MHz, CD3OD) δ 166.9, 163.5, 

159.8, 136.3, 134.8 (d, J = 10.1 Hz), 133.5, 131.5 (d, J = 12.8 Hz), 120.0 (d, J = 86.6 

Hz), 112.4, 109.1, 100.9, 70.1, 31.5 (d, J = 16.1 Hz), 30.3, 30.2, 30.1, 29.9, 29.7, 27.1, 

23.5 (d, J = 3.4 Hz), 22.7 (d, J = 51.8 Hz). HRMS (ES
+
) m/z 570.2763 (calculated for 

C35H41NO4P: 570.2773). 

 (12-(3-Hydroxy-4-(hydroxycarbamoyl)phenoxy)dodecyl)triphenylphosphonium 

bromide (5d). Starting from 4d (23 mg, 0.04 mmol) and following the general 

procedure, we obtained 5d as colorless hygroscopic solid (33%). The compound is a 

mixture (approximately 3:1 ratio) of bromide and tosylate salts as shown by NMR. 

HPLC (UV) = 95%. 
1
H NMR (500 MHz, CDCl3) δ 7.79 (d, J = 8.4 Hz, 1H), 7.72 – 7.61 

(m, 15H), 7.01 (d, J = 7.7 Hz, 1H), 6.87 (s, 1H, NHOH), 6.47 (d, J = 8.4 Hz, 1H), 4.04 

– 3.92 (m, 2H), 3.44 – 3.33 (m, 2H), 2.24 (s, 1H, TsO
-
), 1.81 – 1.62 (m, 2H), 1.26 – 

1.00 (m, 18H). 
13

C NMR (126 MHz, CDCl3) δ 164.7, 163.0, 158.5, 143.5 (TsO
-
), 139.4 

(TsO
-
), 135.2, 133.7 (d, J = 10.2 Hz), 132.6, 130.7 (d, J = 12.4 Hz), 128.7 (TsO

-
), 126.2 

(TsO
-
), 118.3 (d, J = 84.8 Hz), 109.3, 108.9, 100.7, 68.8, 30.3 (d, J = 15.3 Hz), 29.0, 

28.6, 28.5, 28.4, 27.8, 25.3, 22.8, 22.8, 22.4, 21.5 (TsO
-
). LRMS m/z 598 (M

+
). HRMS 

(ES
+
) m/z 598.3093 (calculated for C37H45NO4P: 598.3086). 
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General procedure for the synthesis of 6a–6d. A Kimax tube was charged with a 

mixture of 2,4-dihydroxybenzoic acid (0.49 mmol, 1 equiv.), sodium bicarbonate (0.59 

mmol, 1.2 equiv), and the bromoalkyltriphenylphosphonium salt (3a, 3b, 3c, and 3d; 

0.44 mmol, 0.9 equiv.) in anhydrous acetonitrile (4 mL). The tube was flushed with 

argon, stopped and heated at 120 ºC with stirring for 5 min. Then, the reaction mixture 

was stirred at 65 ºC for 3 days. The reaction mixture was filtered and the precipitate was 

rinsed with CH3CN. The filtrate was evaporated under vacuum to give an oily residue. 

The crude residue was purified by silica chromatography (5g SI prepacked column) 

using CH2Cl2/MeOH (100/0 → 95/5) as eluent to give 6a-d as hygroscopic colorless 

amorphous sticky solids. 
1
H–

13
C HMBC and NOESY experiments confirmed that the 

isolated isomers were the benzoate products and not the 4-alkyloxy-substituted benzoic 

acid isomers. 

 (8-((2,4-Dihydroxybenzoyl)oxy)octyl)triphenylphosphonium bromide (6a). 

Starting from 3a (200 mg, 0.37 mmol) and following the general procedure, we 

obtained 6a as colorless foam (50 mg, 20%). HPLC (UV) > 95%. 
1
H NMR (400 MHz, 

CDCl3) δ 10.77 (s, 1H), 7.80 – 7.52 (m, 15H), 7.49 (d, J = 8.8 Hz, 1H), 6.75 (dd, J = 

2.3, 8.8 Hz, 1H), 6.40 (d, J = 2.3 Hz, 1H), 4.14 (d, J = 6.3 Hz, 2H), 3.43 – 3.33 (m, 2H), 

1.59 – 1.39 (m, 6H), 1.27 – 1.11 (m, 6H). 
13

C NMR (101 MHz, CDCl3) δ 170.4, 164.8, 

163.6, 135.3 (d, J = 3.4 Hz), 133.7 (d, J = 10.0 Hz), 130.7 (d, J = 12.5 Hz), 118.2 (d, J = 

85.9 Hz), 109.2, 104.5, 103.4, 64.9, 30.5 (d, J = 16.2 Hz), 29.9, 28.95, 28.2, 25.9, 23.0 

(d, J = 51.3 Hz), 22.7 (d, J = 4.9 Hz). LRMS (ES
+
) m/z 527 (M

+
). HRMS (ES

+
) m/z 

527.2349 (calculated for C33H36O4P: 527.2351). 

 (9-((2,4-Dihydroxybenzoyl)oxy)nonyl)triphenylphosphonium bromide (6b). 

Starting from 3b (220 mg, 0.40 mmol) and following the general procedure, we 

obtained 6b as colorless foam (55 mg, 20%). HPLC (UV) = 95%. 
1
H NMR (400 MHz, 
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CDCl3+CD3OD) δ 7.79 – 7.73 (m, 3H), 7.68 – 7.58 (m, 12H), 7.57 (d, J = 8.8 Hz, 1H), 

6.37 (dd, J = 2.3, 8.8 Hz, 1H), 6.27 (d, J = 2.3 Hz, 1H), 4.17 (t, J = 6.4 Hz, 2H), 3.33 – 

3.18 (m, 2H), 1.65 – 1.59 (m, 6H), 1.33 – 1.14 (m, 8H). 
13

C NMR (101 MHz, CD3OD) 

δ 170.1, 164.0, 163.2, 135.3 (d, J = 3.0 Hz), 133.3 (d, J = 9.9 Hz), 131.4, 130.5 (d, J = 

12.5 Hz), 117.8 (d, J = 86.2 Hz), 108.3, 104.5, 102.7, 64.8, 30.3 (d, J = 15.7 Hz), 28.9, 

28.8, 28.7, 28.3, 25.8, 22.5 (d, J = 50.8 Hz), 22.4 (d, J = 4.4 Hz). LRMS (ES
+
) m/z 541 

(M
+
). HRMS (ES

+
) m/z 541.2498 (calculated for C34H38O4P: 541.2508). 

 (10-((2,4-Dihydroxybenzoyl)oxy)decyl)triphenylphosphonium bromide (6c). 

Starting from 3c (235 mg, 0.42 mmol) and following the general procedure, we 

obtained 6c as colorless foam (47 mg, 16%). HPLC (UV) > 95%. 
1
H NMR (400 MHz, 

CD3OD) δ 7.90 – 7.81 (m, 6H), 7.78 – 7.70 (m, 9H), 7.65 (d, J = 8.7 Hz, 1H), 6.33 (dd, 

J = 2.3, 8.7 Hz, 1H), 6.26 (d, J = 2.3 Hz, 1H), 4.28 (t, J = 6.4 Hz, 2H), 3.41 (tdd, J = 

2.3, 5.3, 7.90, 2H), 1.73 (dd, J = 6.4, 8.1 Hz, 2H), 1.67 – 1.61 (m, 2H), 1.57 – 1.51 (m, 

2H), 1.40 (m, 2H), 1.33 – 1.27 (m, 8H). 
13

C NMR (101 MHz, CD3OD) δ 171.4, 165.6, 

165.0, 136.2 (d, J = 3.0 Hz), 134.8 (d, J = 10.0 Hz), 132.6, 131.5 (d, J = 12.6 Hz), 120.0 

(d, J = 86.1 Hz), 109.1, 105.6, 103.5, 65.9, 31.5 (d, J = 16.2 Hz), 30.3, 30.2, 30.15, 29.8, 

29.6, 27.0, 23.5 (d, J = 4.5 Hz), 22.7 (d, J = 50.7 Hz). LRMS (ES
+
) m/z 555 (M

+
). 

HRMS (ES
+
) m/z 555.2685 (calculated for C35H40O4P: 555.2664). 

 (12-((2,4-Dihydroxybenzoyl)oxy)dodecyl)triphenylphosphonium bromide (6d). 

Starting from 3d (240 mg, 0.41 mmol) and following the general procedure, we 

obtained 6d as colorless oily-sticky solid (238 mg, 88%). HPLC (UV) > 95%. 
1
H NMR 

(400 MHz, CDCl3) δ 10.80 (s, 1H), 9.60 (s, 1H), 7.74 – 7.58 (m, 15H), 7.51 (d, J = 8.8 

Hz, 1H), 6.73 (dd, J = 2.3, 8.8 Hz, 1H), 6.40 (d, J = 2.3 Hz, 1H), 4.20 (t, J = 6.0 Hz, 

2H), 3.56 – 3.43 (m, 2H), 1.65 (p, J = 6.5 Hz, 2H), 1.59 – 1.41 (m, 2H), 1.41 – 0.97 (m, 

16H).
 
 
13

C NMR (101 MHz, CDCl3) δ 170.5, 164.8, 163.6, 135.2 (d, J = 3 Hz), 133.7 (d, 
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J = 10 Hz), 131.2, 130.6 (d, J = 12.5 Hz), 118.3 (d, J = 85.9 Hz), 109.1, 104.5, 103.3, 

64.7, 30.7 (d, J = 15.7 Hz), 29.4, 29.25, 29.18, 28.83, 28.82, 28.26, 28.21, 25.6, 22.8 (d, 

J = 50 Hz), 22.77, 22.72.
 
 LRMS (ES

+
) m/z 583.4 (M

+
). HRMS (ES

+
) m/z 583.2986 

(calculated for C37H44O4P: 583.2977). 

(14-((2,4-Dihydroxybenzoyl)oxy)tetradecyl)triphenylphosphonium bromide 

(6e). A solution of 7e (24.6 mg, 0.057 mmol) and triphenylphosphine (17.3 mg, 0.08 

mmol) in anhydrous acetonitrile (1 mL) was heated at 80 ºC for 68 h in a Kimax tube 

under argon atmosphere. The crude product was precipitated by addition of Et2O and 

the tube was allowed to stand at 4 ºC overnight. The solid obtained was purified by 

successive precipitations from MeOH/Et2O and CH2Cl2/EtOAc. The pure product was 

obtained as colorless oily hygroscopic solid (7.5 mg, 20%). HPLC (UV) > 95%. 
1
H 

NMR (300 MHz, CD3OD) δ 7.89 – 7.74 (m, 15H), 7.66 (d, J = 8.8 Hz, 1H), 6.32 (dd, J 

= 2.6, 8.8 Hz, 1H), 6.27 (d, J = 2.6 Hz, 1H), 4.30 (t, J = 6.5 Hz, 2H), 3.45 – 3.20 (m, 

2H), 1.82 – 1.06 (m, 24H). 
13

C NMR (75 MHz, CD3OD) δ 171.4, 166.0, 165.0, 136.3 

(d, J = 3.1 Hz), 134.8 (d, J = 9.9 Hz), 132.6, 131.5 (d, J = 12.6 Hz), 120.0 (d, J = 86.1 

Hz), 109.2, 105.5, 103.6, 65.9, 31.6 (d, J = 16.0 Hz), 30.59, 30.57, 30.48, 30.3, 30.2, 

29.8, 29.7, 27.0, 23.5 (d, J = 4.1 Hz), 22.7 (d, J = 50.1 Hz). LRMS (ES
+
) m/z 611 [M]

+
. 

HRMS (ES
+
) m/z 611.3290 (calculated for C39H48O4P: 611.3290). 

 (16-((2,4-Dihydroxybenzoyl)oxy)hexadecyl)triphenylphosphonium bromide 

(6f). A solution of 7f (20 mg, 0.044 mmol) and triphenylphosphine (11.5 mg, 0.044 

mmol) in anhydrous acetonitrile (1 mL) was heated at 80 ºC for 68 h in a Kimax tube 

under argon atmosphere. The crude product was precipitated by addition of Et2O and 

the tube was allowed to stand at 4 ºC overnight. The solid obtained was purified by 

successive precipitations from MeOH/Et2O and CH2Cl2/EtOAc. The pure product was 

obtained as colorless oily hygroscopic solid (9 mg, 28%). HPLC (UV) > 95%. 
1
H NMR 
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(300 MHz, CD3OD) δ 7.90 – 7.75 (m, 15H), 7.66 (dd, J = 4.1, 8.6 Hz, 1H), 6.33 (dd, J = 

2.5, 8.6 Hz, 1H), 6.27 (d, J = 2.5 Hz, 1H), 4.30 (t, J = 6.3 Hz, 2H), 3.49 – 3.27 (m, 2H), 

1.80 – 1.12 (m, 28H). 
13

C NMR (75 MHz, CD3OD) δ 171.4, 165.8, 165.0, 136.3 (d, J = 

3.1 Hz), 134.8 (d, J = 10.0 Hz), 132.6, 131.5 (d, J = 12.5 Hz), 120.0 (d, J = 86.5 Hz), 

109.1, 105.7, 103.5, 65.9, 31.6 (d, J = 16.6 Hz), 30.6, 30.53, 30.49, 30.3, 30.2, 29.9, 

29.7, 27.0, 23.5 (d, J = 4.2 Hz), 22.7 (d, J = 50.4 Hz). LRMS (ES
+
) m/z 639.5 [M]

+
. 

HRMS (ES
+
) m/z 639.3615 (calculated for C41H52O4P: 639.3603). 

General procedure for the synthesis of 7c–7f. A Kimax tube was charged with an 

equimolar quantity of 2,4-dihydroxybenzoic acid (142 mg, 0.9 mmol), NaHCO3 (78 mg, 

0.9 mmol), the dibromoalkane (0.9 mmol) and anhydrous DMF (10 mL). The tube was 

stopped and the reaction mixture was stirred at 65 ºC under argon atmosphere from 24 

to 48 h. The solvent was evaporated to dryness under vacuum to give a crude solid 

containing the three mains products 7, 8, and 9. Purification by silica chromatography 

(10 g SI prepacked column) using hexane/EtOAc (100/0 → 50/50) as eluent allowed the 

isolation of 7 (major product, > 30%), 8 (< 30%), and 9 (< 10%). 

 10-Bromodecyl 2,4-dihydroxybenzoate (7c). Starting from 1,10-dibromodecane 

(276 mg, 0.92 mmol) and following the general procedure, 7c was isolated by silica 

chromatography using hexane/EtOAc (98/2) as eluent. Off-white solid (127 mg, 37%). 

HPLC (UV) = 92%; mp = 41.3 ºC. 
1
H NMR (300 MHz, CDCl3) δ 11.06 (s, 1H), 7.73 

(d, J = 8.4 Hz, 1H), 6.43 – 6.33 (m, 2H), 6.08 – 5.59 (brs, 1H), 4.30 (t, J = 6.6 Hz, 2H), 

3.40 (t, J = 6.6 Hz, 2H), 1.92 – 1.20 (m, 16H). 
13

C NMR (75 MHz, CDCl3) δ 170.2, 

163.8, 162.1, 132.0, 107.9, 106.2, 103.3, 65.3, 34.2, 33.0, 29.5, 29.5, 29.3, 28.9, 28.7, 

28.3, 26.1. LRMS (ES
+
) m/z 373, 375 [M+H]

+
. HRMS (ES

+
) m/z 372.0925 (calculated 

for C17H25BrO4: 372.0936).  
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12-Bromododecyl 2,4-dihydroxybenzoate (7d). Starting from 1,12-

dibromododecane (142 mg, 0.92 mmol) and following the general procedure, 7d was 

isolated by silica chromatography using hexane/EtOAc (97/3) as eluent. Colorless solid 

(176 mg, 48%). HPLC (UV) > 95%; mp = 48–51 ºC. 
1
H NMR (300 MHz, CDCl3) δ 

11.00 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 6.33 (d, J = 2.3 Hz, 1H), 6.30 (dd, J = 2.3, 8.4 

Hz, 1H), 5.68 (brs, 1H), 4.23 (t, J = 6.5 Hz, 2H), 3.33 (t, J = 6.7 Hz, 2H), 1.86 – 1.61 

(m, 6H), 1.44 – 1.12 (m, 14H). 
13

C NMR (75 MHz, CDCl3) δ 170.2, 163.8, 162.0, 

132.0, 107.9, 106.3, 103.3, 65.4, 34.2, 33.0, 29.6, 29.55, 29.35, 28.9, 28.7, 28.3, 26.1. 

LRMS (ES
+
) m/z 401, 403 [M+H]

+
. HRMS (ES

+
) m/z 400.1266 (calculated for 

C19H29BrO4: 400.1249).  

14-Bromotetradecyl 2,4-dihydroxybenzoate (7e). Starting from 1,14-

dibromotetradecane (285 mg, 0.8 mmol) and following the general procedure, 7e was 

isolated by silica chromatography using hexane/EtOAc (98/2) as eluent. Colorless solid 

(123 mg, 36%). HPLC (UV) > 95%; mp = 72–73.8 ºC. 
1
H NMR (300 MHz, CDCl3) δ 

10.99 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 6.34 – 6.31 (m, 1H), 6.29 (d, J = 2.6 Hz, 1H), 

5.59 (brs, 1H), 4.23 (t, J = 6.4 Hz, 2H), 3.33 (t, J = 6.6 Hz, 2H), 1.90-1.55 (m, 6H), 1.52 

– 1.01 (m, 18H). 
13

C NMR (75 MHz, CDCl3) δ 170.2, 163.8, 162.0, 132.0, 107.9, 106.3, 

103.3, 65.4, 34.2, 33.0, 29.73, 29.68, 29.63, 29.57, 29.4, 28.9, 28.8, 28.4, 28.3, 26.1. 

LRMS (ES
+
) m/z 429, 431 [M+H]

+
. HRMS (ES

+
) m/z 428.1577 (calculated for 

C21H33BrO4: 428.1562). 

16-Bromohexadecyl 2,4-dihydroxybenzoate (7f). Starting from 1,16-

dibromohexadecane (93 mg, 0.24 mmol) and following the general procedure, 7f was 

isolated by silica chromatography (5g SI cartridge) using hexane/EtOAc (98/2) as 

eluent. Colorless amorphous solid (35 mg, 32%). HPLC (UV) > 95%; mp = 58–60 ºC. 

1
H NMR (300 MHz, CDCl3) δ 10.98 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 6.33 (d, J = 2.5 
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Hz, 1H), 6.30 (dd, J = 2.5, 8.4 Hz, 1H), 5.43 (brs, 1H), 4.23 (t, J = 6.5 Hz, 2H), 3.34 (t, 

J = 6.7 Hz, 2H), 1.78 (p, J = 6.9 Hz, 4H), 1.67 (p, J = 6.8 Hz, 4H), 1.46 – 1.23 (m, 

20H). 
13

C NMR (75 MHz, CDCl3) δ 170.2, 163.9, 161.9, 132.0, 107.8, 106.4, 103.3, 

65.4, 34.2, 33.0, 29.9, 29.8, 29.70, 29.69, 29.65, 29.6, 29.4, 28.9, 28.8, 28.3, 26.1. 

LRMS (ES
+
) m/z 457, 459 [M+H]

+
. HRMS (ES

-
) m/z 456.1868 (calculated for 

C23H37BrO4: 456.1875). 

 10-(Formyloxy)decyl 2,4-dihydroxybenzoate (8c). 8c was isolated by silica 

chromatography using hexane/EtOAc (96/4) as eluent. Off-white amorphous solid (20 

mg, 6%). HPLC (UV) > 95%; mp = 62–68 ºC. 
1
H NMR (300 MHz, CDCl3) δ 10.96 (s, 

1H), 7.99 (s, 1H), 7.66 (d, J = 8.5 Hz, 1H), 6.33 (d, J = 2.4 Hz, 1H), 6.30 (dd, J = 2.4, 

8.5 Hz, 1H), 4.23 (t, J = 6.5 Hz, 2H), 4.10 (t, J = 6.6 Hz, 2H), 1.72 – 1.09 (m, 16H). 
13

C 

NMR (75 MHz, CDCl3) δ 170.2, 163.8, 162.3, 161.6, 132.0, 107.9, 106.2, 103.3, 65.3, 

64.4, 29.8, 29.5, 29.28, 29.26, 28.7, 28.6, 26.1, 25.9. LRMS (ES
+
) m/z 339 [M+H]

+
. 

HRMS (ES
+
) m/z 338.1740 (calculated for C18H26O6: 338.1729).  

12-(Formyloxy)dodecyl 2,4-dihydroxybenzoate (8d). 8d was isolated by silica 

chromatography using hexane/EtOAc (90/10) as eluent. Colorless amorphous solid 

(14.6 mg, 4%). HPLC (UV) > 95%; mp = 68–70 ºC. 
1
H NMR (300 MHz, CDCl3) δ 

10.99 (s, 1H), 8.00 (s, 1H), 7.66 (d, J = 8.4 Hz, 1H), 6.34 (d, J = 2.4 Hz, 1H), 6.31 (dd, 

J = 2.4, 8.4 Hz, 1H), 6.15 (brs, 1H), 4.23 (t, J = 6.6 Hz, 2H), 4.10 (t, J = 6.6 Hz, 2H), 

1.73 – 1.56 (m, 6H), 1.22 (m, 14H). LRMS (ES
+
) m/z 367 [M+H]

+
. HRMS (ES

+
) m/z 

366.2050 (calculated for C20H30O6: 366.2042).  

14-(Formyloxy)tetradecyl 2,4-dihydroxybenzoate  (8e). 8e was isolated by silica 

chromatography using hexane/EtOAc (96/4) as eluent. Colorless solid (3 mg, 1%). 

HPLC (UV) = 93%; mp = 70–71 ºC. 
1
H NMR (300 MHz, CDCl3) δ 10.96 (s, 1H), 8.00 
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(s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 6.38 – 6.22 (m, 2H), 5.66 (br, 1H), 4.24 (d, J = 6.6 Hz, 

2H), 4.11 (d, J = 6.8 Hz, 2H), 1.74 – 1.52 (m, 6H), 1.33 – 1.22 (m, 18H). LRMS (ES
+
) 

m/z 395 [M+H]
+
. HRMS (ES

+
) m/z 394.2370 (calculated for C22H34O6: 394.2355). 

16-(Formyloxy)hexadecyl 2,4-dihydroxybenzoate (8f). 8f was isolated by silica 

chromatography using hexane/EtOAc (96/4) as eluent. Colorless solid (11 mg, 10%). 

HPLC (UV) = 92%; mp = 76–77 ºC. 
1
H NMR (300 MHz, CDCl3) δ 10.96 (s, 1H), 7.99 

(s, 1H), 7.67 (d, J = 8.5 Hz, 1H), 6.33 (d, J = 2.4 Hz, 1H), 6.29 (dd, J = 2.4, 8.5 Hz, 

1H), 5.36 (brs, 1H), 4.23 (t, J = 6.5 Hz, 2H), 4.10 (t, J = 6.7 Hz, 2H), 1.89 – 0.97 (m, 

28H). 
13

C NMR (75 MHz, CDCl3) δ 170.4, 164.2, 162.2, 161.7, 132.2, 108.0, 106.6, 

103.5, 65.6, 64.6, 30.1, 30.0 (m, overlapping peaks), 29.91, 29.87, 29.60, 29.55, 29.0, 

28.9, 26.4, 26.2. LRMS (ES
+
) m/z 423 [M+H]

+
. HRMS (ES

+
) m/z 422.2687 (calculated 

for C24H38O6: 422.2668). 

 Decane-1,10-diyl bis(2,4-dihydroxybenzoate) (9c). 9c was isolated by silica 

chromatography using hexane/EtOAc (70/30) as eluent. Off-white solid (83 mg, 24%). 

HPLC (UV) > 95%; mp = 118.6–120.1 ºC. 
1
H NMR (300 MHz, DMSO-d6) δ 10.92 –

10.18 (br, 4H), 7.63 (d, J = 8.7 Hz, 2H), 6.37 (dd, J = 8.7, 2.4 Hz, 2H), 6.29 (d, J = 2.4 

Hz, 2H), 4.25 (t, J = 6.4 Hz, 4H), 1.68 (p, J = 6.5 Hz, 4H), 1.30 (m, 12H). 
13

C NMR (75 

MHz, DMSO-d6) δ 169.3, 164.2, 162.8, 131.4, 108.3, 104.0, 102.4, 64.6, 28.8, 28.5, 

28.0, 25.4. LRMS (ES
+
) m/z 447 [M+H]

+
. HRMS (ES

+
) m/z 446.1936 (calculated for 

C24H30O8: 446.1941). 

 Dodecane-1,12-diyl bis(2,4-dihydroxybenzoate) (9d). 9d was isolated by silica 

chromatography using hexane/EtOAc (50/50) as eluent. Colorless amorphous solid (90 

mg, 24%). HPLC (UV) > 95%; mp = 96–97 ºC. 
1
H NMR (300 MHz, CDCl3) δ 10.91 (s, 

2H), 9.32 (s, 2H), 7.61 (d, J = 8.6 Hz, 2H), 6.35 (d, J = 2.4 Hz, 2H), 6.32 (dd, J = 2.4, 
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8.6 Hz, 2H), 4.21 (t, J = 6.5 Hz, 4H), 1.68 (t, J = 7.1 Hz, 4H), 1.35 – 1.20 (m, 16H). 
13

C 

NMR (75 MHz, CDCl3) δ 170.3, 164.1, 163.8, 131.5, 108.3, 104.9, 103.1, 65.0, 29.7, 

29.5, 29.3, 28.7, 26.0. LRMS (ES
+
) m/z 475 [M+H]

+
. HRMS (ES

+
) m/z 474.2263 

(calculated for C26H34O8: 474.2254). 

 Tetradecane-1,14-diyl bis(2,4-dihydroxybenzoate) (9e). 9e was isolated by silica 

chromatography using hexane/EtOAc (70/30) as eluent. Colorless solid (61 mg, 18%). 

HPLC (UV) > 95%, mp = 132.7–134.8 ºC. 
1
H NMR (300 MHz, CDCl3) δ 10.97 (brs, 

2H), 7.62 (dd, J = 2.0, 7.3 Hz, 2H), 6.33 – 6.25 (m, 4H), 4.21 (t, J = 6.5 Hz, 4H), 1.67 

(p, J = 6.5 Hz, 4H), 1.40 – 1.15 (m, 20H). 
13

C NMR (75 MHz, CDCl3 δ 170.2, 163.8, 

163.3, 131.6, 108.2, 104.9, 102.6, 65.1, 29.6, 29.52, 29.47, 29.2, 28.6, 26.0. LRMS 

(ES
+
) m/z 503 [M+H]

+
. 

 Hexadecane-1,16-diyl bis(2,4-dihydroxybenzoate) (9f). 9f was isolated by silica 

chromatography using hexane/EtOAc (70/30) as eluent. Colorless amorphous solid (3 

mg, 3%). HPLC (UV) = 87%; mp = 106–110 ºC. 
1
H NMR (300 MHz, CDCl3) δ 10.99 

(s, 2H), 7.70 – 7.57 (m, 2H), 6.29 (m, 4H), 4.21 (t, J = 6.5 Hz, 4H), 1.81 – 1.56 (m, 4H), 

1.55 – 0.99 (m, 20H), 0.77 (m, 4H). 
13

C NMR (75 MHz, CDCl3) δ 170.3, 163.8, 163.3, 

131.7, 108.3, 105.0, 102.6, 65.1, 32.6, 30.7, 30.1, 29.7, 29.7, 29.6, 29.5, 29.3, 28.7, 

26.0, 25.8. LRMS (ES
+
) m/z 531 [M+H]

+
. HRMS (ES

+
) m/z 530.2887 (calculated for 

C30H42O8: 530.2880). 

Synthesis of the target compounds 10d–f. 

 1-(12-((2,4-Dihydroxybenzoyl)oxy)dodecyl)quinolin-1-ium bromide (10d). A 

solution of 7d (48 mg, 0.12 mmol) and quinoline (16 µL, 0.15 mmol) in anhydrous 

acetonitrile (1 mL) was heated at 80 ºC for 39 h in a Kimax tube. The precipitate was 

collected and washed with cold CH3CN to give a light-brown solid (18.3 mg, 29%). 
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HPLC (UV) > 95%, mp = 151–153 ºC. 
1
H NMR (300 MHz, CD3OD) δ 9.42 (d, J = 6.6 

Hz, 1H), 9.21 (d, J = 7.3 Hz, 1H), 8.56 (d, J = 8.3 Hz, 1H), 8.44 (d, J = 7.8 Hz, 1H), 

8.35 – 8.24 (m, 1H), 8.07 (d, J = 7.5 Hz, 2H), 7.66 (d, J = 8.6 Hz, 1H), 6.42 – 6.18 (m, 

2H), 5.1 (m, 2H), 4.58 (m, 2H), 4.29 (m, 2H), 2.18 – 1.96 (m, 2H), 1.89 – 1.64 (m, 2H), 

1.64 – 1.12 (m, 16H). 
13

C NMR (75 MHz, CD3OD) δ 171.4, 165.7, 165.0, 150.3, 149.0, 

137.3, 132.6, 132.2, 131.8, 131.4, 123.0, 119.7, 109.1, 103.5, 65.9, 59.4, 31.1, 30.4, 

30.1, 29.6, 27.5, 27.0. LRMS (ES
+
) m/z 450 [M]

+
. HRMS (ES

+
) m/z 450.2642 

(calculated for C28H36O4N: 450.2644). 

 1-(14-((2,4-Dihydroxybenzoyl)oxy)tetradecyl)quinolin-1-ium bromide (10e). A 

solution of 7e (30 mg, 0.07 mmol) and quinoline (9.5 µL, 0.08 mmol) in anhydrous 

acetonitrile (1 mL) was heated at 80 ºC for 6 days in a Kimax tube. The precipitate was 

collected and triturated in Et2O to give an off-white solid (12 mg, 31%). HPLC (UV) > 

95%; mp = 143–146 ºC. 
1
H NMR (300 MHz, CD3OD) δ 9.42 (dd, J = 1.5, 5.9 Hz, 1H), 

9.21 (d, J = 8.4 Hz, 1H), 8.56 (d, J = 9.1 Hz, 1H), 8.44 (dd, J = 1.6, 8.4 Hz, 1H), 8.30 

(td, J = 3.7, 7.3, 7.6 Hz, 1H), 8.16 – 7.99 (m, 2H), 7.66 (d, J = 8.8 Hz, 1H), 6.33 (dd, J = 

2.4, 8.7 Hz, 1H), 6.27 (d, J = 2.4 Hz, 1H), 5.09 (t, J = 7.7 Hz, 2H), 4.57 (brs, 2H), 4.30 

(t, J = 6.4 Hz, 2H), 2.20 – 1.99 (m, 2H), 1.83 – 1.67 (m, 2H), 1.60 – 1.18 (m, 20H). 
13

C 

NMR (75 MHz, CD3OD) δ 171.4, 165.7, 165.0, 150.3, 149.0, 139.4, 137.3, 132.6, 

132.2, 131.8, 131.4, 123.0, 119.7, 109.1, 105.7, 103.5, 66.0, 59.4, 31.1, 30.62, 30.58, 

30.52, 30.49, 30.47, 30.2, 30.1, 29.7, 27.5, 27.0. LRMS (ES
+
) m/z 478 [M]

+
. HRMS 

(ES
+
) m/z 478.2965 (calculated for C30H40O4N: 478.2957). 

 1-(16-((2,4-Dihydroxybenzoyl)oxy)hexadecyl)quinolin-1-ium bromide (10f). A 

solution of 7f (11 mg, 0.024 mmol) and quinoline (3 µL, 0.03 mmol) in anhydrous 

acetonitrile (0.5 mL) was heated at 80 ºC for 3 days in a Kimax tube. The precipitate 

was collected and triturated in Et2O to give a reddish solid which was recrystallized in 
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MeOH. Light-brown solid (5.2 mg, 37%). HPLC (UV) > 95%, mp = 138–139 ºC. 
1
H 

NMR (400 MHz, CD3OD) δ 9.42 (dd, J = 1.4, 5.8 Hz, 1H), 9.21 (dt, J = 1.1, 8.4 Hz, 

1H), 8.56 (d, J = 9.1 Hz, 1H), 8.44 (dd, J = 1.4, 8.3 Hz, 1H), 8.30 (ddd, J = 1.5, 7.0, 8.9 

Hz, 1H), 8.12 – 8.03 (m, 2H), 7.66 (d, J = 8.8 Hz, 1H), 6.33 (dd, J = 2.4, 8.8 Hz, 1H), 

6.27 (d, J = 2.4 Hz, 1H), 5.11 – 5.04 (m, 2H), 4.58 (brs, 2H), 4.30 (t, J = 6.54 Hz, 2H), 

2.15 – 2.05 (m, 2H), 1.80 – 1.71 (m, 2H), 1.53 – 1.27 (m, 24H). 
13

C NMR (101 MHz, 

CD3OD) δ 171.4, 165.6, 165.0, 150.3, 149.0, 139.4, 137.3, 132.6, 132.2, 131.8, 131.5, 

123.1, 119.7, 109.1, 105.7, 103.5, 66.0, 59.4, 31.1, 30.7, 30.61, 30.56, 30.53, 30.50, 

30.48, 30.2, 30.2, 29.7, 27.5, 27.0. LRMS (ES
+
) m/z 506 [M]

+
. HRMS (ES

+
) m/z 

506.3285 (calculated for C32H44O4N: 506.3270). 

  

Biology 

Test Organisms and culture media. Three strains of Trypanosoma brucei 

(bloodstream trypomastigotes only) were used in this study: (1) Wild type strain 

Trypanosoma brucei brucei Lister 427 (427-WT)
53

; (2) A multi-drug resistant strain, 

B48 which was created from 427-WT after deletion of the TbAT1 drug transporter
54

 

followed by adaptation to increasing concentrations to pentamidine;
55

 (3) A 427-WT-

derived clone, TbAOX, generated by transfecting the wild-type cells with the vector 

pHD1336
56

 containing the TAO gene, exactly as described for the expression of 

TbAT1.
57

  

All T. b. brucei strains were used only as bloodstream trypomastigotes, and cultured in 

standard HMI-9 medium, supplemented with 10 % heat inactivated Fetal Bovine Serum 

(FBS), 14 µL β-mercaptoethanol, and 3.0 g sodium hydrogen carbonate per litre of 

medium (pH7.4). Parasites were cultured in vented flasks at 37 ºC in a 5% CO2 
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atmosphere and were passage every 3 days. Bloodstream forms of the T. congolense 

savannah-type strain IL3000 were cultured exactly as described by Coustou et al
58

 and 

were kindly provided by Theo Baltz (Université Victor Segalen Bordeaux 2, Bordeaux, 

France). 

 

Drug susceptibility assays. The drug susceptibilities of bloodstream form 

trypanosomes T. b. brucei s427 and B48 were determined using the resazurin (Alamar 

blue) assay following a previously described resazurin-based method
59, 60

 with slight 

modifications. The assays were performed in 96-well plates with of 2 × 10
4 

cells/well 

for T. brucei and 5 × 10
4
 cells/well for T. congolense. Trypanosomes and test drugs 

were incubated for a period of 48 hours followed by the addition of 20 µL of Alamar 

Blue solution (125 mg/L resazurin sodium salt (Sigma-Aldrich) in phosphate buffered 

saline (PBS), followed by further 24 hours incubation. Four trypanocides were used as 

positive controls including: pentamidine, diminazene aceturate, salicylic hydroxamic 

acid (SHAM), and phenylarsine oxide (PAO) (all from Sigma-Aldrich). Fluorescence 

was measured using a FLUOstar Optima (BMG Labtech, Durham, NC, USA) at 

wavelengths of 544 nm for excitation, 590 for emission. EC50 values were calculated by 

non-linear regression using an equation for a sigmoidal dose-response curve with 

variable slope using Prism 5.0 (GraphPad Software Inc., San Diego, CA, USA). 

 

Drug sensitivity using Propidium Iodide (PI) assay. This procedure was used to 

monitor how monitor the effects of the test compounds act on trypanosomes in real 

time.
61

 Trypanosomes become fluorescent when the plasma membrane is breached and 

PI enters the cell and binds to nucleic acids.
62

 In this method, 100 µL of HMI-9 was 

added to each well of a 96-well plate and 100 µL from various compounds at different 
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concentrations, also in HMI-9, was added to the first column; wells receiving only 

media and served as drug free controls. To each well was added 100 µL of HMI-9 

containing 2×10
6
 trypanosomes and 18 µM of PI. Wells containing the same final 

concentration of PI (9 µM) in HMI-9 but no cells served to record background 

fluorescence. The plates were incubated in a FLUOstar OPTIMA fluorimeter (BMG 

Labtech) at 37 ºC with 5% CO2 atmosphere, and the fluorescence was recorded at 544 

nm excitation and 620 nm emission for 6 hours. 

 

Cytotoxicity assay using Human Embryonic Kidney (HEK)/ Human Foreskin 

Fibroblast (HFF) 293-T cells. Toxicity of drugs to mammalian cells was carried out in 

mammalian cell lines according to a method previously described,
63

 with slight 

modifications. Briefly, HEK or HFF cells were grown in a culture containing 500 mL 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma), 50 mL New-born Calf Serum 

(NBCS) (Gibco), 5 mL Penicillin/Streptomycin (Gibco) and 5 mL L-Glutamax (200 

mM, Gibco). Mammalian cells were incubated at 37 ºC/5% CO2 and were passaged 

when they reached 80-85% confluence in vented flasks. For the assay, cells were 

suspended at a density of 3 × 10
5 

cells/mL, of which 100 µL was added to each well of a 

96-well plate. The plate was incubated at 37 ºC + 5% CO2 for 24 hours to allow cell 

adhesion. Serial drug dilutions were prepared in a separate sterile plate and 100 µL was 

transferred to the wells containing the cells; PAO was used as positive control. The 

plate was then incubated at 37 ºC/5% CO2 for an additional period of 30 h followed by 

the addition of 10 µL of resazurin solution (125 mg/L in PBS) and a final incubation at 

37 ºC/5% CO2 for 24 hours. The plate was read in a FLUOstar OPTIMA fluorimeter at 

wavelengths 530 nm for excitation and 590 nm for emission. The data were analysed 
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using GraphPad Prism 5.0 to determine EC50 values. The selectivity index was 

calculated as EC50 (HEK)/EC50 (Trypanosoma). 

Oxygen Consumption assays. The Oxygen Consumption Rate Assay Kit (Cayman 

chemicals, Ann Arbor MI, USA) designed to measure extracellular oxygen 

consumption in cells was adapted to trypanosomes following manufacturer protocol 

with substantial modifications. Cells were seeded in a sterile 96-well flat bottom tissue 

culture plate at a seeding density of 8×10
4
 cells/well (i.e. 5×10

5
 cells/mL) in 150 µL of 

HMI-9 and test compounds were added in 10 µL to the appropriate wells, immediately 

prior to measurement; three blank wells received culture medium only. Glucose Oxidase 

Stock Solution (10 µL, provided by the kit), was added to a control well to deplete all 

oxygen from the medium, and 10 µL of SHAM was added to another control well (50 

µM final concentration). Finally, 10 µL of the probe solution was added to every well 

except the blank wells; all reagents used had been freshly prepared. Using a repeating 

pipette, every well was gently overlaid with 100 µL of mineral oil pre-warmed to 37 
o
C. 

The plate was immediately read kinetically for 120 minutes using a fluorimeter set at 37 

o
C and at a wavelength of 380 nm for excitation and 650 nm for emission. Gain was 

adjusted so that the fluorescent signal of probe in 21% O2 (air saturated) buffer was 

equal to 20% of the maximum measureable signal.  

Mitochondrial membrane potential (Ψm) determination using flow cytometry. 

Fluorescence Activated Cell Sorting technology (FACS) was employed in the 

determination of the change in mitochondrial membrane potential (MMP) due to 

exposure of trypanosomes to the test compounds by using tetramethylrhodamine ethyl 

ester (TMRE).
64

 The cell density was adjusted to 1×10
6
 cells/mL with and without test 

compounds for the start of the experiment. 1 mL of sample was transferred at each time 

point into a microfuge tube and centrifuged at 4500 rpm for 10 min at 4 °C. The pellet 
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was re-suspended in 1 mL PBS containing 200 nM of TMRE, followed by incubated at 

37 °C for 30 min. The suspension was placed on ice for at least 30 minutes before 

analysis by a Becton Dickinson FACS Calibur using a FL2-heigth detector and 

CellQuest and FlowJo software.
31

 Valinomycin (100 nM) and troglitazone (10 µM) 

were employed as negative (mitochondrial membrane depolarisation) and positive 

(mitochondrial membrane hyperpolarisation) controls respectively (Denninger et al., 

2007).
64

 Mitochondrial membrane potential was determined at 0, 1, 4, 8 and 12 h. 

Cell cycle assay (DNA content assay) using flow cytometry. Fluorescence Activated 

Cell Sorting Technology (FACS) was also used to study the effects of test compounds 

on DNA content in Trypanosoma brucei brucei s427 WT. Cell density was adjusted to 

1×10
7
 cells/mL with and without test compounds for the duration of the experiment. 1 

mL of sample was transferred at each time point into microfuge tubes and centrifuged at 

1620 × g for 10 min at 4 °C, washed once in PBS containing 5 mM of EDTA and re-

suspended and fixed in 1 mL of 70% methanol and 30% PBS/EDTA. The tube with the 

cells was left at 4 °C overnight in the dark, and the samples were subsequently washed 

once with 1 mL PBS/EDTA, re-suspended in 1 mL PBS/EDTA containing 10 µg/mL 

propidium iodide and incubated at 37 °C for 45 minutes. RNase A (10 µg/mL) was 

added before the samples were analysed by a Becton Dickinson FACSCalibur using the 

FL2-Area detector and CellQuest software. The data obtained were analysed using 

flowJo software (Flowjo LLC, Ashland, OR, USA). 

 

Production of recombinant TAO. Recombinant TAO was produced essentially as 

described in the haem-deficient E. coli strain FN102/pTAO in which TAO is the only 

oxidase activity, providing functional complementation of an otherwise lethal 
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phenotype,
45

 with small modifications. Specifically, the first 75 nucleotides of the open 

reading frame were omitted in order to produce the physiologically active TAO protein 

without the 25 amino acid mitochondrial targeting sequence (MTS). Briefly, the 

recombinant protein, containing an N-terminal 6-His tag and Small ubiquitin Modifier 

Protein (SUMO) sequence, produced in E. coli, was purified using nickel column 

chromatography. The 6×-HIS/SUMO tag was cleaved off after purification using 

Ubiquitin-like-specific protease 1, ULP-1, yielding the purified ∆MTS-TAO. The 

details of this improved method for obtaining rTAO will be reported in a separate paper, 

in preparation. The compounds were evaluated as inhibitors of rTAO activity using the 

ubiquinol oxidase assay exactly as described.
38

 In this assay, ubiquinol oxidase activity 

is measured by recording the absorbance change of 150 µM ubiquinol-1 at 278 nm in 

the presence of rTAO in Tris-HCl (pH 7.4), in the presence or absence of test compound 

at various concentrations at 25 ºC. 
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ABBREVIATIONS USED 

AAT, animal African trypanosomiasis; BSF trypanosome, bloodstream form 

trypanosome; 2,4-DHBA, 2,4-dihydroxybenzoic acid; EDC, 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide; HAT, human African trypanosomiasis; HFF cells, 

human foreskin fibroblast cells; LC, lipophilic cation; Ψm, mitochondrial membrane 

potential; PAO, phenylarsine oxide; SHAM, salicylhydroxamic acid; TAO, 

trypanosome alternative oxidase; TMRE, tetramethylrhodamine ethyl ester; TPP, 

triphenylphosphonium; MWI, microwave irradiation; RF, resistance factor; SI, 

selectivity index.  

Page 45 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 46

 

 

 

Page 46 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 47

REFERENCES 

1. Barrett, M. P.; Burchmore, R. J.; Stich, A.; Lazzari, J. O.; Frasch, A. C.; 

Cazzulo, J. J.; Krishna, S. The trypanosomiases. Lancet 2003, 362, 1469-1480. 

2. Giordani, F.; Morrison, L. J.; Rowan, T. G.; De Koning, H. P.; Barrett, M. P. 

The animal trypanosomiases and their chemotherapy: a review. Parasitology 2016, 1-

28. 

3. Delespaux, V.; de Koning, H. P. Drugs and drug resistance in African 

trypanosomiasis. Drug Resist. Updates 2007, 10, 30-50. 

4. Verner, Z.; Basu, S.; Benz, C.; Dixit, S.; Dobakova, E.; Faktorova, D.; Hashimi, 

H.; Horakova, E.; Huang, Z.; Paris, Z.; Pena-Diaz, P.; Ridlon, L.; Tyc, J.; Wildridge, D.; 

Zikova, A.; Lukes, J. Malleable mitochondrion of Trypanosoma brucei. Int. Rev. Cell 

Mol. Biol. 2016, 315, 73-151. 

5. Lanteri, C. A.; Tidwell, R. R.; Meshnick, S. R. The mitochondrion is a site of 

trypanocidal action of the aromatic diamidine DB75 in bloodstream forms of 

Trypanosoma brucei. Antimicrob. Agents Chemother. 2008, 52, 875-882. 

6. Alkhaldi, A. A. M.; Martinek, J.; Panicucci, B.; Dardonville, C.; Zíková, A.; de 

Koning, H. P. Trypanocidal action of bisphosphonium salts through a mitochondrial 

target in bloodstream form Trypanosoma brucei. Int. J. Parasitol. Drugs Drug Resist. 

2016, 6, 23-34. 

7. Cortes, L. A.; Castro, L.; Pesce, B. r.; Maya, J. D.; Ferreira, J.; Castro-Castillo, 

V.; Parra, E.; Jara, J. A.; López-Muñoz, R. Novel Gallate Triphenylphosphonium 

Derivatives with Potent Antichagasic Activity. PLoS ONE 2015, 10, e0136852. 

8. Fidalgo, L. M.; Gille, L. Mitochondria and trypanosomatids: Targets and drugs. 

Pharm. Res. 2011, 28, 2758-2770. 

Page 47 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 48

9. Nihei, C.; Fukai, Y.; Kita, K. Trypanosome alternative oxidase as a target of 

chemotherapy. Biochim. Biophys. Acta 2002, 1587, 234-239. 

10. Tielens, A. G. M.; Van, H. J. J. Differences in energy metabolism between 

Trypanosomatidae. Parasitol. Today 1998, 14, 265-271. 

11. Grant, P. T.; Sargent, J. R. Properties of L-alpha-glycerophosphate oxidase and 

its role in the respiration of Trypanosoma rhodesiense. Biochem. J. 1960, 76, 229-237. 

12. Clarkson, A. B., Jr.; Bienen, E. J.; Pollakis, G.; Grady, R. W. Respiration of 

bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-

like alternative oxidase. J. Biol. Chem. 1989, 264, 17770-17776. 

13. Nakamura, K.; Fujioka, S.; Fukumoto, S.; Inoue, N.; Sakamoto, K.; Hirata, H.; 

Kido, Y.; Yabu, Y.; Suzuki, T.; Watanabe, Y.-i.; Saimoto, H.; Akiyama, H.; Kita, K. 

Trypanosome alternative oxidase, a potential therapeutic target for sleeping sickness, is 

conserved among Trypanosoma brucei subspecies. Parasitol. Int. 2010, 59, 560-564. 

14. Yabu, Y.; Suzuki, T.; Nihei, C.; Minagawa, N.; Hosokawa, T.; Nagai, K.; Kita, 

K.; Ohta, N. Chemotherapeutic efficacy of ascofuranone in Trypanosoma vivax-infected 

mice without glycerol. Parasitol. Int. 2006, 55, 39-43. 

15. Chaudhuri, M.; Ott, R. D.; Hill, G. C. Trypanosome alternative oxidase: from 

molecule to function. Trends Parasitol. 2006, 22, 484-491. 

16. Clarkson, A. B., Jr.; Brohn, F. H. Trypanosomiasis: an approach to 

chemotherapy by the inhibition of carbohydrate catabolism. Science 1976, 194, 204-

206. 

17. Ott, R.; Chibale, K.; Anderson, S.; Chipeleme, A.; Chaudhuri, M.; Guerrah, A.; 

Colowick, N.; Hill, G. C. Novel inhibitors of the trypanosome alternative oxidase 

inhibit Trypanosoma brucei brucei growth and respiration. Acta Trop. 2006, 100, 172-

184. 

Page 48 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 49

18. Grady, R. W.; Bienen, E. J.; Clarkson, A. B., Jr. p-Alkyloxybenzhydroxamic 

acids, effective inhibitors of the trypanosome glycerol-3-phosphate oxidase. Mol. 

Biochem. Parasitol. 1986, 19, 231-240. 

19. Clarkson, A. B., Jr.; Grady, R. W.; Grossman, S. A.; McCallum, R. J.; Brohn, F. 

H. Trypanosoma brucei brucei: a systematic screening for alternatives to the 

salicylhydroxamic acid-glycerol combination. Mol. Biochem. Parasitol. 1981, 3, 271-

291. 

20. Grady, R. W.; Bienen, E. J.; Dieck, H. A.; Saric, M.; Clarkson, A. B., Jr. N-n-

alkyl-3,4-dihydroxybenzamides as inhibitors of the trypanosome alternative oxidase: 

activity in vitro and in vivo. Antimicrob. Agents Chemother. 1993, 37, 1082-1085. 

21. Grady, R. W.; Bienen, E. J.; Clarkson, A. B., Jr. Esters of 3,4-dihydroxybenzoic 

acid, highly effective inhibitors of the sn-glycerol-3-phosphate oxidase of Trypanosoma 

brucei brucei. Mol. Biochem. Parasitol. 1986, 21, 55-63. 

22. T. Madak, J.; Neamati, N. Membrane Permeable Lipophilic Cations as 

Mitochondrial Directing Groups. Curr. Topics Med. Chem. 2015, 15, 745-766. 

23. Smith, R. A. J.; Adlam, V. J.; Blaikie, F. H.; Manas, A. R. B.; Porteous, C. M.; 

James, A. M.; Ross, M. F.; Logan, A.; Cochemé, H. M.; Trnka, J.; Prime, T. A.; 

Abakumova, I.; Jones, B. A.; Filipovska, A.; Murphy, M. P. Mitochondria-targeted 

antioxidants in the treatment of disease. Ann. N. Y. Acad. Sci. 2008, 1147, 105-111. 

24. Smith, R. A. J.; Porteous, C. M.; Gane, A. M.; Murphy, M. P. Delivery of 

bioactive molecules to mitochondria in vivo. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 

5407-5412. 

25. Smith, R. A. J.; Hartley, R. C.; Murphy, M. P. Mitochondria-Targeted Small 

Molecule Therapeutics and Probes. Antioxid. Redox Signaling 2011, 15, 3021-3038. 

Page 49 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 50

26. Long, T. E.; Lu, X.; Galizzi, M.; Docampo, R.; Gut, J.; Rosenthal, P. J. 

Phosphonium lipocations as antiparasitic agents. Bioorg. Med. Chem. Lett. 2012, 22, 

2976-2979. 

27. Ross, M. F.; Da Ros, T.; Blaikie, F. H.; Prime, T. A.; Porteous, C. M.; Severina, 

I. I.; Skulachev, V. P.; Kjaergaard, H. G.; Smith, R. A. J.; Murphy, M. P. Accumulation 

of lipophilic dications by mitochondria and cells. Biochem. J. 2006, 400, 199-208. 

28. Dardonville, C.; Alkhaldi, A. A. M.; De Koning, H. P. SAR Studies of Diphenyl 

Cationic Trypanocides: Superior Activity of Phosphonium over Ammonium Salts. ACS 

Med. Chem. Lett. 2015, 6, 151-155. 

29. Taladriz, A.; Healy, A.; Flores Pérez, E. J.; Herrero García, V.; Ríos Martínez, 

C.; Alkhaldi, A. A. M.; Eze, A. A.; Kaiser, M.; De Koning, H. P.; Chana, A.; 

Dardonville, C. Synthesis and structure-activity analysis of new phosphonium salts with 

potent activity against African trypanosomes. J. Med. Chem. 2012, 55, 2606-2622. 

30. Luque-Ortega, J. R.; Reuther, P.; Rivas, L.; Dardonville, C. New Benzophenone-

Derived Bisphosphonium Salts as Leishmanicidal Leads Targeting Mitochondria 

through Inhibition of Respiratory Complex II. J. Med. Chem. 2010, 53, 1788-1798. 

31. Ibrahim, H. M. S.; Al-Salabi, M. I.; Sabbagh, N. E.; Quashie, N. B.; Alkhaldi, A. 

A. M.; Escale, R.; Smith, T. K.; Vial, H. J.; De Koning, H. P. Symmetrical choline-

derived dications display strong anti-kinetoplastid activity. J. Antimicrob. Chemother. 

2011, 66, 111-125. 

32. Eze, A. A.; Gould, M. K.; Munday, J. C.; Tagoe, D. N.; Stelmanis, V.; 

Schnaufer, A.; De Koning, H. P. Reduced Mitochondrial Membrane Potential Is a Late 

Adaptation of Trypanosoma brucei brucei to Isometamidium Preceded by Mutations in 

the gamma Subunit of the F1Fo-ATPase. PLoS Negl. Trop. Dis. 2016, 10, e0004791. 

Page 50 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 51

33. Snow, B. J.; Rolfe, F. L.; Lockhart, M. M.; Frampton, C. M.; O'Sullivan, J. D.; 

Fung, V.; Smith, R. A. J.; Murphy, M. P.; Taylor, K. M. A double-blind, placebo-

controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-

modifying therapy in Parkinson's disease. Mov. Disord. 2010, 25, 1670-1674. 

34. Siedow, J. N.; Bickett, D. M. Structural features required for inhibition of 

cyanide-insensitive electron transfer by propyl gallate. Archiv. Biochem. Biophys. 1981, 

207, 32-39. 

35. Martin, N. I.; Woodward, J. J.; Marletta, M. A. N
G
-Hydroxyguanidines from 

Primary Amines. Org. Lett. 2006, 8, 4035-4038. 

36. Rao, A. V. R.; Reddy, G. R.; Rao, B. V. Stereoselective synthesis of 

theonelladins A-D. J. Org. Chem. 1991, 56, 4545-4547. 

37. Ding, S.; Jiao, N. N,N-dimethylformamide: A multipurpose building block. 

Angew. Chem. Int. Ed. 2012, 51, 9226-9237. 

38. Stewart, M. L.; Krishna, S.; Burchmore, R. J.; Brun, R.; de Koning, H. P.; 

Boykin, D. W.; Tidwell, R. R.; Hall, J. E.; Barrett, M. P. Detection of arsenical drug 

resistance in Trypanosoma brucei with a simple fluorescence test. Lancet 2005, 366, 

486-487. 

39. Brohn, F. H.; Clarkson, A. B., Jr. Quantitative effects of salycylhydroxamic acid 

and glycerol on Trypanosoma brucei glycolysis in vitro and in vivo. Acta Trop. 1978, 

35, 23-33. 

40. Balogun, E. O.; Inaoka, D. K.; Shiba, T.; Kido, Y.; Nara, T.; Aoki, T.; Honma, 

T.; Tanaka, A.; Inoue, M.; Matsuoka, S.; Michels, P. A.; Harada, S.; Kita, K. 

Biochemical characterization of highly active Trypanosoma brucei gambiense glycerol 

kinase, a promising drug target. J. Biochem. 2013, 154, 77-84. 

Page 51 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 52

41. Ohashi-Suzuki, M.; Yabu, Y.; Ohshima, S.; Nakamura, K.; Kido, Y.; Sakamoto, 

K.; Kita, K.; Ohta, N.; Suzuki, T. Differential kinetic activities of glycerol kinase 

among African trypanosome species: phylogenetic and therapeutic implications. J. Vet. 

Med. Sci. 2011, 73, 615-621. 

42. Haanstra, J. R.; van Tuijl, A.; Kessler, P.; Reijnders, W.; Michels, P. A.; 

Westerhoff, H. V.; Parsons, M.; Bakker, B. M. Compartmentation prevents a lethal 

turbo-explosion of glycolysis in trypanosomes. Proc. Natl. Acad. Sci. U. S. A. 2008, 

105, 17718-17723. 

43. Hannaert, V.; Bringaud, F.; Opperdoes, F. R.; Michels, P. A. Evolution of 

energy metabolism and its compartmentation in Kinetoplastida. Kinetoplastid Biol. Dis. 

2003, 2, 11. 

44. Fairlamb, A. H.; Opperdoes, F. R.; Borst, P. New approach to screening drugs 

for activity against African trypanosomes. Nature 1977, 265, 270-271. 

45. Kido, Y.; Sakamoto, K.; Nakamura, K.; Harada, M.; Suzuki, T.; Yabu, Y.; 

Saimoto, H.; Yamakura, F.; Ohmori, D.; Moore, A.; Harada, S.; Kita, K. Purification 

and kinetic characterization of recombinant alternative oxidase from Trypanosoma 

brucei brucei. Biochim. Biophys. Acta, Bioenerg. 2010, 1797, 443-450. 

46. Hamilton, V.; Singha, U. K.; Smith, J. T.; Weems, E.; Chaudhuri, M. 

Trypanosome Alternative Oxidase Possesses both an N-Terminal and Internal 

Mitochondrial Targeting Signal. Eukaryot. Cell 2014, 13, 539-547. 

47. Eperon, G.; Balasegaram, M.; Potet, J.; Mowbray, C.; Valverde, O.; Chappuis, 

F. Treatment options for second-stage gambiense human African trypanosomiasis. Exp. 

Rev. Anti-infect. Ther. 2014, 12, 1407-1417. 

48. Rodenko, B.; De Koning, H. Rational selection of antimicrobial drug targets: 

unique or conserved? In Trypanosomatid Diseases: Molecular Routes to Drug 

Page 52 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 53

Discovery, Jäger, T.; Koch, O.; Flohe, L., Eds. Wiley-Blackwell: Weinheim, 2013; pp 

281-296. 

49. de Macêdo, J. P.; Schumann Burkard, G.; Niemann, M.; Barrett, M. P.; Vial, H.; 

Mäser, P.; Roditi, I.; Schneider, A.; Bütikofer, P. An Atypical Mitochondrial Carrier 

That Mediates Drug Action in Trypanosoma brucei. PLoS Pathog. 2015, 11, e1004875. 

50. Munday, J. C.; Eze, A. A.; Baker, N.; Glover, L.; Clucas, C.; Aguinaga Andrés, 

D.; Natto, M. J.; Teka, I. A.; McDonald, J.; Lee, R. S.; Graf, F. E.; Ludin, P.; 

Burchmore, R. J. S.; Turner, C. M. R.; Tait, A.; MacLeod, A.; Mäser, P.; Barrett, M. P.; 

Horn, D.; De Koning, H. P. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity 

transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic 

determinant of resistance to these drugs. J. Antimicrob. Chemother. 2014, 69, 651-663. 

51. Baker, N.; de Koning, H. P.; Mäser, P.; Horn, D. Drug resistance in African 

trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol. 2013, 29, 

110-118. 

52. Giordani, F.; Morrison, L. J.; Rowan, T.; De Koning, H. P.; Barrett, M. P. The 

animal trypanosomiases and their chemotherapy - a review. Parasitol. Int. 2016, in 

press. 

53. de Koning, H. P.; MacLeod, A.; Barrett, M. P.; Cover, B.; Jarvis, S. M. Further 

evidence for a link between melarsoprol resistance and P2 transporter function in 

African trypanosomes. Mol. Biochem. Parasitol. 2000, 106, 181-185. 

54. Matovu, E.; Stewart, M. L.; Geiser, F.; Brun, R.; Mäser, P.; Wallace, L. J. M.; 

Burchmore, R. J.; Enyaru, J. C. K.; Barrett, M. P.; Kaminsky, R.; Seebeck, T.; De 

Koning, H. P. Mechanisms of arsenical and diamidine uptake and resistance in 

Trypanosoma brucei. Eukaryot. Cell 2003, 2, 1003-1008. 

Page 53 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 54

55. Bridges, D. J.; Gould, M. K.; Nerima, B.; Mäser, P.; Burchmore, R. J. S.; De 

Koning, H. P. Loss of the high-affinity pentamidine transporter is responsible for high 

levels of cross-resistance between arsenical and diamidine drugs in african 

trypanosomes. Mol. Pharmacol. 2007, 71, 1098-1108. 

56. Biebinger, S.; Wirtz, L. E.; Lorenz, P.; Clayton, C. Vectors for inducible 

expression of toxic gene products in bloodstream and procyclic Trypanosoma brucei. 

Mol. Biochem. Parasitol. 1997, 85, 99-112. 

57. Munday, J. C.; Rojas Lopez, K. E.; Eze, A. A.; Delespaux, V.; Van Den 

Abbeele, J.; Rowan, T.; Barrett, M. P.; Morrison, L. J.; de Koning, H. P. Functional 

expression of TcoAT1 reveals it to be a P1-type nucleoside transporter with no capacity 

for diminazene uptake. Int. J. Parasitol. Drugs Drug Resist. 2013, 3, 69-76. 

58. Coustou, V.; Guegan, F.; Plazolles, N.; Baltz, T. Complete in vitro life cycle of 

Trypanosoma congolense: development of genetic tools. PLoS Negl. Trop. Dis. 2010, 4, 

e618. 

59. Rodenko, B.; Van Der Burg, A. M.; Wanner, M. J.; Kaiser, M.; Brun, R.; Gould, 

M.; De Koning, H. P.; Koomen, G. J. 2,N
6
-disubstituted adenosine analogs with 

antitrypanosomal and antimalarial activities. Antimicrob. Agents Chemother. 2007, 51, 

3796-3802. 

60. Omar, R. M.; Igoli, J.; Gray, A. I.; Ebiloma, G. U.; Clements, C.; Fearnley, J.; 

Edrada Ebel, R. A.; Zhang, T.; De Koning, H. P.; Watson, D. G. Chemical 

characterisation of Nigerian red propolis and its biological activity against 

Trypanosoma Brucei. Phytochem. Anal. 2016, 27, 107-115. 

61. Rios Martinez, C. H.; Nue Martinez, J. J.; Ebiloma, G. U.; de Koning, H. P.; 

Alkorta, I.; Dardonville, C. Lowering the pKa of a bisimidazoline lead with halogen 

Page 54 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 55

atoms results in improved activity and selectivity against Trypanosoma brucei in vitro. 

Eur. J. Med. Chem. 2015, 101, 806-817. 

62. Gould, M. K.; Vu, X. L.; Seebeck, T.; de Koning, H. P. Propidium iodide-based 

methods for monitoring drug action in the kinetoplastidae: Comparison with the Alamar 

Blue assay. Anal. Biochem. 2008, 382, 87-93. 

63. Rodenko, B.; Wanner, M. J.; Alkhaldi, A. A. M.; Ebiloma, G. U.; Barnes, R. L.; 

Kaiser, M.; Brun, R.; McCulloch, R.; Koomen, G.-J.; de Koning, H. P. Targeting the 

Parasite's DNA with Methyltriazenyl Purine Analogs Is a Safe, Selective, and 

Efficacious Antitrypanosomal Strategy. Antimicrob. Agents Chemother. 2015, 59, 6708-

6716. 

64. Denninger, V.; Figarella, K.; Schonfeld, C.; Brems, S.; Busold, C.; Lang, F.; 

Hoheisel, J.; Duszenko, M. Troglitazone induces differentiation in Trypanosoma brucei. 

Exp. Cell Res. 2007, 313, 1805-1819. 

 

Page 55 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 56

TOC graphic 

  

Page 56 of 56

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


