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Abstract

A continuous output feedback control scheme rendering the closed-loop double integrator system globally stable in finite-time
is presented. In particular, the convergence time is independent of initial conditions. The bi-limit homogeneous technique
is used for controller and observer designs with fixed-time convergence. Then, a continuous output feedback control law is
proposed for nominal double-integrator system and its perturbed version. The homogeneity and Lyapunov techniques are used
to ensure the fixed-time stability of the closed-loop system under output feedback control framework. Finally, the efficiency of
the proposed algorithms are illustrated by numerical simulations.
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1 Introduction

The system with double-integrator dynamics is one of
the most fundamental systems in control theory and has
many applications in practice, such as spacecraft rota-
tion [1], rotary crane motion [2] and manipulator motion
[3]. Moreover, a design method developed for this sys-
tem can be extended to a more general case (via back-
stepping, for example). Therefore, control of a double-
integrator system has been of interest since the ear-
ly days of control theory. Most of the existing control
techniques provide an asymptotic or exponential stabil-
ity which implies the convergence of the system trajec-
tories to an equilibrium state over infinite horizon. In
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practice, finite-time convergence is much more desirable.
Moreover, the closed-loop systems under finite-time con-
trol law usually demonstrate higher accuracy and bet-
ter disturbance rejection properties [4]. Consequently,
the finite-time control techniques have been an intensive
subject in the last years.

The benchmark work on finite-time control was pro-
posed by Bhat in [4] where the relationship between
the regularity properties of Lyapunov function and the
convergence time was established. Thereafter, a num-
ber of finite-time control schemes have been develope-
d based on Lyapunov function methods [5], [6]. Anoth-
er finite-time control technique is frequently associated
with high-order sliding mode (HOSM) controls provid-
ing finite-time convergence to a sliding manifold. The
theory of HOSM was well-developed in [7] and [8]. Many
applications of the method can be found in aerospace
systems [9], mechanical systems [3] and electric system-
s [10]. Also, the finite-time output feedback was dis-
cussed in [11] for a double-integrator system. However,
the convergence time in these methods grows unbound-
edly when initial condition tends to infinity. Recently,
the fixed-time stability theory, first developed in [12],
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has been intensively investigated in [13],[14],[15],[16] and
[17]. The fixed-time stability is stronger than the finite-
time stability and itmeans that the convergence time of a
global finite-time stable system is bounded independen-
t of initial conditions. This property is especially useful
for either hybrid or switching systems with some kind of
dwell time. In addition, it looks promising for a system
if a controller or an observer can be designed to ensure
that the convergence is achieved in a fixed-time duration
regardless of initial conditions. A sufficient condition for
the fixed-time stability of nonlinear systems was pro-
vided in [13] and some fixed-time control laws, such as
[18] and [19], were derived based on this condition. How-
ever, it is nontrivial to construct a Lyapunov function
satisfying particular conditions for high-order systems.
The concept of bi-limit homogeneity introduced in [12]
shows that an asymptotically stable system is fixed-time
stable if it is homogeneous with negative degree in 0-
limit, and homogeneous with positive degree in∞-limit,
which provides an alternate way to design a fixed-time
controller or observer. An arbitrary order robust sliding
mode differentiator was designed based on bi-limit ho-
mogeneous technique in [20] providing uniform conver-
gence regardless of initial conditions. The existing works
have been focused mainly on state feedback and how-
ever the output feedback is seldom discussed. It should
be noted that the linear growth condition, used in the
stability proof for systems under finite-time output feed-
back control [11], does not hold for systems under fixed-
time output feedback control. Therefore, the finite-time
escape may occur which makes the design of fixed-time
output feedback more challenging.

Motivated by the above observations, a new fixed-time
output feedback control scheme is proposed in this
work. The main contributions of this paper are twofold.
First, an unified framework for fixed-time convergent
controller and observer is developed based on bi-limit
homogeneous technique. Second, a continuous fixed-
time output feedback control law is constructed and
the fixed-time stability proof for the closed-loop sys-
tem is derived by using the homogeneity and Lyapunov
function.

The organization of the paper is as follows. Section II is
devoted to some definitions and lemmas related to the
homogeneity. Then, the state feedback controller and the
state observer are designed in Section III and IV, respec-
tively. In Section V, the synthesis design is introduced to
stabilize the double-integrator systems by output feed-
back. The simulation results are provided in Section VI.
Finally, the concluding remarks are summarized in Sec-
tion VII.

2 Preliminaries

2.1 Notations

Throughout the paper, the following notations will be
used.R is the set of real numbers andR+ = {x ∈ R : x >
0}. For any non-negative real number α, the function
x 7→ ⌈x⌋α is defined as ⌈x⌋α = |x|αsign(x) for any x ∈
R. It follows from the definition that d⌈x⌋α

dx = α|x|α−1,

⌈x⌋0 = sign(x), ⌈x⌋ = x and ⌈x⌋2 = x|x|. The function
Γ : R2

+ 7→ R is defined as Γ(a, b) = a
1+a (1 + b) for any

a, b ∈ R+.

2.2 Definitions and Lemmas

Consider the nonlinear dynamical system

ẋ(t) = f(x(t)), t > t0, x(t0) = x0 (1)

where x = [x1, .., xn]
T ∈ Rn is the state vector, f(x) :

Rn → Rn is a possibly discontinuous vector field. In this
case, the solutions of (1) are understood in the sense
of Filippov [21,22]. It is assumed that the origin is an
equilibrium point of system (1). Throughout the paper,
it is assumed that the solution of (1) starts at t0 = 0,
denoted by X(t, x0) with x0 as the initial condition.

Let r = [r1, ..., rn] ∈ Rn be the weight vector with
ri > 0, (i = 1, ..., n). The dilation mapping is defined as
Λr
λ(x) = [λr1x1, ..., λ

rnxn]
T for any λ > 0.

Definition 1 [23] A function g(x) : Rn → R is said to
be r-homogeneous with degree k ∈ R if for all x ∈ Rn and
all λ > 0 we have g(Λr

λ(x)) = λkg(x).

Definition 2 [23] A vector field f(x) : Rn → Rn is
said to be r-homogeneous with degree k if for each i ∈
{1, ..., n}, the component fi(x) is r-homogeneous of de-
gree of k + ri; that is fi(Λ

r
λ(x)) = λk+rifi(x) for any

λ > 0 and x ∈ Rn.

Definition 3 [12] A function g(x) : Rn → R is said to
be homogeneous in the p-limit (p=0 or ∞) with triple
(rp, kp, gp), where rp = [rp,1, ..., rp,n] ∈ Rn is the weight
vector, kp is the degree, and gp the approximating func-
tion, if g(x) is continuous, gp is continuous and not iden-
tically zero, and, for each compact set C ∈ Rn\{0}, the
condition lim

λ→p
max
x∈C

|λ−kpg(Λ
rp
λ (x))− gp(x)| = 0 holds.

Definition 4 [12] A vector field f(x) : Rn → Rn is
said to be homogeneous in the p-limit with associated
triple (rp, kp, fp) where rp = [rp,1, ..., rp,n] ∈ Rn is the
weight vector, kp is the degree and fp the approximating
vector field, if, for each i, kp + rp,i > 0 and the function
fi(x) is homogeneous in the p-limit with associated triple
(rp, kp + rp,i, fp,i).
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Definition 5 [12] A function (resp. vector field) is said
to be homogeneous in the bi-limit if it is homogeneous in
the 0-limit and homogeneous in the ∞-limit simultane-
ously.

Definition 6 [7] The origin of system (1) is said to be
globally finite-time stable if it is Lyapunov stable and for
any R > 0 exists T > 0, such that any trajectory starting
within the ball ||x|| ≤ R stabilizes at the origin in the
time T .

Definition 7 [13] The origin of system (1) is said to
be fixed-time stable if it is globally finite-time stable and
there exists a fixed positive constant Tmax such that T ≤
Tmax for any x0 ∈ Rn.

Remark 8 From the definitions, it can be seen that
the convergence time T for fixed-time stable system-
s is bounded even when initial condition x0 tend-
s to infinity. To illustrate this point, the follow-
ing two examples are considered. The origin of sys-
tem ẋ = −⌈x⌋ 1

2 , x(0) = x0, x ∈ R is finite-time
stable, since its solution has the form X(t, x0) =

sign(x0)[
√

|x0| − 1
2 t]

2 for t < 2
√
|x0| and X(t, x0) = 0

for t ≥ 2
√
|x0|. The convergence time T = 2

√
|x0| → ∞

as |x0| → ∞. The origin of system ẋ = −⌈x⌋ 1
2 − ⌈x⌋2

is fixed-time stable, since its solution is denoted by
X(t, x0) = sign(x0)tan

2(arctan(
√

|x0|)− 0.5t) for

t < 2arctan(
√
|x0|) and X(t, x0) = 0 for t ≥

2arctan(
√
|x0|). The convergence time T is globally

bounded satisfying T ≤ 2arctan(
√
|x0|) ≤ π.

Definition 9 The origin of system (1) is said to be prac-
tically fixed-time stable, if it is Lyapunov stable and there
exist a bounded region Ω ∈ Rn and T > 0 such that for
anyR > 0 any trajectory starting within the ball ||x|| ≤ R
converges to Ω in the time T and stays in Ω forever.

Lemma 10 [12] For system (1), suppose that f(x) is
a homogeneous in the bi-limit with associated triples
(r0, k0, f0) and (r∞, k∞, f∞). If the origins of systems
ẋ = f(x), ẋ0 = f0(x) and ẋ∞ = f∞(x) are globally
asymptotically stable, then the following statements hold

1) The origin of (1) is fixed-time stable when condition
k∞ > 0 > k0 holds;

2) Let dV0 and dV∞ be real numbers such that dV0 >
max
1≤i≤n

r0,i and dV∞ > max
1≤i≤n

r∞,i. There exists a con-

tinuous, positive definite and proper function V (x) such
that the function ∂V

∂xi
is homogeneous in the bi-limit with

triples
(
r0, dV0 − r0,i,

∂V0

∂xi

)
and

(
r∞, dV∞ − r∞,i,

∂V∞
∂xi

)
and the function ∂V

∂x f(x) is negative definite.

3 Fixed-Time State Feedback Control

To begin with, we consider the fixed-time stability of the
following double-integrator system

ẋ1 = x2, ẋ2 = u, x(0) = x0 (2)

where x1 and x2 ∈ R are the measurable state variables
and u ∈ R is the control input. To ensure the fixed-
time stability of system (2), the following control law is
proposed

u(x) = −
(
k1⌈x1⌋ϱ1 + k′1⌈x1⌋+ k′′1 ⌈x1⌋ϱ

′
1

)
−
(
k2⌈x2⌋ϱ2

+ k′2⌈x2⌋+ k′′2 ⌈x2⌋ϱ
′
2

)
(3)

where parameters ki > 0, k′i > 0, k′′i > 0, (i = 1, 2) and
ϱi, ϱ

′
i, (i = 1, 2) are given by

ϱ1 =
ϱ

2− ϱ
, ϱ2 = ϱ, ϱ′1 =

4− 3ϱ

2− ϱ
, ϱ′2 =

4− 3ϱ

3− 2ϱ
(4)

with ϱ ∈ (0, 1). The parameters provided in (4) are cho-
sen from the homogeneity reasoning. To show that, let
fs(x) = [x2, u(x)]

T denote the vector field of closed-loop
system (2) under control law (3). Furthermore, define
vectors

fs0(x) = [x2,−k1⌈x1⌋ϱ1 − k2⌈x2⌋ϱ2 ]T (5)

fs∞(x) = [x2,−k′′1 ⌈x1⌋ϱ
′
1 − k′′2 ⌈x2⌋ϱ

′
2 ]T (6)

It can be observed from (4) that 0 < ϱi < 1 < ϱ′i, (i =
1, 2) hold for any ϱ ∈ (0, 1). It follows that fs0(x) and
fs∞(x) can be considered as approximating functions for
fs(x) in 0-limit and ∞-limit, respectively. Furthermore,
a direct verification shows, taking rs0 = [ 2−ϱ

1−ϱ ,
1

1−ϱ ]
T ,

the vector field fs0(x) is rs0−homogeneous of de-
gree ks0 = −1. Similarly, the vector field fs∞(x) is
rs∞−homogeneous of degree ks∞ = 1 when fixing
rs∞ = [ 2−ϱ

1−ϱ ,
3−2ϱ
1−ϱ ]T . Therefore, the closed-loop system

(2) under the control law (3) with parameters (4) is
homogeneous in the bi-limit with (rs0 , ks0 , fs0(x)) and
(rs∞ , ks∞ , fs∞(x)).

Theorem 11 Consider double-integrator system (2)
under control law (3) with parameters given in (4).
Then, the origin of system (2) is fixed-time stable if
the parameters ki > 0, k′i > 0, k′′i > 0, (i = 1, 2) and
ϱ ∈ (0, 1) are selected.

Proof. The proof is divided into two steps. First, we
prove that the closed-loop system (2) under the control
law (3) with the parameters provided in (4) is globally
asymptotically stable. Then, we show that its approxi-
mating systems in 0-limit and ∞-limit are also globally
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asymptotically stable. Taking into account the bi-limit
homogeneity of the system, it follows from Lemma 10
that the proof is completed.

To examine the stability of this system, consider the
Lyapunov function candidate:

V = 2k1(ϱ
′
1 + 1)|x1|ϱ1+1 + k′1(ϱ1 + 1)(ϱ′1 + 1)|x1|2

+ 2k′′1 (ϱ1 + 1)|x1|ϱ
′
1+1 + (ϱ1 + 1)(ϱ′1 + 1)|x2|2

(7)
It is obvious that V in (7) is continuously differentiable,
positive definite and radially unbounded. The derivative
of V along the trajectories in (2) with control (3) is
derived by

V̇ = k1Π⌈x1⌋ϱ1 ẋ1+k′1Π⌈x1⌋ẋ1+k′′1Π⌈x1⌋ϱ
′
1 ẋ1+Π⌈x2⌋ẋ2

(8)
where Π = 2(ϱ1 + 1)(ϱ′1 + 1). Substituting (2) and (3)
into (8) results in

V̇ = Πx2

(
k1⌈x1⌋ϱ1 + k′1⌈x1⌋+ k′′1 ⌈x1⌋ϱ

′
1

)
−Π⌈x2⌋

×
(
k1⌈x1⌋ϱ1 + k′1⌈x1⌋+ k′′1 ⌈x1⌋ϱ

′
1 + k2⌈x2⌋ϱ2

+ k′2⌈x2⌋+ k′′2 ⌈x2⌋ϱ
′
2

)
(9)

Since ⌈x2⌋ = x2 and ⌈x2⌋⌈x2⌋α = |x2||x2|α hold for any
α ≥ 0, (9) can be rewritten as

V̇ = −Π|x2|
(
k2|x2|ϱ2 + k′2|x2|+ k′′2 |x2|ϱ

′
2

)
(10)

If follows from (10) that V̇ < 0 everywhere except on

the line x2 = 0 where V̇ = 0. Furthermore, note that
for system (2) under control law (3) to guarantee the

condition V̇ = 0, the system trajectory must evolve on
x1 = x2 = 0. By applying LaSalle invariance principle
[25], we have that the origin of the closed-loop system
is globally asymptotically stable.

For the system ẋ = fs0(x) with fs0(x) being de-
fined in (5), if the Lyapunov function is chosen as
V0 = 0.5(ϱ1 + 1)|x2|2 + k1|x1|ϱ1+1, it can be easily cal-

culated that V̇0 = −(ϱ1 + 1)k2|x2|ϱ2+1. Similarly, if we

choose V∞ = 0.5(ϱ′1 + 1)|x2|2 + k′′1 |x1|ϱ
′
1+1 for system

ẋ = fs∞(x) with fs∞(x) being defined in (6), it can

be seen that the equality V̇∞ = −(ϱ′1 + 1)k′′2 |x2|ϱ
′
2+1

holds for any x ∈ R2. The LaSalle invariance principle
[25] ensures the global asymptotic stability of systems
ẋ = fs0(x) and ẋ = fs∞(x).

It follows from the above analysis that all the conditions
in the first statement of Lemma 10 are satisfied, which,
in turn, prove the conclusion. This completes the proof.

4 Fixed-Time State Observer

In this section, a new fixed-time state observer is devel-
oped for the double-integrator system as follows{

˙̂x1 = x̂2 + k̄1⌈e1⌋ϱ̄1 + k̄′1⌈e1⌋+ k̄′′1 ⌈e1⌋ϱ̄
′
1

˙̂x2 = u+ k̄2⌈e1⌋ϱ̄2 + k̄′2⌈e1⌋+ k̄′′2 ⌈e1⌋ϱ̄
′
2

(11)

with e1 = x1 − x̂1, k̄i > 0, k̄′i > 0, k̄′′i > 0, (i = 1, 2) and
the parameters ϱ̄i, ϱ̄

′
i, (i = 1, 2) are given by

ϱ̄1 = ϱ̄, ϱ̄2 = 2ϱ̄− 1, ϱ̄′1 = 2− ϱ̄, ϱ̄′2 = 3− 2ϱ̄ (12)

where ϱ̄ ∈ ( 12 , 1). Subtracting (11) from (2) yields the
following error dynamics{

ė1 = −k̄1⌈e1⌋ϱ̄1 − k̄′1⌈e1⌋ − k̄′′1 ⌈e1⌋ϱ̄
′
1 + e2

ė2 = −k̄2⌈e1⌋ϱ̄2 − k̄′2⌈e1⌋ − k̄′′2 ⌈e1⌋ϱ̄
′
2

(13)

with e2 = x2 − x̂2. The parameters (12) are designed
to ensure that the system (13) is bi-limit homogeneous.
To illustrate that, define e = [e1, e2]

T and let fp(e) be
the vector field of system (13). Then, system (13) can be
rewritten as ė = fp(e). With the following definitions

fp0(e) = [−k̄1⌈e1⌋ϱ̄1 + e2,−k̄2⌈e1⌋ϱ̄2 ]T , (14)

fp∞(e) = [−k̄′′1 ⌈e1⌋ϱ̄
′
1 + e2,−k̄′′2 ⌈e1⌋ϱ̄

′
2 ]T (15)

it can be found that fp0(e) is homogeneous with de-
gree kp0

= −1 with respect to the weight vector
rp0 = [ 1

1−ϱ̄ ,
ϱ̄

1−ϱ̄ ]
T and fp∞(e) is homogeneous with

degree kp∞ = 1 with respect to the weight vector

rp∞ = [ 1
1−ϱ̄ ,

2−ϱ̄
1−ϱ̄ ]

T . Since ϱ̄ ∈ ( 12 , 1), it can be observed

from (12) that conditions 0 < ϱ̄i < 1 < ϱ̄′i, (i = 1, 2)
hold. Therefore, the vector fields fp0(e) and fp∞(e) can
be referred to as approximating homogeneous functions
for fp(e) in 0-limit and ∞-limit, respectively.

The main result in this section is summarized in the
following theorem.

Theorem 12 Consider the observer (11) with param-
eters defined in (12). Then, the resulting error dynam-
ics given in (13) are fixed-time stable if the parameters
ϱ̄ ∈ ( 12 , 1) and k̄i > 0, k̄′i > 0, k̄′′i > 0, (i = 1, 2) are se-
lected.

Proof. Consider a Lyapunov function candidate

V = k̄2(2− ϱ̄)|e1|2ϱ̄ + k̄′′2 ϱ̄|e1|4−2ϱ̄ + k̄′2ϱ̄(2− ϱ̄)|e1|2

+ ϱ̄(2− ϱ̄)|e2|2
(16)

It is obvious that V in (16) is continuously differentiable,
positive definite and radially unbounded for any ϱ̄ ∈

4



( 12 , 1). The time derivative of Lyapunov function is given
by

V̇ = Ξ
(
k̄2⌈e1⌋(2ρ−1)+k̄′′2 ⌈e1⌋(3−2ρ)+k̄′2⌈e1⌋

)
ė1+Ξ⌈e2⌋ė2

(17)
with Ξ = 2ϱ̄(2− ϱ̄). Substituting (13) into (17) results in

V̇ = −Ξk̄2
[
k̄1|e1|3ϱ̄−1 + k̄′1|e1|2ϱ̄ + k̄′′1 |e1|ϱ̄+1

]
− Ξk̄′′2

[
k̄1|e1|3−ϱ̄ + k̄′1|e1|4−2ϱ̄ + k̄′′1 |e1|5−3ϱ̄

]
− Ξ

[
k̄1|e1|2ϱ̄ + k̄′1|e1|2 + k̄′′1 |e1|3−ϱ̄

] (18)

It follows that V̇ ≤ 0 holds for any k̄i > 0, k̄′i > 0, k̄′′i >
0, (i = 1, 2). Furthermore, it can be easily found that the
only invariant set for system (13) is e1 = e2 = 0 when

V̇ = 0. It follows from the LaSalle invariance principle
that the error dynamics (13) are globally asymptotical-
ly stable.

If specified with k̄′1 = k̄′2 = k̄′′1 = k̄′′2 = 0 (or
k̄1 = k̄2 = k̄′1 = k̄′2 = 0) in (13), (16)−(18), the
global asymptotic stability of system ė = fp0(e) (or
ė = fp∞(e)) can be obtained, where fp0(e) (or fp∞(e))
is given in (14) (or (15))

Taking into account the bi-limit homogeneity of the sys-
tem (13), it follows from Lemma 10 that the system (13)
is fixed-time stable. This completes the proof.

5 Fixed-Time Output Feedback Synthesis

5.1 Synthesis Design

Now, we are in a position to construct a global output
feedback fixed-time stabilizing control law for double-
integrator systems. To this end, substituting x2 in (3)
by its estimated value x̂2 in (11) yields

u(x̂) = −
(
k1⌈x1⌋ϱ1 + k′1⌈x1⌋+ k′′1 ⌈x1⌋ϱ

′
1

)
−

(
k2⌈x̂2⌋ϱ2

+ k′2⌈x̂2⌋+ k′′2 ⌈x̂2⌋ϱ
′
2

)
(19)

where only x1 is measurable and all control parameters
are the same with those in Theorem 11. The main results
about the output feedback control is summarized in the
following theorem.

Theorem 13 Consider system (2) under the output
feedback control law (19) with x̂2 generated by observ-
er (11). Then the closed-loop system (2), (11) and
(19) is fixed-time stable if the controller parameters
ki, k

′
i, k

′′
i , ϱi, ϱ

′
i(i = 1, 2) and the observer parameters

k̄j , k̄
′
j , k̄

′′
j , ϱ̄j , ϱ̄

′
j(j = 1, 2) are selected as in Theorems 11

and 12, respectively.

Proof. It follows form Theorem 12 that there exists a
finite time, i.e., T1, uniformly in initial estimation error
e1(0) and e2(0) such that x̂2(t) = x2(t) for t ≥ T1. As a
result, the output feedback control (19) coincides with s-
tate feedback control law (3) for all t ≥ T1. Furthermore,
if the system trajectory under the output feedback con-
trol law does not escape during the interval t ∈ [0, T1], it
follows from Theorem 11 that there exists a finite time,
i.e., T2, uniformly in x(T1) to ensure the fixed-time sta-
bility of double-integrator system. Therefore, the condi-
tion that the closed-loop system under output feedback
control law (19) does not escape in finite time is suffi-
cient to derive the conclusion of Theorem 13. It should
be noted that the method in [11] can not be applied here,
since the right hand side of the closed-loop system under
(2), (11) and (19) does not satisfy the linear growth con-
dition. To complete the proof, let us consider the Lya-
punov function V in (7). The derivative of V along the
trajectory (2) under output feedback control law (19) is
given by

V̇ = −Π
(
k2x2⌈x̂2⌋ϱ2 + k′2x2⌈x̂2⌋+ k′′2x2⌈x̂2⌋ϱ

′
2

)
(20)

with Π = 2(ϱ1+1)(ϱ′1+1). Since x̂2 = x2−e2, it follows
that x2⌈x̂2⌋ϑ = x2|x2− e2|ϑsign(x2− e2) for any ϑ > 0.
For the convenience of the proof, two different cases are
discussed.

Case 1: It is assumed that the condition |x2| > |e2|
holds, which implies sign(x2 − e2) = sign(x2). There-
fore, one has x2⌈x̂2⌋ϑ = |x2||x2 − e2|ϑ for any ϑ > 0.

Then, V̇ in (20) can be rewritten as

V̇ = −Π|x2|
(
k2|x2− e2|ϱ2 +k′2|x2− e2|+k′′2 |x2− e2|ϱ

′
2

)
(21)

Case 2: It is assumed that the condition |x2| ≤ |e2|

holds. Since −x2⌈x̂2⌋ϑ ≤ |x2||x2 − e2|ϑ holds for any

ϑ > 0 and x2, e2 ∈ R, the V̇ in (20) satisfies the following
inequality

V̇ ≤ Π|x2|
(
k2|x2 − e2|ϱ2 + k′2|x2 − e2|+ k′′2 |x2 − e2|ϱ

′
2

)
(22)

Taking into account |x2| ≤ |e2| and the well-known in-
equality |a−b|ϑ ≤ (|a|+ |b|)ϑ for any a, b ∈ R and ϑ ≥ 0,
the inequality (22) satisfies

V̇ ≤ Π(k22
ϱ2 |e2|ϱ2+1 + 2k′2|e2|2 + k′′22

ϱ′
2 |e2|ϱ

′
2+1) (23)

Then, we will show that there exists a positive constant

M such that the derivative of the Lyapunov function
in (20) satisfies V̇ ≤ M at any instant of time in the
both cases. Since the Theorem 12 ensures the fixed-time
convergence of e2, which implies the boundness of e2, it
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follows that there exists a least upper bound of the right
hand side of (23). Denote the least upper bound by

M = sup{Π(k22
ϱ2 |e2|ϱ2+1 + 2k′2|e2|2 + k′′22

ϱ′
2 |e2|ϱ

′
2+1)},

it follows from (21) and (23) that the V̇ in (20) satisfies

V̇ ≤ M . Therefore, V as well as the system states x1, x2

can not escape in any finite time interval.

From the above analysis, it can be concluded that the
double-integrator system with output feedback control
law (19) does not escape in any finite time interval. Fol-
lowing the analysis at the beginning of the proof, one
has that the closed-loop system under (2), (11) and (19)
is fixed-time stable. This completes the proof.

5.2 Discussion on Robustness

For a further discussion, a key lemma is recalled.

Lemma 14 [12] Consider system ẋ = f(x, δ) with ex-
ogenous disturbance vector δ = [δ1, ..., δm]T ∈ Rm and
suppose that f(x, δ) is a continuous homogeneous vec-
tor field in the bi-limit with triples ((r0, τ0), k0, f0) and
((r∞, τ∞), k∞, f∞), where τ0 ∈ Rm and τ∞ ∈ Rm are
weight vectors with respect to disturbance δ. Then, un-
der the hypotheses of Lemma 10, the Lyapunov function
V (x) given in Lemma 10 satisfies

∂V

∂x
f(x, δ) ≤ −kV Γ(V

dV0
+k0

dV0 , V
dV∞+k∞

dV∞ )

+ kδ

m∑
j=1

Γ(|δj |
dV0

+k0

τ0,j , |δj |
dV∞+k∞

τ∞,j )
(24)

where kV and kδ are positive real numbers and function
Γ is defined in Section II.A.

Now, we proceed to discuss the robustness of the pro-
posed control scheme for the following perturbed double-
integrator system

ẋ1 = x2, ẋ2 = u+∆(t), x(0) = x0 (25)

Assumption 15 Suppose that the perturbation ∆(t) in
(25) is uniformly bounded with a known constant δu, i.e.,
|∆(t)| ≤ δu and also Lipschitz continuous with a Lips-

chitz constant L, i.e., |∆̇(t)| ≤ L.

Applying the observer (11) for system (25) yields the
following error dynamics{

ė1 = −k̄1⌈e1⌋ϱ̄1 − k̄′1⌈e1⌋ − k̄′′1 ⌈e1⌋ϱ̄
′
1 + e2

ė2 = −k̄2⌈e1⌋ϱ̄2 − k̄′2⌈e1⌋ − k̄′′2 ⌈e1⌋ϱ̄
′
2 +∆(t)

(26)

In order to ensure the robustness against the non-
vanishing perturbation ∆(t), we select

ϱ̄ =
1

2
, k̄′1 = 0, k̄′′1 = k̄1, k̄

′
2 =

4

3
k̄′′2 = 4k̄2 (27)

Taking into account (12), (26) can be rewritten asė1 = −k̄1

(
⌈e1⌋

1
2 + ⌈e1⌋

3
2

)
+ e2

ė2 = −2k̄2

(
1
2⌈e1⌋

0 + 2⌈e1⌋+ 3
2⌈e1⌋

2
)
+∆(t)

(28)
which coincides with the uniform robust exact differen-
tiator proposed in [15]. Following the result in [15], the
parameters k̄1 and k̄2 can be chosen from the following
set

Ω =

{
(k̄1, k̄2) ∈ R2|0 < k̄1 ≤ 2

√
δu, k̄2 >

k̄21
8

+
2δ2u
k̄21

}
∪
{
(k̄1, k̄2) ∈ R2|k̄1 > 2

√
δu, k̄2 > δu

}
(29)

in order to guarantee the fixed-time stability of system
(28). Then, the perturbation ∆(t) can be approximated
through equivalent control method [33]. It follows from
the above analysis that there exists a finite time, i.e., T ′

1,
such that e1(t) = e2(t) = 0 for all t ≥ T ′

1, implying the
following identity holds

−2k̄2

(1
2
⌈e1⌋0+2⌈e1⌋+

3

2
⌈e1⌋2

)
+∆(t) = 0, t ≥ T ′

1 (30)

Since e1(t) = e2(t) = 0 for t ≥ T ′
1, it follows that

⌈e1⌋ = ⌈e1⌋2 = 0 for t ≥ T ′
1. Taking into account

⌈e1⌋0 = sign(e1), the equivalent output injection ∆eq(t)
can be obtained from (30) according to the definition of
equivalent control in [33]

∆eq(t) = [k̄2sign(e1)]|eq(t) = ∆(t) (31)

with [k̄2sign(e1)]|eq(t) being an average value of the dis-
continuous function k̄2sign(e1). In practice, ∆eq(t) can

be approximated by ∆eq(t) using the following low pass
filter

∆̇eq(t) =
1

τ

[
k̄2sign(e1)−∆eq

]
(32)

with a small time constant τ > 0.

Remark 16 It should be noted that the effects of some
imperfections, such as small delays, sampling step, sam-
pling noise, etc., always make it impossible to achieve
the identity e2(t) ≡ 0. In [28], Utkin succeeded in prov-
ing that if e2(t) remains within a δ-vicinity of zero, e.g.,
|e2(t)| ≤ δ, the output of the first-order filter (32) is close
to the equivalent control ∆eq(t) satisfying the following
inequality

|∆eq(t)−∆eq(t)| ≤ O(τ + δ) +O(δ/τ) (33)
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From (33), it can be observed that estimation accuracy
is of the order O(τ) in an ideal case. When some imper-
fections are included, the estimation accuracy is of the
order O(max[τ + δ, δ/τ ]). In this case, in order to obtain
a good estimation of∆eq(t), the filter time constant τ can

be taken to be proportional to
√
δ, i.e., τ =

√
δ, provided

that δ is much smaller than 1. In this case, inequality
(33) leads to |∆eq(t) − ∆eq(t)| ≤ O(

√
δ). In addition,

the constant τ should be selected to be larger than the
sampling time of the computer-implemented filter.

A practical fixed-time output feedback control law for
the perturbed double-integrator system is summarized
in the following theorem.

Theorem 17 Consider system (25) with the output
feedback control law

u(x̂) = −
(
k1⌈x1⌋ϱ1 + k′1⌈x1⌋+ k′′1 ⌈x1⌋ϱ

′
1

)
−

(
k2⌈x̂2⌋ϱ2

+ k′2⌈x̂2⌋+ k′′2 ⌈x̂2⌋ϱ
′
2

)
−∆eq(t)

(34)
where x̂2 is obtained from observer (11) with parameters
given in (12), (27), (29) and ∆eq(t) is obtained through
(32) with an appropriate time constant τ . Then, the o-
rigin of system (25) is practically fixed-time stable if the
controller parameters ki, k

′
i, k

′′
i , ϱi and ϱ′i(i = 1, 2) are s-

elected as in Theorem 11.

Proof. Since the observer (11) with parameters in (12),
(27) and (29) ensures that error dynamics in (28) is fixed-
time stable, it follows that there exists a finite time,
i.e., T ′

1, such that x̂1 = x1, x̂2 = x2 for all t ≥ T ′
1.

Next, we will show that the trajectory of system (25)
under the output feedback control law (34) does not
escape during finite time interval [0, T ′

1]. To this end,
consider Lyapunov function (7). The derivative of V can
be calculated as

V̇ = −Πx2

(
k2⌈x̂2⌋ϱ2 + k′2⌈x̂2⌋+ k′′2 ⌈x̂2⌋ϱ

′
2 + e∆

)
(35)

where e∆ = ∆(t)−∆eq(t) is bounded due to the bound-

ness of ∆(t) and ∆eq(t). Following the same analysis for
Cases 1 and 2 in the proof of Theorem 13, the following
statements hold for the derivative of V .

Case 1: For |x2| > |e2|, implying sign(x2 − e2) =

sign(x2), V̇ in (35) satisfies

V̇ ≤ Π|x2|(|e∆| − k2|x2 − e2|ϱ2 − k′2|x2 − e2|
− k′′2 |x2 − e2|ϱ

′
2)

(36)

Case 2: For |x2| ≤ |e2|, implying that −x2⌈x̂2⌋ϑ ≤
|x2||x2 − e2|ϑ ≤ 2ϑ | e2 |ϑ+1 holds for any ϑ > 0, V̇ in
(35) satisfies

V̇ ≤ Π(k22
ϱ2 |e2|ϱ2+1 + 2k′2|e2|2 + k′′22

ϱ′
2 |e2|ϱ

′
2+1

+ |e2||e∆|)
(37)

Since e∆ and e2 are bounded, it follows from (36) and
(37) that V and so x1 as well as x2 are bounded in
the time interval [0, T ′

1], which implies that x1(T
′
1) and

x2(T
′
1) are finite values.

In what follows, we will discuss the trajectory evolution
of system (25) under the control law (34) for all t ≥ T ′

1.

Let fus(x̂, δ) = [x2,−(k1⌈x1⌋ϱ1 + k′1⌈x1⌋+ k′′1 ⌈x1⌋ϱ
′
1)−

(k2⌈x̂2⌋ϱ2 + k′2⌈x̂2⌋ + k′′2 ⌈x̂2⌋ϱ
′
2) + e∆]

T be the closed-
loop vector field of system (25) under the control law
(34). Since x̂1 = x1, x̂2 = x2 for all t ≥ T ′

1, it fol-
lows that fus(x̂, δ) = fus(x, δ) for any t ≥ T ′

1. In
this case, the closed-loop system can be rewritten
as ẋ = fus(x, δ), which is homogeneous in the bi-
limit with associated triples ((rus0 , τ0), kus0 , fus0) and
((rus∞ , τ∞), kus∞ , fus∞), where rus0 = [ 2−ϱ

1−ϱ ,
1

1−ϱ ]
T , τ0 =

ϱ
1−ϱ , kus0 = −1, fus0 = [x2,−k1⌈x1⌋ϱ1 − k2⌈x1⌋ϱ2 +

e∆]
T and rus∞ = [ 2−ϱ

1−ϱ ,
3−2ϱ
1−ϱ ]T , τ∞ = 4−3ϱ

1−ϱ , kus∞ =

1, fus∞ = [x2,−k′′1 ⌈x1⌋ϱ1 − k′′2 ⌈x1⌋ϱ2 + e∆]
T . Noting

that fus(x, 0) = fs(x) and the system ẋ = fs(x) is
fixed-time stable (see Theorem 11), it can be concluded
that ẋ = fus(x, 0) is fixed-time stable for all t ≥ T ′

1.
Therefore, it follows from Lemma 14 that there exists a
continuous, positive definite and proper function V (x)
satisfying

∂V

∂x
fus(x, δ) ≤ −kV Γ(V

m, V n) + kδΓ(|e∆|p, |e∆|q)
(38)

with m =
dV0+kus0

dV0
, n =

dV∞+kus∞
dV∞

, p =
dV0+kus0

τ0
and

q =
dV∞+kus∞

τ∞
. Since kus0 = −1, kus∞ = 1 and dV0 >

max( 2−ϱ
1−ϱ ,

1
1−ϱ ) > 2 as well as dV∞ > max( 2−ϱ

1−ϱ ,
3−2ϱ
1−ϱ ) >

3 (see Lemma 10) for any ϱ ∈ (0, 1), it follows that the
conditions 0 < m < 1 < n, p > 0 and q > 0 hold.
Since | e∆ |< 1 can be satisfied after t ≥ T ′

1 by selecting
appropriate τ , the conditions |e∆|q < 1 and |e∆|p < 1
hold. As a result, the term Γ(|e∆|p, |e∆|q) in (38) satisfies

Γ(|e∆|p, |e∆|q) =
|e∆|p

1 + |e∆|p
(1 + |e∆|q) < 2|e∆|p (39)

after finite time T ′
1. Next, two different cases will be

discussed.
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For V ≥ 1, it follows that 1
2 (1 + V n) ≤ Γ(V m, V n) =

V m

1+V m (1 + V n) < (1 + V n) holds for 0 < m < 1 < n.

Taking into account (39), (38) can be rewritten as

∂V

∂x
fus(x, δ) ≤ −kV

2
(1 + V n) + 2kδ|e∆|p, t ≥ T ′

1

(40)
Since |e∆| < 1 for t ≥ T ′

1, condition 2kδ|e∆|p < kV

2 can
be satisfied by selecting appropriate kV and kδ. As a
result, (40) can be rewritten as ∂V

∂x f(x, δ) ≤ −kV

2 V n.
Integrating the inequality from V = V0 ≥ 1 to V = 1
obtains that the system trajectory reaches the level

V (x) = 1 in a finite-time T ′
2 ≤ 2(1−V 1−n

0 )

kV (n−1) ≤ 2
kV (n−1) for

n > 1, which is independent of initial conditions.

For V (x) ≤ 1, it follows from 0 < m < 1 < n that
1
2V

m ≤ Γ(V m, V n) = V m

1+V m (1 + V n) ≤ V m. Taking

into account (39), (38) can be rewritten as

∂V

∂x
fus(x, δ) ≤ −kV

2
(1− θ)V m + 2kδ|e∆|p −

kV
2
θV m

(41)
for t ≥ T ′

1, where θ ∈ (0, 1). From (41), it follows that
∂V
∂x fus(x, δ) ≤ −kV

2 (1 − θ)V m is strictly negative out-

side the set Ξ = {x ∈ R2|V (x) ≤ Vϵ =
[
4kδ|e∆|p

kV θ

]1/m
}.

Integrating this inequality from V = V0 ≤ 1 to V = Vϵ

obtains that the system trajectory reaches boundary

V = Vϵ in a finite-time T ′
3 ≤ V0

1−m−Vϵ
1−m

c(1−m) ≤ 1−Vϵ
1−m

c(1−m) ≤
1

c(1−m) with c = 0.5kV (1 − θ), which is independent of

initial conditions. Then, the system trajectory remains
in the set Ξ for all future time since ∂V

∂x fus(x, δ) is strict-
ly negative outside the set Ξ and on the boundary of
Ξ. The positive definiteness of V (x) implies that all so-
lutions of the perturbed double-integrator system (25)
under the control law (34) converge to some bounded
region when V (x) belongs to the bounded closed set Ξ.

In summary, the solution of system (25) under the con-
trol law (34) converge into a bounded region in finite-
time T ′ ≤ T ′

1 + T ′
2 + T ′

3 which is independent on initial
conditions. Hence, the closed-loop system is practically
fixed-time stable. This completes the proof.

Remark 18 It is worth noting that some classic algo-
rithms, such as twisting [26], super-twisting algorithms
[29] and their modified versions in [11,15] can be recov-
ered formally from our proposed algorithms (3) and (11)
with an appropriate selection of parameters, e.g., the al-
gorithm in [15] is obtained from (11) if the parameter-
s are specified as (27). However, the proof given in the
paper is not applicable for the aforementioned classic al-
gorithms due to the fact that the homogeneity in bi-limit
requires the continuity of the right-hand sides.

6 Simulation Example

To confirm the property of fixed-time convergence with
respect to the initial conditions, several different system
initial values x0 = [1,−1], x0 = [102,−102] and x0 =
[104,−104] are considered. The simulation is carried out
using Euler method with fixed sampling 10−4 second.
To begin with, the fixed-time state feedback control law
(3) with k1 = k2 = 2.0, k′1 = k′2 = 0.6, k′′1 = k′′2 = 3.0
and ϱ = 0.6 is applied. In this case, the simulation re-
sult is shown in Fig.1. From the sub-plot in Fig.1, it can
be observed that the convergence time of the system
subject to different initial values (including the one far
away from the origin) is close, which shows a ‘weak’
dependence of the convergence time on the initial con-
ditions. Then, the fixed-time output feedback control
law (19) with observer (11) is tested. Without re-tuning
the control parameters, the observer parameters are s-
elected as k̄1 = k̄2 = 2.0, k̄′1 = k̄′2 = 0.6, k̄′′1 = k̄′′2 = 3.0
and ϱ̄ = 0.6. The initial value of the observer is set
as x̂0 = [10,−10]. In this case, the simulation result is
shown in Fig.2. The rapid convergence under different
initial conditions can also be observed when only output
is available.

To examine the robustness of the method, an external
disturbance ∆(t) = 1

2 [sin(t) + cos(t)] is added to the
double integrator system (25). The observer (11) with
parameters in (12) and (27) specified with k̄1 = 1 and
k̄2 = 2.5 is used. The initial values of the observer and
the controller parameters are the same as those provided
in the previous. The time constant τ = 0.01 in (32)
is used in the simulation. In this case, the simulation
results are plotted in Figs.3 and 4. From Fig.3, it can be
seen that the system states converge to a small region
around the origin quickly, which implies the practical
fixed-time stability. Furthermore, Fig.4 shows that the
external disturbances can be approximated in a finite
time through equivalent control method.

Remark 19 Although the operation region of a plant is
always bounded in practice, the fixed-time approach helps
to design a control law, which is able to preserve the con-
vergence time even with the variation of operation region.
This property is especially useful in some cases where the
bounded initial conditions are not known a priori. Some
typical applications include state estimation, disturbance
estimation and fault estimation, where the initial estima-
tion error is bounded but unknown in practice. In these
cases, it is difficult to estimate the convergence time us-
ing the traditional finite-time control methods, because
the convergence time of the methods is heavily dependen-
t on initial estimation errors. Another application is for
the observation of a switched and hybrid systems with a
positive dwell time [32,20]. In this case, one cannot guar-
antee the convergence of state estimation before the next
plant’s takes place if a bound for the initial conditions is
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Fig. 1. The system responses by state feedback
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Fig. 2. The system responses by output feedback for nominal
model
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Fig. 3. The system responses by output feedback for per-
turbed model

not known a prior. Nevertheless, the fixed-time stabiliza-
tion control can avoid these issues mentioned above.

7 Conclusions

A new fixed-time controller and observer are proposed
and are then synthesized to present an unified framework
for the fixed-time stabilization of a double-integrator
system by output feedback. The results can be consid-
ered as an extension of the finite-time control algorith-
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Fig. 4. The disturbance estimates

m. In our design, the higher order terms are added to
achieve uniform convergence with respect to initial con-
ditions and the lower order terms for the exact conver-
gence in finite time. As a result, the property of fixed-
time convergence is established through the combination
of higher and lower order components. The homogene-
ity and the Lyapunov function are utilized to guarantee
the fixed-time stability. Future work will focus on the
extension of the results to higher order systems.
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