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Localized magnetic moments have been predicted to develop in graphene samples with vacancies
or adsorbates. The interplay between such magnetic impurities and graphene’s Dirac quasiparticles
leads to remarkable many–body phenomena, which have so far proved elusive to experimental efforts.
In this article we study the thermodynamic, spectral and transport signatures of quantum criticality
and Kondo physics of a dilute ensemble of atomic impurities in graphene. We consider vacancies
and adatoms that either break or preserve graphene’s C3v and inversion symmetries. In a neutral
graphene sample all cases display symmetry–dependent quantum criticality, leading to enhanced
impurity scattering for asymmetric impurities, in a manner analogous to bound–state formation by
nonmagnetic resonant scatterers. Kondo correlations emerge only in the presence of a back gate,
with estimated Kondo temperatures well within the experimentally accessible domain for all impurity
types. For symmetry–breaking impurities at charge neutrality, quantum criticality is signaled by T−2

resistivity scaling, leading to full insulating behavior at low temperatures, while low–temperature
resistivity plateaus appear both in the non–critical and Kondo regimes. By contrast, the resistivity
contribution from symmetric vacancies and hollow–site adsorbates vanishes at charge neutrality and
for arbitrary back gate voltages, respectively. This implies that local probing methods are required
for the detection of both Kondo and quantum critical signatures in these symmetry–preserving cases.

I. INTRODUCTION

Graphene is a two–dimensional carbon allotrope char-
acterized by low energy excitations that behave like two–
dimensional, massless Dirac fermions.1 Many desirable
electronic properties have been predicted for graphene as
a result of the chiral nature of its charge carriers,2 making
it an ideal platform for the fabrication of novel devices.
These properties, along with its outstanding mechanical
characteristics, have earned graphene a place in contem-
porary popular culture as the “material of the future.”

Combining graphene’s electronic properties with mag-
netism has become a major driving force for research
on this material in recent years. Although ferromag-
netic order is suppressed in pristine bulk samples,3 there
are a number of ways to induce magnetic moments in
graphene, ranging from adsorption of magnetic4–6 and
non–magnetic7,8 atoms to proposals for vacancy–induced
π-magnetism.9–14

Once magnetic moments are present in the graphene
lattice, fascinating many–body effects can be expected.
The coupling of a localized magnetic moment and the
(real) spin of Dirac electrons in neutral graphene has long
been theorized as a realization of the linear pseudogap
Kondo model,15,16 where a magnetic impurity couples to
a fermionic density of states that vanishes linearly at the
Fermi energy. One of the main features of this type of sys-
tem is a quantum phase transition from a local–moment
phase to a Kondo phase, where the atom’s magnetic mo-
ment becomes screened by itinerant electrons.15–19

Experimental evidence for the Kondo effect has
emerged recently in a graphene system with atomic
vacancies.10 A most intriguing feature of those experi-

ments is an observed temperature dependence of the re-
sistivity that is compatible with the metallic Kondo effect
for a vast range of gate voltages, including at the charge
neutrality point. This leads us to two questions: Why
are no pseudogap effects observed? And, what would the
transport signatures of impurity quantum criticality be?
One possible answer to the first question is that sample
disorder may play an important role20 in masking the
pseudogap signatures. Another possibility is that in the
experiments the samples are only probed effectively away
from charge neutrality, where metallic Kondo behavior
predominates.21–23

In this paper we address the second question by calcu-
lating the impurity contribution to the linear resistivity
of a graphene sample. In a recent work24 we calculated
the transport properties of graphene in the presence of
a dilute ensemble of non–magnetic impurities, and found
that impurity symmetry plays a determinant role in the
system transport properties. Here we turn our atten-
tion to magnetic impurities, such as transition–metal4–6

and hydrogen7,8 adatoms, and both symmetric and re-
constructed vacancies.25–28

Using numerical renormalization–group (NRG) calcu-
lations we found that the interplay between symmetry
and strong correlations leads to a rich phenomenology,
including an impurity–dependent quantum phase transi-
tion (QPT) in charge neutrality related to the pseudogap
Anderson model, and the emergence of Kondo physics
when a back gate is applied. For top–site adsorbates
and reconstructed vacancies lacking C3v and inversion
symmetry, both regimes produce experimentally acces-
sible signatures in the bulk resistivity profile: the QPT
is signaled by a power–law divergence of the resistivity
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at low temperatures, when the energy of the impurity
level crosses a critical value. Surprisingly, this behav-
ior is qualitatively similar to that of the non–interacting
case,24 with the main effect of interactions being a renor-
malization of the critical point parameters. By contrast,
the presence of a back gate driving the system away
from charge neutrality leads to screening of the impu-
rity spin through Kondo correlations, signaled by a zero–
energy peak in the impurity density of states and a low–
temperature plateau of enhanced resistivity.

In the case of highly symmetric magnetic impurities,
such as unreconstructed vacancies (C3v) and hollow–site
adsorbates (C3v and inversion), quantum criticality is
also observed in neutral graphene, described by the cubic
pseudogap Anderson model. Furthermore, these impuri-
ties display robust Kondo physics for sensible values of
the carrier density, with Kondo temperatures compara-
ble to those obtained for their less symmetric counter-
parts. Interestingly, we find that such impurities do not
contribute to the sample resistivity, a result we had pre-
viously obtained in the non–interacting case.24,29 As a
consequence, they are not easily captured in bulk trans-
port measurements and need to be probed locally.

The remainder of this article is organized as follows:
In Sec. II we introduce low–energy Hamiltonians for
graphene coupled to four different impurity types. These
models are studied in Sec. III using NRG calculations.
We begin by describing the single–impurity ground state
for different model parameters in Sections III A and III B,
where we discuss an impurity–dependent QPT in charge
neutrality and the onset of Kondo correlations when a
back gate is applied. Then, in Sec. III C we evaluate the
impurity contribution to the resistivity as a function of
temperature and chemical potential, in graphene samples
with mixtures of symmetric and non–symmetric adatoms
or vacancies. Our conclusions are presented in Sec. IV.

II. MODEL

A single magnetic impurity in a graphene sample can
be modeled by the Anderson–type Hamiltonian H =
HI + HG + HI-G, where HI represents the impurity, HG

the graphene sheet, and HI-G is a hybridization term.
The interacting impurity Hamiltonian is

HI =
∑
s

(εI − µ) d†I,sdI,s + U nI,↑nI,↓, (1)

where (εI − µ) is the impurity orbital energy measured
with respect to the graphene chemical potential, U is
the electrostatic energy cost of double occupancy, the

operators d†I,s (dI,s) create (annihilate) electrons of spin

projection s in the impurity orbital, and nI,s = d†I,sdI,s
are the corresponding number operators. The graphene
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FIG. 1. (Color online) Atomic impurities in graphene: (a)
Top–site adsorbate, (b) hollow–site adsorbate, (c) symmetric
vacancy, and (d) reconstructed vacancy. (e) Graphene density
of states and many–body level structure of an impurity with
local energy εI < 0 and Coulomb interaction U > 0, for µ > 0.

sample can be described by the Hamiltonian

HG = −t
∑
ks

ψs(k)†h(k)ψs(k) ; h(k) =

(
0 Φ(k)

Φ∗(k) 0

)
,

(2)
with ψs(k) = (as(k), bs(k))T , as(k) [bs(k)] the annihila-
tion operator for sublattice A (B) electrons, and

Φ(k) ≡
3∑
j=1

eiak·ûj . (3)

a ≈ 1.42 Å is the honeycomb lattice constant, t the
nearest–neighbor hopping energy, and û1 = x̂, û2 =
−x̂/2 + ŷ

√
3/2 and û3 = −x̂/2 − ŷ

√
3/2 are nearest–

neighbor vectors. Diagonalizing HG gives two energy
bands with dispersions ε±(k) = ±t|Φ(k)| and corre-
sponding operators cs(k) = (c+,s(k), c−,s(k))T . These
are related to the ψ-basis operators as ψs(k) = Ukcs(k),
with the similarity transformation

Uk =
1√
2

(
Φ(k)
|Φ(k)| −

Φ(k)
|Φ(k)|

1 1

)
. (4)

In its general form, the hybridization term HI-G couples
the impurity to the graphene momentum state k in sub-
band α as

HI-G = V
∑
s,α

∑
k

{
Θα
I (k) d†I,scα,s(k) + H. c.

}
, (5)

with V a real hopping constant. Encoded in Θα
I (k) are

the symmetry properties of the impurity orbital. In this
article we study four of the most common atomic impuri-
ties found in real graphene samples: top–site (TOP) and
hollow–site (HS) adatoms, and symmetric (VAC) and re-
constructed (REC) single vacancies. Their corresponding
couplings Θα

I (k) are evaluated in Appendix A using the
real–space form of the graphene Hamiltonian, and their
symmetry properties are discussed below.
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TOP adatoms are the simplest of these impurity types.
They sit on top of and couple exclusively to a single car-
bon atom [Fig. 1(a)], thus singling out one of the sub-
lattices and locally breaking inversion symmetry. Their
point–like isotropic nature makes TOP adatoms couple
equally to all graphene momenta as

Θ±TOP(k) =
1√
2
. (6)

Examples of TOP impurities have been recently reported
in experiments with hydrogen atoms chemisorbed onto
graphene.8,30 Although the impurity states were found to
extend over several lattice constants from the adsorption
site, local breaking of inversion symmetry was observed,
and the model (6) may be used as a first approximation.

On the other hand, more usual magnetic impurity can-
didates, such as transition metals, tend to adsorb in the
hollow site.4–6 HS adatoms with s or dz2 valence orbitals
will couple equally to both sublattices, and thus preserve
both the inversion and point symmetries [Fig. 1(b)]. The
resulting coupling functions

Θ±HS(k) =
1√
2

[
Φ∗(k)± Φ2(k)

|Φ(k)|

]
, (7)

vanish at the K and K ′ points, and possess C3v symme-
try about those point inherited from the function Φ(k),
as shown in Figs. 2(c) and 2(d). Moreover, inversion
symmetry guarantees the presence of “nodes” in the cou-
pling function—branches of graphene momenta that re-
main decoupled from the impurity degrees of freedom.24

As we will discuss in Sec. III C, the zeros of the coupling
function play a determinant role in the impurity contri-
bution to the system transport properties.

Vacancies introduce localized midgap states in
graphene31–34 that can develop magnetic moments20,26,27

as a result of Coulomb charging–energy effects.35 In fact,
recent studies show that such charging energies can be
large27 (of order 0.5 eV), leading to the formation of ef-
fective π-like magnetic moments. In the case of sym-
metric vacancies, experiments have demonstrated charge
accumulation at the vacancy site,36 constituting the type
of impurity we label as VAC. To a first approximation,
this impurity will couple identically and exclusively to
its three nearest neighbors, belonging to the opposite
sublattice37 [Fig. 1(c)]. As a result, a VAC impurity will
possess C3v symmetry but break local inversion symme-
try. This is encoded in the coupling

Θ±VAC(k) =
Φ(k)√

2
, (8)

which is C3v-symmetric about, and vanishes at the K and
K ′ points [Fig. 2(a)], but lacks the inversion–symmetry
nodes displayed by HS impurities.

Finally, vacancies with bond reconstruction38–40 are
the least symmetric of all cases, breaking both C3v and
inversion symmetries. Bond reconstruction consists of
a local deformation due to Jahn-Teller effects,22,38,41–44

FIG. 2. (Color online) Scattering rate |Θα
I (k)|2 for (a) sym-

metric and (b) reconstructed vacancies (both subbands), and
for hollow–site adsorbates [(c) upper (α = +) and (d) lower
(α = −) subband]. White equipotential contours are added to
show topographic details, and the Brillouin zone is indicated
as a dashed hexagon. Zeros appear at the K and K′ points
for VAC and HS impurities due to C3v symmetry, whereas
inversion–symmetry–protected nodes appear only for HS im-
purities [panels (c) and (d)]. C3v symmetry is present in av-
erage for an ensemble of REC impurities, but the scattering
rate is finite for all momenta.

which allows a coupling between one carbon’s sp2 orbital
and the π orbitals belonging to the other two carbons
surrounding the vacancy site—what we call the REC im-
purity [Fig. 1(d)]. Placing the impurity orbital explicitly
at aûj from the vacancy center, the coupling is given by

Θ±REC,j(k) =
eiak·ûj

√
2

∑
l 6=j

e−iak·ûl . (9)

Anticipating our transport discussion, one may conclude
that such breaking of rotational symmetry should intro-
duce dramatic anisotropy in the resistivity tensor %ij . In
an ensemble, however, the REC impurities will occur at
j = 1, 2 and 3 with equal probability. In the dilute limit,
where second and higher–order coherent scattering pro-
cesses are neglected, the REC impurity distribution can
be represented by the average scattering rate

|ΘREC(k)|2 =
1

3

3∑
j=1

|ΘREC,j(k)|2

= 1 + |Φ(k)|2 − 2

3
Re Φ2(k) .

(10)

Eq. (10) shows that the spatial averaging recovers C3v

symmetry, but destroys the quantum interference leading
to the zeros at K and K ′ [Fig. 2(b)].

At low energies the graphene sample properties depend
only on the momentum states κ close to the Dirac points
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(κ� K). The low–energy theory is obtained by making

ψs(κ) =

as(K + κ)
bs(K + κ)
bs(K

′ + κ)
as(K

′ + κ)

 , cs(κ) =

 c+,s(K + κ)
c−,s(K + κ)
c−,s(K

′ + κ)
c+,s(K

′ + κ)

 ,

(11)
and h(k) → ~vF τ3σ · κ, where ~vF = 3at/2, τ3 is the
third Pauli matrix in valley space, and σ is the vector of
Pauli matrices in sublattice space. Naturally, this model
produces four bands ε1(κ) = ε4(κ) = −ε2(κ) = −ε3(κ) =
~vFκ, corresponding to the valence and conduction Dirac
cones at the K and K ′ points.

In this approximation the influence of graphene elec-
trons with energy ω on the impurity is determined by the
hybridization function

ΓI(ω) = πV 2
4∑

µ=1

∑
κ<κc

|Θµ
I (κ)|2δ(ω − εµ(κ)), (12)

where κc = 3−3/4(8π)1/2a−1 is the Debye momentum
cutoff,2 and Θµ

I (κ) are the elements of the 4×1 coupling
matrix

ΘI(κ) =


Θ+
I (K + κ)

Θ−I (K + κ)
Θ−I (K′ + κ)
Θ+
I (K′ + κ)

 . (13)

The hybridization functions corresponding to the cou-
plings (6) through (9) are

ΓTOP(ω) = Γ0

∣∣∣ ω
D

∣∣∣ , (14a)

ΓHS(ω) = ΓVAC(ω) = 4π
√

3Γ0

∣∣∣ ω
D

∣∣∣3 , (14b)

ΓREC(ω) = Γ0

[∣∣∣ ω
D

∣∣∣+ 6π
√

3
∣∣∣ ω
D

∣∣∣3] , (14c)

where Γ0 = 2πV 2/D, and D = ~vFκc is the half–
bandwidth of the graphene dispersion. Notice that the
four impurity types can be grouped into two categories,
depending on the low–energy behavior of their hybridiza-
tion functions: the non-symmetric TOP and REC impu-
rities, which couple to low–energy graphene states as |ω|,
and the highly–symmetric HS and VAC impurities, which
do so as |ω|3, a result previously obtained in Ref. [19]. For
simplicity, in the following sections we will explicitly dis-
cuss TOP and HS impurities as representatives of their
corresponding categories, with the express understand-
ing that REC and VAC impurities, respectively, display
qualitatively similar behaviors.

III. NUMERICAL RESULTS

For U 6= 0 the Hamiltonian H describes a system with
strong spin correlations between the impurity and the

graphene band. In the specific case of charge neutral-
ity (µ = 0), it corresponds to the pseudogap Anderson
model,16 where the effective density of states coupled to
the impurity level vanishes at the Fermi level as a power
law |ω/D|r. Eqs. (14) give r= 1 for TOP and REC im-
purities and r=3 for HS and VAC impurities.

In general, this problem cannot be solved analytically
in closed form. Instead, we used Wilson’s numerical
renormalization group (NRG),45–48 adapted for a generic
density of states following Ref. [16]. NRG is generally
regarded as the method of choice for studying strongly
correlated quantum impurity problems. It consists of
numerically diagonalizing the Hamiltonian H by loga-
rithmically discretizing the energy–dependent hybridiza-
tion functions [Eqs. (14)] into energy bins DΛ−(n+1) <
±ω±,n < DΛ−n, with Λ > 1 the discretization param-
eter and n ≥ 0 an integer. This discretization scheme
prevents artificially introducing an energy scale into the
problem that may obscure any emergent scales, such as
the Kondo temperature. The states belonging to bins
(±, n) are mapped onto a chain of fermionic states with
local energies and hopping terms of order DΛ−n/2 that
fall exponentially with n. This so–called Wilson chain is
coupled to the impurity site (n=−1) and diagonalized
iteratively, deriving at every iteration n an effective free
energy valid for temperatures of order DΛ−n/2.

In the following sections we present NRG results for
the spectral density and thermodynamic properties of the
different impurity types. The temperature–dependent
charge and magnetic susceptibility will be used to ac-
curately characterize the system ground state, unveiling
a quantum phase transition (QPT) as a function of the
impurity energy εI in the absence of a back gate (µ = 0),
and the screening of the impurity spin through Kondo
correlations for µ 6= 0. The impurity spectral density
will be used to determine the low–temperature electronic
transport properties of the graphene sample based on
the formalism presented in Ref. [24]. All calculations
shown below were carried out with discretization factor
Λ = 2.5, retaining approximately 1024 states after each
iteration. The spectral densities presented in Sec. III B
were evaluated using the density–matrix NRG method
(DM-NRG).49

A. Quantum phase transition

Fig. 3 compares the behavior of a TOP impurity’s mag-
netic moment squared50 m2

TOP(T ) and ground–state im-

purity level occupation nTOP ≡ 〈d†TOP,sdTOP,s〉 for zero
and non–zero values of the chemical potential. For µ=0
a realization of the r = 1 pseudogap Anderson model is
obtained, known17,51,52 to display critical behavior for a
given impurity energy ε∗TOP < 0. This marks a QPT
between a local–moment (LM) (εTOP < ε∗TOP) and an
empty–orbital (EO) phase (εTOP > ε∗TOP). The LM
phase consists of a ground state where the impurity is
charged with a single electron and behaves as a free spin
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FIG. 3. (Color online) TOP–impurity magnetic moment
squared as a function of temperature [(a) and (b)] and
ground–state impurity charge as a function of εTOP [(c) and
(d)], for µ = 0 and µ = −10Γ0, respectively. For µ = 0, a
phase transition from LM (m2

TOP = 1/4, nTOP = 1) to EO
(m2

TOP = 0, nTOP = 0) occurs at critical energy ε∗TOP ≈
−0.134225 Γ0. (e) Away from charge neutrality (µ = −10 Γ0)
the impurity moment is Kondo-screened for εTOP − µ < 0
[red curves and points in (b) and (d)], with Kondo temper-
atures TK <∼ 10 K. (f) Kondo universality (dashed red and
solid blue curves) is observed for εTOP−µ <∼ 0 when the tem-
perature is rescaled as T/TK(εTOP). A crossover to mixed
valence occurs when the impurity level goes above the Fermi
energy, indicated by a departure from universality. Parame-
ters: Γ0 = U/30 = 0.01D ∼ 100 meV.

1/2, characterized by m2
TOP(0) = 1/4 [solid lines in Fig.

3(a)] and nTOP(0)=1 [Fig. 3(c), left]. In contrast, in the
EO phase the impurity is depleted below some transition
temperature, leading to m2

TOP(0)=0 [dashed lines in Fig.
3(a)] and nTOP(0)=0 [Fig. 3(c), right].

The situation is markedly different for a finite chem-
ical potential. Figs. 3(b) and (d) show m2

TOP(T ) and
nTOP(T ), respectively, for µ = −10Γ0. No QPT is ob-
served in this case; instead, there is a smooth crossover
from an EO phase (εTOP > µ) to a Kondo regime
(εTOP < µ), the expected behavior for the usual (metal-
lic) Anderson model. For each εTOP we extracted the
Kondo temperature TK(εTOP) from the corresponding
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FIG. 4. (Color online) HS–impurity magnetic moment
squared as a function of temperature [(a) and (b)], and
ground–state impurity charge as a function of εHS [(c) and
(d)], for µ = 0 and µ = −10Γ0, respectively. A transition
from LM to EO takes place for εHS > ε∗HS ≈ −0.6554Γ0 in the
case of µ = 0, whereas for µ = −10Γ0 there is a Kondo ground
state [red curves and points in (b) and (d)] for εHS−µ <∼ 1.7Γ0,
with Kondo temperatures TK <∼ 10 K [panel (e)]. The sudden
impurity charge drop in (d) at εHS ≈ 1.75Γ0 indicates a strong
renormalization of the impurity level toward negative energies
for finite µ. Parameters: Γ0 = U/30 = 0.01D ∼ 100 meV.

m2
TOP(T ) vs. T curve as the temperature for which the

crossover from LM to Kondo singlet is completed. Fol-
lowing Wilson’s convention,45 we estimate m2

I(TK) =
0.0707. Remarkably, Kondo temperatures as high as
10 K can be obtained for TOP impurities with these pa-
rameters, as shown in Fig. 3(e). Rescaling temperature
as T/TK(εTOP) collapses all the m2

TOP(T ) curves in the
Kondo regime into a single universality curve, shown with
red dashed lines in Fig. 3(f). Notice that the curve for
εTOP−µ = ε∗TOP [blue curve in 3(b) and 3(f)] falls in the
Kondo regime when µ 6= 0. When εTOP > µ the impurity
is discharged and the Kondo effect is no longer possible,
leading to an EO ground state instead. The crossover
temperature cannot be interpreted as a Kondo tempera-
ture in this case, and after rescaling the m2

TOP(T ) curves
no longer follow Kondo universality [black dashed curves
in Fig. 3(f)].
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FIG. 5. Kondo temperature and ground–state impurity charge for TOP and HS impurities as functions of the chemical potential
µ, for εI − µ = −U/2 [panels (a) through (d)] and εI − µ = −U/6 [panels (e) through (h)]. In both cases TOP impurities
undergo Kondo screening for all finite µ; the LM phase remains down to zero temperature for µ = 0, where TK = 0 [(a)
and (e)]. (c) For TOP adatoms the impurity charge remains at nTOP = 1 quite independently of µ, even for an asymmetric
[2(εTOP − µ) + U 6= 0] impurity (g). This is not the case for H impurities, whose charge strongly deviates from nHS = 1
antisymmetrically (asymmetrically) with µ for 2(εHS − µ) +U = 0 [2(εHS − µ) +U 6= 0] [(d) and (h)]. Kondo spin correlations
can only exist when the HS adatom has a well–defined charge of nHS ≈ 1, so the Kondo effect is limited to the shaded regions
of panels (b), (d), (f) and (h). Parameters: Γ0 = U/30 = 0.01D ∼ 100 meV.

A qualitatively similar picture is found for HS impuri-
ties, as seen in Fig. 4. Setting µ=0 we have a realization
of the r= 3 pseudogap Anderson model, which displays
a LM-EO QPT with ε∗HS ≈ −0.6554Γ0 [Figs. 4(a) and
(c)], a critical energy about 5 times larger than its r=1
counterpart. For µ=−10Γ0, Fig. 4(b) shows a crossover
from the EO phase to the Kondo regime as εHS − µ is
tuned toward zero from the positive side. Surprisingly,
the Kondo regime begins at unusually large positive val-
ues of the bare impurity level, εHS−µ≈1.7 Γ0, as shown
in Fig. 4(d), with Kondo temperatures reaching values of
order 10 K [Fig. 4(e)]. The persistence of Kondo correla-
tions was confirmed by scaling T/TK(εHS) and verifying
that the m2

HS(T/TK(εHS)) curves collapsed into the typ-
ical Kondo universality curve up to εTOP − µ ≈ 1.7 Γ0.
This is shown by the red dashed lines in Fig. 4(f). The
Kondo temperature is lowered as the impurity level is
shifted toward more negative values [Fig. 4(b)]. By the
time εHS − µ = ε∗HS [blue curve in Fig. 4(b)] the Kondo
temperature is so low that, for all practical purposes, the
system ground state must be considered LM.

We believe these large value of ε∗HS and the unexpected
persistence of Kondo physics up to εHS − µ≈ 1.7 Γ0 are
the result of a two–stage process, wherein the impurity
level and hybridization are strongly renormalized by in-
teractions at the higher energy scales, and the magnetic
moment then undergoes Kondo screening at lower ener-
gies. The QPT for µ = 0 and r = 1 is associated with
a quasiparticle level crossing,51 where the bare impurity
level is shifted to positive values, and the shifted level

crosses zero when εTOP = ε∗TOP < 0. The situation is
similar for r > 1, with logarithmic corrections to the level
crossing16,52 that may justify that |ε∗HS| > |ε∗TOP|. For
finite µ, on the other hand, a renormalized impurity level
ε̃HS < εHS before the onset of Kondo correlations would
justify the persistence of Kondo physics up to εHS−µ > 0
for H impurities.

The high Kondo temperatures calculated for both
TOP and HS impurities (TK ∼ 10 K) are encouraging
from an experimental point of view. Previous studies,
such as Refs. [19] and [23], focused on TOP and REC
impurities, arguing that Kondo temperatures for HS or
VAC impurities would be much lower, and thus experi-
mentally inaccessible. This is a reasonable expectation,
given the well–known fact that, in both metallic53 and
gapped54 systems, the Kondo temperature depends ex-
ponentially on the hybridization strength near the Fermi
level. However, our results show that Kondo tempera-
tures comparable to those obtained for TOP and REC
impurities are possible for sensible values of the carrier
density [Figs. 5(b) and 5(f)].

The results presented in Fig. 5 demonstrate that
Kondo temperatures of almost 100 K can be obtained
with the application of a back gate. For TOP or REC
impurities, Figs. 5(a) and 5(e) show that the Kondo tem-
perature can be increased by simply raising the chemical
potential, and that higher values are reached for more
asymmetric impurities [2(εI − µ) + U � Γ0], consistent
with the results of Fig. 3(b). The situation is more subtle
for HS or VAC impurities, where the Kondo regime exists
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only within specific ranges of µ, as shown in Figs. 5(b)
and 5(f), effectively setting a parameter–dependent up-
per limit for TK . This can be understood in terms of the
impurity charge: A charge of nHS ≈ 1 is required for the
impurity to develop a magnetic moment of |mHS| ≈ 1/2,
which the graphene electrons may then screen through
Kondo spin scattering. However, as shown in Figs. 5(d)
and 5(h) for different HS impurity level energies, be-
yond certain values of the chemical potential the impurity
charge significantly departs from that value, preventing
the Kondo singlet from forming. This is in stark contrast
to TOP or REC impurities, whose charges are quite in-
dependent of µ [Figs. 5(c) and 5(g)].

B. Impurity spectral density

For charge–neutral graphene, the impurity spectral
density ρI(ω) = −π−1ImGI(ω) , with GI(ω) the re-
tarded impurity Green’s function,55 can be interpreted in
terms of the renormalized–parameters picture described
in Section III A, and the corresponding result for the non-
interacting case (µ=U=0):24

ρ0
I(ω) =

1

π

ΓI(ω)

[ω − εI ]2 + Γ2
I(ω)

. (15)

Setting εI = 0 and |ω| � Γ0, we obtain ρ0
TOP(ω) =

DΓ0π
−1(D2 + Γ2

0)−1|ω|−1 and ρ0
HS(ω) ≈ 4

√
3Γ0D

−3|ω|.
Similar power–law behaviors are obtained for the inter-
acting case when εTOP ≈ ε∗TOP and εHS ≈ ε∗HS, as shown
with solid blue curves in Figs. 6(a) and 6(b), respectively.
In both cases, when εI < ε∗I (εI > ε∗I) a quasiparticle
peak appears at a negative (positive) energy, and the
spectral density vanishes exactly at the Fermi level with
the same power law as the corresponding ΓI(ω). These
results demonstrate that our estimated value for ε∗TOP is
a good approximation down to energies |ω| ∼ 10−5 meV,
whereas our estimation for ε∗HS is only good down to
|ω| ∼ 0.1 meV, before the quasiparticle level becomes vis-
ible. In any case, the interacting problem (for µ=0) can
be understood to a good approximation in terms of the
noninteracting picture, with the role of local interactions
being simply to renormalize the impurity parameters as
εI → ε̃I = εI − ε∗I and Γ0 → Γ̃0. In criticality (ε̃I = 0)
the spectral densities are given by

ρTOP(ω) =
DΓ̃0

π(D2 + Γ̃2
0)
|ω|−1, (16a)

ρHS(ω) =
4
√

3Γ̃0

D3
|ω|. (16b)

Remarkably, the NRG results of Fig. 6 can be nicely fitted
by the non–interacting–case expressions (16a) and (16b),

with Γ̃0 the only free parameter, as shown in Fig. 6. This
reveals that interaction effects are essentially irrelevant
(in the RG sense) at the critical point, and the physics of

the transition can be described by non–interacting quasi-
particles.

It is worthwhile mentioning that no Kondo peak ap-
pears for µ=0 on either side of the transition, regardless
of the values of Γ0 or εI . By contrast, the impurity spec-
tral densities for µ=−10Γ0 display the familiar Kondo
peak56–58 for εTOP−µ <∼ 0 in the case of TOP impurities,
and for εHS − µ <∼ 1.7 Γ0 for HS impurities, as shown by
the red curves in Figs. 6(c) and (d).

C. Resistivity calculations

The resistivity of a graphene sample with a dilute
concentration of impurities59 can be evaluated in terms
of the single–impurity spectral density.21,60–62 We will
consider real experimental situations, where a pure en-
semble of a single impurity type is unlikely. In reality,
evaporating adatoms onto the graphene sample will pro-
duce a mixture of TOP and HS impurities,4 and creat-
ing vacancies through electron beam sputtering63 or ionic
bombardment36 will produce a mixture of REC and VAC
impurities. Therefore, we consider a low impurity den-
sity nimp consisting of a fraction n of symmetric (HS or
VAC) impurities and a fraction (1−n) of non–symmetric
(TOP or REC) impurities.

Fig. 7 shows the temperature dependence of the im-
purity contribution to the resistivity, for HS-TOP mixes
(H-T) with different values of the local energy, assuming
εHS = εTOP. Two impurity fractions, n = 0 (only TOP
impurities) and n = 0.05 (95% of HS impurities), are con-
sidered for µ=0 and µ=−10Γ0. Two transport regimes
appear for µ = 0: when ε̃TOP 6= 0 (εTOP 6= ε∗TOP), the
transport is determined by normal impurity scattering,
yielding a finite low–temperature resistivity plateau at
∼ (2πε̃TOP/Γ̃0)−2. Then, for ε̃TOP = 0 (εTOP = ε∗TOP)
impurity criticality is signaled by full insulating behavior
at zero temperature, with the scaling law %H−T(εTOP =

ε∗TOP, µ = 0) ∼ (1 − n)D2Γ̃2
0(D2 + Γ̃2

0)−1T−2, in com-
plete correspondence with a nonmagnetic resonant scat-
terer (noninteracting impurity with εI = µ = 0), where
this behavior can be interpreted as the formation of an
impurity bound state at the Fermi level.24,64,65

As in the noninteracting case,24 the impurity scat-
tering in an H-T mixture comes exclusively from the
TOP adatoms. Due to the symmetry–protected vanish-
ing of Θ±HS(k) at K, K ′ and at the inversion–symmetry–
protected nodes, HS impurities always allow for coherent
transport through graphene momentum channels that re-
main decoupled from the impurity by symmetry, and thus
do not contribute to the resistivity. This is the origin of
the factor (1− n) in the expression above.

Fig. 8 shows low–temperature resistivity results for
critical impurity energies as functions of the chemical
potential, for two different symmetric–impurity (HS or
VAC) fractions n = 0 and n = 0.95. When only crit-
ical TOP impurities (ε̃TOP = 0) are present [full black
circles in Fig. 8(a)] the resistivity peaks sharply at zero
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FIG. 6. (Color online) Spectral densities of TOP and HS impurities, for different impurity energies εTOP and εHS. (a) In charge–
neutral graphene, the TOP spectral density displays |ω|−1 scaling at high energies, followed by a quasiparticle state at negative
(positive) energy for εTOP < ε∗TOP (εTOP > ε∗TOP), and linear scaling close to zero energy. At criticality (εTOP = ε∗TOP), |ω|−1

scaling persists down to zero energy, and is fitted by Eq. (16a) with Γ̃0 = 0.9 Γ0 (pink dashed line). The same fitting is valid for
εTOP 6= ε∗TOP, as shown by the green dashed line. (b) HS impurities show a similar behavior, with linear scaling at high energies,
a quasiparticle level at negative (positive) energy for εHS < ε∗HS (εHS > ε∗HS), and ρHS(ω) ∼ D2|ω|−3 close to zero energy. The

spectral density is fitted by Eq. (16b) with Γ̃0 = 0.6 Γ0 at and away from criticality (pink and green dashed lines, respectively).
(c) For finite chemical potential, TOP impurities show a Kondo resonance (solid red line) for εTOP < µ, which broadens as
εTOP → µ before the impurity charge drops [see Fig. 3(d)] and the Kondo effect disappears. (d) For HS impurities, Kondo
signatures are visible up to a positive (bare) impurity energy εHS − µ ≈ 1.7 Γ0. Parameters: Γ0 = U/30 = 0.01D ∼ 100 meV.

chemical potential, in perfect analogy with the nonin-
teracting case.24 As the symmetric (HS) impurity frac-
tion is increased to n = 0.95 for the same level energy
[empty black circles in Fig. 8(a)], a general ∼ 95% drop
is observed, while the resistivity profile is left unchanged,
indicating that the only resistivity source are the TOP
impurities in the ensemble. As a consequence, no critical-
ity signature appears if the impurities are instead tuned
to the HS-impurity critical energy ε∗HS [full red squares
in Fig. 8(a)]. The overall ∼ 95% resistivity drop for
n = 0.95 [empty red squares in Fig. 8(a)] indicates that,
also in this case, TOP impurities dominate the transport.

If instead the sample has only critical REC impurities
(ε̃REC =0) [full black circles in Fig. 8(b)], the same sharp
resistivity peak appears at zero chemical potential, with
a ∼ 95% drop at µ = 0 when the REC-impurity frac-
tion is lowered to 5%, and the mixture contains 95% of
VAC impurities [empty black circles in Fig. 8(b)]. How-
ever, as in the noninteracting case, VAC impurities do
contribute to the resistivity for finite µ. Indeed, from
Fig. 8(b) it is clear that the VAC-impurity contribution

dominates for |µ| > 3 eV, owing to stronger Kondo scat-
tering of graphene electrons with symmetric than with
asymmetric vacancies. Remarkably, when the impurity
energy is tuned to ε∗HS, a central Kondo–induced resis-
tivity peak appears slightly away from charge neutral-
ity [squares in Fig. 8(b)]. This signature originates from
Kondo scattering of graphene electrons by REC impu-
rities, as can be inferred from the amplitude drop with
increased symmetric–impurity fraction n [Fig. 8(b) inset].

This distinction between inversion–symmetric HS im-
purities and non–inversion–symmetric VAC impurities
away from charge neutrality appears because, as shown in
Fig. 2(a), the latter are decoupled only from zero–energy
states at the Dirac points, due to C3v symmetry. As the
chemical potential moves away from these points, those
energy states become irrelevant for transport, and impu-
rity scattering begins to dominate. HS impurities, on the
other hand, are decoupled from entire branches across the
Brillouin zone due to inversion symmetry [Figs. 2(c) and
(d)], and thus from states of all energies. As a result,
coherent transport remains the dominant mechanism for



9

����
����
����
����
���
���
���
���
���

� �
�
��
�
� ��
��
��
���
��
��
��
��
���
� �������� ����

�������

����� � ���� ��

����� � ���� ��

����� � ���� ��

����� � ���� ��

������ � �����
������ � �����
������ � �����

� � � ����
����
����
����
���
���
���
���
���

���

����� � ���� ��

����� � ���� ��

�����

� � ��� ��

����
����
����
����
���
���
���
���
���

���� ���� ��� ��� ��� ���

������ �����

�������

����� � ���� ��

����� � ���� ��

����� � ���� ��

����� � ���� ��

� ���
���� ���� ��� ��� ��� ���

����
����
����
����
���
���
���
���
���

���

����� � ���� ��

����� � ���� ��

�����

� ���

���� � ������ � ����� �������

FIG. 7. (Color online) Resistivity as a function of temperature for samples with only TOP impurities (n = 0) [(a) and (c)] and a
5% TOP/95% HS (n = 0.95) mixture [(b) and (d)]. Individual values of εTOP−µ are indicated beside the corresponding curve.
Panels (a) and (b) correspond to charge neutrality (µ=0), with full (empty) circles representing impurity energies below (above)
the critical point, εI < ε∗I (εI > ε∗I). For both mixtures the critical impurity energy (blue squares) displays T−2 temperature
scaling, reminiscent of bound state formation by nonmagnetic resonant scatterers, whereas for εTOP 6= ε∗TOP the resistivity
plateaus at a parameter–dependent value. Panels (c) and (d) show results for a finite chemical potential µ = −10 Γ0. Red curves
correspond to εTOP values for which the Kondo effect appears at low temperatures. Notice that those curves plateau to the
same resistivity value below their corresponding Kondo temperatures, TK(εTOP). Parameters: Γ0 = U/30 = 0.01D ∼ 100 meV.

all chemical potentials within the low–energy approxima-
tion.

IV. CONCLUSIONS

We have studied the thermodynamic, spectral and lin-
ear transport signatures of dilute magnetic vacancies and
adatoms in mesoscopic graphene. Our numerical re-
sults indicate that the quantum–critical17,51,52 behavior
of magnetic impurities in neutral graphene is in direct
correspondence with the single–particle picture of non-
magnetic impurities. Local interactions produce a level
shift |ε∗I |, corresponding to the critical level energy, and
renormalize the impurity-graphene hybridization. Quan-
tum criticality is analogous to bound–state formation by
resonant scatterers,24 and in the case of top adsorbates
and reconstructed vacancies introduces a sharp peak in
the local density of states that scales with energy as
|ω|−1. However, no Kondo physics is observed in the ab-
sence of a back gate,16 and the zero–energy resonance at
criticality produces ∼ D2T−2 resistivity scaling, leading
to full insulating behavior at zero temperature, in stark
contrast to the well–known Kondo resistivity plateau.

Away from charge neutrality, the system enters a
Kondo phase that strongly depends on the impurity

symmetry: While asymmetric impurities, such as top–
adsorbates and reconstructed vacancies, remain in the
Kondo phase for a wide range of back gate voltages,
symmetric vacancies and hollow–site adsorbates exhibit
Kondo correlations only within parameter–dependent
limits. Nonetheless, symmetric and non–symmetric im-
purities display comparable, and experimentally acces-
sible Kondo temperatures ranging from order 1 K to
order 10 K for realistic parameters,33,66 defying earlier
expectations.19,23

As in the case of nonmagnetic (noninteracting) im-
purities, symmetry is critical to the system electronic
transport. Unreconstructed vacancies and other C3v–
symmetric impurities remain decoupled from graphene
states at the K and K ′ points, which in charge neu-
trality remain available for electrons to move coherently
through the sample. In the presence of a back gate,
however, our results indicate that symmetric vacancies
will contribute strongly to the resistivity through Kondo
scattering. In contrast, inversion–symmetric impurities,
such as hollow–site adsorbates, are decoupled from en-
tire momentum branches across the Brillouin zone, and
thus never contribute to the resistivity. Although this
means that symmetric impurities cannot be probed in the
bulk through resistivity measurements,29 their remark-
able properties in criticality and in the Kondo regime can
be measured by means of local methods, such as scanning
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FIG. 8. (Color online) Low–temperature impurity contribu-
tion to the graphene sample resistivity for critical (a) top–
and hollow–site adatoms, and (b) reconstructed and symmet-
ric vacancies. Solid curves and filled symbols correspond to
samples with only TOP or REC impurities [(a) and (b), re-
spectively], i.e., a symmetric impurity fraction n=0. Dashed
curves and empty symbols correspond to n = 0.95, or 95%
symmetric (HS or VAC) and 5% non–symmetric (TOP or
REC) impurities. In both cases, black curves and symbols
represent an impurity energy εTOP = εHS = ε∗TOP, whereas
red corresponds to εTOP = εHS = ε∗HS. Parameters: Γ0 =
U/30 = 0.01D ∼ 100 meV, T = 1.5 mK.

tunneling microscopy (STM).67
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Appendix A: Real–space impurity-graphene
couplings

Here we present the expressions for the impurity-
graphene couplings HI-G in real space for the different
impurity types (I = TOP, HS ,VAC, REC). Without
loss of generality we set the origin of our coordinate sys-
tem at the impurity site. When the impurity sits at or
on top of a lattice site (TOP, VAC and REC) we call the
corresponding sublattice A.

TOP impurities couple to a single site as

HTOP-G = V
∑
s

{
d†TOP,sas(0) + a†s(0)dTOP,s

}
. (A1)

A VAC impurity will couple identically to all three sur-
rounding sublattice B sites located at aûj as

HVAC-G = V
∑
s

3∑
j=1

d†VAC,sbs(aûj) + H. c. (A2)

For the case of a non–symmetric REC impurity, we con-
sider that the sp2 orbital of the B–sublattice carbon atom
at aûl will couple to the π orbitals of the twoB–sublattice
carbons at aûj (l 6= j) through

HREC-G(l) = V
∑
s

3∑
j 6=l

d†REC,sbs(aûj−aûl)+H. c. (A3)

Finally, H impurities couple identically to both sublat-
tices:

HHS-G = V
∑
s

3∑
j=1

d†HS,s

[
as(aûj) + bs(−aûj)

]
+ H. c.

(A4)
In Fourier space we have

HTOP-G = V
∑
k,s

d†TOP,saks + H. c., (A5a)

HVAC-G = V
∑
k,s

Φ(k)d†VAC,sbks + H. c., (A5b)

HREC-G(l) = V
∑
k,s

e−ik·ûl

∑
j 6=l

eiak·ûj

 d†REC,sbks+H. c.,

(A5c)

HHS-G =V
∑
s

d†HS,s

[
Φ(k)aks + Φ∗(k)bks

]
+ H. c.

(A5d)

Applying the transformation (4) we obtain Eqs. (8), (9),
(6), and (7), respectively.



11

1 G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
2 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.

Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

3 N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys.
Rev. B 72, 174406 (2005).

4 T. Eelbo, M. Waśniowska, P. Thakur, M. Gyamfi, B. Sachs,
T. O. Wehling, S. Forti, U. Starke, C. Tieg, A. I. Lichten-
stein, and R. Wiesendanger, Phys. Rev. Lett. 110, 136804
(2013).

5 F. Donati, Q. Dubout, G. Autès, F. Patthey, F. Calleja,
P. Gambardella, O. V. Yazyev, and H. Brune, Phys. Rev.
Lett. 111, 236801 (2013).

6 F. Donati, L. Gragnaniello, A. Cavallin, F. D. Natterer,
Q. Dubout, M. Pivetta, F. Patthey, J. Dreiser, C. Pia-
monteze, S. Rusponi, and H. Brune, Phys. Rev. Lett. 113,
177201 (2014).

7 K. M. McCreary, A. G. Swartz, W. Han, J. Fabian, and
R. K. Kawakami, Phys. Rev. Lett. 109, 186604 (2012).

8 H. Gonzalez-Herrero, J. M. Gomez-Rodriguez, P. Mallet,
M. Moaied, J. J. Palacios, C. Salgado, M. M. Ugeda, J.-Y.
Veuillen, F. Yndurain, and I. Brihuega, Science 352, 437
(2016).

9 O. V. Yazyev, Rep. Prog. Phys. 73, 56501 (2010).
10 J.-H. Chen, L. Li, W. G. Cullen, E. D. Williams, and M. S.

Fuhrer, Nature Phys. 7, 535 (2011).
11 R. R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen,

J. Keinonen, A. V. Krasheninnikov, T. Thomson, A. K.
Geim, and I. V. Grigorieva, Nat. Phys. 8, 199 (2012).

12 R. R. Nair, I.-L. Tsai, M. Sepioni, O. Lehtinen,
J. Keinonen, A. V. Krasheninnikov, A. H. Castro Neto,
M. I. Katsnelson, a. K. Geim, and I. V. Grigorieva, Nat.
Commun. 4, 2010 (2013).

13 S. Just, S. Zimmermann, V. Kataev, B. Büchner,
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